Sample records for absorption spectrometry method

  1. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    EPA Science Inventory


    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  2. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil

    PubMed Central

    2013-01-01

    Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. Conclusions High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry. PMID:23452327

  3. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    PubMed

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry.

  4. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  5. 40 CFR Appendix A to Subpart C of... - Alternative Testing Methods Approved for Analyses Under the Safe Drinking Water Act

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04 Axially...

  6. 40 CFR Appendix A to Subpart C of... - Alternative Testing Methods Approved for Analyses Under the Safe Drinking Water Act

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04 Axially...

  7. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia

    2011-07-01

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ∆ν = 0 vibrational sequence within the electronic transition X 1∑ + → A 1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd xS y molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg -1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg -1 in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence spectrometry).

  8. Diode laser differential absorption spectrometry for measurements of some parameters of condensed media.

    PubMed

    Liger, V V; Bolshov, M A; Kuritsyn, Yu A; Krivtsun, V M; Zybin, A V; Niemax, K

    2007-04-01

    A method of diode laser differential absorption spectrometry (DLDAS) is proposed. The method is based on the detection of absorption spectra variations caused by the changes of a parameter of a condensed media (temperature, composition of the components of a mixture, pH, etc.). Some simple theoretical background of the proposed technique is presented. The potentialities of the method are demonstrated in the experiments on remote contactless measurement of the temperature of aqueous solutions and measurement of the deviations of the composition of a mixture of dyes from the equilibrium state.

  9. Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.

    PubMed

    Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T

    2008-09-15

    Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with the reported levels at the 95% confidence level.

  10. Analysis of Dithiocarbamate Fungicides in Vegetable Matrices Using HPLC-UV Followed by Atomic Absorption Spectrometry.

    PubMed

    Al-Alam, Josephine; Bom, Laura; Chbani, Asma; Fajloun, Ziad; Millet, Maurice

    2017-04-01

    A simple method combining ion-pair methylation, high-performance liquid chromatography (HPLC) analysis with detection at 272 nm and atomic absorption spectrometry was developed in order to determine 10 dithiocarbamate fungicides (Dazomet, Metam-sodium, Ferbam, Ziram, Zineb, Maneb, Mancozeb, Metiram, Nabam and Propineb) and distinguish ethylenbisdithiocarbamates (EBDTCs) Zineb, Maneb and Mancozeb in diverse matrices. This method associates reverse phase analysis by HPLC analysis with detection at 272 nm, with atomic absorption spectrometry in order to distinguish, with the same extraction protocol, Maneb, Mancozeb and Zineb. The limits of detection (0.4, 0.8, 0.5, 1.25 and 1.97) and quantification (1.18, 2.5, 1.52, 4.2 and 6.52) calculated in injected nanogram, respectively, for Dazomet, Metam-Na, dimethyldithiocarbamates (DMDTCs), EBDTCs and propylenebisdithiocarbamates (PBDTCs) justify the sensitivity of the method used. The coefficients of determination R2 were 0.9985, 0.9978, 0.9949, 0.988 and 0.9794, respectively, for Dazomet, Metam-Na, DMDTCs, EBDTCs and PBDTCs, and the recovery from fortified apple and leek samples was above 90%. Results obtained with the atomic absorption method in comparison with spectrophotometric analysis focus on the importance of the atomic absorption as a complementary specific method for the distinction between different EBDTCs fungicides. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    PubMed

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  12. [Application of atomic absorption spectrometry in the engine knock detection].

    PubMed

    Chen, Li-Dan

    2013-02-01

    Because existing human experience diagnosis method and apparatus for auxiliary diagnosis method are difficult to diagnose quickly engine knock. Atomic absorption spectrometry was used to detect the automobile engine knock in in innovative way. After having determined Fe, Al, Cu, Cr and Pb content in the 35 groups of Audi A6 engine oil whose travel course is 2 000 -70 000 kilometers and whose sampling interval is 2 000 kilometers by atomic absorption spectrometry, the database of primary metal content in the same automobile engine at different mileage was established. The research shows that the main metal content fluctuates within a certain range. In practical engineering applications, after the determination of engine oil main metal content and comparison with its database value, it can not only help to diagnose the type and location of engine knock without the disintegration and reduce vehicle maintenance costs and improve the accuracy of engine knock fault diagnosis.

  13. [Determination of metal elements in Achyranthis bidentatae radix from various habitats].

    PubMed

    Tu, Wan-Qian; Zhang, Liu-Ji

    2011-12-01

    To establish an atomic absorption spectrometry method for determination of the contents of metal elements in Achyranthis Bidentatae Radix and analyze 21 batches of samples from different areas. Fe, Mn, Ca, Mg, K, Zn and Cu were detected by atomic absorption spectrometry with hydrogen flame detector, Pb, As and Cd were detected by graphite furnace atomic absorption, Hg was detected by cold atomic absorption. The heavy metal contents met the requirement of Chinese Pharmacopoeia. The contents of K, Mg, Cu and Mn in the samples of geo-authentic areas were higher,while the contents of Fe, Zn, Hg and Pb in the samples of non-authentic areas were higher. This method is sample, accurate, repeatable and could be used to evaluate the quality of Achyranthis Bidentatae Radix.

  14. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor.

    PubMed

    Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam

    2018-02-01

    A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Accelerator mass spectrometry analysis of aroma compound absorption in plastic packaging materials

    NASA Astrophysics Data System (ADS)

    Stenström, Kristina; Erlandsson, Bengt; Hellborg, Ragnar; Wiebert, Anders; Skog, Göran; Nielsen, Tim

    1994-05-01

    Absorption of aroma compounds in plastic packaging materials may affect the taste of the packaged food and it may also change the quality of the packaging material. A method to determine the aroma compound absorption in polymers by accelerator mass spectrometry (AMS) is being developed at the Lund Pelletron AMS facility. The high sensitivity of the AMS method makes it possible to study these phenomena under realistic conditions. As a first test low density polyethylene exposed to 14C-doped ethyl acetate is examined. After converting the polymer samples with the absorbed aroma compounds to graphite, the {14C }/{13C } ratio of the samples is measured by the AMS system and the degree of aroma compound absorption is established. The results are compared with those obtained by supercritical fluid extraction coupled to gas chromatography (SFE-GC).

  16. Method of trivalent chromium concentration determination by atomic spectrometry

    DOEpatents

    Reheulishvili, Aleksandre N [Tbilisi, 0183, GE; Tsibakhashvili, Neli Ya [Tbilisi, 0101, GE

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  17. Working towards accreditation by the International Standards Organization 15189 Standard: how to validate an in-house developed method an example of lead determination in whole blood by electrothermal atomic absorption spectrometry.

    PubMed

    Garcia Hejl, Carine; Ramirez, Jose Manuel; Vest, Philippe; Chianea, Denis; Renard, Christophe

    2014-09-01

    Laboratories working towards accreditation by the International Standards Organization (ISO) 15189 standard are required to demonstrate the validity of their analytical methods. The different guidelines set by various accreditation organizations make it difficult to provide objective evidence that an in-house method is fit for the intended purpose. Besides, the required performance characteristics tests and acceptance criteria are not always detailed. The laboratory must choose the most suitable validation protocol and set the acceptance criteria. Therefore, we propose a validation protocol to evaluate the performance of an in-house method. As an example, we validated the process for the detection and quantification of lead in whole blood by electrothermal absorption spectrometry. The fundamental parameters tested were, selectivity, calibration model, precision, accuracy (and uncertainty of measurement), contamination, stability of the sample, reference interval, and analytical interference. We have developed a protocol that has been applied successfully to quantify lead in whole blood by electrothermal atomic absorption spectrometry (ETAAS). In particular, our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics.

  18. Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using High Performance Thin Layer Chromatography.

    PubMed

    Hynstova, Veronika; Sterbova, Dagmar; Klejdus, Borivoj; Hedbavny, Josef; Huska, Dalibor; Adam, Vojtech

    2018-01-30

    In this study, 14 commercial products (dietary supplements) containing alga Chlorella vulgaris and cyanobacteria Spirulina platensis, originated from China and Japan, were analysed. UV-vis spectrophotometric method was applied for rapid determination of chlorophylls, carotenoids and pheophytins; as degradation products of chlorophylls. High Performance Thin-Layer Chromatography (HPTLC) was used for effective separation of these compounds, and also Atomic Absorption Spectrometry for determination of heavy metals as indicator of environmental pollution. Based on the results obtained from UV-vis spectrophotometric determination of photosynthetic pigments (chlorophylls and carotenoids), it was confirmed that Chlorella vulgaris contains more of all these pigments compared to the cyanobacteria Spirulina platensis. The fastest mobility compound identified in Chlorella vulgaris and Spirulina platensis using HPTLC method was β-carotene. Spectral analysis and standard calibration curve method were used for identification and quantification of separated substances on Thin-Layer Chromatographic plate. Quantification of copper (Cu 2+ , at 324.7 nm) and zinc (Zn 2+ , at 213.9nm) was performed using Flame Atomic Absorption Spectrometry with air-acetylene flame atomization. Quantification of cadmium (Cd 2+ , at 228.8 nm), nickel (Ni 2+ , at 232.0nm) and lead (Pb 2+ , at 283.3nm) by Electrothermal Graphite Furnace Atomic Absorption Spectrometry; and quantification of mercury (Hg 2+ , at 254nm) by Cold Vapour Atomic Absorption Spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry

    USGS Publications Warehouse

    Huffman, Claude; Mensik, J.D.; Riley, L.B.

    1967-01-01

    The two methods presented for the determination of traces of gold in geologic materials are the cyanide atomic-absorption method and the fire-assay atomic-absorption method. In the cyanide method gold is leached with a sodium-cyanide solution. The monovalent gold is then oxidized to the trivalent state and concentrated by extracting into methyl isobutyl ketone prior to estimation by atomic absorption. In the fire-assay atomic-absorption method, the gold-silver bead obtained from fire assay is dissolved in nitric and hydrochloric acids. Gold is then concentrated by extracting into methyl isobutyl ketone prior to determination by atomic absorption. By either method concentrations as low as 50 parts per billion of gold can be determined in a 15-gram sample.

  20. Simple method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer.

    PubMed

    Ishizaki, M

    1978-03-01

    A method for determination of selenium in biological materials by flameless atomic-absorption spectrometry using a carbon-tube atomizer is described. The sample is burned by an oxygen-flask combustion procedure, the resulting solution is treated with a cation-exchange resin to eliminate interfering cations, the selenium is extracted with dithizone in carbon tetrachloride and the resulting selenium dithizonate is combined with nickel nitrate in the carbon tube to enhance the sensitivity for selenium and avoid volatilization losses. The method measures selenium concentrations as low as 0.01 mug/g with a relative standard deviation of 8%.

  1. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  2. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  3. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  4. 40 CFR Appendix A to Subpart C of... - Alternative Testing Methods Approved for Analyses Under the Safe Drinking Water Act

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Absorption D 3697-07 Atomic Absorption; Furnace 3113 B Axially viewed inductively coupled plasma-atomic... C Hydride Atomic Absorption 3114 B D 2972-08 B Axially viewed inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. Barium Inductively Coupled Plasma 3120 B Atomic...

  5. Diode Lasers and Practical Trace Analysis.

    ERIC Educational Resources Information Center

    Imasaka, Totaro; Nobuhiko, Ishibashi

    1990-01-01

    Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)

  6. A method for the routine determination of aluminium in serum and water by flameless atomic absorption spectrometry.

    PubMed

    Parkinson, I S; Ward, M K; Kerr, D N

    1982-10-27

    A simple but reliable method for the routine determination of aluminium in serum and water by flameless atomic absorption spectrometry is described. No preparatory procedures are required for water samples, although serum is mixed with a wetting agent (Triton X-100) to allow complete combustion of the samples and to improve analytical precision. Precautions to prevent contamination during sample handling are discussed and instrumental parameters are defined. The method has a sensitivity of 35.5 pg and detection limits of 2.3 micrograms Al/l for serum and 1.3 micrograms Al/l for water. The method was used to determine the aluminium concentration in serum of 46 normal subjects. The mean aluminium content was 7.3 micrograms/l (range 2--15 micrograms/l.

  7. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  8. Measurements of sulfur compounds in CO 2 by diode laser atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Franzke, J.; Stancu, D. G.; Niemax, K.

    2003-07-01

    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry.

  9. Statistical evaluation of an inductively coupled plasma atomic emission spectrometric method for routine water quality testing

    USGS Publications Warehouse

    Garbarino, J.R.; Jones, B.E.; Stein, G.P.

    1985-01-01

    In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.

  10. Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples

    NASA Astrophysics Data System (ADS)

    Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.

    2015-09-01

    The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.

  11. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  12. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of "fluorine as a probe in medicinal chemistry" an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells.

  13. Liquid chromatography-hydride generation-atomic absorption spectrometry for the speciation of tin in seafoods.

    PubMed

    Viñas, Pilar; López-García, Ignacio; Merino-Meroño, Beatriz; Campillo, Natalia; Hernández-Cordóba, Manuel

    2004-04-01

    Liquid chromatography with hydride generation atomic absorption spectrometry as the detection system was applied to the separation and determination of inorganic tin, tributyltin, dibutyltin, monobutyltin, diphenyltin and monophenyltin. A reversed phase C18 column and a methanol/water/acetic acid (70:27:3, v/v/v) mixture containing 0.05%(v/v) triethylamine and 0.1%(w/v) tropolone as the mobile phase (isocratic elution) were used. Extraction of organotins from the samples was carried out using methanol containing 0.05%(w/v) tropolone, a process that was repeated twice. The supernatants were shaken with water and dichloromethane in a separating funnel and the organic phase was collected and evaporated to dryness. When the method was applied to the speciation of tin in fresh and canned mussels, no organotins above the detection limits were identified in any of the samples, inorganic tin being the only species detected. The reliability of the procedure was checked by analyzing the total tin content of the samples by electrothermal atomic absorption spectrometry and by speciation of tin in a certified reference material, mussel tissue (CRM 477). The method can be used for environmental monitoring of organotins contaminated samples.

  14. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Determination of gold in copper-bearing sulphide ores and metallurgical flotation products by atomic-absorption spectrometry.

    PubMed

    Strong, B; Murray-Smith, R

    1974-12-01

    A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.

  16. Lead screening in DBS by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: application to newborns and pregnant women.

    PubMed

    Rello, Luis; Aramendía, Maite; Belarra, Miguel A; Resano, Martín

    2015-01-01

    DBS have become a clinical specimen especially adequate for establishing home-based collection protocols. In this work, high-resolution continuum source graphite furnace atomic absorption spectrometry is evaluated for the direct monitoring of Pb in DBS, both as a quantitative tool and a screening method. The development of the screening model is based on the establishment of the unreliability region around the threshold limits, 100 or 50 μg l(-1). More than 500 samples were analyzed to validate the model. The screening method demonstrated high sensitivity (the rate of true positives detected was always higher than 95%), an excellent LOD (1 µg l(-1)) and high throughput (10 min per sample).

  17. Development and Validation of a Sensitive Method for Trace Nickel Determination by Slotted Quartz Tube Flame Atomic Absorption Spectrometry After Dispersive Liquid-Liquid Microextraction.

    PubMed

    Yolcu, Şükran Melda; Fırat, Merve; Chormey, Dotse Selali; Büyükpınar, Çağdaş; Turak, Fatma; Bakırdere, Sezgin

    2018-05-01

    In this study, dispersive liquid-liquid microextraction was systematically optimized for the preconcentration of nickel after forming a complex with diphenylcarbazone. The measurement output of the flame atomic absorption spectrometer was further enhanced by fitting a custom-cut slotted quartz tube to the flame burner head. The extraction method increased the amount of nickel reaching the flame and the slotted quartz tube increased the residence time of nickel atoms in the flame to record higher absorbance. Two methods combined to give about 90 fold enhancement in sensitivity over the conventional flame atomic absorption spectrometry. The optimized method was applicable over a wide linear concentration range, and it gave a detection limit of 2.1 µg L -1 . Low relative standard deviations at the lowest concentration in the linear calibration plot indicated high precision for both extraction process and instrumental measurements. A coal fly ash standard reference material (SRM 1633c) was used to determine the accuracy of the method, and experimented results were compatible with the certified value. Spiked recovery tests were also used to validate the applicability of the method.

  18. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  19. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  20. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  1. Analysis of metal-laden water via portable X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, Delaina; Weindorf, David C.; Chakraborty, Somsubhra; Li, Bin; Koch, Jaco; Van Deventer, Piet; de Wet, Jandre; Kusi, Nana Yaw

    2018-06-01

    A rapid method for in-situ elemental composition analysis of metal-laden water would be indispensable for studying polluted water. Current analytical lab methods to determine water quality include flame atomic absorption spectrometry (FAAS), atomic absorption spectrophotometry (AAS), electrothermal atomic absorption spectrometry (EAAS), and inductively coupled plasma (ICP) spectroscopy. However only two field methods, colorimetry and absorptiometry, exist for elemental analysis of water. Portable X-ray fluorescence (PXRF) spectrometry is an effective method for elemental analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study sought to statistically establish PXRF's predictive ability for various elements in water at different concentrations relative to inductively coupled plasma atomic emission spectroscopy (ICP-AES). A total of 390 metal-laden water samples collected from leaching columns of mine tailings in South Africa were analyzed via PXRF and ICP-AES. The PXRF showed differential effectiveness in elemental quantification. For the collected water samples, the best relationships between ICP and PXRF elemental data were obtained for K and Cu (R2 = 0.92). However, when scanning ICP calibration solutions with elements in isolation, PXRF results indicated near perfect agreement; Ca, K, Fe, Cu and Pb produced an R2 of 0.99 while Zn and Mn produced an R2 of 1.00. The utilization of multiple PXRF (stacked) beams produced stronger correlation to ICP relative to the use of a single beam in isolation. The results of this study demonstrated the PXRF's ability to satisfactorily predict the composition of metal-laden water as reported by ICP for several elements. Additionally this study indicated the need for a "Water Mode" calibration for the PXRF and demonstrates the potential of PXRF for future study of polluted or contaminated waters.

  2. Measurement of Iron in Egg Yolk: An Instrumental Analysis Experiment Using Biochemical Principles

    ERIC Educational Resources Information Center

    Maloney, Kevin M.; Quiazon, Emmanuel M.; Indralingam, Ramee

    2008-01-01

    The generally accepted method to determine iron content in food is by acid digestion or dry ashing and subsequent flame atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry. We have developed an experiment that chemically extracts the iron from an egg yolk and quantifies it using UV-vis absorption…

  3. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    PubMed

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  4. Application of Internal Standard Method for Several 3d-Transition Metallic Elements in Flame Atomic Absorption Spectrometry Using a Multi-wavelength High-resolution Spectrometer.

    PubMed

    Toya, Yusuke; Itagaki, Toshiko; Wagatsuma, Kazuaki

    2017-01-01

    We investigated a simultaneous internal standard method in flame atomic absorption spectrometry (FAAS), in order to better the analytical precision of 3d-transition metals contained in steel materials. For this purpose, a new spectrometer system for FAAS, comprising a bright xenon lamp as the primary radiation source and a high-resolution Echelle monochromator, was employed to measure several absorption lines at a wavelength width of ca. 0.3 nm at the same time, which enables the absorbances of an analytical line and also an internal standard line to be estimated. In considering several criteria for selecting an internal standard element and the absorption line, it could be suggested that platinum-group elements: ruthenium, rhodium, or palladium, were suitable for an internal standard element to determine the 3d-transition metal elements, such as titanium, iron, and nickel, by measuring an appropriate pair of these absorption lines simultaneously. Several variances of the absorption signal, such as a variation in aspirated amounts of sample solution and a short-period drift of the primary light source, would be corrected and thus reduced, when the absorbance ratio of the analytical line to the internal standard line was measured. In Ti-Pd, Ni-Rh, and Fe-Ru systems chosen as typical test samples, the repeatability of the signal respnses was investigated with/without the internal standard method, resulting in better precision when the internal standard method was applied in the FAAS with a nitrous oxide-acetylene flame rather than an air-acetylene flame.

  5. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: A multivariate study

    NASA Astrophysics Data System (ADS)

    Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-01

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.

  7. Simultaneous determination of Cd and Fe in beans and soil of different regions of Brazil using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling.

    PubMed

    dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut

    2009-11-11

    A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.

  8. Determination of mercury in fish tissue using a minianalyzer based on cold vapor atomic absorption spectrometry at the 184.9 nm line.

    PubMed

    Rizea, Maria-Cristina; Bratu, Maria-Cristina; Danet, Andrei Florin; Bratu, Adrian

    2007-09-01

    A sensitive method was proposed and optimized for the determination of total mercury in fish tissue by using wet digestion, followed by cold vapor atomic absorption spectrometry (CVAAS) at the main resonance line of mercury (184.9 nm). The measurements were made using a new type of a non-dispersive mercury minianalyzer. This instrument was initially designed and built for atmospheric mercury-vapor detection. For determining mercury in aqueous samples, the minianalyzer was linked with a mercury/hydride system, Perkin Elmer Model MHS-10. To check the method, the analyzed samples were spiked with a standard solution of mercury. The recoveries of mercury spiked to wet fish tissue were >90% for 0.5 - 0.8 g samples. The results showed a better sensitivity (about 2.5 times higher) when using the mercury absorption line at 184.9 nm compared with the sensitivity obtained by conventional CVAAS at 253.7 nm.

  9. [Recent Development of Atomic Spectrometry in China].

    PubMed

    Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei

    2015-09-01

    As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.

  10. Rapid separation on copper powder of total mercury in blood and determination of mercury by flameless atomic absorption spectrometry.

    PubMed

    Dogan, S; Haerdi, W

    1979-01-01

    The determination of mercury in blood by flameless atomic absorption spectrometry (FAAS) has been described. Prior to its analysis, the sample was decomposed by combustion and separated on a copper powder micro-column. A special type of cell has been used which gives a better sensitivity compared with the types of cells described in the literature and the method of FAAS analysis has been improved. The sensitivity of 0.1 ng for 1% absorbance was observed and the standard deviation for six determinations at this level was found to be +/- 0.05 ng, for 95% probability.

  11. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  12. [Evaluation of uncertainty for determination of tin and its compounds in air of workplace by flame atomic absorption spectrometry].

    PubMed

    Wei, Qiuning; Wei, Yuan; Liu, Fangfang; Ding, Yalei

    2015-10-01

    To investigate the method for uncertainty evaluation of determination of tin and its compounds in the air of workplace by flame atomic absorption spectrometry. The national occupational health standards, GBZ/T160.28-2004 and JJF1059-1999, were used to build a mathematical model of determination of tin and its compounds in the air of workplace and to calculate the components of uncertainty. In determination of tin and its compounds in the air of workplace using flame atomic absorption spectrometry, the uncertainty for the concentration of the standard solution, atomic absorption spectrophotometer, sample digestion, parallel determination, least square fitting of the calibration curve, and sample collection was 0.436%, 0.13%, 1.07%, 1.65%, 3.05%, and 2.89%, respectively. The combined uncertainty was 9.3%.The concentration of tin in the test sample was 0.132 mg/m³, and the expanded uncertainty for the measurement was 0.012 mg/m³ (K=2). The dominant uncertainty for determination of tin and its compounds in the air of workplace comes from least squares fitting of the calibration curve and sample collection. Quality control should be improved in the process of calibration curve fitting and sample collection.

  13. CaI and SrI molecules for iodine determination by high-resolution continuum source graphite furnace molecular absorption spectrometry: Greener molecules for practical application.

    PubMed

    Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva

    2018-03-01

    A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: a multivariate study.

    PubMed

    Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-10

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Determination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Fırat, Merve; Bakırdere, Sezgin; Fındıkoğlu, Maral Selin; Kafa, Emine Betül; Yazıcı, Elif; Yolcu, Melda; Büyükpınar, Çağdaş; Chormey, Dotse Selali; Sel, Sabriye; Turak, Fatma

    2017-03-01

    This study was performed to develop a sensitive analytical method for the determination of cadmium by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS) after dispersive liquid-liquid microextraction (DLLME). The parameters affecting the cadmium complex formation and its extraction output were optimized to obtain high extraction efficiency. These included the pH and amount of the buffer solution, and the concentration of the ligand. The DLLME method was comprehensively optimized based on the type and amount of extraction solvent, dispersive solvent and salt. The type and period of mixing needed for a more effective extraction was also investigated. In order to further improve the sensitivity for the determination of cadmium, the flame atomic absorption spectrometry was fitted with a slotted quartz tube to increase the residence time of cadmium atoms in the pathway of incident light from a hollow cathode lamp. The limits of detection and quantitation (LOD and LOQ) for the FAAS were found to be 42 and 140 μg L- 1, respectively. Under the optimum conditions, LOD and LOQ of the FAAS after DLLME were calculated as 1.3 and 4.4 μg L- 1, respectively. Combining both optimized parameters of the DLLME and SQT-FAAS gave 0.5 and 1.5 μg L- 1 as LOD and LOQ, respectively. Accuracy of the method was also checked using a wastewater certified reference material (EU-L-2), and the result was in good agreement with the certified value.

  16. On-line ionic liquid-based preconcentration system coupled to flame atomic absorption spectrometry for trace cadmium determination in plastic food packaging materials.

    PubMed

    Martinis, Estefanía M; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-05-15

    A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g(-1) and the relative standard deviation (R.S.D.) for 10 replicates at 10 microg L(-1) Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 microg g(-1).

  17. [Determination of trace gallium by graphite furnace atomic absorption spectrometry in urine].

    PubMed

    Zhou, L Z; Fu, S; Gao, S Q; He, G W

    2016-06-20

    To establish a method for determination trace gallium in urine by graphite furnace atomic absorption spectrometry (GFAAS). The ammonium dihydrogen phosphate was matrix modifier. The temperature effect about pyrolysis (Tpyr) and atomization temperature were optimized for determination of trace gallium. The method of technical standard about within-run, between-run and recoveries of standard were optimized. The method showed a linear relationship within the range of 0.20~80.00 μg/L (r=0.998). The within-run and between-run relative standard deviations (RSD) of repetitive measurement at 5.0, 10.0, 20.0 μg/L concentration levels were 2.1%~5.5% and 2.3%~3.0%. The detection limit was 0.06 μg/L. The recoveries of gallium were 98.2%~101.1%. This method is simple, low detection limit, accurate, reliable and reproducible. It has been applied for determination of trace gallium in urine samples those who need occupation health examination or poisoning diagnosis.

  18. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.

    PubMed

    Dwivedi, D; Lepkova, K; Becker, T

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  19. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  20. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    PubMed Central

    Dwivedi, D.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351

  1. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    PubMed

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P < 0.01). There was no significant difference between coagulated and uncoagulated samples run by atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  2. [Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].

    PubMed

    Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L

    2016-05-20

    To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.

  3. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    PubMed

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    PubMed

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 40 CFR 1065.1010 - Reference materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Method for Phosphorus in Gasoline 1065.710 ASTM D3237-06e01, Standard Test Method for Lead in Gasoline By... atomic absorption spectrometry 1065.705 IP-500, Determination of the phosphorus content of residual fuels..., iron, sodium, calcium, zinc and phosphorus in residual fuel oil by ashing, fusion and inductively...

  7. EPA Method 3031 (SW-846): Acid Digestion of Oils for Metals Analysis by Atomic Absorption or ICP Spectrometry

    EPA Pesticide Factsheets

    Procedures are described for analysis of water samples and may be adapted for assessment of solid, particulate and liquid samples. The method uses real-time PCR assay for detecting Toxoplasma gondii DNA using gene-specific primers and probe.

  8. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  9. Validation of a hydride generation atomic absorption spectrometry methodology for determination of mercury in fish designed for application in the Brazilian national residue control plan.

    PubMed

    Damin, Isabel C F; Santo, Maria A E; Hennigen, Rosmari; Vargas, Denise M

    2013-01-01

    In the present study, a method for the determination of mercury (Hg) in fish was validated according to ISO/IEC 17025, INMETRO (Brazil), and more recent European recommendations (Commission Decision 2007/333/EC and 2002/657/EC) for implementation in the Brazilian Residue Control Plan (NRCP) in routine applications. The parameters evaluated in the validation were investigated in detail. The results obtained for limit of detection and quantification were respectively, 2.36 and 7.88 μg kg(-1) of Hg. While the recovery varies between 90-96%. The coefficient of variation was of 4.06-8.94% for the repeatability. Furthermore, a comparison using an external proficiency testing scheme was realized. The results of method validated for the determination of the mercury in fish by Hydride generation atomic absorption spectrometry were considered suitable for implementation in routine analysis.

  10. The determination of lead in sugar and sweets without digestion by electrothermal atomic absorption spectrometry (ETAAS) with a rhodium chemical modifier.

    PubMed

    Dias, V M C; Cardoso, A S B

    2006-05-01

    Reference methods for determining lead in food are usually time-consuming. This paper reports a straightforward procedure using electrothermal atomic absorption spectrometry (ETAAS), to determine lead (Pb) in fat-free sweets. Several chemical modifiers were examined and results showed that it is not necessary to digest the samples, when a rhodium (Rh) modifier was used. The samples were dissolved in nitric acid and the determination of Pb was performed by ETAAS, using Rh chemical modifier at a pyrolysis temperature of 900 degrees C and an atomization temperature of 1,500 degrees C. No ashing step was employed and aqueous standards were used, in the range 2-10 microg l(-1). The limit of quantification was 0.095 mg kg(-1), and the accuracy of the method was verified by analysing certified reference materials.

  11. Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction.

    PubMed

    Sun, Mei; Liu, Guijian; Wu, Qianghua

    2013-11-01

    A new method was developed for the determination of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry detection after cloud point extraction. Effective separation of organic and inorganic selenium in selenium-enriched rice was achieved by sequentially extracting with water and cyclohexane. Under the optimised conditions, the limit of detection (LOD) was 0.08 μg L(-1), the relative standard deviation (RSD) was 2.1% (c=10.0 μg L(-1), n=11), and the enrichment factor for selenium was 82. Recoveries of inorganic selenium in the selenium-enriched rice samples were between 90.3% and 106.0%. The proposed method was successfully applied for the determination of organic and inorganic selenium as well as total selenium in selenium-enriched rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry.

    PubMed

    de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz

    2017-09-01

    The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.

  13. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  14. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.

    PubMed

    Goudarzi, Nasser

    2009-02-11

    A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples.

  15. Translational value of liquid chromatography coupled with tandem mass spectrometry-based quantitative proteomics for in vitro-in vivo extrapolation of drug metabolism and transport and considerations in selecting appropriate techniques.

    PubMed

    Al Feteisi, Hajar; Achour, Brahim; Rostami-Hodjegan, Amin; Barber, Jill

    2015-01-01

    Drug-metabolizing enzymes and transporters play an important role in drug absorption, distribution, metabolism and excretion and, consequently, they influence drug efficacy and toxicity. Quantification of drug-metabolizing enzymes and transporters in various tissues is therefore essential for comprehensive elucidation of drug absorption, distribution, metabolism and excretion. Recent advances in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) have improved the quantification of pharmacologically relevant proteins. This report presents an overview of mass spectrometry-based methods currently used for the quantification of drug-metabolizing enzymes and drug transporters, mainly focusing on applications and cost associated with various quantitative strategies based on stable isotope-labeled standards (absolute quantification peptide standards, quantification concatemers, protein standards for absolute quantification) and label-free analysis. In mass spectrometry, there is no simple relationship between signal intensity and analyte concentration. Proteomic strategies are therefore complex and several factors need to be considered when selecting the most appropriate method for an intended application, including the number of proteins and samples. Quantitative strategies require appropriate mass spectrometry platforms, yet choice is often limited by the availability of appropriate instrumentation. Quantitative proteomics research requires specialist practical skills and there is a pressing need to dedicate more effort and investment to training personnel in this area. Large-scale multicenter collaborations are also needed to standardize quantitative strategies in order to improve physiologically based pharmacokinetic models.

  16. Graphene oxide sheets immobilized polystyrene for column preconcentration and sensitive determination of lead by flame atomic absorption spectrometry.

    PubMed

    Islam, Aminul; Ahmad, Hilal; Zaidi, Noushi; Kumar, Suneel

    2014-08-13

    A novel solid-phase extractant was synthesized by coupling graphene oxide (GO) on chloromethylated polystyrene through an ethylenediamine spacer unit to develop a column method for the preconcentration/separation of lead prior to its determination by flame atomic absorption spectrometry. It was characterized by Fourier transform infrared spectroscopy, far-infrared spectroscopy, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy. The abundant oxygen-containing surface functional groups form a strong complex with lead, resulting in higher sorption capacity (227.92 mg g(-1)) than other nanosorbents used for sorption studies of the column method. Using the column procedure here is an alternative to the direct use of GO, which restricts irreversible aggregation of GO and its escape into the ecosystem, making it an environmentally sustainable method. The column method was optimized by varying experimental variables such as pH, flow rate for sorption/desorption, and elution condition and was observed to exhibit a high preconcentration factor (400) with a low preconcentration limit (2.5 ppb) and a high degree of tolerance for matrix ions. The accuracy of the proposed method was verified by determining the Pb content in the standard reference materials and by recovery experiments. The method showed good precision with a relative standard deviation <5%. The proposed method was successfully applied for the determination of lead in tap water, electroplating wastewater, river water, and food samples after preconcentration.

  17. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  18. Considerations in As analysis and speciation

    USGS Publications Warehouse

    Edwards, M.; Patel, S.; McNeil, L.; Chen, H.W.; Frey, M.; Eaton, A.D.; Antweiler, Ronald C.; Taylor, Howard E.

    1998-01-01

    This article summarizes recent experiences in arsenic (As) quantification, preservation, and speciation developed during AWWA Research Foundation (AWWARF) and Water Industry Technical Action Fund (WITAF) projects. The goal of this article is to alert analysts and decision-makers to potential problems in As analysis and speciation, because there appear to be several unresolved problems with routine analytical approaches. In true split drinking water samples As was quantified by three accepted analytical methods in three laboratories. The techniques used were graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation inductively coupled plasma-emission spectrometry (HG-ICP-AES). Experimental findings are organized into sections on As analysis, particulate As in water supplies, and examination of As speciation methods.

  19. Recent developments in cyanide detection: A review

    PubMed Central

    Ma, Jian; Dasgupta, Purnendu K.

    2010-01-01

    The extreme toxicity of cyanide and environmental concerns from its continued industrial use continue to generate interest in facile and sensitive methods for cyanide detection. In recent years there is also additional recognition of HCN toxicity from smoke inhalation and potential use of cyanide as a weapon of terrorism. This review summarizes the literature since 2005 on cyanide measurement in different matrices ranging from drinking water and wastewater, to cigarette smoke and exhaled breath to biological fluids like blood, urine and saliva. The dramatic increase in the number of publications on cyanide measurement is indicative of the great interest in this field not only from analytical chemists, but also researchers from diverse environmental, medical, forensic and clinical arena. The recent methods cover both established and emerging analytical disciplines and include naked eye visual detection, spectrophotometry/colorimetry, capillary electrophoresis with optical absorbance detection, fluorometry, chemiluminescence, near-infrared cavity ring down spectroscopy, atomic absorption spectrometry, electrochemical methods (potentiometry/amperometry/ion chromatography-pulsed amperometry), mass spectrometry (selected ion flow tube mass spectrometry, electrospray ionization mass spectrometry, gas chromatography-mass spectrometry), gas chromatography (nitrogen phosphorus detector, electron capture detector) and quartz crystal mass monitors. PMID:20599024

  20. The role of atomic absorption spectrometry in geochemical exploration

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.

    1992-01-01

    In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.

  1. Determination of cadmium and lead at low levels by using preconcentration at fullerene coupled to thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Pereira-Filho, E. R.; Berndt, H.; Arruda, M. A. Z.

    2004-04-01

    A new and sensitive method for Cd and Pb determinations, based on the coupling of thermospray flame furnace atomic absorption spectrometry and a preconcentrator system, was developed. The procedure comprised the chelating of Cd and Pb with ammonium pyrrolidinedithiocarbamate with posterior adsorption of the chelates on a mixture (40 mg) of C 60 and C 70 at a flow rate of 2.0 ml min -1. These chelates were eluted from the adsorbent by passing a continuous flow of ethanol (80% v/v) at 0.9 ml min -1 to a nickel tube placed in an air/acetylene flame. After sample introduction into the tube by using a ceramic capillary (0.5 mm i.d.), the analytical signals were registered as peak height. Under these conditions, improvement factors in detectability of 675 and 200 were obtained for Cd and Pb, respectively, when compared to conventional flame atomic absorption spectrometry. Spiked samples (mineral and tap waters) and drinking water containing natural concentrations of Cd were employed for evaluating accuracy by comparing the results obtained from the proposed methodology with those using electrothermal atomic absorption spectrometry. In addition, certified reference materials (rye grass, CRM 281 and pig kidney, CRM 186) were also adopted for the accuracy tests. Due to the good linearity ranges for Cd (0.5-5.0 μg l -1) and Pb (10-250 μg l -1), samples with different concentrations could be analyzed. Detection limits of 0.1 and 2.4 μg l -1 were obtained for Cd and Pb, respectively, and RSD values <4.5% were observed ( n=10). Finally, a sample throughput of 24 determinations per hour was possible.

  2. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    PubMed

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  3. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    EPA Science Inventory

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
    compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  4. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    EPA Science Inventory

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  5. Volatile Organic Silicon Compounds in Biogases: Development of Sampling and Analytical Methods for Total Silicon Quantification by ICP-OES

    PubMed Central

    Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES. PMID:25379538

  6. Volatile organic silicon compounds in biogases: development of sampling and analytical methods for total silicon quantification by ICP-OES.

    PubMed

    Chottier, Claire; Chatain, Vincent; Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES.

  7. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    PubMed

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    NASA Astrophysics Data System (ADS)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  9. Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41.

    PubMed

    Fiamegkos, I; Cordeiro, F; Robouch, P; Vélez, D; Devesa, V; Raber, G; Sloth, J J; Rasmussen, R R; Llorente-Mirandes, T; Lopez-Sanchez, J F; Rubio, R; Cubadda, F; D'Amato, M; Feldmann, J; Raab, A; Emteborg, H; de la Calle, M B

    2016-12-15

    A collaborative trial was conducted to determine the performance characteristics of an analytical method for the quantification of inorganic arsenic (iAs) in food. The method is based on (i) solubilisation of the protein matrix with concentrated hydrochloric acid to denature proteins and allow the release of all arsenic species into solution, and (ii) subsequent extraction of the inorganic arsenic present in the acid medium using chloroform followed by back-extraction to acidic medium. The final detection and quantification is done by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). The seven test items used in this exercise were reference materials covering a broad range of matrices: mussels, cabbage, seaweed (hijiki), fish protein, rice, wheat, mushrooms, with concentrations ranging from 0.074 to 7.55mgkg(-1). The relative standard deviation for repeatability (RSDr) ranged from 4.1 to 10.3%, while the relative standard deviation for reproducibility (RSDR) ranged from 6.1 to 22.8%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Ligandless dispersive liquid--liquid microextraction of iron in biological and foodstuff samples and its determination by Electrothermal atomic absorption spectrometry.

    PubMed

    Madadizadeh, Mohadeseh; Taher, Mohammad Ali; Ashkenani, Hamid

    2013-01-01

    A new, simple, and efficient method comprising ligandless dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry is reported for the preconcentration and determination of ultratrace amounts of Fe(III). Carbon tetrachloride and acetone were used as the extraction and disperser solvents, respectively. Some effective parameters of the microextraction such as choice of extraction and disperser solvents, their volume, extraction time and temperature, salt and surfactant effect, and pH were optimized. Under the optimum conditions, the calibration curve was linear in the range of 0.02 to 0.46 microg/L of Fe(III), with LOD and LOQ of 5.2 and 17.4 ng/L, respectively. The RSD for seven replicated determinations of Fe(IIl) ion at 0.1 microg/L concentration level was 5.2%. Operational simplicity, rapidity, low cost, good repeatability, and low consumption of extraction solvent are the main advantages of the proposed method. The method was successfully applied to the determination of iron in biological, food, and certified reference samples.

  11. [Determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry].

    PubMed

    Lin, Li; Chen, Guang; Chen, Yuhong

    2011-07-01

    A method was established for the determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP/ MS). Alkaline extraction and IC-ICP/MS were applied as the sample pre-treatment method and the detection technique respectively, for iodate and iodide determination. Moreover, high-temperature pyrolysis absorption was adopted as the pre-treatment method for total iodine analysis, which finally converted all the iodine species into iodide and measured the iodide by IC-ICP/MS. The recoveries of iodine for alkaline extraction and high-temperature pyrolysis absorption were 89.6%-97.5% and 95.2%-111.2%, respectively. The results were satisfactory. The detection limit of iodine was 0.010 mg/kg. The iodine and its speciation contents in several kinds of plant samples such as seaweeds, kelp, cabbage, tea leaf and spinach were investigated. It was shown that the iodine in seaweeds mainly existed as organic iodine; while the ones in kelp, cabbage, tea leaf and spinach mainly existed as inorganic iodine.

  12. [Determination of the content of sulfur of coal by the infrared absorption method with high acccuracy].

    PubMed

    Wang, Hai-Feng; Lu, Hai; Li, Jia; Sun, Guo-Hua; Wang, Jun; Dai, Xin-Hua

    2014-02-01

    The present paper reported the differential scanning calorimetry-thermogravimetry curves and the infrared (IR) absorption spectrometry under the temperature program analyzed by the combined simultaneous thermal analysis-IR spectrometer. The gas products of coal were identified by the IR spectrometry. This paper emphasized on the combustion at high temperature-IR absorption method, a convenient and accurate method, which measures the content of sulfur in coal indirectly through the determination of the content of sulfur dioxide in the mixed gas products by IR absorption. It was demonstrated, when the instrument was calibrated by varied pure compounds containing sulfur and certified reference materials (CRMs) for coal, that there was a large deviation in the measured sulfur contents. It indicates that the difference in chemical speciations of sulfur between CRMs and the analyte results in a systematic error. The time-IR absorption curve was utilized to analyze the composition of sulfur at low temperatures and high temperatures and then the sulfur content of coal sample was determined by using a CRM for coal with a close composition of sulfur. Therefore, the systematic error due to the difference in chemical speciations of sulfur between the CRM and analyte was eliminated. On the other hand, in this combustion at high temperature-IR absorption method, the mass of CRM and analyte were adjusted to assure the sulfur mass equal and then the CRM and the analyte were measured alternately. This single-point calibration method reduced the effect of the drift of the IR detector and improved the repeatability of results, compared with the conventional multi-point calibration method using the calibration curves of signal intensity vs sulfur mass. The sulfur content results and their standard deviations of an anthracite coal and a bituminous coal with a low sulfur content determined by this modified method were 0.345% (0.004%) and 0.372% (0.008%), respectively. The uncertainty (U, k =2) of sulfur contents of two coal samples was evaluated to be 0.019% and 0.021%, respectively. Two main modifications, namely the calibration using the coal CRM with a similar composition of low-temperature sulfur and high temperature sulfur, and the single-point calibration alternating CRM and analyte, endow the combustion at high temperature-IR absorption method with an accuracy obviously better than that of the ASTM method. Therefore, this modified method has a well potential in the analysis of sulfur content.

  13. A comparison of simultaneous plasma, atomic absorption, and iron colorimetric determinations of major and trace constituents in acid mine waters

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D. Kirk

    1994-01-01

    Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of the remaining elements, Ba, Be, Ca, Cr, Mg, Mn, Sr, and Zn have roughly equivalent accuracy, precision, and detection limit by ICP and DCP. Cobalt and Ni were determined to be better analyzed by ICP, because of lower detection limits; B, Cu, Mo, and Si were determined to be better analyzed by DCP, because of relative freedom from interferences. The determination oral by DCP was far more sensitive, owing to the use of a more sensitive wavelength, compared with the ICP. However, there is a very serious potential interference from a strong Ca emission line near the 396.15 nanometer DCP wavelength. Thus, there is no clear choice between the plasma techniques tested, for the determination oral. The ICP and DCP detection limits are typically between 0.001 and 0.5 milligrams per liter in acid mine waters. For those metals best analyzed by ICP and/or DCP, but below these limits, GFAAS is the method of choice because of its relatively greater sensitivity and specificity. Six of the elements were not determined by DCP, ICP or Zeeman-corrected GFAAS, and are not discussed in this report. These elements are: Bi, Fe(11), Li, Sb, Se, and TI.

  14. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.; Sadagov, Yuri M.

    2011-06-01

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a "platform" effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 °C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element determination in Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.

  15. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  16. A comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank

    2017-06-01

    This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.

  17. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil. © 2011 Institute of Food Technologists®

  18. Determination and Uncertainty Analysis of Inorganic Arsenic in Husked Rice by Solid Phase Extraction and Atomic Absorption Spectrometry with Hydride Generation.

    PubMed

    Saxena, Sushil Kumar; Karipalli, Agnes Raju; Krishnan, Anoop A; Rangasamy, Rajesh; Malekadi, Praveen; Singh, Dhirendra P; Vasu, Vimesh; Singh, Vijay K

    2017-05-01

    This study enables the selective determination of inorganic arsenic (iAs) with a low detection limit using an economical instrument [atomic absorption spectrometer with hydride generation (HG)] to meet the regulatory requirements as per European Commission (EC) and Codex guidelines. Dry rice samples (0.5 g) were diluted using 0.1 M HNO3-3% H2O2 and heated in a water bath (90 ± 2°C) for 60 min. Through this process, all the iAs is solubilized and oxidized to arsenate [As(V)]. The centrifuged extract was loaded onto a preconditioned and equilibrated strong anion-exchange SPE column (silica-based Strata SAX 500 mg/6 mL), followed by selective and sequential elution of As(V), enabling the selective quantification of iAs using atomic absorption spectrometry with HG. In-house validation showed a mean recovery of 94% and an LOQ of 0.025 mg/kg. The repeatability (HorRatr) and reproducibility (HorRatR) values were <2, meeting the performance criteria mandated by the EC. The combined standard measurement uncertainty by this method was less than the maximum standard measurement uncertainty; thus, the method can be considered for official control purposes. The method was applied for the determination of iAs in husked rice samples and has potential applications in other food commodities.

  19. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    PubMed

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  20. Bismuth as a general internal standard for lead in atomic absorption spectrometry.

    PubMed

    Bechlin, Marcos A; Fortunato, Felipe M; Ferreira, Edilene C; Gomes Neto, José A; Nóbrega, Joaquim A; Donati, George L; Jones, Bradley T

    2014-06-11

    Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS). Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Sequential injection ionic liquid dispersive liquid-liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry.

    PubMed

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2012-08-01

    A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.

  2. [Determination of metals in waste bag filter of steel works by microwave digestion-flame atomic absorption spectrometry].

    PubMed

    Ning, Xun-An; Zhou, Yun; Liu, Jing-Yong; Wang, Jiang-Hui; Li, Lei; Ma, Xiao-Guo

    2011-09-01

    A method of microwave digestion technique-flame atomic absorption spectrometry was proposed to determine the total contents of Cu, Zn, Pb, Cd, Cr and Ni in five different kinds of waste bag filters from a steel plant. The digestion effects of the six acid systems on the heavy metals digestion were studied for the first time. The relative standard deviation (RSD) of the method was between 1.02% and 9.35%, and the recovery rates obtained by standard addition method ranged from 87.7% to 105.6%. The results indicated that the proposed method exhibited the advantages of simplicity, speediness, accuracy and repeatability, and it was suitable for determining the metal elements of the waste bag filter. The results also showed that different digestion systems should be used according to different waste bag filters. The waste bag filter samples from different production processes had different metal elements content. The Pb and Zn were the highest in the waste bag filters, while the Cu, Ni, Cd and Cr were relatively lower. These determination results provided the scientific data for further treatment and disposal of the waste bag filter.

  3. Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory.

    PubMed

    Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J

    2007-01-01

    Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.

  4. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  5. Selenium speciation methods and application to soil saturation extracts from San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Fujii, Roger

    1990-01-01

    Methods to determine soluble concentrations of selenite, selenate, and organic Se were evaluated on saturation extracts of soil samples collected from three sites on the Panoche Creek alluvial fan in the western San Joaquin Valley, California. The methods were used in combination with hydride-generation atomic-absorption spectrometry for detection of Se, and included a selective chemical-digestion method and three chromatographic methods using XAD-8 resin, Sep-Pak C18 cartridge, and a combination of XAD-8 resin and activated charcoal. The chromatography methods isolate dissolved organic matter that can inhibit Se detection by hydride-generation atomic-absorption spectrometry. Isolation of hydrophobic organic matter with XAD-8 did not affect concentrations of selenite and selenate, and the isolated organic matter represents a minimal estimation of organic Se. Ninety-eight percent of the Se in the extracts was selenate and about 100% of the isolated organic Se was associated with the humic acid fraction of dissolved organic matter. The depth distribution of Se species in the soil saturation extracts support a hypothesis that the distribution of soluble Se and salinity in these soils is the result of evaporation from a shallow water table and leaching by irrigation water low in Se and salinity.

  6. Antibiotic toxicity and absorption in zebrafish using liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10-1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish.

  7. Determination of selenium in the environment and in biological material.

    PubMed Central

    Bem, E M

    1981-01-01

    This paper reviews the following problems, sampling, decomposition procedures and most important analytical methods used for selenium determination, e.g., neutron activation analysis, atomic absorption spectrometry, gas-liquid chromatography, spectrophotometry, fluorimetry, and x-ray fluorescence. This review covers the literature mainly from 1975 to 1977. PMID:7007035

  8. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. On-line ion-exchange preconcentration and determination of traces of platinum by electrothermal atomic absorption spectrometry.

    PubMed

    González García, M M; Sánchez Rojas, F; Bosch Ojeda, C; García de Torres, A; Cano Pavón, J M

    2003-04-01

    A method to determine trace amounts of platinum in different samples based on electrothermal atomic absorption spectrometry is described. The preconcentration step is performed on a chelating resin microcolumn [1,5-bis(2-pyridyl)-3-sulfophenyl methylene thiocarbonohydrazide (PSTH) immobilized on an anion-exchange resin (Dowex 1x8-200)] placed in the autosampler arm. The combination of a peristaltic pump for sample loading and the atomic absorption spectrometer pumps for elution through a selection valve simplifies the hardware. The peristaltic pump and the selection valve are easily controlled electronically with two switches placed in the autosampler, which are activated when the autosampler arm is down. Thus, the process is fully automated without any modification of the software of the atomic absorption spectrometer. Under the optimum conditions with a 60-s preconcentration time, a sample flow rate of 2.4 mL min(-1), and an injection volume of eluent of 40 microL, a linear calibration graph was obtained in the range 0-100 ng mL(-1). The enrichment factor was 14. The detection limit under these conditions is 1 ng mL(-1), and the relative standard deviation (RSD) is 1.6% for 10 ng mL(-1) of Pt. The method has been applied to the determination of platinum in catalyst, vegetation, soil, and natural water samples. The results showed good agreement with the certified value and the recoveries of Pt added to samples were 98-105%.

  10. Solid sampling determination of magnesium in lithium niobate crystals by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dravecz, Gabriella; Laczai, Nikoletta; Hajdara, Ivett; Bencs, László

    2016-12-01

    The vaporization/atomization processes of Mg in high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS) were investigated by evaporating solid (powder) samples of lithium niobate (LiNbO3) optical single crystals doped with various amounts of Mg in a transversally heated graphite atomizer (THGA). Optimal analytical conditions were attained by using the Mg I 215.4353 nm secondary spectral line. An optimal pyrolysis temperature of 1500 °C was found for Mg, while the compromise atomization temperature in THGAs (2400 °C) was applied for analyte vaporization. The calibration was performed against solid (powered) lithium niobate crystal standards. The standards were prepared with exactly known Mg content via solid state fusion of the oxide components of the matrix and analyte. The correlation coefficient (R value) of the linear calibration was not worse than 0.9992. The calibration curves were linear in the dopant concentration range of interest (0.74-7.25 mg/g Mg), when dosing 3-10 mg of the powder samples into the graphite sample insertion boats. The Mg content of the studied 19 samples was in the range of 1.69-4.13 mg/g. The precision of the method was better than 6.3%. The accuracy of the results was verified by means of flame atomic absorption spectrometry with solution sample introduction after digestion of several crystal samples.

  11. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from

  12. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of chromium in water by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    McLain, B.J.

    1993-01-01

    Graphite furnace atomic absorption spectrophotometry is a sensitive, precise, and accurate method for the determination of chromium in natural water samples. The detection limit for this analytical method is 0.4 microg/L with a working linear limit of 25.0 microg/L. The precision at the detection limit ranges from 20 to 57 percent relative standard deviation (RSD) with an improvement to 4.6 percent RSD for concentrations more than 3 microg/L. Accuracy of this method was determined for a variety of reference standards that was representative of the analytical range. The results were within the established standard deviations. Samples were spiked with known concentrations of chromium with recoveries ranging from 84 to 122 percent. In addition, a comparison of data between graphite furnace atomic absorption spectrophotometry and direct-current plasma atomic emission spectrometry resulted in suitable agreement between the two methods, with an average deviation of +/- 2.0 microg/L throughout the analytical range.

  13. Method and apparatus of measuring unburned carbon in fly ash

    DOEpatents

    Brown, Robert C.

    1991-12-03

    A method and apparatus are shown to measure unburned carbon particles in the exhaust of a combustor. Photoacoustic absorption spectrometry is employed to measure the presence of the unburned carbon. Especially helpful in these measurements is a vertically elongated photoacoustic cell in which high flow velocities are maintained to prevent particles from settling. These measurements are useful in determining the efficiency of coal-fired combustors.

  14. Cloud point extraction thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Zhang, Yunchang; Lv, Yi; Hou, Xiandeng

    2006-12-01

    A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 μg/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.

  15. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption-elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L- 1, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64-22.9 μg Pb L- 1).

  16. Speciation of Bio-Available Iodine in Abalone (Haliotis discus hannai) by High-Performance Liquid Chromatography Hyphenated with Inductively Coupled Plasma-Mass Spectrometry Using an In Vitro Method.

    PubMed

    Doh, Han Sol; Park, Hyun Jin

    2018-06-01

    Abalone is one of the most valuable marine products found in East Asia because it is rich in nutritious substances including iodine. In this study, the in vitro dialyzability approach was used to assess the bio-available iodine species in abalone. Iodide, iodate, 3-iodo-L-tyrosine (MIT), and 3,5-diiodo-L-tyrosine (DIT) were separated by high-performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). To assure the consistency, reliability, and accuracy of the data, the method was validated. Comparison of the total iodine in abalone muscle and viscera indicated that abalone muscle showed greater digestion/absorption efficiency than abalone viscera (digestion efficiency: 68.13 ± 2.59% and 47.88 ± 5.76% and absorption efficiency: 59.78 ± 2.93% and 35.12 ± 1.43% for abalone viscera and muscle, respectively). However, evaluation of the sum of the analyzed iodine species targeted in this study by HPLC-ICP-MS indicated that abalone muscle showed lower digestion efficiency and similar absorption efficiency compared to that of abalone viscera (digestion efficiency: 35.52 ± 5.41% and 28.84 ± 1.83%; absorption efficiency: 23.56 ± 4.38% and 27.56 ± 1.51% for abalone viscera and muscle, respectively). The main forms of iodine detected in abalone muscle were iodide and MIT, whereas iodide was the major form in abalone viscera. The bio-available iodine in abalone was quantified via an in vitro method employing HPLC-ICP-MS. The results of this study indicated that abalone is feasible as a new iodine source and may prospectively find application in iodine-fortified foods. © 2018 Institute of Food Technologists®.

  17. Development of a certified reference material (NMIJ CRM 7505-a) for the determination of trace elements in tea leaves.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Kuroiwa, Takayoshi; Chiba, Koichi

    2011-01-01

    A certified reference material (CRM) for trace elements in tea leaves has been developed in National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder (<90 µm) after frozen pulverization of washed and dried fresh tea leaves from a tea plant farm in Shizuoka Prefecture, Japan. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), high-resolution (HR-) ICP-MS, isotope-dilution (ID-) ICP-MS, inductively coupled plasma optical emission spectrometry (ICP-OES), graphite-furnace atomic-absorption spectrometry (GF-AAS) and flame atomic-absorption spectrometry (FAAS). Property values were provided for 19 elements (Ca, K, Mg, P, Al, B, Ba, Cd, Cu, Fe, Li, Mn, Na, Ni, Pb, Rb, Sr, Zn and Co) and informative values for 18 elements (Ti, V, Cr, Y, and all of the lanthanides, except for Pm whose isotopes are exclusively radioactive). The concentration ranges of property values and informative values were from 1.59% (mass) of K to 0.0139 mg kg(-1) of Cd and from 0.6 mg kg(-1) of Ti to 0.0014 mg kg(-1) of Lu, respectively. Combined relatively standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, analytical methods, characterization, calibration standard, and dry-mass correction factor. The range of the relative combined standard uncertainties was from 1.5% of Mg and K to 4.1% of Cd.

  18. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry.

    PubMed

    Sun, Mei; Wu, Qianghua

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL(-1). The relative standard deviation (n=7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin. 2009 Elsevier B.V. All rights reserved.

  19. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    PubMed

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of PbO on optical properties of tellurite glass

    NASA Astrophysics Data System (ADS)

    Elazoumi, S. H.; Sidek, H. A. A.; Rammah, Y. S.; El-Mallawany, R.; Halimah, M. K.; Matori, K. A.; Zaid, M. H. M.

    2018-03-01

    Binary (1 - x)(TeO2) - x(PbO), x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% glass system was fabricated using melt quenching method. X-ray diffraction (XRD) technique was employed to confirm the amorphous nature. The microanalysis of the major components was performed using energy dispersive EDX and X-ray spectrometry. Both the molar volume and the density were measured. FTIR and UV spectra were recorded at 400-4000 cm-1 and 220-800 nm, respectively. The optical band gap (Eopt), Urbach's energy (Eu), index of refraction (n) were calculated using absorption spectrum fitting (ASF) and derivation of absorption spectrum fitting (DASF) methods. Molar refraction Rm and molecular polarizability αm have been calculated according to (ASF) method.

  1. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods which have been proposed for the detection of trace concentrations of gaseous contaminants include Raman backscattering (LIDAR) and passive radiometry (LOPAIR). Remote sensing techniques using laser spectrometry are presented and in particular a simple long-path laser absorption method (LOLA), which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels is discussed. A number of species were selected for study which are representative of those most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Computer programs were developed which will permit a real-time analysis of the monitored atmosphere. Estimates of the dynamic range of this monitoring technique for various system configurations, and comparison with other methods of analysis, are given.

  2. The Determination of Lead in Gasoline by Atomic Absorption Spectrometry.

    ERIC Educational Resources Information Center

    Coleman, M. F. M.

    1985-01-01

    Describes an experiment that involves the extraction of lead from gasoline into an aqueous solvent using iodine monochloride reagent. This method (which avoids the aspiration of organic solvents) also illustrates the use of wavelengths other than the most sensitive wavelength and effects of flame stoichiometry and burner height upon absorbance.…

  3. Determination of total arsenic and arsenic(III) in phosphate fertilizers by hydride generation atomic absorption spectrometry after ultrasound-assisted extraction based on a control acid media.

    PubMed

    Rezende, Helen Cristine; Coelho, Nivia Maria Melo

    2014-01-01

    An ultrasound-assisted extraction procedure was developed for determination of inorganic arsenic (As) in phosphate fertilizer by hydride generation atomic absorption spectrometry. The variables that affect the hydride generation step were optimized, including the reducer, acid, sample flow rate, and concentrations of the acid and reducer. The determination of As(lll) was performed through the simple control of solution pH with a 0.5 M citric acid-sodium citrate buffer solution at pH 4.5, and total As was determined after a pre-reduction reaction with 1.0% (w/v) thiourea. Ultrasound-assisted acid extraction was performed, and the parameters sonication time and acid and Triton X-114 concentrations were optimized using a 23 factorial design and central composite design. LODs for As(lll) and total As were 0.029 and 0.022 microg/L, respectively. The accuracy of the method was confirmed with certified reference materials. The method was successfully applied in the determination of inorganic As in phosphate fertilizer samples.

  4. Vortex-assisted switchable liquid-liquid microextraction for the preconcentration of cadmium in environmental samples prior to its determination with flame atomic absorption spectrometry.

    PubMed

    Fırat, Merve; Bodur, Süleyman; Tışlı, Büşra; Özlü, Cansu; Chormey, Dotse Selali; Turak, Fatma; Bakırdere, Sezgin

    2018-06-12

    In this study, a switchable solvent was used to preconcentrate trace amounts of Cd from aqueous solution for its determination by flame atomic absorption spectrometry (FAAS). Protonation of N,N-dimethylbenzylamine by dry ice (solid CO 2 ) made it water soluble, and addition of sodium hydroxide converted it back to its original nonionic state for phase separation and subsequent extraction of Cd. A slotted quartz tube (SQT) was attached to the flame burner head to increase the residence time of Cd atoms in the light path. Under the optimum conditions, limits of detection and quantification were determined as 0.7 and 2.6 μg L -1 , respectively. Low relative standard deviations calculated from seven replicate measurements of the lowest concentration indicated high precision. Accuracy of the developed method was checked by using a standard reference material (SRM 1633c). Spiked recovery tests were also performed on lake water and wastewater samples at different concentrations to check the applicability of the developed method, and the results obtained (90-103%) established high recovery.

  5. Determination of lead at trace levels in mussel and sea water samples using vortex assisted dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry.

    PubMed

    Erarpat, Sezin; Özzeybek, Gözde; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-12-01

    In this study, dispersive liquid-liquid microextraction (DLLME) and slotted quartz tube (SQT) were coupled to flame atomic absorption spectrometry (FAAS) to increase the sensitivity of lead. Conditions such as the formation of the lead-dithizone complex, efficiency of the DLLME method and the output of the SQT were systematically optimized to improve the detection limit for the analyte. The conventional FAAS system was improved upon by about 3.0 times with SQT-FAAS, 32 times with DLLME-FAAS and 142 times with DLLME-SQT-FAAS. The method was applicable over a wide linear range (10-500 μg L -1 ). The limit of detection (LOD) determined by DLLME-SQT-FAAS for seawater and mussel were 2.7 μg L -1 and 270 μg kg -1 , respectively. The percent recoveries obtained for mussel and seawater samples (spiked at 20 and 50 μg L -1 ) were 95-96% and 98-110%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Coupled high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry for inorganic and organic arsenic speciation in fish tissue.

    PubMed

    Villa-Lojo, M C; Alonso-Rodríguez, E; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2002-06-10

    A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.

  7. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Ruszczyńska, Anna; Bulska, Ewa

    2005-03-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g - 1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g - 1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g - 1 in crude oil, < 0.4-6 ng g - 1 in gasoline, < 0.5-2 ng g - 1 in atmospheric oil, < 6-100 ng g - 1 in heavy vacuum oil and 140-300 ng g - 1 in distillation residue.

  8. Concentration of Elements in Food: How Can It Reflect Impact of Environmental and Other Influencing Factors?

    NASA Astrophysics Data System (ADS)

    Vincevica-Gaile, Zane; Klavins, Maris

    2013-12-01

    Element content of food is variable and can be influenced by different factors. The aim of the present study was to discover the linkage between macro- and microelement concentrations in food produced in Latvia, and possible impacts of environmental factors. More than 300 fresh food samples such as eggs, cottage cheese, honey, root vegetables, apple juice, apple wine were collected in the time period from 2009 to 2011. Samples were mineralised or analysed directly by appropriate method of quantitative analysis: atomic absorption spectrometry, inductively coupled plasma mass spectrometry or total reflection X-ray fluorescence spectrometry. Statistical analysis of data revealed that food elemental content can be influenced by sitespecific factors such as geographical origin, seasonality, environmental pollution.

  9. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  10. Development of a High-Resolution Laser Absorption Spectroscopy Method with Application to the Determination of Absolute Concentration of Gaseous Elemental Mercury in Air.

    PubMed

    Srivastava, Abneesh; Hodges, Joseph T

    2018-06-05

    Isotope dilution-cold-vapor-inductively coupled plasma mass spectrometry (ID-CV-ICPMS) has become the primary standard for measurement of gaseous elemental mercury (GEM) mass concentration. However, quantitative mass spectrometry is challenging for several reasons including (1) the need for isotopic spiking with a standard reference material, (2) the requirement for bias-free passive sampling protocols, (3) the need for stable mass spectrometry interface design, and (4) the time and cost involved for gas sampling, sample processing, and instrument calibration. Here, we introduce a high-resolution laser absorption spectroscopy method that eliminates the need for sample-specific calibration standards or detailed analysis of sample treatment losses. This technique involves a tunable, single-frequency laser absorption spectrometer that measures isotopically resolved spectra of elemental mercury (Hg) spectra of 6 1 S 0 ← 6 3 P 1 intercombination transition near λ = 253.7 nm. Measured spectra are accurately modeled from first-principles using the Beer-Lambert law and Voigt line profiles combined with literature values for line positions, line shape parameters, and the spontaneous emission Einstein coefficient to obtain GEM mass concentration values. We present application of this method for the measurement of the equilibrium concentration of mercury vapor near room temperature. Three closed systems are considered: two-phase mixtures of liquid Hg and its vapor and binary two-phase mixtures of Hg-air and Hg-N 2 near atmospheric pressure. Within the experimental relative standard uncertainty, 0.9-1.5% congruent values of the equilibrium Hg vapor concentration are obtained for the Hg-only, Hg-air, Hg-N 2 systems, in confirmation with thermodynamic predictions. We also discuss detection limits and the potential of the present technique to serve as an absolute primary standard for measurements of gas-phase mercury concentration and isotopic composition.

  11. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Separation and preconcentration of Ag(I) in aqueous samples by flotation as an ion-associate using iodide and ferroin followed the determination by flame atomic absorption spectrometry.

    PubMed

    Hosseini, Mohammad Saeid; Hashemi-Moghaddam, Hamid; Kardan-Moghaddam, Gholamreza

    2007-01-01

    A simple method for separation/preconcentration and determination of Ag(I) in aqueous samples is described. The method is based on formation of an ion-associate between Ag(I)-iodide complex and ferroin, which can be floated at the interface of the aqueous/n-heptane phases. The flotation process was carried out using 500-ml aliquot of the aqueous solution and the floated layer was dissolved in 5 ml of 1 M HNO3 containing methanol (50% v/v) as the solvent. The Ag(I) content was then determined by flame atomic absorption spectrometry (FAAS). The method so could be considered as an enrichment process, was achieved to a quantitative feature, when the pH of the solution was adjusted to 4 and the concentrations of iodide and ferroin were about 3.2 x 10(-4) M and 6.25 x 10(-5) M, respectively. The LOD and RSD (n = 7) were obtained 1.0 x 10(-8) M and 2.4%, respectively. It was found that a large number of cations and anions even at high considerably foreign ion/Ag(I) ratios were not interfered. The method was applied satisfactorily to recovery of Ag(I) from different aqueous samples.

  15. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe3O4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L-1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml-1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results.

  16. Absorption of p,p'-dichlorodiphenyldichloroethylene and dieldrin in largemouth bass from a 60-D slow-release pellet and detection using a novel enzyme-linked immunosorbent assay method for blood plasma

    USGS Publications Warehouse

    Muller, Jennifer K.; Sepulveda, Maria S.; Borgert, Christopher J.; Gross, Timothy S.

    2005-01-01

    This work describes the uptake of two organochlorine pesticides from slow-release pellets by largemouth bass and the utility of a blood plasma enzyme-linked immunosorbent assay (ELISA) method for exposure verification. We measured blood and tissue levels by gas chromatography/mass spectrometry and by a novel ELISA method, and present a critical comparison of the results.

  17. GFAAS determination of selenium in infant formulas using a microwave digestion method.

    PubMed

    Alegria, A; Barbera, R; Farré, R; Moreno, A

    1994-01-01

    A method for determining the selenium content of infant formulas is proposed. It includes wet digestion with nitric acid and hydrogen peroxide in medium pressure teflon bombs in a microwave oven and determination by graphite furnace atomic absorption spectrometry (GFAAS). The absence of interferences is checked. Values obtained for the limit of detection (19.4 ng/g), precision (RSD = 2.2%) and accuracy by analysis of a reference material show that the method is reliable.

  18. Determination of free and total sulfur(IV) compounds in coconut water using high-resolution continuum source molecular absorption spectrometry in gas phase.

    PubMed

    Oliveira, Michael L; Brandao, Geovani C; de Andrade, Jailson B; Ferreira, Sergio L C

    2018-03-01

    This work proposes a method for the determination of free and total sulfur(IV) compounds in coconut water samples, using the high-resolution continuum source molecular absorption spectrometry. It is based on the measurement of the absorbance signal of the SO 2 gas generate, which is resultant of the addition of hydrochloric acid solution on the sample containing the sulfating agent. The sulfite bound to the organic compounds is released by the addition of sodium hydroxide solution, before the generation of the SO 2 gas. The optimization step was performed using multivariate methodology involving volume, concentration and flow rate of hydrochloric acid. This method was established by the sum of the absorbances obtained in the three lines of molecular absorption of the SO 2 gas. This strategy allowed a procedure for the determination of sulfite with limits of detection and quantification of 0.36 and 1.21mgL -1 (for a sample volume of 10mL) and precision expressed as relative standard deviation of 5.4% and 6.4% for a coconut water sample containing 38.13 and 54.58mgL -1 of free and total sulfite, respectively. The method was applied for analyzing five coconut water samples from Salvador city, Brazil. The average contents varied from 13.0 to 55.4mgL -1 for free sulfite and from 24.7 to 66.9mgL -1 for total sulfur(IV) compounds. The samples were also analyzed employing the Ripper´s procedure, which is a reference method for the quantification of this additive. A statistical test at 95% confidence level demonstrated that there is no significant difference between the results obtained by the two methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nonlinear absorption of short intense laser pulse in multispecies plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargarian, A.; Hajisharifi, K.; Mehdian, H.

    In the present paper, the detailed investigation concerning the effect of inclusion of heavy negative ions into the finite background plasma on the laser absorption has been carried out by employing particle-in-cell simulation method. For this purpose, in this configuration, the laser energy absorption relying on the nonlinear phenomena such as phase-mixing, wave-breaking, and scattering has been studied in the Raman-Brillouin regime. It is shown that the inclusion of heavy negative ions suppresses the scattering while increases the phase-mixing time. Moreover, it is illustrated that this inclusion can increase the laser absorption in finite plasma environment, after saturation. The obtainedmore » results are expected to be relevant to the experiments on the mass spectrometry with laser desorption techniques as well as on the laser-plasma interaction with application to particles acceleration.« less

  20. Tunable lasers and their application in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    The impact that laser techniques might have in chemical analysis is examined. Absorption, scattering, and heterodyne detection is considered. Particular emphasis is placed on the advantages of using frequency-tunable sources, and dye solution lasers are regarded as the outstanding example of this type of laser. Types of spectroscopy that can be carried out with lasers are discussed along with the ultimate sensitivity or minimum detectable concentration of molecules that can be achieved with each method. Analytical applications include laser microprobe analysis, remote sensing and instrumental methods such as laser-Raman spectroscopy, atomic absorption/fluorescence spectrometry, fluorescence assay techniques, optoacoustic spectroscopy, and polarization measurements. The application of lasers to spectroscopic methods of analysis would seem to be a rewarding field both for research in analytical chemistry and for investments in instrument manufacturing.

  1. High purity polyimide analysis by solid sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Rafael F.; Carvalho, Gabriel S.; Duarte, Fabio A.; Bolzan, Rodrigo C.; Flores, Erico M. M.

    2017-03-01

    In this work, Cr, Cu, Mn, Na and Ni were determined in high purity polyimides (99.5%) by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) using Zeeman effect background correction system with variable magnetic field, making possible the simultaneous measurement at high or low sensitivity. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solution, linear calibration range, sample mass range and the use of chemical modifier. Calibration with aqueous standard solutions was feasible for all analytes. No under or overestimated results were observed and up to 10 mg sample could be introduced on the platform for the determination of Cr, Cu, Mn, Na and Ni. The relative standard deviation ranged from 3 to 20%. The limits of detection (LODs) achieved using the high sensitivity mode were as low as 7.0, 2.5, 1.7, 17 and 0.12 ng g- 1 for Cr, Cu, Mn, Na and Ni, respectively. No addition of chemical modifier was necessary, except for Mn determination where Pd was required. The accuracy was evaluated by analyte spike and by comparison of the results with those obtained by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry after microwave-assisted digestion in a single reaction chamber system and also by neutron activation analysis. No difference among the results obtained by SS-GFAAS and those obtained by alternative analytical methods using independent techniques. SS-GFAAS method showed some advantages, such as the determination of metallic contaminants in high purity polyimides with practically no sample preparation, very low LODs, calibration with aqueous standards and determination in a wide range of concentration.

  2. Lithogeochemistry of mineralized and altered rock samples from the northern Talkeetna Mountains, south-central Alaska

    USGS Publications Warehouse

    Light, Thomas D.; Schmidt, Jeanine M.

    2011-01-01

    Mineralized and altered rock samples collected from the northern Talkeetna Mountains, Alaska, were analyzed by two different inductively coupled plasma atomic-emission spectrometry (ICP-AES) methods for as many as 44 elements; by fire assay and either direct-coupled plasma (DCP) or atomic absorption spectrophotometry (AAS) for gold (Au); by cold vapor atomic absorption (CVAA) for mercury (Hg); and by irradiated neutron activation analysis (INAA) for tungsten (W). The analytical results showed that some samples contain high values of multiple elements and may be potential indicators of hydrothermal mineralization in the area.

  3. Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant.

    PubMed

    Casa, G; Castrillo, A; Galzerano, G; Wehr, R; Merlone, A; Di Serafino, D; Laporta, P; Gianfrani, L

    2008-05-23

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) nu1+2nu2(0)+nu3 transition in CO2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of approximately 1.6 x 10(-4).

  4. Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant

    NASA Astrophysics Data System (ADS)

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-05-01

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν1+2ν20+ν3 transition in CO2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of ˜1.6×10-4.

  5. Determination of Mercury in Aqueous and Geologic Materials by Continuous Flow-Cold Vapor-Atomic Fluorescence Spectrometry (CVAFS)

    USGS Publications Warehouse

    Hageman, Philip L.

    2007-01-01

    New methods for the determination of total mercury in geologic materials and dissolved mercury in aqueous samples have been developed that will replace the methods currently (2006) in use. The new methods eliminate the use of sodium dichromate (Na2Cr2O7 ?2H2O) as an oxidizer and preservative and significantly lower the detection limit for geologic and aqueous samples. The new methods also update instrumentation from the traditional use of cold vapor-atomic absorption spectrometry to cold vapor-atomic fluorescence spectrometry. At the same time, the new digestion procedures for geologic materials use the same size test tubes, and the same aluminum heating block and hot plate as required by the current methods. New procedures for collecting and processing of aqueous samples use the same procedures that are currently (2006) in use except that the samples are now preserved with concentrated hydrochloric acid/bromine monochloride instead of sodium dichromate/nitric acid. Both the 'old' and new methods have the same analyst productivity rates. These similarities should permit easy migration to the new methods. Analysis of geologic and aqueous reference standards using the new methods show that these procedures provide mercury recoveries that are as good as or better than the previously used methods.

  6. Determination of platinum in waste platinum-loaded carbon catalyst samples using microwave-assisted sample digestion and ICP-OES

    NASA Astrophysics Data System (ADS)

    Ma, Yinbiao; Wei, Xiaojuan

    2017-04-01

    A novel method for the determination of platinum in waste platinum-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by microwave oven with aqua regia. Such experiment conditions were investigated as the influence of sample digestion methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the linear range of calibration graph for Pt was 0 ˜ 200.00 mg L-1, and the recovery was 95.67% ˜ 104.29%. The relative standard deviation (RSDs) for Pt was 1.78 %. The proposed method was applied to determine the same samples with atomic absorption spectrometry with the results consistently, which is suitable for the determination of platinum in waste platinum-loaded carbon catalyst samples.

  7. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.

    PubMed

    Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa

    2013-01-01

    A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples.

  8. Application of l-cystine modified zeolite for preconcentration and determination of ultra-trace levels of cadmium by flame atomic absorption spectrometry.

    PubMed

    Rezvani, Seyyed Ahmad; Soleymanpour, Ahmad

    2016-03-04

    A very convenient, sensitive and precise solid phase extraction (SPE) system was developed for enrichment and determination of ultra-trace of cadmium ion in water and plant samples. This method was based on the retention of cadmium(II) ions by l-cystine adsorbed in Y-zeolite and carry out in a packed mini-column. The retained cadmium ions then were eluted and determined by flame atomic absorption spectrometry. The scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy techniques were applied for the characterization of cystine modified zeolite (CMZ). Some experimental conditions affecting the analytical performance such as pH, eluent type, concentration of sample, eluent flow rate and also the presence of interfering ions were investigated. The calibration graph was linear within the range of 0.1-7.5ngmL(-1) and limit of detection was obtained 0.04ngmL(-1) with the preconcentration factor of 400. The relative standard deviation (RSD) was obtained 1.4%, indicating the excellent reproducibility of this method. The proposed method was successfully applied for the extraction and determination of cadmium(II) ion in black tea, cigarette's tobacco and also various water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for gold determination in geological samples after preconcentration onto carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dobrowolski, Ryszard; Mróz, Agnieszka; Dąbrowska, Marzena; Olszański, Piotr

    2017-06-01

    A novelty method for the determination of gold in geological samples by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GF AAS) after solid-phase extraction onto modified carbon nanotubes (CNT) was described. The methodology developed is based on solid phase extraction of Au(III) ions from digested samples to eliminate strong interference caused by iron compounds and problems related to inhomogeneities of the samples. The use of aqueous or solid standard for calibration was studied and the slope of calibration curve was the same for both of these modes. This statement indicates the possibility to perform the calibration of the method using aqueous standard solutions. Under optimum conditions the absolute detection limit for gold was equal to 2.24 · 10- 6 μg g- 1 while the adsorption capacity of modified carbon nanotubes was 264 mg g- 1. The proposed procedure was validated by the application of certified reference materials (CRMs) with different content of gold and different matrix, the results were in good agreement with certified values. The method was successfully applied for separation and determination of gold ions in complex geological samples, with precision generally better than 8%.

  10. Discussion of parameters associated with the determination of arsenic by electrothermal atomic absorption spectrometry in slurried environmental samples.

    PubMed

    Vassileva, E; Baeten, H; Hoenig, M

    2001-01-02

    A slurry sampling-fast program procedure has been developed for the determination of arsenic in plants, soils and sediments by electrothermal atomic absorption spectrometry. Efficiencies of various single and mixed modifiers for thermal stabilization of arsenic and for a better removal of the matrix during pyrolysis step were compared. The influence of the slurry concentration, amounts of modifier and parameters of the pyrolysis step on the As integrated absorbance signals have been studied and a comparison between fast and conventional furnace programs was also made. The ultrasonic agitation of the slurry followed by a fast electrothermal program using an Ir/Mg modifier provides the most consistent performance in terms of precision and accuracy. The reliability of the whole procedure has been compared with results obtained after application of a wet digestion method with an HF step and validated by analyzing eleven certified reference materials. Arsenic detection and quantitation limits expressed on dry sample matter were about 30 and 100 micrograms kg-1, respectively.

  11. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    NASA Astrophysics Data System (ADS)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  12. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection.

    PubMed

    Huber, Charles S; Vale, Maria Goreti R; Dessuy, Morgana B; Svoboda, Milan; Musil, Stanislav; Dědina, Jiři

    2017-12-01

    A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO 3 , HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL -1 HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg -1 for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg -1 which were below the limits of 300, 200 and 100µgkg -1 set by the Brazilian, Chinese and European legislation, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent — Cold vapor atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Duan, Taicheng; Song, Xuejie; Xu, Jingwei; Guo, Pengran; Chen, Hangting; Li, Hongfei

    2006-09-01

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO 3 and subsequently reduced by NaBH 4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min - 1 sample loading rate. The detection limit was 0.2 ng L - 1 and much lower than that of conventional method (around 15.8 ng L - 1 ). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L - 1 of Hg and the linear working curve is from 20 to 2000 ng L - 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.

  14. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.

    PubMed

    Karadaş, Cennet; Kara, Derya

    2017-04-01

    A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL -1 for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.

  15. Synthesis and application of a nanoporous ion-imprinted polymer for the separation and preconcentration of trace amounts of vanadium from food samples before determination by electrothermal atomic absorption spectrometry.

    PubMed

    Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Dehghanpoor Frashah, Shahab

    2016-04-01

    A vanadium ion-imprinted polymer was synthesized in the presence of V(V) and N-benzoyl-N-phenyl hydroxyl amine using 4-vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2'-azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion-imprinted polymer was used as the sorbent in the development of the solid-phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Determination of Ultra-trace Rhodium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction Using 2-(5-Iodo-2-Pyridylazo)-5-Dimethylaminoaniline as a Chelating Agent.

    PubMed

    Han, Quan; Huo, Yanyan; Wu, Jiangyan; He, Yaping; Yang, Xiaohui; Yang, Longhu

    2017-03-24

    A highly sensitive method based on cloud point extraction (CPE) separation/preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection has been developed for the determination of ultra-trace amounts of rhodium in water samples. A new reagent, 2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline (5-I-PADMA), was used as the chelating agent and the nonionic surfactant TritonX-114 was chosen as extractant. In a HAc-NaAc buffer solution at pH 5.5, Rh(III) reacts with 5-I-PADMA to form a stable chelate by heating in a boiling water bath for 10 min. Subsequently, the chelate is extracted into the surfactant phase and separated from bulk water. The factors affecting CPE were investigated. Under the optimized conditions, the calibration graph was linear in the range of 0.1-6.0 ng/mL, the detection limit was 0.023 ng/mL for rhodium and relative standard deviation was 3.67% ( c = 1.0 ng/mL, n = 11).The method has been applied to the determination of trace rhodium in water samples with satisfactory results.

  17. A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry.

    PubMed

    Altunay, Nail; Gürkan, Ramazan

    2015-05-15

    A new cloud-point extraction (CPE) for the determination of antimony species in biological and beverages samples has been established with flame atomic absorption spectrometry (FAAS). The method is based on the fact that formation of the competitive ion-pairing complex of Sb(III) and Sb(V) with Victoria Pure Blue BO (VPB(+)) at pH 10. The antimony species were individually detected by FAAS. Under the optimized conditions, the calibration range for Sb(V) is 1-250 μg L(-1) with a detection limit of 0.25 μg L(-1) and sensitive enhancement factor of 76.3 while the calibration range for Sb(III) is 10-400 μg L(-1) with a detection limit of 5.15 μg L(-1) and sensitive enhancement factor of 48.3. The precision as a relative standard deviation is in range of 0.24-2.35%. The method was successfully applied to the speciative determination of antimony species in the samples. The validation was verified by analysis of certified reference materials (CRMs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Preconcentration of lead using solidification of floating organic drop and its determination by electrothermal atomic absorption spectrometry

    PubMed Central

    Chamsaz, Mahmoud; Akhoundzadeh, Jeiran; Arbab-zavar, Mohammad Hossein

    2012-01-01

    A simple microextraction method based on solidification of a floating organic drop (SFOD) was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Ammonium pyrolidinedithiocarbamate (APDC) was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The extracted complex was diluted with ethanol and injected into a graphite furnace. An orthogonal array design (OAD) with OA16 (45) matrix was employed to study the effects of different parameters such as pH, APDC concentration, stirring rate, sample solution temperature and the exposure time on the extraction efficiency. Under the optimized experimental conditions the limit of detection (based on 3 s) and the enhancement factor were 0.058 μg L−1 and 113, respectively. The relative standard deviation (RSD) for 8 replicate determinations of 1 μg L−1 of Pb was 8.8%. The developed method was validated by the analysis of certified reference materials and was successfully applied to the determination of lead in water and infant formula base powder samples. PMID:25685441

  19. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    PubMed

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Macro elemental analysis of food samples by nuclear analytical technique

    NASA Astrophysics Data System (ADS)

    Syahfitri, W. Y. N.; Kurniawati, S.; Adventini, N.; Damastuti, E.; Lestiani, D. D.

    2017-06-01

    Energy-dispersive X-ray fluorescence (EDXRF) spectrometry is a non-destructive, rapid, multi elemental, accurate, and environment friendly analysis compared with other detection methods. Thus, EDXRF spectrometry is applicable for food inspection. The macro elements calcium and potassium constitute important nutrients required by the human body for optimal physiological functions. Therefore, the determination of Ca and K content in various foods needs to be done. The aim of this work is to demonstrate the applicability of EDXRF for food analysis. The analytical performance of non-destructive EDXRF was compared with other analytical techniques; neutron activation analysis and atomic absorption spectrometry. Comparison of methods performed as cross checking results of the analysis and to overcome the limitations of the three methods. Analysis results showed that Ca found in food using EDXRF and AAS were not significantly different with p-value 0.9687, whereas p-value of K between EDXRF and NAA is 0.6575. The correlation between those results was also examined. The Pearson correlations for Ca and K were 0.9871 and 0.9558, respectively. Method validation using SRM NIST 1548a Typical Diet was also applied. The results showed good agreement between methods; therefore EDXRF method can be used as an alternative method for the determination of Ca and K in food samples.

  1. In-situ pre-concentration through repeated sampling and pyrolysis for ultrasensitive determination of thallium in drinking water by electrothermal atomic absorption spectrometry.

    PubMed

    Liu, Liwei; Zheng, Huaili; Xu, Bincheng; Xiao, Lang; Chigan, Yong; Zhangluo, Yilan

    2018-03-01

    In this paper, a procedure for in-situ pre-concentration in graphite furnace by repeated sampling and pyrolysis is proposed for the determination of ultra-trace thallium in drinking water by graphite furnace atomic absorption spectrometry (GF-AAS). Without any other laborious enrichment processes that routinely result in analyte loss and contamination, thallium was directly concentrated in the graphite furnace automatically and subsequently subject to analysis. The effects of several key factors, such as the temperature for pyrolysis and atomization, the chemical modifier, and the repeated sampling times were investigated. Under the optimized conditions, a limit of detection of 0.01µgL -1 was obtained, which fulfilled thallium determination in drinking water by GB 5749-2006 regulated by China. Successful analysis of thallium in certified water samples and drinking water samples was demonstrated, with analytical results in good agreement with the certified values and those by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Routine spike-recovery tests with randomly selected drinking water samples showed satisfactory results of 80-96%. The proposed method is simple and sensitive for screening of ultra-trace thallium in drinking water samples. Copyright © 2017. Published by Elsevier B.V.

  2. Development of a certified reference material (NMIJ CRM 7531-a) for the determination of trace cadmium and other elements in brown rice flour.

    PubMed

    Miyashita, Shin-ichi; Inagaki, Kazumi; Narukawa, Tomohiro; Zhu, Yanbei; Kuroiwa, Takayoshi; Hioki, Akiharu; Chiba, Koichi

    2012-01-01

    A certified reference material (CRM) for trace cadmium and other elements in brown rice flour was developed at the National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder after drying and frozen pulverization of fresh brown rice obtained from a Japanese domestic market. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), ICP high-resolution mass spectrometry, isotope-dilution ICP-MS, ICP optical emission spectrometry, and graphite-furnace atomic-absorption spectrometry. Property values were provided for six elements (Mn, Fe, Cu, Zn, As, and Cd). The concentration range of the property values was from 0.280 mg kg(-1) of As to 31.8 mg kg(-1) of Zn. The combined relative standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, characterization, difference among analytical methods, dry-mass correction factor, and calibration standard. The range of the relative combined standard uncertainties was from 1.1% of Zn to 1.6% of As.

  3. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  4. Application of point-to-point matching algorithms for background correction in on-line liquid chromatography-Fourier transform infrared spectrometry (LC-FTIR).

    PubMed

    Kuligowski, J; Quintás, G; Garrigues, S; de la Guardia, M

    2010-03-15

    A new background correction method for the on-line coupling of gradient liquid chromatography and Fourier transform infrared spectrometry has been developed. It is based on the use of a point-to-point matching algorithm that compares the absorption spectra of the sample data set with those of a previously recorded reference data set in order to select an appropriate reference spectrum. The spectral range used for the point-to-point comparison is selected with minimal user-interaction, thus facilitating considerably the application of the whole method. The background correction method has been successfully tested on a chromatographic separation of four nitrophenols running acetonitrile (0.08%, v/v TFA):water (0.08%, v/v TFA) gradients with compositions ranging from 35 to 85% (v/v) acetonitrile, giving accurate results for both, baseline resolved and overlapped peaks. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  5. A Comparison of Analytical and Data Preprocessing Methods for Spectral Fingerprinting

    PubMed Central

    LUTHRIA, DEVANAND L.; MUKHOPADHYAY, SUDARSAN; LIN, LONG-ZE; HARNLY, JAMES M.

    2013-01-01

    Spectral fingerprinting, as a method of discriminating between plant cultivars and growing treatments for a common set of broccoli samples, was compared for six analytical instruments. Spectra were acquired for finely powdered solid samples using Fourier transform infrared (FT-IR) and Fourier transform near-infrared (NIR) spectrometry. Spectra were also acquired for unfractionated aqueous methanol extracts of the powders using molecular absorption in the ultraviolet (UV) and visible (VIS) regions and mass spectrometry with negative (MS−) and positive (MS+) ionization. The spectra were analyzed using nested one-way analysis of variance (ANOVA) and principal component analysis (PCA) to statistically evaluate the quality of discrimination. All six methods showed statistically significant differences between the cultivars and treatments. The significance of the statistical tests was improved by the judicious selection of spectral regions (IR and NIR), masses (MS+ and MS−), and derivatives (IR, NIR, UV, and VIS). PMID:21352644

  6. [Performance comparison of material tests for cadmium and lead in food contact plastics].

    PubMed

    Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Ishii, Rie; Itoh, Yuko; Ohno, Hiroyuki; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kaneko, Reiko; Kawamura, Yoko; Shibata, Hiroshi; Sekido, Haruko; Sonobe, Hironori; Takasaka, Noriko; Tajima, Yoshiyasu; Tanaka, Aoi; Nomura, Chie; Hikida, Akinori; Matsuyama, Sigetomo; Murakami, Ryo; Yamaguchi, Miku; Wada, Takenari; Watanabe, Kazunari; Akiyama, Hiroshi

    2014-01-01

    Based on the Japanese Food Sanitation Law, the performances of official and alternative material test methods for cadmium (Cd) and lead (Pb) in food contact plastics were compared. Nineteen laboratories participated to an interlaboratory study, and quantified Cd and Pb in three PVC pellets. in the official method, a sample is digested with H2SO4, taken up in HCl, and evaporated to dryness on a water bath, then measured by atomic absorption spectrometry (AAS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). Statistical treatment revealed that the trueness, repeatability (RSDr) and reproducibility (RSDr) were 86-95%, 3.1-9.4% and 8.6-22.1%, respectively. The values of the performance parameters fulfilled the requirements , and the performances met the test specifications. The combination of evaporation to dryness on a hot plate and measurement by AAS or ICP-OES is applicable as an alternative method. However, the trueness and RSDr were inferior to those of the official method. The performance parameters obtained by using the microwave digestion method (MW method) to prepare test solution were better than those of the official method. Thus, the MW method is available as an alternative method. Induced coupled plasma-mass spectrometry (ICP-MS) is also available as an alternative method. However, it is necessary to ensure complete digestion of the sample.

  7. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry.

    PubMed

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S; Korn, Maria G A; Bezerra, Marcos A

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L(-1) nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 microg L(-1), respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 microg L(-1). The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  8. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  9. Quantitative determination of flavonoids by column high-performance liquid chromatography with mass spectrometry and ultraviolet absorption detection in Artemisia afra and comparative studies with various species of Artemisia plants.

    PubMed

    Avula, Bharathi; Wang, Yan-Hong; Smillie, Troy J; Mabusela, Wilfred; Vincent, Leszek; Weitz, Frans; Khan, Ikhlas A

    2009-01-01

    A simple and specific analytical method for the quantitative determination of flavonoids from the aerial parts of the Artemisia afra plant samples was developed. By column high-performance liquid chromatography (HPLC) with UV absorption and mass spectrometry (MS) detection, separation was achieved on a reversed-phase octadecylsilyl (C18) column with water, methanol, and acetonitrile, all containing 0.1% acetic acid, as the mobile phase. These methods were used to analyze various species of Artemisia plant samples. The wavelength used for quantification of flavonoids with the diode array detector was 335 nm. The limits of detection (LOD) by HPLC/MS were found to be 7.5, 7.5, 10, 2.0, and 2.0 ng/mL; and by LC-UV the LODs were 500, 500, 500, 300, and 300 ng/mL for apigenin, chrysoeriol, tamarixetin, acacetin, and genkwanin, respectively. The HPLC/MS method was found to be 50-150 times more sensitive than the HPLC-UV method. HPLC/MS coupled with an electrospray ionization interface is described for the identification and quantification of flavonoids in various plant samples. This method involved the use of the [M+H]+ ions of the compounds at mass-to-charge ratio of 1.0606, 301.0712, 317.0661, 285.0763, and 285.0763 (calculated mass), respectively, in the positive ion mode with extractive ion monitoring.

  10. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods.

    PubMed

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto

    2003-01-01

    A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).

  11. The measurement of acetanilide in plasma by spectrophotometric and selected ion monitoring methods.

    PubMed

    Baty, J D; Playfer, J; Evans, D A; Lamb, J

    1977-08-01

    Plasma samples from volunteers who had received an oral dose of acetanilide have been analysed by gas chromatography mass spectrometry and ultraviolet absorption techniques. The gas chromatography mass spectrometry method involved extraction of the plasma and analysis of the acetanilide using selected ion monitoring with a deuterated internal standard. In the ultraviolet method the plasma was hydrolysed with acid to convert the acetanilide to aniline, and this compound was diazotized and coupled with N-1-naphthylethylene-diamine. The absorbance of the resulting complex was read at 550 nm. Acetanilide levels in plasma determined by the selected ion monitoring method were significantly lower than those measured by spectrophotometry. Pharmacokinetic data calculated from the results obtained using these two assays are very different and illustrate the need for an accurate and specific method of analysis. The major metabolites of acetanilide are shown not to interfere with these assays and the results suggest the possible presence of a new metabolite of acetanilide.

  12. Comparison between design and installed acoustic characteristics of NASA Lewis 9- by 15-foot low-speed wind tunnel acoustic treatment

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Woodward, Richard P.

    1990-01-01

    The test section of the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel was acoustically treated to allow the measurement of sound under simulated free-field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and for withstanding the environmental conditions in the test section. In order to achieve the design requirements, a fibrous, bulk-absorber material was packed into removable panel sections. Each section was divided into two equal-depth layers packed with material to different bulk densities. The lower density was next to the facing of the treatment. The facing consisted of a perforated plate and screening material layered together. Sample tests for normal-incidence acoustic absorption were also conducted in an impedance tube to provide data to aid in the treatment design. Tests with no airflow, involving the measurement of the absorptive properties of the treatment installed in the 9- by 15-foot wind tunnel test section, combined the use of time-delay spectrometry with a previously established free-field measurement method. This new application of time-delay spectrometry enabled these free-field measurements to be made in nonanechoic conditions. The results showed that the installed acoustic treatment had absorption coefficients greater than 0.95 over the frequency range 250 Hz to 4 kHz. The measurements in the wind tunnel were in good agreement with both the analytical prediction and the impedance tube test data.

  13. A vastly improved method for in situ stable isotope analysis of very small water samples.

    NASA Astrophysics Data System (ADS)

    Coleman, M. L.; Christensen, L. E.; Kriesel, J.; Kelly, J.; Moran, J.; Vance, S.

    2016-12-01

    The stable isotope compositions of hydrogen and oxygen in water, ice and hydrated minerals are key characteristics to determine the origin and history of the material. Originally, analyses were performed by separating hydrogen and preparing CO2 from the oxygen in water for stable isotope ratio mass spectrometry. Subsequently, infrared absorption spectrometry in either a Herriot cell or by cavity ring down allowed direct analysis of water vapor. We are developing an instrument, intended for spaceflight and in situ deployment, which will exploit Capillary Absorption Spectrometry (CAS) for the H and O isotope analysis and a laser to sample planetary ices and hydrated minerals. The Tunable Laser Spectrometer (TLS) instrument (part of SAM on the MSL rover Curiosity) works by infrared absorption and we use its performance as a benchmark for comparison. TLS has a relatively large sample chamber to contain mirrors which give a long absorption pathlength. CAS works on the same principle but utilizes a hollow optic fiber, greatly reducing the sample volume. The fiber is a waveguide, enhancing the laser - water-vapor interaction and giving more than four orders of magnitude increase in sensitivity, despite a shorter optical path length. We have calculated that a fiber only 2 m long will be able to analyze 5 nanomoles of water with a precision of less than 1 per mil for D?H. The fiber is coiled to minimize instrument volume. Our instrument will couple this analytical capability with laser sampling to free water from hydrated minerals and ice and ideally we would use the same laser via a beam-splitter both for sampling and analysis. The ability to analyze very small samples is of benefit in two ways. In this concept it will allow much faster analysis of small sub-samples, while the high spatial sampling resolution offered by the laser will allow analysis of the heterogeneity of isotopic composition within grains or crystals, revealing the history of their growth.

  14. A new screening method for flunitrazepam in vodka and tequila by fluorescence spectroscopy.

    PubMed

    Leesakul, Nararak; Pongampai, Sirintip; Kanatharana, Proespichaya; Sudkeaw, Pravit; Tantirungrotechai, Yuthana; Buranachai, Chittanon

    2013-01-01

    A new screening method for flunitrazepam in colourless alcoholic beverages based on a spectroscopic technique is proposed. Absorption and steady-state fluorescence of flunitrazepam and its protonated form with various acids were investigated. The redshift of the wavelength of maximum absorption was distinctively observed in protonated flunitrazepam. An emissive fluorescence at 472 nm was detected in colourless spirits (vodka and tequila) at room temperature. 2-M perchloric acid was the most appropriated proton source. By using electron ionization mass spectrometry and time-dependent density functional theory calculations, the possible structure of protonated flunitrazepam was identified to be 2-nitro-N-methylacridone, an acridone derivative as opposed to 2-methylamino-5-nitro-2'-fluorobenzophenone, a benzophenone derivative. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Analysis of beryllium and depleted uranium: An overview of detection methods in aerosols and soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camins, I.; Shinn, J.H.

    We conducted a survey of commercially available methods for analysis of beryllium and depleted uranium in aerosols and soils to find a reliable, cost-effective, and sufficiently precise method for researchers involved in environmental testing at the Yuma Proving Ground, Yuma, Arizona. Criteria used for evaluation include cost, method of analysis, specificity, sensitivity, reproducibility, applicability, and commercial availability. We found that atomic absorption spectrometry with graphite furnace meets these criteria for testing samples for beryllium. We found that this method can also be used to test samples for depleted uranium. However, atomic absorption with graphite furnace is not as sensitive amore » measurement method for depleted uranium as it is for beryllium, so we recommend that quality control of depleted uranium analysis be maintained by testing 10 of every 1000 samples by neutron activation analysis. We also evaluated 45 companies and institutions that provide analyses of beryllium and depleted uranium. 5 refs., 1 tab.« less

  16. Mass Spectrometry Imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis.

    PubMed

    Nilsson, Anna; Peric, Alexandra; Strimfors, Marie; Goodwin, Richard J A; Hayes, Martin A; Andrén, Per E; Hilgendorf, Constanze

    2017-07-25

    Knowledge about the region-specific absorption profiles from the gastrointestinal tract of orally administered drugs is a critical factor guiding dosage form selection in drug development. We have used a novel approach to study three well-characterized permeability and absorption marker drugs in the intestine. Propranolol and metoprolol (highly permeable compounds) and atenolol (low-moderate permeability compound) were orally co-administered to rats. The site of drug absorption was revealed by high spatial resolution matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and complemented by quantitative measurement of drug concentration in tissue homogenates. MALDI-MSI identified endogenous molecular markers that illustrated the villi structures and confirmed the different absorption sites assigned to histological landmarks for the three drugs. Propranolol and metoprolol showed a rapid absorption and shorter transit distance in contrast to atenolol, which was absorbed more slowly from more distal sites. This study provides novel insights into site specific absorption for each of the compounds along the crypt-villus axis, as well as confirming a proximal-distal absorption gradient along the intestine. The combined analytical approach allowed the quantification and spatial resolution of drug distribution in the intestine and provided experimental evidence for the suggested absorption behaviour of low and highly permeable compounds.

  17. Remote laser evaporative molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis

    2016-09-01

    We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.

  18. Methylmercury determination in seafood by photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry.

    PubMed

    Covaci, Eniko; Senila, Marin; Ponta, Michaela; Darvasi, Eugen; Petreus, Dorin; Frentiu, Maria; Frentiu, Tiberiu

    2017-08-01

    A non-chromatographic method based on double liquid-liquid extraction and measurements by UV photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry was developed and characterized for methylmercury determination in seafood. Samples were prepared following the procedure recommended in JRC Technical Report of European Commission formerly proposed for the determination of methylmercury in seafood by thermal decomposition atomic absorption spectrometry, namely confinement of Hg species in 47% HBr solution, extraction of CH 3 Hg + in toluene and back-extraction in 1% l-cysteine aqueous solution. Mercury cold vapor was generated by flow injection UV photo-reduction from CH 3 Hg + in 0.6molL -1 HCOOH, while quantification was performed against external Hg 2+ aqueous standards and measuring Hg 253.652nm emission using a low power/Ar consumption plasma microtorch (15W, 100mLmin -1 ) and a low resolution microspectrometer (Ocean Optics). The figures of merit and analytical capability were assessed by analyzing certified reference materials and test samples of fish fillet and discussed in relation with requirements for Hg determination in seafood in European legislation (Decisions 2007/333/EC and 2002/657/EC) as well as compared to performances achieved in thermal decomposition atomic absorption spectrometry. The limit of detection and quantification of 2µgkg -1 and 6µgkg -1 respectively, precision of 2.7-9.4% and accuracy of 99±8% of the proposed method for the determination of CH 3 Hg + fulfill the demands of European legislation for Hg quantification. The limit of detection and quantification were better than those in the used reference method or other non-/chromatographic methods taken for comparison. The analysis of certified reference materials and the Bland and Altman test performed on 12 test samples confirmed trueness of the proposed method and its reliability for the determination of traces of CH 3 Hg + with 95% confidence level. The proposed method fulfills several demands of the eco-scale concept, is sensitive, simple and safe related to sample preparation through elimination of classical, harmful reductants and attractive by using economical miniaturized instrumentation incorporating a low power and low Ar consumption plasma. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile.

    PubMed

    Goullé, Jean-Pierre; Saussereau, Elodie; Mahieu, Loïc; Guerbet, Michel

    2014-08-01

    As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP-MS. ICP-MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP-MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues.

  20. Composition and Properties of Deposits Formed on the Internal Surface of Oil Pipelines

    NASA Astrophysics Data System (ADS)

    Gulieva, N. K.; Mustafaev, I. I.; Sabzaliev, A. A.; Garibov, R. G.

    2018-03-01

    The composition and physicochemical properties of oil deposits formed in pipelines during the transport of oil from Azerbaijani fields were studied by atomic absorption, chromatography-mass spectrometry, gamma spectrometry, and scanning electron microscopy methods. Up to 20% of the deposits were shown to be composed of paraffins, tars, and other heavy oil fractions, while asphaltenes and mechanical impurities (iron, sulfur, manganese, calcium, and silicon compounds) comprise about 80%. The contents of polycyclic aromatic hydrocarbons and radionuclides are within permissible levels, while the content of some heavy metals exceeds the permissible level by a factor of 1000. These data should be used in the management of waste products in petroleum pipelines.

  1. Major- and Trace-Element Concentrations in Soils from Two Geochemical Surveys (1972 and 2005) of the Denver, Colorado, Metropolitan Area

    USGS Publications Warehouse

    Kilburn, James E.; Smith, David B.; Closs, L. Graham; Smith, Steven M.

    2007-01-01

    Introduction This report contains major- and trace-element concentration data for soil samples collected in 1972 and 2005 from the Denver, Colorado, metropolitan area. A total of 405 sites were sampled in the 1972 study from an area approximately bounded by the suburbs of Golden, Thornton, Aurora, and Littleton to the west, north, east, and south, respectively. This data set included 34 duplicate samples collected in the immediate vicinity of the primary sample. In 2005, a total of 464 sites together with 34 duplicates were sampled from the same approximate localities sampled in 1972 as well as additional sites in east Aurora and the area surrounding the Rocky Mountain Arsenal. Sample density for both surveys was on the order of 1 site per square mile. At each site, sample material was collected from a depth of 0-5 inches. Each sample collected was analyzed for near-total major- and trace-element composition by the following methods: (1) inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chromium, cobalt, copper, gallium, indium, iron, lanthanum, lead, lithium, magnesium, manganese, molybdenum, nickel, niobium, phosphorus, potassium, rubidium, scandium, silver, sodium, strontium, sulfur, tellurium, thallium, thorium, tin, titanium, tungsten, uranium, vanadium, yttrium, and zinc; and (2) hydride generation-atomic absorption spectrometry for selenium. The samples collected in 2005 were also analyzed by a cold vapor-atomic absorption method for mercury. This report makes available the analytical results of these studies.

  2. [Measurements of the concentration of atmospheric CO2 based on OP/FTIR method and infrared reflecting scanning Fourier transform spectrometry].

    PubMed

    Wei, Ru-Yi; Zhou, Jin-Song; Zhang, Xue-Min; Yu, Tao; Gao, Xiao-Hui; Ren, Xiao-Qiang

    2014-11-01

    The present paper describes the observations and measurements of the infrared absorption spectra of CO2 on the Earth's surface with OP/FTIR method by employing a mid-infrared reflecting scanning Fourier transform spectrometry, which are the first results produced by the first prototype in China developed by the team of authors. This reflecting scanning Fourier transform spectrometry works in the spectral range 2 100-3 150 cm(-1) with a spectral resolution of 2 cm(-1). Method to measure the atmospheric molecules was described and mathematical proof and quantitative algorithms to retrieve molecular concentration were established. The related models were performed both by a direct method based on the Beer-Lambert Law and by a simulating-fitting method based on HITRAN database and the instrument functions. Concentrations of CO2 were retrieved by the two models. The results of observation and modeling analyses indicate that the concentrations have a distribution of 300-370 ppm, and show tendency that going with the variation of the environment they first decrease slowly and then increase rapidly during the observation period, and reached low points in the afternoon and during the sunset. The concentrations with measuring times retrieved by the direct method and by the simulating-fitting method agree with each other very well, with the correlation of all the data is up to 99.79%, and the relative error is no more than 2.00%. The precision for retrieving is relatively high. The results of this paper demonstrate that, in the field of detecting atmospheric compositions, OP/FTIR method performed by the Infrared reflecting scanning Fourier transform spectrometry is a feasible and effective technical approach, and either the direct method or the simulating-fitting method is capable of retrieving concentrations with high precision.

  3. Monosodium glutamate for simple photometric iron analysis

    NASA Astrophysics Data System (ADS)

    Prasetyo, E.

    2018-01-01

    Simple photometric method for iron analysis using monosodium glutamate (MSG) was proposed. The method could be used as an alternative method, which was technically simple, economic, quantitative, readily available, scientifically sound and environmental friendly. Rapid reaction of iron (III) with glutamate in sodium chloride-hydrochloric acid buffer (pH 2) to form red-brown complex was served as a basis in the photometric determination, which obeyed the range of iron (III) concentration 1.6 - 80 µg/ml. This method could be applied to determine iron concentration in soil with satisfactory results (accuracy and precision) compared to other photometric and atomic absorption spectrometry results.

  4. Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry.

    PubMed Central

    Baranowska, I

    1995-01-01

    OBJECTIVE--To measure the concentrations of the trace elements lead and cadmium in human placenta and in maternal and neonatal (cord) blood. To assess the influence of the strongly polluted environment on the content of metals in tissues and on the permeability of placenta to cadmium and lead. Various methods of mineralisation were tested before analysis. METHODS--Graphite furnace atomic absorption spectrometry was used for the determination of lead and cadmium. The samples for analysis were prepared by mineralisation under pressure in a Teflon bomb (HNO3, 110 degrees C), by wet ashing under normal pressure (HNO3 + H2O2 for 12 hours), and by microwave digestion in concentrated nitric acid. RESULTS--In analysed samples the following mean concentrations of cadmium and lead were found: in venous blood Pb = 72.50 ng/ml, Cd = 4.90 ng/ml; in placenta Pb = 0.50 microgram/g, Cd = 0.11 microgram/g; in cord blood Pb = 38.31 ng/ml, Cd = 1.13 ng/ml. CONCLUSION--High concentrations of lead and cadmium were found in placentas and in maternal blood whereas in neonatal blood there was an increased concentration of lead and only traces of cadmium. It is concluded that the placenta is a better barrier for cadmium than for lead. Among the examined methods of mineralisation, microwave digestion was the best. PMID:7795737

  5. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  6. Imaging-based molecular barcoding with pixelated dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N.; Kivshar, Yuri S.; Altug, Hatice

    2018-06-01

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.

  7. Flow injection for the determination of Se(IV) and Se(VI) by hydride generation atomic absorption spectrometry with microwave oven on-line prereduction of Se(VI) to Se(IV)

    NASA Astrophysics Data System (ADS)

    Burguera, J. L.; Carrero, P.; Burguera, M.; Rondon, C.; Brunetto, M. R.; Gallignani, M.

    1996-12-01

    An on-line flow injection system has been developed for the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters by hydride generation atomic absorption spectrometry with microwave-aided heating prereduction of Se(VI) to Se(IV). The samples and the prereductant solutions (4 mol l -1 HCl for Se(IV) and 12 mol l -1 HCl for Se(VI)) which circulated in a closed-flow circuit were injected by means of a time-based injector. This mixture was displaced by a carrier solution of 1% v/v of hydrochloric acid through a PTFE coil located inside the focused microwave oven and mixed downstream with a borohydride solution to generate the hydride. The linear ranges were 0-120 and 0-100 μg l -1 of Se(IV) and Se(VI), respectively. The detection limits were 1.0 μg l -1 for Se(IV) and 1.5 μg l -1 for Se(VI). The precision (about 2.0-2.5% RSD) and recoveries (96-98% for Se(IV) and 94-98% for Se(VI)) were good. Total selenium values were also obtained by electrothermal atomic absorption spectrometry which agreed with the content of both selenium species. The sample throughput was about 50 measurements per hour. The main advantage of the method is that the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters is performed in a closed system with a minimum sample manipulation, exposure to the environment, minimum sample waste and operator attention.

  8. Development and validation of a FIA/UV-vis method for pK(a) determination of oxime based acetylcholinesterase reactivators.

    PubMed

    Musil, Karel; Florianova, Veronika; Bucek, Pavel; Dohnal, Vlastimil; Kuca, Kamil; Musilek, Kamil

    2016-01-05

    Acetylcholinesterase reactivators (oximes) are compounds used for antidotal treatment in case of organophosphorus poisoning. The dissociation constants (pK(a1)) of ten standard or promising acetylcholinesterase reactivators were determined by ultraviolet absorption spectrometry. Two methods of spectra measurement (UV-vis spectrometry, FIA/UV-vis) were applied and compared. The soft and hard models for calculation of pK(a1) values were performed. The pK(a1) values were recommended in the range 7.00-8.35, where at least 10% of oximate anion is available for organophosphate reactivation. All tested oximes were found to have pK(a1) in this range. The FIA/UV-vis method provided rapid sample throughput, low sample consumption, high sensitivity and precision compared to standard UV-vis method. The hard calculation model was proposed as more accurate for pK(a1) calculation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Comparison of several analytical methods for the determination of tin in geochemical samples as a function of tin speciation

    USGS Publications Warehouse

    Kane, J.S.; Evans, J.R.; Jackson, J.C.

    1989-01-01

    Accurate and precise determinations of tin in geological materials are needed for fundamental studies of tin geochemistry, and for tin prospecting purposes. Achieving the required accuracy is difficult because of the different matrices in which Sn can occur (i.e. sulfides, silicates and cassiterite), and because of the variability of literature values for Sn concentrations in geochemical reference materials. We have evaluated three methods for the analysis of samples for Sn concentration: graphite furnace atomic absorption spectrometry (HGA-AAS) following iodide extraction, inductively coupled plasma atomic emission spectrometry (ICP-OES), and energy-dispersive X-ray fluorescence (EDXRF) spectrometry. Two of these methods (HGA-AAS and ICP-OES) required sample decomposition either by acid digestion or fusion, while the third (EDXRF) was performed directly on the powdered sample. Analytical details of all three methods, their potential errors, and the steps necessary to correct these errors were investigated. Results showed that similar accuracy was achieved from all methods for unmineralized samples, which contain no known Sn-bearing phase. For mineralized samples, which contain Sn-bearing minerals, either cassiterite or stannous sulfides, only EDXRF and fusion ICP-OES methods provided acceptable accuracy. This summary of our study provides information which helps to assure correct interpretation of data bases for underlying geochemical processes, regardless of method of data collection and its inherent limitations. ?? 1989.

  10. Poly(1-vinylimidazole) functionalized magnetic ion imprinted polymer for fast and selective extraction of trace gold in geological, environmental and biological samples followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Xu, Hongrun; Hu, Bin

    2018-05-01

    In this study, poly(1-vinylimidazole) functionalized gold ion imprinted polymer coated magnetic nanoparticles (MNPs@PVIM-Au-IIP) were prepared and characterized. The adsorption behaviors of the prepared MNPs@PVIM-Au-IIP toward gold ions (Au(III)) were studied, it was found that MNPs@PVIM-Au-IIP has good selectivity, high adsorption capacity (185.4 mg g-1) and fast adsorption kinetic for Au(III). Based on it, a new method of ion imprinted magnetic solid phase extraction (II-MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the analysis of trace Au(III) in real samples with complicated matrix. Factors affecting MSPE including sample pH, desorption reagent, elution concentration and volume, elution time, sample volume and adsorption time were optimized. With high enrichment factor of 100-fold, the detection limit of the proposed method is 7.9 ng L-1 for Au(III) with the relative standard deviation of 7.4% (c = 50 ng L-1, n = 7). In order to validate the accuracy of the proposed method, the Certified Reference Material of GBW07293 geological sample (platinpalladium ore) was analyzed, and the determined value was in good agreement with the certified value. The proposed II-MSPE-GFAAS method is simple, fast, selective, sensitive and has been successfully applied in the determination of trace Au in ore, sediment, environmental water and human urine samples with satisfactory results.

  11. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin

    2015-05-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L- 1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L- 1, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009-88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3-116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix.

  12. Development of a simple method for the determination of lead in lipstick using alkaline solubilization and graphite furnace atomic absorption spectrometry.

    PubMed

    Soares, Aline Rodrigues; Nascentes, Clésia Cristina

    2013-02-15

    A simple method was developed for determining the total lead content in lipstick samples by graphite furnace atomic absorption spectrometry (GFAAS) after treatment with tetramethylammonium hydroxide (TMAH). Multivariate optimization was used to establish the optimal conditions of sample preparation. The graphite furnace heating program was optimized through pyrolysis and atomization curves. An aliquot containing approximately 50mg of the sample was mixed with TMAH and heated in a water bath at 60°C for 60 min. Using Nb as the permanent modifier and Pd as the chemical modifier, the optimal temperatures were 900°C and 1800°C for pyrolysis and atomization, respectively. Under optimum conditions, the working range was from 1.73 to 50.0 μg L(-1), with detection and quantification limits of 0.20 and 0.34 μg g(-1), respectively. The precision was evaluated under conditions of repeatability and intermediate precision and showed standard deviations of 2.37%-4.61% and 4.93%-9.75%, respectively. The % recovery ranged from 96.2% to 109%, and no significant differences were found between the results obtained using the proposed method and the microwave decomposition method for real samples. Lead was detected in 21 tested lipstick samples; the lead content in these samples ranged from 0.27 to 4.54 μg g(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    NASA Astrophysics Data System (ADS)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  14. Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry.

    PubMed

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    This study proposes the application of multi-walled carbon nanotubes as a solid sorbent for the preconcentration of gold prior to its flame atomic absorption spectrometry determination. Extraction was achieved by using a glass column (15.0 cm in length and 1.0 cm in diameter). Quantitative recoveries were obtained in the pH range of 2.5-4.0; the elution step was carried out with 5.0 ml of 1.0 mol/L HNO3 in acetone. In the ligand-free study, variables such as pH, eluent type, sample volume, flow rates, and matrix effect were examined for the optimum recovery of gold ions. The gold ions were able to be pre-concentrated by a factor of 150 and their LOD was determined to be 1.71 μg/L. In order to evaluate the accuracy of the developed method, addition-recovery tests were applied for the tap water, mineral water, and sea water samples. Gold recovery studies were implemented using a wet digestion technique for mine and soil samples taken from various media, and this method was also applied for anodic slime samples taken from the factories located in the Kayseri Industrial Zone of Turkey.

  15. Green Preconcentration of Trace Amounts of Copper from Water and Food Samples onto Novel Organo-Nanoclay Prior to Flame Atomic Absorption Spectrometry.

    PubMed

    Beyki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah

    2014-01-01

    In this work, the nanoclay was intercalated with acyclovir (9-[(2-hydroxyethoxy) methyl] guanine), the toxicity of which to mammalian cells is very low. We used no organic solvents for preparation of modified clay and desorption of Cu ions from the sorbent. Batch and column methods were used, and sorption of Cu was quantitative (>98%) in the pH range of 7.5 to 10.0. Quantitative desorption occurred with 5.0 mL of 3.0 M HCl, and the amount of Cu(II) was measured by using flame atomic absorption spectrometry. In the initial solution the linear dynamic range and the LOD were 3.0-1000.0 and 0.58 μg/L, respectively. With 500.0 mL of sample, an enrichment factor of 100 was obtained. The RSD was 2.0% (n = 8, concentration = 0.5 mg/L), and the maximum capacity of the sorbent was 45.0 mg/g. The influence of experimental parameters including sample pH, ionic strength, type and volume of the eluent, and interference of some ions on the recoveries of Cu was investigated. The proposed method using a new and easier prepared solid sorbent was applied to the determination of Cu in different real samples with satisfactory results.

  16. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  17. Ultrasound-Assisted Emulsification Microextraction Based on Solidification Floating Organic Drop Trace Amounts of Manganese Prior to Graphite Furnace Atomic Absorption Spectrometry Determination

    PubMed Central

    Mohadesi, Alireza; Falahnejad, Masoumeh

    2012-01-01

    In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504

  18. Use of slurry sampling for the direct determination of zinc in yogurt by high resolution-continuum source flame atomic absorption spectrometry.

    PubMed

    Brandao, Geovani C; de Jesus, Raildo M; da Silva, Erik G P; Ferreira, Sergio L C

    2010-06-15

    This paper presents an analytical procedure for the direct determination of zinc in yogurt employing sampling slurry and high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). The step optimization established the experimental conditions of: 2.0molL(-1) hydrochloric acid, a sonication time of 20min and a sample mass of 1.0g for a slurry volume of 25mL. This method allows the determination of zinc with a limit of quantification of 0.32microgg(-1). The precision expressed as relative standard deviation (RSD) were 0.82 and 2.08% for yogurt samples containing zinc concentrations of 4.85 and 2.49microgg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of non-fat milk powder furnished by the National Institute of Standard and Technology. The proposed method was applied for the determination of zinc in seven yogurt samples. The zinc content was varied from 2.19 to 4.85microgg(-1). These results agreed with those reported in the literature. The samples were also analyzed after acid digestion and zinc determination by FAAS. No statistical difference was observed between the results obtained by both of the procedures performed.

  19. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry.

    PubMed

    Galbeiro, Rafaela; Garcia, Samara; Gaubeur, Ivanise

    2014-04-01

    Cloud point extraction (CPE) was used to simultaneously preconcentrate trace-level cadmium, nickel and zinc for determination by flame atomic absorption spectrometry (FAAS). 1-(2-Pyridilazo)-2-naphthol (PAN) was used as a complexing agent, and the metal complexes were extracted from the aqueous phase by the surfactant Triton X-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol). Under optimized complexation and extraction conditions, the limits of detection were 0.37μgL(-1) (Cd), 2.6μgL(-1) (Ni) and 2.3μgL(-1) (Zn). This extraction was quantitative with a preconcentration factor of 30 and enrichment factor estimated to be 42, 40 and 43, respectively. The method was applied to different complex samples, and the accuracy was evaluated by analyzing a water standard reference material (NIST SRM 1643e), yielding results in agreement with the certified values. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  1. Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO interference by least-squares background correction.

    PubMed

    Husáková, Lenka; Urbanová, Iva; Šafránková, Michaela; Šídová, Tereza

    2017-12-01

    In this work a simple, efficient, and environmentally-friendly method is proposed for determination of Be in soil and sediment samples employing slurry sampling and high-resolution continuum source electrothermal atomic absorption spectrometry (HR-CS-ETAAS). The spectral effects originating from SiO species were identified and successfully corrected by means of a mathematical correction algorithm. Fractional factorial design has been employed to assess the parameters affecting the analytical results and especially to help in the development of the slurry preparation and optimization of measuring conditions. The effects of seven analytical variables including particle size, concentration of glycerol and HNO 3 for stabilization and analyte extraction, respectively, the effect of ultrasonic agitation for slurry homogenization, concentration of chemical modifier, pyrolysis and atomization temperature were investigated by a 2 7-3 replicate (n = 3) design. Using the optimized experimental conditions, the proposed method allowed the determination of Be with a detection limit being 0.016mgkg -1 and characteristic mass 1.3pg. Optimum results were obtained after preparing the slurries by weighing 100mg of a sample with particle size < 54µm and adding 25mL of 20% w/w glycerol. The use of 1μg Rh and 50μg citric acid was found satisfactory for the analyte stabilization. Accurate data were obtained with the use of matrix-free calibration. The accuracy of the method was confirmed by analysis of two certified reference materials (NIST SRM 2702 Inorganics in Marine Sediment and IGI BIL-1 Baikal Bottom Silt) and by comparison of the results obtained for ten real samples by slurry sampling with those determined after microwave-assisted extraction by inductively coupled plasma time of flight mass spectrometry (TOF-ICP-MS). The reported method has a precision better than 7%. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Determination of trace amounts of tin in geological materials by atomic absorption spectrometry

    USGS Publications Warehouse

    Welsch, E.P.; Chao, T.T.

    1976-01-01

    An atomic absorption method is described for the determination of traces of tin in rocks, soils, and stream sediments. A dried mixture of the sample and ammonium iodide is heated to volatilize tin tetraiodide -which is then dissolved in 5 % hydrochloric acid, extracted into TOPO-MIBK, and aspirated into a nitrous oxide-acetylene flame. The limit of determination is 2 p.p.m. tin and the relative standard deviation ranges from 2 to 14 %. Up to 20 % iron and 1000 p.p.m. Cu, Pb, Zn, Mn, Hg, Mo, V, or W in the sample do not interfere. As many as 50 samples can be easily analyzed per man-day. ?? 1976.

  3. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    PubMed

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025.

  4. Bile acids: analysis in biological fluids and tissues

    PubMed Central

    Griffiths, William J.; Sjövall, Jan

    2010-01-01

    The formation of bile acids/bile alcohols is of major importance for the maintenance of cholesterol homeostasis. Besides their functions in lipid absorption, bile acids/bile alcohols are regulatory molecules for a number of metabolic processes. Their effects are structure-dependent, and numerous metabolic conversions result in a complex mixture of biologically active and inactive forms. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. A combination of such analyses with analyses of the proteome will be required for a better understanding of mechanisms of action and nature of endogenous ligands. Mass spectrometry is the basic detection technique for effluents from chromatographic columns. Capillary liquid chromatography-mass spectrometry with electrospray ionization provides the highest sensitivity in metabolome analysis. Classical gas chromatography-mass spectrometry is less sensitive but offers extensive structure-dependent fragmentation increasing the specificity in analyses of isobaric isomers of unconjugated bile acids. Depending on the nature of the bile acid/bile alcohol mixture and the range of concentration of individuals, different sample preparation sequences, from simple extractions to group separations and derivatizations, are applicable. We review the methods currently available for the analysis of bile acids in biological fluids and tissues, with emphasis on the combination of liquid and gas phase chromatography with mass spectrometry. PMID:20008121

  5. Stream-sediment samples reanalyzed for major, rare earth, and trace elements from ten 1:250,000-scale quadrangles, south-central Alaska, 2007-08

    USGS Publications Warehouse

    Bailey, Elizabeth A.; Shew, Nora B.; Labay, Keith A.; Schmidt, Jeanine M.; O'Leary, Richard M.; Detra, David E.

    2010-01-01

    During the 1960s through the 1980s, the U.S. Geological Survey (USGS) conducted reconnaissance geochemical surveys of the drainage basins throughout most of the Anchorage, Bering Glacier, Big Delta, Gulkana, Healy, McCarthy, Mount Hayes, Nabesna, Talkeetna Mountains, and Valdez 1:250,000-scale quadrangles in Alaska as part of the Alaska Mineral Resource Assessment Program (AMRAP). These geochemical surveys provide data necessary to assess the potential for undiscovered mineral resources on public and other lands, and provide data that may be used to determine regional-scale element baselines. This report provides new data for 366 of the previously collected stream-sediment samples. These samples were selected for reanalysis because recently developed analytical methods can detect additional elements of interest and have lower detection limits than the methods used when these samples were originally analyzed. These samples were all analyzed for arsenic by hydride generation atomic absorption spectrometry (HGAAS), for gold, palladium, and platinum by inductively coupled plasma-mass spectrometry after lead button fire assay separation (FA/ICP-MS), and for a suite of 55 major, rare earth, and trace elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry (ICP-AES-MS) after sodium peroxide sinter at 450 degrees Celsius.

  6. Comparison of serum copper determination by colorimetric and atomic absorption spectrometric methods in seven different laboratories. The S.F.B.C. (Société Française de Biologie Clinique) Trace Element Group.

    PubMed

    Arnaud, J; Chappuis, P; Zawislak, R; Houot, O; Jaudon, M C; Bienvenu, F; Bureau, F

    1993-02-01

    An interlaboratory collaborative trial was conducted on the determination of serum copper using two different methods, based on colorimetry (test combination Copper, Boehringer Mannheim, Mannheim, Germany) and flame atomic absorption spectrometry (FAAS). The general performance of the colorimetric method was below that of FAAS, except for sensitivity and linear range, as assessed by detection limit (0.44 versus 1.32 mumol/L) and upper limit of linearity (150 versus 50 mumol/L). The range of the between-run CVs and the recovery of standard additions were, respectively, 2.3-11.9% and 92-127% for the colorimetric method and 1.1-6.0% and 93-101% for the FAAS method. Interferences were minimal with both methods. The two techniques correlated satisfactorily (the correlation coefficients ranged from 0.945-0.970 among laboratories) but the colorimetric assay exhibited slightly higher results than the FAAS method. Each method was transferable among laboratories.

  7. A comparative review of optical surface contamination assessment techniques

    NASA Technical Reports Server (NTRS)

    Heaney, James B.

    1987-01-01

    This paper will review the relative sensitivities and practicalities of the common surface analytical methods that are used to detect and identify unwelcome adsorbants on optical surfaces. The compared methods include visual inspection, simple reflectometry and transmissiometry, ellipsometry, infrared absorption and attenuated total reflectance spectroscopy (ATR), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and mass accretion determined by quartz crystal microbalance (QCM). The discussion is biased toward those methods that apply optical thin film analytical techniques to spacecraft optical contamination problems. Examples are cited from both ground based and in-orbit experiments.

  8. Phytosterol glycosides reduce cholesterol absorption in humans

    PubMed Central

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P < 0.0001) and phytosterol esters 30.6 ± 3.9% (P = 0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  9. Laser spectrometer for CO2 clumped isotope analysis

    NASA Astrophysics Data System (ADS)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2017-04-01

    Carbon dioxide clumped isotope thermometry has proven to be a reliable method for biogeochemical and atmospheric research. We present a new laser spectroscopic instrument for doubly-substituted isotopologues analysis. In contrast to a conventional isotope ratio mass spectrometry (IRMS), tunable laser direct absorption spectroscopy (TLDAS) has the advantage of isotopologue-specific determination free of isobaric interferences. Tunable infrared laser based spectrometer for clumped isotope analysis is being developed in collaboration between Heidelberg University, Germany, and LERMA-IPSL, CNRS, France. The instrument employs two continuous intraband cascade lasers (ICL) tuned at 4439 and 4329 nm. The spectral windows covered by the lasers contain absorption lines of the six most abundant CO2 isotopologues, including the two doubly substituted species 16O13C18O and 16O13C17O, and all singly substituted isotopologues with 13C, 18O and 17O. A Herriott-type multi-pass cell provides two different absorption pathlengths to compensate the abundance difference between singly- and doubly-substituted isotopologues. We have reached the sub-permill precision required for clumped isotope measurements within the integration time of several seconds. The test version of the instrument demonstrates a performance comparable to state of the art IRMS. We highlight the following features of the instrument that are strong advantages compared to conventional mass spectrometry: measurement cycle in the minute range, simplified sample preparation routine, table-top layout with a potential for in-situ applications.

  10. A new concept of efficient therapeutic drug monitoring using the high-resolution continuum source absorption spectrometry and the surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xing, Yanlong; Fuss, Harald; Lademann, Jürgen; Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora; Esser, Norbert

    2018-04-01

    In this study, a new therapeutic drug monitoring approach has been tested based on the combination of CaF molecular absorption using high-resolution continuum source absorption spectrometry (HR-CSAS) and surface enhanced Raman spectroscopy (SERS). HR-CSAS with mini graphite tube was successfully tested for clinical therapeutic drug monitoring of the fluorine-containing drug capecitabine in sweat samples of cancer patients: It showed advantageous features of high selectivity (no interference from Cl), high sensitivity (characteristic mass of 0.1 ng at CaF 583.069 nm), low sample consumption (down to 30 nL) and fast measurement (no sample pretreatment and less than 1 min of responding time) in tracing the fluorine signal out of capecitabine. However, this technique has the disadvantage of the total loss of the drug's structure information after burning the sample at very high temperature. Therefore, a new concept of combining HR-CSAS with a non-destructive spectroscopic method (SERS) was proposed for the sensitive sensing and specific identification of capecitabine. We tested and succeed in obtaining the molecular characteristics of the metabolite of capecitabine (named 5-fluorouracil) by the non-destructive SERS technique. With the results shown in this work, it is demonstrated that the combined spectroscopic technique of HR-CSAS and SERS will be very useful in efficient therapeutic drug monitoring in the future.

  11. Major- and Trace-Element Concentrations in Rock Samples Collected in 2005 from the Taylor Mountains 1:250,000-scale Quadrangle, Alaska

    USGS Publications Warehouse

    Klimasauskas, Edward P.; Miller, Marti L.; Bradley, Dwight C.; Bundtzen, Tom K.; Hudson, Travis L.

    2006-01-01

    The data consist of major- and minor-element concentrations for rock samples collected during 2005 by the U.S. Geological Survey. Samples were analyzed by fire assay (Au, Pd, Pt), cold vapor atomic absorption spectroscopy (Hg), and the inductively coupled plasma mass spectrometry (ICPMS) 10 and 42 element methods. For details of sample preparation and analytical techniques see USGS Open File Report 02-0223 (Analytical methods for chemical analysis of geologic and other materials, U.S. Geological Survey), available at .

  12. 40 CFR 1065.1010 - Reference materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 1065.1010—Institute of Petroleum Materials Document No. and name Part 1065 reference IP-470... atomic absorption spectrometry 1065.705 IP-500, Determination of the phosphorus content of residual fuels by ultra-violet spectrometry 1065.705 IP-501, Determination of aluminum, silicon, vanadium, nickel...

  13. Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)(#).

    PubMed

    Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo

    2006-06-01

    Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications.

  14. Determination of As in tree-rings of poplar (Populus alba L.) by U-shaped DC arc.

    PubMed

    Marković, D M; Novović, I; Vilotić, D; Ignjatović, Lj

    2009-04-01

    An argon-stabilized U-shaped DC arc with a system for aerosol introduction was used for determination of As in poplar (Populus alba L.) tree-rings. After optimization of the operating parameters and selection of the most appropriate signal integration time (30 s), the limit of detection for As was reduced to 15.0 ng/mL. This detection limit obtained with the optimal integration time was compared with those for other methods: inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasma-atomic emission spectrometry (DCP-AES), microwave induced plasma-atomic emission spectrometry (MIP-AES) and improved thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Arsenic is toxic trace element which can adversely affect plant, animal and human health. As an indicator of environment pollution we collected poplar tree-rings from two locations. The first area was close to the "Nikola Tesla" (TENT-A) power plant, Obrenovac, while the other was in the urban area of Novi Sad. In all cases elevated average concentrations of As were registered in poplar tree-rings from the Obrenovac location.

  15. Environmental assessment of a watertube boiler firing a coal-water slurry. Volume 2. Data supplement. Final report, January 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1986-02-01

    This report is a compendium of detailed test sampling and analysis data obtained in field tests of a watertube industrial boiler burning a coal/water slurry (CWS). Test data reported include preliminary stack test data, boiler operating data, and complete flue-gas emission results. Flue-gas emission measurements included continuous monitoring for criteria pollutants; onsite gas chromatography (GC) for volatile hydrocarbons (Cl-C6); Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR), liquidmore » column (LC) chromatography separation, and low-resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), and trace-element emissions using spark-source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS); N/sub 2/O emissions by gas chromatography/electron-capture detector (GC/ECD); and biological assay testing of SASS and ash-stream samples.« less

  16. Trace Element Analysis of Biological Samples.

    ERIC Educational Resources Information Center

    Veillon, Claude

    1986-01-01

    Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…

  17. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm-2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  18. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells.

    PubMed

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm -2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO 2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn 2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn 2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn 2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  19. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Major- and trace-element concentrations in soils from two continental-scale transects of the United States and Canada

    USGS Publications Warehouse

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Garrett, Robert G.; Klassen, Rodney; Kilburn, James E.; Horton, John D.; King, Harley D.; Goldhaber, Martin B.; Morrison, Jean M.

    2005-01-01

    This report contains major- and trace-element concentration data for soil samples collected from 265 sites along two continental-scale transects in North America. One of the transects extends from northern Manitoba to the United States-Mexico border near El Paso, Tex. and consists of 105 sites. The other transect approximately follows the 38th parallel from the Pacific coast of the United States near San Francisco, Calif., to the Atlantic coast along the Maryland shore and consists of 160 sites. Sampling sites were defined by first dividing each transect into approximately 40-km segments. For each segment, a 1-km-wide latitudinal strip was randomly selected; within each strip, a potential sample site was selected from the most representative landscape within the most common soil type. At one in four sites, duplicate samples were collected 10 meters apart to estimate local spatial variability. At each site, up to four separate soil samples were collected as follows: (1) material from 0-5 cm depth; (2) O horizon, if present; (3) a composite of the A horizon; and (4) C horizon. Each sample collected was analyzed for total major- and trace-element composition by the following methods: (1) inductively coupled plasmamass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICPAES) for aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chromium, cobalt, copper, gallium, indium, iron, lanthanum, lead, lithium, magnesium, manganese, molybdenum, nickel, niobium, phosphorus, potassium, rubidium, scandium, silver, sodium, strontium, sulfur, tellurium, thallium, thorium, tin, titanium, tungsten, uranium, vanadium, yttrium, and zinc; (2) cold vapor- atomic absorption spectrometry for mercury; (3) hydride generation-atomic absorption spectrometry for antimony and selenium; (4) coulometric titration for carbonate carbon; and (5) combustion for total carbon and total sulfur.

  1. Determination of fluorine in herbs and water samples by molecular absorption spectrometry after preconcentration on nano-TiO2 using ultrasound-assisted dispersive micro solid phase extraction.

    PubMed

    Krawczyk-Coda, Magdalena; Stanisz, Ewa

    2017-11-01

    This work presents ultrasound-assisted dispersive micro solid phase extraction (USA DMSPE) for preconcentration of fluorine (F) in water and herb samples. TiO 2 nanoparticles (NPs) were used as an adsorbent. The determination with slurry sampling was performed via molecular absorption of calcium monofluoride (CaF) at 606.440 nm using a high-resolution continuum source electrothermal absorption spectrometry (HR-CS ET MAS). Several factors influencing the efficiency of the preconcentration technique, such as the amount of TiO 2 , pH of sample solution, ultrasonication and centrifugation time and TiO 2 slurry solution preparation before injection to HR-CS ET MAS, were investigated in detail. The conditions of detection step (wavelength, calcium amount, pyrolysis and molecule-forming temperatures) were also studied. After extraction, adsorbent with the analyte was mixed with 200 μL of H 2 O to prepare a slurry solution. The concentration limit of detection was 0.13 ng mL -1 . The achieved preconcentration factor was 7. The relative standard deviations (RSDs, %) for F in real samples were 3-15%. The accuracy of this method was evaluated by analyses of certified reference materials after spiking: INCT-MPH-2 (Mixed Polish Herbs), INCT-SBF-4 (Soya Bean Flour), ERM-CAO11b (Hard Drinking Water) and TMDA-54.5 (Lake Ontario Water). The measured F contents in reference materials were in satisfactory agreement with the added amounts, and the recoveries were found to be 97-109%. Under the developed extraction conditions, the proposed method has been successfully applied for the determination of F in real water samples (lake, sea, tap water) and herbs.

  2. Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif

    2016-02-01

    An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be < 5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L- 1 and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples.

  3. Determination of uranium isotopes in food and environmental samples by different techniques: a comparison.

    PubMed

    Forte, M; Rusconi, R; Margini, C; Abbate, G; Maltese, S; Badalamenti, P; Bellinzona, S

    2001-01-01

    The uranium concentration in 59 samples of bottled and tap water, mainly from northern Italy, was measured by different techniques. Results obtained by inductively coupled plasma mass spectrometry (ICP-MS), semiconductor alpha spectrometry and low level liquid scintillation counting with alpha/beta discrimination (LSC) have been compared. High resolution gamma spectrometry and semiconductor alpha spectrometry have been used to analyse uranium in a variety of organic and inorganic samples. Isotopic secular equilibrium in the 238U series may be lacking or hidden by auto-absorption phenomena, so caution should be used in evaluating gamma spectrometry data. Alpha spectrometry has also been used to ascertain the possible pollution from depleted uranium in the environment.

  4. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples.

    PubMed

    Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar

    2013-01-01

    A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.

  5. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    PubMed

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.

  6. Colorimetric and atomic absorption spectrometric determination of mucolytic drug ambroxol through ion-pair formation with iron and thiocyanate.

    PubMed

    Levent, Abdulkadir; Sentürk, Zühre

    2010-09-01

    Colorimetric and atomic absorption spectrometric methods have been developed for the determination of mucolytic drug Ambroxol. These procedures depend upon the reaction of iron(III) metal ion with the drug in the presence of thiocyanate ion to form stable ion-pair complex which extractable chloroform. The red-coloured complex was determined either colorimetrically at 510 nm or by indirect atomic absorption spectrometry (AAS) via the determination of the iron content in the formed complex. The optimum experimental conditions for pH, concentrations of Fe(3+) and SCN(-), shaking time, phase ratio, and the number of extractions were determined. Under the proposed conditions, linearity was obeyed in the concentration ranges 4.1x10(-6) - 5.7x10(-5) M (1.7-23.6 µg mL(-1)) using both methods, with detection limits of 4.6x10(-7) M (0.19 µg mL(-1)) for colorimetry and 1.1x10(-6) M (0.46 µg mL(-1)) for AAS. The proposed methods were applied for the determination of Ambroxol in tablet dosage forms. The results obtained were statistically analyzed and compared with those obtained by applying the high-performance liquid chromatographic method with diode-array detection.

  7. Investigational study of tamoxifen phase I metabolites using chromatographic and spectroscopic analytical techniques.

    PubMed

    Teunissen, S F; Rosing, H; Seoane, M Dominguez; Brunsveld, L; Schellens, J H M; Schinkel, A H; Beijnen, J H

    2011-06-01

    A comprehensive overview is presented of currently known phase I metabolites of tamoxifen consisting of their systematic name and molecular structure. Reference standards are utilized to elucidate the MS(n) fragmentation patterns of these metabolites using a linear ion trap mass spectrometer. UV-absorption spectra are recorded and absorption maxima are defined. Serum extracts from ten breast cancer patients receiving 40mg tamoxifen once daily were qualitatively analyzed for tamoxifen phase I metabolites using a liquid chromatography-tandem mass spectrometry set-up. In total, 19 metabolites have been identified in these serum samples. Additionally a synthetic method for the preparation of the putative metabolite 3',4'-dihydroxytamoxifen is described. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Determination of tetraalkyllead compounds in gasoline by liquid chromatography-atomic absorption spectrometry

    USGS Publications Warehouse

    Messman, J.D.; Rains, T.C.

    1981-01-01

    A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.

  9. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L- 1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L- 1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract.

  10. Synthesize of silver-nanoparticles by plant extract and its application for preconcentration of cadmium followed by flame atomic absorption spectrometry.

    PubMed

    Almertaha, Abdul-Hossein; Eftekhari, Mohammad; Chamsaz, Mahmoud; Gheibi, Mohammad

    2018-02-02

    In this paper, Mentha pulegium leaves extract was used as a green reducing agent for the synthesis of silver-nanoparticles. The synthesized silver-nanoparticles were characterized by UV-VIS spectrophotometry, transmission electron microscopy, X-ray spectroscopy and used as an adsorbent for preconcentration of trace levels of cadmium (ІІ). After the desorption of cadmium (ІІ) in 5 mol L -1 formic acid, the desorbent solution was aspirated into the flame atomic absorption spectrometry for the determination of cadmium. In order to optimize the experimental condition, a response surface methodology based on central composite design was used. The optimum conditions are: pH: 8.6, amounts of adsorbent: 30 mg, 10 min extraction time and desorption time of 2 min. Under the optimum condition, the calibration curve was linear in the range of 5-200 μg L -1 cadmium (ІІ) ion with a correlation coefficient of 0.9995. The limit of detection was 1.1 μg L -1 and the relative standard deviation for 25 μg L -1 cadmium (ІІ) ion was 3.0% (n = 5). In order to check the applicability of the proposed method, different real samples were analyzed. Also, the accuracy of this method was successfully checked by the analysis of certified reference material and spike tests.

  11. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    PubMed

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  13. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry.

    PubMed

    Bianchin, Joyce Nunes; Martendal, Edmar; Mior, Renata; Alves, Vanessa Nunes; Araújo, Cleide Sandra Tavares; Coelho, Nívia Maria Melo; Carasek, Eduardo

    2009-04-30

    In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L(-1), a sample flow rate of 4.5 mL min(-1) and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 microg L(-1) and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 microg L(-1), with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 microg L(-1), n=7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.

  14. Determination of dietary cadmium-induced metallothioneins in rabbit kidneys and cadmium in metallothioneins by anion-exchange high-performance liquid chromatography coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Peng, S; Shan, X Q; Zheng, Y; Jin, L Z; Xu, W B

    1991-12-06

    A rapid method is described for the determination of dietary cadmium-induced metallothioneins (MTs) in rabbit kidneys by anion-exchange high-performance liquid chromatography. Rabbit kidney MT-I and MT-II were eluted at ca. 15.0 and 18.8 min, respectively, from a DEAE-5PW anion-exchange column with a Tris-HCl buffer (0.01-0.25 M, pH 8.6) and detected by ultraviolet absorbance at 254 nm. A standard calibration curve was constructed using purified standard MT isoforms, which demonstrated an excellent linear correlation between UV absorbance peak heights and the amounts of MT isoforms. Feeding a dose of cadmium for some days resulted in an increase in MT concentrations in rabbit kidneys, but not in the livers. The cadmium concentrations in MT-I and MT-II elutions were determined by graphite furnace atomic absorption spectrometry. MT-I and MT-II showed some differences associated with the oral intake of cadmium. Dietary cadmium also caused zinc to accumulate in kidneys to some extent. The effects of dietary oleic acid on the synthesis of MTs were also studied. Based on the method of standard additions, the recovery of MTs exceeded 93% and replicated injection of samples yielded a relative standard deviation of 2.4% at an MT level of 280 micrograms/g.

  15. Validation of an analytical method for the quantitative determination of selenium in bacterial biomass by ultraviolet-visible spectrophotometry.

    PubMed

    Mörschbächer, Ana Paula; Dullius, Anja; Dullius, Carlos Henrique; Bandt, Cassiano Ricardo; Kuhn, Daniel; Brietzke, Débora Tairini; Malmann Kuffel, Fernando José; Etgeton, Henrique Pretto; Altmayer, Taciélen; Gonçalves, Tamara Engelmann; Oreste, Eliézer Quadro; Ribeiro, Anderson Schwingel; de Souza, Claucia Fernanda Volken; Hoehne, Lucélia

    2018-07-30

    The present paper describes the validation of a spectrophotometry method involving molecular absorption in the visible ultraviolet-visible (UV-Vis) region for selenium (Se) determination in the bacterial biomass produced by lactic acid bacteria (LAB). The method was found to be suitable for the target application and presented a linearity range from 0.025 to 0.250 mg/L Se. The angular and linear coefficients of the linear equation were 1.0678 and 0.0197 mg/L Se, respectively, and the linear correlation coefficient (R 2 ) was 0.9991. Analyte recovery exceeded 96% with a relative standard deviation (RSD) below 3%. The Se contents in LAB ranged from 0.01 to 20 mg/g. The Se contents in the bacterial biomass determined by UV-Vis were not significantly different (p > 0.05) those determined by graphite furnace atomic absorption spectrometry. Thus, Se can be quantified in LAB biomass using this relatively simpler technique. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Determination of total arsenic in fish by hydride-generation atomic absorption spectrometry: method validation, traceability and uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Nugraha, W. C.; Elishian, C.; Ketrin, R.

    2017-03-01

    Fish containing arsenic compound is one of the important indicators of arsenic contamination in water monitoring. The high level of arsenic in fish is due to absorption through food chain and accumulated in their habitat. Hydride generation (HG) coupled with atomic absorption spectrometric (AAS) detection is one of the most popular techniques employed for arsenic determination in a variety of matrices including fish. This study aimed to develop a method for the determination of total arsenic in fish by HG-AAS. The method for sample preparation from American of Analytical Chemistry (AOAC) Method 999.10-2005 was adopted for acid digestion using microwave digestion system and AOAC Method 986.15 - 2005 for dry ashing. The method was developed and validated using Certified Reference Material DORM 3 Fish Protein for trace metals for ensuring the accuracy and the traceability of the results. The sources of uncertainty of the method were also evaluated. By using the method, it was found that the total arsenic concentration in the fish was 45.6 ± 1.22 mg.Kg-1 with a coverage factor of equal to 2 at 95% of confidence level. Evaluation of uncertainty was highly influenced by the calibration curve. This result was also traceable to International Standard System through analysis of Certified Reference Material DORM 3 with 97.5% of recovery. In summary, it showed that method of preparation and HG-AAS technique for total arsenic determination in fish were valid and reliable.

  17. Intercalation of IR absorber into layered double hydroxides: Preparation, thermal stability and selective IR absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Haifeng; Tang, Pinggui; Feng, Yongjun, E-mail: yjfeng@mail.buct.edu.cn

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PMIDA anions were intercalated into Mg{sub 2}Al-NO{sub 3} LDH by anion-exchange method. Black-Right-Pointing-Pointer The prepared material has highly selective IR absorption property in 9-11 {mu}m. Black-Right-Pointing-Pointer The obtained material has practical applications as heat-retaining additive. -- Abstract: N-phosphonomethyl aminodiacetic acid (PMIDA) was intercalated into the interlayer spacing of layered double hydroxides (LDH) by an anion-exchange method. The intercalated LDHs were characterized by various techniques such as powder X-ray diffraction (XRD), FT-IR spectroscopy, elemental analysis and simultaneous thermogravimetric and mass spectrometry (TG-MS) in details. The results show the formation of Mg{sub 2}Al-PMIDA LDH based on the expansion of d-spacingmore » from 0.89 nm to 1.22 nm and the disappearance of the characteristic IR absorption band at 1384 cm{sup -1} for NO{sub 3}{sup -} anions. The incorporation of Mg{sub 2}Al-PMIDA LDH into the low density polyethylene (LDPE) as an additive enhances the selectivity of IR absorption in the main wavelength region 9-11 {mu}m for radiant heat loss at night. Mg{sub 2}Al-PMIDA LDH as a heat-retaining additive has practical application in agricultural plastic films.« less

  18. Speciation of chromium using reversed phase-high performance liquid chromatography coupled to different spectrometric detection methods

    NASA Astrophysics Data System (ADS)

    Andrle, C. M.; Jakubowski, N.; Broekaert, J. A. C.

    1997-02-01

    Speciation of Cr(III) and Cr(VI) based on the formation of different complexes with ammonium-pyrrolidinedithioate (APDC) in a continuous flow technique and their preconcentration using solid phase extraction (SPE) have been elaborated and applied to the analysis of waste waters from the galvanic industry. The Cr complexes were separated and determined using reversed phase-high performance liquid chromatography (RP-HPLC) coupled to different detection methods, namely UV-detection, graphite furnace-atomic absorption spectrometry (GF-AAS) and inductively coupled plasma mass spectrometry with hydraulic high pressure nebulization (HHPN/ICP-MS). After optimization the detection limits for Cr(III) and Cr(VI) of all methods are at the μg 1 -1 level and the precision in terms of RSD is 5% ( cCr = 100 μg 1 -1, N = 10). The procedure was applied to the determination of Cr(III) and Cr(VI) at the μg 1 -1 level in galvanic waste waters, and its accuracy was approved by comparing the results with those of independent methods.

  19. Methods of chemical and phase composition analysis of gallstones

    NASA Astrophysics Data System (ADS)

    Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.

    2017-11-01

    This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.

  20. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Direct extraction of lead (II) from untreated human blood serum using restricted access carbon nanotubes and its determination by atomic absorption spectrometry.

    PubMed

    Barbosa, Valéria Maria Pereira; Barbosa, Adriano Francisco; Bettini, Jefferson; Luccas, Pedro Orival; Figueiredo, Eduardo Costa

    2016-01-15

    Oxidized carbon nanotubes were covered with layers of bovine serum albumin to result in so-called restricted-access carbon nanotubes (RACNTs). This material can extract Pb(2+) ions directly from untreated human blood serum while excluding all the serum proteins. The RACNTs have a protein exclusion capacity of almost 100% and a maximum Pb(2+) adsorption capacity of 34.5mg g(-1). High resolution transmission electron microscopy, scanning transmission electron microscopy and energy dispersive spectroscopy were used to confirm the BSA layer and Pb(2+) adsorption sites. A mini-column filled with RACNTs was used in an on-line solid phase extraction system coupled to a thermospray flame furnace atomic absorption spectrometry. At optimized experimental conditions, the method has a detection limit as low as 2.1µg L(-1), an enrichment factor of 5.5, and inter- and intra-day precisions (expressed as relative standard deviation) of <8.1%. Recoveries of the Pb(2+) spiked samples ranged from 89.4% to 107.3% for the extraction from untreated human blood serum. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthesis, characterization and application of a new chelating resin for solid phase extraction, preconcentration and determination of trace metals in some dairy samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-11-15

    In this study, a simple and rapid solid phase extraction/preconcentration procedure was developed for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly(N-cyclohexylacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (NCA-co-DVB-co-AMPS) (hereafter CDAP) was synthesized and characterized. The influences of the analytical parameters such as pH of the sample solution, type and concentration of eluent, flow rates of the sample and eluent, volume of the sample and eluent, amount of chelating resin, and interference of ions were examined. The limit of detection (LOD) of analytes were found (3s) to be in the range of 0.65-1.90μgL(-1). Preconcentration factor (PF) of 200 and the relative standard deviation (RSD) of ⩽2% were achieved (n=11). The developed method was applied for determination of analytes in some dairy samples and certified reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ligandless surfactant mediated solid phase extraction combined with Fe₃O₄ nano-particle for the preconcentration and determination of cadmium and lead in water and soil samples followed by flame atomic absorption spectrometry: multivariate strategy.

    PubMed

    Jalbani, N; Soylak, M

    2014-04-01

    In the present study, a microextraction technique combining Fe3O4 nano-particle with surfactant mediated solid phase extraction ((SM-SPE)) was successfully developed for the preconcentration/separation of Cd(II) and Pb(II) in water and soil samples. The analytes were determined by flame atomic absorption spectrometry (FAAS). The effective variables such as the amount of adsorbent (NPs), the pH, concentration of non-ionic (TX-114) and centrifugation time (min) were investigated by Plackett-Burman (PBD) design. The important variables were further optimized by central composite design (CCD). Under the optimized conditions, the detection limits (LODs) of Cd(II) and Pb(II) were 0.15 and 0.74 µg/L, respectively. The validation of the proposed procedure was checked by the analysis of certified reference materials of TMDA 53.3 fortified water and GBW07425 soil. The method was successfully applied for the determination of Cd(II) and Pb(II) in water and soil samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  5. Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal.

    PubMed

    Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka

    2014-02-01

    The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.

  6. A preconcentration method for indirect determination of acrylamide from chips, crackers and cereal-based baby foods using flame atomic absorption spectrometry.

    PubMed

    Altunay, Nail; Gürkan, Ramazan; Orhan, Ulaş

    2016-12-01

    Acrylamide is a toxic species for human health, and is a Maillard reaction product which forms spontaneously in heat treatment process of foods. Therefore, a simple, fast and cost-effective method was developed for the indirect determination of acrylamide in processed foods particularly consumed by children. The method is based on ion-pairing of acrylamide with fluorescein (F 2- ) in presence of Ni(II) ions at pH 9.0, and then extraction of the formed ternary complex into micellar phase of poly(ethyleneglycol-mono-p-nonylphenylether) (PONPE 7.5) before analysis by flame atomic absorption spectrometry (FAAS). The ultrasonic-assisted cloud point extraction (UA-CPE) has been used for the preconcentration of acrylamide in the samples prior to its FAAS detection. The matrix matched calibration curve is linear in range of 0.3-150µgkg -1 under optimal reagent conditions (1.75mL of 0.1molL -1 ammonia buffer at pH 9.0, 2.2mgL -1 Ni(II), 4.0×10 -4 molL -1 F 2- , 0.4% (w/v) NH 4 Cl and 0.7% (v/v) PONPE 7.5) with sensitivity enhancement of 160-fold. The proposed method has been validated by assessment of the following parameters; the limits of detection (LOD) and quantification (LOQ) (0.08µgkg -1 and 0.28µgkg -1 , respectively) with a relative standard deviation (RSD%) lower than 6.3%, and extractive recovery higher than 95% for acrylamide spiked at levels of 5 and 25µgkg -1 . The method was successfully applied to the indirect determination of acrylamide in the processed foods and two CRMs with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    NASA Astrophysics Data System (ADS)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  8. [Determination of eight trace elements in the Swertia davidii Franch by flame atomic absorption spectrometry].

    PubMed

    Li, Tao; Wang, Yuan-zhong; Yu, Hon; Cao, Yu-juan; Zhang, Jing-jing; Liu, Qin

    2007-12-01

    The effects of different sample digestives on the determination of Swertia davidii Franch are compared. Eight trace elements in the Swertia davidii Franch were determined by flame atomic absorption spectrometry. The result shows that the RSD and recovery are better if the Swertia davidii Franch was digested with HNO3-HClO4 (5 : 1) mixed acid. The experimental results show that the detection limits were all smaller than 0.097 microg x mL(-1), the RSDs (n=8) all smaller than 2.34%, and the addition standard recovery (ASR) (n=8) was 89.32%-106.65% for all the elements.

  9. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  10. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  11. The in vivo pharmacokinetics, tissue distribution and excretion investigation of mesaconine in rats and its in vitro intestinal absorption study using UPLC-MS/MS.

    PubMed

    Liu, Xiuxiu; Tang, Minghai; Liu, Taohong; Wang, Chunyan; Tang, Qiaoxin; Xiao, Yaxin; Yang, Ruixin; Chao, Ruobing

    2017-12-27

    1. Mesaconine, an ingredient from Aconitum carmichaelii Debx., has been proven to have cardiac effect. For further development and better pharmacological elucidation, the in vivo process and intestinal absorptive behavior of mesaconine should be investigated comprehensively. 2. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitation of mesaconine in rat plasma, tissue homogenates, urine and feces to investigate the in vivo pharmacokinetic profiles, tissue distribution and excretion. The intestinal absorptive behavior of mesaconine was investigated using in vitro everted rat gut sac model. 3. Mesaconine was well distributed in tissues and a mass of unchanged form was detected in feces. It was difficultly absorbed into blood circulatory system after oral administration. The insufficient oral bioavailability of mesaconine may be mainly attributed to its low intestinal permeability due to a lack of lipophilicity. The absorption of mesaconine in rat's intestine is a first-order process with the passive diffusion mechanism.

  12. Determination of sulfur in kerosene by combustion and molecular absorption spectrometry in the gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruschak, M.L.; Syty, A.

    1982-08-01

    A technique of nonflame molecular adsorption in the gas phase developed for the determination of sulfite trapped in tetrachloromercurate, is described herein for application to the determination of total sulfur in kerosene. The burner head is removed from the atomic absorption spectrometer and replaced with a flow-through absorption cell. A special reaction vessel is used to evolve SO/sub 2/ from the sulfite in a precise and convenient manner. The transient absorbance caused by the SO/sub 2/, as it is carried through the absorption cell, is measured. Both spiked and unspiked samples of kerosene were analyzed, and the reproducibility of themore » repeated runs is evidenced by a relative standard deviation from the mean of 5% for the unspiked kerosene and 4% for the spiked kerosene. If the detection level is defined as that concentration of S which gives a % S twice the standard deviation from the mean yields, the detection limit for the present method is 0.002% S by weight in kerosene.« less

  13. Method for detecting trace impurities in gases

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  14. Method for detecting trace impurities in gases

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  15. [Validation of an in-house method for the determination of zinc in serum: Meeting the requirements of ISO 17025].

    PubMed

    Llorente Ballesteros, M T; Navarro Serrano, I; López Colón, J L

    2015-01-01

    The aim of this report is to propose a scheme for validation of an analytical technique according to ISO 17025. According to ISO 17025, the fundamental parameters tested were: selectivity, calibration model, precision, accuracy, uncertainty of measurement, and analytical interference. A protocol has been developed that has been applied successfully to quantify zinc in serum by atomic absorption spectrometry. It is demonstrated that our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  16. Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: A comparison between inductively coupled plasma mass spectrometry and atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Palmer, Christopher D.; Lewis, Miles E.; Geraghty, Ciaran M.; Barbosa, Fernando; Parsons, Patrick J.

    2006-08-01

    A biomonitoring method for the determination of Pb, Cd, and Hg at background levels in whole blood by inductively coupled plasma-mass spectrometry is described. While this method was optimized for assessing Pb, Cd and Hg at environmental levels, it also proved suitable for assessing concentrations associated with occupational exposure. The method requires as little as 200 μl of blood that is diluted 1 + 49 for direct analysis in the inductively coupled plasma-mass spectrometer. Method performance is compared to well-established AAS methods. Initial method validation was accomplished using National Institute of Standards and Technology (NIST) Standard Reference Material 966, Toxic Metals in Bovine Blood. Method detection limits (3s) are 0.05 μg dl - 1 for Pb, 0.09 μg l - 1 for Cd; and 0.17 μg l - 1 for Hg. Repeatability ranged from 1.4% to 2.8% for Pb; 3% to 10% for Cd; and 2.6% to 8.8% for Hg. In contrast, AAS method detection limits were 1 μg dl - 1 , 0.54 μg l - 1 , and 0.6 μg l - 1 , for Pb, Cd, and Hg, respectively. Further performance assessments were conducted over a 2-year period via participation in four international External Quality Assessment Schemes (EQAS) operated specifically for toxic metals in blood. This includes schemes operated by (a) the New York State Department of Health's Wadsworth Center, Albany, NY, USA (b) L'Institut National de Santé Publique du Québec, Centre de Toxicologie du Québec, Canada, (c) Friedrich-Alexander University, Erlangen, Germany, and (d) the University of Surrey, Guildford, UK Trace Elements scheme. The EQAS data reflect analytical performance for blind samples analyzed independently by both inductively coupled plasma-mass spectrometry and AAS methods.

  17. Mercury Pollution Exploration in Latvia with High-Sensitivity Zeeman Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Bogans, Egils; Gavare, Zanda; Svagere, Anda; Poikane, Rita; Skudra, Jānis

    2011-01-01

    This research presents Hg pollution measurements performed in Latvia with sensitive method using Zeeman AAS analyzer RA-915+ and necessary attachments. Air in Riga city and water samples from a number of rivers and lakes of Latvia were analyzed for presence of low-level Hg concentrations. Ombrotrophic bog peat was analyzed to get insight into long-term trends. Environment in the sites sampled is relatively clean according to the results obtained, but there are local spots of pollution.

  18. The method of radioactive tracer for measuring the amount of inorganic nanoparticles in biological samples

    NASA Astrophysics Data System (ADS)

    Buzulukov, Yu; Antsiferova, A.; Demin, V. A.; Demin, V. F.; Kashkarov, P.

    2015-11-01

    The method to measure the mass of inorganic nanoparticles in biological (or any other samples) using nanoparticles labeled with radioactive tracers is developed and applied to practice. The tracers are produced in original nanoparticles by radioactive activation of some of their atomic nuclei. The method of radioactive tracers demonstrates a sensitivity, specificity and accuracy equal or better than popular methods of optical and mass spectrometry, or electron microscopy and has some specific advantages. The method can be used for study of absorption, distribution, metabolism and excretion in living organism, as well as in ecological and fundamental research. It was used in practice to study absorption, distribution, metabolism and excretion of nanoparticles of Ag, Au, Se, ZnO, TiO2 as well as to study transportation of silver nanoparticles through the barriers of blood-brain, placenta and milk gland of rats. Brief descriptions of data obtained in experiments with application of this method included in the article. The method was certified in Russian Federation standard system GOST-R and recommended by the Russian Federation regulation authority ROSPOTREBNADZOR for measuring of toxicokinetic and organotropy parameters of nanoparticles.

  19. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    PubMed

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Intestinal absorption differences of major bioactive compounds of Gegenqinlian Decoction between normal and bacterial diarrheal mini-pigs in vitro and in situ.

    PubMed

    Ling, Xiao; Xiang, Yuqiang; Chen, Feilong; Tang, Qingfa; Zhang, Wei; Tan, Xiaomei

    2018-04-15

    Intestinal condition plays an important role in drug absorption and metabolism, thus the effects of varied gastrointestinal diseases such as infectious diarrhea on the intestinal function are crucial for drug absorption. However, due to the lack of suitable models, the differences of absorption and metabolism of drugs between the diarrheal and normal intestines are rarely reported. Thus, in this study, Escherichia coli diarrhea model was induced in mini-pigs and single-pass intestinal perfusion and intestinal mucosal enzyme metabolism experiments were conducted. A simple and rapid ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to determine the concentrations of 9 major components in Gegen Qinlian decoction (GQD). Samples were pretreated by protein precipitation with methanol and naringin and prednisolone were used as internal standards. The validated method demonstrated adequate sensitivity, selectivity, and process efficiency for the bioanalysis of 9 compounds. Results of intestinal perfusion showed that puerarin, daidzein, daidzin and baicalin and berberine were absorbed faster in diarrheal jejunum than in normal intestines (p < 0.05). However, puerarin, daidzin and liquiritin were metabolized more slowly in diarrheal intestine after incubation compared with the normal group (p < 0.05). The concentrations of daidzein in both perfusion and metabolism and wogonin in metabolism were significantly increased (p < 0.05). In conclusion, absorption and metabolism of GQD were significantly different between the diarrheal and normal intestines, which suggest that bacterial diarrheal mini-pigs model can be used in the intestinal absorption study and is worthy to be applied in the other intestinal absorption study of anti- diarrheal drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots.

    PubMed

    Abdelhamid, Hani Nasser; Chen, Zhen-Yu; Wu, Hui-Fen

    2017-08-01

    In most applications of quantum dots (QDs) for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS), one side of QDs is supported by a solid substrate (stainless - steel plate), whereas the other side is in contact with the target analytes. Therefore, the surface capping agent of QDs is a key parameter for laser desorption/ionization mass spectrometry (LDI-MS). Cadmium telluride quantum dots (CdTe QDs) modified with different capping agents are synthesized, characterized, and applied for surface tuning laser desorption/ionization mass spectrometry (STLDI-MS). Data shows that CdTe quantum dot modified cysteine (cys@CdTe QDs) has an absorption that matches with the wavelength of the N 2 laser (337 nm). The synergistic effect of large surface area and absorption of the laser irradiation of cys@CdTe QDs enhances the LDI-MS process for small - molecule analysis, including α-, β-, and γ-cyclodextrin, gramicidin D, perylene, pyrene, and triphenylphosphine. Cys@CdTe QDs are also applied using Al foils as substrates. Aluminum foil combined with cys@CdTe QDs enhances the ionization efficiency and is cheap compared to traditional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with a stainless - steel plate.

  2. [Research progress on identification and quality evaluation of glues medicines].

    PubMed

    Li, Hui-Hu; Ren, Gang; Chen, Li-Min; Zhong, Guo-Yue

    2018-01-01

    Glues medicines is a special kind of traditional Chinese medicine.As the market demand is large, the raw materials are in short supply and lacks proper quality evaluation technology, which causes inconsistent quality of products on the market. Its authentic identification and evaluation stay a problem to be solved. In this paper, the research progress of the methods and techniques of the evaluation of the identification and quality of glues medicines were reviewed. The researches of medicinal glue type identification and quality evaluation mainly concentrated in four aspects of medicinal materials of physical and chemical properties, trace elements, organic chemicals and biological genetic methods and techniques. The methods of physicochemical properties include thermal analysis, gel electrophoresis, isoelectric focusing electrophoresis, infrared spectroscopy, gel exclusion chromatography, and circular dichroism. The methods including atomic absorption spectrometry, X-ray fluorescence spectrometry, plasma emission spectrometry and visible spectrophotometry were used for the study of the trace elements of glues medicines. The organic chemical composition was studied by methods of composition of amino acids, content detection, odor detection, lipid soluble component, organic acid detection. Methods based on the characteristics of biogenetics include DNA, polypeptide and amino acid sequence difference analysis. Overall, because of relative components similarity of the glues medicines (such as amino acids, proteins and peptides), its authenticity and quality evaluation index is difficult to judge objectively, all sorts of identification evaluation methods have different characteristics, but also their limitations. It indicates that further study should focus on identification of evaluation index and various technology integrated application combining with the characteristics of the production process. Copyright© by the Chinese Pharmaceutical Association.

  3. Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography-inductively coupled-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry

    EPA Science Inventory

    The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass ...

  4. Rapid Determination of Clenbuterol in Pork by Direct Immersion Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry.

    PubMed

    Ye, Diru; Wu, Susu; Xu, Jianqiao; Jiang, Ruifen; Zhu, Fang; Ouyang, Gangfeng

    2016-02-01

    Direct immersion solid-phase microextraction (DI-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was developed for rapid analysis of clenbuterol in pork for the first time. In this work, a low-cost homemade 44 µm polydimethylsiloxane (PDMS) SPME fiber was employed to extract clenbuterol in pork. After extraction, derivatization was performed by suspending the fiber in the headspace of the 2 mL sample vial saturated with a vapor of 100 µL hexamethyldisilazane. Lastly, the fiber was directly introduced to GC-MS for analysis. All parameters that influenced absorption (extraction time), derivatization (derivatization reagent, time and temperature) and desorption (desorption time) were optimized. Under optimized conditions, the method offered a wide linear range (10-1000 ng g(-1)) and a low detection limit (3.6 ng g(-1)). Finally, the method was successfully applied in the analysis of pork from the market, and recoveries of the method for spiked pork were 97.4-105.7%. Compared with the traditional solvent extraction method, the proposed method was much cheaper and fast. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    PubMed

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.

  6. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent for arsenic and from 82 to 93 percent for selenium, depending on the flow conditions used. Statistical analysis of dissolved and whole-water recoverable analytical results for the same set of water samples indicated that there is no significant difference between the GF-AAS and HG-AAS methods. Interferences related to various chemical constituents were also identified. Although sulfate and chloride in association with various cations might interfere with the determination of arsenic and selenium by GF-AAS, the use of a magnesium nitrate/palladium matrix modifier and low-flow argon during atomization helped to minimize such interferences. When using stabilized temperature platform furnace conditions where stop flow is used during atomization, the addition of hydrogen (5 percent volume/volume) to the argon minimized chemical interferences. Nevertheless, stop flow during atomization was found to be less effective than low flow in reducing interference effects.

  7. Methods in Clinical Pharmacology Series

    PubMed Central

    Beaumont, Claire; Young, Graeme C; Cavalier, Tom; Young, Malcolm A

    2014-01-01

    Human radiolabel studies are traditionally conducted to provide a definitive understanding of the human absorption, distribution, metabolism and excretion (ADME) properties of a drug. However, advances in technology over the past decade have allowed alternative methods to be employed to obtain both clinical ADME and pharmacokinetic (PK) information. These include microdose and microtracer approaches using accelerator mass spectrometry, and the identification and quantification of metabolites in samples from classical human PK studies using technologies suitable for non-radiolabelled drug molecules, namely liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. These recently developed approaches are described here together with relevant examples primarily from experiences gained in support of drug development projects at GlaxoSmithKline. The advantages of these study designs together with their limitations are described. We also discuss special considerations which should be made for a successful outcome to these new approaches and also to the more traditional human radiolabel study in order to maximize knowledge around the human ADME properties of drug molecules. PMID:25041729

  8. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry.

    PubMed

    Gürkan, Ramazan; Korkmaz, Sema; Altunay, Nail

    2016-08-01

    A new ultrasonic-thermostatic-assisted cloud point extraction procedure (UTA-CPE) was developed for preconcentration at the trace levels of vanadium (V) and molybdenum (Mo) in milk, vegetables and foodstuffs prior to determination via flame atomic absorption spectrometry (FAAS). The method is based on the ion-association of stable anionic oxalate complexes of V(V) and Mo(VI) with [9-(diethylamino)benzo[a]phenoxazin-5-ylidene]azanium; sulfate (Nile blue A) at pH 4.5, and then extraction of the formed ion-association complexes into micellar phase of polyoxyethylene(7.5)nonylphenyl ether (PONPE 7.5). The UTA-CPE is greatly simplified and accelerated compared to traditional cloud point extraction (CPE). The analytical parameters optimized are solution pH, the concentrations of complexing reagents (oxalate and Nile blue A), the PONPE 7.5 concentration, electrolyte concentration, sample volume, temperature and ultrasonic power. Under the optimum conditions, the calibration curves for Mo(VI) and V(V) are obtained in the concentration range of 3-340µgL(-1) and 5-250µgL(-1) with high sensitivity enhancement factors (EFs) of 145 and 115, respectively. The limits of detection (LODs) for Mo(VI) and V(V) are 0.86 and 1.55µgL(-1), respectively. The proposed method demonstrated good performances such as relative standard deviations (as RSD %) (≤3.5%) and spiked recoveries (95.7-102.3%). The accuracy of the method was assessed by analysis of two standard reference materials (SRMs) and recoveries of spiked solutions. The method was successfully applied into the determination of trace amounts of Mo(VI) and V(V) in milk, vegetables and foodstuffs with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Development of new portable miniaturize solid phase microextraction of silver-APDC complex using micropipette tip in-syringe system couple with electrothermal atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Afridi, Hassan Imran; Shah, Faheem; Arain, Sadaf Sadia; Arain, Salma Aslam; Panhwar, Abdul Haleem; Arain, Mariam Shahzadi; Samoon, Muhammad Kashif

    2016-02-05

    An innovative and simple miniaturized solid phase microextraction (M-SPME) method, was developed for preconcentration and determination of silver(I) in the fresh and waste water samples. For M-SPME, a micropipette tip packed with activated carbon cloth (ACC) as sorbent, in a syringe system. The size, morphology and elemental composition of ACC before and after adsorption of analyte have been characterized by scanning electron microscopy and energy dispersive spectroscopy. The sample solution treated with a complexing reagent, ammonium pyrrolidine dithiocarbamate (APDC), was drawn into the syringe filled with ACC and dispensed manually for 2 to 10 aspirating/dispensing cycle. Then the Ag- complex sorbed on the ACC in micropipette was quantitatively eluted by drawing and dispensing of different concentrations of acids for 2 to 5 aspirating/dispensing cycles. The extracted Ag ions with modifier were injected directly into the electrothermal atomic absorption spectrometry for analysis. The influence of different variables on the extraction efficiency, including the concentration of ligand, pH, sample volume, eluent type, concentration and volume was investigated. Validity and accuracy of the developed method was checked by the standard addition method. Reliability of the proposed methodology was checked by the relative standard deviation (%RSD), which was found to be <5%. Under the optimized experimental variables, the limits of detection (LOD) and enhancement factors (EF), were obtained to be 0.86 ng L(-1) and 120, respectively. The proposed method was successfully applied for the determination of trace levels of silver ions in fresh and waste water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Simultaneous determination of V, Ni and Fe in fuel fly ash using solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A

    2018-03-01

    A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Imaging-based molecular barcoding with pixelated dielectric metasurfaces.

    PubMed

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N; Kivshar, Yuri S; Altug, Hatice

    2018-06-08

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Statistical modelling coupled with LC-MS analysis to predict human upper intestinal absorption of phytochemical mixtures.

    PubMed

    Selby-Pham, Sophie N B; Howell, Kate S; Dunshea, Frank R; Ludbey, Joel; Lutz, Adrian; Bennett, Louise

    2018-04-15

    A diet rich in phytochemicals confers benefits for health by reducing the risk of chronic diseases via regulation of oxidative stress and inflammation (OSI). For optimal protective bio-efficacy, the time required for phytochemicals and their metabolites to reach maximal plasma concentrations (T max ) should be synchronised with the time of increased OSI. A statistical model has been reported to predict T max of individual phytochemicals based on molecular mass and lipophilicity. We report the application of the model for predicting the absorption profile of an uncharacterised phytochemical mixture, herein referred to as the 'functional fingerprint'. First, chemical profiles of phytochemical extracts were acquired using liquid chromatography mass spectrometry (LC-MS), then the molecular features for respective components were used to predict their plasma absorption maximum, based on molecular mass and lipophilicity. This method of 'functional fingerprinting' of plant extracts represents a novel tool for understanding and optimising the health efficacy of plant extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Determination of sulphur in various vegetables by solid sampling high-resolution electrothermal molecular absorption spectrometry.

    PubMed

    Gunduz, Sema; Akman, Suleyman

    2015-04-01

    Sulphur was determined in various vegetables via molecular absorption of carbon monosulphide (CS) at 258.056 nm using a solid sampling high resolution continuum source electrothermal atomic absorption spectrometer (SS HR-CS ETAAS). Samples were dried, ground and directly introduced into the ruthenium coated graphite furnace as 0.05 to 0.50mg. All determinations were performed using palladium+citric acid modifier and applying a pyrolysis temperature of 1000 °C and a volatilisation temperature of 2400 °C. The results were in good agreement with certified sulphur concentrations of various vegetal CRM samples applying linear calibration technique prepared from thioacetamide. The limit of detection and characteristic mass of the method were 7.5 and 8.7 ng of S, respectively. The concentrations of S in various spinach, leek, lettuce, radish, Brussels sprouts, zucchini and chard samples were determined. It was showed that distribution of sulphur in CRM and grinded food samples were homogeneous even in micro-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    PubMed

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  15. Intratracheal instillation of pravastatin for the treatment of murine allergic asthma: a lung-targeted approach to deliver statins

    PubMed Central

    Zeki, Amir A; Bratt, Jennifer M; Chang, Kevin Y; Franzi, Lisa M; Ott, Sean; Silveria, Mark; Fiehn, Oliver; Last, Jerold A; Kenyon, Nicholas J

    2015-01-01

    Systemic treatment with statins mitigates allergic airway inflammation, TH2 cytokine production, epithelial mucus production, and airway hyperreactivity (AHR) in murine models of asthma. We hypothesized that pravastatin delivered intratracheally would be quantifiable in lung tissues using mass spectrometry, achieve high drug concentrations in the lung with minimal systemic absorption, and mitigate airway inflammation and structural changes induced by ovalbumin. Male BALB/c mice were sensitized to ovalbumin (OVA) over 4 weeks, then exposed to 1% OVA aerosol or filtered air (FA) over 2 weeks. Mice received intratracheal instillations of pravastatin before and after each OVA exposure (30 mg/kg). Ultra performance liquid chromatography – mass spectrometry was used to quantify plasma, lung, and bronchoalveolar lavage fluid (BALF) pravastatin concentration. Pravastatin was quantifiable in mouse plasma, lung tissue, and BALF (BALF > lung > plasma for OVA and FA groups). At these concentrations pravastatin inhibited airway goblet cell hyperplasia/metaplasia, and reduced BALF levels of cytokines TNFα and KC, but did not reduce BALF total leukocyte or eosinophil cell counts. While pravastatin did not mitigate AHR, it did inhibit airway hypersensitivity (AHS). In this proof-of-principle study, using novel mass spectrometry methods we show that pravastatin is quantifiable in tissues, achieves high levels in mouse lungs with minimal systemic absorption, and mitigates some pathological features of allergic asthma. Inhaled pravastatin may be beneficial for the treatment of asthma by having direct airway effects independent of a potent anti-inflammatory effect. Statins with greater lipophilicity may achieve better anti-inflammatory effects warranting further research. PMID:25969462

  16. Fast arsenic speciation in water by on-site solid phase extraction and high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mihucz, Victor G.; Bencs, László; Koncz, Kornél; Tatár, Enikő; Weiszburg, Tamás; Záray, Gyula

    2017-02-01

    A method of high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS), combined with on-site separation/solid phase extraction (SPE) has been developed for the speciation of inorganic As (iAs) in geothermal and drinking water samples. The HR-CS-GFAAS calibration curves were linear up to 200 μg/L As, but using second order polynomial fitting, accurate calibration could be performed up to 500 μg/L. It has been demonstrated that sample pH should not be higher than 8 for an accurate speciation of As(V) with a recovery of ≈ 95%. Geothermal water had fairly high salt content (≈ 2200 mg/L) due to the presence of chlorides and sulfates at mg/L levels. Therefore, a two-fold dilution of these types of samples before SPE is recommended, especially, for total As determinations, when the As concentration is as high as 400 μg/L. For drinking water, sampled from public wells with records of As concentrations higher than the 10 μg/L in the past, the reduction of As contamination below the WHO's health limit value could be observed. However, the electrical conductivity was close to 2500 μS/cm, i.e., the guideline limit for drinking water, which was due to their higher chloride content. The proposed fit-for-purpose SPE-HR-CS-GFAAS method could be a candidate for screening drinking water quality.

  17. Determination of inorganic arsenic and its organic metabolites in urine by flow-injection hydride generation atomic absorption spectrometry.

    PubMed

    Hanna, C P; Tyson, J F; McIntosh, S

    1993-08-01

    A method has been developed for the determination of inorganic arsenic [As(III) and As(V)] and its organic metabolites (monomethylarsenic and dimethylarsenic) in urine by flow-injection hydride generation atomic absorption spectrometry. The nontoxic seafood-derived arsenobetaine and arsenocholine species were first separated by a solid-phase extraction procedure. The remaining sample was digested with a mixture of nitric and sulfuric acids and potassium dichromate, followed by attack with hydrogen peroxide. The resulting As(V) was reduced to As(III) with potassium iodide in hydrochloric acid before injection into the flow-injection manifold. The percentage analytical recoveries (mean +/- 95% confidence interval) of various arsenic species added to a urine specimen at 250 micrograms/L were 108 +/- 2, 112 +/- 11, 104 +/- 7, and 95 +/- 5 for As(III), As(V), monomethylarsenic, and dimethylarsenic, respectively. For the determination of arsenic in Standard Reference Material 2670 (toxic metals in human urine), results agreed with the certified value (480 +/- 100 micrograms/L). Analyses of samples for the Centre de Toxicologie du Quebec, containing seafood-derived species, demonstrated the viability of the separation procedure. Detection limits were between 0.1 and 0.2 microgram/L in the solution injected into the manifold, and precision at 10 micrograms/L was between 2% and 3% (CV). These preliminary results show that the method might be applicable to determinations of arsenic in a range of clinical urine specimens.

  18. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry.

    PubMed

    Sadeghi, Susan; Ashoori, Vahid

    2017-10-01

    The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF 6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF 6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL -1 , respectively, with a detection limit of 6.9 ng mL -1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Two new advanced forms of spectrometry for space and commercial applications

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.

    1991-01-01

    Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.

  20. Simultaneous determination of iron, cadmium, zinc, copper, nickel, lead, and uranium in seawater by stable isotope dilution spark source mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mykytiuk, A.P.; Russell, D.S.; Sturgeon, R.E.

    Trace concentrations (ng/mL) of Fe, Cd, Zn, Cu, Ni, Pb, U, and Co have been determined in seawater by stable isotope dilution spark source mass spectrometry. The seawater samples were preconcentrated on the ion exchanger Chelex-100 and the concentrate was evaporated on a graphite or silver electrode. The results are compared with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. The technique avoids the use of calibration standards and is capable of producing results in cases where the analyte is only partially recovered. 2 tables.

  1. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  2. Tandem Mass Spectrometry for Structural Identification of Sesquiterpene Alkaloids from the Stems of Dendrobium nobile Using LC-QToF.

    PubMed

    Wang, Yan-Hong; Avula, Bharathi; Abe, Naohito; Wei, Feng; Wang, Mei; Ma, Shuang-Cheng; Ali, Zulfiqar; Elsohly, Mahmoud A; Khan, Ikhlas A

    2016-05-01

    Dendrobium nobile is one of the fundamental herbs in traditional Chinese medicine. Sesquiterpene alkaloids are the main active components in this plant. Due to weak ultraviolet absorption and low content in D. nobile, these sesquiterpene alkaloids have not been extensively studied using chromatographic methods. Herein, tandem mass spectrometry combined with liquid chromatography separation provides a tool for the identification and characterization of the alkaloids from D. nobile. A total of nine sesquiterpene alkaloids were characterized by ultrahigh-performance liquid chromatography tandem mass spectrometry. These alkaloids can be classified into two subgroups that are represented by dendrobine and nobilonine. Tandem mass spectrometric studies revealed the fragmentation pathways of these two subgroup alkaloids that were used for the identification and characterization of other alkaloids in D. nobile. Characterization of these alkaloids using accurate mass and diagnostic fragments provided a reliable methodology for the analysis of D. nobile by ultrahigh-performance liquid chromatography tandem mass spectrometry. The limit of detection was defined as the signal-to-noise ratio equal to 3 : 1. Limits of detection of dendrobine and nobilonine were less than 30 ng/mL. The developed method was applied for the analysis of various Dendrobium species and related dietary supplements. Alkaloids were identified from D. nobile, but not detected from commercial samples including 13 other Dendrobium species and the 7 dietary supplements. Georg Thieme Verlag KG Stuttgart · New York.

  3. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is also discussed. The program supplied by LC Resources (Lafayette, CA) is used for separation optimization and prediction of gas chromatographic parameters. Column dead-time and average plate number were used as input data in conjunction with the retention times and peak areas of solutes at two different temperature programming rates. Once input data are entered into an IBM or IBM compatible personal computer, the program produces a 'relative resolution map' (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.

  4. Trends in tungsten coil atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Donati, George L.

    Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective methods for trace metal determinations in several different samples, representing an important asset in today's analytical chemistry.

  5. Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices.

    PubMed

    Peng, Lung-Hsiang; Unnikrishnan, Binesh; Shih, Chi-Yu; Hsiung, Tung-Ming; Chang, Jeng; Hsu, Pang-Hung; Chiu, Tai-Chia; Huang, Chih-Ching

    2016-04-01

    In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates.

  6. Determination of nickel in water, food, and biological samples by electrothermal atomic absorption spectrometry after preconcentration on modified carbon nanotubes.

    PubMed

    Taher, Mohammad Ali; Mazaheri, Lida; Ashkenani, Hamid; Mohadesi, Alireza; Afzali, Daryoush

    2014-01-01

    A new and sensitive SPE method using modified carbon nanotubes for extraction and preconcentration, and electrothermal atomic absorption spectrometric determination of nickel (Ni) in real samples at ng/L levels was investigated. First, multiwalled carbon nanotubes were oxidized with concentrated HNO3, then modified with 2-(5-bormo-2-pyridylazo)-5-diethylaminophenol reagent. The adsorption was achieved quantitatively on a modified carbon nanotubes column in a pH range of 6.5 to 8.5; the adsorbed Ni(II) ions were then desorbed by passing 5.0 mL of 1 M HNO3. The effects of analytical parameters, including pH of the solution, eluent type and volume, sample volume, flow rate of the eluent, and matrix ions, were investigated for optimization of the presented procedure. The enrichment factor was 180, and the LOD for Ni was 4.9 ng/L. The method was applied to the determination of Ni in water, food, and biological samples, and reproducible results were obtained.

  7. Apparatus and method for transient thermal infrared spectrometry

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1991-12-03

    A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

  8. Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry.

    PubMed

    Remucal, Christina K; Cory, Rose M; Sander, Michael; McNeill, Kristopher

    2012-09-04

    Suwannee River fulvic acid (SRFA) was dialyzed through a 100-500 molecular weight cutoff dialysis membrane, and the dialysate and retentate were analyzed by UV-visible absorption and high-resolution Orbitrap mass spectrometry (MS). A significant fraction (36% based on dissolved organic carbon) of SRFA passed through the dialysis membrane. The fraction of SRFA in the dialysate had a different UV-visible absorption spectrum and was enriched in low molecular weight molecules with a more aliphatic composition relative to the initial SRFA solution. Comparison of the SRFA spectra collected by Orbitrap MS and Fourier transform ion cyclotron resonance MS (FT-ICR MS) demonstrated that the mass accuracy of the Orbitrap MS is sufficient for determination of unique molecular formulas of compounds with masses <600 Da in a complex mixture, such as SRFA. The most intense masses detected by Orbitrap MS were found in the 100-200 Da mass range. Many of these low molecular masses corresponded to molecular formulas of previously identified compounds in organic matter, lignin, and plants, and the use of the standard addition method provided an upper concentration estimate of selected target compounds in SRFA. Collectively, these results provide evidence that SRFA contains low molecular weight components that are present individually or in loosely bound assemblies.

  9. Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy

    PubMed Central

    Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.

    2011-01-01

    An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm−1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm−1. Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples. PMID:22109445

  10. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    PubMed

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry.

    PubMed

    Hartmann, Georg; Schuster, Michael

    2013-01-25

    The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L(-1) is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L(-1). The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L(-1) is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry.

    PubMed

    Ensafi, Ali A; Shiraz, A Zendegi

    2008-02-11

    Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.

  13. Protein and Metalloprotein Distribution in Different Varieties of Beans (Phaseolus vulgaris L.): Effects of Cooking

    PubMed Central

    Oliveira, Aline P.; Andrade, Geyssa Ferreira; Mateó, Bianca S. O.

    2017-01-01

    Beans (Phaseolus vulgaris L.) are among the main sources of protein and minerals. The cooking of the grains is imperative, due to reduction of the effect of some toxic and antinutritional substances, as well as increase of protein digestibility. In this study, the effects of cooking on albumins, globulins, prolamins, and glutelins concentration and determination of Fe associated with proteins for different beans varieties and on phaseolin concentration in common and black beans were evaluated. Different extractant solutions (water, NaCl, ethanol, and NaOH) were used for extracting albumins, globulins, prolamins, and glutelins, respectively. For the phaseolin separation NaOH, HCl, and NaCl were used. The total concentration of proteins was determined by Bradford method; Cu and Fe associated with phaseolin and other proteins were obtained by graphite furnace atomic absorption spectrometry and by flame atomic absorption spectrometry, respectively. Cooking promoted a negative effect on (1) the proteins concentrations (17 (glutelin) to 95 (albumin) %) of common beans and (2) phaseolin concentration (90%) for common and black beans. Fe associated with albumin, prolamin, and glutelin was not altered. In Fe and Cu associated with phaseolin there was an increase of 20 and 37% for the common and black varieties, respectively. PMID:28326316

  14. Protein and Metalloprotein Distribution in Different Varieties of Beans (Phaseolus vulgaris L.): Effects of Cooking.

    PubMed

    Oliveira, Aline P; Andrade, Geyssa Ferreira; Mateó, Bianca S O; Naozuka, Juliana

    2017-01-01

    Beans ( Phaseolus vulgaris L.) are among the main sources of protein and minerals. The cooking of the grains is imperative, due to reduction of the effect of some toxic and antinutritional substances, as well as increase of protein digestibility. In this study, the effects of cooking on albumins, globulins, prolamins, and glutelins concentration and determination of Fe associated with proteins for different beans varieties and on phaseolin concentration in common and black beans were evaluated. Different extractant solutions (water, NaCl, ethanol, and NaOH) were used for extracting albumins, globulins, prolamins, and glutelins, respectively. For the phaseolin separation NaOH, HCl, and NaCl were used. The total concentration of proteins was determined by Bradford method; Cu and Fe associated with phaseolin and other proteins were obtained by graphite furnace atomic absorption spectrometry and by flame atomic absorption spectrometry, respectively. Cooking promoted a negative effect on (1) the proteins concentrations (17 (glutelin) to 95 (albumin) %) of common beans and (2) phaseolin concentration (90%) for common and black beans. Fe associated with albumin, prolamin, and glutelin was not altered. In Fe and Cu associated with phaseolin there was an increase of 20 and 37% for the common and black varieties, respectively.

  15. Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically labeled 14C-cobalamin

    PubMed Central

    Carkeet, Colleen; Dueker, Stephen R.; Lango, Jozsef; Buchholz, Bruce A.; Miller, Joshua W.; Green, Ralph; Hammock, Bruce D.; Roth, John R.; Anderson, Peter J.

    2006-01-01

    There is a need for an improved test of human ability to assimilate dietary vitamin B12. Assaying and understanding absorption and uptake of B12 is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry is uniquely suited for assessing absorption and kinetics of carbon-14 (14C)-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of 14C in microliter volumes of biological samples with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B12 in the range of normal dietary intake. The B12 used was quantitatively labeled with 14C at one particular atom of the dimethylbenzimidazole (DMB) moiety by exploiting idiosyncrasies of Salmonella metabolism. To grow aerobically on ethanolamine, Salmonella enterica must be provided with either preformed B12 or two of its precursors, cobinamide and DMB. When provided with 14C-DMB specifically labeled in the C2 position, cells produced 14C-B12 of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) (1 Ci = 37 GBq) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 μg, 2.2 kBq/59 nCi) of purified 14C-B12 was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B12 assimilation. PMID:16585531

  16. Piezoelectric-tuned microwave cavity for absorption spectrometry

    DOEpatents

    Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.

    1978-01-01

    Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.

  17. Electrothermal atomic absorption spectrometric determination of cobalt, copper, lead and nickel traces in aragonite following flotation and extraction separation.

    PubMed

    Zendelovska, D; Pavlovska, G; Cundeva, K; Stafilov, T

    2001-03-30

    A method of determination of Co, Cu, Pb and Ni in nanogram quantities from aragonite is presented. Flotation and extraction of Co, Cu, Pb and Ni is suggested as methods for elimination matrix interferences of calcium. The method of flotation is performed by iron(III) hexamethylenedithiocarbamate, Fe(HMDTC)(3), as a colloid precipitate collector. The liquid-liquid extraction of Co, Cu, Pb and Ni is carried out by sodium diethyldithiocarbamate, NaDDTC, as complexing reagent into methylisobutyl ketone, MIBK. The electrothermal atomic absorption spectrometry (ETAAS) is used for determination of analytes. The detection limits of ETAAS followed by flotation are: 7.8 ng.g(-1) for Co, 17.1 ng.g(-1) for Cu, 7.2 ng.g(-1) for Pb and 9.0 mug.g(-1) for Ni. The detection limits of ETAAS followed by extraction are found to be: 12.0 ng.g(-1) for Co, 51.0 ng.g(-1) for Cu, 24.0 ng.g(-1) for Pb and 21.0 ng.g(-1) for Ni.

  18. Determination of Cu, Cd, Pb and Cr in yogurt by slurry sampling electrothermal atomic absorption spectrometry: A case study for Brazilian yogurt.

    PubMed

    de Andrade, Camila Kulek; de Brito, Patrícia Micaella Klack; Dos Anjos, Vanessa Egéa; Quináia, Sueli Pércio

    2018-02-01

    A slurry sampling electrothermal atomic absorption spectrometric method is proposed for the determination of trace elements such as Cu, Cr, Cd and Pb in yogurt. The main factors affecting the slurry preparation were optimized: nature and concentration of acid solution and sonication time. The analytical method was validated in-house by calibration, linearity, limits of detection and quantification, precision and accuracy test obtaining satisfactory results in all cases. The proposed method was applied for the determination of Cd, Cr, Cu and Pb in some Brazilian yogurt samples. For these samples, the concentrations ranged from 2.5±0.2 to 12.4±0.2ngg -1 ; 34±3 to 899±7ngg -1 ; <8.3 to 12±1ngg -1 ; and <35.4 to 210±16ngg -1 for Cd, Cu, Cr and Pb, respectively. The daily intake of Cd, Cu, Cr and Pb via consumption of these samples was estimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy.

    PubMed

    Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin

    2017-09-20

    In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.

  20. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    NASA Astrophysics Data System (ADS)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  1. Water dynamics of Ser-His-Glu-Cys-Asn powder and effects of moisture absorption on its chemical properties.

    PubMed

    Lin, Songyi; Xue, Peiyu; Yang, Shuailing; Li, Xingfang; Dong, Xiuping; Chen, Feng

    2017-08-01

    This study has elucidated moisture dynamics in the soybean peptide, Ser-His-Glu-Cys-Asn (SHECN) powder by using dynamic vapor sorption (DVS) and nuclear magnetic resonance (NMR). We also tried to investigate the effects of moisture absorption on the biological activity and chemical properties of SHECN with some effective methods such as mid-infrared (MIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). DVS results showed that the moisture absorption of SHECN could reach a maximum of 33%, and the SHECN powder after synthesis actually existed in a trihydrate state of SHECN.3H 2 O. Low-field NMR revealed that three water proportions including strong combined water, binding water and bulk water were involved in SHECN moisture absorption and absored water dominantly existed in the form of combined water. Magnetic resonance imaging (MRI) and MIR spectroscopy results indicated that moisture absorption could change the morphology and structure of SHECN. After moisture absorption at 50% and 75% relative humidity, 19 volatiles were identified by GC-MS analysis. Additionally, this study showed that a part of reductive groups in SHECN was oxidized and its antioxidant ability declined significantly (P < 0.05) after moisture absorption. Water absorbed into SHECN powder can significantly change its microstructure and cause its activity to decrease. We must prevent SHECN from absorbing moisture during storage because the water can accelerate the oxidation of samples and promote microbial reactions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. New radiocarbon measurement methods in the Hertelendi Laboratory, Hungary

    NASA Astrophysics Data System (ADS)

    Janovics, Róbert; Major, István; Rinyu, László; Veres, Mihály; Molnár, Mihály

    2013-04-01

    In this paper we present two very different and novel methods for C-14 measurement from dissolved inorganic carbonate (DIC) of water samples. A new LSC sample preparation method for liquid scintillation C-14 measurements was implemented in the ATOMKI. The first method uses direct absorption into a special absorbent (Carbosorb E®) and a following liquid scintillation measurement. Typical sample size is 20-40 litre of water. The developed CO2 absorption method is fast, and simple. The C-14 activities is measured by an ultra low background LSC (TRI-CARB 3170 TR/SL, Perkin Elmer) including quenching parameter (tSIE).The corresponding limit of C-14 dating is 31200 year. Several tests were executed with old borehole CO2 gas without significant content of C-14 and also performed on samples of known C-14 activities between 29 and 7000 pMC, previously measured by GPC. The combined uncertainty of the described determination is about 2 % in the case of recent carbon. It is a very cost-effective and easy to use method based on a novel and simple static absorption process for the CO2 extracted from groundwater. The other very sensitive method is based on accelerator mass spectrometry (AMS) using gas ion source. This method does not require graphite generation and a small volume of water sample (1-20mL) is enough for the radiocarbon measurement. The procedure is very similar to pre-treatment of carbonate contained sample preparation for stable isotope measurement with gasbench technique. We applied a MICADAS type accelerator mass spectrometry (AMS) with gas ion source for C-14 analysis. The radiocarbon content of water was sat free with phosphoric acid and then the headspace gas was rinsed vials. The whole measurement needs only 20 min of each sample. The precision of measurement is better than 1% for modern samples. The preparation is vastly reduced compared to the other AMS methods and principally allows fully automated measurements of groundwater samples with an auto-sampler. The presented two new methods can be suitable for C-14 measurements and dating of hydrological, and environmental samples as well. The new AMS facility in ATOMKI (Debrecen, Hungary) using an EnvironMICADAS AMS system with gas ion source has a great potential in groundwater C-14 analyses. The research was supported by the by TÁMOP-4.2.2.A-11/1/KONV and the Hungarian NSF (OTKA MB08-A 81515)

  3. Final report on CCQM-K125: elements in infant formula

    NASA Astrophysics Data System (ADS)

    Merrick, J.; Saxby, D.; Dutra, E. S.; Sena, R. C.; Araújo, T. O.; Almeida, M. D.; Yang, L.; Pihillagawa, I. G.; Mester, Z.; Sandoval, S.; Wei, C.; Castillo, M. E. D.; Oster, C.; Fisicaro, P.; Rienitz, O.; Pape, C.; Schulz, U.; Jährling, R.; Görlitz, V.; Lampi, E.; Kakoulides, E.; Sin, D. W. M.; Yip, Y. C.; Tsoi, Y. T.; Zhu, Y.; Okumu, T. O.; Yim, Y. H.; Heo, S. W.; Han, M.; Lim, Y.; Osuna, M. A.; Regalado, L.; Uribe, C.; Buzoianu, M. M.; Duta, S.; Konopelko, L.; Krylov, A.; Shin, R.; Linsky, M.; Botha, A.; Magnusson, B.; Haraldsson, C.; Thiengmanee, U.; Klich, H.; Can, S. Z.; Coskun, F. G.; Tunc, M.; Entwisle, J.; O'Reilly, J.; Hill, S.; Goenaga-Infante, H.; Winchester, M.; Rabb, S. A.; Pérez, R.

    2017-01-01

    CCQM-K125 was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of trace elements (K, Cu and I) in infant formula. Government Laboratory, Hong Kong SAR (GLHK) acted as the coordinating laboratory. In CCQM-K125, 25 institutes submitted the results for potassium, 24 institutes submitted the results for copper and 8 institutes submitted the results for iodine. For examination of potassium and copper, most of the participants used microwave-assisted acid digestion methods for sample dissolution. A variety of instrumental techniques including inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), atomic absorption spectrometry (AAS), flame atomic emission spectrometry (FAES) and microwave plasma atomic emission spectroscopy (MP-AES) were employed by the participants for determination. For analysis of iodine, most of the participants used alkaline extraction methods for sample preparation. ICP-MS and ID-ICP-MS were used by the participants for the determination. Generally, the participants' results of CCQM-K125 were found consistent for all measurands according to their equivalence statements. Except with some extreme values, most of the participants obtained the values of di/U(di) within +/- 1 for the measurands. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Questa baseline and pre-mining ground-water quality investigation. 2. Low-flow (2001) and snowmelt (2002) synoptic/tracer water chemistry for the Red River, New Mexico

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Steiger, Judy I.; Kimball, Briant A.; Verplanck, Philip L.

    2003-01-01

    Water analyses are reported for 259 samples collected from the Red River, New Mexico, and its tributaries during low-flow(2001) and spring snowmelt (2002) tracer studies. Water samples were collected along a 20-kilometer reach of the Red River beginning just east of the town of Red River and ending at the U.S. Geological Survey streamflow-gaging station located east of Questa, New Mexico. The study area was divided into three sections where separate injections and synoptic sampling events were performed during the low-flow tracer study. During the spring snowmelt tracer study, three tracer injections and synoptic sampling events were performed bracketing the areas with the greatest metal loading into the Red River as determined from the low-flow tracer study. The lowflow tracer synoptic sampling events were August 17, 20, and 24, 2001. The synoptic sampling events for the spring snowmelt tracer were March 30, 31, and April 1, 2002. Stream and large inflow water samples were sampled using equal-width and depth-integrated sampling methods and composited into half-gallon bottles. Grab water samples were collected from smaller inflows. Stream temperatures were measured at the time of sample collection. Samples were transported to a nearby central processing location where pH and specific conductance were measured and the samples processed for chemical analyses. Cations, trace metals, iron redox species, and fluoride were analyzed at the U.S. Geological Survey laboratory in Boulder, Colorado. Cations and trace metal concentrations were determined using inductively coupled plasma-optical emission spectrometry and graphite furnace atomic absorption spectrometry. Arsenic concentrations were determined using hydride generation atomic absorption spectrometry, iron redox species were measured using ultraviolet-visible spectrometry, and fluoride concentrations were determined using an ion-selective electrode. Alkalinity was measured by automated titration, and sulfate, chloride, and bromide were analyzed by ion chromatography at the U.S. Geological Survey laboratory in Salt Lake City, Utah.

  5. Secondary organic aerosol from atmospheric photooxidation of indole

    NASA Astrophysics Data System (ADS)

    Montoya-Aguilera, Julia; Horne, Jeremy R.; Hinks, Mallory L.; Fleming, Lauren T.; Perraud, Véronique; Lin, Peng; Laskin, Alexander; Laskin, Julia; Dabdub, Donald; Nizkorodov, Sergey A.

    2017-09-01

    Indole is a heterocyclic compound emitted by various plant species under stressed conditions or during flowering events. The formation, optical properties, and chemical composition of secondary organic aerosol (SOA) formed by low-NOx photooxidation of indole were investigated. The SOA yield (1. 3 ± 0. 3) was estimated from measuring the particle mass concentration with a scanning mobility particle sizer (SMPS) and correcting it for wall loss effects. The high value of the SOA mass yield suggests that most oxidized indole products eventually end up in the particle phase. The SOA particles were collected on filters and analysed offline with UV-vis spectrophotometry to measure the mass absorption coefficient (MAC) of the bulk sample. The samples were visibly brown and had MAC values of ˜ 2 m2 g-1 at λ = 300 nm and ˜ 0. 5 m2 g-1 at λ = 400 nm, comparable to strongly absorbing brown carbon emitted from biomass burning. The chemical composition of SOA was examined with several mass spectrometry methods. Direct analysis in real-time mass spectrometry (DART-MS) and nanospray desorption electrospray high-resolution mass spectrometry (nano-DESI-HRMS) were both used to provide information about the overall distribution of SOA compounds. High-performance liquid chromatography, coupled to photodiode array spectrophotometry and high-resolution mass spectrometry (HPLC-PDA-HRMS), was used to identify chromophoric compounds that are responsible for the brown colour of SOA. Indole derivatives, such as tryptanthrin, indirubin, indigo dye, and indoxyl red, were found to contribute significantly to the visible absorption spectrum of indole SOA. The potential effect of indole SOA on air quality was explored with an airshed model, which found elevated concentrations of indole SOA during the afternoon hours contributing considerably to the total organic aerosol under selected scenarios. Because of its high MAC values, indole SOA can contribute to decreased visibility and poor air quality.

  6. A new method for quasi-reagent-free biomonitoring of mercury in human urine.

    PubMed

    Schlathauer, Maria; Reitsam, Verena; Schierl, Rudolf; Leopold, Kerstin

    2017-05-01

    A novel analytical method for sampling and extraction of mercury (Hg) from human urine is presented in this work. The method is based on selective accumulation and separation of Hg from fresh urine sample onto active nanogold-coated silica material by highly efficient solid-phase extraction. After thermal desorption of Hg from the extractant, detection is performed by atomic fluorescence spectrometry (AFS). The feasibility and validity of the optimized, quasi-reagent-free approach was confirmed by recovery experiments in spiked real urine (recovery rate 96.13 ± 5.34%) and by comparison of found Hg concentrations in real urine samples - originating from occupationally exposed persons - with values obtained from reference methods cold vapor - atomic absorption spectrometry (CVAAS) and cold vapor - atomic fluorescence spectrometry (CV-AFS). A very good agreement of the found values reveals the validity of the proposed approach. The limit of detection (LOD) was found to be as low as 0.004 μg Hg L -1 and a high reproducibility with a relative standard deviations ≤4.2% (n = 6) is given. Moreover, storage of the samples for up to one week at an ambient temperature of 30 °C reveals no analyte losses or contamination. In conclusion, the proposed method enables easy-to-handle on-site extraction of total Hg from human urine ensuring at the same time reagent-free sample stabilization, providing quick and safe sampling, which can be performed by untrained persons. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Rapid determination of saponification value and polymer content of vegetable and fish oils by terahertz spectroscopy.

    PubMed

    Jiang, Feng Ling; Ikeda, Ikuo; Ogawa, Yuichi; Endo, Yasushi

    2012-01-01

    A rapid method for determining the saponification value (SV) and polymer content of vegetable and fish oils using the terahertz (THz) spectroscopy was developed. When the THz absorption spectra for vegetable and fish oils were measured in the range of 20 to 400 cm⁻¹, two peaks were seen at 77 and 328 cm⁻¹. The level of absorbance at 77 cm⁻¹ correlated well with the SV. When the THz absorption spectra of thermally treated high-oleic safflower oils were measured, the absorbance increased with heating time. The polymer content in thermally treated oil correlated with the absorbance at 77 cm⁻¹. These results demonstrate that the THz spectrometry is a suitable non-destructive technique for the rapid determination of the SV and polymer content of vegetable and fish oils.

  8. Growth and characterization of LiInSe2 single crystals

    NASA Astrophysics Data System (ADS)

    Ma, Tianhui; Zhu, Chongqiang; Lei, Zuotao; Yang, Chunhui; Sun, Liang; Zhang, Hongchen

    2015-04-01

    Large and crack-free LiInSe2 single crystals were obtained by the vertical gradient freezing method with adding a temperature oscillation technology in a two-zone furnace. X-ray diffraction data showed that the pure LiInSe2 compound was synthesized. The grown crystals had different color depending on melt composition. The atomic ratios of elements of LiInSe2 crystals were obtained by an Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), and the structural formula were calculated according to the relative contents of elements. The average absorption coefficients were estimated by using average reflection indices. The absorption coefficients of the thermal annealing samples are 0.6 cm-1 at 2-3 μm. The transparent range of our LiInSe2 crystals is from 0.6 μm to 13.5 μm.

  9. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 1999-2000

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.

    2002-01-01

    Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were determined by Zeeman-corrected graphitefurnace atomic-absorption spectrometry. Trace concentrations of As(total) and As(III) were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Concentrations of Cl, NO3, Br, and SO4 were determined by IC. Concentrations of Fe(II) and Fe(total) were determined by the ferrozine colorimetric method. Concentrations of NO2 were determined by colorimetry using matrix-matched standards. Concentrations of NH4 were determined by IC, with reanalysis by colorimetry where separation of Na and NH4 peaks was poor. Dissolved organic carbon (DOC) concentrations were determined by the wet persulfate oxidation method.

  10. Continuous Flow Atmospheric Pressure Laser Desorption/Ionization Using a 6–7-µm-Band Mid-Infrared Tunable Laser for Biomolecular Mass Spectrometry

    PubMed Central

    Hiraguchi, Ryuji; Hazama, Hisanao; Senoo, Kenichirou; Yahata, Yukinori; Masuda, Katsuyoshi; Awazu, Kunio

    2014-01-01

    A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively). The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS). PMID:24937686

  11. Determination of Total Selenium in Infant Formulas: Comparison of the Performance of FIA and MCFA Flow Systems

    PubMed Central

    Pistón, Mariela; Knochen, Moisés

    2012-01-01

    Two flow methods, based, respectively, on flow-injection analysis (FIA) and on multicommutated flow analysis (MCFA), were compared with regard to their use for the determination of total selenium in infant formulas by hydride-generation atomic absorption spectrometry. The method based on multicommutation provided lower detection and quantification limits (0.08 and 0.27 μg L−1 compared to 0.59 and 1.95 μ L−1, resp.), higher sampling frequency (160 versus. 70 samples per hour), and reduced reagent consumption. Linearity, precision, and accuracy were similar for the two methods compared. It was concluded that, while both methods proved to be appropriate for the purpose, the MCFA-based method exhibited a better performance. PMID:22505923

  12. Mineral and Lithology Mapping of Drill Core Pulps Using Visible and Infrared Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, G. R., E-mail: G.Taylor@unsw.edu.au

    2000-12-15

    A novel approach for using field spectrometry for determining both the mineralogy and the lithology of drill core pulps (powders) is developed and evaluated. The methodology is developed using material from a single drillhole through a mineralized sequence of rocks from central New South Wales. Mineral library spectra are used in linear unmixing routines to determine the mineral abundances in drill core pulps that represent between 1 m and 3 m of core. Comparison with X-Ray Diffraction (XRD) analyses shows that for most major constituents, spectrometry provides an estimate of quantitative mineralogy that is as reliable as that provided bymore » XRD. Confusion between the absorption features of calcite and those of chlorite causes the calcite contents determined by spectrometry to be unreliable. Convex geometry is used to recognize the spectra of those samples that are extreme and are representative of unique lithologies. Linear unmixing is used to determine the abundance of these lithologies in each drillhole sample and these abundances are used to interpret the geology of the drillhole. The interpreted geology agrees well with conventional drillhole logs of the visible geology and photographs of the split core. The methods developed provide a quick and cost-effective way of determining the lithology and alteration mineralogy of drill core pulps.« less

  13. A comparison of geochemical exploration techniques and sample media within accretionary continental margins: an example from the Pacific Border Ranges, Southern Alaska, U.S.A.

    USGS Publications Warehouse

    Sutley, S.J.; Goldfarb, R.J.; O'Leary, R. M.; Tripp, R.B.

    1990-01-01

    The Pacific Border Ranges of the southern Alaskan Cordillera are composed of a number of allochthonous tectonostratigraphic terranes. Within these terranes are widespread volcanogenic, massive sulfide deposits in and adjacent to portions of accreted ophiolite complexes, bands and disseminations of chromite in accreted island-arc ultramafic rocks, and epigenetic, gold-bearing quartz veins in metamorphosed turbidite sequences. A geochemical pilot study was undertaken to determine the most efficient exploration strategy for locating these types of mineral deposits within the Pacific Border Ranges and other typical convergent continental margin environments. High-density sediment sampling was carried out in first- and second-order stream channels surrounding typical gold, chromite and massive sulfide occurrences. At each site, a stream-sediment and a panned-concentrate sample were collected. In the laboratory, the stream sediments were sieved into coarse-sand, fine- to medium-sand, and silt- to clay-size fractions prior to analysis. One split of the panned concentrates was retained for analysis; a second split was further concentrated by gravity separation in heavy liquids and then divided into magnetic, weakly magnetic and nonmagnetic fractions for analysis. A number of different techniques including atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and semi-quantitative emission spectrography were used to analyze the various sample media. Comparison of the various types of sample media shows that in this tectonic environment it is most efficient to include a silt- to clay-size sediment fraction and a panned-concentrate sample. Even with the relatively low detection limits for many elements by plasma spectrometry and atomic absorption spectrometry, anomalies reflecting the presence of gold veins could not be identified in any of the stream-sediment fractions. Unseparated panned-concentrate samples should be analyzed by emission spectroscopy and atomic absorption spectrometry for Ag and Au. If, however, magnetic and nonmagnetic concentrate fractions are used in a reconnaissance program, semiquantitative emission spectrography is adequate for all analytical work. ?? 1990.

  14. Determination of calcium, magnesium, sodium, and potassium in foodstuffs by using a microsampling flame atomic absorption spectrometric method after closed-vessel microwave digestion: method validation.

    PubMed

    Chekri, Rachida; Noël, Laurent; Vastel, Christelle; Millour, Sandrine; Kadar, Ali; Guérin, Thierry

    2010-01-01

    This paper describes a validation process in compliance with the NFIEN ISO/IEC 17025 standard for the determination of the macrominerals calcium, magnesium, sodium, and potassium in foodstuffs by microsampling with flame atomic absorption spectrometry after closed-vessel microwave digestion. The French Standards Commission (Agence Francaise de Normalisation) standards NF V03-110, NF EN V03-115, and XP T-90-210 were used to evaluate this method. The method was validated in the context of an analysis of the 1322 food samples of the second French Total Diet Study (TDS). Several performance criteria (linearity, LOQ, specificity, trueness, precision under repeatability conditions, and intermediate precision reproducibility) were evaluated. Furthermore, the method was monitored by several internal quality controls. The LOQ values obtained (25, 5, 8.3, and 8.3 mg/kg for Ca, Mg, Na, and K, respectively) were in compliance with the needs of the TDS. The method provided accurate results as demonstrated by a repeatability CV (CVr) of < 7% and a reproducibility CV (CVR) of < 12% for all the elements. Therefore, the results indicated that this method could be used in the laboratory for the routine determination of these four elements in foodstuffs with acceptable analytical performance.

  15. Fast determination of trace elements in organic fertilizers using a cup-horn reactor for ultrasound-assisted extraction and fast sequential flame atomic absorption spectrometry.

    PubMed

    Teixeira, Leonel Silva; Vieira, Heulla Pereira; Windmöller, Cláudia Carvalhinho; Nascentes, Clésia Cristina

    2014-02-01

    A fast and accurate method based on ultrasound-assisted extraction in a cup-horn sonoreactor was developed to determine the total content of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn in organic fertilizers by fast sequential flame atomic absorption spectrometry (FS FAAS). Multivariate optimization was used to establish the optimal conditions for the extraction procedure. An aliquot containing approximately 120 mg of the sample was added to a 500 µL volume of an acid mixture (HNO3/HCl/HF, 5:3:3, v/v/v). After a few minutes, 500 µL of deionized water was added and eight samples were simultaneously sonicated for 10 min at 50% amplitude, allowing a sample throughput of 32 extractions per hour. The performance of the method was evaluated with a certified reference material of sewage sludge (CRM 029). The precision, expressed as the relative standard deviation, ranged from 0.58% to 5.6%. The recoveries of analytes were found to 100%, 109%, 96%, 92%, 101%, 104% and 102% for Cd, Cr, Cu, Mn, Ni, Pb and Zn, respectively. The linearity, limit of detection and limit of quantification were calculated and the values obtained were adequate for the quality control of organic fertilizers. The method was applied to the analysis of several commercial organic fertilizers and organic wastes used as fertilizers, and the results were compared with those obtained using the microwave digestion procedure. A good agreement was found between the results obtained by microwave and ultrasound procedures with recoveries ranging from 80.4% to 117%. Two organic waste samples were not in accordance with the Brazilian legislation regarding the acceptable levels of contaminants. © 2013 Published by Elsevier B.V.

  16. Cloud point extraction-flame atomic absorption spectrometry for pre-concentration and determination of trace amounts of silver ions in water samples.

    PubMed

    Yang, Xiupei; Jia, Zhihui; Yang, Xiaocui; Li, Gu; Liao, Xiangjun

    2017-03-01

    A cloud point extraction (CPE) method was used as a pre-concentration strategy prior to the determination of trace levels of silver in water by flame atomic absorption spectrometry (FAAS) The pre-concentration is based on the clouding phenomena of non-ionic surfactant, triton X-114, with Ag (I)/diethyldithiocarbamate (DDTC) complexes in which the latter is soluble in a micellar phase composed by the former. When the temperature increases above its cloud point, the Ag (I)/DDTC complexes are extracted into the surfactant-rich phase. The factors affecting the extraction efficiency including pH of the aqueous solution, concentration of the DDTC, amount of the surfactant, incubation temperature and time were investigated and optimized. Under the optimal experimental conditions, no interference was observed for the determination of 100 ng·mL -1 Ag + in the presence of various cations below their maximum concentrations allowed in this method, for instance, 50 μg·mL -1 for both Zn 2+ and Cu 2+ , 80 μg·mL -1 for Pb 2+ , 1000 μg·mL -1 for Mn 2+ , and 100 μg·mL -1 for both Cd 2+ and Ni 2+ . The calibration curve was linear in the range of 1-500 ng·mL -1 with a limit of detection (LOD) at 0.3 ng·mL -1 . The developed method was successfully applied for the determination of trace levels of silver in water samples such as river water and tap water.

  17. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.

    PubMed

    Kahe, Hadi; Chamsaz, Mahmoud

    2016-11-01

    A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.

  18. Determination of methylmercury and inorganic mercury in water samples by slurry sampling cold vapor atomic absorption spectrometry in a flow injection system after preconcentration on silica C(18) modified.

    PubMed

    Segade, Susana Río; Tyson, Julian F

    2007-03-15

    A novel method for preconcentration of methylmercury and inorganic mercury from water samples was developed involving the determination of ngl(-1) levels of analytes retained on the silica C(18) solid sorbent, previous complexation with ammonium pyrrolidine dithiocarbamate (APDC), by slurry sampling cold vapor atomic absorption spectrometry (SS-CVAAS) in a flow injection (FI) system. Several variables were optimized affecting either the retention of both mercury species, such as APDC concentration, silica C(18) amount, agitation times, or their determination, including hydrochloric acid concentration in the suspension medium, peristaltic pump speed and argon flow-rate. A Plackett-Burman saturated factorial design permitted to differentiate the influential parameters on the preconcentration efficiency, which were after optimized by the sequential simplex method. The contact time between mercury containing solution and APDC, required to reach an efficient sorption, was decreased from 26 to 3min by the use of sonication stirring instead of magnetic stirring. The use of 1moldm(-3) hydrochloric acid suspension medium and 0.75% (m/v) sodium borohydride reducing agent permitted the selective determination of methylmercury. The combination of 5moldm(-3) hydrochloric acid and 10(-4)% (m/v) sodium borohydride was used for the selective determination of inorganic mercury. The detection limits achieved for methylmercury and inorganic mercury determination under optimum conditions were 0.96 and 0.25ngl(-1), respectively. The reliability of the proposed method for the determination of both mercury species in waters was checked by the analysis of samples spiked with known concentrations of methylmercury and inorganic mercury; quantitative recoveries were obtained.

  19. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique.

    PubMed

    Chen, Hung-Ju; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2012-01-01

    A liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed for the determination of phenolic acids and flavonoids in a medicinal Chinese herb Taraxacum formosanum Kitam. Initially, both phenolic acids and flavonoids were extracted with 50% ethanol in a water-bath at 60 °C for 3 h and eventually separated into acidic fraction and neutral fraction by using a C(18) cartridge. A total of 29 compounds were separated within 68 min by employing a Gemini C(18) column and a gradient solvent system of 0.1% formic acid and acetonitrile at a flow rate of 1.0 mL/min. Based on the retention behavior as well as absorption and mass spectra, 19 phenolic acids and 10 flavonoids were identified and quantified in T. formosanum, with the former ranging from 14.1 μg/g to 10,870.4 μg/g, and the latter from 9.9 μg/g to 325.8 μg/g. For further identification of flavonoids, a post-column derivatization method involving shift reagents such as sodium acetate or aluminum chloride was used and the absorption spectral characteristics without or with shift reagents were compared. An internal standard syringic acid was used for quantitation of phenolic acids, whereas (±) naringenin was found suitable for quantitation of flavonoids. The developed LC-MS/MS method showed high reproducibility, as evident from the relative standard deviation (RSD) values for intra-day and inter-day variability being 1.0-6.8% and 2.0-7.7% for phenolic acids and 3.7-7.4% and 1.5-8.1% for flavonoids, respectively, and thus may be applied for simultaneous determination of phenolic acids and flavonoids in Chinese herb and nutraceuticals.

  20. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    PubMed

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPR MAX ), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Enhanced spectrophotometric detection of Hg in water samples by surface plasmon resonance of Au nanoparticles after preconcentration with vortex-assisted liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Martinis, Estefanía M.; Wuilloud, Rodolfo G.

    2016-10-01

    This article presents an efficient, simple, and cost-effective method for the determination of trace amounts of Hg by vortex-assisted liquid-liquid microextraction (VALLME) coupled to microvolume UV-Vis spectrophotometry. This method correlates changes in the intensity of localized surface plasmon resonance (LSPR) of tetraoctylammonium bromide (TOABr) coated Au nanoparticles (NPs) after interaction with Hg2+ ion. Spectroscopic measurements of the TOABr-coated Au NPs phase with particular absorption properties (strong and well-defined absorption bands) after analyte extraction by VALLME, provide an accurate and sensitive determination of Hg in water samples, comparable with measurements obtained by atomic absorption spectrometry (AAS). Different variables including sample volume, extraction time, and TOABr-coated Au NPs dispersion volume were carefully studied; final experimental conditions were 5 mL, 120 μL and 5 min respectively. The limit of detection (LOD) was 0.8 ng mL- 1. The calibration curve was linear at concentrations between the limit of quantification (LOQ) (4.9 ng mL- 1) and up to at least 120 ng mL- 1 of Hg. The relative standard deviation for six replicate determinations of 20 ng mL- 1 of Hg was 4.7%. This method exhibited an excellent analytical performance in terms of selectivity and sensitivity and it was finally applied for Hg determination in spiked tap and mineral water samples.

  2. Nuclear Fuel Assay through analysis of Uranium L-shell by Hybrid L-edge/XRF Densitometer using a Surrogate Material

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Joung, Sungyeop; Park, Jerry AB(; ), AC(; )

    2018-01-01

    Assay of L-series of nuclear material solution is useful for determination of amount of nuclear materials and ratio of minor actinide in the materials. The hybrid system of energy dispersive X-ray absorption edge spectrometry, i.e. L-edge densitometry, and X-ray fluorescence spectrometry is one of the analysis methods. The hybrid L-edge/XRF densitometer can be a promising candidate for a portable and compact equipment due to advantage of using low energy X-ray beams without heavy shielding systems and liquid nitrogen cooling compared to hybrid K-edge/XRF densitometer. A prototype of the equipment was evaluated for feasibility of the nuclear material assay using a surrogate material (lead) to avoid radiation effects from nuclear materials. The uncertainty of L-edge and XRF characteristics of the sample material and volume effects was discussed in the article.

  3. Multi-element fingerprinting as a tool in origin authentication of four east China marine species.

    PubMed

    Guo, Lipan; Gong, Like; Yu, Yanlei; Zhang, Hong

    2013-12-01

    The contents of 25 elements in 4 types of commercial marine species from the East China Sea were determined by inductively coupled plasma mass spectrometry and atomic absorption spectrometry. The elemental composition was used to differentiate marine species according to geographical origin by multivariate statistical analysis. The results showed that principal component analysis could distinguish samples from different areas and reveal the elements which played the most important role in origin diversity. The established models by partial least squares discriminant analysis (PLS-DA) and by probabilistic neural network (PNN) can both precisely predict the origin of the marine species. Further study indicated that PLS-DA and PNN were efficacious in regional discrimination. The models from these 2 statistical methods, with an accuracy of 97.92% and 100%, respectively, could both distinguish samples from different areas without the need for species differentiation. © 2013 Institute of Food Technologists®

  4. Identification by CI-mass spectrometry of an unexpected benzodiazepine degradation product

    NASA Astrophysics Data System (ADS)

    Buret, D.; Breton, D.; Clair, P.; Lafosse, M.

    2006-01-01

    The French Military Health Service (SSA) has developed an innovative drug product, as a treatment against neurotoxic organophosphate poisoning (NOP). It contains three drug substances: an anticholinergic, an anticonvulsant and a cholinesterase reactivator. Testing stability study, in normal conditions, over 18 months, for this speciality, has given unexpected results. Indeed, one of the drug substances, avizafone (pro-drug of diazepam), breaks down partially into a compound which migrates into the plastic container where this degradation product is demethylated after absorption. Mass spectrometry with negative chemical ionisation (negative CI-MS) was used, to monitor decomposition of the drug substance. This method first showed migration of the degradation product and has been used to monitor its evolution during the stability testing study. The demethylation seems to be due to an additive product present in the plastic. The degradation products remain trapped in the container holding the pharmaceutical formulation.

  5. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    PubMed

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll).

  6. On the calibration of continuous, high-precision delta18O and delta2H measurements using an off-axis integrated cavity output spectrometer.

    PubMed

    Wang, Lixin; Caylor, Kelly K; Dragoni, Danilo

    2009-02-01

    The (18)O and (2)H of water vapor serve as powerful tracers of hydrological processes. The typical method for determining water vapor delta(18)O and delta(2)H involves cryogenic trapping and isotope ratio mass spectrometry. Even with recent technical advances, these methods cannot resolve vapor composition at high temporal resolutions. In recent years, a few groups have developed continuous laser absorption spectroscopy (LAS) approaches for measuring delta(18)O and delta(2)H which achieve accuracy levels similar to those of lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling and constant calibration to a reference gas, and have substantial power requirements, making them unsuitable for long-term field deployment at remote field sites. A new method called Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) has been developed which requires extremely low-energy consumption and neither reference gas nor cryogenic cooling. In this report, we develop a relatively simple pumping system coupled to a dew point generator to calibrate an ICOS-based instrument (Los Gatos Research Water Vapor Isotope Analyzer (WVIA) DLT-100) under various pressures using liquid water with known isotopic signatures. Results show that the WVIA can be successfully calibrated using this customized system for different pressure settings, which ensure that this instrument can be combined with other gas-sampling systems. The precisions of this instrument and the associated calibration method can reach approximately 0.08 per thousand for delta(18)O and approximately 0.4 per thousand for delta(2)H. Compared with conventional mass spectrometry and other LAS-based methods, the OA-ICOS technique provides a promising alternative tool for continuous water vapor isotopic measurements in field deployments. Copyright 2009 John Wiley & Sons, Ltd.

  7. Extraction method based on emulsion breaking for the determination of Cu, Fe and Pb in Brazilian automotive gasoline samples by high-resolution continuum source flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Leite, Clarice C.; de Jesus, Alexandre; Kolling, Leandro; Ferrão, Marco F.; Samios, Dimitrios; Silva, Márcia M.

    2018-04-01

    This work reports a new method for extraction of Cu, Fe and Pb from Brazilian automotive gasoline and their determination by high-resolution continuous source flame atomic absorption spectrometry (HR-CS FAAS). The method was based on the formation of water-in-oil emulsion by mixing 2.0 mL of extraction solution constituted by 12% (w/v) Triton X-100 and 5% (v/v) HNO3 with 10 mL of sample. After heating at 90 °C for 10 min, two well-defined phases were formed. The bottom phase (approximately 3.5 mL), composed of acidified water and part of the ethanol originally present in the gasoline sample, containing the extracted analytes was analyzed. The surfactant and HNO3 concentrations and the heating temperature employed in the process were optimized by Doehlert design, using a Brazilian gasoline sample spiked with Cu, Fe and Pb (organometallic compounds). The efficiency of extraction was investigated and it ranged from 80 to 89%. The calibration was accomplished by using matrix matching method. For this, the standards were obtained performing the same extraction procedure used for the sample, using emulsions obtained with a gasoline sample free of analytes and the addition of inorganic standards. Limits of detection obtained were 3.0, 5.0 and 14.0 μg L-1 for Cu, Fe and Pb, respectively. These limits were estimated for the original sample taking into account the preconcentration factor obtained. The accuracy of the proposed method was assured by recovery tests spiking the samples with organometallic standards and the obtained values ranged from 98 to 105%. Ten gasoline samples were analyzed and Fe was found in four samples (0.04-0.35 mg L-1) while Cu (0.28 mg L-1) and Pb (0.60 mg L-1) was found in just one sample.

  8. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples.

    PubMed

    Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin

    2016-07-01

    In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Determination of bromide in aqueous solutions via the TlBr molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Cacho, Frantisek; Machynak, Lubomir; Nemecek, Martin; Beinrohr, Ernest

    2018-06-01

    The paper describes the determination of bromide by evaluating the molecular absorption of thallium mono-bromide (TlBr) at the rotational line at 342.9815 nm by making use a high-resolution continuum source graphite furnace atomic absorption spectrometer. The effects of variables such as the wavelength, graphite furnace program, amount of Tl and the use of a modifier were investigated and optimized. Various chemical modifiers have been studied, such as Pd, Mg, Ag and a mixture of Pd/Mg. It was found that best results were obtained by using Ag which prevents losses of bromide during pyrolysis step through precipitation of bromide as AgBr. In this way, a maximum pyrolysis temperature of 400 °C could be used. The optimum molecule forming temperature was found to be 900 °C. Bromide concentrations in various water samples (CRM, bottled drinking water and tap water) were determined. The quantification was made by both linear calibration and standard addition techniques. The results were matched well those of the reference method. The calibration curve was linear in the range between 1 and 1000 ng Br with a correlation coefficient R = 0.999. The limit of detection and characteristic mass of the method were 0.3 ng and 4.4 ng of Br.

  10. [Development of ICP-OES, ICP-MS and GF-AAS Methods for Simultaneous Quantification of Lead, Total Arsenic and Cadmium in Soft Drinks].

    PubMed

    Kataoka, Yohei; Watanabe, Takahiro; Hayashi, Tomoko; Teshima, Reiko; Matsuda, Rieko

    2015-01-01

    In this study, we developed methods to quantify lead, total arsenic and cadmium contained in various kinds of soft drinks, and we evaluated their performance. The samples were digested by common methods to prepare solutions for measurement by ICP-OES, ICP-MS and graphite furnace atomic absorption spectrometry (GF-AAS). After digestion, internal standard was added to the digestion solutions for measurements by ICP-OES and ICP-MS. For measurement by GF-AAS, additional purification of the digestion solution was conducted by back-extraction of the three metals into nitric acid solution after extraction into an organic solvent with ammonium pyrrolidine dithiocarbamate. Performance of the developed methods were evaluated for eight kinds of soft drinks.

  11. Determination of bromine in selected polymer materials by a wavelength-dispersive X-ray fluorescence spectrometric method - Critical thickness problem and solutions

    NASA Astrophysics Data System (ADS)

    Gorewoda, Tadeusz; Mzyk, Zofia; Anyszkiewicz, Jacek; Charasińska, Jadwiga

    2015-04-01

    The purpose of this study was to develop an accurate method for the determination of bromine in polymer materials using X-ray fluorescence spectrometry when the thickness of the sample is less than the bromine critical thickness (tc) value. This is particularly important for analyzing compliance with the Restriction of Hazardous Substances Directive. Mathematically and experimentally estimated tc values in polyethylene and cellulose matrixes were up to several millimeters. Four methods were developed to obtain an accurate result. These methods include the addition of an element with a high mass absorption coefficient, the measurement of the total bromine contained in a defined volume of the sample, the exploitation of tube-Rayleigh line intensities and using the Br-Lβ line.

  12. A simple heat-pipe cell for X-ray absorption spectrometry of potassium vapor

    NASA Astrophysics Data System (ADS)

    Pres̆eren, R.; Kodre, A.; Arc̆on, I.; Padez̆nik Gomils̆ek, J.; Hribar, M.

    1999-01-01

    The construction and operation of a simple high-temperature X-ray absorption cell for potassium vapor is described. The principle of "spectroscopic heat pipe" is exploited to separate kapton windows, indispensable for good transmission in the low-energy region, from the hot and aggressive vapor. High-resolution spectrum of the K-edge region of atomic potassium reveals fingerprints of multielectron photoexcitations.

  13. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Krawczyk, Magdalena

    2007-03-01

    The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H 2Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an "integrated trap") was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3 σ), was 0.9 ng mL - 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% ( n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  14. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells

    PubMed Central

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei

    2018-01-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm−2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method—chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density–voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs. PMID:29657776

  15. Determination of some metal ions in various meat and baby food samples by atomic spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2016-04-15

    In this paper, we report a simple and rapid solid phase extraction system for the separation/preconcentration and determination of Cd(II), Co(II), Cu(II), Fe(III), Cr(III), Pb(II), and Zn(II) ions by flame atomic absorption spectrometry (FAAS). This method is based upon the retention of metal ions on a column packed with poly[N-(3-methyl-1H-indole-1-yl)]-2-methacrylamide-co-2-acrylamido-2-methyl-1-propane sulphonic acid-co divinylbenzene] (MMAD) resin as a solid-phase extraction (SPE) sorbent at pH 8. At the optimized conditions, the limits of detection (3 s/b) between 0.12 and 1.6 μg L(-1), preconcentration factor of 100, and the relative standard deviation of ⩽1.8% were achieved (n=10). The accuracy of the method was verified by analyzing certified reference materials (CRMs) and performing recovery experiments. The developed method was successfully applied to the various natural water, meat products and baby food samples. The recoveries of analyte ions were found in added real samples and CRMs from 95% to 102%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Absence of food effect on the extent of alprazolam absorption from an orally disintegrating tablet.

    PubMed

    Erdman, Keith; Stypinski, Daria; Combs, Michelle; Witt, Patricia; Stiles, Mark; Pollock, Steve

    2007-08-01

    To evaluate the effect of a standardized meal on the bioavailability of alprazolam formulated as an immediate-release orally disintegrating tablet (ODT) in healthy volunteers. Single-dose, randomized, open-label, two-period crossover study. Contract research organization clinic. Sixteen healthy volunteers (seven men, nine women), aged 20-50 years. Intervention. Subjects were administered a single dose of alprazolam ODT 1.0 mg during two treatment periods-under fasting conditions and after a standard high-fat breakfast-separated by a 7-day washout period, Blood samples for determination of alprazolam pharmacokinetics were collected by venipuncture up to 72 hours after dosing. A validated liquid chromatography with tandem mass spectrometry detection method was used to quantify the alprazolam plasma concentration. The overall extent of alprazolam absorption from the ODT formulation, as measured by area under the concentration-time curve, was unaffected during fed conditions. However, the rate of alprazolam absorption was slower after administration during fed relative to fasted conditions. The mean maximum observed plasma concentration (Cmax) decreased approximately 25%, and time to Cmax (Tmax) was delayed approximately 1.5 hours when food was administered before dosing. Coadministration of food was shown to have no effect on extent of absorption of immediate-release alprazolam ODT 1.0 mg when compared with drug administration in the fasted condition; however, the rate of drug absorption was decreased. The clinical significance of the difference in rate of alprazolam absorption is unknown but thought to be minimal.

  17. Identification of carbohydrates by matrix-free material-enhanced laser desorption/ionisation mass spectrometry.

    PubMed

    Hashir, Muhammad Ahsan; Stecher, Guenther; Bakry, Rania; Kasemsook, Saowapak; Blassnig, Bernhard; Feuerstein, Isabel; Abel, Gudrun; Popp, Michael; Bobleter, Ortwin; Bonn, Guenther K

    2007-01-01

    Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a sensitive mass spectrometric technique which utilises acidic materials as matrices for laser energy absorption, desorption and ionisation of analytes. These matrix materials produce background signals particularly in the low-mass range and make the detection and identification of small molecules difficult and nearly impossible. To overcome this problem this paper introduces matrix-free material-enhanced laser desorption/ionisation mass spectrometry (mf-MELDI-MS) for the screening and analysis of small molecules such as carbohydrates. For this purpose, 4,4'-azo-dianiline was immobilised on silica gel enabling the absorption of laser energy sufficient for successful desorption and ionisation of low molecular weight compounds. The particle and pore sizes, the solvent system for suspension and the sample preparation procedures have been optimised. The newly synthesised MELDI material delivered excellent spectra with regard to signal-to-noise ratio and detection sensitivity. Finally, wheat straw degradation products and Salix alba L. plant extracts were analysed proving the high performance and excellent behaviour of the introduced material. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. Glutathione binding to dirhodium tetraacetate: a spectroscopic, mass spectral and computational study of an anti-tumour compound.

    PubMed

    Wong, Daisy L; Zhang, Angel; Faponle, Abayomi S; de Visser, Sam P; Stillman, Martin J

    2017-05-24

    Glutathione (γ-l-glutamyl-l-cysteinyl-glycine) is a ubiquitous tripeptide found in all plants and animals. Glutathione has key roles as a metallochaperone and as a cellular thiol involved in metabolism. Little is known about how glutathione interacts with organometallic compounds in vivo. Here, we report the reactions of glutathione in vitro with dirhodium(ii) tetraacetate (tetrakis(μ-acetato)dirhodium(ii), Rh 2 (OAc) 4 ), a compound with anti-tumour properties. Electrospray ionization mass spectrometry, UV-Visible absorption and circular dichroism spectroscopic methods were used to determine the stoichiometries and optical properties of the final conjugate. Computational analyses were used to predict the binding modes of glutathione to the Rh 2 (OAc) 4 , and report on the orbital assignments for the resulting products. We explored the competition by GSH for methionine-bound axial sites on Rh 2 (OAc) 4 to investigate the use of weak thioether to protect its cellular-based anti-cancer activity. Our study highlights the important role that axial ligation would play in deactivating or significantly decreasing the efficacy of this bimetallic anti-tumor drug. The computational data explain the stability of the mono-adduct and the appearance of new absorption bands in the UV region including retention of the Rh-Rh single bond. Additionally, these data show that glutathione can effectively disable the potency of these metallo-drugs through orbital overlap of the entire Rh-Rh core as a result of the strong binding. Electronic absorption spectroscopy, mass spectrometry and computational analysis are a powerful combination in understanding possible chemical reactions in vivo and this information can be used to synthetically tune dirhodium complexes for use in the fight against cancer.

  19. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carkeet, C; Dueker, S R; Lango, J

    2006-01-26

    There is need for an improved test of human ability to assimilate dietary vitamin B{sub 12}. Assaying and understanding absorption and uptake of B{sub 12} is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of {sup 14}C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ({sup 14}C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B{sub 12} in the range of normal dietary intake.more » The B{sub 12} used was quantitatively labeled with {sup 14}C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B{sub 12} or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with {sup 14}C-DMB specifically labeled in the C2 position, cells produced {sup 14}C-B{sub 12} of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified {sup 14}C-B{sub 12} was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B{sub 12} assimilation.« less

  20. Determination of cadmium in coal using solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry.

    PubMed

    da Silva, Alessandra Furtado; Borges, Daniel L G; Lepri, Fábio Grandis; Welz, Bernhard; Curtius, Adilson J; Heitmann, Uwe

    2005-08-01

    This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 microg) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 degrees C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 degrees C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 degrees C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 degrees C and atomization at 1500 degrees C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g(-1), calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6-1.2 mg were analyzed.

  1. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  2. Laser-based measurements of δ13 C and δ2 H methane isotope signatures: precisions competitive with mass spectrometry methods

    NASA Astrophysics Data System (ADS)

    Yacovitch, Tara; Shorter, Joanne; Nelson, David; Herndon, Scott; Agnese, Mike; McManus, Barry; Zahniser, Mark

    2017-04-01

    In order to understand how and why methane (CH4 ) concentrations change over time, it is necessary to understand their sources and sinks. Stable isotope measurements of 13 CH4 :12 CH4 and CH3 D:12 CH4 ratios constrain the inventory of these sinks and sources. Current measurements often depend on Isotope Ratio Mass Spectrometry (IRMS), which requires extensive sample preparation including cryogenic separation of methane from air and subsequent conversion to either CO2 or H2 . Here, we detail improvements to a direct-absorption laser spectrometer that enable fast and precise measurements of methane isotope ratios (δ13 C and δ2 H ) of ambient air samples, without such sample preparation. The measurement system consists of a laser-based direct absorption spectrometer configured with a sample manifold for measurement of discrete samples (as opposed to flow-through measurements). Samples are trapped in the instrument using a rapid sample switching technique that compares each flask sample against a monitor tank sample. This approach reduces instrument drift and results in excellent precision. Precisions of 0.054 o/oo for δ13 C and 1.4 o/oo for δ2 H have been achieved (Allan-Werle deviations). These results are obtained in 20 minutes using 4 replicate comparisons to a monitor tank.

  3. Differential determination of chromium(VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry.

    PubMed

    Sperling, M; Yin, X; Welz, B

    1992-03-01

    A rapid, sensitive and selective method for the differential determination of CrIII and CrVI in natural waters is described. Chromium(vi) can be determined directly by flow injection on-line sorbent extraction preconcentration coupled with electrothermal atomic absorption spectrometry using sodium diethyldithiocarbamate as the complexing agent and C18 bonded silica reversed-phase sorbent as the column material. Total Cr can be determined after oxidation of CrIII to CrVI by potassium peroxydisulfate. Chromium(III) can be calculated by difference. The optimum conditions for sorbent extraction of CrVI and oxidation of CrIII to CrVI are evaluated. A 12-fold enhancement in sensitivity compared with direct introduction of 40 microliters samples was achieved after preconcentration for 60 s, giving detection limits of 16 ng l-1 for CrVI and 18 ng l-1 for total Cr (based on 3 sigma). Results obtained for sea-water and river water reference materials were all within the certified range for total Cr with a precision of better than 10% relative standard deviation in the range 100-200 ng l-1. The selectivity of the determination of CrVI was evaluated by analysing spiked reference materials in the presence of CrIII, resulting in quantitative recovery of CrVI.

  4. [Methylmercury: existing recommendations; methods of analysing and interpreting the results; economic evaluation].

    PubMed

    González-Estecha, Montserrat; Bodas-Pinedo, Andrés; Martínez-García, María José; Trasobares-Iglesias, Elena M; Bermejo-Barrera, Pilar; Ordóñez-Iriarte, José María; Llorente-Ballesteros, María Teresa; Prieto-Menchero, Santiago; Guillén-Pérez, José Jesús; Martell-Claros, Nieves; Cuadrado-Cenzual, María Ángeles; Rubio-Herrera, Miguel Ángel; Martínez-Álvarez, Jesús Román; Calvo-Manuel, Elpidio; Farré-Rovira, Rosaura; Herráiz-Martínez, Miguel Ángel; Bretón Lesmes, Irene; García-Donaire, José Antonio; Sáinz-Martín, María; Martínez-Astorquiza, Txantón; Gallardo-Pino, Carmen; Moreno-Rojas, Rafael; Salas-Salvadó, Jordi; Blanco Fuentes, María; Arroyo-Fernández, Manuel; Calle Pascual, Alfonso

    2014-11-04

    The beneficial effects of fish consumption are well- known. Nevertheless, there is worldwide concern regard methylmercury concentrations in fish, which is why many countries such as the United States, Australia, New Zealand, Canada and numerous European countries have made fish consumption recommendations for their populations, particularly vulnerable groups, in order to México methylmercury intake. Blood and hair are the best biological samples for measuring methylmercury. The most widely-used method to analyse methylmercury is cold vapor atomic absorption spectrometry, although there are also direct methods based on the thermal decomposition of the sample. In recent years, the number of laboratories that measure mercury by inductively coupled plasma mass spectrometry has increased. In addition, the different kinds of mercury can be distinguished by coupling chromatography methods of separation. Laboratories that analyse mercury in biological samples need to participate in external quality control programmes. Even if mercury emissions are reduced, mercury may remain in the environment for many years, so dietary recommendations are fundamental in order to reduce exposure. It is necessary to propose public health measures aimed at decreasing mercury exposure and to evaluate the benefits of such measures from the economic and social standpoints. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. A newly validated and characterized spectrophotometric method for determination of a three water pollutants metal ions

    NASA Astrophysics Data System (ADS)

    Mohamed, Marwa E.; Frag, Eman Y. Z.; Mohamed, Mona A.

    2018-01-01

    A simple, fast and accurate spectrophotometric method had been developed to determine lead (II), chromium (III) and barium (II) ions in pure forms and in spiked water samples using thoron (THO) as a reagent forming colored complexes. It was found that the formed complexes absorbed maximally at 539, 540 and 538 nm for Pb(II)-THO, Cr(III)-THO and Ba(II)-THO complexes, respectively. The optimum experimental conditions for these complexes had been studied carefully. Beer's law was obeyed in the range 1-35, 1-70, and 1-45 μg mL- 1 for Pb (II), Cr(III) and Ba(II) ions with THO reagent, respectively. Different parameters such as linearity, selectivity, recovery, limits of quantification and detection, precision and accuracy were also evaluated in order to validate the proposed method. The results showed that, THO was effective in simultaneous determination of Pb(II), Cr(III) and Ba(III) ions in pure forms and in spiked water samples. Also, the results of the proposed method were compared with that obtained from atomic absorption spectrometry. The isolated solid complexes had been characterized using elemental analysis, X-ray powder diffraction (XRD), IR, mass spectrometry and TD-DFT calculations. Their biological activities were investigated against different types of bacteria and fungi organisms.

  6. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  7. Oral heroin in opioid-dependent patients: pharmacokinetic comparison of immediate and extended release tablets

    PubMed Central

    Perger, Ludwig; Rentsch, Katharina M.; Kullak-Ublick, Gerd A.; Verotta, Davide; Fattinger, Karin

    2009-01-01

    In diacetylmorphine prescription programs for heavily dependent addicts, diacetylmorphine is usually administered intravenously, but this may not be possible due to venosclerosis or when heroin abuse had occurred via non-intravenous routes. Since up to 25% of patients administer diacetylmorphine orally, we characterised morphine absorption after single oral doses of immediate and extended release diacetylmorphine in 8 opioid addicts. Plasma concentrations were determined by liquid chromatography-mass spectrometry. Non-compartmental methods and deconvolution were applied for data analysis. Mean (±SD) immediate and extended release doses were 719 ± 297 mg and 956 ± 404 mg, with high absolute morphine bioavailabilities of 56% to 61%, respectively. Immediate release diacetylmorphine caused rapid morphine absorption, peaking at 10 to 15 min. Morphine absorption was considerably slower and more sustained for extended release diacetylmorphine, with only ~30% of maximal immediate release absorption being reached after 10 min and maintained for 3 to 4 h, with no relevant food interaction. The relative extended to immediate release bioavailability was calculated to be 86% by non-compartmental analysis and 93% by deconvolution analysis. Thus, immediate and extended release diacetylmorphine produce the intended morphine exposures. Both are suitable for substitution treatments. Similar doses can be applied if used in combination or sequentially. PMID:19084595

  8. Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4.

    PubMed

    Kara, Derya; Fisher, Andrew; Hill, Steve J

    2009-06-15

    A matrix separation and analyte preconcentration system using Amberlite XAD copolymer resins functionalized by Schiff base reactions coupled with atomic spectrometry has been developed. Three different functionalized Amberlite XAD resins were synthesized using 4-phenylthiosemicarbazide, 2,3-dihydroxybenzaldehyde and 2-thiophenecarboxaldehyde as reagents. These resins could be used to preconcentrate transition and other trace heavy metal analytes from nitric acid digests of soil and sediment samples. Analyte retention was shown to work well at pH 6.0. After treatment of the digests with sodium fluoride and buffering to pH 6, samples that contain extremely large concentrations of iron were analysed for trace analytes without the excess iron overloading the capacity of the resin. The analytes Cd, Co, Cu, Ni and Pb were preconcentrated from acid extracts of certified soil/sediment samples and then eluted with 0.1M HNO(3) directly to the detection system. Flame atomic absorption spectrometry was used as a means of detection during the studies. The efficiency of the chelating resin and the accuracy of the proposed method were evaluated by the analysis of soil (SO-2) and sediment (LGC 6157 and MESS-3) certified reference materials.

  9. Spices as a source of lead exposure: a market-basket survey in Sri Lanka.

    PubMed

    Senanayake, M P; Perera, R; Liyanaarachchi, L A; Dassanayake, M P

    2013-12-01

    We performed a laboratory analysis of spices sold in Sri Lanka for lead content. Samples of curry powder, chili powder and turmeric powder from seven provinces, collected using the market basket survey method, underwent atomic absorption spectrometry. Blanks and standards were utilised for instrument calibration and measurement accuracy. The results were validated in two different laboratories. All samples were found to have lead levels below the US Food and Drug Administration's action level of 0.5 μg/g. Spices sold in Sri Lanka contain lead concentrations that are low and within the stipulated safety standards.

  10. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters.

    PubMed

    Jiang, Hong-mei; Yang, Ting; Wang, Yan-hong; Lian, Hong-zhen; Hu, Xin

    2013-11-15

    A new approach of magnetic solid phase extraction (MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) has been developed for the speciation of Cr(III) and Cr(VI) using zincon-immobilized silica-coated magnetic Fe3O4 nanoparticles (Zincon-Si-MNPs) as the MSPE absorbent. Cr(III) was quantitatively reserved on the absorbent at pH 9.1 while total Cr was reserved at pH 6.5. The absorbed Cr species were eluted by using 2 mol/L HCl and detected by GFAAS. The concentration of Cr(VI) could be calculated by subtracting Cr(III) from total Cr. All the parameters affecting the separation and extraction efficiency of Cr species such as pH, extraction time, concentration and volume of eluent, sample volume and influence of co-existing ions were systematically examined and the optimized conditions were established accordingly. The detection limit (LOD) of the method was 0.016 and 0.011 ng mL(-1) for Cr(III) and Cr(VI), respectively, with the enrichment factor of 100 and 150. The precisions of this method (Relative standard deviation, RSD, n=7) for Cr(III) and Cr(VI) at 0.1 ng mL(-1) were 6.0% and 6.2%, respectively. In order to validate the proposed method, a certified reference material of environmental water was analyzed, and the result of Cr speciation was in good agreement with the certified value. This MSPE-GFAAS method has been successfully applied for the speciation of Cr(III) and Cr(VI) in lake and tap waters with the recoveries of 88-109% for the spiked samples. Moreover, the MSPE separation mechanism of Cr(III) and Cr(VI) based on their adsorption-desorption on Zincon-Si-MNPs has been explained through various spectroscopic characterization. © 2013 Elsevier B.V. All rights reserved.

  11. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    PubMed

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  12. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    PubMed

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    PubMed

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Study of the versatility of a graphite furnace atomic absorption spectrometric method for the determination of cadmium in the environmental field.

    PubMed

    Rucandio, M Isabel; Petit-Domínguez, M Dolores

    2002-01-01

    Cadmium is a representative example of trace elements that are insidious and widespread health hazards. In contemporary environmental analysis, there is a clear trend toward its determination over a wide range of concentrations in complex matrixes. This paper describes a versatile method for the determination of Cd at various levels (0.1-500 microg/g) in several sample types, such as soils, sediments, coals, ashes, sewage sludges, animal tissues, and plants, by graphite furnace atomic absorption spectrometry with Zeeman background correction. The effect of the individual presence of about 50 elements, with an interference/analyte concentration ratio of up to 10(5), was tested; recoveries of Cd ranged from 93 to 106%. The influence of different media, such as HNO3, HCI, HF, H2SO4, HClO4, acetic acid, hydroxylammonium chloride, and ammonium acetate, in several concentrations, was also tested. From these studies it can be concluded that the analytical procedure is scarcely matrix dependent, and the results obtained for a wide diversity of reference materials are in good agreement with the certified values.

  15. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  16. Fast determination of phosphorus in honey, milk and infant formulas by electrothermal atomic absorption spectrometry using a slurry sampling procedure

    NASA Astrophysics Data System (ADS)

    López-García, I.; Viñas, P.; Romero-Romero, R.; Hernández-Córdoba, M.

    2007-01-01

    A procedure for the electrothermal atomic absorption spectrometric determination of phosphorus in honey, milk and infant formulas using slurried samples is described. Suspensions prepared in a medium containing 50% v/v concentrated hydrogen peroxide, 1% v/v concentrated nitric acid, 10% m/v glucose, 5% m/v sucrose and 100 mg l - 1 of potassium were introduced directly into the furnace. For the honey samples, multiple injection of the sample was necessary. The modifier selected was a mixture of 20 μg palladium and 5 μg magnesium nitrate, which was injected after the sample and before proceeding with the drying and calcination steps. Calibration was performed using aqueous standards prepared in the same suspension medium and the graph was linear between 5 and 80 mg l - 1 of phosphorus. The reliability of the procedure was checked by comparing the results obtained by the new developed method with those found when using a reference spectrophotometric method after a mineralization step, and by analyzing several certified reference materials.

  17. Environmental assessment of a firetube boiler firing coal/oil/water mixtures. Volume 2. Data supplement. Final report, February 1981-November 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.

    1984-09-01

    This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO/sub 2/ sorbent. The test data include: preliminary equipment calibration data, boiler operating data for both tests, fuel analysis results, and complete flue gas emission measurement and laboratory analysis results. Flue gas emission measurements included: continuous monitoring for criteria gas pollutants; gas chromatography (GC) of gas grab samples for volatile organics (C1-C6); EPA Method 5 for particulate;more » controlled condensation system for SO2 emissions; and source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR) and low resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), liquid chromatography (LC) separation of organic extracts into seven polarity fractions with total organic and IR analyses of eluted fractions, flue gas concentrations of trace elements by spark source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS), and biological assays of organic extracts.« less

  18. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. On-line preconcentration system for lead(II) determination in waste water by atomic absorption spectrometry using active carbon loaded with Pyrogallol Red.

    PubMed

    Ensafi, Ali A; Khayamian, Taghi; Karbasi, Mohammad H

    2003-06-01

    An on-line system for enrichment and determination of lead(II) is presented. It is based on the adsorption of lead(II) ions on a minicolumn packed with active carbon loaded with Pyrogallol Red. After preconcentration step, the metal ions are eluted automatically by 5.0 ml of 0.50 M nitric acid solution and the lead ion contents were determined by atomic absorption spectrometry. The influence of chemicals, pH and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, the lead ions in aqueous samples were concentrated about 100 fold by the column. The detection limit was 0.001 microg ml(-1). The recovery percent of spliced lead(II) was in the range of 98%-103%.

  20. In vivo percutaneous absorption of boron as boric acid, borax, and disodium octaborate tetrahydrate in humans: a summary.

    PubMed

    Wester, R C; Hui, X; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-01-01

    Literature from the first half of this century reports concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry, which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10% in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percent dose, with flux and permeability constant (Kp) calculated at 0.009 microg/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percent dose, with flux and Kp calculated at 0.009 microg/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percent, with flux and Kp calculated at 0.01 microg/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. These in vivo results show that percutaneous absorption of boron, as boric acid, borax, and disodium octaborate tetrahydrate, through intact human skin is low and is significantly less than the average daily dietary intake. This very low boron skin absorption makes it apparent that, for the borates tested, the use of gloves to prevent systemic uptake is unnecessary. These findings do not apply to abraded or otherwise damaged skin.

  1. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL WIPE SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  2. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    NASA-Lewis Research Center's work on accurate measurement of trace level of metals in various fuels is presented. The differences between laboratories and between analytical techniques especially for concentrations below 10 ppm, are discussed, detailing the Atomic Absorption Spectrometry (AAS) and DC Arc Emission Spectrometry (dc arc) techniques used by NASA-Lewis. Also presented is the design of an Interlaboratory Study which is considering the following factors: laboratory, analytical technique, fuel type, concentration and ashing additive.

  3. Atomic and Molecular Gas Phase Spectrometry.

    DTIC Science & Technology

    1983-09-30

    between the thermometric levels, k is the Boltzmann constant (k = 0.695 cm-I K-1 ), Aik (s- 1) is the transition probability for spontaneous emission from...monitoring of the atomic absorption of M; information about the reaction processes were deduced from the shapes of the titration curves; (5) measure- ment of...Changes During Titration Based Upon The Releasing Effect Atomic Absorption Spectroscopy," D. Stojanovic and J.D. Winefordner, Anal Chim. Acta, 114, 295

  4. Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging.

    PubMed

    Zhou, Rong; Basile, Franco

    2017-09-05

    A method based on plasmon surface resonance absorption and heating was developed to perform a rapid on-surface protein thermal decomposition and digestion suitable for imaging mass spectrometry (MS) and/or profiling. This photothermal process or plasmonic thermal decomposition/digestion (plasmonic-TDD) method incorporates a continuous wave (CW) laser excitation and gold nanoparticles (Au-NPs) to induce known thermal decomposition reactions that cleave peptides and proteins specifically at the C-terminus of aspartic acid and at the N-terminus of cysteine. These thermal decomposition reactions are induced by heating a solid protein sample to temperatures between 200 and 270 °C for a short period of time (10-50 s per 200 μm segment) and are reagentless and solventless, and thus are devoid of sample product delocalization. In the plasmonic-TDD setup the sample is coated with Au-NPs and irradiated with 532 nm laser radiation to induce thermoplasmonic heating and bring about site-specific thermal decomposition on solid peptide/protein samples. In this manner the Au-NPs act as nanoheaters that result in a highly localized thermal decomposition and digestion of the protein sample that is independent of the absorption properties of the protein, making the method universally applicable to all types of proteinaceous samples (e.g., tissues or protein arrays). Several experimental variables were optimized to maximize product yield, and they include heating time, laser intensity, size of Au-NPs, and surface coverage of Au-NPs. Using optimized parameters, proof-of-principle experiments confirmed the ability of the plasmonic-TDD method to induce both C-cleavage and D-cleavage on several peptide standards and the protein lysozyme by detecting their thermal decomposition products with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The high spatial specificity of the plasmonic-TDD method was demonstrated by using a mask to digest designated sections of the sample surface with the heating laser and MALDI-MS imaging to map the resulting products. The solventless nature of the plasmonic-TDD method enabled the nonenzymatic on-surface digestion of proteins to proceed with undetectable delocalization of the resulting products from their precursor protein location. The advantages of this novel plasmonic-TDD method include short reaction times (<30 s/200 μm), compatibility with MALDI, universal sample compatibility, high spatial specificity, and localization of the digestion products. These advantages point to potential applications of this method for on-tissue protein digestion and MS-imaging/profiling for the identification of proteins, high-fidelity MS imaging of high molecular weight (>30 kDa) proteins, and the rapid analysis of formalin-fixed paraffin-embedded (FFPE) tissue samples.

  5. Rapid determination of six carcinogenic primary aromatic amines in mainstream cigarette smoke by two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry.

    PubMed

    Bie, Zhenying; Lu, Wei; Zhu, You; Chen, Yusong; Ren, Hubo; Ji, Lishun

    2017-01-27

    A fully automated, rapid, and reliable method for simultaneous determination of six carcinogenic primary aromatic amines (AAs), including o-toluidine (o-TOL), 2, 6-dimethylaniline (2, 6-DMA), o-anisidine (o-ASD), 1-naphthylamine (1-ANP), 2-naphthylamine (2-ANP), and 4-aminobiphenyl (4-ABP), in mainstream cigarette smoke was established. The proposed method was based on two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry (SPE/LC-MS/MS). The particulate phase of the mainstream cigarette smoke was collected on a Cambridge filter pad and pretreated via ultrasonic extraction with 2% formic acid (FA), while the gas phase was trapped by 2% FA without pretreatment for determination. The two-dimensional online SPE comprised of two cartridges with different absorption characteristics was applied for sample pretreatment. Analysis was performed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) under multiple reaction monitoring mode. Each sample required about 0.5h for solid phase extraction and analysis. The limit of detections (LODs) for six AAs ranged from 0.04 to 0.58ng/cig and recoveries were within 84.5%-122.9%. The relative standard deviations of intra- and inter-day tests for 3R4F reference cigarette were less than 6% and 7%, respectively, while no more than 7% and 8% separately for a type of Virginia cigarette. The proposed method enabled minimum sample pretreatment, full automation, and high throughput with high selectivity, sensitivity, and accuracy. As a part of the validation procedure, fifteen brands of cigarettes were tested by the designed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A green analytical method using ultrasound in sample preparation for the flow injection determination of iron, manganese, and zinc in soluble solid samples by flame atomic absorption spectrometry.

    PubMed

    Yebra, M Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5-30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2-4.6%) and a sample throughput of ca. 25 samples h(-1) were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4-25.61 μg g(-1) for iron, 5.74-18.30 μg g(-1) for manganese, and 33.27-57.90 μg g(-1) for zinc in soluble solid food samples and 3.75-9.90 μg g(-1) for iron, 0.47-5.05 μg g(-1) for manganese, and 1.55-15.12 μg g(-1) for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors.

  7. Study of the effects of MeV Ag, Cu, Au, and Sn implantation on the optical properties of LiNbO3

    NASA Technical Reports Server (NTRS)

    Williams, E. K.; Ila, D.; Sarkisov, S.; Curley, M.; Poker, D. B.; Hensley, D. K.; Borel, C.

    1998-01-01

    The authors present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Ag was implanted at 1.5 MeV to fluences of 2 to 17 x 17(exp 16)/sq cm at room temperature. Au and Cu were implanted to fluences of 5 to 20 x 10(exp 16)/sq cm at an energy of 2.0 MeV. Sn was implanted to a fluence of 1.6 x 10(exp 17)/sq cm at 160 kV. Optical absorption spectrometry indicated an absorption peak for the Au implanted samples after heat treatment at 1,000 C at approx. 620 nm. The Ag implanted samples absorption peaks shifted from approx. 450 nm before heat treatment to 550 nm after 500 C for 1h. Heat treatment at 800 C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500 C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not change appreciably in size with heat treatment. The Au clusters increased from 3 to 9 nm diameter upon heat treatment at 1000 C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices were carried out using the Z-scan method with a tunable dye laser pumped by a frequency doubled mode-locked Nd:YAG laser. The dye laser had a 4.5 ps pulse duration time and 76 MHz pulse repetition rate (575 nm).

  8. Measurement of the cytosolic sodium ion concentration in rat brain synaptosomes by a fluorescence method.

    PubMed

    Kongsamut, S; Nachshen, D A

    1988-05-24

    A method for the measurement of the cytosolic Na+ concentration in intact synaptosomes is described. This method makes use of a pH sensitive dye (BCECF) that can be loaded into the cytosol and a relatively specific ionophore (monensin) that can exchange Na+ for H+ across the synaptosomal membrane. By setting conditions such that there is no electrochemical potential difference for H+ across the membrane (no membrane potential and pHi = pHo), addition of ionophore would induce a H+ flux only if there is a concentration difference for Na+. Thus, when there is no fluorescence change (no cytosolic pH change) extracellular [Na+] equals intrasynaptosomal [Na+]. The intrasynaptosomal [Na+] concentration was determined to be 7 +/- 3 mM (n = 5; mean +/- S.E.). The results obtained with this fluorescence method are compared with estimates obtained by atomic absorption spectrometry. Limitations and applications of the method are discussed.

  9. Quality assessment of trace Cd and Pb contaminants in Thai herbal medicines using ultrasound-assisted digestion prior to flame atomic absorption spectrometry.

    PubMed

    Siriangkhawut, Watsaka; Sittichan, Patcharee; Ponhong, Kraingkrai; Chantiratikul, Piyanete

    2017-10-01

    A simple, efficient, and reliable ultrasound-assisted digestion (UAD) procedure was used for sample preparation prior to quantitative determination of trace Cd and Pb contaminants in herbal medicines using flame atomic absorption spectrometry. The parameters influencing UAD such as the solvent system, sample mass, presonication time, sonication time, and digestion temperature were evaluated. The efficiency of the proposed UAD procedure was evaluated by comparing with conventional acid digestion (CAD) procedure. Under the optimum conditions, linear calibration graphs in a range of 2-250 μg/L for Cd, and 50-1000 μg/L for Pb were obtained with detection limits of 0.56 μg/L and 10.7 μg/L for Cd and Pb, respectively. The limit of quantification for Cd and Pb were 1.87 μg/L and 40.3 μg/L, respectively. The repeatability for analysis of 10 μg/L for Cd and 100 μg/L for Pb was 2.3% and 2.6%, respectively. The accuracy of the proposed method was evaluated by rice flour certified reference materials. The proposed method was successfully applied for analysis of trace Cd and Pb in samples of various types of medicinal plant and traditional medicine consumed in Thailand. Most herbal medicine samples were not contaminated with Cd or Pb. The contaminant levels for both metals were still lower than the maximum permissible levels of elements in medicinal plant materials and finished herbal products sets by the Ministry of Public Health of Thailand. The exception was the high level of Cd contamination found in two samples of processed medicinal plants. Copyright © 2017. Published by Elsevier B.V.

  10. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Jesus, Alexandre; Zmozinski, Ariane Vanessa; Damin, Isabel Cristina Ferreira; Silva, Márcia Messias; Vale, Maria Goreti Rodrigues

    2012-05-01

    In this work, a direct sampling graphite furnace atomic absorption spectrometry method has been developed for the determination of arsenic and cadmium in crude oil samples. The samples were weighed directly on the solid sampling platforms and introduced into the graphite tube for analysis. The chemical modifier used for both analytes was a mixture of 0.1% Pd + 0.06% Mg + 0.06% Triton X-100. Pyrolysis and atomization curves were obtained for both analytes using standards and samples. Calibration curves with aqueous standards could be used for both analytes. The limits of detection obtained were 5.1 μg kg- 1 for arsenic and 0.2 μg kg- 1 for cadmium, calculated for the maximum amount of sample that can be analyzed (8 mg and 10 mg) for arsenic and cadmium, respectively. Relative standard deviations lower than 20% were obtained. For validation purposes, a calibration curve was constructed with the SRM 1634c and aqueous standards for arsenic and the results obtained for several crude oil samples were in agreement according to paired t-test. The result obtained for the determination of arsenic in the SRM against aqueous standards was also in agreement with the certificate value. As there is no crude oil or similar reference material available with a certified value for cadmium, a digestion in an open vessel under reflux using a "cold finger" was adopted for validation purposes. The use of paired t-test showed that the results obtained by direct sampling and digestion were in agreement at a 95% confidence level. Recovery tests were carried out with inorganic and organic standards and the results were between 88% and 109%. The proposed method is simple, fast and reliable, being appropriated for routine analysis.

  11. Determination of cadmium and lead in table salt by sequential multi-element flame atomic absorption spectrometry.

    PubMed

    Amorim, Fábio A C; Ferreira, Sérgio L C

    2005-02-28

    In the present paper, a simultaneous pre-concentration procedure for the sequential determination of cadmium and lead in table salt samples using flame atomic absorption spectrometry is proposed. This method is based on the liquid-liquid extraction of cadmium(II) and lead(II) ions as dithizone complexes and direct aspiration of the organic phase for the spectrometer. The sequential determination of cadmium and lead is possible using a computer program. The optimization step was performed by a two-level fractional factorial design involving the variables: pH, dithizone mass, shaking time after addition of dithizone and shaking time after addition of solvent. In the studied levels these variables are not significant. The experimental conditions established propose a sample volume of 250mL and the extraction process using 4.0mL of methyl isobutyl ketone. This way, the procedure allows determination of cadmium and lead in table salt samples with a pre-concentration factor higher than 80, and detection limits of 0.3ngg(-1) for cadmium and 4.2ngg(-1) for lead. The precision expressed as relative standard deviation (n = 10) were 5.6 and 2.6% for cadmium concentration of 2 and 20ngg(-1), respectively, and of 3.2 and 1.1% for lead concentration of 20 and 200ngg(-1), respectively. Recoveries of cadmium and lead in several samples, measured by standard addition technique, proved also that this procedure is not affected by the matrix and can be applied satisfactorily for the determination of cadmium and lead in saline samples. The method was applied for the evaluation of the concentration of cadmium and lead in table salt samples consumed in Salvador City, Bahia, Brazil.

  12. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  13. Simple hollow fiber renewal liquid membrane extraction method for pre-concentration of Cd(II) in environmental samples and detection by flame atomic absorption spectrometry.

    PubMed

    Carletto, Jeferson Schneider; Luciano, Raquel Medeiros; Bedendo, Gizelle Cristina; Carasek, Eduardo

    2009-04-06

    A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML(2)). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5x10(-2) mol L(-1), extraction temperature 40 degrees C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 microL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 microL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 microg L(-1), relative standard deviation (RSD) 5.5% and the working linear range 2-30 microg L(-1).

  14. The aluminium content of breast tissue taken from women with breast cancer.

    PubMed

    House, Emily; Polwart, Anthony; Darbre, Philippa; Barr, Lester; Metaxas, George; Exley, Christopher

    2013-10-01

    The aetiology of breast cancer is multifactorial. While there are known genetic predispositions to the disease it is probable that environmental factors are also involved. Recent research has demonstrated a regionally specific distribution of aluminium in breast tissue mastectomies while other work has suggested mechanisms whereby breast tissue aluminium might contribute towards the aetiology of breast cancer. We have looked to develop microwave digestion combined with a new form of graphite furnace atomic absorption spectrometry as a precise, accurate and reproducible method for the measurement of aluminium in breast tissue biopsies. We have used this method to test the thesis that there is a regional distribution of aluminium across the breast in women with breast cancer. Microwave digestion of whole breast tissue samples resulted in clear homogenous digests perfectly suitable for the determination of aluminium by graphite furnace atomic absorption spectrometry. The instrument detection limit for the method was 0.48 μg/L. Method blanks were used to estimate background levels of contamination of 14.80 μg/L. The mean concentration of aluminium across all tissues was 0.39 μg Al/g tissue dry wt. There were no statistically significant regionally specific differences in the content of aluminium. We have developed a robust method for the precise and accurate measurement of aluminium in human breast tissue. There are very few such data currently available in the scientific literature and they will add substantially to our understanding of any putative role of aluminium in breast cancer. While we did not observe any statistically significant differences in aluminium content across the breast it has to be emphasised that herein we measured whole breast tissue and not defatted tissue where such a distribution was previously noted. We are very confident that the method developed herein could now be used to provide accurate and reproducible data on the aluminium content in defatted tissue and oil from such tissues and thereby contribute towards our knowledge on aluminium and any role in breast cancer. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. [Study on the fine structure of K-feldspar of Qichun granite].

    PubMed

    Du, Deng-Wen; Hong, Han-Lie; Fan, Kan; Wang, Chao-Wen; Yin, Ke

    2013-03-01

    Fine structure of K-feldspar from the Qichun granite was investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR), and inductively coupled plasma mass spectrometry methods to understand the evolution of the granitic magmatism and its correlation to molybdenite mineralization. The XRD results showed that K-feldspar of the potassic alteration veins has higher ordering index and triclinicity and is namely microcline with triclinic symmetry. K-feldspar of the early cretaceous granite has relatively lower ordering index and has widening [131] peak and is locally triclinic ordering. K-feldspar of the late cretaceous granite has lowest ordering index and sharp [131] peak and is honiogeneously monoclinic. The FTIR results showed that the IR spectra of the Qichun K-feldspar are similar to that of orthoclase reported by Farmer (1974). The 640 cm-1 absorption band increases while the 540 cm-' absorption band decreases with increase in K-feldspar ordering index, also, the 1,010 cm-1 absorption band separates into 1,010 and 1,046 cm-1 absorption bands, with a change in the band shape from widening to sharp outline. The ICP-MS results suggested that K-feldspar of the early cretaceous granite has relatively higher metal elements and rare earth elements, and the granite exhibits better mineralization background, K-feldspar of the potassic alteration veins has markedly lower Sr and Ba, indicating that the alteration fluid originated from the granitic magmatism, and hence, potassic alteration is a good indicator for molybdenite exploration.

  16. Calibration system for radon EEC measurements.

    PubMed

    Mostafa, Y A M; Vasyanovich, M; Zhukovsky, M; Zaitceva, N

    2015-06-01

    The measurement of radon equivalent equilibrium concentration (EECRn) is very simple and quick technique for the estimation of radon progeny level in dwellings or working places. The most typical methods of EECRn measurements are alpha radiometry or alpha spectrometry. In such technique, the influence of alpha particle absorption in filters and filter effectiveness should be taken into account. In the authors' work, it is demonstrated that more precise and less complicated calibration of EECRn-measuring equipment can be conducted by the use of the gamma spectrometer as a reference measuring device. It was demonstrated that for this calibration technique systematic error does not exceed 3 %. The random error of (214)Bi activity measurements is in the range 3-6 %. In general, both these errors can be decreased. The measurements of EECRn by gamma spectrometry and improved alpha radiometry are in good agreement, but the systematic shift between average values can be observed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The use of mosses as environmental metal pollution indicators.

    PubMed

    Aceto, Maurizio; Abollino, Ornella; Conca, Raffaele; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado

    2003-01-01

    The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.

  18. Evaluation of inorganic elements in cat's claw teas using ICP OES and GF AAS.

    PubMed

    Pereira, João B; Dantas, Kelly G F

    2016-04-01

    The determination of Ba, Ca, Cu, Fe, Mg, Mn, P, Pb, and Zn by inductively coupled plasma optical emission spectrometry (ICP OES), and Se by graphite furnace atomic absorption spectrometry (GF AAS), has been carried out in dry matter and teas from 11 samples of the cat's claw plant. The accuracy and precision values were verified against GBW 07604 (Poplar leaves) certified reference material and by the recovery test. Results showed a high content of Ca in the medicinal plant studied, followed by Mg and P. The values obtained showed that the elements studied have different concentrations depending on the method of tea preparation. The highest levels were observed in Ca and Mg, and the lowest for Se and Pb, by both infusion and decoction. Teas prepared from this plant were found to be at safe levels for human consumption, and may be suitable as sources of these elements in the human diet. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Metabolic studies of an orally active platinum anticancer drug by liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Poon, G K; Raynaud, F I; Mistry, P; Odell, D E; Kelland, L R; Harrap, K R; Barnard, C F; Murrer, B A

    1995-09-29

    Bis(acetato)amminedichloro(cyclohexylamine) platinum(IV) (JM216) is a new orally administered platinum complex with antitumor properties, and is currently undergoing phase II clinical trials. When JM216 was incubated with human plasma ultrafiltrate, 93% of the platinum species were protein-bound and 7% were unbound. The unbound platinum complexes in the ultrafiltrates of human plasma were analysed using a liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method. Apart from the parent drug, four metabolites were identified and characterised. These include JM118 [amminedichloro(cyclohexylamine) platinum(II)], JM383 [bis(acetato)ammine(cyclohexylamine)dihydroxo platinum(IV)] and the two isomers JM559 and JM518 [bis(acetato)amminechloro(cyclohexylamine) hydroxo platinum(IV)]. Their elemental compositions were determined by accurate mass measurement during the LC analysis, to confirm their identities. Quantitation of these metabolites by off-line LC atomic absorption spectroscopy demonstrated that JM118 is the major metabolite in plasma from patients receiving JM216 treatment.

  20. Rapid and simple determination of selenium in blood serum by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Labat, L; Dehon, B; Lhermitte, M

    2003-05-01

    An inductively coupled plasma mass spectrometer (ICP-MS) with a rapid sample-preparative procedure was used for the determination of selenium in blood serum. Blood serum was prepared by dilution in an acidic solution consisting of nitric acid (1%), X-triton (0.1%) and 1-butanol (0.8%). A calibration curve was established for 1-40 microg mL(-1) (r(2)>0.99). The limit of detection was 0.5 microg mL(-1). Repeatability and intermediate precision were satisfactory with relative standard deviations (RSD) of 2.0% and 3.2%, respectively. This method was easily applied to reference materials with satisfactory accuracy. Good correlation (r(2)=0.96) was observed between ICP-MS and atomic absorption spectrometry (AAS) for the determination of (82)Se in blood serum from 23 patients. These results suggest that the sample preparative procedure coupled with ICP-MS can be used for the routine determination of (82)Se in human blood serum.

  1. An improved methodology of asymmetric flow field flow fractionation hyphenated with inductively coupled mass spectrometry for the determination of size distribution of gold nanoparticles in dietary supplements.

    PubMed

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-11-13

    Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle. In the case of polydispersed samples, large numbers of particles are needed to obtain accurate size distribution data. Herein, we report a rapid methodology, demonstrating improved nanoparticle recovery and excellent size resolution, for the characterization of gold nanoparticles in dietary supplements using asymmetric flow field flow fractionation coupled with visible absorption spectrometry and inductively coupled plasma mass spectrometry. A linear relationship between gold nanoparticle size and retention times was observed, and used for characterization of unknown samples. The particle size results from unknown samples were compared to results from traditional size analysis by transmission electron microscopy, and found to have less than a 5% deviation in size for unknown product over the size range from 7 to 30 nm. Published by Elsevier B.V.

  2. The Chemistry of Seashells.

    ERIC Educational Resources Information Center

    Kinard, W. Frank

    1980-01-01

    Describes the use of infrared and atomic absorption spectrometry in an introductory chemical oceanography course to introduce students to carbonate mineralogy by having them determine both the crystal structure and the magnesium content of seashells that they have collected. (Author/JN)

  3. Measurement of free radical kinetics in pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Bodart, P.; Brihoum, M.; Boulard, F.; Chevolleau, T.; Sadeghi, N.

    2012-04-01

    This paper reviews recent progress in the development of time-resolved diagnostics to probe high-density pulsed plasma sources. We focus on time-resolved measurements of radicals' densities in the afterglow of pulsed discharges to provide useful information on production and loss mechanisms of free radicals. We show that broad-band absorption spectroscopy in the ultraviolet and vacuum ultraviolet spectral domain and threshold ionization modulated beam mass spectrometry are powerful techniques for the determination of the time variation of the radicals' densities in pulsed plasmas. The combination of these complementary techniques allows detection of most of the reactive species present in industrial etching plasmas, giving insights into the physico-chemistry reactions involving these species. As an example, we discuss briefly the radicals' kinetics in the afterglow of a SiCl4/Cl2/Ar discharge.

  4. Multicomutation flow system for manganese speciation by solid phase extraction and flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Tobiasz, Anna; Sołtys, Monika; Kurys, Ewa; Domagała, Karolina; Dudek-Adamska, Danuta; Walas, Stanisław

    2017-08-01

    In the paper an application of solid phase extraction technique for speciation analysis of manganese in water samples with the use of flame atomic absorption spectrometry is presented. Two types of sorbents, activated silica gel and Dowex 1 × 4, were used respectively for simultaneously Mn2 + and MnO42 - retention and preconcentration. The whole procedure was realized in multicomutation flow system. Different conditions like: type and concentration of eluent, sample pH and loading time were tested during the study. Under appropriate conditions, it was possible to obtained enrichment factors of 20 and 16 for Mn(II) and Mn(VII), respectively. Precision of the procedure was close to 4% (measured as relative standard deviation), whereas the detection limit (3σ) was 1.4 μg·L- 1 for Mn(II) and 4.8 μg·L- 1 for Mn(VII).

  5. Study on the inclusion interaction of p-sulfonated calix[ n]arenes with Vitamin K 3 using methylene blue as a spectral probe

    NASA Astrophysics Data System (ADS)

    Lu, Qin; Gu, Jiashan; Yu, Huapeng; Liu, Chun; Wang, Lun; Zhou, Yunyou

    2007-09-01

    The characteristics of host-guest complexation between p-sulfonated calix[ n]arene ( SCnA, n = 4, 6) and Vitamin K 3 ( VK3) were investigated by fluorescence spectrometry and absorption spectrometry using methylene blue ( MB) as a probe. Interaction with MB and SCnA led to an obvious decrease in fluorescence intensity of MB, accompanying with shifts of emission peaks. Absorption peaks also showed interesting changes; however, when VK3 was added, fluorescence intensity and absorbance recovered and a slight and slow red shift was observed. The obtained results showed that the inclusion ability of p-sulphonated calix[ n]arenes towards VK3 was the order: p-sulphonated calix[6]arene ( SC6A) > p-sulphonated calix[4]arene ( SC4A). Relative mechanism was proposed to explain the inclusion process.

  6. Study on the inclusion interaction of p-sulfonated calix[n]arenes with Vitamin K3 using methylene blue as a spectral probe.

    PubMed

    Lu, Qin; Gu, Jiashan; Yu, Huapeng; Liu, Chun; Wang, Lun; Zhou, Yunyou

    2007-09-01

    The characteristics of host-guest complexation between p-sulfonated calix[n]arene (SCnA, n = 4, 6) and Vitamin K(3) (VK(3)) were investigated by fluorescence spectrometry and absorption spectrometry using methylene blue (MB) as a probe. Interaction with MB and SCnA led to an obvious decrease in fluorescence intensity of MB, accompanying with shifts of emission peaks. Absorption peaks also showed interesting changes; however, when VK(3) was added, fluorescence intensity and absorbance recovered and a slight and slow red shift was observed. The obtained results showed that the inclusion ability of p-sulphonated calix[n]arenes towards VK(3) was the order: p-sulphonated calix[6]arene (SC6A) >p-sulphonated calix[4]arene (SC4A). Relative mechanism was proposed to explain the inclusion process.

  7. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    NASA Astrophysics Data System (ADS)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  8. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    USGS Publications Warehouse

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  9. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    PubMed

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  10. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    NASA Astrophysics Data System (ADS)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  11. INFRARED SPECTRUM OF POTASSIUM-CATIONIZED TRIETHYLPHOSPHATE GENERATED USING TANDEM MASS SPECTROMETRY AND INFRARED MULTIPLE PHOTON DISSOCIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary S. Groenewold; Christopher M. Leavitt; Ryan P. Dain

    2009-09-01

    Tandem mass spectrometry and wavelength selective infrared photodissociation was used to generate an infrared spectrum of gas-phase triethylphosphate cationized by attachment of K+. Prominent absorptions were observed in the region of 900 to 1300 cm-1 that are characteristic of phosphate P=O and P-O-R stretches. The relative positions and intensities of the IR absorptions were reproduced well by density functional theory (DFT) calculations performed using the B3LYP functional and the 6-31+g(d), 6-311+g(d,p) and 6-311++G(3df,2pd) basis sets. Because of good correspondence between experiment and theory for the cation, DFT was then used to generate a theoretical spectrum for neutral triethylphosphate, which inmore » turn accurately reproduces the IR spectrum of the neat liquid when solvent effects are included in the calculations.« less

  12. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    A review of the techniques used at Lewis Research Center (LeRC) in trace metals analysis is presented, including the results of Atomic Absorption Spectrometry and DC Arc Emission Spectrometry of blank levels and recovery experiments for several metals. The design of an Interlaboratory Study conducted by LeRC is presented. Several factors were investigated, including: laboratory, analytical technique, fuel type, concentration, and ashing additive. Conclusions drawn from the statistical analysis will help direct research efforts toward those areas most responsible for the poor interlaboratory analytical results.

  13. Simultaneous determination of thirteen flavonoids from Xiaobuxin-Tang extract using high-performance liquid chromatography coupled with electrospray ionization mass spectrometry.

    PubMed

    Cen, Meifeng; Ruan, Jinxiu; Huang, Lihua; Zhang, Zhenqing; Yu, Nengjiang; Zhang, Youzhi; Cheng, Xuange; Xiong, Xiaohong; Wang, Guixiang; Zang, Linquan; Wang, Sujun

    2015-11-10

    A simple and reliable high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis method was established to simultaneously determine thirteen flavonoids of Xiaobuxing-Tang in intestine perfusate, namely onpordin, 3'-O-methylorobol, glycitein, patuletin, genistein, luteolin, quercetin, nepitrin, quercimeritrin, daidzin, patulitrin, quercetagitrin and 3-glucosylisorhamnetin. Detection was performed on a quadrupole mass spectrometer equipped with an electrospray ionization (ESI) source operating in negative ionization mode. Negative ion ESI was used to form deprotonated molecules at m/z 315 for onpordin, m/z 299 for 3'-O-methylorobol, m/z 283 for glycitein, m/z 331 for patuletin, m/z 269 for genistein, m/z 285 for luteolin, m/z 301 for quercetin, m/z 477 for nepitrin, m/z 463 for quercimeritrin, m/z 461 for daidzin, m/z 493 for patulitrin, m/z 479 for quercetagitrin, m/z 477 for 3-glucosylisorhamnetin and m/z 609.2 for rutin. The linearity, sensitivity, selectivity, repeatability, accuracy, precision, recovery and matrix effect of the assay were evaluated. The proposed method was successfully applied to simultaneous determination of these thirteen flavonoids, and using this method, the intestinal absorption profiles of thirteen flavonoids were preliminarily predicted. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Several methods to determine heavy metals in the human brain

    NASA Astrophysics Data System (ADS)

    Andrási, Erzsébet; Igaz, Sarolta; Szoboszlai, Norbert; Farkas, Éva; Ajtony, Zsolt

    1999-05-01

    The determination of naturally occurring heavy metals in various parts of the human brain is discussed. The patients had no diseases in their central nervous systems (five individuals, mean age 70 years). Twenty brain parts were selected from both hemispheres. The analysis was carried out by graphite furnace atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis methods. Accuracy and precision of the applied techniques were tested by using standard reference materials. Two digestion methods were used to dissolve the brain samples for ICP-AES and GF-AAS. One was performed in a Parr-bomb and the second in a microwave oven. The present results show a non-homogeneous distribution of the essential elements (Cu, Fe, Mn, Zn) in normal human brain. Corresponding regions in both hemispheres showed an almost identical concentration of these elements. In the case of toxic elements (Pb, Cd) an average value in different brain regions can not be established because of the high variability of individual data. This study indicates that beside differences in Pb and Cd intake with foods or cigarette smoke inhalation, the main factors of the high inter-individual variability of these element concentrations in human brain parts may be a marked difference in individual elimination or accumulation capabilities.

  15. Determination of essential elements in beverages, herbal infusions and dietary supplements using a new straightforward sequential approach based on flame atomic absorption spectrometry.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Procopio, Jesús R

    2017-03-15

    A simple method based on FAAS was developed for the sequential multi-element determination of Cu, Zn, Mn, Mg and Si in beverages and food supplements with successful results. The main absorption lines for Cu, Zn and Si and secondary lines for Mn and Mg were selected to carry out the measurements. The sample introduction was performed using a flow injection system. Using the choice of the absorption line wings, the upper limit of the linear range increased up to 110mgL -1 for Mg, 200mgL -1 for Si and 13mgL -1 for Zn. The determination of the five elements was carried out, in triplicate, without the need of additional sample dilutions and/or re-measurements, using less than 3.5mL of sample to perform the complete analysis. The LODs were 0.008mgL -1 for Cu, 0.017mgL -1 for Zn, 0.011mgL -1 for Mn, 0.16mgL -1 for Si and 0.11mgL -1 for Mg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Sulfur determination in coal using molecular absorption in graphite filter vaporizer.

    PubMed

    Jim, Gibson; Katskov, Dmitri; Tittarelli, Paolo

    2011-02-15

    The vaporization of sulfur containing samples in graphite vaporizers for atomic absorption spectrometry is accompanied by modification of sulfur by carbon and, respectively, appearance at high temperature of structured molecular absorption in 200-210 nm wavelength range. It has been proposed to employ the spectrum for direct determination of sulfur in coal; soundness of the suggestion is evaluated by analysis of coal slurry using low resolution CCD spectrometer with continuum light source coupled to platform or filter furnace vaporizers. For coal in platform furnace losses of the analyte at low temperature and strong spectral background from the coal matrix hinder the determination. Both negative effects are significantly reduced in filter furnace, in which sample vapor efficiently interacts with carbon when transferred through the heated graphite filter. The method is verified by analysis of coals with sulfur content within 0.13-1.5% (m/m) range. The use of coal certified reference material for sulfur analyte addition to coal slurry permitted determination with random error 5-12%. Absolute and relative detection limits for sulfur in coal are 0.16 μg and 0.02 mass%, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    NASA Astrophysics Data System (ADS)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  18. Quantification of vitamin E and gamma-oryzanol components in rice germ and bran.

    PubMed

    Yu, Shanggong; Nehus, Zachary T; Badger, Thomas M; Fang, Nianbai

    2007-09-05

    Rice bran is a rich natural source of vitamin E and gamma-oryzanol, which have been extensively studied and reported to possess important health-promoting properties. However, commercial rice bran is a mixture of rice bran and germ, and profiles of vitamin E and gamma-oryzanol components in these two different materials are less well-studied. In the current study, vitamin E and gamma-oryzanol components in rice bran and germ were analyzed by liquid chromatography/mass spectrometry/mass spectrometry. The components were identified by electrospray ionization mass spectrometry (ESI-MS) with both positive- and negative-ion modes. Both deprotonated molecular ion [M - H](-) and protonated molecular ion [M + H](+) found as the base peaks in spectra of vitamin E components made ESI-MS a valuable analytic method in detecting vitamin E compounds, especially when they were at very low levels in samples. Ultraviolet absorption was used for quantification of vitamin E and gamma-oryzanol components. While the level of vitamin E in rice germ was 5 times greater than in rice bran, the level of gamma-oryzanol in rice germ was 5 times lower than in rice bran. Also, the major vitamin E component was alpha-tocopherol in rice germ and gamma-tocotrienol in rice bran. These data suggest that rice bran and germ have significantly different profiles of vitamin E and gamma-oryzanol components. The method enables rapid and direct on-line identification and quantification of the vitamin E and gamma-oryzanol components in rice bran and germ.

  19. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; preparation procedure for aquatic biological material determined for trace metals

    USGS Publications Warehouse

    Hoffman, Gerald L.

    1996-01-01

    A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.

  20. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to CRM value was only obtained by mixing NH4Cl to samples before combustion. No statistical difference (95% confidence level) was observed between the results obtained for As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn by MIC and HP-MAWD methods. Agreement with certified values was better than 96% using MIC for all inorganic contaminants. Particularly for Br, MIC was the method of choice for digestion due to the possibility of using diluted alkaline solutions for analyte absorption. Based on the obtained results, MIC can be considered as a suitable method for digestion of polymers from waste of EEEs for further plasma based determination of inorganic contaminants.

  1. Interference of nitrite and nitrogen dioxide on mercury and selenium determination by chemical vapor generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nunes, Dayana Lopes; dos Santos, Eliane Pereira; Barin, Juliano Smanioto; Mortari, Sergio Roberto; Dressler, Valderi Luiz; de Moraes Flores, Érico Marlon

    2005-06-01

    In this study, a systematic investigation was performed concerning the interference of nitrogen oxides on the determination of selenium and mercury by hydride generation atomic absorption spectrometry (HG AAS) and cold vapor atomic absorption spectrometry (CV AAS). The effect of nitrate, nitrite and NO 2 dissolved in the condensed phase was evaluated. No effect of NO 3- on Se and Hg determination was observed up to 100 mg of sodium nitrate added to the reaction vessel. The Se signal was reduced by about 80% upon the addition of 6.8 mg NO 2-. For Hg, no interference of nitrite was observed up to 20 mg of NO 2-. A complete suppression of the Se signal was observed when gaseous NO 2 was introduced into analytical solutions. For Hg, a signal decrease between 8 and 13% occurred. For Se, bubbling argon or heating the solution was not able to recover the original absorbance values, whereas Hg signals were recovered with these procedures. When gaseous NO 2 was passed directly into the atomizer, Se signals decreased similarly to when NO 2 was bubbled in analytical solutions. The addition of urea, hydroxylamine hydrochloride and sulfamic acid (SA) was investigated to reduce the NO 2 effect in sample digests containing residual NO 2, but only SA was effective in reducing the interference. Based on the results, it is possible to propose the use of SA to prevent interferences in Se and Hg determinations by HG AAS and CV AAS, respectively.

  2. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    NASA Astrophysics Data System (ADS)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  3. Optimization of microwave digestion for mercury determination in marine biological samples by cold vapour atomic absorption spectrometry.

    PubMed

    Cardellicchio, Nicola; Di Leo, Antonella; Giandomenico, Santina; Santoro, Stefania

    2006-01-01

    Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.

  4. Coupling pervaporation to AAS for inorganic and organic mercury determination. A new approach to speciation of Hg in environmental samples.

    PubMed

    Fernandez-Rivas, C; Muñoz-Olivas, R; Camara, C

    2001-12-01

    The design and development of a new approach for Hg speciation in environmental samples is described in detail. This method, consisting of the coupling of pervaporation and atomic absorption spectrometry, is based on a membrane phenomenon that combines the evaporation of volatile analytes and their diffusion through a polymeric membrane. It is proposed here as an alternative to gas chromatography for speciation of inorganic and organic Hg compounds, as the latter compounds are volatile and can be separated by applying the principles mentioned above. The interest of this method lies in its easy handling, low cost, and rapidity for the analysis of liquid and solid samples. This method has been applied to Hg speciation in a compost sample provided by a waste water treatment plant.

  5. Determination of metals in lubricating oils by flame atomic absorption spectrometry using a single-bore high-pressure pneumatic nebulizer.

    PubMed

    Mora, J; Todolí, J L; Sempere, F J; Canals, A; Hernandis, V

    2000-12-01

    The behaviour of a single-bore high-pressure pneumatic nebulizer (SBHPPN) as a tool for the analysis of lubricating oils by flame atomic absorption spectrometry (FAAS) was investigated. The effects of the sample oil content [from 10% to 100% (w/w) oil in 4-methylpentan-2-one, IBMK] and the carrier nature (IBMK and methanol) on the characteristics of the aerosols generated, on the analyte transport efficiency and on the analytical figures of merit in FAAS were studied. A pneumatic concentric nebulizer (PCN) was used for comparison. Increasing the oil content increases the viscosity of the sample. With the PCN this gives rise to coarser aerosols, making it impossible to nebulize samples with an oil content higher than 70% (w/w). Using the SBHPPN, the viscosity of the sample scarcely affects the characteristics of the primary aerosols. Hence, the SBHPPN is able, by using the appropriate carrier, to nebulize pure lubricating oils. Among the carriers tested, IBMK is the most advisable because it is fully miscible with all the oil samples. The SBHPPN provides higher sensitivities and lower limits of detection than the PCN. Compared with a method based on organic dilution, the use of the SBHPPN for the direct analysis of lubricating oils by FAAS makes it possible, in addition to increasing the analysis throughput, to detect elements at lower concentrations. Moreover, the SBHPPN provides similar results to those obtained using a previous acid digestion step.

  6. Determination of Phenolic Acids and Flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Post-Column Derivatization Technique

    PubMed Central

    Chen, Hung-Ju; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2012-01-01

    A liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed for the determination of phenolic acids and flavonoids in a medicinal Chinese herb Taraxacum formosanum Kitam. Initially, both phenolic acids and flavonoids were extracted with 50% ethanol in a water-bath at 60 °C for 3 h and eventually separated into acidic fraction and neutral fraction by using a C18 cartridge. A total of 29 compounds were separated within 68 min by employing a Gemini C18 column and a gradient solvent system of 0.1% formic acid and acetonitrile at a flow rate of 1.0 mL/min. Based on the retention behavior as well as absorption and mass spectra, 19 phenolic acids and 10 flavonoids were identified and quantified in T. formosanum, with the former ranging from 14.1 μg/g to 10,870.4 μg/g, and the latter from 9.9 μg/g to 325.8 μg/g. For further identification of flavonoids, a post-column derivatization method involving shift reagents such as sodium acetate or aluminum chloride was used and the absorption spectral characteristics without or with shift reagents were compared. An internal standard syringic acid was used for quantitation of phenolic acids, whereas (±) naringenin was found suitable for quantitation of flavonoids. The developed LC-MS/MS method showed high reproducibility, as evident from the relative standard deviation (RSD) values for intra-day and inter-day variability being 1.0–6.8% and 2.0–7.7% for phenolic acids and 3.7–7.4% and 1.5–8.1% for flavonoids, respectively, and thus may be applied for simultaneous determination of phenolic acids and flavonoids in Chinese herb and nutraceuticals. PMID:22312251

  7. Ion Imprinted Polymer for Preconcentration and Determination of Ultra-Trace Cadmium, Employing Flow Injection Analysis with Thermo Spray Flame Furnace Atomic Absorption Spectrometry.

    PubMed

    do Lago, Ayla Campos; Marchioni, Camila; Mendes, Tássia Venga; Wisniewski, Célio; Fadini, Pedro Sergio; Luccas, Pedro Orival

    2016-11-01

    This work proposes a preconcentration method using an ion imprinted polymer (IIP) for determination of cadmium, in several samples, employing a mini-column filled with the polymer coupled into a flow injection analysis system with detection by thermospray flame furnace atomic absorption spectrometry (FIA-TS-FF-AAS). The polymer was synthesized via bulk using methacrylic acid and vinylimidazole as a functional monomer. For the FIA system initial assessment, the variables: pH, eluent concentration and buffer concentration were studied, employing a 23 full factorial design. To obtain the optimum values for each significant variable, a Doehlert matrix was employed. After the optimization conditions as: pH 5.8, eluent (HNO3) concentration of 0.48 mol L -1 and buffer concentration of 0.01 mol L -1 , were adopted. The proposed method showed a linear response in the range of 0.081-10.0 μg L -1 , limits detection and quantification of 0.024 and 0.081 μg L -1 , respectively; preconcentration factor of 165, consumptive index of 0.06 mL, concentration efficiency 132 min -1 , and frequency of readings equal to 26 readings h -1 The accuracy was checked by analysis of certified reference materials for trace metals and recovery tests. The obtained results were in agreement with 95% confidence level (t-test). The method was adequate to apply in samples of: jewelry (earrings) (2.38 ± 0.28 μg kg -1 ), black tea (1.09 ± 0.15 μg kg -1 ), green tea (3.85 ± 0.13 μg kg -1 ), cigarette tobacco (38.27 ± 0.22 μg kg -1 ), and hair (0.35 ± 0.02 μg kg -1 ). © The Author(s) 2016.

  8. Determination of sub-ng g-1 levels of total inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry after pre-concentration.

    PubMed

    Altunay, Nail; Gürkan, Ramazan

    2017-03-01

    A new and simple ultrasonic-assisted extraction (UAE) procedure was developed for the determination of inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry (HG-AAS). The various analytical variables affecting complex formation and extraction efficiency were investigated and optimised. The method is based on selective complex formation of As(III) and Se(IV) in the presence of excess As(V) and Se(VI) with toluidine red in the presence of tartaric acid at pH 4.5, and then extraction of the resulting condensation products into the micellar phase of non-ionic surfactant, polyethylene glycol dodecyl ether, Brij 35. Under optimised conditions, good linear relationships were obtained in the ranges of 4-225 and 12-400 ng l - 1 with limits of detection of 1.1 and 3.5 ng l - 1 for As(III) and Se(IV), respectively. The repeatability was better than 3.9% for both analytes (n = 10, 25 ng l - 1 ) while reproducibility ranged from 4.2% to 4.8%. The recoveries of As(III) and Se(IV) spiked at 25-100 ng l - 1 were in the range of 94.2-104.8%. After pre-concentration of a 5.0 ml sample, the sensitivity enhancement factors for As(III) and Se(IV) were 185 and 140, respectively. Accuracy was assessed by analysis of two standard reference materials (SRMs) and spiked recovery experiments. The method was successfully applied to the accurate and reliable determination of total As and total Se by HG-AAS after pre-reduction with a mixture of L-cysteine and tartaric acid. Finally, the method was shown to be rapid and sensitive, with good results for extraction, pre-concentration and determination of total As and Se contents (as As(III) and Se(IV)) from food samples.

  9. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily V.; Hall, Gregory E., E-mail: gehall@bnl.gov

    We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method ismore » capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.« less

  10. [Contents of ten trace elements in Epimedium acuminatum Franch. and its different processed products].

    PubMed

    Chen, H L; Wang, J K; Ren, Y Q; Wu, Z Y

    2001-03-01

    Determine and compare the contents of ten trace elements in crude E. acuminatum and its three different processed products. Using flame atomic absorption spectrometry. The ten trace elements were found in both the crude drug and its three processed products, and in terms of contents some of the trace elements in all the three processed products are higher than those in the crude drug. According to the trace element contents, the three processed products of E. acuminatum have their own advantages. It is thus suggested that thoroughgoing clinical and experimental researches be performed anew for the long-shelved processing methods.

  11. First detection of lead in black paper from intraoral film: an environmental concern.

    PubMed

    Guedes, Débora F C; Silva, Reginaldo S; da Veiga, Márcia A M S; Pecora, Jesus D

    2009-10-30

    Lead (Pb) contamination in the black paper that recovers intraoral films (BKP) has been investigated. BKP samples were collected from the Radiology Clinics of the Dental School of Ribeirão Preto, University of São Paulo, Brazil. For sake of comparison, four different methods were used. The results revealed the presence of high lead levels, well above the maximum limit allowed by the legislation. Pb contamination levels achieved after the following treatments: paper digestion in nitric acid, microwave treatment, DIN38414-54 method and TCLP method were 997 microg g(-1), 189 microg g(-1), 20.8 microg g(-1), and 54.0 microg g(-1), respectively. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma mass spectrometry (ICP-MS) were employed for lead determination according to the protocols of the applied methods. Lead contamination in used BKP was confirmed by scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDS). All the SEM imaging was carried out in the secondary electron mode (SE) and backscattered-electron mode (QBSD) following punctual X-ray fluorescence spectra. Soil contamination derived from this product revealed the urgent need of addressing this problem. These elevated Pb levels, show that a preliminary treatment of BKP is mandatory before it is disposed into the common trash. The high lead content of this material makes its direct dumping into the environment unwise.

  12. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of whole-water recoverable arsenic, boron, and vanadium using inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.

    2000-01-01

    Analysis of in-bottle digestate by using the inductively coupled plasma?mass spectrometric (ICP?MS) method has been expanded to include arsenic, boron, and vanadium. Whole-water samples are digested by using either the hydrochloric acid in-bottle digestion procedure or the nitric acid in-bottle digestion procedure. When the hydrochloric acid in-bottle digestion procedure is used, chloride must be removed from the digestate by subboiling evaporation before arsenic and vanadium can be accurately determined. Method detection limits for these elements are now 10 to 100 times lower than U.S. Geological Survey (USGS) methods using hydride generation? atomic absorption spectrophotometry (HG? AAS) and inductively coupled plasma? atomic emission spectrometry (ICP?AES), thus providing lower variability at ambient concentrations. The bias and variability of the methods were determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries in reagent-water, surface-water, ground-water, and whole-water recoverable matrices averaged 90 percent for seven replicates; spike recoveries were biased from 25 to 35 percent low for the ground-water matrix because of the abnormally high iron concentration. Results for reference material were within one standard deviation of the most probable value. There was no significant difference between the results from ICP?MS and HG?AAS or ICP?AES methods for the natural whole-water samples that were analyzed.

  13. Recycling of waste tyre rubber into oil absorbent.

    PubMed

    Wu, B; Zhou, M H

    2009-01-01

    The abundant and indiscriminant disposal of waste tyres has caused both health and environmental problems. In this work, we provide a new way to dispose off waste tyres by reusing the waste tyre rubber (WTR) for oil absorptive material production. To investigate this feasibility, a series of absorbents were prepared by graft copolymerization-blending method, using waste tyre rubber and 4-tert-butylstyrene (tBS) as monomers. Divinylbenzene (DVB) and benzoyl peroxide (BPO) were employed as crosslinker and initiator, respectively. The existence of graft-blends (WTR-g-tBS) was determined by FTIR spectrometry and verified using thin-layer chromatography (TLC). In addition, the thermal properties of WTR-g-tBS were confirmed by a thermogravimetric analyzer (TGA). Oil absorbency of the grafted-blends increased with increases in either feed ratio of WTR to tBS or DVB concentration. This absorbency reached a maximum of 24.0gg(-1) as the feed ratio and DVB concentration were 60/40 and 1wt%, respectively, after which it decreased. At other ratios and concentrations the absorbency decreased. The gel fraction of grafted-blends increased with increasing concentration of DVB. Oil-absorption processes in pure toluene and crude oil diluted with toluene were found to adhere to first-order absorption kinetics. Furthermore, the oil-absorption rate in diluted crude oil was observed to be lower than pure toluene.

  14. A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2015-05-01

    A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    PubMed

    Nageotte, S M; Day, J P

    1998-01-01

    A major source of environmental lead, particularly in urban areas, has been from the combustion of leaded petrol. Street dust has previously been used to assess urban lead contamination, and the dust itself can also be a potential source of lead ingestion, particularly to children. The progressive reduction of lead in petrol, in recent years, would be expected to have been reflected in a reduction of lead in urban dust. We have tested this hypothesis by repeating an earlier survey of Manchester street dust and carrying out a comparable survey in Paris. Samples were collected from streets and parks, lead was extracted by digestion with concentrated nitric acid and determined by electrothermal atomic absorption spectrometry. Lead isotope ratios were measured by inductively coupled plasma mass spectrometry. Results for Manchester show that lead concentrations have fallen by about 40% (street dust averages, 941 micrograms g-1 (ppm) in 1975 down to 569 ppm in 1997). In Paris, the lead levels in street dust are much higher and significant differences were observed between types of street (not seen in Manchester). Additionally, lead levels in parks were much lower than in Manchester. Samples collected under the Eiffel Tower had very high concentrations and lead isotope ratios showed that this was unlikely to be fallout from motor vehicles but could be due to the paint used on the tower. Isotope ratios measurements also revealed that lead additives used in France and the UK come from different sources.

  16. Vaporization and atomization of uranium in a graphite tube electrothermal vaporizer: a mechanistic study using electrothermal vaporization inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Goltz, D. M.; Grégoire, D. C.; Byrne, J. P.; Chakrabarti, C. L.

    1995-07-01

    The mechanism of vaporization and atomization of U in a graphite tube electrothermal vaporizer was studied using graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Graphite furnace AAS studies indicate U atoms are formed at temperatures above 2400°C. Using ETV-ICP-MS, an appearance temperature of 1100°C was obtained indicating that some U vaporizes as U oxide. Although U carbides form at temperatures above 2000°C, ETV-ICP-MS studies show that they do not vaporize until 2600°C. In the temperature range between 2200°C and 2600°C, U atoms in GFAAS are likely formed by thermal dissociation of U oxide, whereas at higher temperatures, U atoms are formed via thermal dissociation of U carbide. The origin of U signal suppression in ETV-ICP-MS by NaCl was also investigated. At temperatures above 2000°C, signal suppression may be caused by the accelerated rate of formation of carbide species while at temperatures below 2000°C, the presence of NaCl may cause intercalation of the U in the graphite layers resulting in partial retention of U during the vaporization step. The use of 0.3% freon-23 (CHF 3) mixed with the argon carrier gas was effective in preventing the intercalation of U in graphite and U carbide formation at 2700°C.

  17. [Determination of total mercury in water samples, sediments and solids in suspension in aquatic systems by cold-vapor atomic absorption spectrophotometry].

    PubMed

    Vieira, J L; Passarelli, M M

    1996-06-01

    The use of metallic mercury in the extraction and concentration of gold causes the discarding of tons of this metal in the environment, leading to a considerable increase in the natural levels of the same and the contamination of the surrounding areas. Thus it is extremely important to monitor the presence of this metal in various sectors of the environment with a view aiming to preventing human exposure to excessive concentrations which can result in serious episodes of mercury poisoning. It is also important to estimate the possibility of river sediments becoming potential sources of contamination of human beings. The determination of total mercury was undertaken by using cold vapor atomic absorption spectrometry. River waters, as well as sediments and suspended solids were used as samples for the standardization of the analytical procedure. Later on, this method was tested on samples originating in gold mining areas for the purpose of assessing its validity.

  18. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  19. Determination of silver in irons and steels by atomic-absorption spectrometry with an induction furnace: Direct analysis of solid samples.

    PubMed

    Aziz-Alrahman, A M; Headridge, J B

    1978-07-01

    The silver contents of 17 irons and steels have been determined by dropping 0.5-20mg of millings or turnings of the metals into an induction furnace situated within an atomic-absorption spectrophotometer. The limit of detection was 0.005 mug/g and the relative standard deviations were 12% or better for silver contents of not less than 0.05 mug/g. Samples are added to the furnace at 4-5 min intervals.

  20. Probing the Behaviors of Gold Nanorods in Metastatic Breast Cancer Cells Based on UV-vis-NIR Absorption Spectroscopy

    PubMed Central

    Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan

    2012-01-01

    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy. PMID:22384113

  1. Direct measurements of unimolecular and bimolecular reaction kinetics of the Criegee intermediate (CH 3) 2COO

    DOE PAGES

    Chhantyal-Pun, Rabi; Welz, Oliver; Savee, John D.; ...

    2016-10-18

    Here, the Criegee intermediate acetone oxide, (CH 3) 2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O 2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO 2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10 –11 cm 3 s –1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10 –10 cm 3 s –1 at 298 K and 10 Torr (He buffer). These values are similar tomore » directly measured rate coefficients of anti-CH 3CHOO with SO 2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N 2 from cavity ring-down decay of the ultraviolet absorption of (CH 3) 2COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10 –10 to (2.29 ± 0.08) × 10 –10 cm 3 s –1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO 2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10 –12 cm 3 s –1 (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH 3CHOO with NO 2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH 3) 2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s –1, is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH 3) 2COO with SO 2 and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH 3) 2COO with NO 2 and with SO 2 suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products.« less

  2. Methods for Quantitative Creatinine Determination.

    PubMed

    Moore, John F; Sharer, J Daniel

    2017-04-06

    Reliable measurement of creatinine is necessary to assess kidney function, and also to quantitate drug levels and diagnostic compounds in urine samples. The most commonly used methods are based on the Jaffe principal of alkaline creatinine-picric acid complex color formation. However, other compounds commonly found in serum and urine may interfere with Jaffe creatinine measurements. Therefore, many laboratories have made modifications to the basic method to remove or account for these interfering substances. This appendix will summarize the basic Jaffe method, as well as a modified, automated version. Also described is a high performance liquid chromatography (HPLC) method that separates creatinine from contaminants prior to direct quantification by UV absorption. Lastly, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is described that uses stable isotope dilution to reliably quantify creatinine in any sample. This last approach has been recommended by experts in the field as a means to standardize all quantitative creatinine methods against an accepted reference. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Apparatus and method for transient thermal infrared emission spectrometry

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  4. [Determination of lead in edible salt with solid-phase extraction and GFAAS].

    PubMed

    Zhao, Xin; Zhou, Shuang; Ma, Lan; Yang, Dajin

    2013-01-01

    Establishing a method for determination of lead in salt with solid-phase extraction and GFAAS. Salt sample was diluted to a certain volume directly with ammonium acetate, then the sample solution was filtered through the solid phase extraction column which has been pre-activated. Lead ions were retained, and the sodium chloride matrix was removed. After elution, the collected lead ions was determined by graphite furnace atomic absorption spectrometry in 257.4 nm. This method can be used effectively to wipe off the sodium chloride in matrix. The limit of detection was 0.7 microg/kg and the limit of quantification was 2 microg/kg. Solid phase extraction technique can be used effectively to reduce the interference in matrix and improves the accuracy and reproducibility of detection.

  5. Analysis of Processed Foods Containing Oils and Fats by Time of Flight Mass Spectrometry with an APCI Direct Probe.

    PubMed

    Ito, Shihomi; Chikasou, Masato; Inohana, Shuichi; Fujita, Kazuhiro

    2016-01-01

    Discriminating vegetable oils and animal and milk fats by infrared absorption spectroscopy is difficult due to similarities in their spectral patterns. Therefore, a rapid and simple method for analyzing vegetable oils, animal fats, and milk fats using TOF/MS with an APCI direct probe ion source was developed. This method enabled discrimination of these oils and fats based on mass spectra and detailed analyses of the ions derived from sterols, even in samples consisting of only a few milligrams. Analyses of the mass spectra of processed foods containing oils and milk fats, such as butter, cheese, and chocolate, enabled confirmation of the raw material origin based on specific ions derived from the oils and fats used to produce the final product.

  6. Solid-phase extraction of some heavy metal ions on a double-walled carbon nanotube disk and determination by flame atomic absorption spectrometry.

    PubMed

    Karatepe, Aslihan; Soylak, Mustafa; Elçi, Latif

    2011-01-01

    A new preconcentration method was developed for the determination of trace amounts of Cu(II), Fe(III), Pb(II), Ni(II), and Cd(II) on a double-walled carbon nanotube disk. 4-(2-Thiazolylazo) resorcinol was used as a complexing reagent. The effects of parameters, including pH of the solutions, amounts of complexing reagent, eluent type, sample volume, flow rates of solutions, and matrix ions were examined for quantitative recoveries of the studied analyte ions. The retained metal ions were eluted by 2 M HNO3. The LOD values for the analytes were in the range of 0.7-4.4 microg/mL. Natural water samples and standard reference materials were analyzed by the presented method.

  7. Non linear optical investigations of silver nanoparticles synthesised by curcumin reduction

    NASA Astrophysics Data System (ADS)

    Dhanya, N. P.

    2017-11-01

    Metal nanoparticles have considerable applications in assorted fields like medicine, biology, photonics, metallurgy etc. Optical applications of Silver nanoparticles are of significant interest among researchers nowadays. In this paper, we report a single step chemical reduction of silver nanoparticles with Curcumin both as a reducing and stabilising agent at room temperature. Structural, plasmonic and non linear optical properties of the prepared nanoparticles are explored using Scanning Electron Microscope, Transmission Electron Microscope, UV absorption spectrometry, Spectroflurometry and Z scan. UV-Vis absorption studies affirm the Surface Plasmon Resonance (SPR) absorption and spectroflurometric studies announce the emission spectrum of the prepared silvernanoparticles at 520 nm. SEM and TEM images uphold the existence of uniform sized, spherical silvernanoparticles. Nonlinear optical studies are accomplished with the open aperture z scan technique in the nanosecond regime. The nonlinearity is in virtue of saturable absorption, two-photon absorption and excited state absorption. The marked nonlinearity and optical limiting of the Curcumin reduced silvernanoparticles enhances its photonic applications.

  8. Determination of iprodione in agrochemicals by infrared and Raman spectrometry.

    PubMed

    Armenta, Sergio; Garrigues, Salvador; de la Guardia, Miguel

    2007-04-01

    Two methodologies based on vibrational spectrometry--making use of Fourier transform infrared absorption (FTIR) and Raman spectrometry--were developed for iprodione determination in solid pesticide formulations. The FTIR procedure involved the extraction of iprodione by CHCl(3), and the latter determination involved measuring the peak area between 1450 and 1440 cm(-1), corrected using a horizontal baseline defined at 1481 cm(-1). FT-Raman determination was performed directly on the powdered solid products, using standard chromatography glass vials as sample cells and measuring the Raman intensity between 1003 and 993 cm(-1), with a two-point baseline correction established between 1012 and 981 cm(-1). The sensitivities obtained were 0.319 area values g mg(-1) for FTIR determination and 5.58 area values g g(-1) for FT-Raman. The repeatabilities, taken to be the relative standard deviation of five independent measurements at 1.51 mg g(-1) and 10.98% w/w concentration levels, were equal to 0.16% and 0.9% for FTIR and FT-Raman, respectively, and the limits of detection were 0.3 and 0.2% w/w (higher than those obtained for HPLC, 0.016% w/w). FTIR determination provided a sample frequency of 60 h(-1), higher than those obtained for the Raman and reference chromatography methods (25 and 8.6 h(-1), respectively). On the other hand, the new FT-Raman method eliminates reagent consumption and waste generation, and reduces the need for sample handling and the contact of operator with the pesticide. In spite of their lack of sensitivity, vibrational procedures can therefore provide viable environmentally friendly alternatives to laborious, time- and solvent-consuming reference chromatography methods for quality control in commercially available pesticide formulations.

  9. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Valsami-Jones, Eugenia; Kreft, Jan-Ulrich

    2016-09-01

    It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag+) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag+/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca2+, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca2+-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV-Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag+ adsorption to ultrafiltration membranes.

  10. Quantitative analysis of a brass alloy using CF-LIBS and a laser ablation time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasar; Abdullah, M.; Ahmed, Rizwan; Piracha, N. K.; Aslam Baig, M.

    2018-01-01

    We present a quantitative analysis of a brass alloy using laser induced breakdown spectroscopy, energy dispersive x-ray spectroscopy (EDX) and laser ablation time-of-flight mass spectrometry (LA-TOF-MS). The emission lines of copper (Cu I) and zinc (Zn I), and the constituent elements of the brass alloy were used to calculate the plasma parameters. The plasma temperature was calculated from the Boltzmann plot as (10 000  ±  1000) K and the electron number density was determined as (2.0  ±  0.5)  ×  1017 cm-3 from the Stark-broadened Cu I line as well as using the Saha-Boltzmann equation. The elemental composition was deduced using these techniques: the Boltzmann plot method (70% Cu and 30% Zn), internal reference self-absorption correction (63.36% Cu and 36.64% Zn), EDX (61.75% Cu and 38.25% Zn), and LA-TOF (62% Cu and 38% Zn), whereas, the certified composition is (62% Cu and 38% Zn). It was observed that the internal reference self-absorption correction method yields analytical results comparable to that of EDX and LA-TOF-MS.

  11. Quantitative IR microscopy and spectromics open the way to 3D digital pathology.

    PubMed

    Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril

    2017-04-01

    Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4 th dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transmission ultrasonography. [time delay spectrometry for soft tissue transmission imaging

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.; Le Croissette, D. H.

    1973-01-01

    Review of the results of the application of an advanced signal-processing technique, called time delay spectrometry, in obtaining soft tissue transmission images by transmission ultrasonography, both in vivo and in vitro. The presented results include amplitude ultrasound pictures and phase ultrasound pictures obtained by this technique. While amplitude ultrasonographs of tissue are closely analogous to X-ray pictures in that differential absorption is imaged, phase ultrasonographs represent an entirely new source of information based on differential time of propagation. Thus, a new source of information is made available for detailed analysis.

  13. A Green Analytical Method Using Ultrasound in Sample Preparation for the Flow Injection Determination of Iron, Manganese, and Zinc in Soluble Solid Samples by Flame Atomic Absorption Spectrometry

    PubMed Central

    Yebra, M. Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5–30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2–4.6%) and a sample throughput of ca. 25 samples h–1 were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4–25.61 μg g−1 for iron, 5.74–18.30 μg g−1 for manganese, and 33.27–57.90 μg g−1 for zinc in soluble solid food samples and 3.75–9.90 μg g−1 for iron, 0.47–5.05 μg g−1 for manganese, and 1.55–15.12 μg g−1 for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553

  14. Practical Problems in the Cement Industry Solved by Modern Research Techniques

    ERIC Educational Resources Information Center

    Daugherty, Kenneth E.; Robertson, Les D.

    1972-01-01

    Practical chemical problems in the cement industry are being solved by such techniques as infrared spectroscopy, gas chromatography-mass spectrometry, X-ray diffraction, atomic absorption and arc spectroscopy, thermally evolved gas analysis, Mossbauer spectroscopy, transmission and scanning electron microscopy. (CP)

  15. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    PubMed

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  16. Evaluation of the memory effect on gold-coated silica adsorption tubes used for the analysis of gaseous mercury by cold vapor atomic absorption spectrometry.

    PubMed

    Rahman, Mohammad Mahmudur; Brown, Richard J C; Kim, Ki-Hyun; Yoon, Hye-On; Phan, Nhu-Thuc

    2013-01-01

    In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hg(o)), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species.

  17. Evaluation of the Memory Effect on Gold-Coated Silica Adsorption Tubes Used for the Analysis of Gaseous Mercury by Cold Vapor Atomic Absorption Spectrometry

    PubMed Central

    Rahman, Mohammad Mahmudur; Brown, Richard J. C.; Yoon, Hye-On; Phan, Nhu-Thuc

    2013-01-01

    In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hgo), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species. PMID:23589708

  18. Increasing the throughput and productivity of Caco-2 cell permeability assays using liquid chromatography-mass spectrometry: application to resveratrol absorption and metabolism.

    PubMed

    Li, Yongmei; Shin, Young Geun; Yu, Chongwoo; Kosmeder, Jerome W; Hirschelman, Wendy H; Pezzuto, John M; van Breemen, Richard B

    2003-12-01

    The Caco-2 cell monolayer permeability assay has become a standard model of human intestinal absorption and transport. This paper reviews recent progress in increasing the throughput of Caco-2 cell monolayer assays and in expanding the scope of this assay to include modeling intestinal drug metabolism. The state-of-the-art in Caco-2 cell monolayer permeability assays combines multi-well plates fitted with semi-permeable inserts on which Caco-2 cells have been cultured with liquid chromatography-mass spectrometry (LC-MS) or LC-tandem mass spectrometry (LC-MS-MS) for the quantitative analysis of test compounds and the identification of their intestinal metabolites. After reviewing the progress in increasing the throughput of Caco-2 cell monolayer assays for both modeling human intestinal permeability or transport and the metabolism of xenobiotic compounds, we demonstrate the application of LC-MS and LC-MS-MS to the measurement of resveratrol permeability and metabolism in the Caco-2 model. trans-Resveratrol (trans-3,5,4'-trihydroxystilbene) is a polyphenolic compound occurring in grapes, peanuts and other food sources, that is under investigation as a cancer chemoprevention agent. The apparent permeability coefficient for apical (AP) to basolateral (BL) movement of resveratrol was 2.0 x 10(-5)cm/sec. Resveratrol was not a substrate for P-glycoprotein or the multi-drug resistance associated proteins (MRP). No phase I metabolites were observed, but the phase II conjugates resveratrol-3-glucuronide and resveratrol-3-sulfate was identified based on LC-MS and LC-MS-MS analysis and comparison with synthetic standards. Although these data indicate that resveratrol diffuses rapidly across the intestinal epithelium, extensive phase II metabolism during absorption might reduce resveratrol bioavailability.

  19. Reverse isotope dilution method for determining benzene and metabolites in tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtold, W.E.; Sabourin, P.J.; Henderson, R.F.

    1988-07-01

    A method utilizing reverse isotope dilution for the analysis of benzene and its organic soluble metabolites in tissues of rats and mice is presented. Tissues from rats and mice that had been exposed to radiolabeled benzene were extracted with ethyl acetate containing known, excess quantities of unlabeled benzene and metabolites. Butylated hydroxytoluene was added as an antioxidant. The ethyl acetate extracts were analyzed with semipreparative reversed-phase HPLC. Isolated peaks were collected and analyzed for radioactivity (by liquid scintillation spectrometry) and for mass (by UV absorption). The total amount of each compound present was calculated from the mass dilution of themore » radiolabeled isotope. This method has the advantages of high sensitivity, because of the high specific activity of benzene, and relative stability of the analyses, because of the addition of large amounts of unlabeled carrier analogue.« less

  20. Total plasma magnesium in healthy and critically ill foals.

    PubMed

    Mariella, J; Isani, G; Andreani, G; Freccero, F; Carpenè, E; Castagnetti, C

    2016-01-15

    Abnormalities in total Mg (tMg) concentration in plasma and/or serum are common in critically ill humans, and the association with increased mortality has been documented in several clinical studies in adults and newborns with hypoxic-ischemic encephalopathy. Abnormalities in tMg were studied in hospitalized dogs, cats, and adult horses. Newborn foals were scarcely studied with regard to Mg concentration. The aims of the present study were: (1) to compare two analytical methods for the determination of tMg in plasma: the automated colorimetric method and the atomic absorption spectrometry; (2) to measure plasma tMg in healthy foals during the first 72 hours after birth and in sick foals during the first 72 hours of hospitalization; (3) to compare total plasma Mg concentration among healthy foals, foals affected by perinatal asphyxia syndrome (PAS), prematurity and/or dismaturity, and sepsis; (4) to evaluate tMg plasma concentration in surviving and non-surviving foals. One hundred seventeen foals were included in the study: 20 healthy and 97 sick foals. The automated method used in clinical practice probably overestimates plasma tMg. Due to its higher sensitivity and specificity, the atomic absorption spectrometry should be considered the method of choice from an analytical point of view, but requires an instrumentation not easily available in any laboratory and specific technical skills and competencies. Plasma tMg in healthy foals were included in the range 0.52 to 1.01 mmol/L and did not show any time-dependent change during the first 72 hours of life. In sick foals, tMg evaluated at T0 was statistically higher than tMg measured at subsequent times. Foals affected by PAS had a tMg at T0 significantly higher (P < 0.01) than healthy, septic, and premature and/or dysmature foals. The t test found significantly higher (P < 0.01) plasma tMg measured at T0 in non-surviving than in surviving foals. Plasma tMg could be a useful parameter for the diagnosis of PAS and the formulation of the prognosis in critically ill foals. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry.

    PubMed

    Bagheri, Hasan; Afkhami, Abbas; Saber-Tehrani, Mohammad; Khoshsafar, Hosein

    2012-08-15

    A versatile and robust solid phase with both magnetic property and a very high adsorption capacity is presented on the basis of modification of iron oxide-silica magnetic particles with a newly synthesized Schiff base (Fe(3)O(4)/SiO(2)/L). The structure of the resulting product was confirmed by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) spectrometry and transmission electron microscopy (TEM). We developed an efficient and cost-effective method for the preconcentration of trace amounts of Pb(II), Cd(II) and Cu(II) in environmental and biological samples using this novel magnetic solid phase. Prepared magnetic solid phase is an ideal support because it has a large surface area, good selectivity and can be easily retrieved from large volumes of aqueous solutions. The possible parameters affecting the enrichment were optimized. Under the optimal conditions, the method detection limit was 0.14, 0.19 and 0.12 μg L(-1) for Pb(II), Cd(II) and Cu(II) ions, respectively. The established method has been successfully applied to analyze real samples, and satisfactory results were obtained. All these indicated that this magnetic phase had a great potential in environmental and biological fields. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Solid-phase extraction and separation procedure for trace aluminum in water samples and its determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

    PubMed

    Ciftci, Harun; Er, Cigdem

    2013-03-01

    In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.

  3. Counting Molecules by Desorption Ionization and Mass Spectrometry/Mass Spectrometry.

    ERIC Educational Resources Information Center

    Cooks, R. G.; Busch, K. L.

    1982-01-01

    Discusses two newer methods in mass spectrometry and shows how they can increase signal and signal-to-noise ratios, respectively. The first method, desorption ionization (DI), increases sensitivity while the second method, mass spectrometry/mass spectrometry (MS/MS), increases specificity. Together, the two methods offer improved analytical…

  4. Impurity profiling of liothyronine sodium by means of reversed phase HPLC, high resolution mass spectrometry, on-line H/D exchange and UV/Vis absorption.

    PubMed

    Ruggenthaler, M; Grass, J; Schuh, W; Huber, C G; Reischl, R J

    2017-09-05

    For the first time, a comprehensive investigation of the impurity profile of the synthetic thyroid API (active pharmaceutical ingredient) liothyronine sodium (LT 3 Na) was performed by using reversed phase HPLC and advanced structural elucidation techniques including high resolution tandem mass spectrometry (HRMS/MS) and on-line hydrogen-deuterium (H/D) exchange. Overall, 39 compounds were characterized and 25 of these related substances were previously unknown to literature. The impurity classification system recently developed for the closely related API levothyroxine sodium (LT 4 Na) could be applied to the newly characterized liothyronine sodium impurities resulting in a wholistic thyroid API impurity classification system. Furthermore, the mass-spectrometric CID-fragmentation of specific related substances was discussed and rationalized by detailed fragmentation pathways. Moreover, the UV/Vis absorption characteristics of the API and selected impurities were investigated to corroborate chemical structure assignments derived from MS data. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries.

    PubMed

    de Oliveira, Tatiane Milão; Augusto Peres, Jayme; Lurdes Felsner, Maria; Cristiane Justi, Karin

    2017-08-15

    Milk is an important food in the human diet due to its physico-chemical composition; therefore, it is necessary to monitor contamination by toxic metals such as Pb. Milk sample slurries were prepared using Triton X-100 and nitric acid for direct analysis of Pb using graphite furnace atomic absorption spectrometry - GF AAS. After dilution of the slurries, 10.00µl were directly introduced into the pyrolytic graphite tube without use of a chemical modifier, which acts as an advantage considering this type of matrix. The limits of detection and quantification were 0.64 and 2.14µgl -1 , respectively. The figures of merit studied showed that the proposed methodology without pretreatment of the raw milk sample and using external standard calibration is suitable. The methodology was applied in milk samples from the Guarapuava region, in Paraná State (Brazil) and Pb concentrations ranged from 2.12 to 37.36µgl -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Determination of bioactive components in Chinese herbal formulae and pharmacokinetics of rhein in rats by UPLC-MS/MS.

    PubMed

    Hou, Mei-Ling; Chang, Li-Wen; Lin, Chi-Hung; Lin, Lie-Chwen; Tsai, Tung-Hu

    2014-04-02

    Rhein (4,5-dihydroxy-9,10-dioxoanthracene-2-carboxylic acid, cassic acid) is a pharmacological active component found in Rheum palmatum L. the major herb of San-Huang-Xie-Xin-Tang (SHXXT), a medicinal herbal product used as a remedy for constipation. Here we have determined multiple bioactive components in SHXXT and investigated the comparative pharmacokinetics of rhein in rats. A sensitive and specific method combining liquid chromatography with electrospray ionization tandem mass spectrometry has been developed and validated to simultaneously quantify six active compounds in the pharmaceutical herbal product SHXXT to further study their pharmacokinetics in rats. Multiple reaction monitoring (MRM) was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. There were no significant matrix effects in the quantitative analysis and the mean recovery for rhein in rat plasma was 91.6%±3.4%. The pharmacokinetic data of rhein demonstrate that the herbal formulae or the single herbal extract provide significantly higher absorption rate than the pure compound. This phenomenon suggests that the other herbal ingredients of SHXXT and rhubarb extract significantly enhance the absorption of rhein in rats. In conclusion, the herbal formulae (SHXXT) are more efficient than the single herb (rhubarb) or the pure compound (rhein) in rhein absorption.

  7. Synthesis and study of the synthetic hydroxyapatite doped with aluminum

    NASA Astrophysics Data System (ADS)

    Goldberg, M.; Smirnov, V.; Antonova, O.; Konovalov, A.; Fomina, A.; Komlev, V. S.; Barinov, S.; Rodionov, A.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Powders of synthetic hydroxyapatite doped with aluminium (Al) ions in concentrations 0 and 20 mol. % were synthesized by the precipitation method from the nitrate solutions and investigated by atomic emission spectrometry with inductively coupled plasma (AES-ICP), X-ray diffraction (XRD), scanning electron microscopy (SEM), gas absorption and conventional electron paramagnetic resonance (EPR). It is shown that for the chosen synthesis route an introduction of Al provokes formation of highly anisotropic phase, leads to the decrease in the crystallinity while no significant changes in the EPR spectra of the radiation-induced defects is observed. The results could be used for understanding the structural transformations with Al doping of the mineralized materials for geological and biomedical applications.

  8. Proximate composition, nutritional attributes and mineral composition of Peperomia pellucida L. (Ketumpangan Air) grown in Malaysia.

    PubMed

    Ooi, Der-Jiun; Iqbal, Shahid; Ismail, Maznah

    2012-09-17

    This study presents the proximate and mineral composition of Peperomia pellucida L., an underexploited weed plant in Malaysia. Proximate analysis was performed using standard AOAC methods and mineral contents were determined using atomic absorption spectrometry. The results indicated Peperomia pellucida to be rich in crude protein, carbohydrate and total ash contents. The high amount of total ash (31.22%)suggests a high-value mineral composition comprising potassium, calcium and iron as the main elements. The present study inferred that Peperomia pellucida would serve as a good source of protein and energy as well as micronutrients in the form of a leafy vegetable for human consumption.

  9. Determination of the δ2H and δ18O of soil water and water in plant matter; RSIL lab code 1700

    USGS Publications Warehouse

    Revesz, Kinga M.; Buck, Bryan; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory lab code 1700 is to determine the δ2H/1H), abbreviated as δ2H, and the δ18O/16O), abbreviated as δ18O, of soil water and water in plant matter. This method is based on the observation that water and toluene form an azeotropic mixture at 84.1 °C. This temperature is substantially lower than the boiling points of water (100 °C) and toluene (110 °C), but water and toluene are immiscible at ambient temperature. The water content of a soil or plant is determined by weighing, drying, and reweighing a small amount of sample. Sufficient sample to collect 3 to 5 milliliters of water after distillation is loaded into a distillation flask. Sufficient toluene is added so that the sample is immersed throughout the entire distillation to minimize evaporation of water, which would affect the δ2H and δ18O values. The mixture of sample and toluene is heated in a flask to its boiling point (84.1 °C) so that water from the sample and toluene can distill together into a specially designed collection funnel. The temperature of 84.1 °C is maintained until the water has been quantitatively transferred to the collection funnel, at which time the temperature is raised to the boiling point of the remaining component (toluene, 110 °C). The collection funnel is maintained at ambient temperature so that the sample water and toluene can be separated physically. After separation, the sample water is purified by addition of paraffin wax to the container with the sample water, capping the container, and heating to approximately 60 °C to melt the wax. Trace amounts of toluene will dissolve in the wax, purifying the sample water for isotopic analysis. The isotopic composition of the purified water is then determined by equilibration with gaseous hydrogen or carbon dioxide, followed by dual-inlet isotope-ratio mass spectrometry. Because laser-absorption spectrometry is sensitive to organic compounds, such as trace toluene remaining in water samples, water samples should be analyzed for isotopic composition only by mass spectrometry and not by laser-absorption spectrometry.

  10. Impact of glucuronide interferences on therapeutic drug monitoring of posaconazole by tandem mass spectrometry.

    PubMed

    Krüger, Ralf; Vogeser, Michael; Burghardt, Stephan; Vogelsberger, Rita; Lackner, Karl J

    2010-12-01

    Posaconazole is a novel antifungal drug for oral application intended especially for therapy of invasive mycoses. Due to variable gastrointestinal absorption, adverse side effects, and suspected drug-drug interactions, therapeutic drug monitoring (TDM) of posaconazole is recommended. A fast ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for quantification of posaconazole with a run-time <3 min was developed and compared to a LC-MS/MS method and HPLC method with fluorescence detection. During evaluation of UPLC-MS/MS, two earlier eluting peaks were observed in the MRM trace of posaconazole. This was only seen in patient samples, but not in spiked calibrator samples. Comparison with LC-MS/MS disclosed a significant bias with higher concentrations measured by LC-MS/MS, while UPLC-MS/MS showed excellent agreement with the commercially available HPLC method. In the LC-MS/MS procedure, comparably wide and left side shifted peaks were noticed. This could be ascribed to in-source fragmentation of conjugate metabolites during electrospray ionisation. Precursor and product ion scans confirmed the assumption that the additional compounds are posaconazole glucuronides. Reducing the cone voltage led to disappearance of the glucuronide peaks. Slight modification of the LC-MS/MS method enabled separation of the main interference, leading to significantly reduced deviation. These results highlight the necessity to reliably eliminate interference from labile drug metabolites for correct TDM results, either by sufficient separation or selective MS conditions. The presented UPLC-MS/MS method provides a reliable and fast assay for TDM of posaconazole.

  11. An evaluation of a reagentless method for the determination of total mercury in aquatic life

    USGS Publications Warehouse

    Haynes, Sekeenia; Gragg, Richard D.; Johnson, Elijah; Robinson, Larry; Orazio, Carl E.

    2006-01-01

    Multiple treatment (i.e., drying, chemical digestion, and oxidation) steps are often required during preparation of biological matrices for quantitative analysis of mercury; these multiple steps could potentially lead to systematic errors and poor recovery of the analyte. In this study, the Direct Mercury Analyzer (Milestone Inc., Monroe, CT) was utilized to measure total mercury in fish tissue by integrating steps of drying, sample combustion and gold sequestration with successive identification using atomic absorption spectrometry. We also evaluated the differences between the mercury concentrations found in samples that were homogenized and samples with no preparation. These results were confirmed with cold vapor atomic absorbance and fluorescence spectrometric methods of analysis. Finally, total mercury in wild captured largemouth bass (n = 20) were assessed using the Direct Mercury Analyzer to examine internal variability between mercury concentrations in muscle, liver and brain organs. Direct analysis of total mercury measured in muscle tissue was strongly correlated with muscle tissue that was homogenized before analysis (r = 0.81, p < 0.0001). Additionally, results using this integrated method compared favorably (p < 0.05) with conventional cold vapor spectrometry with atomic absorbance and fluorescence detection methods. Mercury concentrations in brain were significantly lower than concentrations in muscle (p < 0.001) and liver (p < 0.05) tissues. This integrated method can measure a wide range of mercury concentrations (0-500 ??g) using small sample sizes. Total mercury measurements in this study are comparative to the methods (cold vapor) commonly used for total mercury analysis and are devoid of laborious sample preparation and expensive hazardous waste. ?? Springer 2006.

  12. Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling.

    PubMed

    Krawczyk, Magdalena

    2014-01-01

    In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey-Raap, Natalia; Gallardo, Antonio, E-mail: gallardo@emc.uji.es

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix.more » Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.« less

  14. Selective and sensitive speciation analysis of Cr(VI) and Cr(III), at sub-μgL-1 levels in water samples by electrothermal atomic absorption spectrometry after electromembrane extraction.

    PubMed

    Tahmasebi, Zeinab; Davarani, Saied Saeed Hosseiny

    2016-12-01

    In this work, electromembrane extraction in combination with electrothermal atomic absorption spectrometry (ET-AAS) was investigated for speciation, preconcentration and quantification of Cr(VI) and Cr(III) in water samples through the selective complexation of Cr(VI) with 1,5-diphenylcarbazide (DPC) as a complexing agent. DPC reduces Cr(VI) to Cr(III) ions and then Cr(III) species are extracted based on electrokinetic migration of their cationic complex (Cr(III)-DPC) toward the negative electrode placed in the hollow fiber. Also, once oxidized to Cr(VI), Cr(III) ions in initial sample were determined by this procedure. The influence of extraction parameters such as pH, type of organic solvent, chelating agent concentration, stirring rate, extraction time and applied voltage were evaluated following a one-at-a-time optimization approach. Under optimized conditions, the extracted analyte was quantified by ETAAS, with an acceptable linearity in the range of 0.05-5ngmL -1 (R 2 value=0.996), and a repeatability (%RSD) between 3.7% and 12.2% (n=4) for 5.0 and 1.0ngmL -1 of Cr(VI), respectively. Also, we obtained an enrichment factor of 110 that corresponded to the recovery of 66%. The detection limit (S/N ratio of 3:1) was 0.02ngmL -1 . Finally, this new method was successfully employed to determine Cr(III) and Cr(VI) species in real water samples. Copyright © 2016. Published by Elsevier B.V.

  15. Oxidation State Specific Generation of Arsines from Methylated Arsenicals Based on L- Cysteine Treatment in Buffered Media for Speciation Analysis by Hydride Generation - Automated Cryotrapping - Gas Chromatography-Atomic Absorption Spectrometry with the Multiatomizer

    PubMed Central

    Matoušek, Tomáš; Hernández-Zavala, Araceli; Svoboda, Milan; Langrová, Lenka; Adair, Blakely M.; Drobná, Zuzana; Thomas, David J.; Stýblo, Miroslav; Dědina, Jiří

    2008-01-01

    An automated system for hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer is described. Arsines are preconcentrated and separated in a Chromosorb filled U-tube. An automated cryotrapping unit, employing nitrogen gas formed upon heating in the detection phase for the displacement of the cooling liquid nitrogen, has been developed. The conditions for separation of arsines in a Chromosorb filled U-tube have been optimized. A complete separation of signals from arsine, methylarsine, dimethylarsine, and trimethylarsine has been achieved within a 60 s reading window. The limits of detection for methylated arsenicals tested were 4 ng l−1. Selective hydride generation is applied for the oxidation state specific speciation analysis of inorganic and methylated arsenicals. The arsines are generated either exclusively from trivalent or from both tri- and pentavalent inorganic and methylated arsenicals depending on the presence of L-cysteine as a prereductant and/or reaction modifier. A TRIS buffer reaction medium is proposed to overcome narrow optimum concentration range observed for the L-cysteine modified reaction in HCl medium. The system provides uniform peak area sensitivity for all As species. Consequently, the calibration with a single form of As is possible. This method permits a high-throughput speciation analysis of metabolites of inorganic arsenic in relatively complex biological matrices such as cell culture systems without sample pretreatment, thus preserving the distribution of tri- and pentavalent species. PMID:18521190

  16. Dendrimer pre-treatment enhances the skin permeation of chlorhexidine digluconate: Characterisation by in vitro percutaneous absorption studies and Time-of-Flight Secondary Ion Mass Spectrometry.

    PubMed

    Holmes, Amy M; Scurr, David J; Heylings, Jon R; Wan, Ka-Wai; Moss, Gary P

    2017-06-15

    Skin penetration and localisation of chlorhexidine digluconate (CHG) within the skin have been investigated in order to better understand and optimise the delivery using a nano polymeric delivery system of this topically-applied antimicrobial drug. Franz-type diffusion cell studies using in vitro porcine skin and tape stripping procedures were coupled with Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to visualise the skin during various treatments with CHG and polyamidoamine dendrimers (PAMAM). Pre-treatment of the skin with PAMAM dendrimers significantly increased the amount and depth of permeation of CHG into the skin in vitro. The effect observed was not concentration dependant in the range 0.5-10mM PAMAM. This could be important in terms of the efficiency of treatment of bacterial infection in the skin. It appears that the mechanism of enhancement is due to the PAMAM dendrimer disrupting skin barrier lipid conformation or by occluding the skin surface. Franz-type diffusion cell experiments are complimented by the detailed visualisation offered by the semi-quantitative ToF-SIMS method which provides excellent benefits in terms of sensitivity and fragment ion specificity. This allows a more accurate depth profile of chlorhexidine permeation within the skin to be obtained and potentially affords the opportunity to map the co-localisation of permeants with skin structures, thus providing a greater ability to characterise skin absorption and to understand the mechanism of permeation, providing opportunities for new and more effective therapies. Copyright © 2017. Published by Elsevier B.V.

  17. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Sarafian, Magali H; Lewis, Matthew R; Pechlivanis, Alexandros; Ralphs, Simon; McPhail, Mark J W; Patel, Vishal C; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy K

    2015-10-06

    Bile acids are important end products of cholesterol metabolism. While they have been identified as key factors in lipid emulsification and absorption due to their detergent properties, bile acids have also been shown to act as signaling molecules and intermediates between the host and the gut microbiota. To further the investigation of bile acid functions in humans, an advanced platform for high throughput analysis is essential. Herein, we describe the development and application of a 15 min UPLC procedure for the separation of bile acid species from human biofluid samples requiring minimal sample preparation. High resolution time-of-flight mass spectrometry was applied for profiling applications, elucidating rich bile acid profiles in both normal and disease state plasma. In parallel, a second mode of detection was developed utilizing tandem mass spectrometry for sensitive and quantitative targeted analysis of 145 bile acid (BA) species including primary, secondary, and tertiary bile acids. The latter system was validated by testing the linearity (lower limit of quantification, LLOQ, 0.25-10 nM and upper limit of quantification, ULOQ, 2.5-5 μM), precision (≈6.5%), and accuracy (81.2-118.9%) on inter- and intraday analysis achieving good recovery of bile acids (serum/plasma 88% and urine 93%). The ultra performance liquid chromatography-mass spectrometry (UPLC-MS)/MS targeted method was successfully applied to plasma, serum, and urine samples in order to compare the bile acid pool compositional difference between preprandial and postprandial states, demonstrating the utility of such analysis on human biofluids.

  18. Synthesis, characterization, and application of a Zn (II)-imprinted polymer grafted on graphene oxide/magnetic chitosan nanocomposite for selective extraction of zinc ions from different food samples.

    PubMed

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Ranjbar, Mansoureh

    2017-12-15

    A novel Zn(II) imprinted polymer was synthesized via a co-precipitation method using graphene oxide/magnetic chitosan nanocomposite as supporting material. The synthesized imprinted polymer was characterized by Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM) and applied as a sorbent for selective magnetic solid phase extraction of zinc followed by its determination by flame atomic absorption spectrometry. The kinetic and isothermal adsorption experiments were carried out and all parameters affecting the extraction process was optimized. Under the optimal experimental conditions, the developed procedure exhibits a linear dynamic range of 0.5-5.0µgL -1 with a detection limit of 0.09µgL -1 and quantification limit of 0.3µgL -1 . The maximum sorption capacity of the sorbent was found to be 71.4mgg -1 . The developed procedure was successfully applied to the selective extraction and determination of zinc in various samples including well water, drinking water, black tea, rice, and milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Trace elements and electrolytes in human resting mixed saliva after exercise

    PubMed Central

    Chicharro, J. L.; Serrano, V.; Urena, R.; Gutierrez, A. M.; Carvajal, A.; Fernandez-, H; Lucia, A.

    1999-01-01

    OBJECTIVES: Exercise is known to cause changes in the concentration of salivary components such as amylase, Na, and Cl. The aim of this investigation was to evaluate the effect of physical exercise on the levels of trace elements and electrolytes in whole (mixed) saliva. METHODS: Forty subjects performed a maximal exercise test on a cycle ergometer. Samples of saliva were obtained before and immediately after the exercise test. Sample concentrations of Fe, Mg, Sc, Cr, Mn, Co, Cu, Zn, Se, Sr, Ag, Sb, Cs, and Hg were determined by inductively coupled plasma mass spectrometry and concentrations of Ca and Na by atomic absorption spectrometry. RESULTS: After exercise, Mg and Na levels showed a significant increase (p < 0.05) while Mn levels fell (p < 0.05). Zn/Cu molar ratios were unaffected by exercise. CONCLUSIONS: Intense physical exercise induced changes in the concentrations of only three (Na, Mg, and Mn) of the 16 elements analysed in the saliva samples. Further research is needed to assess the clinical implications of these findings. 


 PMID:10378074

  20. Influence of geosmin-producing Streptomyces on the growth and volatile metabolites of yeasts during chinese liquor fermentation.

    PubMed

    Du, Hai; Lu, Hu; Xu, Yan

    2015-01-14

    Diverse Streptomyces species act as geosmin producers in the Chinese liquor-making process, causing an earthy, off-odor containment. Through microbiological and metabolite analyses, this paper investigates the influence of several geosmin-producing Streptomyces on the microbial community of a brewing system. The antifungal activity against functional liquor-brewing microbes was assayed by an agar diffusion method. Several Streptomyces, most notably Streptomyces sampsonii QC-2, inhibited the growth of the brewing functional yeasts and molds in pure culture. In a simulated coculture, Streptomyces spp. reduced the flavor compounds (alcohols and esters) contributed by yeasts. Nine components in Streptomyces sampsonii QC-2 broth were detected by ultraperformance liquid chromatography coupled with photo diode array (UPLC–PDA), with characteristic ultraviolet absorptions at 360, 380, and 400 nm. The main products of Streptomyces sampsonii QC-2 were identified by ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF–MS/MS), and confirmed by standard mass spectrometry. The antifungal active components were revealed as a series of heptaene macrolide antibiotics.

  1. [Analysis of biological material originating from the body of general Władysław Sikorski for inorganic poisons and diatoms presence].

    PubMed

    Sadlik, Józefa Krystyna; Brozek-Mucha, Zuzanna

    2009-01-01

    Results of the analysis of biological materials originating from the body of general Sikorski are presented in the paper. Samples of the liver, kidney, intestine and lung were analysed for metals and As content, and samples of the lung, liver, kidney, stomach, intestine and bone marrow--for diatoms presence. The analysis for metals and As was performed by atomic absorption spectrometry (AAS) and inductively coupled plasma optical emission spectrometry (ICP-OES). Before the analysis, the samples were wet digested by the classic and microwave assisted method. The analysis did not result in detecting the presence of As, Co, Ni, and Tl in any of the studied materials, while Hg was not revealed in the liver, intestines and lung and Pb in the intestines and lung. The content of Ba, Cd, Cr, Cu, Fe, Mn, Sr and Zn in all the studied materials, Hg in the kidney, and Pb in the liver and kidney did not indicate poisoning by the above-mentioned metals or arsenic. No diatoms were found in the studied materials.

  2. Selective precipitation of potassium in seawater samples for improving the sensitivity of plain γ-ray spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrante, Marco, E-mail: marco.ferrante@lngs.infn.it; De Angelis, Francesco, E-mail: francesco.deangelis@univaq.it; Nisi, Stefano, E-mail: stefano.nisi@lngs.infn.it

    2015-08-17

    An analytical method is presented to reduce the amount of {sup 40}K in sea water samples, in order to lower its interference in γ-ray analysis below 1.4 MeV due to the Compton continuum. Sodium tetraphenylborate was used to successfully precipitate {sup 40}K in the samples. A custom procedure for precipitation of potassium was developed and it was evaluated for its selectivity, reproducibility and efficiency, using conventional analytical techniques such as atomic absorption spectrophotometry and inductively coupled plasma mass spectrometry (ICP-MS). This work has shown that the selective precipitation of potassium with sodium tetraphenylborate has led to a decrease of detectionmore » limit of radio nuclides such as {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 137}Cs, {sup 134}Cs, {sup 133}I, {sup 134}I, {sup 60}Co in γ-analysis. In particular, the detection limit for nuclides with emissions in the energy window energy below 1400 keV is improved by almost one order of magnitude.« less

  3. Chemical analyses of hot springs, pools, geysers, and surface waters from Yellowstone National Park, Wyoming, and vicinity, 1974-1975

    USGS Publications Warehouse

    Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.; Vivit, Davison V.

    1998-01-01

    This report presents all analytical determinations for samples collected from Yellowstone National Park and vicinity during 1974 and 1975. Water temperature, pH, Eh, and dissolved O2 were determined on-site. Total alkalinity and F were determined on the day of sample collection. Flame atomic-absorption spectrometry was used to determine concentrations of Li, Na, K, Ca, and Mg. Ultraviolet/visible spectrophotometry was used to determine concentrations of Fe(II), Fe(III), As(III), and As(V). Direct-current plasma-optical-emission spectrometry was used to determine the concentrations of B, Ba, Cd, Cs, Cu, Mn, Ni, Pb, Rb, Sr, and Zn. Two samples collected from Yellowstone Park in June 1974 were used as reference samples for testing the plasma analytical method. Results of these tests demonstrate acceptable precision for all detectable elements. Charge imbalance calculations revealed a small number of samples that may have been subject to measurement errors in pH or alkalinity. These data represent some of the most complete analyses of Yellowstone waters available.

  4. An analytical method to screen for six thyreostatic drug residues in the thyroid gland and muscle tissues of food producing animals by liquid chromatography with ultraviolet absorption detection and liquid chromatography/mass spectrometry.

    PubMed

    Asea, Philip E; MacNeil, James D; Boison, Joe O

    2006-01-01

    A method was developed and validated to screen for residues of the thyreostatic drugs, tapazole (TAP), mercaptobenzimidazole (MBI), thiouracil (TU), methylthiouracil (MTU), propylthiouracil (PrTU), and phenylthiouracil (PhTU) in bovine, equine, ovine, and porcine thyroid and muscle tissues at concentrations > or = 5 ng/g using 2-methoxy-mercaptobenzimidazole (MeMBI) and dimethylthiouracil (DMTU) as internal standards. In this method, the drugs were solvent extracted from thyroid and muscle tissue and cleaned up on an amino-propyl solid-phase extraction (SPE) cartridge. The unretained fraction containing TAP and MBI and the internal standard, MeMBI, was collected as Fraction 1. The retained fraction containing TU, MTU, PrTU, PhTU, and the internal standard, DMTU, was eluted with 3% acetic acid-isopropanol as Fraction 2. Fraction 1 was further cleaned up on an alumina B SPE cartridge and analyzed by gradient elution on a C18 high-performance liquid chromatography (HPLC) column with ultraviolet detection at wavelengths of 255 and 300 nm. Fraction 2 was taken to dryness, derivatized with 4-chloro-7-nitrobenzo-2-furazan at pH 8, and analyzed by gradient elution on a C18 LC column with mass spectrometry (MS) detection. Any "presumptive positive" test results were submitted for further analysis by LC/MS/MS. The validated method was applied to the analysis of over 300 thyroid tissue samples.

  5. [Ultraviolet-visible spectrometry analysis of insoluble xanthate heavy metal complexes].

    PubMed

    Qiu, Bo; Liu, Jin-Feng; Liu, Yao-Chi; Yang, Zhao-Guang; Li, Hai-Pu

    2014-11-01

    A ultraviolet-visible spectrometry method of determining insoluble xanthate heavy metal complexes in flotation wastewater was the first time to be put forward. In this work, the changes of ultraviolet-visible spectra of xanthate solution after the addition of various heavy metal ions were investigated firstly. It was found that Pb2+ and Cu2+ can form insoluble complexes with xanthate, while Fe2+, Zn2+ and Mn2+ have little effect on the ultraviolet absorption of xanthate solution. Then the removal efficiencies of filter membrane with different pore sizes were compared, and the 0.22 μm membrane was found to be effective to separate copper xanthate or lead xanthate from the filtrate. Furthermore, the results of the study on the reaction of sodium sulfide and insoluble xanthate heavy metal complexes showed that S(2-) can release the xanthate ion quantitatively from insoluble complexes to solution. Based on the above research, it was concluded that the amount of insoluble xanthate heavy metal complexes in water samples can be obtained through the increase of free xanthate in the filtrate after the addition of sodium sulfide. Finally, the feasibility of this method was verified by the application to the analysis of flotation wastewater from three ore-dressing plants in the Thirty-six Coves in Chenzhou.

  6. Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica

    NASA Astrophysics Data System (ADS)

    Omidi, Fariborz; Behbahani, Mohammad; Kalate Bojdi, Majid; Shahtaheri, Seyed Jamaleddin

    2015-12-01

    A new method has been developed for trace separation/preconcentration of cadmium ions using pyridine-functionalized magnetic nanoporous silica material (called Py-Fe3O4@MCM-41) as a new magnetic sorbent and their determination by flame atomic absorption spectrometry (FAAS). The Py-Fe3O4@MCM-41 sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry and X-ray diffraction. The modified Fe3O4@MCM-41 can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, amount of functionalized Fe3O4@MCM-41, extraction time, type and quantity of eluent, desorption time, and interfering ions on the extraction efficiency were evaluated and optimized. Under the optimized conditions, the detection limit and relative standard deviation was 0.04 μg L-1 and 2.9%, respectively and the maximum adsorption capacity of the synthesized sorbent for cadmium ions was 154 mg g-1. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, rice, onion, carrot, lettuce, parsley, basil, tap water, river water and seawater with satisfactory results.

  7. New in situ Aerosol Spectral Optical Measurements over 300-700 nm, Extinction and Total Absorption, Paired with Absorption from Water- and Methanol-soluble Aerosol Extracts

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Stauffer, R. M.; Lamb, B.; Novak, M. G.; Mannino, A.; Hudgins, C.; Thornhill, K. L., II; Crosbie, E.; Winstead, E.; Anderson, B.; Martin, R.; Shook, M.; Ziemba, L. D.; Beyersdorf, A. J.; Corr, C.

    2017-12-01

    A new in situ spectral aerosol extinction instrument (custom built, SpEx) built to cover the 300-700 nm range at 1 nm spectral resolution and temporal resolution of 4 minutes was deployed on the top deck ( 10 m above the water surface) of the R/V Onnuri during the KORUS-OC research cruise around South Korea in spring 2016. This new instrument was one component of a suite of in situ aerosol optical measurements that included 3-visible-wavelength scattering (Airphoton IN101 Nephelometer, at 450, 532, & 632 nm) and absorption (Brechtel Tricolor Absorption Photometer Model 2901, at 467, 528, & 652 nm) with sub-minute temporal resolution; two sets of filters (Teflon and glass fiber, both collected over 3 hour daytime and 12 hour overnight intervals) to provide aerosol absorption spectra over the same wavelength range as SpEx. The glass fiber filters were placed in the center of an integrating sphere (Labsphere DRA-CA-30) attached to a dual beam spectrophotometer (Cary 100 Bio UV-Visible Spectrophotometer) to measure total aerosol absorption spectra via an established method used by the ocean color community to obtain absorption spectra from particles suspended in sea water. Adapting this methodology for atmospheric aerosol measurements provides a new avenue to obtain spectral total aerosol absorption, particularly useful for expanding in situ measurement capabilities into the UV range. The Teflon filters were cut in half with one half extracted in deionized water and the other half extracted in methanol. The solutions were filtered and injected into a liquid waveguide capillary cell (World Precision Instruments LWCC-3100, 100 cm pathlength) to measure the absorption spectra for each solution. In addition, the water extracts were measured via ion chromatography (Dionex ICS-3000 Ion Chromatography System) to obtain water-soluble inorganic ion concentrations, as well as via aerosol mass spectrometry (Aerodyne Research, Inc. HR-ToF High Resolution Aerosol Mass Spectrometer) to obtain organic aerosol concentrations. Results from the KORUS-OC data set will be discussed. In particular, the relationships between the optical information and chemical information will be examined.

  8. A Very Much Faster and More Sensitive In Situ Stable Isotope Analysis Instrument

    NASA Astrophysics Data System (ADS)

    Coleman, M.; Christensen, L. E.; Kriesel, J. M.; Kelly, J. F.; Moran, J. J.; Vance, S.

    2016-10-01

    We are developing, Capillary Absorption Spectrometry (CAS) for H and O stable isotope analyses, giving > 4 orders of magnitude improved sensitivity, allowing analysis of 5 nano-moles of water and coupled to laser sampling to free water from hydrated minerals and ice.

  9. Flame atomic absorption spectrometric determination of trace amounts of nickel after extraction and preconcentration onto natural modified analcime zeolite loaded with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol.

    PubMed

    Afzali, Darush; Taher, Mohammad Ali; Mostafavi, Ali; Mahani, Mohammad Khayatzadeh

    2005-01-01

    Nickel is a moderately toxic element compared with other transition metals. However, inhalation of nickel and its compounds leads to serious problems, including cancer of the respiratory system and a skin disorder, nickel-eczema. Thus, attention has focused on the toxicity of nickel at low concentrations, and the development of reliable, analytical approaches for the determination of trace amounts of nickel is needed. This paper describes a simple, rapid, and sensitive flame atomic absorption spectrometric method for the determination of trace amounts of nickel in various samples after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex on a modified Analcime column in the pH range of 7.5-10.5. The retained analyte on the Analcime is recovered with 5.0 mL 2 M nitric acid and determined by flame atomic absorption spectrometry. The detection limit is 20 ng/mL, and the calibration curve is linear for analyte concentrations in the range of 0.1-8 microg/mL final solution, with a correlation coefficient of 0.9993. Eight replicate determinations of nickel at 2 microg/mL in the final solution gave an absorbance of 0.1222, with a relative standard deviation (RSD) of +/-1.2%. The interference of a large number of anions and cations was studied, and the proposed method was used for the determination of nickel in various standard reference samples. The accuracy of the proposed method was evaluated by analyzing standard reference samples, and the results were satisfactory (recoveries of >96%; RSD of <3.5%).

  10. Comparison of Spectrophotometric Methods for the Determination of Copper in Sugar Cane Spirit.

    PubMed

    Soares, Sarah Adriana R; Costa, Silvânio Silvério L; Araujo, Rennan Geovanny O; Teixeira, Leonardo Sena Gomes; Dantas, Alailson Falcão

    2018-05-01

    Three spectrophotometric methods were developed for the determination of copper (Cu) in sugar cane spirit using the chromogenic reagents neocuproine, cuprizone, and bathocuproine. Experimental conditions, such as reagent concentration, reducer concentration, pH, buffer concentration, the order of addition of reagents, and the stability of the complexes, were optimized. The work range was established from 1.0 to 10.0 µg/mL, with correlation coefficients of >0.999 for all three optimized methods. The methods were evaluated regarding accuracy by addition and recovery tests at five concentration levels, and the obtained recoveries ranged from 91 to 105% (n = 3). Precision was expressed as RSD (relative standard deviation), with values ranging from 0.01 to 0.17% (n = 10). The method using the chromogenic reagent cuprizone presented the greatest molar absorptivity, followed by bathocuproine and neocuproine. The methods were applied for the determination of Cu in sugar cane spirit, and the results were compared with a reference method by flame atomic absorption spectrometry (FAAS). Calibration curve solutions for FAAS analysis were prepared in a 40% (v/v) alcohol medium in a range of concentrations from 0.5 up to 5 µg/mL. Measurements for Cu determination were carried out at a wavelength of 324.7 nm. The concentrations obtained for Cu in sugar cane spirit samples from Brazil were between 1.99 and 12.63 µg/mL, and about 75% of the samples presented Cu concentrations above the limit established by Brazilian legislation (5.0 µg/mL or 5.0 mg/L).

  11. Simplified sample treatment for the determination of total concentrations and chemical fractionation forms of Ca, Fe, Mg and Mn in soluble coffees.

    PubMed

    Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna

    2014-11-15

    A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily; Hall, Gregory

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  13. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE PAGES

    Goncharov, Vasily; Hall, Gregory

    2016-08-25

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  14. Determination of Zn-citrate in human milk by CIM monolithic chromatography with atomic and mass spectrometry detection.

    PubMed

    Milačič, Radmila; Ajlec, Dejan; Zuliani, Tea; Žigon, Dušan; Ščančar, Janez

    2012-11-15

    In human milk zinc (Zn) is bound to proteins and low molecular mass (LMM) ligands. Numerous investigations demonstrated that Zn bioavailability in human milk is for infant much higher than in cow's milk. It was presumed that in the LMM human milk fraction highly bioavailable Zn-citrate prevails. However, literature data are controversial regarding the amount of Zn-citrate in human milk since analytical procedures reported were not quantitative. So, complex investigation was carried out to develop analytical method for quantitative determination of this biologically important molecule. Studies were performed within the pH range 5-7 by the use of synthetic solutions of Zn-citrate prepared in HEPES, MOPS and MES buffers. Zn-citrate was separated on weak anion-exchange convective interaction media (CIM) diethylaminoethyl (DEAE) monolithic chromatographic column using NH(4)NO(3) as an eluent. Separated Zn species were determined by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS). Quantitative separation of Zn-citrate complexes ([Zn(Cit)](-) and [Zn(Cit)(2)](4-); column recoveries 94-102%) and good repeatability and reproducibility of results with relative standard deviation (RSD±3.0%) were obtained. In fractions under the chromatographic peaks Zn-binding ligand was identified by electrospray ionization tandem mass spectrometry (ESI-MS-MS). Limits of detection (LOD) for determination of Zn-citrate species by CIM DEAE-FAAS and CIM DEAE-ICP-MS were 0.01 μg Zn mL(-1) and 0.0005 μg Zn mL(-1), respectively. Both techniques were sensitive enough for quantification of Zn-citrate in human milk. Results demonstrated that about 23% of total Zn was present in the LMM milk fraction and that LMM-Zn corresponded to Zn-citrate. The developed speciation method represents a reliable analytical tool for investigation of the percentage and the amount of Zn-citrate in human milk. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of anymore » separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate and precise method of measuring drug compounds in biological matrices.« less

  16. Risks of toxic ash from artisanal mining of discarded cellphones.

    PubMed

    Hibbert, Kathleen; Ogunseitan, Oladele A

    2014-08-15

    The potential environmental and human health impacts of artisanal mining of electronic waste through open incineration were investigated. A market-representative set of cellphones was dismantled into four component categories-batteries, circuit boards, plastics and screens. The components were shredded, sieved and incinerated at 743-818 °C. The concentrations of 17 metals were determined using U.S. EPA methods 6010C (inductively coupled plasma-atomic emission spectrometry; 6020A (inductively coupled plasma-mass spectrometry, or 7471B and 7470A (cold-vapor atomic absorption). EPA Method 8270 (gas chromatography/mass spectrometry) was used to identify polyaromatic hydrocarbon compounds and polybrominated diphenyl ethers. EPA Method 8082A was used to measure polychlorinated biphenyls and EPA Method 8290 was used for dioxin/furans in the residue ash. The life cycle assessment model USEtox(®) was used to estimate impacts of the ash residue chemicals on human health and the ecosystem. Among metals, copper in printed circuit boards had the highest ecotoxicity impact (1610-1930PAFm(3)/kg); Beryllium in plastics had the highest impact on producing non-cancer diseases (0.14-0.44 cases/kg of ash); and Nickel had the largest impact on producing cancers (0.093-0.35 cases/kg of ash). Among organic chemicals, dioxins from incinerated batteries produced the largest ecotoxicological impact (1.07E-04 to 3.64E-04PAFm(3)/kg). Furans in incinerated batteries can generate the largest number of cancers and non-cancer diseases, representing 8.12E-09 to 2.28E-08 and 8.96E-10 and 2.52E-09 cases/kg of ash, respectively. The results reveal hazards of burning discarded cellphones to recover precious metals, and pinpoints opportunities for manufacturers to reduce toxic materials used in specific electronic components marketed globally. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. [Determination of heavy metals for RoHS compliance by ICP-OES spectrometry coupled with microwave extraction system].

    PubMed

    Hua, Li; Wu, Yi-Ping; An, Bing; Lai, Xiao-Wei

    2008-11-01

    The harm of heavy metals contained in electronic and electrical equipment (EEE) on environment is of high concern by human. Aiming to handle the great challenge of RoHS compliance, the determinations of trace or ultratrace chromium (Cr), cadmium (Cd), mercury (Hg) and lead (Pb) by inductively coupled plasma optical emission spectrometry (ICP-OES) was performed in the present paper, wherein, microwave extraction technology was used to prepare the sample solutions. In addition, the precision, recovery, repeatability and interference issues of this method were also discussed. The results exhibited that using the microwave extraction system to prepare samples is more quick, lossless, contamination-free in comparison with the conventional extraction methods such as dry ashing, wet-oven extraction etc. By analyzing the recoveries of these four heavy metals over different working time and wavelengths, the good recovery range between 85% and 115% showed that there was only tiny loss or contamination during the process of microwave extraction, sample introduction and ICP detection. Repeatability experiments proved that ICP plasma had a good stability during the working time and the matrix effect was small. Interference was a problem troublesome for atomic absorption spectrometry (AAS), however, the techniques of standard additions or inter-element correction (IEC) method can effectively eliminated the interferences of Ni, As, Fe etc. with the Cd determination. By employing the multi-wavelengths and two correction point methods, the issues of background curve sloping shift and spectra overlap were successfully overcome. Besides, for the determinations of trace heavy metal elements, the relative standard deviation (RSD) was less than 3% and the detection limits were less than 1 microg x L(-10 (3sigma, n = 5) for samples, standard solutions, and standard additions, which proved that ICP-OES has a good precision and high reliability. This provided a reliable technique support for electronic and electrical (EE) industries to comply with RoHS directive.

  18. Quantification of absorption, retention and elimination of two different oral doses of vitamin A in Zambian boys using accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aklamati, E K; Mulenga, M; Dueker, S R

    A recent survey indicated that high-dose vitamin A supplements (HD-VAS) had no apparent effect on vitamin A (VA) status of Zambian children <5 y of age. To explore possible reasons for the lack of response to HD-VAS among Zambian children, we quantified the absorption, retention, and urinary elimination of either a single HDVAS (60 mg) or a smaller dose of stable isotope (SI)-labeled VA (5 mg), which was used to estimate VA pool size, in 3-4 y old Zambian boys (n = 4 for each VA dose). A 25 nCi tracer dose of [{sup 14}C{sub 2}]-labeled VA was co-administered withmore » the HD-VAS or SI-labeled VA, and 24-hr stool and urine samples were collected for 3 and 7 consecutive days, respectively, and 24-hr urine samples at 4 later time points. Accelerator Mass Spectrometry (AMS) was used to measure the cumulative excretion of {sup 14}C in stool and urine 3d after dosing to estimate, respectively, absorption and retention of the VAS and SI-labeled VA. The urinary elimination rate (UER) was estimated by plotting {sup 14}C in urine vs. time, and fitting an exponential equation to the data. Estimates of mean absorption, retention and the UER were 83.8 {+-} 7.1%, 76.3 {+-} 6.7%, and 1.9 {+-} 0.6%/d, respectively, for the HD-VAS and 76.5 {+-} 9.5%, 71.1 {+-} 9.4%, and 1.8 {+-} 1.2%/d, respectively for the smaller dose of SI-labeled VA. Estimates of absorption, retention and the UER did not differ by size of the VA dose administered (P=0.26, 0.40, 0.88, respectively). Estimated absorption and retention were negatively associated with reported fever (P=0.011) and malaria (P =0.010). HD-VAS and SI-labeled VA were adequately absorbed, retained and utilized in apparently healthy Zambian preschool-age boys, although absorption and retention may be affected by recent infections.« less

  19. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A

    2016-10-01

    This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The researches on the application of atomic-emission spectroscopy method with inductively coupled plasma as a comparative method were conducted. In addition, the trueness control of the obtained results is confirmed by added-found method. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Matching the laser wavelength to the absorption properties of matrices increases the ion yield in UV-MALDI mass spectrometry.

    PubMed

    Wiegelmann, Marcel; Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-09-01

    A high analytical sensitivity in ultraviolet matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is only achieved if the laser wavelength corresponds to a high optical absorption of the matrix. Laser fluence and the physicochemical properties of the compounds, e.g., the proton affinity, also influence analytical sensitivity significantly. In combination, these parameters determine the amount of material ejected per laser pulse and the ion yield, i.e., the fraction of ionized biomolecules. Here, we recorded peptide ion signal intensities as a function of these parameters. Three cinnamic acid matrices were investigated: α-cyano-4-hydroxycinnamic acid, α-cyano-4-chlorocinnamic acid, and α-cyano-2,4-difluorocinnamic acid. In addition, 2,5-dihydroxybenzoic acid was used in comparison experiments. Ion signal intensities "per laser shot" and integrated ion signal intensities were acquired over 900 consecutive laser pulses applied on distinct positions on the dried-droplet sample preparations. With respect to laser wavelength, the two standard MALDI wavelengths of 337/355 nm were investigated. Also, 305 or 320 nm was selected to account for the blue-shifted absorption profiles of the halogenated derivatives. Maximal peptide ion intensities were obtained if the laser wavelength fell within the peak of the absorption profile of the compound and for fluences two to three times the corresponding ion detection threshold. The results indicate ways for improving the analytical sensitivity in MALDI-MS, and in particular for MALDI-MS imaging applications where a limited amount of material is available per irradiated pixel.

  1. Application of thermospray flame furnace atomic absorption spectrometry for investigation of silver nanoparticles.

    PubMed

    Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya

    2017-03-01

    Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min -1 through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.

  2. Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry.

    PubMed

    Qi, Lian-Wen; Chen, Chun-Yun; Li, Ping

    2009-10-01

    A fast liquid chromatography method with diode-array detection (DAD) and time-of-flight mass spectrometry (TOF-MS) has been developed for analysis of constituents in Flos Lonicerae Japonicae (FLJ), a traditional Chinese medicine derived from the flower bud of Lonicera japonica. The chromatographic analytical time decreased to 25 min without sacrificing resolution using a column packed with 1.8-microm porous particles (4.6 x 50 mm), three times faster than the performance of conventional 5.0-microm columns (4.6 x 150 mm). Four major groups of compounds previously isolated from FLJ were structurally characterized by DAD-TOF-MS: iridoid glycosides showed maximum UV absorption at 240 nm; phenolic acids at 217, 242, and 326 nm; flavonoids at 255 and 355 nm; while saponins had no absorption. In electrospray ionization (ESI)-TOF-MS experiments, elimination of a glucose unit (162 Da), and successive losses of H(2)O, CH(3)OH and CO, were generally observed in iridoid glycosides; saponins were characterized by a series of identical aglycone ions; phenolic acids typically generated a base peak at [M-H-caffeoyl](-) by loss of a caffeic acid unit (162 Da) and several marked quinic acid moiety ions; cleavage of the glycosidic bond (loss of 162 or 308 Da), subsequent losses of H(2)O, CO, RDA and C-ring fragmentation were the most possible fragmentation pathways for flavonoids. By accurate mass measurements within 4 ppm error for each molecular ion and subsequent fragment ions, as well as the 'full mass spectral' information of TOF-MS, a total of 41 compounds including 13 iridoid glycosides, 11 phenolic acids, 7 saponins, and 10 flavonoids were identified in a methanolic extract of FLJ. Copyright (c) 2009 John Wiley & Sons, Ltd.

  3. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer)

    PubMed Central

    Hernández-Zavala, Araceli; Matoušek, Tomáš; Drobná, Zuzana; Paul, David S.; Walton, Felecia; Adair, Blakely M.; Jiří, Dědina; Thomas, David J.

    2008-01-01

    Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specific analysis of As species in biological matrices by hydride-generation atomic absorption spectrometry (HG-AAS), using cryotrapping (CT) for preconcentration and separation of arsines. To improve performance and detection limits of the method, HG and CT steps are automated and a conventional flame-in-tube atomizer replaced with a recently developed multiple microflame quartz tube atomizer (multiatomizer). In this system, arsines from AsIII-species are generated in a mixture of Tris-HCl (pH 6) and sodium borohydride. For generation of arsines from both AsIII- and AsV-species, samples are pretreated with L-cysteine. Under these conditions, dimethylthioarsinic acid, a newly described metabolite of iAs, does not interfere significantly with detection and quantification of methylated trivalent arsenicals. Analytical performance of the automated HG-CT-AAS was characterized by analyses of cultured cells and mouse tissues that contained mono- and dimethylated metabolites of iAs. The capacity to detect methylated AsIII- and AsV-species was verified, using an in vitro methylation system containing recombinant rat arsenic (+3 oxidation state) methyltransferase and cultured rat hepatocytes treated with iAs. Compared with the previous HG-CT-AAS design, detection limits for iAs and its metabolites have improved significantly with the current system, ranging from 8 to 20 pg. Recoveries of As were between 78 and 117%. The precision of the method was better than 5% for all biological matrices examined. Thus, the automated HG-CT-AAS system provides an effective and sensitive tool for analysis of all major human metabolites of iAs in complex biological matrices. PMID:18677417

  4. Speciation and determination of ultra trace amounts of inorganic tellurium in environmental water samples by dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry.

    PubMed

    Najafi, Nahid Mashkouri; Tavakoli, Hamed; Alizadeh, Reza; Seidi, Shahram

    2010-06-18

    A simple and powerful method has been developed for the rapid and selective determination of Te(IV) and Te(VI), employing dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry using palladium as permanent modifier. Under acidic conditions pH 1, only Te(IV) can form a complex with ammonium pyrrolidine dithiocarbamate (APDC) and therefore be extracted into fine droplets of carbon tetrachloride (extraction solvent) which are dispersed with ethanol into the water sample solution. After centrifugation, Te(IV) was determined in the sedimented organic phase while Te(VI) remained in the aqueous phase. Total inorganic tellurium was determined after the reduction of the Te(VI) to Te(IV). Te(VI) was calculated as the difference between the measured total inorganic tellurium and Te(IV) content. The effective parameters for improving the efficiency of microextraction process were investigated by using experimental and central composite designs. Under optimal conditions the enrichment factor was 125 and the calibration graph was linear in the range of 0.015-1 ng mL(-1) with detection limit and characteristic mass of 0.004 ng mL(-1) and 0.033 pg, respectively. The relative standard deviation for 0.5 ng mL(-1) of tellurium measurement was 3.6% (n=6) at ash and atomization temperature, 900 and 2600 degrees C, respectively. The recoveries of spiked Te(IV) and Te(VI) to the environmental water samples were 89.6-101.3% and 96.6-99.1%, respectively. The accuracy is also evaluated by applying the proposed method to certified reference material (NIST SRM 1643e), for which the result was in a good agreement with the certified values reported for this CRM (95% confidence level). 2010 Elsevier B.V. All rights reserved.

  5. Combination of dispersive liquid-liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples.

    PubMed

    Naseri, Mohammad Taghi; Hemmatkhah, Payam; Hosseini, Mohammad Reza Milani; Assadi, Yaghoub

    2008-03-03

    The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 microL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 microgL(-1) with a detection limit of 0.5 microgL(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 microgL(-1) of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 microgL(-1) ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.

  6. Determination of diphenylarsinic acid, phenylarsonic acid and inorganic arsenic in drinking water by graphite-furnace atomic-absorption spectrometry after simultaneous separation and preconcentration with solid-phase extraction disks.

    PubMed

    Hagiwara, Kenta; Inui, Tetsuo; Koike, Yuya; Nakamura, Toshihiro

    2013-01-01

    A simple method of graphite-furnace atomic-absorption spectrometry (GFAAS) after solid-phase extraction (SPE) was developed for the determination of diphenylarsinic acid (DPAA), phenylarsonic acid (PAA), and inorganic arsenic (iAs) in drinking water. This method involves the simultaneous collection of DPAA, PAA, and iAs using three stacked SPE disks, i.e., an Empore SDB-XD disk (the upper layer), an activated carbon disk (the middle layer), and a Cation-SR disk loaded with Zr and Ca (ZrCa-CED; the lower layer). A 200-mL aqueous sample was adjusted to pH 3 with nitric acid and passed through the SPE disks at a flow rate of 15 mL min(-1), to concentrate DPAA on the SDB-XD disk, PAA on the activated carbon disk, and iAs on the ZrCa-CED. The As compounds were eluted from the disks with 10 mL of ethanol containing 0.5 mol L(-1) ammonia solution for DPAA, 20 mL of 1 mol L(-1) ammonia solution for PAA, and 20 mL of 6 mol L(-1) hydrochloric acid for iAs. The eluates of DPAA, PAA, and iAs were diluted to 20, 25, and 25 mL, respectively, with deionized water, and then analyzed by GFAAS. The detection limits of As (three-times the standard deviation (n = 3) of the blank values) were 0.13 and 0.16 μg L(-1) at enrichment factors of 10 and 8, respectively, using a 200-mL water sample. Spike tests with 2 μg (10 μg L(-1)) of DPAA, PAA, and iAs in 200 mL of tap water and bottled drinking water showed good recoveries (96.1-103.8%).

  7. The Moss Techniques for Air Pollution Study in Bulgaria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinova, S.; Marinov, A.; Frontasyeva, M.

    2010-01-21

    The paper presents new results on atmospheric deposition of 41 elements in four areas of Bulgaria during the European moss survey in 2005. The results have been obtained by the moss biomonitoring technique. Ninety seven moss samples were analyzed by instrumental neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS).

  8. Development, validation and accreditation of a method for the determination of Pb, Cd, Cu and As in seafood and fish feed samples.

    PubMed

    Psoma, A K; Pasias, I N; Rousis, N I; Barkonikos, K A; Thomaidis, N S

    2014-05-15

    A rapid, sensitive, accurate and precise method for the determination of Pb, Cd, As and Cu in seafood and fish feed samples by Simultaneous Electrothermal Atomic Absorption Spectrometry was developed in regard to Council Directive 333/2007EC and ISO/IEC 17025 (2005). Different approaches were investigated in order to shorten the analysis time, always taking into account the sensitivity. For method validation, precision (repeatability and reproducibility) and accuracy by addition recovery tests have been assessed as performance criteria. The expanded uncertainties based on the Eurachem/Citac Guidelines were calculated. The method was accredited by the Hellenic Accreditation System and it was applied for an 8 years study in seafood (n=202) and fish feeds (n=275) from the Greek market. The annual and seasonal variation of the elemental content and correlation among the elemental content in fish feeds and the respective fish samples were also accomplished. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Levels of lead in foods from the first French total diet study on infants and toddlers.

    PubMed

    Guérin, Thierry; Le Calvez, Emilie; Zinck, Julie; Bemrah, Nawel; Sirot, Véronique; Leblanc, Jean-Charles; Chekri, Rachida; Hulin, Marion; Noël, Laurent

    2017-12-15

    Infants and toddlers are highly vulnerable to exposure to lead due to its higher absorption in small children than in adults. This study describes the optimisation and validation of a very sensitive method for the determination of low levels of lead in foods mostly consumed by infants and toddlers. This method, based on inductively coupled plasma-mass spectrometry with a programmable temperature cyclonic spray chamber, attained a limit of quantification (LOQ) of 0.6 or 0.9µgPbkg -1 for a liquid or a solid sample, that was improved by a factor 5.6-8.3 compared to the previous method (LOQ: 5µgkg -1 ). The analytical method was then applied to 291 food samples from the first French total diet study on infants and toddlers. Lead was detected in most samples at relatively low concentrations (range 0.0-16µgkg -1 ). The highest lead concentrations were mainly found in processed food products (e.g. products containing chocolate). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to manuka honey.

    PubMed

    Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.

  12. Determination of Mineral, Trace Element, and Pesticide Levels in Honey Samples Originating from Different Regions of Malaysia Compared to Manuka Honey

    PubMed Central

    Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination. PMID:24982869

  13. [Determination of trace lead and iron in nickel chloride and manganese sulfate by flame atomic absorption spectrometry after coprecipitation with yttrium phosphate].

    PubMed

    Su, Yao-Dong; Zhu, Wen-Ying; Ma, Hong-Mei; Chen, Long-Wu

    2006-09-01

    Using yttrium phosphate as the coprecipitation collector for the separation and preconcentration of trace lead and iron in nickel chloride and manganese sulfate, flame atomic absorption spectrometric (FAAS) determination was described in the present paper. Coprecipitation parameters including the pH of the solution, and the amounts of YCl3 and H3 PO4 were discussed. It was found that lead and iron in nickel chloride could be coprecipitated quantitatively in the range of pH 3.0-4.0, and so could be lead in manganese sulfate. The detection limits (3sigma) of lead and iron in 20 mL solution were 1.63 x 10(-2) mg x L(-1) and 4.58 x 10(-2) mg x L(-1) respectively. In NiCl2 solution the standard addition recoveries for lead and iron were 100.91% and 99.73% respectively, and in MnSO4 solution the standard addition recoveries were 99.45% and 98.98% respectively. The method has eliminated the interference of matrix, and the result is satisfied.

  14. Atomic and molecular gas phase spectrometry

    NASA Astrophysics Data System (ADS)

    Winefordner, J. D.

    1985-10-01

    The major goals of this research have been to develop diagnostical spectroscopic methods for measuring spatial/temporal temperatures and species of combustion flames and plasmas and to develop sensitive, selective, precise, reliable, rapid spectrometric methods of trace analysis of elements present in jet engine lubricating oils, metallurgical samples, and engine exhausts. The diagnostical approaches have been based upon the measurement of metal probes introduced into the flame or plasmas and the measurement of OH in flames. The measurement approaches have involved the use of laser-excited fluorescence, saturated absorption, polarization, and linear absorption. The spatial resolution in most studies is less than 1 cu mm and the temporal resolution is less than 10 ns with the use of pulsed lasers. Single pulse temperature and species measurements have also been carried out. Other diagnostical studies have involved the measurement of collisional redistribution of radiatively excited levels of Na and Tl in acetylene/02/Ar flames and the measurement of lifetimes and quantum efficiencies of atoms and ions in the inductively coupled plasmas, ICP. The latter studies indicate that the high electron number densities in ICPs are not efficient quenchers of excited atoms/ions. Temperatures of microwave atmospheric plasmas produced capacitatively and cool metastable N2 discharge produced by a dielectric discharge have also been measured.

  15. Selenium speciation using capillary electrophoresis coupled with modified electrothermal atomic absorption spectrometry after selective extraction with 5-sulfosalicylic acid functionalized magnetic nanoparticles.

    PubMed

    Yan, Lizhen; Deng, Biyang; Shen, Caiying; Long, Chanjuan; Deng, Qiufen; Tao, Chunyao

    2015-05-22

    A new method for selenium speciation in fermented bean curd wastewater and juice was described. This method involved sample extraction with 5-sulfosalicylic acid (SSA)-functionalized silica-coated magnetic nanoparticles (SMNPs), capillary electrophoresis (CE) separation, and online detection with a modified electrothermal atomic absorption spectrometry (ETAAS) system. The modified interface for ETAAS allowed for the introduction of CE effluent directly through the end of the graphite tube. Elimination of the upper injection hole of the graphite tube reduced the loss of the anlayte and enhanced the detection sensitivity. The SSA-SMNPs were synthesized and used to extract trace amounts of selenite [Se(IV)], selenite [Se(VI)], selenomethionine (SeMet), and selenocystine (SeCys2) from dilute samples. The concentration enrichment factors for Se(VI), Se(IV), SeMet, and SeCys2 were 21, 29, 18, and 12, respectively, using the SSA-SMNPs extraction. The limits of detection for Se(VI), Se(IV), SeMet, and SeCys2 were 0.18, 0.17, 0.54, 0.49ngmL(-1), respectively. The RSD values (n=6) of method for intraday were observed between 0.7% and 2.9%. The RSD values of method for interday were less than 3.5%. The linear range of Se(VI) and Se(IV) were in the range of 0.5-200ngmL(-1), and the linear ranges of SeMet and SeCys2 were 2-500 and 2-1000ngmL(-1), respectively. The detection limits of this method were improved by 10 times due to the enrichment by the SSA-SMNP extraction. The contents of Se(VI) and Se(IV) in fermented bean curd wastewater were measured as 3.83 and 2.62ngmL(-1), respectively. The contents of Se(VI), Se(IV), SeMet, and SeCys2 in fermented bean curd juice were determined as 6.39, 4.08, 2.77, and 4.00ngmL(-1), respectively. The recoveries were in the range of 99.14-104.5% and the RSDs (n=6) of recoveries between 0.82% and 3.5%. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Quality-assurance data for routine water analysis in the National Water-Quality Laboratory of the US Geological Survey for water year 1988

    USGS Publications Warehouse

    Lucey, K.J.

    1989-01-01

    The US Geological Survey maintains a quality assurance program based on the analysis of reference samples for its National Water Quality Laboratory located in Denver, Colorado. Reference samples containing selected inorganic, nutrient, and precipitation (low-level concentration) constituents are prepared at the Survey 's Water Quality Services Unit in Ocala, Florida, disguised as routine samples, and sent daily or weekly, as appropriate, to the laboratory through other Survey offices. The results are stored permanently in the National Water Data Storage and Retrieval System (WATSTORE), the Survey 's database for all water data. These data are analyzed statistically for precision and bias. An overall evaluation of the inorganic major ion and trace metal constituent data for water year 1988 indicated a lack of precision in the National Water Quality Laboratory for the determination of 8 out of 58 constituents: calcium (inductively coupled plasma emission spectrometry), fluoride, iron (atomic absorption spectrometry), iron (total recoverable), magnesium (atomic absorption spectrometry), manganese (total recoverable), potassium, and sodium (inductively coupled plasma emission spectrometry). The results for 31 constituents had positive or negative bias during water year 1988. A lack of precision was indicated in the determination of three of the six nutrient constituents: nitrate plus nitrite nitrogen as nitrogen, nitrite nitrogen as nitrogen, and orthophosphate as phosphorus. A biased condition was indicated in the determination of ammonia nitrogen as nitrogen, ammonia plus organic nitrogen as nitrogen, and nitrate plus nitrite nitrogen as nitrogen. There was acceptable precision in the determination of all 10 constituents contained in precipitation samples. Results for ammonia nitrogen as nitrogen, sodium, and fluoride indicated a biased condition. (Author 's abstract)

  17. Application of Zeeman graphite furnace atomic absorption spectrometry with high-frequency modulation polarization for the direct determination of aluminum, beryllium, cadmium, chromium, mercury, manganese, nickel, lead, and thallium in human blood.

    PubMed

    Ivanenko, Natalya B; Solovyev, Nikolay D; Ivanenko, Anatoly A; Ganeev, Alexander A

    2012-10-01

    Determination of aluminum (Al), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and thallium (Tl) concentrations in human blood using high-frequency modulation polarization Zeeman graphite furnace atomic absorption spectrometry (GFAAS) was performed. No sample digestion was used in the current study. Blood samples were diluted with deionized water or 0.1 % (m/v) Triton X-100 solution for Tl. Dilution factors ranged from 1/5 per volume for Be and Tl to 1/20 per volume for Cd and Pb. For Tl, Cd, and Hg, noble metals (gold, platinum, rhodium, etc.) were applied as surface modifiers. To mitigate chloride interference, 2 % (m/v) solution of NH(4)NO(3) was used as matrix modifier for Tl and Ni assessment. The use of Pd(NO(3))(2) as oxidative modifier was necessary for blood Hg and Tl measurement. Validation of the methods was performed by analyzing two-level reference material Seronorm. The precision of the designed methods as relative SD was between 4 and 12 % (middle of a dynamic range) depending on the element. For additional validation, spiked blood samples were analyzed. Limits of detection (LoDs, 3σ, n = 10) for undiluted blood samples were 2.0 μg L(-1) for Al, 0.08 μg L(-1) for Be, 0.10 μg L(-1) for Cd, 2.2 μg L(-1) for Cr, 7 μg L(-1) for Hg, 0.4 μg L(-1) for Mn, 2.3 μg L(-1) for Ni, 3.4 μg L(-1) for Pb, and 0.5 μg L(-1) for Tl. The LoDs achieved allowed determination of Al, Cd, Cr, Mn, Ni, and Pb at both toxic and background levels. Be, Hg, and Tl could be reliably measured at toxic levels only. The methods developed are used for clinical diagnostics and biological monitoring of work-related exposure.

  18. Rate constant for the reaction NH2 + NO from 216 to 480 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Brobst, W. D.; Nava, D. F.; Borkowski, R. P.; Michael, J. V.

    1982-01-01

    The absolute rate constant was measured by the technique of flash photolysis-laser induced fluorescence (FP-LIF). NH2 radicals were produced by the flash photolysis of ammonia and the fluorescent NH2 photons were measured by multiscaling techniques. At each temperature, the results were independent of variations in total pressure, and flash intensity. The results are compared with previous determinations using the techniques of mass spectrometry, absorption spectroscopy, laser absorption spectroscopy, and laser induced fluorescence. The implications of the results are discussed with regard to combustion, post combustion, and atmospheric chemistry. The results are also discussed theoretically.

  19. Spectroscopic properties for identifying sapphire samples from Ban Bo Kaew, Phrae Province, Thailand

    NASA Astrophysics Data System (ADS)

    Mogmued, J.; Monarumit, N.; Won-in, K.; Satitkune, S.

    2017-09-01

    Gemstone commercial is a high revenue for Thailand especially ruby and sapphire. Moreover, Phrae is a potential gem field located in the northern part of Thailand. The studies of spectroscopic properties are mainly to identify gemstone using advanced techniques (e.g. UV-Vis-NIR spectrophotometry, FTIR spectrometry and Raman spectroscopy). Typically, UV-Vis-NIR spectrophotometry is a technique to study the cause of color in gemstones. FTIR spectrometry is a technique to study the functional groups in gem-materials. Raman pattern can be applied to identify the mineral inclusions in gemstones. In this study, the natural sapphires from Ban Bo Kaew were divided into two groups based on colors including blue and green. The samples were analyzed by UV-Vis-NIR spectrophotometer, FTIR spectrometer and Raman spectroscope for studying spectroscopic properties. According to UV-Vis-NIR spectra, the blue sapphires show higher Fe3+/Ti4+ and Fe2+/Fe3+ absorption peaks than those of green sapphires. Otherwise, green sapphires display higher Fe3+/Fe3+ absorption peaks than blue sapphires. The FTIR spectra of both blue and green sapphire samples show the absorption peaks of -OH,-CH and CO2. The mineral inclusions such as ferrocolumbite and rutile in sapphires from this area were observed by Raman spectroscope. The spectroscopic properties of sapphire samples from Ban Bo Kaew, Phrae Province, Thailand are applied to be the specific evidence for gemstone identification.

  20. Gold nanoparticles synthesis and biological activity estimation in vitro and in vivo.

    PubMed

    Rieznichenko, L S; Dybkova, S M; Gruzina, T G; Ulberg, Z R; Todor, I N; Lukyanova, N Yu; Shpyleva, S I; Chekhun, V F

    2012-01-01

    The aim of the work was the synthesis of gold nanoparticles (GNP) of different sizes and the estimation of their biological activity in vitro and in vivo. Water dispersions of gold nanoparticles of different sizes have been synthesized by Davis method and characterized by laser-correlation spectroscopy and transmission electron microscopy methods. The GNP interaction with tumor cells has been visualized by confocal microscopy method. The enzyme activity was determined by standard biochemical methods. GNP distribution and content in organs and tissues have been determined via atomic-absorption spectrometry method; genotoxic influence has been estimated by "Comet-assay" method. The GNP size-dependent accumulation in cultured U937 tumor cells and their ability to modulate U937 cell membrane Na(+),K(+)-АТР-ase activity value has been revealed in vitro. Using in vivo model of Guerin carcinoma it has been shown that GNP possess high affinity to tumor cells. Our results indicate the perspectives of use of the synthesized GNP water dispersions for cancer diagnostics and treatment. It's necessary to take into account a size-dependent biosafety level of nanoparticles.

Top