Science.gov

Sample records for absorption spectrometry samples

  1. Determination of arsenic and selenium in environmental and agricultural samples by hydride generation atomic absorption spectrometry

    SciTech Connect

    Hershey, J.W.; Oostdyk, T.S.; Keliher, P.N.

    1988-11-01

    Agricultural and environmental samples are digested with acid, and arsenic and selenium are determined using hydride generation atomic absorption spectrometry. Interelement interferences are eliminated by high acid concentrations or cation-exchange resins. Agreement with standard reference material is excellent. The technique is also applied to actual samples.

  2. Differentiation and classification of beers with flame atomic spectrometry and molecular absorption spectrometry and sample preparation assisted by microwaves

    NASA Astrophysics Data System (ADS)

    Bellido-Milla, Dolores; Moreno-Perez, Juana M.; Hernández-Artiga, María. P.

    2000-07-01

    The characterization of beer samples has a lot of interest because their composition can affect the taste and stability of beer and consumer health. Flame atomic absorption spectrometry was used to determine Fe, Mn, Zn, Cu, Mg, Ca and Al. Sodium and K were determined by flame atomic emission spectrometry. A sample preparation method was developed, based on treatment with HNO 3 and H 2O 2 in a microwave oven. This has many advantages over the methods found in the literature. The combination of the results of atomic spectrometry and the spectrum obtained by molecular absorption spectrometry provides information on the inorganic and organic components of the samples. The application of chemometric techniques to chemical composition data could be extremely useful for food quality control. The metal concentrations, the molecular absorption spectrum, the pH and conductivity of each sample were subject to analysis of variance and linear discriminant analysis. Twenty-five different beer samples were used to differentiate and classify different types of beers.

  3. Determination of mercury in sewage sludge by direct slurry sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Baralkiewicz, Danuta; Gramowska, Hanka; Kózka, Małgorzata; Kanecka, Anetta

    2005-03-01

    Ultrasonic slurry sampling electrothermal atomic absorption spectrometry (ETAAS) method was elaborated to the determination of Hg in sewage sludge samples with the use of KMnO 4+Pd modifier. The minimum sample amount required for slurry preparation with respect to sample homogeneity was evaluated by weighting masses between 3 and 30 mg directly into the autosampler cups. Validation of the proposed method was performed with the use of Certified Reference Materials of sewage sludge, CRM 007-040 and CRM 144R. Two sewage sludge samples from Poznañ (Poland) city were analysed using the present direct method and a method with sample digestion, resulting in no difference within statistical error.

  4. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry.

    PubMed

    Bentlin, Fabrina R S; Pozebon, Dirce; Mello, Paola A; Flores, Erico M M

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO3)2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 microg g(-1) of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES).

  5. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  6. Stabilizing agents for calibration in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry.

    PubMed

    Zelinková, Hana; Červenka, Rostislav; Komárek, Josef

    2012-01-01

    Tetramethylene dithiocarbamate (TMDTC), diethyldithiocarbamate (DEDTC), and thiourea were investigated as stabilizing agents for calibration purposes in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS). These agents were used for complexation of mercury in calibration solutions and its thermal stabilization in a solid sampling platform. The calibration solutions had the form of methyl isobutyl ketone (MIBK) extracts or MIBK-methanol solutions with the TMDTC and DEDTC chelates and aqueous solutions with thiourea complexes. The best results were obtained for MIBK-methanol solutions in the presence of 2.5 g L(-1) TMDTC. The surface of graphite platforms for solid sampling was modified with palladium or rhenium by using electrodeposition from a drop of solutions. The Re modifier is preferable due to a higher lifetime of platform coating. A new SS-ETAAS procedure using the direct sampling of solid samples into a platform with an Re modified graphite surface and the calibration against MIBK-methanol solutions in the presence of TMDTC is proposed for the determination of mercury content in solid environmental samples, such as soil and plants.

  7. Evaluation of metal contents of household detergent samples from Turkey by flame atomic absorption spectrometry.

    PubMed

    Soylak, Mustafa; Unsal, Yunus Emre; Tuzen, Mustafa

    2013-11-01

    The concentrations of cadmium, copper, chromium, cobalt, iron, lead, manganese, nickel, and zinc in detergent samples from Kayseri, Turkey were determined by flame atomic absorption spectrometry. HClO₄ (10 mL)/HNO₃ (10 mL) mixture was used for the digestion of household detergent samples. The correctness of the analytical procedures was checked with standard addition-recovery tests in different detergent samples for the investigated metal ions. The concentration ranges of the elements in the detergent samples were found as 17.2-60.1, 11.1-40.1, 2.5-32.3, 8.1-10.5, 7.2-21.6, 9.8-17.9, 1.7-3.8, 12.5-22.5, and 2.0-5.8 μg/g for iron, manganese, zinc, copper, lead, cobalt, cadmium, nickel, and chromium, respectively. The values found in this work were compared with some other studies around the world conducted on detergent samples. PMID:23722641

  8. Fractionation and speciation of Cu, Zn and Fe in wine samples by atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Karadjova, Irina; Izgi, Belgin; Gucer, Seref

    2002-03-01

    A scheme is presented for fractionation of wine components and Fe, Cu and Zn determination in different fractions. The charge of the metal species was established using cation and anion exchange separation based on solid phase extraction. The resin XAD-8 was used for the separation of wine polyphenols in complexes with wine proteins and polysaccharides. Dowex ion exchange resins were used for the separation of cationic and anionic species of Fe, Cu and Zn. Flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry were used off-line for the quantitative determination of metals in the different fractions obtained.

  9. Methylmercury determination in biological samples using electrothermal atomic absorption spectrometry after acid leaching extraction.

    PubMed

    Saber-Tehrani, Mohammad; Hashemi-Moghaddam, Hamid; Givianrad, Mohammad Hadi; Abroomand-Azar, Parviz

    2006-11-01

    An efficient and sensitive method for the determination of methylmercury in biological samples was developed based on acid leaching extraction of methylmercury into toluene. Methylmercury in the organic phase was determined by electrothermal atomic absorption spectrometry (ETAAS). The methylmercury signal was enhanced and the reproducibility increased by formation of certain complexes and addition of Pd-DDC modifier. The complex of methylmercury with DDC produced the optimum analytical signal in terms of sensitivity and reproducibility compared to complexes with dithizone, cysteine, 1,10-phenanthroline, and diethyldithiocarbamate. Method performance was optimized by modifying parameters such as temperature of mineralization, atomization, and gas flow rate. The limit of detection for methylmercury determination was 0.015 mug g(-1) and the RSD of the whole procedure was 12% for human teeth samples (n=5) and 15.8% for hair samples (n=5). The method's accuracy was investigated by using NIES-13 and by spiking the samples with different amounts of methylmercury. The results were in good agreement with the certified values and the recoveries were 88-95%. PMID:16896613

  10. Determination of bismuth in environmental samples by slurry sampling graphite furnace atomic absorption spectrometry using combined chemical modifiers.

    PubMed

    Dobrowolski, Ryszard; Dobrzyńska, Joanna; Gawrońska, Barbara

    2015-01-01

    Slurry sampling graphite furnace atomic absorption spectrometry technique was applied for the determination of Bi in environmental samples. The study focused on the effect of Zr, Ti, Nb and W carbides, as permanent modifiers, on the Bi signal. Because of its highest thermal and chemical stability and ability to substantially increase Bi signal, NbC was chosen as the most effective modifier. The temperature programme applied for Bi determination was optimized based on the pyrolysis and atomization curves obtained for slurries prepared from certified reference materials (CRMs) of the soil and sediments. To overcome interferences caused by sulfur compounds, Ba(NO₃)₂ was used as a chemical modifier. Calibration was performed using the aqueous standard solutions. The analysis of the CRMs confirmed the reliability of the proposed analytical method. The characteristic mass for Bi was determined to be 16 pg with the detection limit of 50 ng/g for the optimized procedure at the 5% (w/v) slurry concentration.

  11. Direct analysis of silica by means of solid sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Resano, M.; Mozas, E.; Crespo, C.; Pérez, J.; García-Ruiz, E.; Belarra, M. A.

    2012-05-01

    This paper reports on the use of solid sampling-graphite furnace atomic absorption spectrometry for the direct analysis of synthetic amorphous silica. In particular, determination of hazardous elements such As, Cd, Cr, Cu, Pb and Sb is investigated, as required by regulations of the food industry. The conclusion of the work is that, after proper optimization of the working conditions, paying particular attention to the atomization temperature and the use of proper modifiers (graphite powder, HNO3 or Pd), it is possible to develop suitable procedures that rely on the use of aqueous standard solutions to construct the calibration curves for all the elements investigated. The proposed method shows important benefits for the cost-effective analysis of such difficult samples in routine labs, permitting fast screening of those elements that are very rarely present in this type of sample, but also accurate quantification of those often found, while offering low limits of detection (always below 0.1 mg g- 1) that comply well with legal requirements, and precision levels that are fit for the purpose (approx. 6-9% R.S.D.).

  12. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dočekal, Bohumil; Vojtková, Blanka

    2007-03-01

    A true direct solid sampling electrothermal atomic absorption spectrometry method with Zeeman-effect background correction (Analytik Jena ZEEnit 60 AAS) was developed for the determination of As, Cd, Hg, Pb, Sb and Zn in powdered titanium dioxide of pharmaceutical, food and cosmetics grade. The interaction of the titanium matrix and graphite surface of the sample carrier boat in a transversely heated graphite tube atomizer was investigated. Conversion of titanium dioxide to interfering TiO 2-TiC-liquid phase, running out the sampling boat, was observed at temperatures above 2000 °C. The temperature program was optimized accordingly for these volatile analytes in atomization and cleaning steps in order to prevent this interference and to prolong significantly the analytical lifetime of the boat to more than one thousand runs. For all elements, calibration by aqueous standard addition method, by wet-chemically analyzed samples with different content of analytes and/or by dosing one sample in different amounts, were proved as adequate quantification procedures. Linear dynamic calibration working ranges can be considerably expanded up to two orders of magnitude within one measurement run by applying three-field dynamic mode of the Zeeman background correction system. The results obtained by true direct solid sampling technique are compared with those of other independent, mostly wet-chemical methods. Very low limits of detection (3 σ criterion) of true solid sampling technique of 21, 0.27, 24, 3.9, 6.3 and 0.9 ng g - 1 were achieved for As, Cd, Hg, Pb, Sb and Zn, respectively.

  13. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    NASA Astrophysics Data System (ADS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; da Silva, Alessandra Furtado; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson José

    2005-06-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 °C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 °C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1.

  14. Slurry sampling techniques for the determination of lead in Bangladeshi fish samples by electrothermal atomic absorption spectrometry with a metal tube atomizer.

    PubMed

    Rahman, Mohammad Arifur; Kaneco, Satoshi; Suzuki, Tohru; Katsumata, Hideyuki; Ohta, Kiyohisa

    2005-05-01

    Ultrasonic slurry sampling electrothermal atomic absorption spectrometry with a metal tube atomizer has been applied to the determination of lead in Bangladeshi fish samples. The slurry sampling conditions, such as slurry stabilizing agent, slurry concentration, pyrolysis temperature for the slurried fish samples, particle size and ultrasonic agitation time, were optimized for electrothermal atomic absorption spectrometry with the Mo tube atomizer. Thiourea was used as the chemical modifier for the interference of matrix elements. The detection limit was 53 fg (3S/N). The determined amount of lead in Bangladeshi fish samples was consistent with those measured in the dissolved acid-digested samples. The advantages of the proposed methods are easy calibration, simplicity, low cost and rapid analysis.

  15. A direct solid sampling electrothermal atomic absorption spectrometry method for the determination of silicon in biological materials

    NASA Astrophysics Data System (ADS)

    Huang, M. D.; Krivan, V.

    2007-03-01

    A solid sampling electrothermal atomic absorption spectrometry method for direct determination of trace silicon in biological materials was developed and applied to analysis of pork liver, bovine liver SRM 1577b and pure cellulose. The organic matrix was destroyed and expelled from the furnace in the pyrolysis stage involving a step-wise increasing the temperature from 160 °C to 1200 °C. The mixed Pd/Mg(NO 3) 2 modifier has proved to be the optimum one with respect to the achievement of maximum sensitivity, elimination of the effect of the remaining inorganic substances and the possibility of using calibration curves measured with aqueous standard solutions for quantification. For the maximum applicable sample amount of 6 mg, the limit of detection was found to be 30 ng g - 1 . The results were compared with those obtained by different spectrometric methods involving sample digestion, by electrothermal atomic absorption spectrometry using slurry sampling, by wavelength dispersive X-ray fluorescence spectrometry and by radiochemical neutron activation analysis. The method seems to be a promising one for analysis of biological materials containing no significant fraction of silicon in form of not naturally occurring volatile organosilicon compounds. The still incessant serious limitations and uncertainties in the determination of trace silicon in solid biological materials are discussed.

  16. Determination of sulphur in various vegetables by solid sampling high-resolution electrothermal molecular absorption spectrometry.

    PubMed

    Gunduz, Sema; Akman, Suleyman

    2015-04-01

    Sulphur was determined in various vegetables via molecular absorption of carbon monosulphide (CS) at 258.056 nm using a solid sampling high resolution continuum source electrothermal atomic absorption spectrometer (SS HR-CS ETAAS). Samples were dried, ground and directly introduced into the ruthenium coated graphite furnace as 0.05 to 0.50mg. All determinations were performed using palladium+citric acid modifier and applying a pyrolysis temperature of 1000 °C and a volatilisation temperature of 2400 °C. The results were in good agreement with certified sulphur concentrations of various vegetal CRM samples applying linear calibration technique prepared from thioacetamide. The limit of detection and characteristic mass of the method were 7.5 and 8.7 ng of S, respectively. The concentrations of S in various spinach, leek, lettuce, radish, Brussels sprouts, zucchini and chard samples were determined. It was showed that distribution of sulphur in CRM and grinded food samples were homogeneous even in micro-scale. PMID:25442545

  17. Determination of sulphur in various vegetables by solid sampling high-resolution electrothermal molecular absorption spectrometry.

    PubMed

    Gunduz, Sema; Akman, Suleyman

    2015-04-01

    Sulphur was determined in various vegetables via molecular absorption of carbon monosulphide (CS) at 258.056 nm using a solid sampling high resolution continuum source electrothermal atomic absorption spectrometer (SS HR-CS ETAAS). Samples were dried, ground and directly introduced into the ruthenium coated graphite furnace as 0.05 to 0.50mg. All determinations were performed using palladium+citric acid modifier and applying a pyrolysis temperature of 1000 °C and a volatilisation temperature of 2400 °C. The results were in good agreement with certified sulphur concentrations of various vegetal CRM samples applying linear calibration technique prepared from thioacetamide. The limit of detection and characteristic mass of the method were 7.5 and 8.7 ng of S, respectively. The concentrations of S in various spinach, leek, lettuce, radish, Brussels sprouts, zucchini and chard samples were determined. It was showed that distribution of sulphur in CRM and grinded food samples were homogeneous even in micro-scale.

  18. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  19. Determination of some trace elements in food and soil samples by atomic absorption spectrometry after coprecipitation with holmium hydroxide.

    PubMed

    Saracoglu, Sibel; Soylak, Mustafa; Cabuk, Dilek; Topalak, Zeynep; Karagozlu, Yasemin

    2012-01-01

    The determination of trace elements in food and soil samples by atomic absorption spectrometry was investigated. A coprecipitation procedure with holmium hydroxide was used for separation-preconcentration of trace elements. Trace amounts of copper(II), manganese(II), cobalt(II), nickel(ll), chromium(lll), iron(Ill), cadmium(ll), and lead(ll) ions were coprecipitated with holmium hydroxide in 2.0 M NaOH medium. The optimum conditions for the coprecipitation process were investigated for several commonly tested experimental parameters, such as amount of coprecipitant, effect of standing time, centrifugation rate and time, and sample volume. The precision, based on replicate analysis, was lower than 10% for the analytes. In order to verify the accuracy of the method, the certified reference materials BCR 141 R calcareous loam soil and CRM 025-050 soil were analyzed. The procedure was successfully applied for separation and preconcentration of the investigated ions in various food and soil samples. An amount of the solid samples was decomposed with 15 mL concentrated hydrochloric acid-concentrated nitric acid (3 + 1). The preconcentration procedure was then applied to the final solutions. The concentration of trace elements in samples was determined by atomic absorption spectrometry.

  20. Determination of lead in hair and its segmental analysis by solid sampling electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Baysal, Asli; Akman, Suleyman

    2010-04-01

    A rapid and practical solid sampling electrothermal atomic absorption spectrometric method was described for the determination of lead in scalp hair. Hair samples were washed once with acetone; thrice with distilled-deionized water and again once with acetone and dried at 75 °C. Typically 0.05 to 1.0 mg of dried samples were inserted on the platforms of solid sampling autosampler. The effects of pyrolysis temperature, atomization temperature, the amount of sample as well as addition of a modifier (Pd/Mg) and/or auxiliary digesting agents (hydrogen peroxide and nitric acid) and/or a surfactant (Triton X-100) on the recovery of lead were investigated. Hair samples were washed once with acetone; thrice with distilled-deionized water and again once with acetone and dried at 75 °C. Typically 0.05 to 1.0 mg of dried samples were inserted on the platforms of solid sampling autosampler. The limit of detection for lead (3 σ, N = 10) was 0.3 ng/g The addition of modifier, acids, oxidant and surfactant hardly improved the results. Due to the risk of contamination and relatively high blank values, the lead in hair were determined directly without adding any reagent(s). Finally, the method was applied for the segmental determination of lead concentrations in hair of different persons which is important to know when and how much a person was exposed to the analyte. For this purpose, 0.5 cm of pieces were cut along the one or a few close strands and analyzed by solid sampling.

  1. Chromium determination in pharmaceutical grade barium sulfate by solid sampling electrothermal atomic absorption spectrometry with Zeeman-effect background correction.

    PubMed

    Bolzan, Rodrigo Cordeiro; Rodrigues, Luis Frederico; Mattos, Júlio Cezar Paz de; Dressler, Valderi Luiz; Flores, Erico Marlon de Moraes

    2007-11-15

    A procedure for chromium (Cr) determination in pharmaceutical grade barium sulfate by direct solid sampling electrothermal atomic absorption spectrometry (DSS-ET AAS) with Zeeman-effect background correction was developed. Operational conditions for the proposed procedure and the use of citric acid, ammonium phosphate, palladium and magnesium nitrate as chemical modifiers were evaluated. Pyrolysis and atomization temperatures were set at 1500 and 2400 degrees C, respectively and the use of matrix modifiers did not improve these conditions. Graphite platform presented high degradation rate, but minima changes were observed in the sensitivity or signal profile. Samples (0.3-1 mg) were weighted and introduced into the furnace using a manual solid sampling system. The linear concentration range of the calibration curve was from 100 to 1800 pg (R(2)>0.995). The characteristic mass was 7.7 pg and the limit of detection was 2.4 pg. Chromium concentration in commercial samples ranged from 0.45 to 1.06 microg g(-1) and these results were confirmed by standard addition method. The mean reproducibility was 12% (n=20 in a 3-day period) and repeatability was less than 9%. Results obtained using inductively coupled plasma optical emission spectrometry and conventional electrothermal atomic absorption spectrometry after extraction with HNO3 were around 20% lower than those obtained by the proposed procedure. It was assumed that the low results were due to incomplete extraction even using hard conditions related to temperature and pressure. The proposed procedure by DSS-ET AAS provided some advantages related to recommended pharmacopoeias methodology, as lower risks of contamination and analyte losses, higher specificity, accuracy and sensitivity, no toxic or unstable reagents are required, and calibration with aqueous standards was feasible.

  2. Ion-exchange preconcentration and determination of vanadium in milk samples by electrothermal atomic absorption spectrometry.

    PubMed

    López-García, Ignacio; Viñas, Pilar; Romero-Romero, Rafael; Hernández-Córdoba, Manuel

    2009-06-15

    A new method for the electrothermal atomic absorption spectrometric determination of vanadium in milk and infant formulas using suspensions to avoid the need for previous dissolution of samples is described. Sensitivity is improved by a procedure based on preconcentration and removal of the matrix, using ion-exchange (Dowex 1X8-100). Suspensions of 15% (m/v) infant formula samples were prepared in a medium containing 0.05M sodium citrate (pH 7.2) and passed through the ion exchange column. Vanadium was eluted from the column using 1M hydrochloric acid and injected in the graphite furnace using a mixture of hydrofluoric acid plus magnesium nitrate as chemical modifiers. Calibration was carried out using multiple injection and aqueous standards prepared in the same medium. Detection limits were 0.2 ng g(-1) for infant formulas and 0.02 microg L(-1) for cow milk samples. The reliability of the procedure was checked by comparing the results obtained with those found using a previous mineralization stage and by analyzing five certified reference materials.

  3. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry.

    PubMed

    Zhang, Yanlin; Adeloju, Samuel B

    2012-04-01

    A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH(4) were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe(3+), Cu(2+) and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu(2+) and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe(3+) gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg(2+). Due to similarity of resulting sensitivity, Hg(2+) was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h(-1).

  4. Investigation of lead contents in lipsticks by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry.

    PubMed

    Gunduz, Sema; Akman, Suleyman

    2013-02-01

    In this study, the lead contents of different kinds of lipsticks were determined by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry (SS-HR-CS ET AAS) and the results were compared with those obtained after microwave-assisted acid digestion of the samples. The experimental parameters for solid sampling such as the maximum amount of sample on the platforms of solid autosampler, graphite furnace program were optimized. Samples were directly loaded on the platforms of solid autosampler between 0.25 and 2.0mg and lead was determined applying 800 °C for pyrolysis and 2100 °C for atomization. Under optimized conditions, interference-free determination could be performed using aqueous standards. The LOD and the characteristic mass were 21.3 and 12.6 pg, respectively. The lead in the same lipstick samples was determined after microwave-assisted acid digestion and compared with those found by solid sampling. Mostly, there was no significant difference between the lead concentrations found by the two techniques. The lead in 25 lipstick samples with different properties were 0.11-4.48 ng mg(-1) which were not significantly different from those (<0.026-7.19 ng mg(-1)) reported by FDA for around 400 samples.

  5. Investigation of lead contents in lipsticks by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry.

    PubMed

    Gunduz, Sema; Akman, Suleyman

    2013-02-01

    In this study, the lead contents of different kinds of lipsticks were determined by solid sampling high resolution continuum source electrothermal atomic absorption spectrometry (SS-HR-CS ET AAS) and the results were compared with those obtained after microwave-assisted acid digestion of the samples. The experimental parameters for solid sampling such as the maximum amount of sample on the platforms of solid autosampler, graphite furnace program were optimized. Samples were directly loaded on the platforms of solid autosampler between 0.25 and 2.0mg and lead was determined applying 800 °C for pyrolysis and 2100 °C for atomization. Under optimized conditions, interference-free determination could be performed using aqueous standards. The LOD and the characteristic mass were 21.3 and 12.6 pg, respectively. The lead in the same lipstick samples was determined after microwave-assisted acid digestion and compared with those found by solid sampling. Mostly, there was no significant difference between the lead concentrations found by the two techniques. The lead in 25 lipstick samples with different properties were 0.11-4.48 ng mg(-1) which were not significantly different from those (<0.026-7.19 ng mg(-1)) reported by FDA for around 400 samples. PMID:23099440

  6. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.

    PubMed

    Feichtmeier, Nadine S; Leopold, Kerstin

    2014-06-01

    In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution-continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27 ± 0.96 s mg(-1) was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.

  7. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R.; Welz, Bernhard; Carasek, Eduardo; de Andrade, Jailson B.

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%).

  8. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  9. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    PubMed

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results.

  10. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    PubMed

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results. PMID:25078838

  11. Micelle mediated extraction of magnesium from water samples with trizma-chloranilate and determination by flame atomic absorption spectrometry.

    PubMed

    Giokas, Dimosthenis L; Paleologos, Evangelos K; Veltsistas, Panayotis G; Karayannis, Miltiades I

    2002-03-01

    This article describes an analytical method for the determination of magnesium taking advantage of the cloud point phenomenon employing a suitable chelating agent (chloranilate) for Mg analysis. The method encompasses pre-concentration of the metal chelate followed by flame atomic absorption spectrometry (FAAS) analysis. The chelating agent chosen for this task is a newly synthesised salt of chloranilic acid, trizma-chloranilate, which reacts with Mg but at the same time has a very low affinity for other metallic cations like silicon, aluminium and sodium, which interfere with the determination of Mg in FAAS. The condensed surfactant phase with the metal chelate(s) is introduced into the flame of an atomic absorption spectrometer after its treatment with an acidified methanolic solution. In this way, complex and time-consuming steps for sample treatment are avoided while increased sensitivity is achieved by the presence of both methanol and surfactant in the aspirated sample. The analytical curve was rectilinear in the range of 5-220 mugl(-1) and the limit of detection was as low as 0.75 mugl(-1) with a standard deviation of 5.2%. The method was applied for the determination of Mg in natural and mineral waters with satisfactory results and recoveries in the range of 97-102%. PMID:18968513

  12. Restricted access carbon nanotubes for direct extraction of cadmium from human serum samples followed by atomic absorption spectrometry analysis.

    PubMed

    Barbosa, Adriano F; Barbosa, Valéria M P; Bettini, Jefferson; Luccas, Pedro O; Figueiredo, Eduardo C

    2015-01-01

    In this paper, we propose a new sorbent that is able to extract metal ions directly from untreated biological fluids, simultaneously excluding all proteins from these samples. The sorbent was obtained through the modification of carbon nanotubes (CNTs) with an external bovine serum albumin (BSA) layer, resulting in restricted access carbon nanotubes (RACNTs). The BSA layer was fixed through the interconnection between the amine groups of the BSA using glutaraldehyde as cross-linker. When a protein sample is percolated through a cartridge containing RACNTs and the sample pH is higher than the isoelectric point of the proteins, both proteins from the sample and the BSA layer are negatively ionized. Thus, an electrostatic repulsion prevents the interaction between the proteins from the sample on the RACNTs surface. At the same time, metal ions are adsorbed in the CNTs (core) after their passage through the chains of proteins. The Cd(2+) ion was selected for a proof-of-principle case to test the suitability of the RACNTs due to its toxicological relevance. RACNTs were able to extract Cd(2+) and exclude almost 100% of the proteins from the human serum samples in an online solid-phase extraction system coupled with thermospray flame furnace atomic absorption spectrometry. The limits of detection and quantification were 0.24 and 0.80 μg L(-1), respectively. The sampling frequency was 8.6h(-1), and the intra- and inter-day precisions at the 0.80, 15.0, and 30.0 μg L(-1) Cd(2+) levels were all lower than 10.1% (RSD). The recoveries obtained for human blood serum samples fortified with Cd(2+) ranged from 85.0% to 112.0%. The method was successfully applied to analyze Cd(2+) directly from six human blood serum samples without any pretreatment, and the observed concentrations ranged from

  13. Separation and preconcentration of trace manganese from various samples with Amberlyst 36 column and determination by flame atomic absorption spectrometry.

    PubMed

    Kendüzler, Erdal; Türker, A Rehber; Yalçınkaya, Ozcan

    2006-06-15

    This work assesses the potential of a new adsorptive material, Amberlyst 36, for the separation and preconcentration of trace manganese(II) from various media. It is based on the sorption of manganese(II) ions onto a column filled with Amberlyst 36 cation exchange resin, followed by the elution with 5mL of 3mol/L nitric acid and determination by flame atomic absorption spectrometry (FAAS) without interference of the matrix. Different factors including pH of sample solution, sample volume, amount of resin, flow rate of sample solution, volume and concentration of eluent, and matrix effects for preconcentration were investigated. Good relative standard deviation (3%) and high recovery (>95%) at 100mug/L and high enrichment factor (200) and low analytical detection limit (0.245mug/L) were obtained. The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 88mg/g of manganese on the resin. The method was applied for the manganese determination by FAAS in tap water, commercial natural drinking water, commercial treated drinking water and commercial tea bag sample. The accuracy of the method is confirmed by analyzing the certified reference material (tea leaves GBW 07605). The results demonstrated good agreement with the certified values. PMID:18970645

  14. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  15. Determination of Trace Silver in Water Samples by Online Column Preconcentration Flame Atomic Absorption Spectrometry Using Termite Digestion Product

    PubMed Central

    Bianchin, Joyce Nunes; Martendal, Edmar; Carasek, Eduardo

    2011-01-01

    A new method for Ag determination in water samples using solid phase extraction (SPE) coupled to a flow injection system and flame atomic absorption spectrometry was developed. The sorbent used for Ag preconcentration and extraction was the termite digestion product. Flow and chemical variables of the system were optimized through a multivariate procedure. The factors selected were adsorbent mass, buffer type and concentration, sample pH, and sample flow rate. The detection limit and precision were 3.4 μg L−1 and 3.8% (n = 6, 15 μg L−1), respectively. The enrichment factor and the linear working range were, respectively, 21 and 10–50 μg L−1. Results for recovery tests using different water samples were between 96 and 107%. The proposed methodology was applied with success for the determination of Ag in water used to wash clothes impregnated with silver nanoparticles, supplied by a factory located in Santa Catarina, Brazil. PMID:21804766

  16. Chromium speciation in environmental samples by solid- phase extraction using lewatit ionac SR-7 resin and flame atomic absorption spectrometry.

    PubMed

    Sacmaçi, Serife; Kartal, Senol; Kumsuz, Sevim

    2014-01-01

    A new method for the speciation, preconcentration, and separation of Cr(lll) and Cr(VI) species in different matrixes was developed using SPE combined with flame atomic absorption spectrometry. Theprocedure is based on the exchange of Cr(VI) ions as CrO(4)(2-) with CI- ions on Lewatit lonac SR-7 ion-exchange resin. After the oxidation of Cr(lll) to CrO(4)(2-) ions by concentrated H202 in basic medium, the procedure was applied to the determination of total Cr. Cr(lll) was calculated as the difference between the total Cr and Cr(VI) contents. The influence of the analytical parameters including the pH of the solution, amount of resin, eluent type, sample volume, and flow rates of the sample and eluent solutions were investigated. No considerable interferences were observed from: other anions and cations investigated in the Cr speciation. The preconcentration factor was found to be 500. The LOD for Cr(VI), corresponding to three times the SD of the blank, was 0.003 μg/L. The sorption capacity and binding equilibrium constant were calculated as 17.2 mg/g and 2.54 L/mg, respectively. The accuracy of the method was verified by analyzing certified reference materials. The proposed method was applied to the speciation of Cr species in real samples with satisfactory results. PMID:25632449

  17. Cloud point extraction-flame atomic absorption spectrometry method for preconcentration and determination of trace cadmium in water samples.

    PubMed

    Ning, Jinyan; Jiao, Yang; Zhao, Jiao; Meng, Lifen; Yang, Yaling

    2014-01-01

    A method based on cloud point extraction (CPE) separation/preconcentration of trace cadmium (Cd) as a prior step to its determination by flame atomic absorption spectrometry has been developed. Cadmium reacted with 8-hydroxyquinoline to form hydrophobic chelates, which were extracted into the micelles of nonionic surfactant oligoethylene glycol monoalkyl ether (Genapol X-080) in an alkaline medium. Octanol was used to depress the cloud point of Genapol X-080 in the extraction process. The chemical variables that affect the CPE, such as pH of complexation reaction, amount of chelating agent, Genapol X-080 and octanol were evaluated and optimized. Under optimized conditions, linearity was obeyed in the range of 10-500 μg/L, with the correlation coefficient of 0.9993. For 5 mL of sample solution, the enhancement factor was about 20. The limit of detection and limit of quantification of the method were 0.21 and 0.63 μg/L, respectively. The relative standard deviations (n = 6) was 3.2% for a solution containing 100 μg/L of Cd. The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. Recoveries of spiked samples varied in the range of 94.1-103.8%.

  18. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry

    PubMed Central

    Daşbaşı, Teslima; Kartal, Şenol; Saçmacı, Şerife; Ülgen, Ahmet

    2016-01-01

    A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4− complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time were studied in detail. The effect of interfering ions on the analyte recovery was also investigated. The calibration graph was linear in the range of 0.040–1.00 mg L−1 with detection limit of 4.0 μg L−1 (n = 13). The precision as relative standard deviation was 3% (n = 11, 0.20 mg L−1) and the enrichment factor was 74. The developed method was applied successfully for the determination of bismuth in various water, pharmaceutical, and cosmetic samples and the certified reference material (TMDA-64 lake water). PMID:26881186

  19. Selective cloud point extraction for the determination of cadmium in food samples by flame atomic absorption spectrometry.

    PubMed

    Xiang, Guoqiang; Wen, Shengping; Wu, Xiaoyun; Jiang, Xiuming; He, Lijun; Liu, Yulan

    2012-05-01

    A new cloud point extraction (CPE) procedure for preconcentration of cadmium prior to the determination by flame atomic absorption spectrometry (FAAS) was developed. The method is based on the fact that cadmium could form hydrophobic ion-associated complex in the presence of iodide and methyl green (MG), and the hydrophobic ion-associated complex could be extracted into surfactant-rich phase. The main factors affecting CPE procedure, such as pH, concentration of KI, MG and surfactant, equilibrium temperature and incubation time, sample volume were investigated. Potential interference from co-existing ions was largely eliminated as most of co-existing ions can not form extractable ion-associated complex with iodide and MG. Under the optimum conditions, the limit of detection (3σ) and limit of quantity (10σ) were 0.90ngmL(-1) and 3.0ngmL(-1) for cadmium, respectively, and relative standard deviation was 4.2% (c=50ngmL(-1), n=7). The proposed method was successfully applied to determination of cadmium in the certified reference rice sample (GBW08510) and food samples with satisfactory results. PMID:26434327

  20. Determination of manganese in diesel, gasoline and naphtha by graphite furnace atomic absorption spectrometry using microemulsion medium for sample stabilization

    NASA Astrophysics Data System (ADS)

    Brandão, Geisamanda Pedrini; de Campos, Reinaldo Calixto; de Castro, Eustáquio Vinicius Ribeiro; de Jesus, Honério Coutinho

    2008-08-01

    The determination of Mn in diesel, gasoline and naphtha samples at µg L - 1 level by graphite furnace atomic absorption spectrometry, after sample stabilization in a three-component medium (microemulsion) was investigated. Microemulsions were prepared by mixing appropriate volumes of sample, propan-1-ol and nitric acid aqueous solution, and a stable system was immediately and spontaneously formed. After multivariate optimization by central composite design the optimum microemulsion composition as well as the temperature program was defined. In this way, calibration using aqueous analytical solution was possible, since the same sensitivity was observed in the optimized microemulsion media and 0.2% v/v HNO 3. The use of modifier was not necessary. Recoveries at the 3 µg L - 1 level using both inorganic and organic Mn standards spiked solutions ranged from 98 to 107% and the limits of detection were 0.6, 0.5 and 0.3 µg L - 1 in the original diesel, gasoline and naphtha samples, respectively. The Mn characteristic mass 3.4 pg. Typical relative standard deviation ( n = 5) of 8, 6 and 7% were found for the samples prepared as microemulsions at concentration levels of 1.3, 0.8, and 1.5 µg L - 1 , respectively. The total determination cycle lasted 4 min for diesel and 3 min for gasoline and naphtha, equivalent to a sample throughput of 7 h - 1 for duplicate determinations in diesel and 10 h - 1 for duplicate determinations in gasoline and naphtha. Accuracy was also assessed by using other method of analysis (ASTM D 3831-90). No statistically significant differences were found between the results obtained with the proposed method and the reference method in the analysis of real samples.

  1. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  2. Measurement of copper in biological samples by flame or electrothermal atomic absorption spectrometry.

    PubMed

    Evenson, M A

    1988-01-01

    Guidelines presented here allow for copper analysis of biological materials by methods that are very sensitive, that require little sample preparation, that have few chemical or spectral interferences, that are inexpensive, and that require only usual care in contamination control. The commercial instruments for FAAS and ETAAS from Perkin-Elmer, from Varian, and from Instrumentation Laboratories Inc. (Allied Analytical Systems) all work well in either the flame or the flameless mode. Background correction techniques are not essential for copper analysis if care is taken with the sample preparation to minimize the background signals. Different types of burners will work adequately if one makes certain that the viscosity of the sample and the control products are similar to the calibration standards. Further, dilution of samples is preferred over increasing the viscosity of the calibration standards by the addition of a protein containing solution or a substance such as glycerol. A 1:10 dilution of blood plasma or serum with dilute nitric acid or water is all that is necessary for copper analysis by the FFAS methods. Cation and anion effects should be tested by bracketing the concentrations of the ions found in the sample with known amounts of ions in the sample solutions. Increasing the concentrations of the ions thought to interfere while keeping the copper concentration constant is another way to test for ion interferences.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3374386

  3. Analysis of zinc in biological samples by flame atomic absorption spectrometry: use of addition calibration technique.

    PubMed

    Dutra, Rosilene L; Cantos, Geny A; Carasek, Eduardo

    2006-01-01

    The quantification of target analytes in complex matrices requires special calibration approaches to compensate for additional capacity or activity in the matrix samples. The standard addition is one of the most important calibration procedures for quantification of analytes in such matrices. However, this technique requires a great number of reagents and material, and it consumes a considerable amount of time throughout the analysis. In this work, a new calibration procedure to analyze biological samples is proposed. The proposed calibration, called the addition calibration technique, was used for the determination of zinc (Zn) in blood serum and erythrocyte samples. The results obtained were compared with those obtained using conventional calibration techniques (standard addition and standard calibration). The proposed addition calibration was validated by recovery tests using blood samples spiked with Zn. The range of recovery for blood serum and erythrocyte samples were 90-132% and 76-112%, respectively. Statistical studies among results obtained by the addition technique and conventional techniques, using a paired two-tailed Student's t-test and linear regression, demonstrated good agreement among them. PMID:16943611

  4. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from sample amounts used in solid sampling analysis, micro-scale distribution of fluorine in the samples was also determined.

  5. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from sample amounts used in solid sampling analysis, micro-scale distribution of fluorine in the samples was also determined. PMID:27283621

  6. Cloud point extraction and flame atomic absorption spectrometry determination of lead (II) in environmental and food samples.

    PubMed

    Soylak, Mustafa; Yilmaz, Erkan; Ghaedi, Mehrorang; Montazerozohori, Mortaza; Sheibani, Marjan

    2012-01-01

    A cloud point extraction procedure for the preconcentration of Pb2+ in various samples following complexation with 2,2'-(1E,1'E)-1,1'-(2,2'-azanediylbis(ethane-2,1-diyl)bis(azan-1-yl-1-ylidene)) bis(ethan-1-yl-1-ylidene)diphenol in Triton X-114 after centrifugation is reported. A 0.5 mL portion of methanol acidified with 1.0 M HNO3 was added to the surfactant-rich phase prior to analysis by flame atomic absorption spectrometry. The influence of analytical parameters--including pH, concentrations of ligand, Triton X-114, and HNO3, bath temperature, heating time, and centrifugation rate and time--were optimized, and the effect of the matrix ions on the recovery of Pb2+ was investigated. An LOD of 1.9 ng/mL along with a preconcentration factor of 50 with RSD of 1.0% for Pb2+ were achieved. The proposed procedure was applied to the analysis of various real samples.

  7. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry.

    PubMed

    Mendil, Durali; Uluözlü, Ozgür Dogan; Tüzen, Mustafa; Soylak, Mustafa

    2009-06-15

    The element contents (Fe, Mn, Zn, Cu, Pb, Co, Cd, Na, K, Ca and Mg) in edible oils (olive oil, hazelnut oil, sunflower oil, margarine, butter and corn oil) from Turkey were determined using atomic absorption spectrometry after microwave digestion. The concentrations of trace element in the samples were found to be 291.0-52.0, 1.64-0.04, 3.08-1.03, 0.71-0.05, 0.03-0.01, 1.30-0.50, 84.0-0.90, 50.1-1.30, 174.2-20.8 and 20.8-0.60 microg/g for iron, manganese, zinc, copper, lead, cobalt, sodium, potassium, calcium, and magnesium, respectively. Cadmium was found to be 4.57-0.09 microg/kg. The high heavy metal and minerals accumulation levels in the samples were found in olive oil for Cu, Pb, Co, margarine for Fe, K, corn oil for Zn, Mn, butter for Na, Mg, sunflower oil for Ca and hazelnut oil for Cd, respectively. PMID:19036503

  8. Method development for Cd and Hg determination in biodiesel by electrothermal atomic absorption spectrometry with emulsion sample introduction.

    PubMed

    Aranda, Pedro R; Gásquez, José A; Olsina, Roberto A; Martinez, Luis D; Gil, Raúl A

    2012-11-15

    A novel method for analysis of biodiesel by electrothermal atomic absorption spectrometry is described. This analytical strategy involves sample preparation as emulsions for routine and reliable determination of Cd and Hg. Several experimental conditions were investigated, including emulsion stability and composition, furnace temperature program and matrix modification. Different calibration strategies were also evaluated, being the analyte addition method preferred both for Cd and Hg. The accuracy was verified through comparison with an acid digestion in a microwave closed system. The injection repeatability was evaluated as the average relative standard deviation (R.S.D %) for five successive firings and was better than 4.4% for Cd and 5.4% Hg respectively. The detection limits, evaluated by the 3σ concept of calculation (n=10), were of 10.2 μg kg(-1) (0.9 μg L(-1)) for Hg and 0.3 μg kg(-1) (0.04 μg L(-1)) for Cd. This method was successfully applied to the determination of Cd and Hg in biodiesel samples obtained from local vendors.

  9. Discussion of parameters associated with the determination of arsenic by electrothermal atomic absorption spectrometry in slurried environmental samples.

    PubMed

    Vassileva, E; Baeten, H; Hoenig, M

    2001-01-01

    A slurry sampling-fast program procedure has been developed for the determination of arsenic in plants, soils and sediments by electrothermal atomic absorption spectrometry. Efficiencies of various single and mixed modifiers for thermal stabilization of arsenic and for a better removal of the matrix during pyrolysis step were compared. The influence of the slurry concentration, amounts of modifier and parameters of the pyrolysis step on the As integrated absorbance signals have been studied and a comparison between fast and conventional furnace programs was also made. The ultrasonic agitation of the slurry followed by a fast electrothermal program using an Ir/Mg modifier provides the most consistent performance in terms of precision and accuracy. The reliability of the whole procedure has been compared with results obtained after application of a wet digestion method with an HF step and validated by analyzing eleven certified reference materials. Arsenic detection and quantitation limits expressed on dry sample matter were about 30 and 100 micrograms kg-1, respectively.

  10. Ultrasonic-assisted cloud point extraction for determination of nickel in water samples by flame atomic absorption spectrometry.

    PubMed

    Song, Jun; Zhen, Wei; Li, Zonghao; Lian, Yuanpei; Yang, Yaling

    2012-01-01

    A novel method for the determination of nickel was established by ultrasonic-assisted cloud point extraction (UA-CPE) prior to flame atomic absorption spectrometry (FAAS) analysis. The nickel reacted with N,N'-bis(salicylidene)-1,2-ethanediamine (BSE) to form hydrophobic chelates, which were extracted into the micelles of alpha-[3,5-dimethyl-1-(2-methylpropyl)hexyl]-omega- poly(oxy-2-ethanediyl) (Tergitol TMN-6). Tergitol TMN-6 was used as green nonionic surfactant. BSE was synthesized and checked by nuclear magnetic resonance (NMR) spectra. The phase diagrams of the binary system, water-surfactant (Tergitol TMN-6), and the ternary systems, water-surfactant-salt, were determined. The effects of experimental conditions including pH of sample solution, concentration of chelating agent and surfactant, ultrasonic power, equilibration temperature and incubation time were evaluated in order to enhance sensitivity of the method. Under the optimal conditions, the calibration graph was linear in the range of 10-500 μg L(-1). The values obtained for the limit of detection and enrichment factor were 1.0 μg L(-1) and 30, respectively. The method was successfully applied to the analysis of nickel in water samples. PMID:22766868

  11. Comparison of sample preparation procedures for the determination of trace heavy metals in house dust, tobacco and tea samples by atomic absorption spectrometry.

    PubMed

    Narin, Ibrahim; Tuzen, Mustafa; Soylak, Mustafa

    2004-11-01

    The effect of wet ashing, dry ashing and microwave procedure for the determination of trace metal levels was investigated in house dust, tobacco and tea samples by atomic absorption spectrometry. The study of sample preparation procedures showed that the microwave method was the best. The recovery of trace metals was very good and precision and accuracy were compatible with standard reference material. The relative standard deviations for all measured metal concentrations were lower than 10%. The digestions of HNO3/H2SO4/HClO4 (4: 1: 1) mixture for house dust, HNO3/H2SO4/H2O2 (2: 2: 2) mixture for tea and HNO3/H2O2 (4: 2) mixture for tobacco were very efficient.

  12. Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation.

    PubMed

    Nunes, Luana S; Barbosa, José T P; Fernandes, Andréa P; Lemos, Valfredo A; Santos, Walter N L Dos; Korn, Maria Graças A; Teixeira, Leonardo S G

    2011-07-15

    The aim of this work was to evaluate the microemulsification as sample preparation procedure for determination of Cu, Fe, Ni and Zn in vegetable oils samples by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS). Microemulsions were prepared by mixing samples with propan-1-ol and aqueous acid solution, which allowed the use of inorganic aqueous standards for the calibration. To a sample mass of 0.5g, 100μL of hydrochloric acid and propan-1-ol were added and the resulting mixture diluted to a final volume of 10mL. The sample was manually shaken resulting in a visually homogeneous system. The main lines were selected for all studied metals and the detection limits (3σ, n=10) were 0.12, 0.62, 0.58 and 0.12mgkg(-1) for Cu, Fe, Ni and Zn, respectively. The relative standard deviation (RSD) ranged from 5% to 11 % in samples spiked with 0.25 and 1.5μgmL(-1) of each metal, respectively. Recoveries varied from 89% to 102%. The proposed method was applied to the determination of Cu, Fe, Ni and Zn in soybean, olive and sunflower oils. PMID:23140735

  13. Cloud point extraction for the determination of cadmium and lead in biological samples by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Maranhão, Tatiane De A.; Borges, Daniel L. G.; da Veiga, Márcia A. M. S.; Curtius, Adilson J.

    2005-06-01

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of Cd and Pb from digested biological samples. After complexation with O,O-diethyldithiophosphate (DDTP) in hydrochloric acid medium, the analytes are quantitatively extracted to the phase rich in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 0.1 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by electrothermal atomic absorption spectrometry (ET AAS). The adopted concentrations for DDTP, Triton X-114 and hydrochloric acid were all optimized. Pyrolysis and atomization temperatures were optimized using the extracts and pyrolysis temperatures of 700 °C for both elements and atomization temperatures of 1400 and 1600 °C for cadmium and lead, respectively, were used without adding any modifier, which shows that considerable analyte stabilization is provided by the medium itself. A more detailed investigation was carried out to determine which components of the extract were responsible for the high thermal stability achieved and it revealed that the amount of DDTP added and the phosphorus content of the digested samples contributed significantly to this phenomenon. Detection limits (3σB) of 6 and 40 ng g-1, along with enrichment factors of 129 and 18 for Cd and Pb, respectively, were achieved. The proposed procedure was applied to the analysis of five certified biological reference materials after microwave-assisted acid digestion in a mixture of H2O2 and HNO3. Comparison with certified values was performed for accuracy evaluation, resulting in good agreement according to the t-test for a 95% confidence level. The high efficiency of cloud point extraction to carry out the determination of the studied analytes in complex matrices was, therefore, demonstrated.

  14. Direct determination of phosphorus in different food samples by means of solid sampling electrothermal atomic absorption spectrometry using Pd+Ca chemical modifier

    NASA Astrophysics Data System (ADS)

    Coşkun, Nihat; Akman, Süleyman

    2005-03-01

    In this study, direct determination of phosphorus in different food samples (milk powder, banana, and dried banana) and in various standard reference materials (apple leaves, bovine liver, pine needles) using solid sampling electrothermal atomic absorption spectrometry was investigated. Aqueous standards were used for all determinations. 5 μg Pd+5 μg Ca modifier mixture was used in all experiments. Pyrolysis temperature and atomization temperature were 1100 °C and 2500 °C, respectively. High background was reduced by applying a cool-down step in the furnace program. The accuracy of solid sampling results was checked by determination of the phosphorus content after dissolving samples. There was no significant error between results found by solid sampling and solution techniques. In addition solid certified materials were investigated. There were no significant differences between the phosphorus content of CRM and results obtained. The limit of detection, based on three times the standard deviation was 0.018 μg P.

  15. Determination of copper in airborne particulate matter using slurry sampling and chemical vapor generation atomic absorption spectrometry.

    PubMed

    Silva, Laiana O B; Leao, Danilo J; dos Santos, Debora C; Matos, Geraldo D; de Andrade, Jailson B; Ferreira, Sergio L C

    2014-09-01

    The present paper describes the development of a method for the determination of copper in airborne particulate matter using slurry sampling and chemical vapor generation atomic absorption spectrometry (CVG AAS). Chemometric tools were employed to characterize the influence of several factors on the generation of volatile copper species. First, a two-level full factorial design was performed that included the following chemical variables: hydrochloric acid concentration, tetrahydroborate concentration, sulfanilamide concentration and tetrahydroborate volume, using absorbance as the response. Under the established experimental conditions, the hydrochloric acid concentration had the greatest influence on the generation of volatile copper species. Subsequently, a Box-Behnken design was performed to determine the optimum conditions for these parameters. A second chemometric study employing a two-level full factorial design was performed to evaluate the following physical factors: tetrahydroborate flow rate, flame composition, alcohol volume and sample volume. The results of this study demonstrated that the tetrahydroborate flow rate was critical for the process. The chemometric experiments determined the following experimental conditions for the method: hydrochloric acid concentration, 0.208 M; tetrahydroborate concentration, 4.59%; sulfanilamide concentration, 0.79%; tetrahydroborate volume, 2.50 mL; tetrahydroborate flow rate, 6.50 mL min(-1); alcohol volume, 200 µL; and sample volume, 7.0 mL. Thus, this method, using a slurry volume of 500 µL and a final dilution of 7 mL, allowed for the determination of copper with limits of detection and quantification of 0.30 and 0.99 µg L(-1), respectively. Precisions, expressed as RSD%, of 4.6 and 2.8% were obtained using copper solutions at concentrations of 5.0 and 50.0 µg L(-1), respectively. The accuracy was evaluated by the analysis of a certified reference material of urban particulate matter. The copper concentration

  16. Determination of copper in airborne particulate matter using slurry sampling and chemical vapor generation atomic absorption spectrometry.

    PubMed

    Silva, Laiana O B; Leao, Danilo J; dos Santos, Debora C; Matos, Geraldo D; de Andrade, Jailson B; Ferreira, Sergio L C

    2014-09-01

    The present paper describes the development of a method for the determination of copper in airborne particulate matter using slurry sampling and chemical vapor generation atomic absorption spectrometry (CVG AAS). Chemometric tools were employed to characterize the influence of several factors on the generation of volatile copper species. First, a two-level full factorial design was performed that included the following chemical variables: hydrochloric acid concentration, tetrahydroborate concentration, sulfanilamide concentration and tetrahydroborate volume, using absorbance as the response. Under the established experimental conditions, the hydrochloric acid concentration had the greatest influence on the generation of volatile copper species. Subsequently, a Box-Behnken design was performed to determine the optimum conditions for these parameters. A second chemometric study employing a two-level full factorial design was performed to evaluate the following physical factors: tetrahydroborate flow rate, flame composition, alcohol volume and sample volume. The results of this study demonstrated that the tetrahydroborate flow rate was critical for the process. The chemometric experiments determined the following experimental conditions for the method: hydrochloric acid concentration, 0.208 M; tetrahydroborate concentration, 4.59%; sulfanilamide concentration, 0.79%; tetrahydroborate volume, 2.50 mL; tetrahydroborate flow rate, 6.50 mL min(-1); alcohol volume, 200 µL; and sample volume, 7.0 mL. Thus, this method, using a slurry volume of 500 µL and a final dilution of 7 mL, allowed for the determination of copper with limits of detection and quantification of 0.30 and 0.99 µg L(-1), respectively. Precisions, expressed as RSD%, of 4.6 and 2.8% were obtained using copper solutions at concentrations of 5.0 and 50.0 µg L(-1), respectively. The accuracy was evaluated by the analysis of a certified reference material of urban particulate matter. The copper concentration

  17. Ultraviolet and Light Absorption Spectrometry.

    ERIC Educational Resources Information Center

    Hargis, L. G.; Howell, J. A.

    1984-01-01

    Reviews developments in ultraviolet and light absorption spectrometry from December 1981 through November 1983, focusing on the chemistry involved in developing suitable reagents, absorbing systems, and methods of determination, and on physical aspects of the procedures. Includes lists of spectrophotometric methods for metals, non-metals, and…

  18. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    PubMed

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025. PMID:25996815

  19. Sequential determination of Cd and Cr in biomass samples and their ashes using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis.

    PubMed

    Duarte, Alvaro T; Dessuy, Morgana B; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2013-10-15

    High-resolution continuum source graphite furnace atomic absorption spectrometry, because of the use of only one radiation source for all elements, offers the possibility of sequential determination of two or more elements from the same sample aliquot if their volatilities are significantly different. Cd and Cr were determined sequentially in samples of biomass and biomass ashes employing direct solid sample analysis. The use of a chemical modifier was found to be not necessary, and calibration could be carried out using aqueous standard solutions. A pyrolysis temperature of 400°C and an atomization temperature of 1500°C were used for the determination of Cd; no losses of Cr were observed at this temperature. After the atomization of Cd the wavelength was changed and Cr atomized at 2600°C. The limits of detection (LOD) and quantification (LOQ) were 1.1 μg kg(-1) and 3.7 μg kg(-1), respectively, for Cd and 21 μg kg(-1) and 70 μg kg(-1), respectively, for Cr using the most sensitive line at 357.869 nm, or 90 μg kg(-1) and 300 μg kg(-1), respectively, using the less sensitive line at 428.972 nm. The precision, expressed as relative standard deviation was around 10%, which is typical for direct solid sample analysis. The values found for Cd in biomass samples were between <1.1 µg kg(-1) and 789 µg kg(-1), whereas those for Cr were between 7.9 mg kg(-1) and 89 mg kg(-1); the values found in the ashes were significantly lower for Cd, between <1.1 µg kg(-1) and 6.3 µg kg(-1), whereas the trend was not so clear for Cr, where the values were between 3.4 mg kg(-1) and 28 mg kg(-1).

  20. Fraunhofer effect atomic absorption spectrometry.

    PubMed

    Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T

    2005-02-15

    The dark lines in the solar spectrum were discovered by Wollaston and cataloged by Fraunhofer in the early days of the 19th century. Some years later, Kirchhoff explained the appearance of the dark lines: the sun was acting as a continuum light source and metals in the ground state in its atmosphere were absorbing characteristic narrow regions of the spectrum. This discovery eventually spawned atomic absorption spectrometry, which became a routine technique for chemical analysis in the mid-20th century. Laboratory-based atomic absorption spectrometers differ from the original observation of the Fraunhofer lines because they have always employed a separate light source and atomizer. This article describes a novel atomic absorption device that employs a single source, the tungsten coil, as both the generator of continuum radiation and the atomizer of the analytes. A 25-microL aliquot of sample is placed on the tungsten filament removed from a commercially available 150-W light bulb. The solution is dried and ashed by applying low currents to the coil in a three-step procedure. Full power is then applied to the coil for a brief period. During this time, the coil produces white light, which may be absorbed by any metals present in the atomization cloud produced by the sample. A high-resolution spectrometer with a charge-coupled device detector monitors the emission spectrum of the coil, which includes the dark lines from the metals. Detection limits are reported for seven elements: 5 pg of Ca (422.7 nm); 2 ng of Co (352.7 nm); 200 pg of Cr (425.4 nm); 7 pg of Sr (460.7 nm); 100 pg of Yb (398.8 nm); 500 pg of Mn (403.1 nm); and 500 pg of K (404.4 nm). Simultaneous multielement analyses are possible within a 4-nm spectral window. The relative standard deviations for the seven metals are below 8% for all metals except for Ca (10.7%), which was present in the blank at measurable levels. Analysis of a standard reference material (drinking water) resulted in a mean percent

  1. Determination of cadmium and lead in urine samples after dispersive solid-liquid extraction on multiwalled carbon nanotubes by slurry sampling electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R. M.; Herrero Latorre, C.

    2015-04-01

    A new method for the determination of Cd and Pb in urine samples has been developed. The method involves dispersive solid-phase extraction (DSPE), slurry sampling (SS), and subsequent electrothermal atomic absorption spectrometry (ETAAS). Oxidized multiwalled carbon nanotubes (MWCNTs) were used as the sorbent material. The isolated MWCNT/analyte aggregates were treated with nitric acid to form a slurry and both metals were determined directly by injecting the slurry into the ETAAS-atomizer. The parameters that influence the adsorption of the metals on MWCNTs in the DSPE process, the formation and extraction of the slurry, and the ETAAS conditions were studied by different factorial design strategies. The detection and quantification limits obtained for Cd under optimized conditions were 9.7 and 32.3 ng L- 1, respectively, and for Pb these limits were 0.13 and 0.43 μg L- 1. The preconcentration factors achieved were 3.9 and 5.4. The RSD values (n = 10) were less than 4.1% and 5.9% for Cd and Pb, respectively. The accuracy of the method was assessed in recovery studies, with values in the range 96-102% obtained for Cd and 97-101% for Pb. In addition, the analysis of certified reference materials gave consistent results. The DSPE-SS-ETAAS method is a novel and useful strategy for the determination of Pb and Cd at low levels in human urine samples. The method is sensitive, fast, and free of matrix interferences, and it avoids the tedious and time-consuming on-column adsorption and elution steps associated with commonly used SPE procedures. The proposed method was used to determine Cd and Pb in urine samples of unexposed healthy people and satisfactory results were obtained.

  2. Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan; Richter, Silke; Meckelburg, Angela

    Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H2SO4, and H3PO4. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes.

  3. Simultaneous determination of cobalt and nickel in vitamin B12 samples using high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Adolfo, Franciele Rovasi; do Nascimento, Paulo Cícero; Bohrer, Denise; de Carvalho, Leandro Machado; Viana, Carine; Guarda, Ananda; Nunes Colim, Alexsandro; Mattiazzi, Patricia

    2016-01-15

    Nickel and cobalt were simultaneously assayed in vitamin B12 formulations by using atomic spectrometry. The proposed method is based on a compromise between the proximity of specific Ni and Co spectral lines and the relative abundances of the analytes in the samples. The analytes were found in concentrations ranging from 9.48 to 26.20µg L(-1) (Ni) and from 156.90 to 279.25mg L(-1) (Co) in the commercial samples of vitamin B12. The limits of detection and quantification were 1.21 and 3.64mg L(-1) for Co and 0.39 and 1.19µg L(-1) for Ni. Sample cleanup was not necessary for the determinations, and the interferences were discussed.

  4. Simultaneous determination of cobalt and nickel in vitamin B12 samples using high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Adolfo, Franciele Rovasi; do Nascimento, Paulo Cícero; Bohrer, Denise; de Carvalho, Leandro Machado; Viana, Carine; Guarda, Ananda; Nunes Colim, Alexsandro; Mattiazzi, Patricia

    2016-01-15

    Nickel and cobalt were simultaneously assayed in vitamin B12 formulations by using atomic spectrometry. The proposed method is based on a compromise between the proximity of specific Ni and Co spectral lines and the relative abundances of the analytes in the samples. The analytes were found in concentrations ranging from 9.48 to 26.20µg L(-1) (Ni) and from 156.90 to 279.25mg L(-1) (Co) in the commercial samples of vitamin B12. The limits of detection and quantification were 1.21 and 3.64mg L(-1) for Co and 0.39 and 1.19µg L(-1) for Ni. Sample cleanup was not necessary for the determinations, and the interferences were discussed. PMID:26592602

  5. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    PubMed

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  6. Method development for the determination of cadmium in fertilizer samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and slurry sampling

    NASA Astrophysics Data System (ADS)

    Borges, Aline R.; Becker, Emilene M.; Lequeux, Céline; Vale, Maria Goreti R.; Ferreira, Sergio L. C.; Welz, Bernhard

    2011-07-01

    The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 μg Pd + 6 μg Mg in solution and 400 μg of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 °C and 1600 °C for the Pd-Mg modifier, and 500 °C and 1600 °C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 ± 1.3 μg g -1 and 16.4 ± 0.75 μg g -1 for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 ± 0.2 μg g -1 on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R 2) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g -1, and the limits of quantification were 25 and 27 ng g -1 for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 μg g -1 Cd, and hence below the maximum value of 20 μg g -1 Cd permitted by Brazilian legislation.

  7. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  8. Fast determination of phosphorus in honey, milk and infant formulas by electrothermal atomic absorption spectrometry using a slurry sampling procedure

    NASA Astrophysics Data System (ADS)

    López-García, I.; Viñas, P.; Romero-Romero, R.; Hernández-Córdoba, M.

    2007-01-01

    A procedure for the electrothermal atomic absorption spectrometric determination of phosphorus in honey, milk and infant formulas using slurried samples is described. Suspensions prepared in a medium containing 50% v/v concentrated hydrogen peroxide, 1% v/v concentrated nitric acid, 10% m/v glucose, 5% m/v sucrose and 100 mg l - 1 of potassium were introduced directly into the furnace. For the honey samples, multiple injection of the sample was necessary. The modifier selected was a mixture of 20 μg palladium and 5 μg magnesium nitrate, which was injected after the sample and before proceeding with the drying and calcination steps. Calibration was performed using aqueous standards prepared in the same suspension medium and the graph was linear between 5 and 80 mg l - 1 of phosphorus. The reliability of the procedure was checked by comparing the results obtained by the new developed method with those found when using a reference spectrophotometric method after a mineralization step, and by analyzing several certified reference materials.

  9. Continuous approach for ultrasound-assisted acid extraction-minicolumn preconcentration of chromium and cobalt from seafood samples prior to flame atomic absorption spectrometry.

    PubMed

    Yebra-Biurrun, Maria C; Cancela-Pérez, Sheila

    2007-08-01

    A rapid and sensitive method has been proposed for the determination of chromium and cobalt in seafood samples by flame atomic absorption spectrometry combined with a dynamic ultrasound-assisted acid extraction and an on-line minicolumn preconcentration. The use of diluted nitric acid as extractant in a continuous mode at a flow rate of 3.5 mL min(-1) and room temperature was sufficient for quantitative extraction of these trace metals from seafoods. A minicolumn containing a chelating resin was an excellent device for the quantitative preconcentration of chromium and cobalt prior to their detection. A flow-injection manifold was used as interface for coupling all analytical steps, which allowed the automation of the whole analytical process. A Plackett-Burman experimental design was used as a multivariate strategy for the optimization of both sample preparation and preconcentration steps. The method was successfully applied to the determination of chromium and cobalt in seafood samples.

  10. Radiocarbon dating of archaeological samples (sambaqui) using CO(2) absorption and liquid scintillation spectrometry of low background radiation.

    PubMed

    Mendonça, Maria Lúcia T G; Godoy, José M; da Cruz, Rosana P; Perez, Rhoneds A R

    2006-01-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO(2) absorption on Carbo-sorb and (14)C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H(3)PO(4) in a closed vessel in order to generate CO(2). The produced CO(2) was absorbed on Carbo-sorb. On saturation about 0.6g of carbon, as CO(2), was mixed with commercial liquid scintillation cocktail (Permafluor), and the (14)C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the (14)C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  11. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    SciTech Connect

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-µm diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance

  12. Simultaneous and direct determination of iron and nickel in biological solid samples by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2013-11-15

    The simultaneous and direct determination of nickel and iron in plants and lichens has been investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry. The primary resonance line for nickel at 232.003 nm and the adjacent secondary line for iron at 232.036 nm have been used for this purpose. The optimization of the experimental conditions was performed using a pine needles certified reference material (SRM 1575a). The influence of pyrolysis and atomization temperatures, the amount of solid sample introduced into the graphite furnace and the use of aqueous or solid standard for calibration were studied. The spectral interferences caused by absorption of the concomitants of the solid sample were detected and corrected using a least square algorithm. Aliquots of 0.1-1mg of the solid samples were weighed onto the solid sampling platforms and analyzed directly, without addition of any reagents. The limits of detection were 25 µg kg(-1) for nickel and 0.40 mg kg(-1) for iron and the precision, expressed as the relative standard deviation, ranged from 7% to 12%. The proposed method was used to determine both metals in different bioindicator samples with successful results.

  13. Automatic microemulsion preparation for metals determination in fuel samples using a flow-batch analyzer and graphite furnace atomic absorption spectrometry.

    PubMed

    Cunha, Francisco Antônio S; Sousa, Rafael A; Harding, David P; Cadore, Solange; Almeida, Luciano F; Araújo, Mário César U

    2012-05-21

    The principal thermodynamic advantages of using microemulsions over standard emulsions for flow metal analysis are the greatly increased analyte stability and emulsive homogeneity that improve both the ease of sample preparation, and the analytical result. In this study a piston propelled flow-batch analyzer (PFBA) for the determination of Cu, Cr and Pb in gasoline and naphtha by graphite furnace atomic absorption spectrometry (GF AAS) was explored. Investigative phase modeling for low dilution was conducted both for gasoline and naphtha microemulsions. Rheological considerations were also explored including a mathematical flow derivation to fine tune the system's operational parameters, and the GF AAS coupling. Both manual and automated procedures for microemulsion preparation were compared. The results of the paired t test at a 95% confidence level showed no significant differences between them. Further recovery test results confirmed a negligible matrix effect of the sample on the analyte absorption signals and an efficient stabilization of the samples (with metals) submitted to microemulsion treatment. The accuracy of the developed procedure was attested by good recovery percentages in the ranges of 100.0±3.5% for Pb in the naphtha samples, and 100.2±3.4% and 100.7±4.6% for Cu and Cr, respectively in gasoline samples. PMID:22541820

  14. Dithizone chloroform single drop microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples

    NASA Astrophysics Data System (ADS)

    Fan, Zhefeng; Zhou, Wei

    2006-07-01

    A simple and sensitive method using dithizone-chloroform single drop microextraction has been developed for separation and preconcentration of trace Cd prior to its determination by electrothermal atomic absorption spectrometry with Ir as permanent modifier. Parameters, such as pyrolysis and atomization temperature, solvent type, pH, dithizone concentration, extraction time, organic drop volume, stirring rate and sample volume were investigated. Under the optimized conditions, a detection limit (3 σ) of 0.7 ng/l and enrichment factor of 65 were achieved. The relative standard deviation was 7.4% ( c = 0.2 μg/l, n = 5). The developed method has been applied to the determination of trace Cd in water samples and biological reference materials with satisfactory results.

  15. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.

    PubMed

    Goudarzi, Nasser

    2009-02-11

    A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples. PMID:19138082

  16. Polyelectrolyte multilayers on magnetic silica as a new sorbent for the separation of trace copper in food samples and determination by flame atomic absorption spectrometry.

    PubMed

    Xiang, Guoqiang; Ma, Yulong; Jiang, Xiuming; Mao, Pu

    2014-12-01

    A novel magnetic silica sorbent with polyelectrolyte multilayers (PEMs) on its surface was prepared, and the sorbent was used for the magnetic solid phase extraction (MSPE) of trace Cu(2+) in drinking water with flame atomic absorption spectrometry (FAAS) as the detector. The experimental parameters for the MSPE procedure, such as the pH, desorption conditions, ultrasonic time and co-existing ions effects, were investigated. The adsorption capacity of the new sorbent was 14.7 mg g(-1) for Cu(2+). The detection limit of the developed method was 0.23 ng mL(-1) for Cu(2+) with an enrichment factor of 95.7. The analytical data obtained from the certified reference water and rice samples were in good agreement with the certified values. This method was also successfully applied to the determination of trace Cu(2+) in different food samples with satisfactory results.

  17. Solid sampling determination of lithium and sodium additives in microsamples of yttrium oxyorthosilicate by high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Laczai, Nikoletta; Kovács, László; Péter, Ágnes; Bencs, László

    2016-03-01

    Solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS-HR-CS-GFAAS) methods were developed and studied for the fast and sensitive quantitation of Li and Na additives in microsamples of cerium-doped yttrium oxyorthosilicate (Y2SiO5:Ce) scintillator materials. The methods were optimized for solid samples by studying a set of GFAAS conditions (i.e., the sample mass, sensitivity of the analytical lines, and graphite furnace heating programs). Powdered samples in the mass range of 0.099-0.422 mg were dispensed onto graphite sample insertion boats, weighed and analyzed. Pyrolysis and atomization temperatures were optimized by the use of single-element standard solutions of Li and Na (acidified with 0.144 mol/L HNO3) at the Li I 610.353 nm and Na I 285.3013 nm analytical lines. For calibration purposes, the method of standard addition with Li and Na solutions was applied. The correlation coefficients (R values) of the calibration graphs were not worse than 0.9678. The limit of detection for oxyorthosilicate samples was 20 μg/g and 80 μg/g for Li and Na, respectively. The alkaline content of the solid samples were found to be in the range of 0.89 and 8.4 mg/g, respectively. The accuracy of the results was verified by means of analyzing certified reference samples, using methods of standard (solution) addition calibration.

  18. A rapid method for the determination of Pb, Cu and Sn in dried tomato sauces with solid sampling electrothermal atomic absorption spectrometry.

    PubMed

    Baysal, Asli; Ozcan, Mustafa; Akman, Suleyman

    2011-06-01

    In this work, lead, copper and tin were determined in tomato sauces by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) and the results were compared with those obtained after sample digestion. The tomato sauce samples were dried at 90 °C for 12 h and directly introduced into the graphite furnace by means of solid auto sampler. Alternatively the dried samples were digested with concentrated HNO(3) (65%) and pipetted into the graphite furnace. After the optimization of the experimental parameters, the average lead, copper and tin concentrations found by the solid sampling and digestion methods in 10 different kinds of tomato sauce samples were not significantly different at 95% confidence level. For solid sampling technique, the limits of detection (LOD) for Cu, Sn and Pb were 10.4, 3.2 and 0.4 ng/g, respectively. Whereas for digestion method, for Cu, Sn and Pb were 6.7, 2.7 and 0.3 ng/g, respectively. The proposed solid sampling technique was fast, simple, the risks of contamination and analyte loss were low.

  19. A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry for analysis of samples with high NaCl contents

    NASA Astrophysics Data System (ADS)

    Čánský, Zdeněk; Rychlovský, Petr; Petrová, Zuzana; Matousek, J. P.

    2007-03-01

    A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry has been developed for determination of lead and cadmium in samples with high salt contents. To separate the analyte from the sample matrix, the analyte was in-situ quantitatively electrodeposited on a platinum sampling capillary serving as the cathode (sample volume, 20 μL). The spent electrolyte containing the sample matrix was then withdrawn, the capillary with the analyte deposited was washed with deionized water and the analyte was stripped into a chemically simple electrolyte (5 g/L NH 4H 2PO 4) by reversing the polarity of the electrodeposition circuit. Electrothermal atomization using a suitable optimized temperature program followed. A fully automated manifold was designed for this coupled technique and the appropriate control software was developed. The operating conditions for determination of Pb and Cd in samples with high contents of inorganic salts were optimized, the determination was characterized by principal analytical parameters and its applicability was verified on analyses of urine reference samples. The absolute limits of detection for lead and cadmium (3 σ criterion) in a sample containing 30 g/L NaCl were 8.5 pg and 2.3 pg, respectively (peak absorbance) and the RSD values amounted to 1.6% and 1.9% for lead (at the 40 ng mL - 1 level) and cadmium (at the 4.0 ng mL - 1 level), respectively. These values (and also the measuring sensitivity) are superior to the results attained in conventional electrothermal atomic absorption spectrometric determination of Pb and Cd in pure solutions (5 g/L NH 4H 2PO 4). The sensitivity of the Pb and Cd determination is not affected by the NaCl concentration up to a value of 100 g/L, demonstrating an efficient matrix removal during the electrodeposition step.

  20. Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples

    NASA Astrophysics Data System (ADS)

    Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.

    2015-09-01

    The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.

  1. Element-selective trace detection of toxic species in environmental samples using chromatographic techniques and derivative diode laser absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Koch, J.; Zybin, A.; Niemax, K.

    1998-10-01

    Very sensitive laser absorption techniques based on a double-beam scheme with logarithmic processing of the detector signals and wavelength modulation of laser diodes are presented. Detection limits equivalent to 10-7 absorption per square root of detection bandwidth are obtained if sufficient laser power is available and if the absorption is also subject to additional modulation. The analytical versatility of these techniques is demonstrated by quantitative analysis of very low concentrations of (i) Cr(VI) species in tap water and (ii) chlorinated poly-aromatics (chlorophenols) in plant extracts, both after chromatographic separation. The atomic absorption measurements were performed in an air-acetylene flame (Cr) and in a low-pressure microwave-induced plasma (chlorophenols).

  2. Influence of citric acid as chemical modifier for lead determination in dietary calcium supplement samples by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Cezar Paz de Mattos, Julio; Medeiros Nunes, Adriane; Figueiredo Martins, Ayrton; Luiz Dressler, Valderi; Marlon de Moraes Flores, Érico

    2005-06-01

    Citric acid was used as a chemical modifier for Pb determination by graphite furnace atomic absorption spectrometry in dietary supplement samples (calcium carbonate, dolomite and oyster shell samples) and its efficiency was compared to the use of palladium. Pyrolysis and atomization curves were established without use of chemical modifier, with the addition of 20, 100 and 200 μg of citric acid, and with 3 μg of palladium. The citric acid modifier made possible the interference-free Pb determination in the presence of high concentrations of Ca and Mg nitrates. Acid sample digestion involving closed vessels (microwave-assisted and conventional heating) and acid attack using polypropylene vessels at room temperature were compared. All digestion procedures presented similar results for calcium carbonate and dolomite samples. However, for oyster shell samples accurate results were obtained only with the use of closed vessel systems. Analyte addition and matrix-matched standards were used for calibration. The characteristic mass for Pb using citric acid and palladium were 16 and 25 pg, respectively. The relative standard deviation (RSD) was always less than 5% when citric acid was used. The relative and absolute limits of detection were 0.02 μg g - 1 and 8 pg with citric acid and 0.1 μg g - 1 and 44 pg with the Pd modifier, respectively ( n = 10, 3σ). The recovery of Pb in spiked calcium supplement samples (10 μg l - 1 ) was between 98% and 105%. With the use of 100 μg of citric acid as chemical modifier, problems such as high background absorption and high RSD values were minimized in comparison to the addition of 3 μg of palladium.

  3. Synthesis of a new molecularly imprinted polymer for sorption of the silver ions from geological and antiseptic samples for determination by flame atomic absorption spectrometry.

    PubMed

    Hashemi-Moghaddam, Hamid; Yahyazadeh, Faegheh; Vardini, Mohammad Taghi

    2014-01-01

    A new molecularly imprinted polymer (MIP) was synthesized using methacrylic acid (functional monomer), ethylene glycol dimethacrylate (crosslinker), 2,2'-azobisisobutironitril (initiator), silver (Ag) dithizone complex (template), and chloroform (porogenic solvent). This process was a noncovalent, bulk, thermal radical-polymerization. To compare the performance of this polymer, control polymer (nonimprinted polymer) was prepared under well-defined conditions without the use of a template. Extraction experiments were performed on the MIP and a nonimprinted polymer. Then, various parameters were optimized, such as pH, time, concentration of sample, and type of eluent for elution of Ag from polymer. In addition, interfering effects were investigated on the absorption of Ag by the MIP. This polymer was used for the rapid extraction and preconcentration of Ag from an antiseptic and geological sample. Finally, the amount of Ag was measured by flame atomic absorption spectrometry after preconcentration by the synthesized MIP, and results were compared with a direct inductively coupled plasma method. The results showed high performance of this method in preconcentration of Ag. PMID:25902996

  4. Simultaneous determination of iron and nickel in fluoropolymers by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Soares, Bruno M; Santos, Rafael F; Bolzan, Rodrigo C; Muller, Edson I; Primel, Ednei G; Duarte, Fabio A

    2016-11-01

    This paper reports the development of a method of simultaneous determination of iron and nickel in fluoropolymers by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with direct solid sampling. In order to carry out simultaneous measurements, both the main resonance line of nickel (232.003nm) and the adjacent secondary line of iron (232.036nm) were monitored in the same spectral window. The proposed method was optimized with a perfluoroalkoxy (PFA) sample and was applied to the determination of iron and nickel in fluorinated ethylene propylene (FEP) and modified polytetrafluoroethylene (PTFE-TFM) samples. Pyrolysis and atomization temperatures, as well as the use of Pd and H2 (during pyrolysis) as chemical modifiers, were carefully investigated. Compromise temperatures for pyrolysis and atomization of both analytes were achieved at 800 and 2300°C, respectively, using only 0.5Lmin(-1) H2 as chemical modifier during pyrolysis. Calibration curves were performed with aqueous standards by using a single solution which contained both analytes. Limits of detection were 221 and 9.6ngg(-1) for iron and nickel, respectively. Analyte concentrations in all samples ranged from 3.53 to 12.4µgg(-1) for iron and from 37 to 78ngg(-1) for nickel, with relative standard deviation less than 19%. Accuracy was evaluated by comparing these results with those obtained by inductively coupled plasma mass spectrometry after sample digestion by microwave-induced combustion and no significant statistical difference was observed. PMID:27591638

  5. Simultaneous determination of iron and nickel in fluoropolymers by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Soares, Bruno M; Santos, Rafael F; Bolzan, Rodrigo C; Muller, Edson I; Primel, Ednei G; Duarte, Fabio A

    2016-11-01

    This paper reports the development of a method of simultaneous determination of iron and nickel in fluoropolymers by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with direct solid sampling. In order to carry out simultaneous measurements, both the main resonance line of nickel (232.003nm) and the adjacent secondary line of iron (232.036nm) were monitored in the same spectral window. The proposed method was optimized with a perfluoroalkoxy (PFA) sample and was applied to the determination of iron and nickel in fluorinated ethylene propylene (FEP) and modified polytetrafluoroethylene (PTFE-TFM) samples. Pyrolysis and atomization temperatures, as well as the use of Pd and H2 (during pyrolysis) as chemical modifiers, were carefully investigated. Compromise temperatures for pyrolysis and atomization of both analytes were achieved at 800 and 2300°C, respectively, using only 0.5Lmin(-1) H2 as chemical modifier during pyrolysis. Calibration curves were performed with aqueous standards by using a single solution which contained both analytes. Limits of detection were 221 and 9.6ngg(-1) for iron and nickel, respectively. Analyte concentrations in all samples ranged from 3.53 to 12.4µgg(-1) for iron and from 37 to 78ngg(-1) for nickel, with relative standard deviation less than 19%. Accuracy was evaluated by comparing these results with those obtained by inductively coupled plasma mass spectrometry after sample digestion by microwave-induced combustion and no significant statistical difference was observed.

  6. Use of slurry sampling for the direct determination of zinc in yogurt by high resolution-continuum source flame atomic absorption spectrometry.

    PubMed

    Brandao, Geovani C; de Jesus, Raildo M; da Silva, Erik G P; Ferreira, Sergio L C

    2010-06-15

    This paper presents an analytical procedure for the direct determination of zinc in yogurt employing sampling slurry and high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). The step optimization established the experimental conditions of: 2.0molL(-1) hydrochloric acid, a sonication time of 20min and a sample mass of 1.0g for a slurry volume of 25mL. This method allows the determination of zinc with a limit of quantification of 0.32microgg(-1). The precision expressed as relative standard deviation (RSD) were 0.82 and 2.08% for yogurt samples containing zinc concentrations of 4.85 and 2.49microgg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of non-fat milk powder furnished by the National Institute of Standard and Technology. The proposed method was applied for the determination of zinc in seven yogurt samples. The zinc content was varied from 2.19 to 4.85microgg(-1). These results agreed with those reported in the literature. The samples were also analyzed after acid digestion and zinc determination by FAAS. No statistical difference was observed between the results obtained by both of the procedures performed.

  7. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry.

    PubMed

    Stanisz, Ewa; Zgoła-Grześkowiak, Agnieszka

    2013-10-15

    In situ synthesis of ionic liquid extractant for dispersive liquid-liquid microextraction (in situ IL DLLME) combined with electrothermal atomic absorption spectrometry (ET AAS) for determination of copper in water samples was developed. Analytical signals were obtained without the back-extraction of copper from the IL phase prior to its determination by AAS. Some essential parameters of the microextraction and detection techniques such as the pH of sample solution, volume of components for in situ synthesis, matrix interferences and main parameters of graphite furnace atomizer have been studied. Under optimal conditions, high extraction efficiency for copper was achieved for the extraction of 0.7 µg L(-1) in 10.0 mL of sample solution employing 8 μL of 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (HmimNTf2) as the extraction solvent. The detection limit was found as 0.004 µg L(-1) with an enrichment factor of 200. The relative standard deviation (RSD) for seven replicate measurements of 0.7 µg L(-1) in sample solution was 4%. The accuracy of the proposed method was evaluated by analysis of the Certified Reference Materials: NIST SRM 2709 (San Joaquin Soil), NBS SRM 2704 (Buffalo River Sediment), NRCC DOLT-2 (Dogfish Liver) and NIST SRM 1643e (Trace Element in Water). The measured copper contents in the reference materials were in satisfactory agreement with the certified values. The method was successfully applied to analysis of the tap, lake and mineral water samples.

  8. A Green Analytical Method Using Ultrasound in Sample Preparation for the Flow Injection Determination of Iron, Manganese, and Zinc in Soluble Solid Samples by Flame Atomic Absorption Spectrometry

    PubMed Central

    Yebra, M. Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5–30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2–4.6%) and a sample throughput of ca. 25 samples h–1 were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4–25.61 μg g−1 for iron, 5.74–18.30 μg g−1 for manganese, and 33.27–57.90 μg g−1 for zinc in soluble solid food samples and 3.75–9.90 μg g−1 for iron, 0.47–5.05 μg g−1 for manganese, and 1.55–15.12 μg g−1 for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553

  9. A green analytical method using ultrasound in sample preparation for the flow injection determination of iron, manganese, and zinc in soluble solid samples by flame atomic absorption spectrometry.

    PubMed

    Yebra, M Carmen

    2012-01-01

    A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5-30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2-4.6%) and a sample throughput of ca. 25 samples h(-1) were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4-25.61 μg g(-1) for iron, 5.74-18.30 μg g(-1) for manganese, and 33.27-57.90 μg g(-1) for zinc in soluble solid food samples and 3.75-9.90 μg g(-1) for iron, 0.47-5.05 μg g(-1) for manganese, and 1.55-15.12 μg g(-1) for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553

  10. Development of a method for total Hg determination in oil samples by cold vapor atomic absorption spectrometry after its extraction induced by emulsion breaking.

    PubMed

    Vicentino, Priscila de O; Brum, Daniel M; Cassella, Ricardo J

    2015-01-01

    This work reports the development of a novel extraction method for total Hg determination in oil samples. After extracting Hg from samples it was quantified in the extracts by cold vapor atomic absorption spectrometry (CV-AAS), employing a laboratory-made gas-liquid separator (GLS) and NaBH4 as reducing agent. The extraction of Hg from samples was carried out by extraction induced by emulsion breaking (EIEB), which is based on the formation and breaking of water-in-oil emulsion between the oil samples and an extractant solution containing an emulsifying agent (surfactant) and nitric acid. Operational parameters of the GLS were evaluated in order to set the best performance of the measurement system. In these studies it was proven that the volume of sample and the concentration of HCl added to the sample extracts had significant influence on Hg response. The best conditions were achieved by adding 0.5 mL of a 0.3 mol L(-1) HCl solution on 1 mL of sample extract. The extraction conditions were also optimized. The highest efficiency was observed when 4 mL of a solution containing 2.5% triton X-100 and 15% v/v HNO3 were employed for the extraction of Hg contained in 20 mL of sample. Emulsion breaking was performed by heating at 80 °C and took approximately 20 min. The limit of quantification of the method was 1.9 µg L(-1) and recovery percentages between 80% and 103% were observed when spiked samples (2 and 10 µg L(-1)) of diesel oil, biodiesel and mineral oil were analyzed.

  11. Dispersive liquid-liquid microextraction for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry.

    PubMed

    Shrivas, Kamlesh; Jaiswal, Nitin Kumar

    2013-12-01

    Dispersive liquid-liquid microextraction (DLLME) is applied for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry (FAAS). The maximum extraction efficiency of copper was obtained after the optimisation of parameters such as extraction and dispersing solvents, pH, concentration of 2,9-dimethyl-1,10-phenanothroline (DPT), N-phenylbenzimidoyl thiourea (PBITU) and salt. The optimised methodology exhibited a good linearity in the range of 0.2-20 ng/mL copper with relative standard deviations percentage (RSD,%) from ±1.5% to 3.5%. The method is found to be simple and rapid for the analysis of copper in food samples with the limit of detection (LOD) and quantitation (LOQ) were 0.05 and 0.16 ng/mL, respectively. Good recoveries of copper were obtained in the range of 93.5-98.0% in food samples as well as in Certified Reference Material (99.1%). The application of the proposed method has been successfully tested for the determination of copper in cereals (maize, millet, rice, wheat, gram, lentils, kidney beans and green beans) and vegetable (potato, cauliflower, tomato, spinach, green beans, lettuce, egg plants and bitter gourd) food samples.

  12. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    NASA Astrophysics Data System (ADS)

    Virgilio, Alex; Nóbrega, Joaquim A.; Rêgo, Jardes F.; Neto, José A. Gomes

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 °C and 2400 °C, respectively. Slopes of calibration curves (50-750 pg Cr, R2 > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 μg g- 1 Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 ± 2.1 μg g- 1 Cr. The limit of detection was 3.3 ng g- 1 Cr.

  13. Synthesis, characterization and application of a new chelating resin for solid phase extraction, preconcentration and determination of trace metals in some dairy samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-11-15

    In this study, a simple and rapid solid phase extraction/preconcentration procedure was developed for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly(N-cyclohexylacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (NCA-co-DVB-co-AMPS) (hereafter CDAP) was synthesized and characterized. The influences of the analytical parameters such as pH of the sample solution, type and concentration of eluent, flow rates of the sample and eluent, volume of the sample and eluent, amount of chelating resin, and interference of ions were examined. The limit of detection (LOD) of analytes were found (3s) to be in the range of 0.65-1.90μgL(-1). Preconcentration factor (PF) of 200 and the relative standard deviation (RSD) of ⩽2% were achieved (n=11). The developed method was applied for determination of analytes in some dairy samples and certified reference materials. PMID:27283608

  14. Determination of inorganic arsenic in marine food samples by hydrochloric acid distillation and flow-injection hydride-generation atomic absorption spectrometry.

    PubMed

    Oygard, J K; Lundebye, A K; Julshamn, K

    1999-01-01

    A simple, rapid, and reliable method was developed for determination of inorganic As in biological samples such as fish fillet. Inorganic AS was distilled from the sample as AsCl3 with HCl. The separated inorganic AS was determined by flow-injection hydride-generation atomic absorption spectrometry after prereduction with KI and HCl. The influences of various concentrations of KI, ascorbic acid, and HCl in the prereduction stage; NaBH4 as the reductant; and HCl as the carrier solution on analytical results were studied. Digestion was performed in a Kjeldahl digestion system for 75 min with 4 mL nitric acid and 1 mL sulfuric acid at 380 degrees C. The concentrations of inorganic As in samples were less than 0.1 mg/kg dry weight for fish fillet and somewhat higher for crustaceans and bivalve molluscs. The total and inorganic As contents of various marine biological samples and certified reference materials were determined.

  15. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    NASA Astrophysics Data System (ADS)

    Huber, Charles S.; Vale, Maria Goreti R.; Welz, Bernhard; Andrade, Jailson B.; Dessuy, Morgana B.

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg- 1 and 4.7 mg kg- 1, respectively.

  16. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry

    PubMed Central

    Naeemullah; Kazi, Tasneem Gul; Shah, Faheem; Afridi, Hassan Imran; Khan, Sumaira; Arian, Sadaf Sadia; Brahman, Kapil Dev

    2012-01-01

    Cloud point extraction (CPE) has been used for the preconcentration and simultaneous determination of cobalt (Co) and lead (Pb) in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine) as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114), temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS). The enhancement factors 70 and 50 with detection limits of 0.26 μg L−1 and 0.44 μg L−1 were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e) was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample. PMID:23227429

  17. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples.

  18. Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry.

    PubMed

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    This study proposes the application of multi-walled carbon nanotubes as a solid sorbent for the preconcentration of gold prior to its flame atomic absorption spectrometry determination. Extraction was achieved by using a glass column (15.0 cm in length and 1.0 cm in diameter). Quantitative recoveries were obtained in the pH range of 2.5-4.0; the elution step was carried out with 5.0 ml of 1.0 mol/L HNO3 in acetone. In the ligand-free study, variables such as pH, eluent type, sample volume, flow rates, and matrix effect were examined for the optimum recovery of gold ions. The gold ions were able to be pre-concentrated by a factor of 150 and their LOD was determined to be 1.71 μg/L. In order to evaluate the accuracy of the developed method, addition-recovery tests were applied for the tap water, mineral water, and sea water samples. Gold recovery studies were implemented using a wet digestion technique for mine and soil samples taken from various media, and this method was also applied for anodic slime samples taken from the factories located in the Kayseri Industrial Zone of Turkey.

  19. Separation and Enrichment of Gold in Water, Geological and Environmental Samples by Solid Phase Extraction on Multiwalled Carbon Nanotubes Prior to its Determination by Flame Atomic Absorption Spectrometry.

    PubMed

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2015-01-01

    This study proposes the application of multi-walled carbon nanotubes as a solid sorbent for the preconcentration of gold prior to its flame atomic absorption spectrometry determination. Extraction was achieved by using a glass column (15.0 cm in length and 1.0 cm in diameter). Quantitative recoveries were obtained in the pH range of 2.5-4.0; the elution step was carried out with 5.0 ml of 1.0 mol/L HNO3 in acetone. In the ligand-free study, variables such as pH, eluent type, sample volume, flow rates, and matrix effect were examined for the optimum recovery of gold ions. The gold ions were able to be pre-concentrated by a factor of 150 and their LOD was determined to be 1.71 μg/L. In order to evaluate the accuracy of the developed method, addition-recovery tests were applied for the tap water, mineral water, and sea water samples. Gold recovery studies were implemented using a wet digestion technique for mine and soil samples taken from various media, and this method was also applied for anodic slime samples taken from the factories located in the Kayseri Industrial Zone of Turkey. PMID:26651587

  20. Dispersive liquid-liquid microextraction for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry.

    PubMed

    Shrivas, Kamlesh; Jaiswal, Nitin Kumar

    2013-12-01

    Dispersive liquid-liquid microextraction (DLLME) is applied for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry (FAAS). The maximum extraction efficiency of copper was obtained after the optimisation of parameters such as extraction and dispersing solvents, pH, concentration of 2,9-dimethyl-1,10-phenanothroline (DPT), N-phenylbenzimidoyl thiourea (PBITU) and salt. The optimised methodology exhibited a good linearity in the range of 0.2-20 ng/mL copper with relative standard deviations percentage (RSD,%) from ±1.5% to 3.5%. The method is found to be simple and rapid for the analysis of copper in food samples with the limit of detection (LOD) and quantitation (LOQ) were 0.05 and 0.16 ng/mL, respectively. Good recoveries of copper were obtained in the range of 93.5-98.0% in food samples as well as in Certified Reference Material (99.1%). The application of the proposed method has been successfully tested for the determination of copper in cereals (maize, millet, rice, wheat, gram, lentils, kidney beans and green beans) and vegetable (potato, cauliflower, tomato, spinach, green beans, lettuce, egg plants and bitter gourd) food samples. PMID:23870956

  1. A green preconcentration method for determination of cobalt and lead in fresh surface and waste water samples prior to flame atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Shah, Faheem; Afridi, Hassan Imran; Khan, Sumaira; Arian, Sadaf Sadia; Brahman, Kapil Dev

    2012-01-01

    Cloud point extraction (CPE) has been used for the preconcentration and simultaneous determination of cobalt (Co) and lead (Pb) in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine) as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114), temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS). The enhancement factors 70 and 50 with detection limits of 0.26 μg L(-1) and 0.44 μg L(-1) were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e) was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample. PMID:23227429

  2. Determination of chlorine in coal via the SrCl molecule using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Éderson R.; Rocha, Lucas M.; Cadorim, Heloisa R.; Silva, Vanessa D.; Welz, Bernhard; Carasek, Eduardo; de Andrade, Jailson B.

    2015-12-01

    In this study, the determination of chlorine in coal is described via molecular absorption of the strontium mono-chloride (SrCl) molecule at 635.862 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) and direct solid sample analysis. The pyrolysis and vaporization temperatures were optimized and the measurements are accomplished with a platform coated with zirconium as a permanent chemical modifier in order to increase the sensitivity of the gaseous SrCl molecule generated in the graphite furnace. The optimum pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Under optimized conditions, the limit of detection and characteristic mass of the method were 0.85 and 0.24 ng, respectively. The accuracy of the method has been verified using four certified reference materials and one not certified reference material of coal, and the results were in good agreement with the certified or reference values.

  3. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed).

  4. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). PMID:26838401

  5. Determination of Lead in Water Samples Using a New Vortex-Assisted, Surfactant-Enhanced Emulsification Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Pan, Weiliang; Tang, Xiaohui; Zhou, Guangming; Mao, Yufeng; Su, Xaioxuan

    2016-04-01

    A low toxic solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction (LT-VSLLME) combined with graphite furnace atomic absorption spectrometry was developed for the extraction and determination of lead (Pb) in water samples. In the LT-VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which acted as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The influences of analytical parameters, including extraction solvent type and its volume, surfactant type and its volume, pH, concentration of chelating agent, salt effect and extraction time were investigated. Under the optimized conditions, a good relative standard deviation of 3.69% at 10 ng L(-1) was obtained. The calibration graph showed a linear pattern in the ranges of 5-30 ngL(-1), with a limit of detection of 0.76 ng L(-1). The linearity was obtained by five points in the concentration range of 5-30 ngL(-1). The enrichment factor was 320. The procedure was applied to wastewater and river water, and the accuracy was assessed through the analysis of the recovery experiments. PMID:26614355

  6. A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry.

    PubMed

    Citak, Demirhan; Tuzen, Mustafa

    2010-05-01

    In this work, a new cloud point extraction (CPE) procedure was developed for the separation and preconcentration of lead(II), cobalt(II), and copper(II) in various water and food samples. Complexes of metal ions with 1-Phenylthiosemicarbazide (1-PTSC) were extracted into the surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114) from samples. After phase separation, the enriched analytes were determined by flame atomic absorption spectrometry (FAAS). Factors affecting cloud point extraction, such as pH, reagent and surfactant concentrations, temperature, and incubation time were evaluated and optimized. The interference effect of some cations and anions was also studied. After optimization of the CPE conditions, the preconcentration factor of 25 and the limits of detection (L.O.D.) obtained for lead(II), cobalt(II), and copper(II) based on three sigma (n=20) were 3.42, 1.00, and 0.67 microg L(-1), respectively. The method presented precision (R.S.D.) between 1.7% and 4.8% (n=7). The presented preconcentration procedure was applied to the determination of metal ions in reference standard materials (SRM 1515 Apple leaves and GBW 07605 Tea) and some real samples including tap water, spring water, sea water, canned fish, black tea, green tea, tomato sauce and honey. PMID:20226223

  7. Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling.

    PubMed

    Krawczyk, Magdalena

    2014-01-01

    In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level.

  8. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples.

  9. On-line preconcentration/determination of zinc from water, biological and food samples using synthesized chelating resin and flame atomic absorption spectrometry.

    PubMed

    Yılmaz, Sibel; Tokalıoğlu, Serife; Sahan, Serkan; Ulgen, Ahmet; Sahan, Ahmet; Soykan, Cengiz

    2013-04-01

    An on-line flow injection pre-concentration-flame atomic absorption spectrometry method was developed to determine trace zinc in water (tap, dam, and well water), biological (hair and nail), and liver samples. As a solid phase extractant, a synthesized new chelating resin, poly(2-thiozylmethacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propane sulfonic acid) was used. The resin was characterized by Fourier transform infrared spectroscopy, elemental analysis, and surface area by nitrogen sorption. A pre-concentration factor of 40-fold for a sample volume of 12.6 mL was obtained by using the time-based technique. The detection limit for the pre-concentration method was found to be 2.2 μg L(-1). The precision (as RSD,%) for 10 replicate determinations at the 0.04 μg mL(-1) Zn concentration was 1.2%. The calibration graph using the pre-concentration system for zinc was linear with a correlation coefficient of 0.998 in the concentration range from 0.005 to 0.05 μg mL(-1). The applicability and accuracy of the developed method were estimated by the analysis spiked water, biological, liver samples (83-105%), and also certified reference material TMDA-70 (fortified lake water) and SPS-WW1 Batch 111-Wastewater. The results were in agreement with the certified values.

  10. Determination of Lead in Water Samples Using a New Vortex-Assisted, Surfactant-Enhanced Emulsification Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Pan, Weiliang; Tang, Xiaohui; Zhou, Guangming; Mao, Yufeng; Su, Xaioxuan

    2016-04-01

    A low toxic solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction (LT-VSLLME) combined with graphite furnace atomic absorption spectrometry was developed for the extraction and determination of lead (Pb) in water samples. In the LT-VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which acted as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The influences of analytical parameters, including extraction solvent type and its volume, surfactant type and its volume, pH, concentration of chelating agent, salt effect and extraction time were investigated. Under the optimized conditions, a good relative standard deviation of 3.69% at 10 ng L(-1) was obtained. The calibration graph showed a linear pattern in the ranges of 5-30 ngL(-1), with a limit of detection of 0.76 ng L(-1). The linearity was obtained by five points in the concentration range of 5-30 ngL(-1). The enrichment factor was 320. The procedure was applied to wastewater and river water, and the accuracy was assessed through the analysis of the recovery experiments.

  11. Separation and preconcentration of trace level of lead in one drop of blood sample by using graphite furnace atomic absorption spectrometry.

    PubMed

    Shrivas, Kamlesh; Patel, Devesh Kumar

    2010-04-15

    Drop-to-drop solvent microextraction (DDSME) assisted with ultrasonication is applied for the determination of lead in one drop (30 microL) of blood sample by using graphite furnace atomic absorption spectrometry (GF-AAS). The optimum extraction efficiency of lead was observed for 10 min extraction time at pH 5.0 with 2 microL of organic solvent that containing 0.5 M of Cyanex-302. The optimized methodology exhibited good linearity in the range of 0.3-30.0 ng mL(-1) lead with relative standard deviations (RSD) from 2.5 to 4.4%. The method is found to be simple and rapid for the analysis of lead in micro amount of blood sample with the limit of detection (LOD) of 0.08 ng mL(-1). The application of the proposed method has been successfully tested for the determination of lead in blood samples. The results showed that under the optimized experimental conditions, the method showed good sensitivity and recovery %, as well as advantages such as linearity, simplicity, low cost and high feasibility. PMID:20004520

  12. Simultaneous preconcentration of cadmium and chromium(III) in water samples by cloud point extraction and their determination by flame atomic absorption spectrometry.

    PubMed

    Meng, Lifen; Ning, Jinyan; Yang, Yaling

    2014-01-01

    A sensitive and simple method for flame atomic absorption spectrometry determination of traces of cadmium and chromium(III) species in water samples after preconcentration by cloud point extraction has been developed. A novel complex agent of alizarin complexone with cadmium (Cd) and chromium (Cr(III)) was quantitatively extracted in surface primary alcohol ethoxylate-rich phase at 33 °C. The effects of experimental conditions including pH of sample solution, concentration of chelating agent and salt, equilibration temperature and time, and foreign ions were evaluated in order to enhance sensitivity of the method. Under optimal conditions, the low limit detections were 6.7 and 3.2 μg/L, and the enrichment factors were 24 and 20 for Cd and Cr(III), respectively. The relative standard deviations were 3.8 and 2.5% for Cd and Cr(II), respectively (n = 11). The high recoveries of the spiked Cd and Cr(III) ions were obtained in the range of 90-116%. The proposed method has been successfully applied for the determination of Cd and Cr(III) in water samples.

  13. Green Preconcentration of Trace Amounts of Copper from Water and Food Samples onto Novel Organo-Nanoclay Prior to Flame Atomic Absorption Spectrometry.

    PubMed

    Beyki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah

    2014-01-01

    In this work, the nanoclay was intercalated with acyclovir (9-[(2-hydroxyethoxy) methyl] guanine), the toxicity of which to mammalian cells is very low. We used no organic solvents for preparation of modified clay and desorption of Cu ions from the sorbent. Batch and column methods were used, and sorption of Cu was quantitative (>98%) in the pH range of 7.5 to 10.0. Quantitative desorption occurred with 5.0 mL of 3.0 M HCl, and the amount of Cu(II) was measured by using flame atomic absorption spectrometry. In the initial solution the linear dynamic range and the LOD were 3.0-1000.0 and 0.58 μg/L, respectively. With 500.0 mL of sample, an enrichment factor of 100 was obtained. The RSD was 2.0% (n = 8, concentration = 0.5 mg/L), and the maximum capacity of the sorbent was 45.0 mg/g. The influence of experimental parameters including sample pH, ionic strength, type and volume of the eluent, and interference of some ions on the recoveries of Cu was investigated. The proposed method using a new and easier prepared solid sorbent was applied to the determination of Cu in different real samples with satisfactory results. PMID:25902995

  14. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results.

  15. Determination of nickel in blood and serum samples of oropharyngeal cancer patients consumed smokeless tobacco products by cloud point extraction coupled with flame atomic absorption spectrometry.

    PubMed

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Jamshed Bashir; Afridi, Hassan Imran; Kazi, Atif Gul; Nasreen, Syeda; Brahman, Kapil Dev

    2014-10-01

    Oropharyngeal cancer is a significant public health issue in the world. The incidence of oropharyngeal cancer has been increased among people who have habit of chewing smokeless tobacco (SLT) in Pakistan. The aim of present study was to evaluate the concentration of nickel (Ni) in biological samples (whole blood, serum) of oral (n = 95) and pharyngeal (n = 84) male cancer patients. For comparison purposes, the biological samples of healthy age-matched referents (n = 150), who consumed and did not consumed SLT products, were also analyzed for Ni levels. As the Ni level is very low in biological samples, a preconcentration procedure has been developed, prior to analysis of analyte by flame atomic absorption spectrometry (FAAS). The Ni in acid-digested biological samples was complexed with ammonium pyrrolidinedithio carbamate (APDC), and a resulted complex was extracted in a surfactant Triton X-114. Acidic ethanol was added to the surfactant-rich phase prior to its analysis by FAAS. The chemical variables, such as pH, amounts of reagents (APDC, Triton X-114), temperature, incubation time, and sample volume were optimized. The resulted data indicated that concentration of Ni was higher in blood and serum samples of cancer patients as compared to that of referents who have or have not consumed different SLT products (p = 0.012-0.001). It was also observed that healthy referents who consumed SLT products have two to threefold higher levels of Ni in both biological samples as compared to those who were not chewing SLT products (p < 0.01). PMID:24920259

  16. Determination of nickel in blood and serum samples of oropharyngeal cancer patients consumed smokeless tobacco products by cloud point extraction coupled with flame atomic absorption spectrometry.

    PubMed

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Jamshed Bashir; Afridi, Hassan Imran; Kazi, Atif Gul; Nasreen, Syeda; Brahman, Kapil Dev

    2014-10-01

    Oropharyngeal cancer is a significant public health issue in the world. The incidence of oropharyngeal cancer has been increased among people who have habit of chewing smokeless tobacco (SLT) in Pakistan. The aim of present study was to evaluate the concentration of nickel (Ni) in biological samples (whole blood, serum) of oral (n = 95) and pharyngeal (n = 84) male cancer patients. For comparison purposes, the biological samples of healthy age-matched referents (n = 150), who consumed and did not consumed SLT products, were also analyzed for Ni levels. As the Ni level is very low in biological samples, a preconcentration procedure has been developed, prior to analysis of analyte by flame atomic absorption spectrometry (FAAS). The Ni in acid-digested biological samples was complexed with ammonium pyrrolidinedithio carbamate (APDC), and a resulted complex was extracted in a surfactant Triton X-114. Acidic ethanol was added to the surfactant-rich phase prior to its analysis by FAAS. The chemical variables, such as pH, amounts of reagents (APDC, Triton X-114), temperature, incubation time, and sample volume were optimized. The resulted data indicated that concentration of Ni was higher in blood and serum samples of cancer patients as compared to that of referents who have or have not consumed different SLT products (p = 0.012-0.001). It was also observed that healthy referents who consumed SLT products have two to threefold higher levels of Ni in both biological samples as compared to those who were not chewing SLT products (p < 0.01).

  17. Selenium measurement in human plasma with Zeeman effect electrothermal atomic absorption spectrometry: sample stability and calibration method.

    PubMed

    Sabé, Rosa; Rubio, Roser; García-Beltrán, Lydia

    2003-01-01

    The dual aim of the present study is the investigation of the stability of plasma samples for selenium determination with time and temperature and the assessment of the calibration method. A comparative study is performed, using two calibration methods: standard addition to each sample and matrix matched curve. Our findings show that, in general, significant differences in the selenium content are observed when comparing the results obtained with these two calibration methods. Plasma samples stored at -20 degrees C are stable relative to the selenium content for a period of at least one year.

  18. Optimization of microwave digestion for mercury determination in marine biological samples by cold vapour atomic absorption spectrometry.

    PubMed

    Cardellicchio, Nicola; Di Leo, Antonella; Giandomenico, Santina; Santoro, Stefania

    2006-01-01

    Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.

  19. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    PubMed

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. PMID:26452789

  20. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    PubMed

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation.

  1. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples.

    PubMed

    Wang, Yukun; Gao, Shutao; Zang, Xiaohuan; Li, Jingci; Ma, Jingjun

    2012-02-24

    Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using a column packed with graphene as sorbent was developed for the preconcentration of trace amounts of lead (Pb) using dithizone as chelating reagent prior to its determination by flame atomic absorption spectrometry. Some effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 10.0-600.0 μg L(-1) with a detection limit of 0.61 μg L(-1). The relative standard deviation for ten replicate measurements of 20.0 and 400.0 μg L(-1) of Pb were 3.56 and 3.25%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Pb. The proposed method was successfully applied in the analysis of environmental water and vegetable samples. Good spiked recoveries over the range of 95.3-100.4% were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes. PMID:22284885

  2. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Escudero, Leticia B; Olsina, Roberto A; Wuilloud, Rodolfo G

    2013-11-15

    A simple and green technique named polymer-supported ionic liquid solid phase extraction (PSIL-SPE) was developed for mercury (Hg) species determination. Inorganic Hg (InHg) species was complexed with chloride ions followed by its introduction into a flow injection on-line system to quantitatively retain the anionic chlorocomplex (HgCl4(2-)) in a column packed with CYPHOS(®) IL 101-impregnated resin. The trapped InHg was then reduced with stannous chloride (SnCl2) and eluted with the same flow of reducing agent followed by cold vapor atomic absorption spectrometry (CV-AAS) detection. Organic mercury species (OrgHg) did not interact with the impregnated resin and were not retained into the column. Total concentration of OrgHg was evaluated by difference between total Hg and InHg concentration. A 95% extraction efficiency was achieved for InHg when the procedure was developed under optimal experimental conditions. The limit of detection obtained for preconcentration of 40 mL of sample was 2.4 ng L(-1) InHg. The relative standard deviation (RSD) was 2.7% (at 1 µg L(-1) InHg and n=10) calculated from the peak height of absorbance signals (Gaussian-shape and reproducible peaks). This work reports the first polymer-supported IL solid phase extraction approach implemented in a flow injection on-line system for determination of Hg species in mineral, tap and river water samples.

  3. Determination of mercury in biological samples by cold vapor atomic absorption spectrometry following cloud point extraction with salt-induced phase separation.

    PubMed

    Dittert, Ingrid M; Maranhão, Tatiane A; Borges, Daniel L G; Vieira, Mariana A; Welz, Bernhard; Curtius, Adilson J

    2007-07-31

    Method development for the pre-concentration of mercury in human hair, dogfish liver and dogfish muscle samples using cloud-point extraction and cold vapor atomic absorption spectrometry is demonstrated. Before the extraction, the samples were submitted to microwave-assisted digestion in a mixture of H(2)O(2) and HNO(3). Cloud point extraction was carried out using 0.5% (m/v) ammonium O,O-diethyldithiophosphate (DDTP) as the chelating agent and 0.3% (m/v) Triton X-114 as the non-ionic surfactant. Phase separation was induced after the addition of Na(2)SO(4) to a final concentration of 0.2 mol L(-1). Aliquots of the final extract were transferred to PTFE tubes and NaBH(4) and HCl were added. The mercury vapor was driven to a non-heated quartz tube for measuring the absorbance. The results obtained with salt-induced phase separation were in good agreement with the certified values at a 95% confidence level. An enrichment factor of 10 allowed a detection limit of 0.4 ng g(-1) to be obtained, which demonstrates the high sensitivity of the proposed procedure for the determination of mercury at trace levels.

  4. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.

    PubMed

    Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa

    2013-01-01

    A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples. PMID:24645524

  5. Development a novel supramolecular solvent microextraction procedure for copper in environmental samples and its determination by microsampling flame atomic absorption spectrometry.

    PubMed

    Yilmaz, Erkan; Soylak, Mustafa

    2014-08-01

    A supramolecular solvent (Ss) made up of reverse micelles of 1-decanol in tetrahydrofuran (THF): water was used for the fast and selective microextraction of Cu(II) prior to its determination by microsampling flame atomic absorption spectrometry (FAAS). Cu(II) was complexed with dimethyl dithiocarbamate (DMDC) to obtain hydrophobic complex and extracted to supramolecular solvent phase. The influences of some analytical parameters including pH, type and volume of supramolecular solvent, amount of complexing agent, ultrasonication and centrifuge time and sample volume were investigated. The effects of matrix components were also examined. The detection limit (LOD) and the quantification limit (LOQ) were 0.52µg L(-1) and 1.71µg L(-1) respectively. An preconcentration factor was obtained as 60 and the relative standard deviation was <3%. The accuracy of the developed method was evaluated by the analysis of the certified reference materials (TMDA-64.2 water, SRM 1568A Rice Flour and 8433 Corn Bran) and addition-recovery tests. The presented supramolecular solvent based liquid-liquid microextraction (SsLLME) procedure was applied to the determination of copper in food and water samples with satisfactory results. PMID:24881552

  6. Multivariate approach in the optimization procedures for the direct determination of manganese in serum samples by graphite furnace atomic absorption spectrometry.

    PubMed

    Fabrino, Henrique José Ferraz; Silveira, Josianne Nicácio; Neto, Waldomiro Borges; Goes, Alfredo Miranda; Beinner, Mark Anthony; da Silva, José Bento Borba

    2011-10-01

    A method for direct determination of manganese (Mn) in human serum by graphite furnace atomic absorption spectrometry (GFAAS) was proposed in this work. The samples were only diluted 1:4 with nitric acid 1% (v/v) and Triton(®) X-100 0.1% (v/v). The optimization of the instrumental conditions was made using multivariate approach. A factorial design (2(3)) was employed to investigate the tendency of the most intense absorbance signal. The pyrolysis and atomization temperatures and the use of modifier were available and only the parameter modifier use did not have a significant effect on the response. A Center Composed Design (CCD) presented best temperatures of 430 °C and 2568 °C for pyrolysis and atomization, respectively. The method allowed the determination of manganese with a curve varying from 0.7 to 3.3 μg/L. Recovery studies in three concentration levels (n=7 for each level) presented results from 98 ± 5 to 102 ± 7 %. The detection limit was 0.2 μg/L, the quantifying limit was 0.7 μg/L, and the characteristic mass, 1.3 ± 0.2 pg. Intra- and interassay studies showed coefficients of variation of 4.7-7.0% (n=21) and 6-8%(n=63), respectively. The method was applied for the determination of manganese in 53 samples obtaining concentrations from 3.9 to 13.7 μg/L.

  7. A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry.

    PubMed

    Altunay, Nail; Gürkan, Ramazan

    2015-05-15

    A new cloud-point extraction (CPE) for the determination of antimony species in biological and beverages samples has been established with flame atomic absorption spectrometry (FAAS). The method is based on the fact that formation of the competitive ion-pairing complex of Sb(III) and Sb(V) with Victoria Pure Blue BO (VPB(+)) at pH 10. The antimony species were individually detected by FAAS. Under the optimized conditions, the calibration range for Sb(V) is 1-250 μg L(-1) with a detection limit of 0.25 μg L(-1) and sensitive enhancement factor of 76.3 while the calibration range for Sb(III) is 10-400 μg L(-1) with a detection limit of 5.15 μg L(-1) and sensitive enhancement factor of 48.3. The precision as a relative standard deviation is in range of 0.24-2.35%. The method was successfully applied to the speciative determination of antimony species in the samples. The validation was verified by analysis of certified reference materials (CRMs).

  8. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  9. Assessment of the Halogen Content of Brazilian Inhalable Particulate Matter (PM10) Using High Resolution Molecular Absorption Spectrometry and Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry, with Direct Solid Sample Analysis.

    PubMed

    de Gois, Jefferson S; Almeida, Tarcisio S; Alves, Jeferson C; Araujo, Rennan G O; Borges, Daniel L G

    2016-03-15

    Halogens in the atmosphere play an important role in climate change and also represent a potential health hazard. However, quantification of halogens is not a trivial task, and methods that require minimum sample preparation are interesting alternatives. Hence, the aim of this work was to evaluate the feasibility of direct solid sample analysis using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS) for F determination and electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICP-MS) for simultaneous Cl, Br, and I determination in airborne inhalable particulate matter (PM10) collected in the metropolitan area of Aracaju, Sergipe, Brazil. Analysis using HR-CS MAS was accomplished by monitoring the CaF molecule, which was generated at high temperatures in the graphite furnace after the addition of Ca. Analysis using ETV-ICP-MS was carried out using Ca as chemical modifier/aerosol carrier in order to avoid losses of Cl, Br, and I during the pyrolysis step, with concomitant use of Pd as a permanent modifier. The direct analysis approach resulted in LODs that were proven adequate for halogen determination in PM10, using either standard addition calibration or calibration against a certified reference material. The method allowed the quantification of the halogens in 14 PM10 samples collected in a northeastern coastal city in Brazil. The results demonstrated variations of halogen content according to meteorological conditions, particularly related to rainfall, humidity, and sunlight irradiation.

  10. A dried urine spot test to simultaneously monitor Mo and Ti levels using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Rello, L.; Lapeña, A. C.; Aramendía, M.; Belarra, M. A.; Resano, M.

    2013-03-01

    Home-based collection protocols for clinical specimens are actively pursued as a means of improving life quality of patients that require frequent controls, such as patients with metallic prosthesis, for whom monitoring the evolution of Mo and Ti in biological fluids may play a decisive role to detect prosthesis mal-functioning. The collection of biological fluids on clinical filter papers provides a simple way to implement these protocols. This work explores the potential of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous and direct determination of Mo and Ti in urine, after its deposition onto clinical filter paper, giving rise to a dried urine spot. The approach used for depositing the sample was found crucial to develop a quantitative method, since the filter paper acts as a chromatographic support and produces a differential distribution of the target analytes. Furthermore, the high spreading of urine onto a filter paper results in a small amount of urine per surface unit, and thus, ultimately, in lack of sensitivity. In order to circumvent these problems, the use of an alternative approach based on the use of pre-cut 17 × 19 mm filter paper pieces onto which larger amounts of sample (500 μL) can be retained by single deposition was proposed and evaluated. In this way, an approximately 12-fold increase in sensitivity and a more homogeneous distribution of the target analytes were obtained, permitting the development of a quantification strategy based on the use of matrix-matched urine samples of known analyte concentrations, which were subjected to the same procedure as the samples. Accuracy of this method, which provides LODs of 1.5 μg L- 1 for Mo and 6.5 μg L- 1 for Ti, was demonstrated after analysis of urine reference materials. Overall, the performance of the method developed is promising, being likely suitable for determination of other analytes in dried urine spots.

  11. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  12. In situ emulsification microextraction using a dicationic ionic liquid followed by magnetic assisted physisorption for determination of lead prior to micro-sampling flame atomic absorption spectrometry.

    PubMed

    Shokri, Masood; Beiraghi, Asadollah; Seidi, Shahram

    2015-08-19

    For the first time, a simple and efficient in situ emulsification microextraction method using a dicationic ionic liquid followed by magnetic assisted physisorption was presented to determine trace amounts of lead. In this method, 400 μL of 1.0 mol L(-1) lithium bis (trifluoromethylsulfonyl) imide aqueous solution, Li[NTf2], was added into the sample solution containing 100 μL of 1.0 mol L(-1) 1,3-(propyl-1,3-diyl) bis (3-methylimidazolium) chloride, [pbmim]Cl2, to form a water immiscible ionic liquid, [pbmim][NTf2]2. This new in situ formed dicationic ionic liquid was applied as the acceptor phase to extract the lead-ammonium pyrrolidinedithiocarbamate (Pb-APDC) complexes from the sample solution. Subsequently, 30 mg of Fe3O4 magnetic nanoparticles (MNPs) were added into the sample solution to collect the fine droplets of [pbmim][NTf2]2, physisorptively. Finally, MNPs were eluted by acetonitrile, separated by an external magnetic field and the obtained eluent was subjected to micro-sampling flame atomic absorption spectrometry (FAAS) for further analysis. Comparing with other microextraction methods, no special devices and centrifugation step are required. Parameters influencing the extraction efficiency such as extraction time, pH, concentration of chelating agent, amount of MNPs and coexisting interferences were studied. Under the optimized conditions, this method showed high extraction recovery of 93% with low LOD of 0.7 μg L(-1). Good linearity was obtained in the range of 2.5-150 μg L(-1) with determination coefficient (r(2)) of 0.9921. Relative standard deviation (RSD%) for seven repeated measurements at the concentration of 10 μg L(-1) was 4.1%. Finally, this method was successfully applied for determination of lead in some water and plant samples. PMID:26343434

  13. Cloud point extraction-atomic absorption spectrometry for pre-concentration and determination of cadmium in cigarette samples.

    PubMed

    Tavallali, Hossein; Boustani, Fazlollah; Yazdandoust, Mozhdeh; Aalaei, Mehdi; Tabandeh, Mahboobeh

    2013-05-01

    A new complexing agent, 2-((2-((1H-benzo[d]imidazole-2yl)methoxy)phenoxy)methyl)-1H-benzo[d]imidazole (BIMPI), was used in cloud point extraction and applied for selective pre-concentration of trace amounts of cadmium in cigarette samples. Cadmium was complexed with BIMPI in a buffer solution (pH = 10) using Triton X-114 as surfactant and quantitatively extracted into a small volume of the surfactant-rich phase after centrifugation. Under optimized conditions (pH = 10.0, 0.8 × 10(-4) mol L(-1) BIMPI and 0.08 % (w/v) Triton X-114), calibration graph was linear in the range of 34.0-1,670.0 μg L(-1). The proposed method was applied to the determination of Cd in various cigarette (tobacco) samples which gave satisfactory results.

  14. Slurry sampling graphite furnace atomic absorption spectrometry: a preliminary examination of results from an international collaborative study

    NASA Astrophysics Data System (ADS)

    Miller-Ihli, N. J.

    1995-06-01

    An international collaborative study was initiated to evaluate the current state-of-the-art for solid sampling. Samples were sent to 28 laboratories and data were received from 18 collaborators, 16 of which reported slurry results. A preliminary check of performance using NIST SRM 1643c acidified water, showed that at least 13 laboratories were able to provide accurate results within ±10% of the mean certified Pb and Cr concentrations. The focus of this work was slurry analytical data reported by collaborators. Average performance by collaborators for the determination of Pb in NIST SRM 2704 Buffalo River Sediment was 103% recovery based on the mean certified reference value and was 84% recovery based on the mean certified reference value for NRCC PACS-1, a marine estuarine sediment, which was identified to collaborators as an unknown sediment. Average performance by collaborators for Cr in SRM 2704 was 96% based on the mean certified reference value and was 78% recovery based on the mean certified reference value for PACS-1. The use of secondary wavelengths and the importance of analysis of a representative subsample are highlighted. Possible problems leading to inaccurate results being reported by collaborators are discussed including the use of mini-flows, matrix modifiers, low atomization temperatures, short atomization times, and expulsion losses.

  15. Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples

    NASA Astrophysics Data System (ADS)

    Li, Shengqing; Cai, Shun; Hu, Wei; Chen, Hao; Liu, Hanlan

    2009-07-01

    A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium-DDTC complex was formed and extracted into the fine droplets of HMIMPF 6. After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 µL of HMIMPF 6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L - 1 , and the characteristic mass ( m0, 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L - 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2-106%.

  16. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    NASA Astrophysics Data System (ADS)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-05-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  17. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia

    2015-01-01

    Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine sediment samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS AAS) and direct solid sample analysis has been developed. The application of fast programs in combination with direct solid sampling allows to eliminate the drying and pretreatment steps, however makes impossible the use of liquid standards for calibration. Iridium treated platforms were applied throughout the present study. Calibration technique based on the use of solid certified reference materials (marine sediments) similar to the nature of the analyzed sample and statistics of regression analysis were applied to the real sediment samples. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signals. The ISO-17025 requirements and Eurachem guidelines were followed in the validation of the proposed analytical procedure. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability reproducibility, limits of detection and quantification and expanded uncertainty (k = 2) for all investigated elements were assessed. Two different approaches for the estimation of measurement uncertainty were applied and obtained results compared. The major contributors to the combined uncertainty of the analyte mass fraction were found to be the homogeneity of the samples and the microbalance precision. The influence of sample particle sizes on the total combined uncertainty was also evaluated. Traceability to SI system of units of the obtained by the proposed analytical procedure results was demonstrated. Additionally, validation of the methodology developed was effectuated by the comparison of the obtained results with independent method e.g. ICP-MS with external calibration. The use of solid sampling HR CS AAS for the determination of trace elements in marine sediment matrix gives significant advantages

  18. Ligandless dispersive liquid--liquid microextraction of iron in biological and foodstuff samples and its determination by Electrothermal atomic absorption spectrometry.

    PubMed

    Madadizadeh, Mohadeseh; Taher, Mohammad Ali; Ashkenani, Hamid

    2013-01-01

    A new, simple, and efficient method comprising ligandless dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry is reported for the preconcentration and determination of ultratrace amounts of Fe(III). Carbon tetrachloride and acetone were used as the extraction and disperser solvents, respectively. Some effective parameters of the microextraction such as choice of extraction and disperser solvents, their volume, extraction time and temperature, salt and surfactant effect, and pH were optimized. Under the optimum conditions, the calibration curve was linear in the range of 0.02 to 0.46 microg/L of Fe(III), with LOD and LOQ of 5.2 and 17.4 ng/L, respectively. The RSD for seven replicated determinations of Fe(IIl) ion at 0.1 microg/L concentration level was 5.2%. Operational simplicity, rapidity, low cost, good repeatability, and low consumption of extraction solvent are the main advantages of the proposed method. The method was successfully applied to the determination of iron in biological, food, and certified reference samples.

  19. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.

    PubMed

    Citak, Demirhan; Tuzen, Mustafa

    2013-01-01

    A new and simple method for the determination of trace amounts of Cu(II) was developed by combination of dispersive liquid-liquid microextraction (DLLME) preconcentration and microsample introduction flame atomic absorption spectrometry. In this method, ethanol and chloroform were chosen as disperser and extraction solvents, respectively, and 1-nitroso-2-naphthol was used as the complexing agent. The factors affecting the extraction efficiency and determination of Cu(II), including extraction and disperser solvent nature and volume, concentration of the complexing agent, pH of the solution, extraction time, and matrix ions, were investigated. Under optimal conditions, the LOD for Cu(II) was 0.95 microg/L with a preconcentration factor of 70. The RSD was 1.9%. The accuracy of the developed DLLME method was verified by determination of Cu(II) in a certified reference material (NRCC-SLRS-4 river water). The relative error was -3.31%. The developed preconcentration procedure was successfully applied to the analysis of bottled drinking water samples.

  20. Ultra-trace determination of lead in water and food samples by using ionic liquid-based single drop microextraction-electrothermal atomic absorption spectrometry.

    PubMed

    Manzoori, Jamshid L; Amjadi, Mohammad; Abulhassani, Jafar

    2009-06-30

    An improved single drop microextraction procedure was developed for the preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry. Ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6], was used as an alternative to volatile organic solvents for extraction. Lead was complexed with ammonium pyrroldinedithiocarbamate (APDC) and extracted into a 7-microL ionic liquid drop. The extracted complex was directly injected into the graphite furnace. Several variables affecting microextraction efficiency and ETAAS signal, such as pyrolysis and atomization temperature, pH, APDC concentration, extraction time, drop volume and stirring rate were investigated and optimized. In the optimum experimental conditions, the limit of detection (3s) and the enhancement factor were 0.015 microg L(-1) and 76, respectively. The relative standard deviation (RSD) for five replicate determinations of 0.2 microg L(-1) Pb was 5.2%. The developed method was validated by the analysis of certified reference materials and applied successfully to the determination of lead in several real samples. PMID:19463561

  1. Ionic liquid-based single drop microextraction combined with electrothermal atomic absorption spectrometry for the determination of manganese in water samples.

    PubMed

    Manzoori, Jamshid L; Amjadi, Mohammad; Abulhassani, Jafar

    2009-02-15

    Room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C(4)MIM][PF(6)], was used as an alternative to volatile organic solvents in single drop microextraction-electrothermal atomic absorption spectrometry (SDME-ETAAS). Manganese was extracted from aqueous solution into a drop of the ionic liquid after complextaion with 1-(2-thiazolylazo)-2-naphthol (TAN) and the drop was directly injected into the graphite furnace. Several variables affecting microextraction efficiency and ETAAS signal, such as pyrolysis and atomization temperature, pH, TAN concentration, extraction time, drop volume and stirring rate were investigated and optimized. In the optimum experimental conditions, the limit of detection (3s) and the enhancement factor were 0.024 microg L(-1) and 30.3, respectively. The relative standard deviation (RSD) for five replicate determinations of 0.5 microg L(-1) Mn(II) was 5.5%. The developed method was validated by the analysis of a certified reference material (NIST SRM 1643e) and applied successfully to the determination of manganese in several natural water samples. PMID:19084676

  2. A Novel Method Using Solid-Phase Extraction with Slotted Quartz Tube Atomic Absorption Spectrometry for the Determination of Manganese in Walnut Samples.

    PubMed

    Bitirmis, Bedrana; Trak, Digdem; Arslan, Yasin; Kendüzler, Erdal

    2016-01-01

    Mn(2+) was separated and preconcentrated using both solid-phase extraction (SPE) and a slotted quartz tube (SQT), and detected by a flame atomic absorption spectrometry (FAAS) system. Firstly, Mn(2+) was retained on a column filled with Amberlite CG-120 resin, and then retained Mn(2+) ions on the Amberlite CG-120 resin eluted with 5 mL of 4 mol/L HNO3. This part was called the "first preconcentration step". Furthermore, to determine the Mn(2+) in a walnut sample, the SQT device was also used after the separation and preconcentration of Mn(2+) from the Amberlite CG-120 resin so as to further improve the sensitivity of system. This part was called the "second preconcentration step" in this study. The enrichment factor and limit of detection values were found to be 360 fold and 0.22 μg/L, in turn, after a two-step preconcentration method. The good accuracy of method was confirmed with the use of standard reference material (spinach leaves, NIST-1570a). PMID:27302588

  3. Investigation of novel rapidly synergistic cloud point extraction pattern for bismuth in water and geological samples coupling with flame atomic absorption spectrometry determination.

    PubMed

    Wen, Xiaodong; Zhao, Yu; Deng, Qingwen; Ji, Shoulian; Zhao, Xia; Guo, Jie

    2012-04-01

    Rapidly synergistic cloud point extraction (RS-CPE) greatly simplified and accelerated the procedure of traditional cloud point extraction (CPE). In order to expand the application of RS-CPE, this work was carried out after the establishment of the improved extraction technique. The new established extraction method was firstly applied for bismuth extraction and determination coupled with flame atomic absorption spectrometry (FAAS) in this work. The improved RS-CPE was accomplished in the room temperature in 1 min. Non-ionic surfactant Triton X-100 (TX-100) was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. TX-100 has a relatively high cloud point temperature (CPT), which limited its application in CPE. In this work, TX-100 accomplished the RS-CPE procedure in room temperature successfully. The factors influencing RS-CPE, such as concentrations of reagents, pH, conditions of phase separation, effect of environmental temperatures, salt effect and instrumental conditions, were studied systematically. Under the optimal conditions, the limit of detection (LOD) for bismuth was 4.0 μg L(-1), with sensitivity enhancement factor (EF) of 43. The proposed method greatly improved the sensitivity of FAAS for the determination of bismuth and was applied to the determination of trace bismuth in real and certified samples with satisfactory analytical results. The proposed method was rapid, simple, and sensitive.

  4. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe3O4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L-1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml-1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results.

  5. Investigation of novel rapidly synergistic cloud point extraction pattern for bismuth in water and geological samples coupling with flame atomic absorption spectrometry determination

    NASA Astrophysics Data System (ADS)

    Wen, Xiaodong; Zhao, Yu; Deng, Qingwen; Ji, Shoulian; Zhao, Xia; Guo, Jie

    2012-04-01

    Rapidly synergistic cloud point extraction (RS-CPE) greatly simplified and accelerated the procedure of traditional cloud point extraction (CPE). In order to expand the application of RS-CPE, this work was carried out after the establishment of the improved extraction technique. The new established extraction method was firstly applied for bismuth extraction and determination coupled with flame atomic absorption spectrometry (FAAS) in this work. The improved RS-CPE was accomplished in the room temperature in 1 min. Non-ionic surfactant Triton X-100 (TX-100) was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. TX-100 has a relatively high cloud point temperature (CPT), which limited its application in CPE. In this work, TX-100 accomplished the RS-CPE procedure in room temperature successfully. The factors influencing RS-CPE, such as concentrations of reagents, pH, conditions of phase separation, effect of environmental temperatures, salt effect and instrumental conditions, were studied systematically. Under the optimal conditions, the limit of detection (LOD) for bismuth was 4.0 μg L-1, with sensitivity enhancement factor (EF) of 43. The proposed method greatly improved the sensitivity of FAAS for the determination of bismuth and was applied to the determination of trace bismuth in real and certified samples with satisfactory analytical results. The proposed method was rapid, simple, and sensitive.

  6. Fast heating induced impulse halogenation of refractory sample components in electrothermal atomic absorption spectrometry by direct injection of a liquid halogenating agent.

    PubMed

    György, Krisztina; Ajtony, Zsolt; Van Meel, Katleen; Van Grieken, René; Czitrovszky, Aladár; Bencs, László

    2011-09-15

    A novel electrothermal atomic absorption spectrometry (ETAAS) method was developed for the halogenation of refractory sample components (Er, Nd and Nb) of lithium niobate (LiNbO(3)) and bismuth tellurite (Bi(2)TeO(5)) optical single crystals to overcome memory effects and carry-over. For this purpose, the cleaning step of a regular graphite furnace heating program was replaced with a halogenation cycle. In this cycle, after the graphite tube cooled to room temperature, a 20 μL aliquot of liquid carbon tetrachloride (CCl(4)) was dispensed with a conventional autosampler into the graphite tube. The CCl(4) was partially dried at 80°C under the mini-flow (40 cm(3) min(-1)) condition of the Ar internal furnace gas (IFG), then the residue was decomposed (pyrolyzed) by fast furnace heating at 1900-2100°C under interrupted flow of the IFG. This step was followed by a clean-out stage at 2100°C under the maximum flow of the IFG. The advantage of the present method is that it does not require any alteration to the graphite furnace gas supply system in contrast to most of the formerly introduced halogenation techniques. The effectiveness of the halogenation method was verified with the determination of Er and Nd dopants in the optical crystals. In these analyses, a sensitivity decrease was observed, which was likely due to the enhanced deterioration of the graphite tube surface. Therefore, the application of mathematical correction (resloping) of the calibration was also required. The calibration curves were linear up to 1.5 and 10 μmol L(-1) for Er and Nd, respectively. Characteristic masses of 18 and 241 pg and the limit of detection (LOD) values of 0.017 and 0.27 μmol L(-1) were found for Er and Nd, respectively. These LOD data correspond to 0.68 μmol mol(-1) Er and 11 μmol mol(-1) Nd in solid bismuth tellurite samples. The analytical results were compared with those obtained by a conventional ETAAS method and validated with X-ray fluorescence spectrometry analysis.

  7. A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2015-05-01

    A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1). PMID:25529724

  8. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples.

    PubMed

    Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin

    2016-07-01

    In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples.

  9. Determination of trace mercury in environmental and foods samples by online coupling of flow injection displacement sorption preconcentration to electrothermal atomic absorption spectrometry.

    PubMed

    Li, Yan; Jiang, Yan; Yan, Xiu-Ping; Ni, Zhe-Ming

    2002-11-15

    The toxic effects of mercury are well-known. To establish sources of mercury contamination and to evaluate levels of mercury pollution, sensitive, selective, and accurate analytical methods with excellent reproducibility are required. We have developed a novel methodology for the determination of trace mercury in environmental and foods samples by online coupling of flow injection (FI) displacement sorption preconcentration in a knotted reactor (KR) to electrothermal atomic absorption spectrometry (ETAAS). The developed methodology involved the online formation of copper pyrrolidine dithiocarbamate (Cu-PDC), presorption of the resulting Cu-PDC onto the inner walls of the KR, and selective retention of the analyte Hg(ll) onto the inner walls of the KR through online displacement reaction between Hg(ll) and the presorbed Cu-PDC. The retained analyte was subsequently eluted by 50 microL of ethanol and online detected by ETAAS. Interferences from coexisting heavy metal ions with lower stability of their APDC complexes relative to Cu- PDC were minimized without the need of any masking reagents. The tolerable concentrations of Cu(II), Cd(II), Fe(III), Ni(III), and Zn(II) were up to 12, 20, 16, 20, and 60 mg L(-1), respectively. No additional chemical modifiers for the stabilization of mercury were required in the present system owing to the stability of Hg-PDC at the drying stage, and no pyrolysis stage was necessary due to the effective removal of the matrices. With consumption of 2.5 mL of sample solution, an enhancement factor of 91 was obtained in comparison with direct injection of 50 microL of aqueous solution. The relative detection limit (3s) was 6.2 ng L(-1), corresponding to an absolute detection limit of 15.5 pg. The precision (RSD, n = 13) was 1.1% at the 2 microg L(-1) level. The method was successfully applied to the determination of mercury in several certified environmental and foods reference materials and locally collected water samples.

  10. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples.

    PubMed

    Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin

    2016-07-01

    In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples. PMID:27154702

  11. Determination of trace mercury in environmental and foods samples by online coupling of flow injection displacement sorption preconcentration to electrothermal atomic absorption spectrometry.

    PubMed

    Li, Yan; Jiang, Yan; Yan, Xiu-Ping; Ni, Zhe-Ming

    2002-11-15

    The toxic effects of mercury are well-known. To establish sources of mercury contamination and to evaluate levels of mercury pollution, sensitive, selective, and accurate analytical methods with excellent reproducibility are required. We have developed a novel methodology for the determination of trace mercury in environmental and foods samples by online coupling of flow injection (FI) displacement sorption preconcentration in a knotted reactor (KR) to electrothermal atomic absorption spectrometry (ETAAS). The developed methodology involved the online formation of copper pyrrolidine dithiocarbamate (Cu-PDC), presorption of the resulting Cu-PDC onto the inner walls of the KR, and selective retention of the analyte Hg(ll) onto the inner walls of the KR through online displacement reaction between Hg(ll) and the presorbed Cu-PDC. The retained analyte was subsequently eluted by 50 microL of ethanol and online detected by ETAAS. Interferences from coexisting heavy metal ions with lower stability of their APDC complexes relative to Cu- PDC were minimized without the need of any masking reagents. The tolerable concentrations of Cu(II), Cd(II), Fe(III), Ni(III), and Zn(II) were up to 12, 20, 16, 20, and 60 mg L(-1), respectively. No additional chemical modifiers for the stabilization of mercury were required in the present system owing to the stability of Hg-PDC at the drying stage, and no pyrolysis stage was necessary due to the effective removal of the matrices. With consumption of 2.5 mL of sample solution, an enhancement factor of 91 was obtained in comparison with direct injection of 50 microL of aqueous solution. The relative detection limit (3s) was 6.2 ng L(-1), corresponding to an absolute detection limit of 15.5 pg. The precision (RSD, n = 13) was 1.1% at the 2 microg L(-1) level. The method was successfully applied to the determination of mercury in several certified environmental and foods reference materials and locally collected water samples. PMID:12487313

  12. Absorption mode FTICR mass spectrometry imaging.

    PubMed

    Smith, Donald F; Kilgour, David P A; Konijnenburg, Marco; O'Connor, Peter B; Heeren, Ron M A

    2013-12-01

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here, we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image, and then, these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode "Datacubes" for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  13. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  14. Preconcentration and determination of boron in milk, infant formula, and honey samples by solid phase extraction-electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    López-García, I.; Viñas, P.; Romero-Romero, R.; Hernández-Córdoba, M.

    2009-02-01

    This work presents alternative procedures for the electrothermal atomic absorption spectrometric determination of boron in milk, infant formulas, and honey samples. Honey samples (10% m/v) were diluted in a medium containing 1% v/v HNO 3 and 50% v/v H 2O 2 and introduced in the atomizer. A mixture of 20 µg Pd and 0.5 µg Mg was used for chemical modification. Calibration was carried out using aqueous solutions prepared in the same medium, in the presence of 10% m/v sucrose. The detection limit was 2 µg g - 1 , equivalent to three times the standard error of the estimate ( sy/ x) of the regression line. For both infant formulas and milk samples, due to their very low boron content, we used a procedure based on preconcentration by solid phase extraction (Amberlite IRA 743), followed by elution with 2 mol L - 1 hydrochloric acid. Detection limits were 0.03 µg g - 1 for 4% m/v honey, 0.04 µg g - 1 for 5% m/v infant formula and 0.08 µg mL - 1 for 15% v/v cow milk. We confirmed the accuracy of the procedure by comparing the obtained results with those found via a comparable independent procedure, as well by the analysis of four certified reference materials.

  15. Method development for the control determination of mercury in seafood by solid-sampling thermal decomposition amalgamation atomic absorption spectrometry (TDA AAS).

    PubMed

    Torres, D P; Martins-Teixeira, M B; Silva, E F; Queiroz, H M

    2012-01-01

    A very simple and rapid method for the determination of total mercury in fish samples using the Direct Mercury Analyser DMA-80 was developed. In this system, a previously weighted portion of fresh fish is combusted and the released mercury is selectively trapped in a gold amalgamator. Upon heating, mercury is desorbed from the amalgamator, an atomic absorption measurement is performed and the mercury concentration is calculated. Some experimental parameters have been studied and optimised. In this study the sample mass was about 100.0 mg. The relative standard deviation was lower than 8.0% for all measurements of solid samples. Two calibration curves against aqueous standard solutions were prepared through the low linear range from 2.5 to 20.0 ng of Hg, and the high linear range from 25.0 to 200.0 ng of Hg, for which a correlation coefficient better than 0.997 was achieved, as well as a normal distribution of the residuals. Mercury reference solutions were prepared in 5.0% v/v nitric acid medium. Lyophilised fish tissues were also analysed; however, the additional procedure had no advantage over the direct analysis of the fresh fish, and additionally increased the total analytical process time. A fish tissue reference material, IAEA-407, was analysed and the mercury concentration was in agreement with the certified value, according to the t-test at a 95% confidence level. The limit of quantification (LOQ), based on a mercury-free sample, was 3.0 µg kg(-1). This LOQ is in accordance with performance criteria required by the Commission Regulation No. 333/2007. Simplicity and high efficiency, without the need for any sample preparation procedure, are some of the qualities of the proposed method.

  16. Preconcentration and determination of iron and copper in spice samples by cloud point extraction and flow injection flame atomic absorption spectrometry.

    PubMed

    Sahin, Ciğdem Arpa; Tokgöz, Ilknur; Bektaş, Sema

    2010-09-15

    A flow injection (FI) cloud point extraction (CPE) method for the determination of iron and copper by flame atomic absorption spectrometer (FAAS) has been improved. The analytes were complexed with 3-amino-7-dimethylamino-2-methylphenazine (Neutral Red, NR) and octylphenoxypolyethoxyethanol (Triton X-114)wasadded as a surfactant. The micellar solutionwasheated above 50 degrees C and loaded through a column packed with cotton for phase separation. Then the surfactant-rich phase was eluted using 0.05 mol L(-1) H2SO4 and the analytes were determined by FAAS. Chemical and flow variables influencing the instrumental and extraction conditions were optimized. Under optimized conditions for 25 mL of preconcentrated solution, the enrichment factors were 98 and 69, the limits of detection (3s) were 0.7 and 0.3 ng mL(-1), the limits of quantification (10s) were 2.2 and 1.0 ng mL(-1) for iron and copper, respectively. The relative standard deviation (RSD) for ten replicate measurements of 10 ng mL(-1) iron and copper were 2.1% and 1.8%, respectively. The proposed method was successfully applied to determination of iron and copper in spice samples.

  17. Molecular absorption spectrometry in flames and furnaces: a review.

    PubMed

    Butcher, David J

    2013-12-01

    Molecular absorption spectrometry (MAS), originally developed in the 1970s, is a technique to determine non-metals in flames and graphite furnaces by monitoring the absorbance of diatomic molecules. Early studies employed low resolution instruments designed for line source atomic absorption, which provided a limited choice of analytical wavelengths, insufficient spectral resolution, and spectral interferences. However, the development of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) instrumentation has allowed the analysis of challenging samples for non-metals as well as some difficult elements to determine by AAS, such as aluminum and phosphorus. In this review, theory and analytical considerations for MAS are discussed. The principles and limitations of low resolution MAS are described, along with its applications. HR-CS AAS instrumentation is reviewed, emphasizing performance characteristics most relevant for MAS. Applications of flame and HR-CS GFMAS are reviewed, highlighting the most significant work to date. The paper concludes with an evaluation of the enhanced analytical capabilities provided by HR-CS MAS.

  18. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry.

    PubMed

    Galbeiro, Rafaela; Garcia, Samara; Gaubeur, Ivanise

    2014-04-01

    Cloud point extraction (CPE) was used to simultaneously preconcentrate trace-level cadmium, nickel and zinc for determination by flame atomic absorption spectrometry (FAAS). 1-(2-Pyridilazo)-2-naphthol (PAN) was used as a complexing agent, and the metal complexes were extracted from the aqueous phase by the surfactant Triton X-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol). Under optimized complexation and extraction conditions, the limits of detection were 0.37μgL(-1) (Cd), 2.6μgL(-1) (Ni) and 2.3μgL(-1) (Zn). This extraction was quantitative with a preconcentration factor of 30 and enrichment factor estimated to be 42, 40 and 43, respectively. The method was applied to different complex samples, and the accuracy was evaluated by analyzing a water standard reference material (NIST SRM 1643e), yielding results in agreement with the certified values.

  19. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry.

    PubMed

    Galbeiro, Rafaela; Garcia, Samara; Gaubeur, Ivanise

    2014-04-01

    Cloud point extraction (CPE) was used to simultaneously preconcentrate trace-level cadmium, nickel and zinc for determination by flame atomic absorption spectrometry (FAAS). 1-(2-Pyridilazo)-2-naphthol (PAN) was used as a complexing agent, and the metal complexes were extracted from the aqueous phase by the surfactant Triton X-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol). Under optimized complexation and extraction conditions, the limits of detection were 0.37μgL(-1) (Cd), 2.6μgL(-1) (Ni) and 2.3μgL(-1) (Zn). This extraction was quantitative with a preconcentration factor of 30 and enrichment factor estimated to be 42, 40 and 43, respectively. The method was applied to different complex samples, and the accuracy was evaluated by analyzing a water standard reference material (NIST SRM 1643e), yielding results in agreement with the certified values. PMID:24411695

  20. Application of multiwall carbon nanotubes impregnated with 5-dodecylsalicylaldoxime for on-line copper preconcentration and determination in water samples by flame atomic absorption spectrometry.

    PubMed

    Tobiasz, Anna; Walas, Stanisław; Soto Hernández, Arlene; Mrowiec, Halina

    2012-07-15

    The paper presents application of multiwall carbon nanotubes (MWCNTs) modified with 5-dodecylsalicylaldoxime to copper(II) flow-injection on-line preconcentration and flame atomic absorption spectrometric (FAAS) determination. Two new sorbents were obtained by impregnation of MWCNTs with Cu(II)-LIX 622(®) complex, however in the first case modification was preceded by carbon wall activation via oxidization (Cu-LIX-CNT-A sorbent), and in the second one no surface activation was performed (Cu-LIX-CNT sorbent). It was found that effective leaching of initially introduced copper and Cu(II) retained in preconcentration process could be realized with the use 7% and 5% (v/v) nitric acid, for particular sorbents. Testing the influence of loading solution pH and rate of loading on sorption it was found out that optimal range of loading solution pH was about 4.5-6.3 for activated and 6.15-6.25 for non-activated CNT. Investigation of sorption kinetics showed that the process can be described by pseudo-second order reaction model. Sorption equilibrium conditions (90% sorption) for LIX-CNT-A and LIX-CNT were obtained after 8-15min, respectively and maximum sorption capacity for the new sorbents amounted to 18.1mgg(-1) and 31.6mgg(-1), respectively. For the examined sorbents enrichment factors increased with extension of loading time up to 180s: linearly for activated and non-linearly for non-activated MWCNTs. Influence of potential interferents such as Cd(II), Zn(II), Fe(III), Mg(II) and Ca(II) ions on copper(II) sorption on the new CNT materials was examined individually and with the use of 2(5-2) factorial design. The study revealed significant interference from iron, magnesium and calcium ions at relatively high concentrations. Applicability of the proposed sorbents was tested for Cu(II) determination in various kinds of water samples and the results were compared with those obtained with the use of ICP MS as a reference technique. Copper(II) determination in two certified

  1. Correction of structured molecular background by means of high-resolution continuum source electrothermal atomic absorption spectrometry--determination of antimony in sediment reference materials using direct solid sampling.

    PubMed

    Araujo, Rennan G O; Welz, Bernhard; Vignola, Fabiola; Becker-Ross, Helmut

    2009-12-15

    A simple, fast and accurate procedure is proposed for the determination of antimony in certified sediment reference materials using direct solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry and iridium as a permanent modifier. The less sensitive resonance line at 231.147 nm has been used in order to allow the introduction of larger sample mass. Six certified reference materials, one river, one estuarine and four marine sediments have been analyzed. The use of iridium as a permanent modifier caused an increase of 30% in sensitivity and stabilized antimony in the sediment to a pyrolysis temperature of 1100 degrees C. Significant background absorption with pronounced rotational fine structure was observed at the optimum atomization temperature of 2100 degrees C, which coincided with the analyte atomic absorption in time. This background was found to be due to the electron excitation spectra of mostly the SiO and in part the PO molecules, and could be eliminated by applying a least-squares background correction algorithm. A characteristic mass of 28 pg Sb was obtained, and the limit of detection (3sigma, n=10) was 0.02 microg g(-1), calculated for 0.2 mg of sample. The results obtained for six certified reference materials with concentrations between 0.40 and 11.6+/-2.6 microg g(-1) Sb were in agreement with the certified values according to a Student's t-test for a 95% confidence level, using aqueous standards for calibration. The precision, expressed as relative standard deviation, ranged between 7% and 17% (n=5).

  2. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  3. On-line preconcentration and determination of copper, lead and chromium(VI) using unloaded polyurethane foam packed column by flame atomic absorption spectrometry in natural waters and biological samples.

    PubMed

    Anthemidis, Aristidis N; Zachariadis, George A; Stratis, John A

    2002-11-12

    A simple, sensitive and low cost, flow injection time-based method was developed for on-line preconcentration and determination of copper, lead and chromium(VI) at sub mug l(-1) levels in natural waters and biological samples. At the optimum pH, the on-line formed metal-ammonium pyrrolidine dithiocarbamate (APDC) complexes were sorbed on the unloaded commercial polyurethane foam (PUF), and subsequent eluted quantitatively by isobutylmethylketone and determined by flame atomic absorption spectrometry (FAAS). All chemical, and flow injection variables were optimized for the quantitative preconcentration of each metal and a study of interference level of various ions was also carried out. The system offered improved flexibility, low backpressure and applicability to all the studied metals. At a sample frequency of 36 h(-1) and a 60 s preconcentration time, the enhancement factor was 170, 131 and 28, the detection limit was 0.2, 1.8 and 2.0 mug l(-1), and the precision, expressed as relative standard deviation (s(r)), was 2.8 (at 10 mug l(-1)), 3.4 (at 50 mug l(-1)) and 3.6% (at 50 mug l(-1)) for Cu(II), Pb(II) and Cr(VI), respectively. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference materials and spiked water samples. Finally, the method was applied to the analysis of environmental samples. PMID:18968813

  4. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  5. Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry.

    PubMed

    Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Mendil, Durali; Soylak, Mustafa

    2010-05-01

    The speciation of arsenic(III) and arsenic(V) by using Streptococcus pyogenes immobilized on Sepabeads SP 70 resin has been investigated with solid-phase extraction method. The arsenic levels were determined hydride generation atomic absorption spectrometry (HGAAS) in sample solutions. The procedure presented based on quantitative recoveries of As(III) as >95%. Also the As(V) recoveries were obtained as <5% using the presented method. After reduction of As(V) by using KI and ascorbic acid and waiting 1h later, the system was applied to determination of total arsenic. As(V) was found as the difference between the total As and As(III) content. Various experimental parameters such as pH, amount of microorganism, sample volume, etc. were investigated. The capacity of biosorbent for arsenic(III) was calculated as 7.3 mg/g. The preconcentration factor was found as 36. The relative standard deviation was calculated below 8%. Limit of detection was calculated as 13 ng/L. The validation of the presented procedure was tested by analysis of standard reference materials (NIST SRM 1568a Rice floor and GBW 07605 Tea) and obtained fairly compatible results. The procedure was also successfully applied to arsenic speciation and determination of some natural water and food samples.

  6. The use of rapidly synergistic cloud point extraction for the separation and preconcentration of trace amounts of Ni (II) ions from food and water samples coupling with flame atomic absorption spectrometry determination.

    PubMed

    Rahnama, Reyhaneh; Najafi, Marzieh

    2016-03-01

    A novel improved preconcentration method known as rapidly synergistic cloud point extraction (RS-CPE) was established for nickel preconcentration and determination prior to its determination by flame atomic absorption spectrometry. In this work, the traditional CPE pattern was changed and greatly simplified in order to be applicable in metal extraction and detection. This method was accomplished in room temperature in 1 min. Non-ionic surfactant Triton X-114 was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. The various parameters affecting the extraction and preconcentration of nickel such as sample pH, 2,2'-Furildioxime concentration, amounts of octanol, amounts of Triton X-114, type of diluting solvent, extraction time, and ionic strength were investigated and optimized. Under optimal conditions, the calibration curve showed an excellent linearity in the concentration range of 2-200 μg L(-1), and the limit of detection was 0.6 μg L(-1) for nickel. The developed method was successfully applied for the determination of nickel in food and water samples. The results showed that, the proposed method can be used as a cheap, rapid, and efficient method for the extraction and preconcentration of nickel from real samples.

  7. Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture.

    PubMed

    Vellaichamy, S; Palanivelu, K

    2011-01-30

    A solid phase extraction method has been developed for the determination of copper, nickel and zinc ions in natural water samples. This method is based on the adsorption of copper, nickel and zinc on multiwalled carbon nanotubes (MWCNTs) impregnated with di-(2-ethyl hexyl phosphoric acid) (D2EHPA) and tri-n-octyl phosphine oxide (TOPO). The influence of parameters such as pH of the aqueous solution, amount of adsorbent, flow rates of the sample and eluent, matrix effects and D2EHPA-TOPO concentration have been investigated. Desorption studies have been carried out with 2 mol L(-1) HNO(3). The copper, nickel and zinc concentrations were determined by flame atomic absorption spectrometry. The results indicated that the maximum adsorption of copper, nickel and zinc is at pH 5.0 with 500 mg of MWCNTs. The detection limits by three sigma were 50 μg L(-1) for copper, 40 μg L(-1) for nickel and 60 μg L(-1) zinc. The highest enrichment factors were found to be 25. The adsorption capacity of MWCNTs-D2EHPA-TOPO was found to be 4.90 mg g(-1) for copper, 4.78 mg g(-1) for nickel and 4.82 mg g(-1) for zinc. The developed method was applied for the determination of copper, nickel and zinc in electroplating wastewater and real water sample with satisfactory results (R.S.D.'s <10%).

  8. Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet combined with flame atomic absorption spectrometry for the fast determination of cadmium in water samples.

    PubMed

    Peng, Guilong; Lu, Ying; He, Qiang; Mmereki, Daniel; Tang, Xiaohui; Zhong, Zhihui; Zhao, Xiaolong

    2016-01-01

    A novel vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet (VSLLME-SFO) was developed for the fast, simple and efficient determination of cadmium (Cd) in water samples followed by flame atomic absorption spectrometry (FAAS). In the VSLLME-SFO process, the addition of surfactant (as an emulsifier), could enhance the mass transfer from the aqueous solution into the extraction solvent. The extraction solvent could be dispersed into the aqueous phase under vigorous shaking with the vortex. In this paper, we investigated the influences of analytical parameters, including pH, extraction solvent type and its volume, surfactant type and its volume, concentration of chelating agent, salt effect and vortex time, on the extraction efficiency of Cd. Under the optimized conditions, the limit of detection was 0.16 μg/L. The analyte enrichment factor was 37.68. The relative standard deviation was 3.2% (10 μg/L, n = 10) and the calibration graph was linear, ranging from 0.5 to 30 μg/L. The proposed method was successfully applied for the analysis of ultra-trace Cd in river water and wastewater samples.

  9. Use of Doehlert and constrained mixture designs in the development of a photo-oxidation procedure using UV radiation/H₂O₂ for decomposition of landfill leachate samples and determination of metals by flame atomic absorption spectrometry.

    PubMed

    Bezerra, Marcos A; Souza, Antônio D S; Oliveira, Rafael V; Oliveira, Djalma M; Cardoso, Luiz A M; Sousa Filho, Hélio R

    2015-03-01

    This work proposes the use of photo-oxidation degradation with UV radiation/H2O2 as sample treatment for the determination of Fe, Zn, Mn, Ni and Co in municipal solid waste landfill leachate by flame atomic absorption spectrometry (FAAS). Three variables (pH, irradiation time and buffer concentration) were optimized using Doehlert design and the proportions of mixture components submitted to UV radiation (leachate sample, buffer solution and H2O2 30%, v/v) were optimized using a constrained mixture design. Using the experimental conditions established, this procedure allows limits of detection of 0.075, 0.025, 0.010, 0.075 and 0.041 µg mL-1, and the precision levels expressed as relative standard (%RSD, 0.5 µg mL-1) were 3.6, 1.8, 1.3, 3.3 and 1.7%, for Fe, Mn, Zn, Ni and Co respectively. Recovery tests were carried out for evaluation of the procedure accuracy and recoveries were between 92 and 106% for the studied metals. This procedure has been applied for the analysis of the landfill leachate collected in Jequié, a city of the southwestern region of the State of Bahia, Brazil. The results were compared with those obtained by acid digestion. There was no significant difference between the results obtained by the two methods based on paired t-test at 95% confidence level. PMID:25806976

  10. Synthesis and application of a nanoporous ion-imprinted polymer for the separation and preconcentration of trace amounts of vanadium from food samples before determination by electrothermal atomic absorption spectrometry.

    PubMed

    Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Dehghanpoor Frashah, Shahab

    2016-04-01

    A vanadium ion-imprinted polymer was synthesized in the presence of V(V) and N-benzoyl-N-phenyl hydroxyl amine using 4-vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2'-azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion-imprinted polymer was used as the sorbent in the development of the solid-phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples. PMID:26891590

  11. Synthesis and application of a nanoporous ion-imprinted polymer for the separation and preconcentration of trace amounts of vanadium from food samples before determination by electrothermal atomic absorption spectrometry.

    PubMed

    Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Dehghanpoor Frashah, Shahab

    2016-04-01

    A vanadium ion-imprinted polymer was synthesized in the presence of V(V) and N-benzoyl-N-phenyl hydroxyl amine using 4-vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2'-azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion-imprinted polymer was used as the sorbent in the development of the solid-phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples.

  12. Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet combined with flame atomic absorption spectrometry for the fast determination of cadmium in water samples.

    PubMed

    Peng, Guilong; Lu, Ying; He, Qiang; Mmereki, Daniel; Tang, Xiaohui; Zhong, Zhihui; Zhao, Xiaolong

    2016-01-01

    A novel vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet (VSLLME-SFO) was developed for the fast, simple and efficient determination of cadmium (Cd) in water samples followed by flame atomic absorption spectrometry (FAAS). In the VSLLME-SFO process, the addition of surfactant (as an emulsifier), could enhance the mass transfer from the aqueous solution into the extraction solvent. The extraction solvent could be dispersed into the aqueous phase under vigorous shaking with the vortex. In this paper, we investigated the influences of analytical parameters, including pH, extraction solvent type and its volume, surfactant type and its volume, concentration of chelating agent, salt effect and vortex time, on the extraction efficiency of Cd. Under the optimized conditions, the limit of detection was 0.16 μg/L. The analyte enrichment factor was 37.68. The relative standard deviation was 3.2% (10 μg/L, n = 10) and the calibration graph was linear, ranging from 0.5 to 30 μg/L. The proposed method was successfully applied for the analysis of ultra-trace Cd in river water and wastewater samples. PMID:27232416

  13. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Resano, Martín; Flórez, María del Rosario; Queralt, Ignasi; Marguí, Eva

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH4F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g- 1 (Pd), 8.3 μg g- 1 (Pt) and 9.3 μg g- 1 (Rh) for catalysts, which decreased to 0.08 μg g- 1 (Pd), 0.15 μg g- 1 (Pt) and 0.10 μg g- 1 (Rh) for pharmaceuticals.

  14. Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry.

    PubMed

    Wang, Yang; Chen, Huanhuan; Tang, Jie; Ye, Guiqin; Ge, Huali; Hu, Xiaoya

    2015-08-15

    A novel magnetic metal organic frameworks adsorbent modified with mercapto groups was synthesized and developed for extraction and spectrophotometric determination of trace lead. The adsorbent was characterized by Fourier transforms infrared spectrometer, X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The results indicated the adsorbents exhibited high adsorption capacities for lead due to the chelation mechanism between metal cations and mercapto groups. Meanwhile, the lead sorption onto the adsorbents could be easily separated from aqueous solution using a magnetic separation method. Under the optimal conditions, a linear calibration curve in the range from 1 to 20 μg L(-1) was achieved with an enrichment factor of 100. The limits of detection and quantitation for lead were found to be 0.29 and 0.97 μg L(-1), respectively. The developed method was successfully applied to the determination of trace amounts of lead in food samples and certified reference material with satisfactory results. PMID:25794739

  15. Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry.

    PubMed

    Wang, Yang; Chen, Huanhuan; Tang, Jie; Ye, Guiqin; Ge, Huali; Hu, Xiaoya

    2015-08-15

    A novel magnetic metal organic frameworks adsorbent modified with mercapto groups was synthesized and developed for extraction and spectrophotometric determination of trace lead. The adsorbent was characterized by Fourier transforms infrared spectrometer, X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The results indicated the adsorbents exhibited high adsorption capacities for lead due to the chelation mechanism between metal cations and mercapto groups. Meanwhile, the lead sorption onto the adsorbents could be easily separated from aqueous solution using a magnetic separation method. Under the optimal conditions, a linear calibration curve in the range from 1 to 20 μg L(-1) was achieved with an enrichment factor of 100. The limits of detection and quantitation for lead were found to be 0.29 and 0.97 μg L(-1), respectively. The developed method was successfully applied to the determination of trace amounts of lead in food samples and certified reference material with satisfactory results.

  16. Vortex-assisted ionic liquid microextraction coupled to flame atomic absorption spectrometry for determination of trace levels of cadmium in real samples

    PubMed Central

    Chamsaz, Mahmoud; Atarodi, Atefe; Eftekhari, Mohammad; Asadpour, Saeid; Adibi, Mina

    2012-01-01

    A simple and rapid vortex assisted ionic liquid based liquid–liquid microextraction technique (VALLME) was proposed for preconcentration of trace levels of cadmium. According to this method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Cadmium preconcentration was mediated by chelation with the 8-hydroxyquinoline (oxine) reagent and an IL, 1-octyl-3-methylimidazolium hexafluorophosphate ([Omim][PF6]) was chosen as the extraction solvent to extract the hydrophobic complex. Several variables such as sample pH, concentration of oxine, volume of [Omim][PF6] and extraction time were investigated in details and optimum conditions were selected. Under the optimum conditions, the limit of detection (LOD) was 2.9 μg L−1 for Cd (ІІ) and relative standard deviation (RSD%) for five replicate determinations of 125 μg L−1 was 4.1%. The method was successfully applied to the determination of cadmium in tap water, apple and rice samples. PMID:25685399

  17. Speciation of Cr(III) and Cr(VI) in geological and water samples by ytterbium(III) hydroxide coprecipitation system and atomic absorption spectrometry.

    PubMed

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2011-07-01

    A novel coprecipitation method with ytterbium(III) hydroxide has been established for speciation of Cr(III) and Cr(VI) in geological and water samples. At pH 10, while Cr(III) was quantitatively recovered, Cr(VI) was recovered under 10% levels. Total chromium was determined reducing of Cr(VI) to Cr(III) in acidic media with KI reagent. The concentration of Cr(VI) was calculated by the concentration difference between the total chromium and Cr(III). For the quantitative recovery of Cr(III), parameters such as pH, amount of ytterbium, centrifugation time and speed, matrix effect, KI amount, and sample volume were investigated. The preconcentration factor was 30. The limit of detection was obtained as 1.1 μg/L for Cr(III). The accuracy was checked by analyte addition and analyses of standard reference materials (TMDA-54.4 Certified Reference Water, NIST 2710 Montana Soil). Method has been successfully applied to the chromium speciation for industrial waste water of leather factories located in Bor-Nigde, and also for mine and soil samples.

  18. A photo-oxidation procedure using UV radiation/H 2O 2 for decomposition of wine samples — Determination of iron and manganese content by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    dos Santos, Walter N. L.; Brandão, Geovani C.; Portugal, Lindomar A.; David, Jorge M.; Ferreira, Sérgio L. C.

    2009-06-01

    This paper proposes the use of photo-oxidation with UV radiation/H 2O 2 as sample pretreatment for the determination of iron and manganese in wines by flame atomic absorption spectrometry (FAAS). The optimization involved the study of the following variables: pH and concentration of buffer solution, concentrated hydrogen peroxide volume and irradiation time. The evaluation of sample degradation was monitored by measuring the absorbance at the maximum wavelength of red wine (530 nm). Using the experimental conditions established during the optimization (irradiation time of 30 min, oxidant volume of 2.5 mL, pH 10, and a buffer concentration of 0.15 mol L - 1 ), this procedure allows the determination of iron and manganese with limits of detection of 30 and 22 μg L - 1 , respectively, for a 5 mL volume of digested sample. The precision levels, expressed as relative standard deviation (RSD), were 2.8% and 0.65% for iron and 2.7% and 0.54% for manganese for concentrations of 0.5 and 2.0 mg L - 1 , respectively. Addition/recovery tests for evaluation of the accuracy were in the ranges of 90%-111% and 95%-107% for iron and manganese, respectively. This digestion procedure has been applied for the determination of iron and manganese in six wine samples. The concentrations varied from 1.58 to 2.77 mg L - 1 for iron and from 1.30 to 1.91 mg L - 1 for manganese. The results were compared with those obtained by an acid digestion procedure and determination of the elements by FAAS. There was no significant difference between the results obtained by the two methods based on a paired t-test (at 95% confidence level).

  19. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of mercury in water and food samples employing cold vapor atomic absorption spectrometry.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein

    2015-09-01

    We describe a nanosized Hg(II)-imprinted polymer that was prepared from methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as cross-linker, 2,2'-azobisisobutyronitrile (AIBN) as radical initiator, 2, 2'-di pyrydyl amine as a specific ligand, and Hg (II) as the template ions by precipitation polymerization method in methanol as the progeny solvent. Batch adsorption experiments were carried out as a function of pH, Hg (II) imprinted polymer amount, adsorption and desorption time, volume, and concentration of eluent. The synthesized polymer particles were characterized physically and morphologically by using infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopic techniques. The maximum adsorption capacity of the ion-imprinted and non-imprinted sorbent was 27.96 and 7.89 mg g(-1), respectively. Under optimal conditions, the detection limit for mercury was 0.01 μg L(-1) and the relative standard deviation was 3.2 % (n = 6) at the 1.00 μg L(-1). The procedure was applied to determination of mercury in fish and water samples with satisfactory results.

  20. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    PubMed

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively.

  1. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L- 1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L- 1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract.

  2. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    PubMed

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e). PMID:25159375

  3. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    PubMed

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e).

  4. The role of atomic absorption spectrometry in geochemical exploration

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.

    1992-01-01

    In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.

  5. Absorption Mode FT-ICR Mass Spectrometry Imaging

    SciTech Connect

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O'Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  6. Alpha spectrometry applications with mass separated samples.

    PubMed

    Dion, M P; Eiden, Gregory C; Farmer, Orville T; Liezers, Martin; Robinson, John W

    2016-01-01

    (241)Am has been deposited using a novel technique that employs a commercial inductively coupled plasma mass spectrometer. This work presents results of high-resolution alpha spectrometry on the (241)Am samples using a small area passivated implanted planar silicon detector. We have also investigated the mass-based separation capability by developing a (238)Pu sample, present as a minor constituent in a (244)Pu standard, and performed subsequent radiometric counting. With this new sample development method, the (241)Am samples achieved the intrinsic energy resolution of the detector used for these measurements. There was no detectable trace of any other isotopes contained in the (238)Pu implant demonstrating the mass-based separation (or enhancement) attainable with this technique. PMID:26583262

  7. Absorption mode Fourier transform electrostatic linear ion trap mass spectrometry.

    PubMed

    Hilger, Ryan T; Wyss, Phillip J; Santini, Robert E; McLuckey, Scott A

    2013-09-01

    In Fourier transform mass spectrometry, it is well-known that plotting the spectrum in absorption mode rather than magnitude mode has several advantages. However, magnitude spectra remain commonplace due to difficulties associated with determining the phase of each frequency at the onset of data acquisition, which is required for generating absorption spectra. The phasing problem for electrostatic traps is much simpler than for Fourier transform ion cyclotron resonance (FTICR) instruments, which greatly simplifies the generation of absorption spectra. Here, we present a simple method for generating absorption spectra from a Fourier transform electrostatic linear ion trap mass spectrometer. The method involves time shifting the data prior to Fourier transformation in order to synchronize the onset of data acquisition with the moment of ion acceleration into the electrostatic trap. Under these conditions, the initial phase of each frequency at the onset of data acquisition is zero. We demonstrate that absorption mode provides a 1.7-fold increase in resolution (full width at half maximum, fwhm) as well as reduced peak tailing. We also discuss methodology that may be applied to unsynchronized data in order to determine the time shift required to generate an absorption spectrum.

  8. [Atom-absorption spectrometry in studying of Vipera lebetina obtusa venom].

    PubMed

    Babaev, E T; Abiev, G A; Topchieva, Sh A; Chumburidze, T B; Nemsitsveridze, N G

    2009-09-01

    The aim of the investigation was to work out the atom-absorption spectrometry method for definition of elementary structure of snake venom. The investigation was conducted on venom vipers, caught in the Gobustan district. Determination of heavy metals in venom vipers, was conducted by means of atom-absorption spectrometry (Perkin-Elmer AAS-300). The concentration of the following metals in samples of Vipera Lebetina obtusa venom was defined: Cd (0,012%), (1,234%), Fe (0,487%), Cr (0,171%), Zn (0,78%). The obtained data by means of proposed method of definition of heavy metals in samples of snake venom can be applied to standardize the snake venom, to establish the authenticity in a forensic medical examination, in analyses of medication on the basis of snake venom.

  9. Determination of mercury by cold vapor atomic absorption spectrometry

    SciTech Connect

    Chou, H.N.; Naleway, C.A.

    1984-08-01

    An atomic absorption spectroscopy (AAS) method for determining mercury levels in liquid samples to the parts per billion range was determined. The method is attractive because of the ease of application and the accuracy and precision of the results. Liquid samples may be analyzed that are as small as one milliliter. 6 references, 1 figure.

  10. [Determination of copper, magnesium and zinc in mononuclear leukocytes by flame atomic absorption spectrometry].

    PubMed

    Rahn-Chique, Kareem; Carrión, Nereida; Murillo, Miguel

    2012-12-01

    In this paper we evaluated a new micro-flow injector for the determination of the concentrations of Cu, Mg and Zn in mononuclear blood cells. This device analyzed sample volumes in the order of microliters by flame atomic absorption spectrometry; it is inexpensive, and easy to build and to adapt to the conventional injector of the atomic absorption spectrophotometer. Detection limits of 106, 65 and 37 microg L(-1) for Cu, Mg and Zn were obtained, respectively. The percentages of recovery tests were found between 98 and 110%. PMID:23513485

  11. Piezoelectric-tuned microwave cavity for absorption spectrometry

    DOEpatents

    Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.

    1978-01-01

    Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.

  12. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Pasias, I. N.; Pappa, Ch.; Katsarou, V.; Τhomaidis, N. S.; Piperaki, E. A.

    2014-02-01

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D2 background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg.

  13. Determination of nanogram amounts of bismuth in rocks by atomic absorption spectrometry with electrothermal atomization

    USGS Publications Warehouse

    Kane, J.S.

    1979-01-01

    Bismuth concentrations as low as 10 ng g-1 in 100-mg samples of geological materials can be determined by atomic absorption spectrometry with electrothermal atomization. After HF-HClO4 decomposition of the sample, bismuth is extracted as the iodide into methyl isobutyl ketone and is then stripped with ethylenediaminetetraacetic acid into the aqueous phase. Aliquots of this solution are pipetted into the graphite furnace and dried, charred, and atomized in an automated sequence. Atomic absorbance at the Bi 223.1-nm line provides a measure of the amount of bismuth present. Results are presented for 14 U.S. Geological Survey standard rocks. ?? 1979.

  14. Measurements of sulfur compounds in CO 2 by diode laser atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Franzke, J.; Stancu, D. G.; Niemax, K.

    2003-07-01

    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry.

  15. Determination of Pb(II), Zn(II), Cd(II), and Co(II) ions by flame atomic absorption spectrometry in food and water samples after preconcentration by coprecipitation with Mo(VI)-diethyldithiocarbamate.

    PubMed

    Tufekci, Mehmet; Bulut, Volkan Numan; Elvan, Hamide; Ozdes, Duygu; Soylak, Mustafa; Duran, Celal

    2013-02-01

    A new, simple, and rapid separation and preconcentration procedure, for determination of Pb(II), Cd(II), Zn(II), and Co(II) ions in environmental real samples, has been developed. The method is based on the combination of coprecipitation of analyte ions by the aid of the Mo(VI)-diethyldithiocarbamate-(Mo(VI)-DDTC) precipitate and flame atomic absorption spectrometric determinations. The effects of experimental conditions like pH of the aqueous solution, amounts of DDTC and Mo(VI), standing time, centrifugation rate and time, sample volume, etc. and also the influences of some foreign ions were investigated in detail on the quantitative recoveries of the analyte ions. The preconcentration factors were found to be 150 for Pb(II), Zn(II) and Co(II), and 200 for Cd(II) ions. The detection limits were in the range of 0.1-2.2 μg L(-1) while the relative standard deviations were found to be lower than 5 % for the studied analyte ions. The accuracy of the method was checked by spiked/recovery tests and the analysis of certified reference material (CRM TMDW-500 Drinking Water). The procedure was successfully applied to seawater and stream water as liquid samples and baby food and dried eggplant as solid samples in order to determine the levels of Pb(II), Cd(II), Zn(II), and Co(II) ions. PMID:22527456

  16. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  17. Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium(III/VI) in environmental samples.

    PubMed

    Yilmaz, Erkan; Soylak, Mustafa

    2016-11-01

    A new type of deep eutectic solvents (DESs) have been prepared and used as extraction solvents for ultrasound assisted-deep eutectic solvent based emulsification liquid phase microextraction method (UA-DES-ELPME) for the determination and speciation of total chromium, chromium(III) and chromium(VI). The chromium concentration in DES rich phase (extraction phase) was determined by using microsample injection flame atomic absorption spectrometer (FAAS). The detection limit (LOD), the quantification limit (LOQ), preconcentration factor and relative standard deviation were found as 5.5µgL(-1), 18.2µgL(-1), 20 and 6%, respectively. The accuracy of the developed method was evaluated by the analysis of water the certified reference materials (TMDA-53.3 Fortified environmental water and TMDA-54.4 Fortified Lake Water) and addition-recovery tests for water samples. PMID:27591663

  18. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    PubMed

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll). PMID:25145149

  19. Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Ye, Juanjuan; Liu, Shuxia; Tian, Miaomiao; Li, Wanjun; Hu, Bin; Zhou, Weihong; Jia, Qiong

    2014-01-01

    A simple and highly selective procedure for on-line determination of trace levels of Au, Pd, and Pt in mine samples has been developed using flow injection-column adsorption preconcentration coupled with graphite furnace atomic absorption spectrophotometry (FI-column-GFAAS). The precious metals were adsorbed on the as-synthesized magnetic nanoparticles functionalized with 4'-aminobenzo-15-crown-5-ether packed into a micro-column and then eluted with 2% thiourea + 0.1 mol L(-1) HCl solution prior to the determination by GFAAS. The properties of the magnetic adsorbents were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Various experimental parameters affecting the preconcentration of Au, Pd, and Pt were investigated and optimized. Under the optimal experimental conditions, the detection limits of the developed technique were 0.16 ng mL(-1) for Au, 0.28 ng mL(-1) for Pd, and 1.01 ng mL(-1) for Pt, with enrichment factors of 24.3, 13.9, and 17.8, respectively. Precisions, evaluated as repeatability of results, were 1.1%, 3.9%, and 4.4% respectively for Au, Pd, and Pt. The developed method was validated by the analysis of Au, Pd, and Pt in certified reference materials and mine samples with satisfactory results.

  20. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  1. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGES

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  2. Lead concentrations and isotope ratios in street dust determined by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    PubMed

    Nageotte, S M; Day, J P

    1998-01-01

    A major source of environmental lead, particularly in urban areas, has been from the combustion of leaded petrol. Street dust has previously been used to assess urban lead contamination, and the dust itself can also be a potential source of lead ingestion, particularly to children. The progressive reduction of lead in petrol, in recent years, would be expected to have been reflected in a reduction of lead in urban dust. We have tested this hypothesis by repeating an earlier survey of Manchester street dust and carrying out a comparable survey in Paris. Samples were collected from streets and parks, lead was extracted by digestion with concentrated nitric acid and determined by electrothermal atomic absorption spectrometry. Lead isotope ratios were measured by inductively coupled plasma mass spectrometry. Results for Manchester show that lead concentrations have fallen by about 40% (street dust averages, 941 micrograms g-1 (ppm) in 1975 down to 569 ppm in 1997). In Paris, the lead levels in street dust are much higher and significant differences were observed between types of street (not seen in Manchester). Additionally, lead levels in parks were much lower than in Manchester. Samples collected under the Eiffel Tower had very high concentrations and lead isotope ratios showed that this was unlikely to be fallout from motor vehicles but could be due to the paint used on the tower. Isotope ratios measurements also revealed that lead additives used in France and the UK come from different sources.

  3. Determination of tetraalkyllead compounds in gasoline by liquid chromatography-atomic absorption spectrometry

    USGS Publications Warehouse

    Messman, J.D.; Rains, T.C.

    1981-01-01

    A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.

  4. A thin-walled metallic hollow cathode as an atomizer for Zeeman atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Ganeyev, A. A.; Sholupov, S. E.

    1998-03-01

    A new kind of glow discharge atomizer, a thin-walled metallic hollow cathode (TMHC) combined with Zeeman atomic absorption spectrometry using high frequency modulated light polarization (ZAAS-HFM), is studied. A theoretically suggested, and experimentally confirmed, model of the atom confinement in the TMHC yields the appearance of the diffusion traps for atoms at both ends of the cathode, which increases the residence time of the analyte atoms in the analysis volume. The high atomization efficiency in the glow discharge atomizer (caused by the ionic-thermal mechanism of sputtering) and the high selectivity of ZAAS-HFM are demonstrated in the analysis of complex matrix samples such as whole blood and urine. The analytical system TMHC + ZAAS-HFM is characterized by low detection limits, which are comparable to those of graphite furnace atomic absorption spectrometry (GFAAS). Owing to its rather low average power consumption (30-50 W) the TMHC can be used in a portable and mobile spectrometer, and is therefore suitable for the in situ analysis of various sample materials.

  5. Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)(#).

    PubMed

    Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo

    2006-06-01

    Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications. PMID:16707316

  6. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    EPA Science Inventory

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
    compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  7. Automatic determination of nickel in foods by flame atomic absorption spectrometry.

    PubMed

    Yebra, M C; Cancela, S; Cespón, R M

    2008-05-15

    A new sensitive and low cost flow injection method that combines acid extraction, preconcentration and flame atomic absorption spectrometric determination of nickel in food samples at μg/g levels is described. The dynamic acid extraction step was carried out by using a continuous ultrasound-assisted extraction system. The acid extract was preconcentrated on-line on a minicolumn packed with a chelating resin (Serdolit Che, with iminodiacetic groups) and nickel was eluted with diluted hydrochloric acid, being continuously monitored by flame atomic absorption spectrometry. An experimental design (Plackett-Burman 2(6)×3/16) is used to optimise the methodology proposed. The method allowed a total sampling frequency of 13-28 samples per hour. Good precision of the whole procedure (1.9-3.6% expressed as relative standard deviation) and a detection limit of 0.12μg/g, for 60mg of sample were achieved. The method was successfully applied to the determination of trace amounts of nickel in food samples.

  8. The direct determination of HgS by thermal desorption coupled with atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Coufalík, Pavel; Zvěřina, Ondřej; Komárek, Josef

    2016-04-01

    This research was aimed at the direct determination of HgS in environmental samples by means of thermal desorption coupled with atomic absorption spectrometry. Operating parameters of the apparatus used for thermal desorption (including a prototype desorption unit) are described in this work, as well as the procedure for measuring mercury release curves together with an evaluation of the analytical signal including two methods of peak integration. The results of thermal desorption were compared with HgS contents obtained by sequential extraction. The limits of quantification of the proposed method for the selective determination of the black and red forms of HgS were 4 μg kg- 1 and 5 μg kg- 1, respectively. The limit of quantification of red HgS in soils was 35 μg kg- 1. The developed analytical procedure was applied to soil and sediment samples from historical mining areas.

  9. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  10. Gamma-ray spectrometry of LDEF samples

    SciTech Connect

    Winn, W.G.

    1991-01-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectroscopy. The study quantified particle induced activations of (sup 22)Na, {sup 46}Sc, {sup 51}Cr, {sup 54}Mn, {sup 56}Co, {sup 57}Co, {sup 58}Co, and {sup 60}Co. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which have been reported to collect noticeable {sup 7}Be on their leading surfaces. No significant {sup 7}Be was detected in the samples analyzed. The Underground Counting Facility at Savannah River Laboratory (SRL) was used in this work. The facility is 50 ft. underground, constructed with low-background shielding materials, and operated as a clean room. The most sensitive analyses were performed with a 90%-efficient HPGe gamma-ray detector, which is enclosed in a purged active/passive shield. Each sample was counted for one to six days in two orientations to yield more representative average activities for the sample. The non-standard geometries of the LDEF samples prompted the development of a novel calibration method, whereby the efficiency about the samples surfaces (measured with point sources) predicted the efficiency for the bulk sample.

  11. High throughput liquid absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, Solomon; Bozen, Ralph M.

    1992-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  12. High throughput liquid absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, S.; Bozen, R.M.

    1992-12-22

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.

  13. Synthesis/characterization of a new chelating resin and on-line solid phase extraction for the determination of Ag(I) and Pd(II) from water, cream, anode slime and converter samples by flow injection flame atomic absorption spectrometry.

    PubMed

    Çetin, Tülin; Tokalioğlu, Serife; Ülgen, Ahmet; Sahan, Serkan; Özentürk, Ismail; Soykan, Cengiz

    2013-02-15

    On-line preconcentration procedures for the determination of Ag(I) and Pd(II) by flame atomic absorption spectrometry have been described. A new chelating resin, poly (N,N'-dipropionitrilemethacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propane sulfonic acid) was synthesized and used as a new adsorbent material. The resin was characterized by Fourier transform infrared spectroscopy and elemental analysis. Ag(I) was adsorbed on the chelating resin at pH 5.0 and eluted with 1.0 mol L(-1) HNO3. Pd(II) was retained at pH 9.5 and eluted with 1.5 mol L(-1) HCl. The experimental parameters (pH, type and concentration of eluent, flow rates of sample and eluent solutions, elution time and the effect of interfering ions) for both Ag(I) and Pd(II) were investigated in detail. The detection limit for Ag(I) was 2.4 μg L(-1) and the relative standard deviation was 2.9% for 0.2 μg mL(-1) Ag(I). The detection limit for Pd(II) was 1.7 μg L(-1) and the relative standard deviation was 2.8% for 0.3 μg mL(-1) Pd(II). Accuracy was confirmed by analyzing a certified reference material (TMDA-70), recovery studies on real samples and comparison with electrothermal atomic absorption analysis. The proposed methods were successfully applied to the on-line determination of Ag(I) in bottled water, pharmaceutical cream and anode slime samples and Pd(II) in bottled water and catalytic converter samples.

  14. Liquid-absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, S.

    1990-12-11

    A system is described for detecting trace concentrations of an analyte in air and includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container in which is disposed a wettable material extending substantially the entire length of the container. One end of the wettable material is continuously wetted with an analyte-sorbing liquid, which flows to the other end of the container. Sample air is flowed through the container in contact with the wetted material for trapping and preconcentrating the traces of analyte in the sorbing liquid, which is then collected at the other end of the container and discharged to the detector. The wetted material may be a wick comprising a bundle of fibers, one end of which is immersed in a reservoir of the analyte-sorbing liquid, or may be a liner disposed on the inner surface of the container, with the sorbing liquid being centrifugally dispersed onto the liner at one end thereof. The container is preferably vertically oriented so that gravity effects the liquid flow. 4 figs.

  15. Liquid-absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting trace concentrations of an analyte in air and includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container in which is disposed a wettable material extending substantially the entire length of the container. One end of the wettable material is continuously wetted with an analyte-sorbing liquid, which flows to the other end of the container. Sample air is flowed through the container in contact with the wetted material for trapping and preconcentrating the traces of analyte in the sorbing liquid, which is then collected at the other end of the container and discharged to the detector. The wetted material may be a wick comprising a bundle of fibers, one end of which is immersed in a reservoir of the analyte-sorbing liquid, or may be a liner disposed on the inner surface of the container, with the sorbing liquid being centrifugally dispersed onto the liner at one end thereof. The container is preferably vertically oriented so that gravity effects the liquid flow.

  16. Total mercury in the hair of children by combustion atomic absorption spectrometry (Comb-AAS).

    PubMed

    Díez, Sergi; Montuori, Paolo; Querol, Xavier; Bayona, Josep M

    2007-04-01

    A simple and rapid procedure for measuring total mercury in human hair was evaluated and compared with a conventional technique. An Advanced Mercury Analyzer (AMA-254) based on sample catalytic combustion, preconcentration by gold amalgamation, thermal desorption, and atomic absorption spectrometry (AAS) (Comb-AAS) was assessed for the direct determination of milligram quantities of human hair. Precision (% relative standard deviation) was < 7% and accuracy was determined by using two human hair reference materials (i.e., NIES No. 13 and IAEA-086) that were within the certified range. In comparison to conventional graphite-furnace atomic absorption spectrophotometry (GF-AAS), we found that our method obtained statistically equivalent results. Because total analysis time per sample was less than 10 min, the Comb-AAS method was in fact much faster than the GF-AAS method. In addition, Comb-AAS does not generate waste products and could be mainly useful for the analysis of a large amount of samples. Then, the authors suggest that this quick method could be useful for measuring mercury in human hair. Therefore, the mercury content in hair for a non-exposed group of children (n=40) living in Spain was evaluated. The mean and median hair mercury levels for the subjects under study were found to be lower than the value of 1 microg/g, corresponding to the reference dose of 0.1 microg of methylmercury per kilogram body weight set by the U.S. Environmental Protection Agency.

  17. Bidimensional near-field sampling spectrometry.

    PubMed

    Renault, Mikael; Hadjar, Yassine; Blaize, Sylvain; Bruyant, Aurélien; Arnaud, Laurent; Lerondel, Gilles; Royer, Pascal

    2010-10-01

    We report on a concept of compact optical Fourier-transform spectrometer based on bidimensional (2D) spatial sampling of a confined interferogram. The spectrometer consists of a nanostructured glass surface on which two light beams interfere in total internal reflection. Subwavelength spatial sampling of the interferogram near field is achieved by introducing a tilt angle between a 2D array of optical nanoantennas and the interferogram pattern. The intensity distribution of the scattered light is recorded on a 2D CCD camera, and a one-dimensional Fourier transform of the interferogram is used to recover the input light spectrum. Experimental results show a wide spectral bandwidth in the visible range, down to 380 nm, with spectral resolution of 1.6 nm around 780 nm.

  18. Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry.

    PubMed

    de Jesus, Robson M; Silva, Laiana O B; Castro, Jacira T; de Azevedo Neto, Andre D; de Jesus, Raildo M; Ferreira, Sergio L C

    2013-03-15

    In this paper, a method for the determination of mercury in phosphate fertilizers using slurry sampling and cold vapor atomic absorption spectrometry (CV QT AAS) is proposed. Because mercury (II) ions form strong complexes with phosphor compounds, the formation of metallic mercury vapor requires the presence of lanthanum chloride as a release agent. Thiourea increases the amount of mercury that is extracted from the solid sample to the liquid phase of the slurry. The method is established using two steps. First, the slurry is prepared using the sample, lanthanum chloride, hydrochloric acid solution and thiourea solution and is sonicated for 20 min. Afterward, mercury vapor is generated using an aliquot of the slurry in the presence of the hydrochloric acid solution and isoamylic alcohol with sodium tetrahydroborate solution as the reducing agent. The experimental conditions for slurry preparation were optimized using two-level full factorial design involving the factors: thiourea and lanthanum chloride concentrations and the duration of sonication. The method allows the determination of mercury by external calibration using aqueous standards with limits of detection and quantification of 2.4 and 8.2 μg kg(-1), respectively, and precision, expressed as relative standard deviation, of 6.36 and 5.81% for two phosphate fertilizer samples with mercury concentrations of 0.24 and 0.57 mg kg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of phosphate fertilizer that was provided by the National Institute of Standards & Technology (NIST). The method was applied to determine mercury in six commercial samples of phosphate fertilizers. The mercury content varied from 33.97 to 209.28 μg kg(-1). These samples were also analyzed employing inductively coupled plasma mass spectrometry (ICP-MS). The ICP-MS results were consistent with the results from our proposed method.

  19. Determination of magnesium in alumina ceramics by atomic absorption spectrometry after separation by cation exchange chromatography

    SciTech Connect

    van der Walt, T.N.; Strelow, F.W.E.

    1985-12-01

    A method is presented for the determination of traces of magnesium in alumina ceramics. After dissolution in an orthophosphoric acid-sulfuric acid mixture the magnesium is separated from the large excess of aluminum by cation exchange chromatography, using a 4% cross-linked resin and 0.50 M oxalic acid as eluting agent. Magnesium is finally determined by atomic absorption spectrometry using an acetylene-nitrous oxide flame. By use of Suprapur reagents and beakers made of Teflon, contamination can be reduced to ca. 2..mu..g with a variation between multiple blank runs of ca. 0.4 ..mu..g. About 3 ppm of magnesium in 1-g samples can be determined with approximately the same variation while larger amounts of magnesium (200-300 ppm in the alumina ceramics) show a variation of only +/- 1 ppm. 12 references, 1 table.

  20. Cloud point preconcentration of germanium and determination by hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Böyükbayram, A. Elif; Volkan, Mürvet

    2000-07-01

    Cloud point methodology has been successfully employed for the preconcentration of germanium at trace levels from aqueous samples prior to hydride generation flame atomic absorption spectrometry (HGAAS). Germanium was taken into complex with quercetin in aqueous non-ionic surfactant (Triton X-114) medium and concentrated in the surfactant rich phase by bringing the solution to the cloud point temperature (19°C). The preconcentration of only 50 ml of solution with 0.1% Triton X-114 and 2×10 -5 M quercetin at pH 6.4 gives a preconcentration factor of 200. Under these conditions, the detection limit (3 s) and the sensitivity of the cloud-point extraction-HGAAS system were 0.59 and 0.0620 μg l -1, respectively. The extraction efficiency was investigated at low germanium concentrations (10-30 μg l -1) and satisfactory recoveries (93-105%) were obtained.

  1. [Determination of nine mineral elements in hulless barley by ultraviolet spectrophotometry and flame atomic absorption spectrometry].

    PubMed

    Liu, Jin; Zhang, Huai-Gang

    2010-04-01

    The contents of nine mineral elements, including sulphur, zinc, calcium, magnesium, potassium, sodium, iron, copper and manganese in five hulless barley (Hordeum vulgare L. var. nudum Hook. f.) lines were determined by ultraviolet spectrophotometry and flames atomic absorption spectrometry (FAAS). For the determination of sulphur, the samples were dissolved by magnesia and anhydrous sodium carbonate at 250 degrees C for 0. 5 h and at 550 degrees C for 3 h in the muffle furnace, and then a certain amount of barium chloride was put into the sample solution for colorimetry of the UV-Vs spectrophotometer. For the determination of other eight mineral elements, all of the samples were dissolved by a kind of incinerating method: first, the sample was put into the muffle furnace at 250 degrees C for 0. 5 h and at 550 degrees C for 2.5 h, then two droplets of 50%HNO3 were distributed into each sample, and the last step was putting the sample into the muffle furnace at 550 degrees C for 0.5 h. And then all of the ash was dissolved by 50%HNO3 to 50 milliliter and determined by flames atomic absorption spectrometry. The precision, accuracy, repeatability and stability of the method were discussed too. The results showed that the relative standard deviations (RSD) were between 1.2% and 3.7%; The average recoveries were 97.44%-101.52% and the relative standard deviations (RSD) of sample determination were 1.3%-3.8%. The repeatability experiment showed that the relative standard deviations (RSD) were 2.6%-6.1%. And the content of each mineral element was the same after 24 hours; All these showed that the method has a good precision, accuracy, repeatability and stability. In all the hulless barley samples, the average contents were in the order of K > S > Mg > Ca > Fe > Na > Zn > Mn > Cu, and the contents of zinc, iron and manganese closely related to people's health were relatively higher than other crops. The data of the experiment could provide an accurate and credible evidence

  2. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  3. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  4. Electron Transfer Dissociation Mass Spectrometry of Hemoglobin on Clinical Samples

    NASA Astrophysics Data System (ADS)

    Coelho Graça, Didia; Lescuyer, Pierre; Clerici, Lorella; Tsybin, Yury O.; Hartmer, Ralf; Meyer, Markus; Samii, Kaveh; Hochstrasser, Denis F.; Scherl, Alexander

    2012-10-01

    A mass spectrometry-based assay combining the specificity of selected reaction monitoring and the protein ion activation capabilities of electron transfer dissociation was developed and employed for the rapid identification of hemoglobin variants from whole blood without previous proteolytic cleavage. The analysis was performed in a robust ion trap mass spectrometer operating at nominal mass accuracy and resolution. Subtle differences in globin sequences, resulting with mass shifts of about one Da, can be unambiguously identified. These results suggest that mass spectrometry analysis of entire proteins using electron transfer dissociation can be employed on clinical samples in a workflow compatible with diagnostic applications.

  5. Application of flow injection on-line electrothermal atomic absorption spectrometry to the determination of rhodium.

    PubMed

    Sanchez Rojas, Fuensanta; Bosch Ojeda, Catalina; Cano Pavón, José Manuel

    2005-06-01

    A fully automated procedure for the determination of rhodium has been developed using flow injection (FI) on-line microcolumn preconcentration coupled with electrothermal atomic absorption spectrometry (ETAAS). The proposed FI manifold and its operation make possible the introduction of the total eluate volume into the graphite atomizer, avoiding the necessity for optimisation of subsampling the eluate. Rhodium is adsorbed on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). Under the optimum conditions, using a 60 s preconcentration time, a sample flow rate of 3.5 mL min(-1) and an injection volume of eluent of 50 microL, a linear calibration graph was obtained from 1 to at least 40 ng mL(-1) and the detection limit was 1 ng mL(-1). The proposed method has been successfully applied to the analysis of samples. Its performance was investigated against certified reference catalyst sample SRM-2557 and by recovery measurements on spiked samples (soil, foods and beverages).

  6. Determination of silicon in serum and urine by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Zhuo-er

    1995-09-01

    A sensitive, simple and accurate method for the routine determination of trace silicon in serum and urine by Zeeman electrothermal atomic absorption spectrometry is described. The samples are directly determined after 20-fold dilution of serum and 100-fold dilution of urine. No L'vov platform is used. The signal enhancement of silicon atomization in pyrolytic graphite coated graphite tubes is achieved by using a mixture of calcium chloride and lanthanum nitrate as chemical modifier. The interferences arising from the biological matrices have been eliminated by the addition of ammonium dihydrogenphosphate in the sample solutions. The aqueous calibration curve is linear to at least 300 μg l -1, the characteristic mass is 37 pg (integrated absorbance signal), whereas the detection limit (3SD) is 1.5 μg l -1 for silicon in both diluted serum and urine samples. The recoveries of silicon added to the diluted samples are 101 ± 1.8% for sera and 98.2 ± 3.5% for the urine specimens, independent of the dilution ratio. The silicon measurement results for the serum and urine from healthy adults and for the serum from the patients with chronic renal failure on hemodialysis are presented.

  7. Determination of ytterbium in animal faeces by tungsten coil electrothermal atomic absorption spectrometry.

    PubMed

    Lima, E C; Krug, F J; Nóbrega, J A; Nogueira, A R

    1998-11-01

    A method for ytterbium determination in animal faeces by tungsten coil electrothermal atomic absorption spectrometry (TCAAS) was developed. Faeces were dry-ashed in a muffle furnace, the ashes were treated with hydrochloric acid, and 10 mul of sample solution were delivered into 150-W tungsten coil atomizer. A matrix-matching procedure employing a 66-s heating program proved to be efficient for obtaining accurate results. Characteristic mass and detection limit were 7.1 pg and 0.35 mug g(-1) Yb, respectively. The tungsten coil atomizer lifetime exceeded 300 firings with digested solutions and R.S.D. of measurements was 1.9% after ten consecutive injections of 10.0 mug l(-1) Yb. Accuracy of the proposed method was assessed by employing a graphite furnace atomic absorption spectrometric procedure. Application of the paired t-test did not reveal any significant difference for ytterbium contents determined by both methods at 95% confidence level. It was demonstrated that the proposed procedure can successfully be used for evaluation of kinetic passage rate of feed through digestive tract of animals. PMID:18967363

  8. Consistency of ARESE II Cloud Absorption Estimates and Sampling Issues

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Marshak, A.; Cahalan, R. F.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Data from three cloudy days (March 3, 21, 29, 2000) of the ARM Enhanced Shortwave Experiment II (ARESE II) were analyzed. Grand averages of broadband absorptance among three sets of instruments were compared. Fractional solar absorptances were approx. 0.21-0.22 with the exception of March 3 when two sets of instruments gave values smaller by approx. 0.03-0.04. The robustness of these values was investigated by looking into possible sampling problems with the aid of 500 nm spectral fluxes. Grand averages of 500 nm apparent absorptance cover a wide range of values for these three days, namely from a large positive (approx. 0.011) average for March 3, to a small negative (approximately -0.03) for March 21, to near zero (approx. 0.01) for March 29. We present evidence suggesting that a large part of the discrepancies among the three days is due to the different nature of clouds and their non-uniform sampling. Hence, corrections to the grand average broadband absorptance values may be necessary. However, application of the known correction techniques may be precarious due to the sparsity of collocated flux measurements above and below the clouds. Our analysis leads to the conclusion that only March 29 fulfills all requirements for reliable estimates of cloud absorption, that is, the presence of thick, overcast, homogeneous clouds.

  9. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    PubMed

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC. PMID:15910814

  10. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    PubMed

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC.

  11. Rapid environmental organic analysis by direct sampling Glow Discharge Mass Spectrometry and Ion Trap Mass Spectrometry: Summary of pilot studies

    SciTech Connect

    Wise, M.B.; Buchanan, M.V.; Guerin, M.R.

    1990-03-01

    Direct Sampling Mass Spectrometry (DSMS) techniques employing both Glow Discharge Mass Spectrometry and Ion Trap Mass Spectrometry are being developed to quantitatively determine preselected organics in water, soil, and air samples at part per billion levels in less than five minutes. Direct sampling requires little or no sample preparation and no prior chromatographic separation and is applicable to both volatile and semivolatile organics. 25 figs., 3 tabs.

  12. Gamma ray spectrometry of LDEF samples at SRL

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1992-01-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which were reported to collect noticeable Be-7 on their leading surfaces. No significant Be-7 was detected in the samples analyzed.

  13. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    EPA Science Inventory


    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  14. Resonance Ionization Mass Spectrometry System for Measurement of Environmental Samples

    NASA Astrophysics Data System (ADS)

    Pibida, L.; McMahon, C. A.; Nörtershäuser, W.; Bushaw, B. A.

    2002-10-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4×10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed.

  15. Atomic absorption spectrometry with a flame emission source

    NASA Astrophysics Data System (ADS)

    Calloway, Clifton P.; Jones, Bradley T.

    1994-12-01

    An atomic absorption spectrometer with flame atomization and a flame emission light source is described. The light source is prepared by aspirating a solution containing a high concentration of analyte into the emission flame. Two different source flames (air/acetylene and nitrous oxide/acetylene) have been evaluated, with the N 2O flame providing better signal to noise ratios ( S/N) in most cases. Source S/N values as high as 5900 (Cr) have been observed. Experimental parameters have been optimized for nine test elements to give limits of detection obtained with this system that are in some cases as good as those obtained with the traditional hollow cathode lamp source; for example, Cu (4 ng/ml), Mn (3 ng/ml) and Ni (5 ng/ml). Linear dynamic ranges typically span 2-3 orders of magnitude. This system offers an inexpensive emission source with the ability to quickly change the setup to accommodate different analytes.

  16. Near edge X-ray absorption mass spectrometry on coronene

    SciTech Connect

    Reitsma, G.; Deuzeman, M. J.; Hoekstra, R.; Schlathölter, T.; Boschman, L.; Hoekstra, S.

    2015-01-14

    We have investigated the photoionization and photodissociation of free coronene cations C{sub 24}H{sub 12}{sup +} upon soft X-ray photoabsorption in the carbon K-edge region by means of a time-of-flight mass spectrometry approach. Core excitation into an unoccupied molecular orbital (below threshold) and core ionization into the continuum both leave a C 1s vacancy, that is subsequently filled in an Auger-type process. The resulting coronene dications and trications are internally excited and cool down predominantly by means of hydrogen emission. Density functional theory was employed to determine the dissociation energies for subsequent neutral hydrogen loss. A statistical cascade model incorporating these dissociation energies agrees well with the experimentally observed dehydrogenation. For double ionization, i.e., formation of intermediate C{sub 24}H{sub 12}{sup 3+⋆}trications, the experimental data hint at loss of H{sup +} ions. This asymmetric fission channel is associated with hot intermediates, whereas colder intermediates predominantly decay via neutral H loss.

  17. Determination of rhodium: Since the origins until today Atomic absorption spectrometry.

    PubMed

    Bosch Ojeda, C; Sánchez Rojas, F

    2006-02-28

    Rhodium is present at about 0.001ppm in the earths crust. Rhodium metal is known for its stability in corrosive environments, physical beauty and unique physical and chemical properties. Recent interest in the medical and industrial significance of platinum and to a lesser extent palladium and rhodium has been accompanied by an increasing interest in their determination at low levels. Platinum group elements (PGEs: Pt, Pd, Rh, Ru, Ir and Os) play a decisive role in the performance of catalytic converters, world-wide applied in vehicles and in some household utensils, to reduce the emission of gaseous pollutants, such as carbon monoxide, nitrogen oxides and hydrocarbons. Since then, approximately 73% of the world production of rhodium is consumed in the production of autocatalyst. However, the hot exhaust gases flowing through the converter cause abrasion of these units, leading to the emission of these elements to the environment. The concentration level of rhodium (also platinum and palladium) is still very low in the nature; accordingly, their determination in environmental samples specially appears to be a challenging task for analytical chemists. In recent years, the development of analytical methods for the determination of rhodium has increased. The aim of the present review is to evaluate the utility of atomic absorption spectrometry, applied for the quantification of rhodium in different materials, such as environmental, biological, metallurgical and geological samples. PMID:18970480

  18. Determination of copper levels in serum of healthy subjects by atomic absorption spectrometry.

    PubMed

    Terrés-Martos, C; Navarro-Alarcón, M; Martín-Lagos, F; López-G de la Serrana, H; López-Martínez, M C

    1997-05-01

    Copper levels in serum samples of 84 healthy subjects living in southeastern Spain were determined using the flame atomic absorption spectrometry technique. Mineralization of samples was carried out with an HNO3/HClO4 (4:1) mixture in a thermostated mineralization block. The accuracy of the method was tested by using a standard reference material. A mean recovery percentage of 104.70% was obtained. The relative standard deviation (R.S.D.) as a measurement of the precision of the method was lower than 5% in the concentration range considered. Mean copper concentrations were 1.092 +/- 0.365 mg/l (with the range 0.304-2.000 mg/l) and 1.113 +/- 0.253 mg/l (corresponding to an interval of 0.648-1.760 mg/l) for women and men, respectively. There are no significant differences between the copper levels in serum according to either sex or geography zone (P > 0.05). For example, there were no differences of copper levels in serum of subjects from coastal and mountainous zones. Estimated daily dietary intakes on copper in women and men were 1.38 and 2.10 mg Cu/day respectively.

  19. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  20. Determination of trace elements in lithium niobate crystals by solid sampling and solution-based spectrometry methods.

    PubMed

    Bencs, László; György, Krisztina; Kardos, Márta; Osán, János; Alföldy, Bálint; Varga, Imre; Ajtony, Zsolt; Szoboszlai, Norbert; Stefánka, Zsolt; Széles, Eva; Kovács, László

    2012-05-13

    Solid sampling (SS) graphite furnace atomic absorption spectrometry (GFAAS) and solution-based (SB) methods of GFAAS, flame atomic absorption spectrometry (FAAS), inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were elaborated and/or optimized for the determination of Cr, Fe and Mn trace elements used as dopants in lithium niobate optical crystals. The calibration of the SS-GFAAS analysis was possible with the application of the three-point-estimation standard addition method, while the SB methods were mostly calibrated against matrix-matched and/or acidic standards. Spectral and non-spectral interferences were studied in SB-GFAAS after digestion of the samples. The SS-GFAAS method required the use of less sensitive spectral lines of the analytes and a higher internal furnace gas (Ar) flow rate to decrease the sensitivity for crystal samples of higher (doped) analyte content. The chemical forms of the matrix produced at various stages of the graphite furnace heating cycle, dispensed either as a solid sample or a solution (after digestion), were studied by means of the X-ray near-edge absorption structure (XANES). These results revealed that the solid matrix vaporized/deposited in the graphite furnace is mostly present in the metallic form, while the dry residue from the solution form mostly vaporized/deposited as the oxide of niobium. PMID:22541007

  1. Selenium concentration levels in whole blood of Belgian blood bank donors, as determined by direct graphite furnace atomic absorption spectrometry.

    PubMed

    Van Cauwenbergh, R; Robberecht, H; Deelstra, H

    1990-12-01

    Direct graphite furnace atomic absorption spectrometry after appropriate sample dilution is applied to whole blood of Belgian blood bank donors from different geographical areas. Highest values were obtained for the northern part of the country (Flanders). Different consumption habits may explain the significant difference in selenium level found for the two cultural communities (Flemish and Walloon). No sex difference was obtained in both parts of the country and no influence of age was observed for the two communities. Values obtained are compared with literature data on whole blood selenium content for other European countries.

  2. Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization

    NASA Astrophysics Data System (ADS)

    Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.

    The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.

  3. Assessment of homogeneity and minimum sample mass for cadmium analysis in powdered certified reference materials and real rice samples by solid sampling electrothermal vaporization atomic fluorescence spectrometry.

    PubMed

    Mao, Xuefei; Liu, Jixin; Huang, Yatao; Feng, Li; Zhang, Lihua; Tang, Xiaoyan; Zhou, Jian; Qian, Yongzhong; Wang, Min

    2013-01-30

    To optimize analytical quality controls of solid sampling electrothermal vaporization atomic fluorescence spectrometry (SS-ETV-AFS), the homogeneity (H(E)) of rice samples and their minimum sample mass (M) for cadmium analysis were evaluated using three certified reference materials (CRMs) and real rice samples. The effects of different grinding degrees (particle sizes <0.85, <0.25, <0.15, and >1 mm) on H(E) and M of real rice samples were also investigated. The calculated M values of three CRMs by the Pauwels equation were 2.19, 19.76, and 3.79 mg. The well-ground real rice samples (particle size <0.25 mm) demonstrated good homogeneity, and the M values were 3.48-4.27 mg. On the basis of these results, the Cd concentrations measured by the proposed method were compared with the results by microwave digestion graphite furnace atomic absorption spectrometry with a 0.5 g sample mass. There was no significant difference between these two methods, which meant that SS-ETV-AFS could be used to accurately detect Cd in rice with several milligrams of samples instead of the certified value (200 mg) or the recommended mass (200-500 mg) of the methods of the Association of Official Analytical Chemists.

  4. Direct determination of lead in sweet fruit-flavored powder drinks by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Lima, Éder C.; Krug, Francisco José; Arruda, Marco A. Z.

    1998-04-01

    A simplified method for direct determination of lead in sweet fruit-flavored powder drinks, syrups and honeys by electrothermal atomic absorption spectrometry without sample digestion is proposed. Samples were dissolved in water, acidified to 0.2% (v/v) HNO 3, and directly injected into an end-capped transversely heated graphite atomizer (THGA). Building up of carbonaceous residue inside the atomizer was effectively precluded for sugar solutions not exceeding 8.0% (m/v) when a heating program with two pyrolysis steps (600 and 1000°C) was carried out without air-ashing. Under these conditions one atomizer supported about 250 firings. Among various chemical modifiers tested, better recovery and repeatability results were obtained with a 5 μg Pd + 3 μg Mg(NO 3) 2 mixture. Tests carried out with individual concomitants containing up to 1.0 μg Na, K, Ca or Cl, and up to 10.0 μg phosphate or sulphate, and several mixtures of these six concomitants, did not reveal significant interferences on lead atomization. Characteristic mass and detection limit based on integrated absorbance were 15 and 11 pg Pb, respectively. The relative standard deviation based on 10 measurements for typical samples (20-60 ng g -1 Pb) was always lower than 5.5%. The detection limit of 7.0 ng g -1 Pb attained the Codex recommendation for the maximum allowed lead contents in the sugar samples. Application of t-test to the results obtained by the proposed direct analysis, and the official method adopted by Food Chemical Codex, demonstrated that there were no significant differences at the 5% probability level.

  5. Determination of cadmium in biodiesel using microemulsion and electrothermal atomization atomic absorption spectrometry.

    PubMed

    Lima, Adriana S; Silva, Deise G; Teixeira, Leonardo S G

    2015-01-01

    This work aimed to prepare biodiesel microemulsions for the subsequent quantification of cadmium via graphite furnace atomic absorption spectrometry (GFAAS). The biodiesel samples were prepared using n-propanol as an emulsifier, 10% (v/v) nitric acid as the aqueous phase, and biodiesel. Pseudoternary phase diagrams were constructed to determine the microemulsion region with the specified components. The optimized conditions for microemulsion formation were 57.6% (v/v) n-propanol, 21.2% (v/v) biodiesel, and 21.2% (v/v) nitric acid solution. The stability of the microemulsified system was investigated using aqueous and organic standards, and the system was found to be stable for at least 240 min. The applied pyrolysis and atomization temperatures were 800 and 2000 °C, respectively, and 5 μg of aluminum was used as the chemical modifier. The obtained limits of detection and quantification were 0.2 and 0.5 μg kg(-1), respectively, and the characteristic mass was 1.6 pg. The precision, expressed as the relative standard deviation (% R.S.D., n = 10), was 2.5% for a sample with a cadmium concentration of 6.5 μg kg(-1). The accuracy was determined from addition and recovery experiments, with results varying from 93 to 108% recovery. This study demonstrates that the proposed method based on the use of a microemulsion formation in sample preparation can be applied as an efficient alternative for the determination of cadmium in biodiesel by GFAAS. Cadmium determination in biodiesel samples of different origins (soybean, corn, cotton, and sunflower) was evaluated after acid digestion using the inductively coupled plasma-mass spectrometry (ICP-MS) technique, and the obtained results were compared to the results obtained using the proposed method. The paired t test (95% confidence level) did not show significant differences. The concentrations of cadmium found ranged from 5.3 to 8.0 μg kg(-1).

  6. Determination of cadmium in biodiesel using microemulsion and electrothermal atomization atomic absorption spectrometry.

    PubMed

    Lima, Adriana S; Silva, Deise G; Teixeira, Leonardo S G

    2015-01-01

    This work aimed to prepare biodiesel microemulsions for the subsequent quantification of cadmium via graphite furnace atomic absorption spectrometry (GFAAS). The biodiesel samples were prepared using n-propanol as an emulsifier, 10% (v/v) nitric acid as the aqueous phase, and biodiesel. Pseudoternary phase diagrams were constructed to determine the microemulsion region with the specified components. The optimized conditions for microemulsion formation were 57.6% (v/v) n-propanol, 21.2% (v/v) biodiesel, and 21.2% (v/v) nitric acid solution. The stability of the microemulsified system was investigated using aqueous and organic standards, and the system was found to be stable for at least 240 min. The applied pyrolysis and atomization temperatures were 800 and 2000 °C, respectively, and 5 μg of aluminum was used as the chemical modifier. The obtained limits of detection and quantification were 0.2 and 0.5 μg kg(-1), respectively, and the characteristic mass was 1.6 pg. The precision, expressed as the relative standard deviation (% R.S.D., n = 10), was 2.5% for a sample with a cadmium concentration of 6.5 μg kg(-1). The accuracy was determined from addition and recovery experiments, with results varying from 93 to 108% recovery. This study demonstrates that the proposed method based on the use of a microemulsion formation in sample preparation can be applied as an efficient alternative for the determination of cadmium in biodiesel by GFAAS. Cadmium determination in biodiesel samples of different origins (soybean, corn, cotton, and sunflower) was evaluated after acid digestion using the inductively coupled plasma-mass spectrometry (ICP-MS) technique, and the obtained results were compared to the results obtained using the proposed method. The paired t test (95% confidence level) did not show significant differences. The concentrations of cadmium found ranged from 5.3 to 8.0 μg kg(-1). PMID:25381584

  7. Atomic Absorption Spectrometry Analysis of Trace Elements in Degenerated Intervertebral Disc Tissue

    PubMed Central

    Kubaszewski, Łukasz; Zioła-Frankowska, Anetta; Frankowski, Marcin; Nowakowski, Andrzej; Czabak-Garbacz, Róża; Kaczmarczyk, Jacek; Gasik, Robert

    2014-01-01

    Background Few studies have investigated trace elements (TE) in human intervertebral disc (IVD) tissue. Trace element presence can have diverse meanings: essential TE show the metabolic modalities of the tissue, while environmentally-related TE indicate pollution and tissue-specific absorption and accumulation. IVD is a highly specific compartment with impaired communication with adjacent bone. Analysis of TE in IVD provides new insights regarding tissue metabolism and IVD communication with other tissues. Material/Methods Thirty intervertebral discs were acquired from 22 patients during surgical treatment for degenerative disease. Atomic absorption spectrometry was used to evaluate the concentrations of Al, Cd, Pb, Cu, Ni, Mo, Mg, and Zn. Results Al, Pb, Cu, Mg, and Zn were detected in all samples. Pb was significantly positively correlated with age, and Ni concentration was weakly correlated with population count in the patient’s place of residence. Only Cu was observed in higher concentrations in IVD compared to in other tissues. Significant positive correlations were observed between the following pairs: Mg/Zn, Mg/Al, Mg/Pb, Zn/Al, Zn/Pb, and Al/Pb. Negative correlations were observed between Mg/Cd, Zn/Cd, Mg/Mo, and Mo/Pb. Conclusions This study is one of few to profile the elements in intervertebral discs in patients with degenerative changes. We report significant differences between trace element concentrations in intervertebral discs compared to in other tissues. Knowledge of the TE accumulation pattern is vital for better understanding intervertebral disc nutrition and metabolism. PMID:25366266

  8. Laboratory verification of on-line lithium analysis using ultraviolet absorption spectrometry

    SciTech Connect

    Beemster, B.J.; Schlager, K.J.; Schloegel, K.M.; Kahle, S.J.; Fredrichs, T.L.

    1992-12-31

    Several laboratory experiments were performed to evaluate the capability of absorption spectrometry in the ultraviolet-visible wavelength range with the objective of developing methods for on-line analysis of lithium directly in the primary coolant of Pressurized Water Reactors using optical probes. Although initial laboratory tests seemed to indicate that lithium could be detected using primary absorption (detection of natural spectra unassisted by reagents), subsequent field tests demonstrated that no primary absorption spectra existed for lithium in the ultraviolet-visible wavelength range. A second series of tests that were recently conducted did, however, confirm results reported in the literature to the effect that reagents were available that will react with lithium to form chelates that possess detectable absorption and fluorescent signatures. These results point to the possible use of secondary techniques for on-line analysis of lithium.

  9. Determination of arsenic in a nickel alloy by flow injection hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hanna, C. P.; Tyson, J. F.; Offley, S. G.

    1992-08-01

    The development of a method for the direct determination of trace arsenic quantities in nickel alloy digests, by flow injection hydride generation atomic absorption spectrometry, is described. An optimization study of the manifold and chemical parameters produced system performance, in terms of tolerance of the nickel matrix and sensitivity, such that matrix removal and pre-reduction of As(V) to As (III) prior to arsine generation were eliminated. Full recovery of the As(V) signal from a solution containing 5 ng ml -1 in the presence of 60 μg ml -1 nickel was obtained. Validation of the method was achieved by analyzing a British Chemical Standard (BCS) Certified Reference Material (CRM) #346 IN nickel alloy containing arsenic at a concentration of 50 μg g -1. Following dissolution in nitric and hydrofluoric acids by a microwave assisted procedure, the only subsequent preparation required was dilution by the appropriate factor. Up to 60 injections h -1 may be made, with a detection limit of 0.5 ng ml -1 arsenic (250 pg absolute) as As(V) in a 500 μl sample. The peak height characteristic concentration is 0.46 ng ml -1, with a relative standard deviation of 3.5% for a 10 ng ml -1 As(V) standard ( n = 6).

  10. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    PubMed

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks.

  11. [Determination of Iodine and Iodate in Brine and Seafood Simultaneously by Ultraviolet Absorption Spectrometry].

    PubMed

    Tan, Jun; Zhu, Xia-ping; Liu, Miao-miao; Wei, Zhi-cheng; Sang, Shi-hua

    2015-06-01

    The iodide in samples was oxidized to iodate by bromine water, which could be removed by formic acid, and iodate could be transformed to I3- with excess of I- in phosphoric acid, the iodate in samples could be transformed directly to I3- with excess of I- in phosphoric acid. The I3- solution had strong absorption at 350 and 288 nm, and the absorbance had a linear relationship to the concentration of I3- in a certain range. Total content of iodide and iodate had been detected after samples were oxidized by bromine water and the content of iodate had been detected directly, and the content of iodide was obtained by difference of the two results. Based on this, the method had been established to detect iodide and iodate in brine and seafood simultaneously by ultraviolet absorption spectrometry. The volumes of bromine water, formic acid, phosphoric acid and potassium iodide had been optimized. The effect of illumination, temperature and time also had been discussed. The optional reagents condition for iodide was: 2 drops of 3% bromine water, 0.5 mL of 10% formic acid, 4 mL of 20% phosphoric acid and 1 mL of 100 g x L(-1 KI. The optional reagents condition for iodate was: 0. 2 mL of 20% phosphoric acid and 1 mL of 100 g x L(-1) KI. The absorbance were determined after reacting for 30 min at room temperature and natural light conditions. Under the optimized conditions, the concentration of iodide and iodate in the range of 0 - 1.2 and 0 -1.5 mg x L(-1) were well agreed with Lambert Beer law. The sample blank was detected for twelve times and the detection limit of iodide and iodate were 1.54 and 14.8 μg x L(-1) respectively. The RSD of twelve times determination of 0.8 mg x L(-1) of iodide and iodate were 0.097% and 0.067%, respectively. The iodide and iodate in Zhabuye brine, Hong Feng underground brine, kelp, seaweed and sea cabbage had been detected, the recovery experiments also had been conducted at the same time, the recovery of iodide and iodate were between 80

  12. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization.

    PubMed

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-01-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 (o)C) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user-friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source. PMID:26582511

  13. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-11-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 oC) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user-friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source.

  14. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization

    PubMed Central

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-01-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 oC) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user–friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source. PMID:26582511

  15. Gamma ray spectrometry of LDEF samples at SRS

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1991-01-01

    A total of 31 samples from Long Duration Exposure Facility (LDEF), including materials of Al, V, and steel trunnions were analyzed by ultralow level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include an end piece that collects noticeable Be-7 on its leading surface. No significant Be-7 was detected in the samples analyzed. The most sensitive analyses were performed with a 90 pct. efficient HPGe gamma ray detector, which is enclosed in a purged active/passive active shield.

  16. Metal content monitoring in Hypericum perforatum pharmaceutical derivatives by atomic absorption and emission spectrometry.

    PubMed

    Gomez, María R; Soledad, Cerutti; Olsina, Roberto A; Silva, María F; Martínez, Luis D

    2004-02-18

    Metals have been investigated in different plant materials in order to establish their normal concentration range and consider their role in plants as part of human medicinal treatment. Metal monitoring as a pattern recognition method is a promising tool in the characterization and/or standardization of phytomedicines. In the present work measurable amounts of Ca, Cu, K, Li, Mg, Mn, Na, Ni, and Zn were detected in phytopharmaceutical derivatives of Hypericum perforatum by atomic techniques. Atomic methodologies like flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS) allow reliable determination of mineral content in pharmaceutical quality control of medicinal plants. Additionally, capillary electrophoresis (CE) patterns of characteristic components (fingerprints) have been performed for the search of adulterants in phytopharmaceutical products. PMID:15127813

  17. Determination of elements by atomic absorption spectrometry in medicinal plants employed to alleviate common cold symptoms.

    PubMed

    Küçükbay, F Zehra; Kuyumcu, Ebru

    2014-09-01

    Eleven important medicinal plants generally used by the people of Turkey for the treatment of common cold have been studied for their mineral contents. Eleven minor and major elements (essential, non-essential and toxic) were identified in the Asplenium adiantum-nigrum L. , Althaea officinalis L. , Verbascum phlomoides L., Euphorbia chamaesyce L., Zizyphus jujube Miller, Peganum harmala L., Arum dioscoridis Sm., Sambucus nigra L., Piperlongum L., Tussilago farfara L. and Elettaria cardamomum Maton by employing flame atomic absorption and emission spectrometry and electro-thermal atomic absorption spectrometry. Microwave digestion procedure for total concentration was applied under optimized conditions for dissolution of medicinal plants. Plant based biological certified reference materials (CRMs) served as standards for quantification. These elements are found to be present in varying concentrations in the studied plants. The baseline data presented in this work can be used in understanding the role of essential, non-essential and toxic elements in nutritive, preventive and therapeutic properties of medicinal plants.

  18. Determination of trace amounts of molybdenum in plant tissue by solvent extraction-atomic-absorption and direct-current plasma emission spectrometry.

    PubMed

    Lajunen, L H; Kubin, A

    1986-03-01

    Methods are presented for determination of molybdenum in plant tissue by flame and graphite-furnace atomic-absorption spectrometry and direct-current argon-plasma emission spectrometry. The samples are digested in HNO(3)-H(2)SO(4)-HC1O(4) mixture, and Mo is separated and concentrated by chelation and extraction. Three organic solvents (methyl isobutyl ketone, di-isobutyl ketone and isoamyl alcohol) and two ligands (8-hydroxyquinoline and toluene-3,4-dithiol) were studied. The procedure were tested on pine needle and birch leaf samples. PMID:18964076

  19. Sample preparation for quantitation of tritium by accelerator mass spectrometry.

    PubMed

    Chiarappa-Zucca, Marina L; Dingley, Karen H; Roberts, Mark L; Velsko, Carol A; Love, Adam H

    2002-12-15

    The capability to prepare samples accurately and reproducibly for analysis of tritium (3H) content by accelerator mass spectrometry (AMS) greatly facilitates isotopic tracer studies in which attomole levels of 3H can be measured in milligram-sized samples. A method has been developed to convert the hydrogen of organic samples to a solid, titanium hydride, which can be analyzed by AMS. Using a two-step process, the sample is first oxidized to carbon dioxide and water. In the second step, the water is transferred within a heated manifold into a quartz tube, reduced to hydrogen gas using zinc, and reacted with titanium powder. The 3H/1H ratio of the titanium hydride is measured by AMS and normalized to standards whose ratios were determined by decay counting to calculate the amount of 3H in the original sample. Water, organic compounds, and biological samples with 3H activities measured by liquid scintillation counting were utilized to develop and validate the method. The 3H/1H ratios were quantified in samples that spanned 5 orders of magnitude, from 10(-10) to 10(-15), with a detection limit of 3.0 x 10(-15), which is equivalent to 0.02 dpm tritium/mg of material. Samples smaller than 2 mg were analyzed following addition of 2 mg of a tritium-free-hydrogen carrier. Preparation of organic standards containing both 14C and 3H in 2-mg organic samples demonstrated that this sample preparation methodology can also be applied to quantify both of these isotopes from a single sample. PMID:12510750

  20. Contents of cadmium, mercury and lead in fish from the Atlantic sea (Morocco) determined by atomic absorption spectrometry.

    PubMed

    Chahid, Adil; Hilali, Mustapha; Benlhachimi, Abdeljalil; Bouzid, Taoufiq

    2014-03-15

    As a part of a specific monitoring program, lead (Pb) cadmium (Cd) and mercury (Hg) concentrations in important species of fish from various fishing ports of the southern Kingdom of Morocco (Sardina pilchardus, Scomber scombrus, Plectorhinchus mediterraneus, Trachurus trachurus, Octopus vulgaris, Boops boops, Sarda sarda, Trisopterus capelanus, and Conger conger) were investigated by the Moroccan Reference Laboratory (NRL) for trace elements in foodstuffs of animal origin. The samples were analysed for lead and cadmium by a graphite furnace atomic absorption spectrometry (GFAAS); and for mercury by cold vapour atomic absorption spectrometry (CVAAS). The results were expressed as μg/g of wet weight (w/w). The levels of Cd, Pb and Hg in muscles of fish were 0.009-0.036, 0.013-0.114 and 0.049-0.194 μg/g, respectively. The present study showed that different metals were present in the sample at different levels but within the maximum residual levels prescribed by the EU for the fish and shellfish from these areas, in general, should cause no health problems for consumers.

  1. Cloud point extraction thermospray flame quartz furnace atomic absorption spectrometry for determination of ultratrace cadmium in water and urine

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Zhang, Yunchang; Lv, Yi; Hou, Xiandeng

    2006-12-01

    A simple, low cost and highly sensitive method based on cloud point extraction (CPE) for separation/preconcentration and thermospray flame quartz furnace atomic absorption spectrometry was proposed for the determination of ultratrace cadmium in water and urine samples. The analytical procedure involved the formation of analyte-entrapped surfactant micelles by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution and a Triton X-114 solution. When the temperature of the system was higher than the cloud point of Triton X-114, the complex of cadmium-PDC entered the surfactant-rich phase and thus separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, the limit of detection was 0.04 μg/L for cadmium with a sample volume of 10 mL. The analytical results of cadmium in water and urine samples agreed well with those by ICP-MS.

  2. Determination of cadmium in spring water by graphite-furnace atomic absorption spectrometry after coprecipitation with ytterbium hydroxide.

    PubMed

    Atsumi, Kousuke; Minami, Tomoharu; Ueda, Joichi

    2005-06-01

    A coprecipitation method with ytterbium hydroxide was studied for the determination of cadmium in water samples by graphite-furnace atomic absorption spectrometry. Up to 40 ng of cadmium in water samples was quantitatively coprecipitated with ytterbium hydroxide at pH 8.0-11.2. The concentration factor was 100 fold. The coprecipitated cadmium was sensitively determined without any influence of ytterbium and the calibration curve was linear from 0.1 to 4 ng/mL of cadmium. The detection limit (signal/noise = 2) was 2.9 pg/mL in 100 mL of the initial sample solution. Twenty-nine diverse ions tested did not interfere with the determination in at least a 10000-fold mass ratio to cadmium. The proposed method was successfully applied to the determination of cadmium in spring water.

  3. Ultra sound absorption measurements in rock samples at low temperatures

    NASA Technical Reports Server (NTRS)

    Herminghaus, C.; Berckhemer, H.

    1974-01-01

    A new technique, comparable with the reverberation method in room acoustics, is described. It allows Q-measurements at rock samples of arbitrary shape in the frequency range of 50 to 600 kHz in vacuum (.1 mtorr) and at low temperatures (+20 to -180 C). The method was developed in particular to investigate rock samples under lunar conditions. Ultrasound absorption has been measured at volcanics, breccia, gabbros, feldspar and quartz of different grain size and texture yielding the following results: evacuation raises Q mainly through lowering the humidity in the rock. In a dry compact rock, the effect of evacuation is small. With decreasing temperature, Q generally increases. Between +20 and -30 C, Q does not change much. With further decrease of temperature in many cases distinct anomalies appear, where Q becomes frequency dependent.

  4. Gas chromatography coupled with atomic absorption spectrometry — a sensitive instrumentation for mercury speciation

    NASA Astrophysics Data System (ADS)

    Emteborg, Håkan; Sinemus, Hans-Werner; Radziuk, Bernard; Baxter, Douglas C.; Frech, Wolfgang

    1996-07-01

    New instrumentation for the speciation of mercury is described, and is applied to the analysis of natural water samples. The separation of mercury species is effected using gas chromatography of derivatized mercury species on a widebore capillary column. The solvent is vented using a bypass valve and the separated mercury species are pyrolysed on-line at 800°C for production of mercury atoms. These are then detected by atomic absorption spectrometry (AAS) at the 253.7 and 184.9 nm lines simultaneously in a quartz cuvette. The use of the 184.9 nm line provides a more than five-fold increase in sensitivity compared with the conventional 253.7 nm line and an absolute detection limit of 0.5 pg of mercury. The dynamic range of the combined analytical lines provides a linear response over more than three orders of magnitude. A number of organic compounds not containing mercury are also detected following pyrolysis, especially at the 184.9 nm line. These background species must not co-elute at the retention times for methyl- and inorganic mercury, as otherwise a positive interference would result. By maximizing the chromatographic resolution and minimizing the band broadening in the cuvette by use of a make-up gas, the retention times of interest are freed from co-eluting background peaks. The instrumentation has been applied to the determination of ng l -1 concentrations of methyl- and inorganic mercury in Lake Constance, Germany and within the Lake Constance drinking water supply organization, Bodenseewasserversorgung (BWV). The accuracy for the sum of methyl- and inorganic mercury has been assessed by comparison with an independent method for total mercury based on AAS detection implemented at BWV. Relative detection limits using 1 litre water samples and 15 ml injections of the final hexane extract were 0.03 ng l -1 for methylmercury and 0.4 ng l -1 for inorganic mercury based on the 3j criterion.

  5. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    PubMed

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood. PMID:27432235

  6. Optimized determination of iron in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry.

    PubMed

    Olalla, M; Cruz González, M; Cabrera, C; López, M C

    2000-01-01

    This paper describes a study of the different methods of sample preparation for the determination of iron in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry with electrothermal atomization; results are also reported for the practical application of these methods to the analysis of commercial samples produced in Spain. The methods examined include dealcoholization and dry and wet mineralization treatment using different acids and/or mixtures of them, both with and without heating. The sensitivity, detection limit, accuracy, precision, and selectivity of each method were established. The best results were obtained for wet mineralization with heated acid (HNO3-H2SO4); the results for table wines had an accuracy of 97.5-101.6%, a relative standard deviation of 3.51%, a detection limit of 19.2 micrograms/L, and a determination limit of 32.0 micrograms/L. The method was also sufficiently sensitive and selective. It was applied to the determination of iron in grape juice, different types of wines, and beverages with high alcoholic content, all of which are produced and widely consumed in Spain. The values obtained ranged from 3.394 +/- 2.15 mg/L for the juice, 2.938 +/- 1.47 mg/L for the white wines, 19.470 +/- 5.43 mg/L for the sweet wines, 0.311 +/- 0.07 mg/L for the brandies, and 0.564 +/- 0.12 mg/L for the anisettes. Thus, the method is useful for routine analysis in the quality control of these beverages. PMID:10693020

  7. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    PubMed

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood.

  8. A highly sensitive method for the determination of mercury using vapor generation gold wire microextraction and electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hashemi, Payman; Rahimi, Akram

    2007-04-01

    The study introduces a new simple and highly sensitive method for headspace solid phase microextraction (HS-SPME) coupled with electrothermal atomic absorption spectrometric determination of mercury. In the proposed method, a gold wire, mounted in the headspace of a sample solution in a sealed bottle, is used for collection of mercury vapor generated by addition of sodium tetrahydroborate. The gold wire is then simply inserted in the sample introduction hole of a graphite furnace of an electrothermal atomic absorption spectrometry instrument. By applying an atomization temperature of 600 °C, mercury is rapidly desorbed from the wire and determined with high sensitivity. Factorial design and response surface analysis methods were used for optimization of the effect of five different variables in order to maximize the mercury signal. By using a 0.75 mm diameter gold wire, a sample volume of about 8 ml and an extraction time of 11 min, the sensitivity of mercury determination was enhanced up to 10 4 times in comparison to its ordinary ETAAS determination with direct injection of 10 μl sample solutions. A detection limit of 0.006 ng ml - 1 and a precision better than 4.6% (relative standard deviation) were obtained. The method was successfully applied to the determination of mercury in industrial wastewaters and tuna fish samples.

  9. Mercury speciation in hair by headspace injection-gas chromatography-atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg).

    PubMed

    Gao, Y; De Galan, S; De Brauwere, A; Baeyens, W; Leermakers, M

    2010-10-15

    The speciation of Hg in human hair was carried out with combustion-atomic absorption spectrometry for total Hg (THg) and headspace-gas chromatography-atomic fluorescence spectrometry (HS-GC-AFS) for methylmercury (MMHg). The determination of total Hg in hair was carried out with the AMA analyzer (Advanced Mercury Analyser 254). Accuracy and reproducibility were assessed on a Certified Reference hair sample (IAEA-086 CRM), yielding, respectively, a recovery of 97.5% and a RSD of 3.2%. Analyses of 10 blank measurements resulted in a detection limit of 1.5 ng g(-1) of THg for a 20mg sample of human hair. MMHg concentrations in hair were assessed with HS-GC-AFS in a single analysis step. Either acid or alkaline extraction can be applied because they yielded very similar results on a IAEA-086 CRM: we observed a recovery of 103% and a RSD of 7% with acid extraction and a recovery of 110% and a RSD of 9% with alkaline extraction. Optimization of the headspace vial, injection and GC parameters is described. The detection limit of the MMHg determination in human hair, which amounts to 0.04 ng g(-1) for a 20mg sample, is far below the concentrations observed in natural samples. The number of samples that can be analyzed per hour, respectively, amounts to 8 for THg and 4 for MMHg. Finally, Hg speciation in natural human hair samples was carried out by combining both AMA and HS-GC-AFS analysis methods. THg levels were at the μg g(-1), level, with an average MMHg fraction of about 70%.

  10. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  11. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1). PMID:27345208

  12. X-ray absorption microscopy of aqueous samples

    NASA Astrophysics Data System (ADS)

    Frazer, Brad; Gilbert, Benjamin; De Stasio, Gelsomina

    2002-03-01

    X-ray photoelectron emission microscopy (X-PEEM) is used for numerous applications in surface microchemical analysis of material science and biological specimens. We have reconfigured the MEPHISTO X-PEEM instrument that is installed at the University of Wisconsin Synchrotron Radiation Center to measure true x-ray transmission spectra by converting transmitted photons to photoelectrons via a thin photocathode layer of gold. We have also developed a method by which to introduce aqueous samples into ultrahigh vacuum. Hence x-ray spectroscopy can be performed on biologically relevant elements (such as K, Ca, etc.) in a physiological environment, i.e., in solution. More important, when coupled with X-PEEM imaging this technique may offer the unique and exciting possibility of studying living cells. We present initial x-ray absorption spectra of solutions of aqueous ionic and chelated Ca, with the aim of distinguishing bound and free ionic calcium in vivo.

  13. On-line precipitation/dissolution system for the preconcentration and determination of manganese traces by atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dittfurth, Carola; Ballesteros, Evaristo; Gallego, Mercedes; Valcárcel, Miguel

    1996-12-01

    Flame atomic absorption spectrometry was used for the determination of Mn in biological material following preconcentration by precipitation. The proposed preconcentration method is based on the continuous precipitation of Mn(II) as hydrated Mn(IV) oxide in ammonia buffer and dissolution of the precipitate with hydrogen oxalate or dilute nitric acid. The sensitivity of the Mn determination is increased by the presence of hydrogen peroxide, which raises the rate of oxidation of Mn(II) to Mn(IV). By using a time-based technique (at a sample loading rate of 4 ml min -1) a concentration factor of up to 55 was obtained using 24 ml of sample. The effect of concurrent cations was investigated; the most adverse effect was exerted by Fe(III), which interfered at concentrations 50 times higher than that of Mn(II).

  14. Fractionation of calcium and magnesium in honeys, juices and tea infusions by ion exchange and flame atomic absorption spectrometry.

    PubMed

    Pohl, P; Prusisz, B

    2006-07-15

    An analytical procedure was proposed to study the operational fractionation of Ca and Mg in bee honeys, fruit juices and tea infusions. The protocol devised was based on the solid phase extraction of distinct metal fractions on different sorbents, namely strong acidic cation exchanger Dowex 50W x 4, weak acidic cation exchanger Diaion WT01S and strong basic anion exchange resin Dowex 1 x 4. For the evaluation of the amounts of the metal fractions distinguished, a flame atomic absorption spectrometry was used off-line prior to the determination of Ca and Mg concentrations in the effluents obtained. It was established that Ca and Mg are mostly present in the analysed samples in the form of cationic species (96-100%). The accuracy of the entire fractionation scheme and sample preparation procedures involved was verified by the performance of the recovery tests. PMID:18970707

  15. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Krawczyk, Magdalena

    2007-03-01

    The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H 2Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an "integrated trap") was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3 σ), was 0.9 ng mL - 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% ( n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  16. Determination and interference studies of bismuth by tungsten trap hydride generation atomic absorption spectrometry.

    PubMed

    Kula, Ibrahim; Arslan, Yasin; Bakirdere, Sezgin; Titretir, Serap; Kendüzler, Erdal; Ataman, O Yavuz

    2009-11-15

    The determination of bismuth requires sufficiently sensitive procedures for detection at the microg L(-1) level or lower. W-coil was used for on-line trapping of volatile bismuth species using HGAAS (hydride generation atomic absorption spectrometry); atom trapping using a W-coil consists of three steps. Initially BiH(3) gas is formed by hydride generation procedure. The analyte species in vapor form are transported through the W-coil trap held at 289 degrees C where trapping takes place. Following the preconcentration step, the W-coil is heated to 1348 degrees C; analyte species are released and transported to flame-heated quartz atom cell where the atomic signal is formed. In our study, interferences have been investigated in detail during Bi determination by hydride generation, both with and without trap in the same HGAAS system. Interferent/analyte (mass/mass) ratio was kept at 1, 10 and 100. Experiments were designed for carrier solutions having 1.0M HNO(3). Interferents such as Fe, Mn, Zn, Ni, Cu, As, Se, Cd, Pb, Au, Na, Mg, Ca, chloride, sulfate and phosphate were examined. The calibration plot for an 8.0 mL sampling volume was linear between 0.10 microg L(-1) and 10.0 microg L(-1) of Bi. The detection limit (3s/m) was 25 ng L(-1). The enhancement factor for the characteristic concentration (C(o)) was found to be 21 when compared with the regular system without trap, by using peak height values. The validation of the procedure was performed by the analysis of the certified water reference material and the result was found to be in good agreement with the certified values at the 95% confidence level.

  17. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    SciTech Connect

    Rey-Raap, Natalia

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  18. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nascentes, Clésia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A. Z.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1, respectively. The relative standard deviations varied from 2.7% to 7.3% ( n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1; Mn: 110-348 μg l -1, Pb: 13.0-32.9 μg l -1, and Zn: 52.7-226 μg l -1. Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery.

  19. Fast sequential determination of antimony and lead in pewter alloys using high-resolution continuum source flame atomic absorption spectrometry.

    PubMed

    Dessuy, Morgana B; de Jesus, Robson M; Brandao, Geovani C; Ferreira, Sergio L C; Vale, Maria Goreti R; Welz, Bernhard

    2013-01-01

    A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element.

  20. Fast sequential determination of antimony and lead in pewter alloys using high-resolution continuum source flame atomic absorption spectrometry.

    PubMed

    Dessuy, Morgana B; de Jesus, Robson M; Brandao, Geovani C; Ferreira, Sergio L C; Vale, Maria Goreti R; Welz, Bernhard

    2013-01-01

    A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element. PMID:23046152

  1. Optimized determination of calcium in grape juice, wines, and other alcoholic beverages by atomic absorption spectrometry.

    PubMed

    Olalla, Manuel; González, Maria Cruz; Cabrera, Carmen; Gimenez, Rafael; López, Maria Carmen

    2002-01-01

    This paper describes a study of the different methods of sample preparation for the determination of calcium in grape juice, wines, and other alcoholic beverages by flame atomic absorption spectrometry; results are also reported for the practical application of these methods to the analysis of commercial samples produced in Spain. The methods tested included dealcoholization, dry mineralization, and wet mineralization with heating by using different acids and/or mixtures of acids. The sensitivity, detection limit, accuracy, precision, and selectiviy of each method were established. Such research is necessary because of the better analytical indexes obtained after acid digestion of the sample, as recommended by the European Union, which advocates the direct method. In addition, although high-temperature mineralization with an HNO3-HCIO4 mixture gave the best analytical results, mineralization with nitric acid at 80 degrees C for 15 min gave the most satisfactory results in all cases, including those for wines with high levels of sugar and beverages with high alcoholic content. The results for table wines subjected to the latter treatment had an accuracy of 98.70-99.90%, a relative standard deviation of 2.46%, a detection limit of 19.0 microg/L, and a determination limit of 31.7 microg/L. The method was found to be sufficiently sensitive and selective. It was applied to the determination of Ca in grape juice, different types of wines, and beverages with high alcoholic content, all of which are produced and widely consumed in Spain. The values obtained for Ca were 90.00 +/- 20.40 mg/L in the grape juices, 82.30 +/- 23.80 mg/L in the white wines, 85.00 +/- 30.25 mg/L in the sweet wines, 84.92 +/- 23.11 mg/L in the red wines, 85.75 +/- 27.65 mg/L in the rosé wines, 9.51 +/- 6.65 mg/L in the brandies, 11.53 +/- 6.55 mg/L in the gin, 7.3 +/- 6.32 mg/L in the pacharán, and 8.41 +/- 4.85 mg/L in the anisettes. The method is therefore useful for routine analysis in the

  2. Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry

    USGS Publications Warehouse

    Huffman, Claude; Mensik, J.D.; Riley, L.B.

    1967-01-01

    The two methods presented for the determination of traces of gold in geologic materials are the cyanide atomic-absorption method and the fire-assay atomic-absorption method. In the cyanide method gold is leached with a sodium-cyanide solution. The monovalent gold is then oxidized to the trivalent state and concentrated by extracting into methyl isobutyl ketone prior to estimation by atomic absorption. In the fire-assay atomic-absorption method, the gold-silver bead obtained from fire assay is dissolved in nitric and hydrochloric acids. Gold is then concentrated by extracting into methyl isobutyl ketone prior to determination by atomic absorption. By either method concentrations as low as 50 parts per billion of gold can be determined in a 15-gram sample.

  3. The electrical resistivity of some graphite types as used in electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Rademeyer, C. J.; Human, H. G. C.; Faure, P. K.

    This paper describes the measurement of the electrical resistivity of four types of graphite as used in electrothermal atomic absorption spectrometry (ETAAS). Results are presented for temperatures in a range between 140 and 1800°C. From 1200°C on the resistivity was found to depend linearly on temperature. The regression coefficients for the corresponding straight portions of the experimental curves are given to provide data for extrapolating the resistivity values to 2500°C and to calculate the dynamic temperature characteristics of the graphite tubes in ETAAS.

  4. Determination of boron in silicon-doped gallium arsenide by electrothermal atomic absorption spectrometry and ultraviolet-visible spectrophotometry.

    PubMed

    Taddia, Marco; Cerroni, Maria Grazia; Morelli, Elio; Musiani, Andrea

    2002-01-01

    Two methods have been developed for the determination of boron impurities in silicon-doped gallium arsenide (GaAs) for electronics. The first method employs the electrothermal atomic absorption spectrometry (ETAAS), the second, the UV-Vis molecular absorption spectrophotomety. In both cases the GaAs sample is decomposed with aqua regia (1+1). To prevent Ga(III) interference on the ETAAS determination of boron, a double extraction of the chlorogallic acid (HGaCl4) in diethyl ether is performed. To improve the overall ETAAS performance, the graphite tubes were pre-treated with iridium(III) and tungsten(IV). A mixed chemical modifier containing Ni(II), Sr(II) and citric acid was also used. The characteristic mass (m0) is 301 +/- 47 pg and the detection limit (3sB) is 2.4 microg g(-1). The classic UV-Vis spectrophotometric procedure using curcumin was also extended to the determination of boron in GaAs. By masking Ga(III) with EDTA and a preliminary extraction of boron with 2-ethyl-hexane 1,3-diol, performed on a semi-micro scale, a detection limit of 0.6 microg g(-1) was achieved. Both methods were applied to the analysis of two Si-doped GaAs samples which were suspected of being boron-contaminated. Results are compared with those obtained by direct analysis of the decomposed sample solution using the inductively coupled plasma atomic emission spectrometry (ICP-AES).

  5. Evaluation of quartz tubes as atomization cells for gold determination by thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Morzan, Ezequiel; Piano, Ornela; Stripeikis, Jorge; Tudino, Mabel

    2012-11-01

    This work describes the development of a new analytical procedure able to determine gold by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) using nickel tubes (NiT) and quartz tubes (QT) as atomization cells. Experiments involving changes in the flow injection operational parameters, reagent concentrations and sizes of the QT were performed in order to optimize sensitivity. Under the same operational conditions, it was observed that the employment of QT increases the sensitivity of gold determination when compared to the nickel tube. Since solutions of highly concentrated hydrochloric acid showed the best performance as carriers, quartz tubes were also preferred due to its greater tolerance to corrosion by mineral acids in comparison to NiT. In addition, changes in the internal diameter of the QT revealed an important improvement in sensitivity for smaller tubes. Under optimized conditions the main figures of merit showed values close to that of graphite furnace atomic absorption spectrometry with the addition of an excellent improvement of the sample throughput. They are: LOD (3 s): 0.004 μg mL- 1, sensitivity: 0.306 (μg mL- 1)- 1, RSD% (n = 10, 1 μg mL- 1): 2.5, linear range: 0.01-4 μg mL- 1 and sample throughput: 72 h- 1. This new method was employed for the determination of gold in homeopathic medicines with no need of sample digestion. Validation of the analytical results will be shown. A full discussion of the most relevant findings regarding the role of the atomization cell as a strategic key for improving sensitivity will be also provided.

  6. Determination of Low Levels of Lead in Beer Using Solid-Phase Extraction and Detection by Flame Atomic Absorption Spectrometry

    PubMed Central

    Alves, Vanessa N.; Borges, Simone S. O.; Neto, Waldomiro B.; Coelho, Nívia M. M.

    2011-01-01

    In this study, a method for the determination of low concentrations of lead in beer samples using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the online preconcentration system, such as sample pH, preconcentration flow rate, eluent flow rate, eluent concentration, particle size, and sorbent mass, were studied. The optimum extraction conditions were obtained using a sample pH of 6.0, sample flow rate of 6.0 mL min−1, 63.0 mg of sorbent mass, and 2.0 mol L−1 HNO3 at a flow rate of 2.0 mL min−1 as the eluent. With the optimized conditions, the preconcentration factor, precision, detection limit, consumption index, and sample throughput were estimated as 93, 0.3% (10.0 μg L−1, n = 7), 7.5 μg L−1, 0.11 mL, and 23 samples per hour, respectively. The method developed was successfully applied to beer samples and recovery tests, with recovery ranging from 80% to 100%. PMID:22013389

  7. Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Souza, Gilberto B.; Carrilho, Elma Neide V. M.; Oliveira, Camila V.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    A rapid sample preparation method is proposed for decomposition of milk powder, corn bran, bovine and fish tissues, containing certified contents of the analytes. The procedure involves sample combustion in a commercial stainless steel oxygen bomb operating at 25 bar. Most of the samples were decomposed within 5 min. Diluted nitric acid or water-soluble tertiary amines 10% v/v were used as absorption solutions. Calcium, Cu, K, Mg, Na, P, S and Zn were recovered with the bomb washings and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ethanol mixed with paraffin was used as a combustion aid to allow complete combustion. A cooling step prior releasing of the bomb valve was employed to increase the efficiency of sample combustion. Iodine was also determined in milk samples spiked with potassium iodide to evaluate the volatilization and collection of iodine in amine CFA-C medium and the feasibility of its determination by ICP-OES with axial view configuration. Most of the element recoveries in the samples were between 91 and 105% and the certified and found contents exhibited a fair agreement at a 95% confidence level.

  8. Identification of Unknown Contaminants in Water Samples from ISS Employing Liquid Chromatography/Mass Spectrometry/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Schultz, John R.

    2008-01-01

    Mass Spectrometry/Mass Spectrometry (MS/MS) is a powerful technique for identifying unknown organic compounds. For non-volatile or thermally unstable unknowns dissolved in liquids, liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) is often the variety of MS/MS used for the identification. One type of LC/MS/MS that is rapidly becoming popular is time-of-flight (TOF) mass spectrometry. This technique is now in use at the Johnson Space Center for identification of unknown nonvolatile organics in water samples from the space program. An example of the successful identification of one unknown is reviewed in detail in this paper. The advantages of time-of-flight instrumentation are demonstrated through this example as well as the strategy employed in using time-of-flight data to identify unknowns.

  9. Impact of the analytical blank in the uncertainty evaluation of the copper content in waters by flame atomic absorption spectrometry.

    PubMed

    de Oliveira, Elcio Cruz; Monteiro, Maria Inês Couto; Pontes, Fernanda Veronesi Marinho; de Almeida, Marcelo Dominguez; Carneiro, Manuel Castro; da Silva, Lílian Irene Dias; Alcover Neto, Arnaldo

    2012-01-01

    Chemical analysts use analytical blanks in their analyses, but seldom is this source of uncertainty evaluated. Generally, there is great confusion. Although the numerical value of the blank, in some situations, can be negligible, its source of uncertainty cannot be. This article discusses the uncertainty contribution of the analytical blank using a numerical example of the copper content in waters by flame atomic absorption spectrometry. The results indicate that the uncertainties of the analytical blank can contribute up to 50% when the blank sample is considered in this analysis, confirming its high impact. This effect can be primarily observed where the analyte concentration approaches the lower range of the analytical curve. Even so, the blank is not always computed. Therefore, the relevance of the analytical blank can be confirmed by uncertainty evaluation.

  10. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    USGS Publications Warehouse

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  11. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  12. Pre-concentration of trace metals from sea-water for determination by graphite-furnace atomic-absorption spectrometry.

    PubMed

    Sturgeon, R E; Berman, S S; Desaulniers, A; Russell, D S

    1980-02-01

    Determination of Cd, Zn, Pb, Cu, Fe, Mn, Co, Cr and Ni in coastal sea-water by graphite-furnace atomic-absorption spectrometry after preconcentration by solvent extraction and use of a chelating ion-exchange resin is described. Following the extraction of the pyrrolidine-N-carbodithioate and oxinate complexes into methyl isobutyl ketone, the trace metals are further preconcentrated by back-extraction into 1.5M nitric acid. Preconcentration on the chelating resin is effected by a combined column and batch technique, allowing greater preconcentration factors to be obtained. Provided samples are appropriately treated to release non-labile metal species prior to preconcentration, both methods yield comparable analytical results with respect to the mean concentrations determined as well as to mean relative standard deviations. Control and treatment of the analytical blank is also described. PMID:18962623

  13. Determination of trace amount of cobalt in feed grains and forages by solvent extraction and graphite furnace atomic absorption spectrometry.

    PubMed

    Blanchflower, W J; Cannavan, A; Kennedy, D G

    1990-10-01

    A method is described for the determination of trace amounts of cobalt in feed grains and forages with a detection limit of 1 ng g-1. Samples are ashed in a muffle furnace and complexed with 2-nitroso-1-naphthol. Following solvent extraction, cobalt is determined using graphite furnace atomic absorption spectrometry. The assay can be carried out in a normal analytical laboratory without the need for special "clean" rooms. Reagents have been selected to keep reagent blank values at low levels, and heptan-2-one is used as extracting solvent to avoid problems with evaporation. The assay has been used for diagnostic purposes and to formulate special low cobalt diets for sheep for experimental purposes. PMID:2270874

  14. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil. PMID:22133102

  15. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil.

  16. [The application of atomic absorption spectrometry in automatic transmission fault detection].

    PubMed

    Chen, Li-dan; Chen, Kai-kao

    2012-01-01

    The authors studied the innovative applications of atomic absorption spectrometry in the automatic transmission fault detection. After the authors have determined Fe, Cu and Cr contents in the five groups of Audi A6 main metal in automatic transmission fluid whose travel course is respectively 10-15 thousand kilometers, 20-26 thousand kilometers, 32-38 thousand kilometers, 43-49 thousand kilometers, and 52-58 thousand kilometers by atomic absorption spectrometry, the authors founded the database of primary metal content in the Audi A6 different mileage automatic transmission fluid (ATF). The research discovered that the main metal content in the automatic transmission fluid increased with the vehicles mileage and its normal metal content level in the automatic transmission fluid is between the two trend lines. The authors determined the main metal content of automatic transmission fluid which had faulty symptoms and compared it with its database value. Those can not only judge the wear condition of the automatic transmission which had faulty symptoms but also help the automobile detection and maintenance personnel to diagnose automatic transmission failure reasons without disintegration. This reduced automobile maintenance costs, and improved the quality of automobile maintenance.

  17. Determination of elements by atomic absorption spectrometry in medicinal plants employed to alleviate common cold symptoms.

    PubMed

    Küçükbay, F Zehra; Kuyumcu, Ebru

    2014-09-01

    Eleven important medicinal plants generally used by the people of Turkey for the treatment of common cold have been studied for their mineral contents. Eleven minor and major elements (essential, non-essential and toxic) were identified in the Asplenium adiantum-nigrum L. , Althaea officinalis L. , Verbascum phlomoides L., Euphorbia chamaesyce L., Zizyphus jujube Miller, Peganum harmala L., Arum dioscoridis Sm., Sambucus nigra L., Piperlongum L., Tussilago farfara L. and Elettaria cardamomum Maton by employing flame atomic absorption and emission spectrometry and electro-thermal atomic absorption spectrometry. Microwave digestion procedure for total concentration was applied under optimized conditions for dissolution of medicinal plants. Plant based biological certified reference materials (CRMs) served as standards for quantification. These elements are found to be present in varying concentrations in the studied plants. The baseline data presented in this work can be used in understanding the role of essential, non-essential and toxic elements in nutritive, preventive and therapeutic properties of medicinal plants. PMID:25532362

  18. On-line microdialysis sample cleanup for electrospray ionization mass spectrometry of nucleic acid samples

    SciTech Connect

    Liu, C.; Wu, Q.; Harms, A.C.; Smith, R.D.

    1996-09-15

    A major limitation of electrospray ionization mass spectrometry (ESI-MS) for oligonucleotide analysis arises due to sodium adduction, a problem that increases with molecular weight. Sodium adduction can preclude useful measurements when limited sample sizes prevent off-line cleanup. A novel and generally useful on-line microdialysis technique is described for the rapid (nearly 1-5 min) DNA sample cleanup for ESI-MS. Mass spectra of oligonucleotides of different size and sequence showing no significant sodium adduct peaks were obtained using the on-line microdialysis system with sodium chloride concentrations as high as 250 mM. Signal-to-noise ratios were also greatly enhanced compared to direct infusion of the original samples. By using ammonium acetate as the dialysis buffer, it was also found that the noncovalent association of double-stranded oligonucleotides could be preserved during the microdialysis process, allowing analysis by ESI-MS. 33 refs., 6 figs.

  19. Determination of cadmium in the livers and kidneys of puffins by carbon furnace atomic absorption spectrometry.

    PubMed

    Ottaway, J M; Campbell, W C

    1976-01-01

    A carbon furnace atomic absorption procedure is described for the determination of cadmium in the livers and kidneys of puffins, fratercula arctica. Samples are dried and weighed and 2 to 100 mg are dissolved in sulphuric and nitric acids. These solutions are analysed directly in the carbon furnace against aqueous standards and provide accurate results in the range 0-1 to 100 micrograms/g dry weight. The method is simple and rapid and requires much less of the small total sample than would be required for flame atomic absorption. PMID:1030692

  20. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Ieggli, C. V. S.; Bohrer, D.; Noremberg, S.; do Nascimento, P. C.; de Carvalho, L. M.; Vieira, S. L.; Reis, R. N.

    2009-06-01

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 µg L - 1 . The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  1. Correction method for the self-absorption effects in fluorescence extended X-ray absorption fine structure on multilayer samples.

    PubMed

    Li, Wen Bin; Yang, Xiao Yue; Zhu, Jing Tao; Tu, Yu Chun; Mu, Bao Zhong; Yu, Hai Sheng; Wei, Xiang Jun; Huang, Yu Ying; Wang, Zhan Shan

    2014-05-01

    A novel correction method for self-absorption effects is proposed for extended X-ray absorption fine structure (EXAFS) detected in the fluorescence mode on multilayer samples. The effects of refraction and multiple reflection at the interfaces are fully considered in this correction method. The correction is performed in k-space before any further data analysis, and it can be applied to single-layer or multilayer samples with flat surfaces and without thickness limit when the model parameters for the samples are known. The validity of this method is verified by the fluorescence EXAFS data collected for a Cr/C multilayer sample measured at different experimental geometries. PMID:24763646

  2. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  3. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis

    NASA Astrophysics Data System (ADS)

    Coedo, A. G.; Dorado, T.; Padilla, I.; Maibusch, R.; Kuss, H.-M.

    2000-02-01

    A commercial atomic absorption graphite furnace (AAGF), with a self-made adapter and valve system, was used as a slurry sampling cell for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The system was applied to the determination of As, Sn, Sb, Se, Te, Bi, Cd, V, Ti and Mo in steelmaking flue dusts. Experimental conditions with respect to ETV and ICP-MS operating parameters were optimized. Compared to aqueous solutions, slurry samples were found to present better analyte transport. Microgram amounts of Rh were used to reduce the difference in analyte response in sensitivity for aqueous solutions of the tested analytes. No such increasing effect was observed for slurry samples and aqueous standards. An added quantity of Rh acting as modifier/carrier resulted in an increase for the same analytes in matrix-slurry solutions, even the addition of an extra Rh quantity has resulted in a decrease in the signals. The effect of Triton X-100 (used as a dispersant agent) on analyte intensity and precision was also studied. External calibration from aqueous standards spiked with 100 μg ml -1 Rh was performed to quantified 0.010 g/100 ml slurry samples. Results are presented for a certified reference electrical arc furnace flue dust (EAF): CRM-876-1 (Bureau of Analysis Samples Ltd., Cleveland, UK), a reference sample of coke ashes X-3705 (from AG der Dillinger Hüttenwerke, Germany), and a representative sample of EAF flue dust from a Spanish steelmaking company (CENIM-1). For the two reference materials an acceptable agreement with certificate values was achieved, and the results for the CENIM sample matched with those obtained from conventional nebulization solution.

  4. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    NASA Astrophysics Data System (ADS)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  5. Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media

    NASA Astrophysics Data System (ADS)

    Brandão, Geisamanda Pedrini; de Campos, Reinaldo Calixto; Luna, Aderval Severino

    2005-06-01

    The determination of Hg in gasoline by cold vapor atomic absorption spectrometry, after direct aqueous NaBH 4 reduction in a three-component (microemulsion) medium, was investigated. Microemulsions were prepared by mixing gasoline with propan-1-ol and 50% v / v HNO 3 at a 20 : 15 : 1 volume ratio. A long-term homogeneous system was immediately formed this way. After reduction, the Hg vapor generated in a reaction flask was transported to an intermediate K 2Cr 2O 7/H 2SO 4 trap solution in order to avoid poisoning of the Au-Pt trap by the gasoline vapors. A second reduction step was then conducted and the generated Hg vapor transported to the Au-Pt trap, followed by thermal release of Hg 0 and atomic absorption measurement. Purified N 2 was used as purge and transport gas. After multivariate optimization by central composite design calibration graphs showed coefficients of correlation of 0.9999 and a characteristic mass of 2 ng was obtained. Typical coefficients of variation of 5% and 6% were found for ten consecutive measurements at concentration levels of 1 and 8 μg L -1 of Hg 2+, respectively. The limit of detection was 0.10 μg L -1 (0.14 μg kg -1) in the original sample. A total measurement cycle took 11 min, permitting duplicate analysis of 3 samples per hour. The results obtained with the proposed procedure in the analysis of commercial gasoline samples were in agreement with those obtained by a comparative procedure. Gasoline samples of the Rio de Janeiro city have shown Hg concentrations below 0.27 μg L -1.

  6. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included.

  7. Expressing self-absorption in the analytical function of inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, Tibor; Bartha, András

    2015-11-01

    The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:

  8. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. PMID:27566338

  9. Light elements quantitative x-ray microanalysis of thin samples in STEM. Absorption correction using EELS data

    NASA Astrophysics Data System (ADS)

    Banchet, V.; Michel, J.; Jallot, E.; Laurent-Maquin, D.; Balossier, G.

    2003-07-01

    Quantification of low Z elements like oxygen by energy-dispersive x-ray spectrometry requires x-rays absorption correction even the in the case of thin films analysis in scanning transmission electron microscope. Absorption correction needs the knowledge of the sample local mass thickness. The purpose of this paper is to propose a method which allows the obtainment of the sample local mass thickness and then permits the quantification of all the elements of the sample using the quantification ratio method. Combining electron energy loss spectroscopy measured relative specimen thickness, and x-rays characteristic peaks intensities, we determine with an iterative process the local mass thickness and the absorption corrected elemental weight concentrations. We validate our method with four standard samples (SiO, SiO2, CaSiO3 and Li4SiO4) by the determination of the O/Si atomic ratio. We also ensure the method by analysing a native bioactive glass sample of known composition and of inhomogeneous mass thickness.

  10. Assessment of toxic metals in raw and processed milk samples using electrothermal atomic absorption spectrophotometer.

    PubMed

    Kazi, Tasneem Gul; Jalbani, Nusrat; Baig, Jameel Ahmed; Kandhro, Ghulam Abbas; Afridi, Hassan Imran; Arain, Mohammad Balal; Jamali, Mohammad Khan; Shah, Abdul Qadir

    2009-09-01

    Milk and dairy products have been recognized all over the world for their beneficial influence on human health. The levels of toxic metals (TMs) are an important component of safety and quality of milk. A simple and efficient microwave assisted extraction (MAE) method has been developed for the determination of TMs (Al, Cd, Ni and Pb), in raw and processed milk samples. A Plackett-Burman experimental design and 2(3)+star central composite design, were applied in order to determine the optimum conditions for MAE. Concentrations of TMs were measured by electrothermal atomic absorption spectrometry. The accuracy of the optimized procedure was evaluated by standard addition method and conventional wet acid digestion method (CDM), for comparative purpose. No significant differences were observed (P>0.05), when comparing the values obtained by the proposed MAE method and CDM (paired t-test). The average relative standard deviation of the MAE method varied between 4.3% and 7.6% based on analyte (n=6). The proposed method was successfully applied for the determination of understudy TMs in milk samples. The results of raw and processed milk indicated that environmental conditions and manufacturing processes play a key role in the distribution of toxic metals in raw and processed milk.

  11. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has

  12. Application of factorial design in optimization of preconcentration procedure for copper determination in soft drink by flame atomic absorption spectrometry.

    PubMed

    Castro, Martha T P O; Baccan, Nivaldo

    2005-03-15

    In the present paper, a procedure for preconcentration and determination of copper in soft drink using flame atomic absorption spectrometry (FAAS) is proposed, which is based on solid-phase extraction of copper(II) ions as its ion pair of 1,10-phenanthroline complexes with the anionic surfactant sodium dodecil sulphate (SDS), by Amberlite XAD-2 resin. The optimization process was carried out using 2(4-1) factorial and 2(2) factorial with a center point designs. Four variables (XAD-2 mass, copper mass, sample flow rate and elution flow rate) were regarded as factors in the optimization. Student's t-test on the results of the 2(4-1) factorial design with eight runs for copper extraction, demonstrated that the factors XAD-2 mass and sample flow rate in the levels studied are statistically significant. The 2(2) factorial with a center point design was applied in order to determine the optimum conditions for extraction. The procedure proposed allowed the determination of copper with detection limits (3alpha/S) of 3.9mugl(-1). The precision, calculated as relative standard deviation (R.S.D.) was 1.8% for 20.0mugl(-1) of copper. The preconcentration factor was 100. The robustness of this procedure is demonstrated by the recovery achieved for determination of copper in the presence of several cations. This procedure was applied to the determination of copper in soft drink samples collected in Campinas, SP, Brazil. PMID:18969940

  13. Automated on-line preconcentration of trace aqueous mercury with gold trap focusing for cold vapor atomic absorption spectrometry.

    PubMed

    Puanngam, Mahitti; Dasgupta, Purnendu K; Unob, Fuangfa

    2012-09-15

    A fully automated system for the determination of trace mercury in water by cold vapor atomic absorption spectrometry (CVAAS) is reported. The system uses preconcentration on a novel sorbent followed by liberation of the mercury and focusing by a gold trap. Mercury ions were extracted from water samples by passage through a solid phase sorbent column containing 2-(3-(2-aminoethylthio)propylthio)ethanamine modified silica gel. The captured mercury is released by thiourea and then elemental Hg is liberated by sodium borohydride. The vapor phase Hg is recaptured on a gold-plated tungsten filament. This is liberated as a sharp pulse (half-width<2 s) by directly electrically heating the tungsten filament in a dry argon stream. The mercury is measured by CVAAS; no moisture removal is needed. The effects of chloride and selected interfering ions were studied. The sample loading flow rate and argon flow rates for solution purging and filament sweeping were optimized. An overall 50-fold improvement in the limit of detection was observed relative to direct measurement by CVAAS. With a relatively modest multi-user instrument we attained a limit of detection of 35 ng L(-1) with 12% RSD at 0.20 μg L(-1) Hg level. The method was successfully applied to accurately determine sub-μg L(-1) level Hg in standard reference water samples.

  14. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry.

    PubMed

    Hartmann, Georg; Schuster, Michael

    2013-01-25

    The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L(-1) is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L(-1). The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L(-1) is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples. PMID:23312311

  15. An automatic countercurrent liquid-liquid micro-extraction system coupled with atomic absorption spectrometry for metal determination.

    PubMed

    Mitani, Constantina; Anthemidis, Aristidis N

    2015-02-01

    A novel and versatile automatic sequential injection countercurrent liquid-liquid microextraction (SI-CC-LLME) system coupled with atomic absorption spectrometry (FAAS) is presented for metal determination. The extraction procedure was based on the countercurrent flow of aqueous and organic phases which takes place into a newly designed lab made microextraction chamber. A noteworthy feature of the extraction chamber is that it can be utilized for organic solvents heavier or lighter than water. The proposed method was successfully demonstrated for on-line lead determination and applied in environmental water samples using an amount of 120 μL of chloroform as extractant and ammonium diethyldithiophosphate as chelating reagent. The effect of the major experimental parameters including the volume of extractant, as well as the flow rate of aqueous and organic phases were studied and optimized. Under the optimum conditions for 6 mL sample consumption an enhancement factor of 130 was obtained. The detection limit was 1.5 μg L(-1) and the precision of the method, expressed as relative standard deviation (RSD) was 2.7% at 40.0 μg L(-1) Pb(II) concentration level. The proposed method was evaluated by analyzing certified reference materials and spiked environmental water samples. PMID:25435230

  16. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry.

    PubMed

    Hartmann, Georg; Schuster, Michael

    2013-01-25

    The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L(-1) is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L(-1). The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L(-1) is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  17. An automated microtechnique for selenium determination in human body fluids by flow injection hydride atomic absorption spectrometry (FI-HAAS).

    PubMed

    Negretti de Brätter, V E; Brätter, P; Tomiak, A

    1990-03-01

    The automation of a flow injection system for the hydride generation of selenium and its subsequent determination by atomic absorption spectrometry (FI-HAAS) is described. Pre-treatment of the sample and the details of the automated equipment are reviewed. For the FI-HAAS selenium analysis a volume of 350 microL of acid-digested sample solution is injected. The on-line generated hydride is delivery by the gas-liquid separator and is transported together with an Ar stream to the heated quartz cell for the atomic absorption determination. The absolute detection limit is 35 pg Se; the relative detection limit 0.10 micrograms/L Se. The absolute determination limit in real biological samples is 110 pg Se; the relative detection limit 0.31 micrograms/L Se. The accuracy of the method was evaluated via analysis of certified standard reference materials. Quality control was made by comparing FI-HAAS and instrumental neutron activation analysis (INAA), as an independent analytical method. Two acid-digestion procedures (in open vessels at atmospheric pressure and bomb-digestion in pressure vessels) were experimentally tested. To determine the effectiveness of the selenium reduction and the completeness of the selenium hydride formation a parallel selenium determination was carried out by means of ICP-AES and FI-HAAS analysis. FI-HAAS was applied for blood serum analysis of children undergoing long-term total parenteral nutrition, as well as of persons with high dietary selenium intake, and for human milk analysis. PMID:2135957

  18. Antibiotic Toxicity and Absorption in Zebrafish Using Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10–1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish. PMID:25938774

  19. Determination of plutonium in environmental samples by AMS and alpha spectrometry.

    PubMed

    Hrnecek, E; Steier, P; Wallner, A

    2005-01-01

    Environmental samples from nuclear weapons test sites at the atolls of Mururoa and Fangataufa (French Polynesia, south Pacific) have been analyzed for their content of plutonium isotopes by applying the independent techniques of decay counting (Alpha Spectrometry) and accelerator mass spectrometry (AMS). Here, we propose the combination of both techniques which results in a maximum of information on the isotopic signature of Pu in environmental samples. Plutonium was chemically separated from the bulk material by anion exchange. (242)Pu was used as an internal standard for both AMS and alpha spectrometry. The samples for alpha spectrometry were prepared by micro-precipitation with NdF(3). After alpha spectrometry, the samples were reprocessed for AMS. Pu was co-precipitated with Fe(OH)(3) and finally, solid samples were prepared. At the VERA (Vienna Environmental Research Accelerator) facility, the various Pu isotopes were separated by their isotopic masses and quantified by the AMS technique. A good agreement of the results obtained from the AMS measurements was found with those obtained from Alpha Spectrometry. Overall, the data agree on average within 10% of each other. Isotope ratios for (238)Pu, (239)Pu and (240)Pu can be extracted from our investigations. Alpha spectrometry delivers data for the (238)Pu and the combination of ((239+240))Pu concentrations in those samples. In addition, the AMS technique provides information on the individual concentrations of (240)Pu and (239)Pu. PMID:15982894

  20. Determination of cadmium and lead at low levels by using preconcentration at fullerene coupled to thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Pereira-Filho, E. R.; Berndt, H.; Arruda, M. A. Z.

    2004-04-01

    A new and sensitive method for Cd and Pb determinations, based on the coupling of thermospray flame furnace atomic absorption spectrometry and a preconcentrator system, was developed. The procedure comprised the chelating of Cd and Pb with ammonium pyrrolidinedithiocarbamate with posterior adsorption of the chelates on a mixture (40 mg) of C 60 and C 70 at a flow rate of 2.0 ml min -1. These chelates were eluted from the adsorbent by passing a continuous flow of ethanol (80% v/v) at 0.9 ml min -1 to a nickel tube placed in an air/acetylene flame. After sample introduction into the tube by using a ceramic capillary (0.5 mm i.d.), the analytical signals were registered as peak height. Under these conditions, improvement factors in detectability of 675 and 200 were obtained for Cd and Pb, respectively, when compared to conventional flame atomic absorption spectrometry. Spiked samples (mineral and tap waters) and drinking water containing natural concentrations of Cd were employed for evaluating accuracy by comparing the results obtained from the proposed methodology with those using electrothermal atomic absorption spectrometry. In addition, certified reference materials (rye grass, CRM 281 and pig kidney, CRM 186) were also adopted for the accuracy tests. Due to the good linearity ranges for Cd (0.5-5.0 μg l -1) and Pb (10-250 μg l -1), samples with different concentrations could be analyzed. Detection limits of 0.1 and 2.4 μg l -1 were obtained for Cd and Pb, respectively, and RSD values <4.5% were observed ( n=10). Finally, a sample throughput of 24 determinations per hour was possible.

  1. Feasibility of using direct determination of cadmium and lead in fresh meat by electrothermal atomic absorption spectrometry for screening purposes

    NASA Astrophysics Data System (ADS)

    Damin, Isabel C. F.; Silva, Márcia M.; Vale, Maria Goreti R.; Welz, Bernhard

    2007-09-01

    A method for the direct determination of cadmium and lead in fresh meat for screening purposes is proposed using electrothermal atomic absorption spectrometry. The fresh meat samples were homogenized, weighed directly onto solid sampling platforms and introduced into a transversely heated solid sampling graphite tube. The main challenges associated with this procedure, such as weighing errors and optimization of the temperature program were investigated in detail. Calibration was performed against aqueous standards and two modifiers were investigated: 0.05% Pd + 0.03% Mg + 0.05% Triton X-100 and 0.01% Pd + 10% NH4NO3 + 0.05% Triton X-100. The former one is recommended due to the higher pyrolysis temperature obtained for cadmium and the better limits of detection of 1.9 μg kg- 1 for lead and 0.13 μg kg- 1 for cadmium, based on 10 mg of sample mass. The results obtained for cadmium and lead in two certified reference materials were statistically not different from the certified values on a 95% confidence level, indicating that calibration against aqueous standards is suitable for this application. In order to evaluate weighing errors the fresh samples were dried (at 60 °C) to constant weight; the results obtained with fresh and dried samples were in agreement, taking the loss of weight into consideration for the latter ones. The average relative standard deviation of 14% is in concordance with the results of others using fresh meat. Comparison with the digestion method adopted by the Brazilian Ministry of Agriculture shows no significant differences between the results at the 95% confidence level. This study shows that direct analysis of fresh meet can be applied as a rapid routine screening procedure for residue control in products of animal origin, helping the implementation and maintenance of sanitary control.

  2. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    NASA Astrophysics Data System (ADS)

    Gil, Sandra; Fragueiro, Sandra; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-μl volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium.

  3. Determination of molybdenum in plants by vortex-assisted emulsification solidified floating organic drop microextraction and flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Oviedo, Jenny A.; Fialho, Lucimar L.; Nóbrega, Joaquim A.

    2013-08-01

    A fast and sensitive procedure for extraction and preconcentration of molybdenum in plant samples based on solidified floating organic drop microextraction combined with flame atomic absorption spectrometry and discrete nebulization was developed. 8-Hydroxyquinoline (8-HQ) was used as complexing agent. The experimental conditions established were: 0.5% m v- 1 of 8-HQ, 60 μL of 1-undecanol as the extractant phase, 2 min vortex extraction time, centrifugation for 2 min at 2000 rpm, 10 min into an ice bath and discrete nebulization by introducing 200 μL of solution. The calibration curve was linear from 0.02 to 4.0 mg L- 1 with a limit of detection of 4.9 μg L- 1 and an enhancement factor of 67. The relative standard deviations for ten replicate measurements of 0.05 and 1.0 mg L- 1 Mo were 6.0 and 14.5%, respectively. The developed procedure was applied for determining molybdenum in corn samples and accuracy was proved using certified reference materials.

  4. On-line preconcentration and determination of chromium in parenteral solutions by flow injection-flame atomic absorption spectrometry.

    PubMed

    Wuilloud, Gustavo M; Wuilloud, Rodolfo G; de Wuilloud, Jorgelina C A; Olsina, Roberto A; Martinez, Luis D

    2003-02-01

    An on-line chromium preconcentration and determination system implemented with flame atomic absorption spectrometry (FAAS) associated to flow injection (FI) was studied. For the retention of chromium, 4-(2-Thiazolylazo)-resorcinol (TAR) and Amberlite XAD-16 were used, at pH 5.0. The Cr-TAR complex was removed from the micro-column with ethanol. An enrichment factor of 50 was obtained for the preconcentration of 50 ml of sample solution. The detection limit value for the preconcentration of 50 ml of aqueous solution of Cr was 20 ng l(-1). The precision for ten replicate determinations at the 5 microg l(-1) Cr levels was 2.9% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9997 at levels near the detection limits up to at least 100 microg l(-1). The method was successfully applied to the determination of chromium in parenteral solution samples.

  5. Preconcentration of lead using solidification of floating organic drop and its determination by electrothermal atomic absorption spectrometry

    PubMed Central

    Chamsaz, Mahmoud; Akhoundzadeh, Jeiran; Arbab-zavar, Mohammad Hossein

    2012-01-01

    A simple microextraction method based on solidification of a floating organic drop (SFOD) was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Ammonium pyrolidinedithiocarbamate (APDC) was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The extracted complex was diluted with ethanol and injected into a graphite furnace. An orthogonal array design (OAD) with OA16 (45) matrix was employed to study the effects of different parameters such as pH, APDC concentration, stirring rate, sample solution temperature and the exposure time on the extraction efficiency. Under the optimized experimental conditions the limit of detection (based on 3 s) and the enhancement factor were 0.058 μg L−1 and 113, respectively. The relative standard deviation (RSD) for 8 replicate determinations of 1 μg L−1 of Pb was 8.8%. The developed method was validated by the analysis of certified reference materials and was successfully applied to the determination of lead in water and infant formula base powder samples. PMID:25685441

  6. Preconcentration procedure using cloud point extraction in the presence of electrolyte for cadmium determination by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Coelho, Luciana Melo; Arruda, Marco Aurélio Zezzi

    2005-06-01

    This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l- 1 HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 μl) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0 20 min), Triton X114 concentration (0.043 0.87% w/v) and complexing agent concentration (0.01 0.1 mol l- 1), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 °C), and the electrolyte concentration (0.5 5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 μg l- 1 and 2.9 μg l- 1 Cd, respectively, and a linear calibration range from 3 to 400 μg l- 1 Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco).

  7. Determination of nickel in saliva by electrothermal atomic absorption spectrometry using various chemical modifiers with Zeeman-effect background correction.

    PubMed

    Burguera, E; Sanchez de Briceño, A; Rondon, C E; Burguera, J L; Burguera, M; Carrero, P

    1998-07-01

    The profile of nickel signal using electrothermal atomic absorption spectrometry with deuterium and Zeeman-effect background correction is presented. The Zeeman effect system of background correction offered definitive advantages and therefore was used for the determination of nickel in saliva in the presence of various isomorphous metals. The highest nickel absorbance values corresponded at 200, 300, 300, 300, 600, and 200 ng of Tb, Mg, Sm, Lu, Tm, and Pd, respectively. On the other hand, the addition of Eu, Er, and Ho decreased the nickel signal. The presence on each modifier alone does not eliminate the matrix interference. However, the use of 200 ng of Pd in conjuction with 300 ng of Lu has a higher sensitivity, offers an advantage against interference from the background of saliva matrix and produces good recoveries (98 to 102% from unspiked and spiked saliva samples). The limit of detection was 0.11 micrograms/L for a characteristic mass of 16.6 pg of nickel using Pd-Lu as modifier. The within-batch precision varied between 0.8 and 1.5% relative standard deviations. The analysis of thirty samples of whole saliva gave an average of 0.81 +/- 0.30 of micrograms/L of Ni (range from 0.5 to 2.0 micrograms/L of Ni). The agreement between the observed and certified values obtained from a Seronorm Blood Serum Standard Reference Material was good.

  8. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples.

    PubMed

    Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar

    2013-01-01

    A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.

  9. Capillary Absorption Spectrometer for 13C Isotopic Composition of Pico to Subpico Molar Sample Quantities

    NASA Astrophysics Data System (ADS)

    Moran, J.; Kelly, J.; Sams, R.; Newburn, M.; Kreuzer, H.; Alexander, M.

    2011-12-01

    Quick incorporation of IR spectroscopy based isotope measurements into cutting edge research in biogeochemical cycling attests to the advantages of a spectroscopy versus mass spectrometry method for making some 13C measurements. The simple principles of optical spectroscopy allow field portability and provide a more robust general platform for isotope measurements. We present results with a new capillary absorption spectrometer (CAS) with the capability of reducing the sample size required for high precision isotopic measurements to the picomolar level and potentially the sub-picomolar level. This work was motivated by the minute sample size requirements for laser ablation isotopic studies of carbon cycling in microbial communities but has potential to be a valuable tool in other areas of biological and geological research. The CAS instrument utilizes a capillary waveguide as a sample chamber for interrogating CO2 via near IR laser absorption spectroscopy. The capillary's small volume (~ 0.5 mL) combined with propagation and interaction of the laser mode with the entire sample reduces sample size requirements to a fraction of that accessible with commercially available IR absorption including those with multi-pass or ring-down cavity systems. Using a continuous quantum cascade laser system to probe nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 permits sample measurement at low analyte pressures (as low as 2 Torr) for further sensitivity improvement. A novel method to reduce cw-fringing noise in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level after averaging 1,000 scans in 10 seconds. Detection limits down to the 20 picomoles have been observed, a concentration of approximately 400 ppm at 2 Torr in the waveguide with precision and accuracy at or better than 1 %. Improvements in detection and signal averaging electronics and laser power and mode quality are

  10. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    PubMed

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.

  11. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    PubMed

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions. PMID:27236436

  12. Determination of trace amounts of tin in geological materials by atomic absorption spectrometry

    USGS Publications Warehouse

    Welsch, E.P.; Chao, T.T.

    1976-01-01

    An atomic absorption method is described for the determination of traces of tin in rocks, soils, and stream sediments. A dried mixture of the sample and ammonium iodide is heated to volatilize tin tetraiodide -which is then dissolved in 5 % hydrochloric acid, extracted into TOPO-MIBK, and aspirated into a nitrous oxide-acetylene flame. The limit of determination is 2 p.p.m. tin and the relative standard deviation ranges from 2 to 14 %. Up to 20 % iron and 1000 p.p.m. Cu, Pb, Zn, Mn, Hg, Mo, V, or W in the sample do not interfere. As many as 50 samples can be easily analyzed per man-day. ?? 1976.

  13. Direct analysis of solids by graphite furnace atomic absorption spectrometry using a second surface atomizer

    SciTech Connect

    Rettberg, T.M.; Holcombe, J.A.

    1986-06-01

    The direct graphite furnace atomic absorption spectrometric analysis of solids using the second surface atomizer has been investigated. The atomizer features a gas-cooled Ta insert within the graphite furnace onto which the analyte can be condensed, after which atomization is performed by raising the furnace to a higher temperature and shutting off the coolant gas. The analyses were conducted on standard reference material fly ash, river sediment, and citrus leaves, in addition to filter paper samples. All analyses were conducted without sample pretreatment or use of matrix modifiers. Quantitation was done by using simple aqueous standards. By use of peak heights, the recoveries varied from 81% to 127%, although several determinations were within the certified concentration range. The procedures typically gave low background absorbances and peak shapes that were relatively independent of the original sample matrix.

  14. Investigation on binding of nitric oxide to horseradish peroxidase by absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Qiang, Li; Zhu, Shuhua; Ma, Hongmei; Zhou, Jie

    2010-01-01

    Binding of nitric oxide to horseradish peroxidase (HRP) has been investigated by absorption spectrometry in 0.2 M anaerobic phosphate buffer solution (pH 7.4). Based on this binding equilibrium, a model equation for evaluating the binding constant of nitric oxide to HRP is developed and the binding constant is calculated to be (1.55 ± 0.06) × 10 4 M -1, indicating that HRP can form a stable complex with nitric oxide. The type of inhibition by nitric oxide is validated on the basis of studying initial reaction rates of HRP-catalyzed oxidation of guaiacol in the presence of hydrogen peroxide and nitric oxide. The inhibition mechanism is found to follow an apparent non-competitive inhibition by Lineweaver-Burk method. Based on this kinetic mechanism, the binding constant is also calculated to be (5.22 ± 0.06) × 10 4 M -1. The values of the binding constant determined by the two methods are almost identical. The non-competitive inhibition model is also applicable to studying the effect of nitric oxide on other metalloenzymes, which catalyze the two-substrate reaction with the "ping-pong" mechanism.

  15. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    NASA Astrophysics Data System (ADS)

    Karadjova, Irina B.; Lampugnani, Leonardo; Dědina, Jiri; D'Ulivo, Alessandro; Onor, Massimo; Tsalev, Dimiter L.

    2006-05-01

    Interference effects of various organic solvents miscible with water on arsenic determination by hydride generation atomic absorption spectrometry have been studied. Arsine was chemically generated in continuous flow hydride generation system and atomized by using a flame atomizer able to operate in two modes: miniature diffusion flame and flame-in-flame. The effects of experimental variables and atomization mode were investigated: tetrahydroborate and hydrochloric acid concentrations, argon, hydrogen and oxygen supply rates for the microflame, and the distance from the atomization region to the observation zone. The nature of the species formed in the flame due to the pyrolysis of organic solvent vapors entering the flame volume together with arsine is discussed. The observed signal depression in the presence of organic solvents has been mainly attributed to the atomization interference due to heterogeneous gas-solid reaction between the free arsenic atoms and finely dispersed carbon particles formed by carbon radicals recombination. The best tolerance to interferences was obtained by using flame-in-flame atomization (5-10 ml min - 1 of oxygen flow rate), together with higher argon and hydrogen supply rates and elevated observation heights.

  16. Acid effects on the measurement of mercury by cold vapor atomic absorption spectrometry

    SciTech Connect

    Adeloju, S.B.; Mann, T.F.

    1987-07-01

    The influence of nitric, hydrochloric and sulfuric acids on the measurement of mercury by cold vapor atomic absorption spectrometry has been investigated. Small pre-reduction peaks associated with the instability of mercury were observed in solutions containing less than or equal to 12.5, < 2 and less than or equal to 12.5% v/v of each acid, respectively. Mercury was found to be most stable in greater than or equal to 2% v/v hydrochloric acid and the measured absorbance was not greatly influenced by varying concentration of the acid. The mercury absorbance measurements were more sensitive in solutions containing less than or equal to 6.3% v/v hydrochloric acid than in similar concentrations of nitric and sulfuric acids. The use of the three acids as a digestion mixture result in serious interference from nitrogen oxides. The interference was removed by use of expelling agents such as urea and sulfamic acid or overcome by use of excess stannous chloride, prior to the reduction of mercury(II) ions. The determination of mercury in NBS albacore tuna using both of these approaches to overcome the interference problem proved to be successful.

  17. Optimization of electrothermal atomization parameters for simultaneous multielement atomic absorption spectrometry

    USGS Publications Warehouse

    Harnly, J.M.; Kane, J.S.

    1984-01-01

    The effect of the acid matrix, the measurement mode (height or area), the atomizer surface (unpyrolyzed and pyrolyzed graphite), the atomization mode (from the wall or from a platform), and the atomization temperature on the simultaneous electrothermal atomization of Co, Cr, Cu, Fe, Mn, Mo, Ni, V, and Zn was examined. The 5% HNO3 matrix gave rise to severe irreproducibility using a pyrolyzed tube unless the tube was properly "prepared". The 5% HCl matrix did not exhibit this problem, and no problems were observed with either matrix using an unpyrolized tube or a pyrolyzed platform. The 5% HCl matrix gave better sensitivities with a pyrolyzed tube but the two matrices were comparable for atomization from a platform. If Mo and V are to be analyzed with the other seven elements, a high atomization temperature (2700??C or greater) is necessary regardless of the matrix, the measurement mode, the atomization mode, or the atomizer surface. Simultaneous detection limits (peak height with pyrolyzed tube atomization) were comparable to those of conventional atomic absorption spectrometry using electrothermal atomization above 280 nm. Accuracies and precisions of ??10-15% were found in the 10 to 120 ng mL-1 range for the analysis of NBS acidified water standards.

  18. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  19. The microwave induced plasma with optical emission spectrometry (MIP-OES) in 23 elements determination in geological samples.

    PubMed

    Niedzielski, P; Kozak, L; Wachelka, M; Jakubowski, K; Wybieralska, J

    2015-01-01

    The article presents the optimisation, validation and application of the microwave induced plasma optical emission spectrometry (MIP-OES) dedicated for a routine determination of Ag, Al, B, Ba, Bi, Ca, Cd, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, Tl, Zn, in the geological samples. The three procedures of sample preparation has been proposed: sample digestion with the use of hydrofluoric acid for determination of total concentration of elements, extraction by aqua regia for determination of the quasi-total element concentration and extraction by hydrochloric acid solution to determine contents of the elements in acid leachable fraction. The detection limits were on the level 0.001-0.121 mg L(-1) (from 0.010-0.10 to 1.2-12 mg kg(-1) depend on the samples preparation procedure); the precision: 0.20-1.37%; accuracy 85-115% (for recovery for certified standards materials analysis and parallel analysis by independent analytical techniques: X-ray fluorescence (XRF) and flame absorption spectrometry (FAAS)). The conformity of the results obtained by MIP-OES analytical procedures with the results obtained by XRF and FAAS analysis allows to propose the procedures for studies of elemental composition of the fraction of the geological samples. Additionally, the MIP-OES technique is much less expensive than ICP techniques and much less time-consuming than AAS techniques.

  20. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    SciTech Connect

    Carkeet, C; Dueker, S R; Lango, J; Buchholz, B A; Miller, J W; Green, R; Hammock, B D; Roth, J R; Anderson, P J

    2006-01-26

    There is need for an improved test of human ability to assimilate dietary vitamin B{sub 12}. Assaying and understanding absorption and uptake of B{sub 12} is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of {sup 14}C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ({sup 14}C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B{sub 12} in the range of normal dietary intake. The B{sub 12} used was quantitatively labeled with {sup 14}C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B{sub 12} or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with {sup 14}C-DMB specifically labeled in the C2 position, cells produced {sup 14}C-B{sub 12} of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified {sup 14}C-B{sub 12} was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B{sub 12} assimilation.

  1. Application of wavelet transforms to determine peak shape parameters for interference detection in graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Sadler, D. A.; Littlejohn, D.; Boulo, P. R.; Soraghan, J. S.

    1998-08-01

    A procedure to quantify the shape of the absorbance-time profile, obtained during graphite furnace atomic absorption spectrometry, has been used to detect interference effects caused by the presence of a concomitant salt. The quantification of the absorption profile is achieved through the use of the Lipschitz regularity, α0, obtained from the wavelet transform of the absorbance-time profile. The temporal position of certain features and their associated values of α0 provide a unique description of the shape of the absorbance-time profile. Changes to the position or values of α0 between standard and sample atomizations may be indicative of uncorrected interference effects. A weak, but linear, dependence was found of the value of α0 upon the analyte concentration for Cr and Cu. The ability of the Lipschitz regularity to detect interference effects was illustrated for Pb, Se and Cu. For Pb, the lowest concentration of NaCl added, 0.005% m/v, changed both the values of α0 and the peak height absorbance. For Se, no change in the peak height and peak area absorbance signals was detected up to a NaCl concentration of 0.25% m/v. The values of the associated Lipschitz regularities were found to be invariant to NaCl concentration up to this value. For Cu, a concentration of 0.05% m/v NaCl reduced the peak height and peak area absorbance signals by approximately 25% and significantly altered the values of α0.

  2. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: A multivariate study

    NASA Astrophysics Data System (ADS)

    Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-01

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.

  3. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: a multivariate study.

    PubMed

    Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-10

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls.

  4. Estimation of boron isotope ratios using high resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Wiltsche, Helmar; Prattes, Karl; Zischka, Michael; Knapp, Günter

    2009-04-01

    In the production of 10B enriched steels, the production-recycling process needs to be closely monitored for inadvertent mix-up of materials with different B isotope levels. A quick and simple method for the estimation of boron isotope ratios in high alloyed steels using high resolution continuum source flame AAS (HR-CS-FAAS) was developed. On the 208.9 nm B line the wavelength of the peak absorption of 10B and 11B differs by 2.5 pm. The wavelength of the peak absorption of boron was determined by fitting a Gauss function through spectra simultaneously recorded by HR-CS-FAAS. It was shown that a linear correlation between the wavelength of the peak absorption and the isotope ratio exists and that this correlation is independent of the total boron concentration. Internal spectroscopic standards were used to compensate for monochromator drift and monochromator resolution changes. Accuracy and precision of the analyzed samples were thereby increased by a factor of up to 1.3. Three steel reference materials and one boric acid CRM, each certified for the boron isotope ratio were used to validate the procedure.

  5. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  6. Ultratrace determination of cadmium by cold vapor atomic absorption spectrometry after preconcentration with a simplified cloud point extraction methodology.

    PubMed

    Manzoori, Jamshid L; Abdolmohammad-Zadeh, Hossein; Amjadi, Mohammad

    2007-02-15

    A simplified micelle-mediated extraction methodology for the preconcentration of ultratrace levels of cadmium as a prior step to its determination by cold vapor atomic absorption spectrometry (CV-AAS) has been developed. The methodology is based on the cloud point extraction (CPE) of cadmium at pH 8 by using the non-ionic surfactant polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) without adding any chelating agent. Cadmium cold vapor was generated from 2ml of the extracted surfactant-rich phase by means of sodium tetrahydroborate (3%, w/v) as a reducing agent and hydrochloric acid (0.2mol l(-1)) as a carrier solution. Several important variables that affect the cloud point extraction and cold vapor cadmium generation efficiency were investigated and optimized. The preconcentration of only 50ml of solution in the presence of 0.06% (v/v) PONPE 7.5 gives an enhancement factor of 62. The calibration graph using the preconcentration system was linear in the range of 4-100ng l(-1) with a correlation coefficient of 0.9992. Detection limit (3s) obtained in the optimal conditions was 0.56ng l(-1). The relative standard deviation (R.S.D.) for six replicate determinations at 20ng l(-1) Cd level was 3.2%. The proposed method was successfully applied to the ultratrace determination of cadmium in water samples.

  7. Determination of trace amounts of zinc by flame atomic absorption spectrometry after preconcentration with modified clinoptilolite zeolite.

    PubMed

    Hajialigol, Saeed; Taher, Mohammad Ali; Malekpour, Akbar

    2008-01-01

    Natural clinoptilolite was used as a sorbent material for solid-phase extraction and preconcentration of zinc. Clinoptilolite was first saturated with cadmium (II) and then modified with benzyldimethyltetradecylammonium chloride for increasing adsorption of 3-(2-arsenophenylazo)-4,5-dihydroxy-2,7-naphthalene disulfonic acid (neothorin). Zinc was quantitatively retained on the adsorbent by the column method in the pH range of 3.8-4.2 at a flow rate of 1 mL/min. It was eluted from the column with 5.0 mL 2 M nitric acid solution at a flow rate of 1 mL/min and determined by flame atomic absorption spectrometry at 213.9 nm. Zinc could be concentrated from a 0.03 microg/L solution with a preconcentration factor of 170. Relative standard deviation for 8 replicate determinations of 2.5 microg zinc in the final solution was 0.92%. The interference of a large number of anions and cations was studied in detail to optimize the conditions, and the method was successfully applied for determination of zinc in standard and real water samples. PMID:19202807

  8. Comparative study of pretreatment methods for the determination of metals in atmospheric aerosol by electrothermal atomic absorption spectrometry.

    PubMed

    Karanasiou, A A; Thomaidis, N S; Eleftheriadis, K; Siskos, P A

    2005-03-15

    A comparative study of pretreatment methods for the determination of 10 elements (As, Cd, Pb, V, Ni, Mn, Cr, Cu, Fe, Al) in atmospheric aerosols by electrothermal atomic absorption spectrometry (ETAAS) was conducted. For the digestion of the particulates collected in filters, six methods were compared using a mixture of HNO(3) and HF with or without the addition of various oxidative agents (HClO(4) or H(2)O(2)) or acids (HCl). The comparative study was performed using loaded cellulose filter samples, which were digested in Parr bombs and heated in a conventional oven at 170 degrees C for 5h. The extraction efficiency and blanks were compared and it was proved that the digestion method using only HNO(3)-HF extracted most of the metals and gave the lowest blanks. The HNO(3)-HF mixture was selected for the development of an improved microwave digestion method specific for aerosol-loaded filters. The operating parameters were optimized, so that quantitative recovery of the reference materials NIST 1649a urban dust and NIST 1648 urban particulate matter was achieved. The blank of cellulose and teflon filters were also determined and compared. Teflon filters present the lowest blanks for all the elements. The obtained limits of detection for each type of filters were adequate for environmental monitoring purposes. ETAAS instrumental operation was also optimized for the compensation and the elimination of interferences. The temperature optimization was performed for each metal in every type of filter and optimized parameters are proposed for 10 elements.

  9. The use of a sequential extraction procedure for heavy metal analysis of house dusts by atomic absorption spectrometry.

    PubMed

    Altundag, Huseyin; Dundar, Mustafa Sahin; Doganci, Secil; Celik, Muhammed; Tuzen, Mustafa

    2013-01-01

    In general, dust is considered as house or street dust. Indoor dust, as a contamination source, has been studied for many years. In this work, the original Community Bureau of Reference of the European Commission (BCR) three-stage sequential extraction procedure was applied to the fractionation of Cr, Cu, Fe, Mn, Pb, and Zn in 20 house dust samples from five different areas of Sakarya, Turkey. Acetic acid, hydroxylammonium chloride, and hydrogen peroxide plus ammonium acetate were used for the first, second, and third steps of the BCR method, respectively. The extracts were analyzed for the studied heavy metals using flame atomic absorption spectrometry. Validation of the results was performed by using a standard reference material (BCR 701 Sediment) to certify the experimental results obtained and to evaluate the reliability of the method used. The elemental loadings typically increased in magnitude according to the area order: Izmit Caddesi>Ankara Caddesi >Erenler>Karaman>Korucuk. The results were in agreement with values reported in the literature.

  10. Comparison of different serum sample extraction methods and their suitability for mass spectrometry analysis

    PubMed Central

    Alshammari, Thamir M.; Al-Hassan, Ahmed Ali; Hadda, Taibi B.; Aljofan, Mohamad

    2015-01-01

    Mass spectrometry has been widely used, particularly in pharmacokinetic investigations and for therapeutic drug monitoring purposes. Like any other analytical method some difficulties exist in employing mass spectrometry, mainly when it is used to test biological samples, such as to detect drug candidates in mammalian serum, which is rich in proteins, lipids and other contents that may interfere with the investigational drug. The complexity of the serum proteome presents challenges for efficient sample preparation and adequate sensitivity for mass spectrometry analysis of drugs. Enrichment procedures prior to the drug analysis are often needed and as a result, the study of serum or plasma components usually demands either methods of purification or depletion of one or more. Selection of the best combination of sample introduction method is a crucial determinant of the sensitivity and accuracy of mass spectrometry. The aim of this study was to determine the highest serum protein precipitation activity of five commonly used sample preparation methods and test their suitability for mass spectrometry. We spiked three small molecules into rabbit serum and applied different protein precipitation methods to determine their precipitation activity and applicability as a mass spectrometry introductory tool. PMID:26702265

  11. Size separation method for absorption characterization in brown carbon: Application to an aged biomass burning sample

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Robert A.; Young, Cora J.

    2016-01-01

    The majority of brown carbon (BrC) in atmospheric aerosols is derived from biomass burning (BB) and is primarily composed of extremely low volatility organic carbons. We use two chromatographic methods to compare the contribution of large and small light-absorbing BrC components in aged BB aerosols with UV-vis absorbance detection: (1) size exclusion chromatography (SEC) and (2) reverse phase high-performance liquid chromatography. We observe no evidence of small molecule absorbers. Most BrC absorption arises from large molecular weight components (>1000 amu). This suggests that although small molecules may contribute to BrC absorption near the BB source, analyses of aerosol extracts should use methods selective to large molecular weight compounds because these species may be responsible for long-term BrC absorption. Further characterization with electrospray ionization mass spectrometry (MS) coupled to SEC demonstrates an underestimation of the molecular size determined through MS as compared to SEC.

  12. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively.

  13. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. PMID:26592606

  14. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    PubMed

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil.

  15. Apparatus for preparing a sample for mass spectrometry

    DOEpatents

    Villa-Aleman, E.

    1994-05-10

    An apparatus is described for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed. 1 figures.

  16. Apparatus for preparing a sample for mass spectrometry

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed.

  17. High-throughput liquid-absorption preconcentrator sampling methods

    DOEpatents

    Zaromb, Solomon

    1994-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  18. Selective precipitation of potassium in seawater samples for improving the sensitivity of plain γ-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Ferrante, Marco; Nisi, Stefano; Laubenstein, Matthias; De Angelis, Francesco

    2015-08-01

    An analytical method is presented to reduce the amount of 40K in sea water samples, in order to lower its interference in γ-ray analysis below 1.4 MeV due to the Compton continuum. Sodium tetraphenylborate was used to successfully precipitate 40K in the samples. A custom procedure for precipitation of potassium was developed and it was evaluated for its selectivity, reproducibility and efficiency, using conventional analytical techniques such as atomic absorption spectrophotometry and inductively coupled plasma mass spectrometry (ICP-MS). This work has shown that the selective precipitation of potassium with sodium tetraphenylborate has led to a decrease of detection limit of radio nuclides such as 238U, 226Ra, 228Ra, 137Cs, 134Cs, 133I, 134I, 60Co in γ-analysis. In particular, the detection limit for nuclides with emissions in the energy window energy below 1400 keV is improved by almost one order of magnitude.

  19. Porosity estimation of alumina samples based on resonant backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Mokhles Gerami, F.; Kakuee, O.; Mohammadi, S.

    2016-04-01

    In this work, columnar porous alumina samples were investigated using the 16O(α,α)16O resonance scattering at 3.045 MeV. If the incident energy is slightly above the resonance energy, a resonance peak appears in the energy spectra of the backscattered ions. The position and width of this peak for non-porous samples are mainly determined by the experimental setup, whilst for porous materials, the peak position shifts towards higher energies under certain conditions. This effect can be explained by the lower amount of material which the ions encounter along the backscattered trajectories. The energy shift of the resonance peak towards higher energies was revealed experimentally and discussed theoretically. The estimated porosities of the samples based on this energy shift were compared with those evaluated from the graphical analysis of the images obtained by field emission scanning electron microscopy.

  20. Sampling probe for microarray read out using electrospray mass spectrometry

    DOEpatents

    Van Berkel, Gary J.

    2004-10-12

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  1. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  2. Preconcentration and Atomization of Arsane in a Dielectric Barrier Discharge with Detection by Atomic Absorption Spectrometry.

    PubMed

    Novák, Petr; Dědina, Jiří; Kratzer, Jan

    2016-06-01

    Atomization of arsane in a 17 W planar quartz dielectric barrier discharge (DBD) atomizer was optimized, and its performance was compared to that of a multiple microflame quartz tube atomizer (MMQTA) for atomic absorption spectrometry (AAS). Argon, at a flow rate of 60 mL min(-1), was the best DBD discharge gas. Free As atoms were also observed in the DBD with nitrogen, hydrogen, and helium discharge gases but not in air. A dryer tube filled with NaOH beads placed downstream from the gas-liquid separator to prevent residual aerosol and moisture transport to the atomizer was found to improve the response by 25%. Analytical figures of merit were comparable, reaching an identical sensitivity of 0.48 s ng (-1) As in both atomizers and limits of detection (LOD) of 0.15 ng mL(-1) As in MMQTA and 0.16 ng mL(-1) As in DBD, respectively. Compared to MMQTA, DBD provided 1 order of magnitude better resistance to interference from other hydride-forming elements (Sb, Se, and Bi). Atomization efficiency in DBD was estimated to be 100% of that reached in the MMQTA. A simple procedure of lossless in situ preconcentration of arsane was developed. Addition of 7 mL min(-1) O2 to the Ar plasma discharge resulted in a quantitative retention of arsane in the optical arm of the DBD atomizer. Complete analyte release and atomization was reached as soon as oxygen was switched off. Preconcentration efficiency of 100% was observed, allowing a decrease of the LOD to 0.01 ng mL(-1) As employing a 300 s preconcentration period. PMID:27159266

  3. Permanent modification in electrothermal atomic absorption spectrometry — advances, anticipations and reality

    NASA Astrophysics Data System (ADS)

    Tsalev, Dimiter L.; Slaveykova, Vera I.; Lampugnani, Leonardo; D'Ulivo, Alessandro; Georgieva, Rositsa

    2000-05-01

    Permanent modification is an important recent development in chemical modification techniques which is promising in view of increasing sample throughput with 'fast' programs, reducing reagent blanks, preliminary elimination of unwanted modifier components, compatibility with on-line and in situ enrichment, etc. An overview of this approach based on the authors' recent research and scarce literature data is given, revealing both success and failure in studies with permanently modified surfaces (carbides, non-volatile noble metals, noble metals on carbide coatings, etc.), as demonstrated in examples of direct electrothermal atomic absorption spectrometric (ETAAS) applications to biological and environmental matrices and vapor generation (VG)-ETAAS coupling with in-atomizer trapping of hydrides and other analyte vapors. Permanent modifiers exhibit certain drawbacks and limitations such as: poorly reproducible treatment technologies — eventually resulting in poor tube-to-tube repeatability and double or multiple peaks; impaired efficiency compared with modifier addition to each sample aliquot; relatively short lifetimes; limitations imposed on temperature programs, the pyrolysis, atomization and cleaning temperatures being set somewhat lower to avoid excessive loss of modifier; applicability to relatively simple sample solutions rather than to high-salt matrices and acidic digests; side effects of overstabilization, etc. The most important niches of application appear to be the utilization of permanently modified surfaces in coupled VG-ETAAS techniques, analysis of organic solvents and extracts, concentrates and fractions obtained after enrichment and/or speciation separations and direct ETAAS determinations of highly volatile analytes in relatively simple sample matrices.

  4. Coacervative extraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hagarová, Ingrid; Bujdoš, Marek; Matúš, Peter; Kubová, Jana

    2013-10-01

    In this work, a relatively simple and sensitive method for separation/preconcentration of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry has been proposed. The method is based on the extraction of Pb-dithizone chelate with coacervates made up of lauric acid in the presence of potassium ions and methanol. Several important factors affecting extraction efficiency such as pH, concentration of lauric acid and dithizone, ionic strength, incubation and centrifugation time were investigated and optimized. After separation of aqueous bulk solution from surfactant-rich phase, the final extract was redissolved by using 500 μl of methanol acidified with 0.2 mol l- 1 HNO3. Under the optimized conditions (using initial sample volume of 10 ml), enrichment factor of 17.0, detection limit of 0.12 μg l- 1, quantification limit of 0.38 μg l- 1, relative standard deviation of 4.2% (for 2 μg l- 1 of Pb; n = 26), linearity of the calibration graph in the range of 0.5-4.0 μg l- 1 (with correlation coefficient better than 0.995) were achieved. The method was validated by the analysis of certified reference material (TMDA-61). Extraction recoveries for the CRM, spiked model solutions and spiked natural water samples were in the range of 91-96%. Finally, the method was applied to the separation/preconcentration and determination of trace lead in natural waters.

  5. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOEpatents

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  6. Slurry sample introduction with microwave induced plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Sturgeon, Ralph E.

    1993-04-01

    The successful direct introduction of aqueous slurry samples into a highly efficient TE 101 microwave plasma has been demonstrated. Slurry samples from a spray chamber are fed directly into the cavity with no desolvation apparatus. A V-groove, clog-free Babington-type nebulizer was evaluated for use with high solids content solutions. Slurry concentrations up to 10% m/v were used for the microwave induced plasma work with calibration by the standard additions method. Results are presented for the analysis of two NRCC Standard Reference Materials, i.e. TORT-1 (Lobster Hepatopancreas) and PACS-21 (Marine Sediment). Agreement between analytical results and certified values for the test elements Cd, Cu, Fe and Zn (in the range of 28-850 μg/g) was good. No memory effects were evident and the nebulizer system had a rapid clean-out time.

  7. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    EPA Science Inventory

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  8. Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) — a simple method for trace element determination with microsamples in the μg/l concentration range

    NASA Astrophysics Data System (ADS)

    Gáspár, Attila; Berndt, Harald

    2000-06-01

    A new flame method of atomic absorption spectrometry has been developed. The liquid sample to be analyzed is transported through a very hot, simple metal capillary tip acting as a flame-heated thermospray into a glowing atomization tube (flame furnace) which is positioned into the air/acetylene flame of a standard flame-AAS burner head. Both the complete introduction of the whole sample and the extended residence time inside the absorption volume result in an improvement of detection limits from 14 to 67 for five investigated elements. The detection limits determined using 10-μl samples amount to 0.19 ng/ml (Cd), 1.3 ng/ml (Cu), 5.2 ng/ml (Tl), 13 ng/ml (Pb) and 21 ng/ml (Hg). A relative standard deviation of 1.4-3.4% ( N=12, 10 μl) was achieved. Sample volumes between 2.5 μl and 200 μl have been investigated. In the case of 10 μl the sampling frequency was three per minute. The method can also be considered as a simple, effective interface between HPLC or FIA techniques and flame AAS. The determinations can be easily automated.

  9. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Duarte, Fábio Andrei; Bizzi, Cezar Augusto; Antes, Fabiane Goldschmidt; Dressler, Valderi Luiz; Flores, Érico Marlon de Moraes

    2009-06-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  10. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  11. Modern Atmospheric Pressure Surface Sampling/Ionization Techniques in Mass Spectrometry

    SciTech Connect

    Pasilis, Sofie P; Van Berkel, Gary J

    2012-01-01

    Over the last few years, there has been a rapid increase in atmospheric pressure surface sampling/ionization techniques for mass spectrometry, dramatically expanding the range of sample types that can be analyzed. The growth in this field of mass spectrometry has also resulted in a plethora of new acronyms. In this encyclopedia article, the various techniques are first sorted into four major categories based on the method used for analyte desorption and then subcategorized by ionization method. The underlying principles of operation are explained and some representative applications are described.

  12. Qualitative and quantitative analysis of environmental samples by laser-induced breakdown spectrometry

    NASA Astrophysics Data System (ADS)

    Zorov, N. B.; Popov, A. M.; Zaytsev, S. M.; Labutin, T. A.

    2015-10-01

    The key achievements in the determination of trace amounts of components in environmental samples (soils, ores, natural waters, etc.) by laser-induced breakdown spectrometry are considered. Unique capabilities of this method make it suitable for rapid analysis of metals and alloys, glasses, polymers, objects of cultural heritage, archaeological and various environmental samples. The key advantages of the method that account for its high efficiency are demonstrated, in particular, a small amount of analyzed material, the absence of sample preparation, the possibility of local and remote analysis of either one or several elements. The use of chemometrics in laser-induced breakdown spectrometry for qualitative sample classification is described in detail. Various approaches to improving the figures of merit of quantitative analysis of environmental samples are discussed. The achieved limits of detection for most elements in geochemical samples are critically evaluated. The bibliography includes 302 references.

  13. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review.

    PubMed

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  14. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review

    PubMed Central

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  15. Isolation of Pu-isotopes from environmental samples using ion chromatography for accelerator mass spectrometry and alpha spectrometry.

    PubMed

    Chamizo, E; Jiménez-Ramos, M C; Wacker, L; Vioque, I; Calleja, A; García-León, M; García-Tenorio, R

    2008-01-14

    A radiochemical method for the isolation of plutonium-isotopes from environmental samples, based on the use of specific extraction chromatography resins for actinides (TEVA), Eichrom Industries, Inc.), has been set up in our laboratory and optimised for their posterior determination by alpha spectrometry (AS) or accelerator mass spectrometry (AMS). The proposed radiochemical method has replaced in our lab a well-established one based on the use of a relatively un-specific anion-exchange resin (AG) 1X8, Bio-rad Laboratories, Inc.), because it is clearly less time consuming, reduces the amounts and molarities of acid wastes produced, and reproducibly gives high radiochemical yields. In order to check the reliability of the proposed radiochemical method for the determination of plutonium-isotopes in different environmental matrixes, twin aliquots of a set of samples were prepared with TEVA and with AG 1X8 resins and measured by AS. Some samples prepared with TEVA resins were measured as well by AMS. As it is shown in the text, there is a comfortable agreement between AS and AMS, which adequately validates the method. PMID:18082656

  16. Isolation of Pu-isotopes from environmental samples using ion chromatography for accelerator mass spectrometry and alpha spectrometry.

    PubMed

    Chamizo, E; Jiménez-Ramos, M C; Wacker, L; Vioque, I; Calleja, A; García-León, M; García-Tenorio, R

    2008-01-14

    A radiochemical method for the isolation of plutonium-isotopes from environmental samples, based on the use of specific extraction chromatography resins for actinides (TEVA), Eichrom Industries, Inc.), has been set up in our laboratory and optimised for their posterior determination by alpha spectrometry (AS) or accelerator mass spectrometry (AMS). The proposed radiochemical method has replaced in our lab a well-established one based on the use of a relatively un-specific anion-exchange resin (AG) 1X8, Bio-rad Laboratories, Inc.), because it is clearly less time consuming, reduces the amounts and molarities of acid wastes produced, and reproducibly gives high radiochemical yields. In order to check the reliability of the proposed radiochemical method for the determination of plutonium-isotopes in different environmental matrixes, twin aliquots of a set of samples were prepared with TEVA and with AG 1X8 resins and measured by AS. Some samples prepared with TEVA resins were measured as well by AMS. As it is shown in the text, there is a comfortable agreement between AS and AMS, which adequately validates the method.

  17. [Determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry].

    PubMed

    Lin, Li; Chen, Guang; Chen, Yuhong

    2011-07-01

    A method was established for the determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP/ MS). Alkaline extraction and IC-ICP/MS were applied as the sample pre-treatment method and the detection technique respectively, for iodate and iodide determination. Moreover, high-temperature pyrolysis absorption was adopted as the pre-treatment method for total iodine analysis, which finally converted all the iodine species into iodide and measured the iodide by IC-ICP/MS. The recoveries of iodine for alkaline extraction and high-temperature pyrolysis absorption were 89.6%-97.5% and 95.2%-111.2%, respectively. The results were satisfactory. The detection limit of iodine was 0.010 mg/kg. The iodine and its speciation contents in several kinds of plant samples such as seaweeds, kelp, cabbage, tea leaf and spinach were investigated. It was shown that the iodine in seaweeds mainly existed as organic iodine; while the ones in kelp, cabbage, tea leaf and spinach mainly existed as inorganic iodine.

  18. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection.

    PubMed

    Burguera-Pascu, Margarita; Rodríguez-Archilla, Alberto; Burguera, José Luis; Burguera, Marcela; Rondón, Carlos; Carrero, Pablo

    2007-09-26

    An automated method is described for the determination of zinc in human saliva by electrothermal atomic absorption spectrometry (ET AAS) after on-line dilution of samples with a significant reduction of sample consumption per analysis (<0.4 mL including the dead volume of the system). In order to fulfill this aim without changing the sample transport conduits during the experiments, a flow injection (FI) dilution system was constructed. Its principal parts are: one propulsion device (peristaltic pump, PP) for either samples, standards or washing solution all located in an autosampler tray and for the surfactant solution (Triton X-100) used as diluent, and a two-position time based solenoid injector (TBSI(1)) which allowed the introduction of 10 microL of either solution in the diluent stream. To avoid unnecessary waste of samples, the TBSI(1) also permitted the recirculation of the solutions to their respective autosampler cups. The downstream diluted solution fills a home made sampling arm assembly. The sequential deposition of 20 microL aliquots of samples or standards on the graphite tube platform was carried out by air displacement with a similar time based solenoid injector (TBSI(2)). The dilution procedure and the injection of solutions into the atomizer are computer controlled and synchronized with the operation of the temperature program. Samples or standards solutions were submitted to two drying steps (at 90 and 130 degrees C), followed by pyrolysis and atomization at 700 and 1700 degrees C, respectively. The aqueous calibration was linear up to 120.0 microgL(-1) for diluted standard solutions/samples and its slope was similar (p>0.05) to the standard addition curve, indicating lack of matrix effect. The precision tested by repeated analysis of real saliva samples was less than 3% and the detection limit (3sigma) was of 0.35 microgL(-1). To test the accuracy of the proposed procedure, recovery tests were performed, obtaining mean recovery of added zinc of

  19. Organic Carbon and Light Absorption Analysis of Los Angeles Aerosols through an Online Sampling System

    NASA Astrophysics Data System (ADS)

    Hartley, M. K.; Hawkins, L. N.

    2013-12-01

    Brown carbon is a comprehensive term for organic compounds with wavelength dependent light absorption. Common sources of brown carbon include fossil fuel combustion, biomass burning and aqueous reactions in cloud and fog water. Nitrophenols have been proposed as one source of brown carbon in the Los Angeles area. In this work, we are interested in the relative strengths of each of these sources within Los Angeles. We have implemented a continuous online system of collection and analysis within our lab. The system consists of a particle into liquid sampler (PILS), a liquid waveguide capillary cell (LWCC) and a total organic carbon analyzer (TOC). Online analysis of organic carbon content and UV-Vis absorption has allowed us to study the ratio of the two as an intrinsic property of the aerosol particles, called the 'absorption coefficient.' Using a rearrangement of Beer's Law, we have analyzed the relationship: ɛ = A / C (where ɛ is the absorption coefficient, A is the light absorption of the sample and C is the concentration of organic carbon in the sample). Using our continuous online system, we have collected absorption spectra and total organic carbon measurements over several weeks and in varying environmental conditions. Our work has shown that different weather conditions, along with fog or cloud formation, can affect the absorption coefficient of the brown carbon compounds in the air.

  20. Determination of platinum, palladium, and lead in biological samples by atomic absorption spectrophotometry.

    PubMed Central

    Tillery, J B; Johnson, D E

    1975-01-01

    A flameless atomic absorption method for the coextraction of platinum and palladium from biological and environmental samples by high molecular weight amine (HMWA) is given. Also, methods for lead determination in biological samples by use of extraction flameless analysis and direct aspiration-flame analysis are reported. A study of lead contamination of Vacutainer tubes is given. PMID:1227857

  1. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers.

    PubMed

    Lu, Feng; Belkin, Mikhail A

    2011-10-10

    We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.

  2. Application of High Resolution-Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS): determination of trace elements in tea and tisanes.

    PubMed

    Paz-Rodríguez, Beatriz; Domínguez-González, María Raquel; Aboal-Somoza, Manuel; Bermejo-Barrera, Pilar

    2015-03-01

    A new application of HR-CS FAAS (High Resolution-Continuum Source Flame Atomic Absorption Spectrometry) has been developed for the determination of several trace elements (Ca, Co, Cu, Fe, Mn, Ni, Na and Zn) in infusions made from tea, rooibos and tea with seaweed samples. The proposed methods are fast, inexpensive and show good performances: the mean analytical recovery was approximately 100%. The mean limit of detection was 29.4 μg/l, and the mean limit of quantification was 98.0 μg/l (both limits refer to the brewed samples). Due to the matrix effect observed, the standard addition method had to be applied. Preliminary classification (based on metal contents) using chemometric techniques such as PCA (Principal Component Analysis) and CA (Cluster Analysis), was successful for infusions made from rooibos and tea with seaweed, but inconclusive for black and green teas.

  3. A simple and fast ultrasound-assisted extraction procedure for Fe and Zn determination in milk-based infant formulas using flame atomic absorption spectrometry (FAAS).

    PubMed

    Machado, Ignacio; Bergmann, Gabriela; Pistón, Mariela

    2016-03-01

    A simple and fast ultrasound-assisted procedure for the determination of iron and zinc in infant formulas is presented. The analytical determinations were carried out by flame atomic absorption spectrometry. Multivariate experiments were performed for optimization; in addition, a comparative study was carried out using two ultrasonic devices. A method using an ultrasonic bath was selected because several samples can be prepared simultaneously, and there is less contamination risk. Analytical precision (sr(%)) was 3.3% and 4.1% for iron and zinc, respectively. Trueness was assessed using a reference material and by comparison of the results obtained analyzing commercial samples using a reference method. The results were statistically equivalent to the certified values and in good agreement with those obtained using the reference method. The proposed method can be easily implemented in laboratories for routine analysis with the advantage of being rapid and in agreement with green chemistry. PMID:26471568

  4. Application of High Resolution-Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS): determination of trace elements in tea and tisanes.

    PubMed

    Paz-Rodríguez, Beatriz; Domínguez-González, María Raquel; Aboal-Somoza, Manuel; Bermejo-Barrera, Pilar

    2015-03-01

    A new application of HR-CS FAAS (High Resolution-Continuum Source Flame Atomic Absorption Spectrometry) has been developed for the determination of several trace elements (Ca, Co, Cu, Fe, Mn, Ni, Na and Zn) in infusions made from tea, rooibos and tea with seaweed samples. The proposed methods are fast, inexpensive and show good performances: the mean analytical recovery was approximately 100%. The mean limit of detection was 29.4 μg/l, and the mean limit of quantification was 98.0 μg/l (both limits refer to the brewed samples). Due to the matrix effect observed, the standard addition method had to be applied. Preliminary classification (based on metal contents) using chemometric techniques such as PCA (Principal Component Analysis) and CA (Cluster Analysis), was successful for infusions made from rooibos and tea with seaweed, but inconclusive for black and green teas. PMID:25306375

  5. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, A.

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, nutrition, and biomedicine. Emphasis is being placed on: (1) generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; (2) computer modelings of ICP discharges to predict the behavior of new and existing plasmas; (3) diagnostic studies of high temperature plasmas and sample introduction systems to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; (4) development and characterization of new, low cost sample introduction systems that consume microliter or microgram quantities of samples; and (5) investigation of new membrane separators for stripping solvent from sample aerosol to reduce various interferences and to enhance sensitivity and selectivity in plasma spectrometry.

  6. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Bencs, László; Laczai, Nikoletta; Ajtony, Zsolt

    2015-07-01

    A combination of former convective-diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass - m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min- 1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology.

  7. Maintenance of the slope of linearized calibration curves in Zeeman graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Yuzefovsky, Alexander I.; Lonardo, Robert F.; Zhou, Jack X.; Michel, Robert G.; Koltracht, Israel

    1996-06-01

    L'vov and co-workers developed a theoretical model and computational procedure (B.V. L'vov, L.K. Polzik and N.V. Kocharova, Spectrochim. Acta Part B, 47 (1992) 889 and B.V. L'vov, L.K. Polzik, N.V. Kocharova, Yu.A. Nemets and A.V. Novichikhin, Spectrochim. Acta Part B, 47 (1992) 1187) that linearized calibration curves in Zeeman graphite furnace atomic absorption spectrometry by taking into account the presence of stray light. The calculations of L'vov and co-workers were based on three parameters: the rollover absorbance Ar, Zeeman sensitivity ratio R, and the original background corrected peak absorbance values Az. In order to simplify the calculations, R was assumed to be unity. In the studies reported here, this simplification is shown to be unsatisfactory because the slope obtained in the upper portion of the calibration curve, after linearization, is found to be different from the slope obtained in the normal linear region. Deviations between these slopes were found to be as high as 30%. The present work also shows that the theoretical model of L'vov and co-workers does not have a mathematical solution at high values of Az. This failure of the model prevents its use at high Az values. The physical nature of this failure is still unclear, which points to the necessity for further work to understand the inadequacies of the present theory. In the present studies, calculations based on the Newton method of successive approximations (A.I. Yuzefovsky, E.G. Su, R.G. Michel, W. Slavin and J.T. McCaffrey, Spectrochim. Acta Part B, 49 (1994) 1643), allow incorporation of the experimental value of R at the rollover point R', which better linearizes the calibration curves. By use of this approach, a satisfactory result is obtained for lead ( R' = 0.67) up to the point of failure of the model at high values of Az.

  8. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  9. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption-elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L- 1, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64-22.9 μg Pb L- 1).

  10. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  11. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1990-01-01

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, biomedicine and nutrition. Emphasis is being placed on: generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; diagnostic studies of high-temperature plasmas to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; development and characterization of new sample introduction systems that consume microliter or microgram quantities of samples, and investigation of new membrane separators for striping solvent from sample aerosol to reduce various interferences and to enhance sensitivity in plasma spectrometry.

  12. Characterisation of absorptive sampling with SPME fibres in the EUPHORE photoreactor.

    PubMed

    Gómez Alvarez, E

    2007-07-31

    The implementation of an experimental set-up for sampling, and characterisation of parameters related to absorptive sampling solid phase microextraction (SPME) in the EUPHORE photoreactor is described. Toluene was taken as probe compound. Optimisation of the sampling and calibration curves are presented. Equilibrium was achieved in just 30s due to the good agitation in the chambers and the LOD was 0.24 ppbV. The precision was +/-0.02 expressed as relative standard deviation (n=9). The inter-fibre reproducibility was +/-0.03 expressed as relative standard deviation. The effect of the temperature and the sun radiation on absorption in the fibre is also studied using a relative method to calculate the ratio K/K(0) (ratio of absorption constants at two different times during the experiment at which temperature and radiation conditions experimented important variations) calculated through known parameters, avoiding in this way the need for external calibrations in the calculation of K. The results showed a difficult to predict dependence of absorption over the combination of temperature and sun radiation and the need to develop sampling systems with absorptive SPME in which sun radiation has no influence. The stability in different conditions of compounds absorbed in the fibre was also subject to study. At room temperature half of the compound absorbed is expected to desorb in 1.21 h. Conversely, when fibres were kept at low temperatures (-86 degrees C) after 21 days, desorption was negligible.

  13. Absorption and Diffusion Measurements of Biological Samples using a THz Free Electron Laser.

    PubMed

    Giovenale, E; D'Arienzo, M; Doria, A; Gallerano, G P; Lai, A; Messina, G; Piccinelli, D

    2003-06-01

    A compact THz Free Electron Laser (FEL) isbeing used to perform irradiation ofbiological samples to investigate possiblegenotoxic effects. In order to evaluate theexact radiation dose absorbed by the singlecomponents of the samples it is necessaryto study the optical properties of thesamples, separating the contributions tothe radiation attenuation coefficientcoming from absorption and from diffusion.Spectroscopic measurements have beenperformed on different biological samples, comparing the experimental results withtheoretical models. PMID:23345832

  14. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  15. Sample collection and preparation of biofluids and extracts for gas chromatography-mass spectrometry.

    PubMed

    Emwas, Abdul-Hamid M; Al-Talla, Zeyad A; Kharbatia, Najeh M

    2015-01-01

    To maximize the utility of gas chromatography-mass spectrometry (GC-MS) in metabonomics research, all stages of the experimental design should be standardized, including sample collection, storage, preparation, and sample separation. Moreover, the prerequisite for any GC-MS analysis is that a compound must be volatile and thermally stable if it is to be analyzed using this technique. Since many metabolites are nonvolatile and polar in nature, they are not readily amenable to analysis by GC-MS and require initial chemical derivatization of the polar functional groups in order to reduce the polarity and to increase the thermal stability and volatility of the analytes. In this chapter, an overview is presented of the optimum approach to sample collection, storage, and preparation for gas chromatography-mass spectrometry-based metabonomics with particular focus on urine samples as example of biofluids.

  16. In-situ diagnostics of hydrocarbon dusty plasmas using quantum cascade laser absorption spectroscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ouaras, K.; Delacqua, L. Colina; Lombardi, G.; Röpcke, J.; Wartel, M.; Bonnin, X.; Redolfi, M.; Hassouni, K.; Hassouni

    2014-12-01

    The formation of carbon nanoparticles in low pressure magnetized H2/CH4 and H2/C2H2 plasmas is investigated using infrared quantum cascade laser absorption, mass spectrometry, and electrostatic probe measurements. Results showed that dust formation is correlated to the presence of a significant amount of large positively charged hydrocarbon ions. Large negative ions or neutral hydrocarbon were not observed. These results, along with a qualitative comparison of diffusion and reaction characteristic, suggest that a positive ion may contribute to the growth of nanoparticles in hydrocarbon magnetized plasmas.

  17. Germanium determination by flame atomic absorption spectrometry: an increased vapor pressure-chloride generation system.

    PubMed

    Kaya, Murat; Volkan, Mürvet

    2011-03-15

    A new chloride generation system was designed for the direct, sensitive, rapid and accurate determination of the total germanium in complex matrices. It was aimed to improve the detection limit of chloride generation technique by increasing the vapor pressure of germanium tetrachloride (GeCl(4)). In order to do so, a novel joint vapor production and gas-liquid separation unit equipped with a home-made oven was incorporated to an ordinary nitrous oxide-acetylene flame atomic absorption spectrometer. Several variables such as reaction time, temperature and acid concentration have been investigated. The linear range for germanium determination was 0.1-10 ng mL(-1) for 1 mL sampling volume with a detection limit (3s) of 0.01 ng mL(-1). The relative standard deviation (RSD) was 2.4% for nine replicates of a 1 ng mL(-1) germanium solution. The method was validated by the analysis of one non-certified and two certified geochemical reference materials, respectively, CRM GSJ-JR-2 (Rhyolite), and GSJ-JR-1 (Rhyolite), and GBW 07107 (Chinese Rock). Selectivity of the method was investigated for Cd(2+), Co(2+), Cu(2+), Fe(3+), Ga(3+), Hg(2+), Ni(2+), Pb(2+), Sn(2+), and Zn(2+) ions and ionic species of As(III), Sb(III), Te(IV), and Se(IV). PMID:21315908

  18. Germanium determination by flame atomic absorption spectrometry: an increased vapor pressure-chloride generation system.

    PubMed

    Kaya, Murat; Volkan, Mürvet

    2011-03-15

    A new chloride generation system was designed for the direct, sensitive, rapid and accurate determination of the total germanium in complex matrices. It was aimed to improve the detection limit of chloride generation technique by increasing the vapor pressure of germanium tetrachloride (GeCl(4)). In order to do so, a novel joint vapor production and gas-liquid separation unit equipped with a home-made oven was incorporated to an ordinary nitrous oxide-acetylene flame atomic absorption spectrometer. Several variables such as reaction time, temperature and acid concentration have been investigated. The linear range for germanium determination was 0.1-10 ng mL(-1) for 1 mL sampling volume with a detection limit (3s) of 0.01 ng mL(-1). The relative standard deviation (RSD) was 2.4% for nine replicates of a 1 ng mL(-1) germanium solution. The method was validated by the analysis of one non-certified and two certified geochemical reference materials, respectively, CRM GSJ-JR-2 (Rhyolite), and GSJ-JR-1 (Rhyolite), and GBW 07107 (Chinese Rock). Selectivity of the method was investigated for Cd(2+), Co(2+), Cu(2+), Fe(3+), Ga(3+), Hg(2+), Ni(2+), Pb(2+), Sn(2+), and Zn(2+) ions and ionic species of As(III), Sb(III), Te(IV), and Se(IV).

  19. Determination of Anionic Surfactants Using Atomic Absorption Spectrometry and Anodic Stripping Voltammetry

    NASA Astrophysics Data System (ADS)

    John, Richard; Lord, Daniel

    1999-09-01

    An experiment has been developed for our undergraduate analytical chemistry course that demonstrates the indirect analysis of anionic surfactants by techniques normally associated with metal ion determination; that is, atomic absorption spectroscopy (AAS) and anodic stripping voltammetry (ASV). The method involves the formation of an extractable complex between the synthetic surfactant anion and the bis(ethylenediamine)diaqua copper(II) cation. This complex is extracted into chloroform and then back-extracted into dilute acid. The resulting Cu(II) ions are determined by AAS and ASV. Students are required to determine the concentration of a pre-prepared "unknown" anionic surfactant solution and to collect and analyze a real sample of their choice. After the two extraction processes, students typically obtain close to 100% analytical recovery. Correlation between student AAS and ASV results is very good, indicating that any errors that occur probably result from their technique (dilutions, extractions, preparation of standards, etc.) rather than from the end analyses. The experiment is a valuable demonstration of the following analytical principles: indirect analysis; compleximetric analysis; liquid-liquid (solvent) extraction; back-extraction (into dilute acid); analytical recovery; and metal ion analysis using flame-AAS and ASV.

  20. Direct determination of trace elements in boron nitride powders by slurry sampling total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Amberger, Martin A.; Höltig, Michael; Broekaert, José A. C.

    2010-02-01

    The use of slurry sampling total reflection X-ray fluorescence spectrometry (SlS-TXRF) for the direct determination of Ca, Cr, Cu, Fe, Mn and Ti in four boron nitride powders has been described. Measurements of the zeta potential showed that slurries with good stabilities can be obtained by the addition of polyethylenimine (PEI) at a concentration of 0.1 wt.% and by adjusting the pH at 4. For the optimization of the concentration of boron nitride in the slurries the net line intensities and the signal to background ratios were determined for the trace elements Ca and Ti as well as for the internal standard element Ga in the case of concentrations of boron nitride ranging from 1 to 30 mg mL -1. As a compromise with respect to high net line intensities and high signal to background ratios, concentrations of 5 mg mL -1 of boron nitride were found suitable and were used for all further measurements. The limits of detection of SlS-TXRF for the boron nitride powders were found to range from 0.062 to 1.6 μg g - 1 for Cu and Ca, respectively. Herewith, they are higher than those obtained in solid sampling and slurry sampling graphite furnace atomic absorption spectrometry (SoS-GFAAS, SlS-GFAAS) as well as those of solid sampling electrothermal evaporation inductively coupled plasma optical emission spectrometry (SoS-ETV-ICP-OES). For Ca and Fe as well as for Cu and Fe, however, they were found to be lower than for GFAAS and for ICP-OES subsequent to wet chemical digestion, respectively. The universal applicability of SlS-TXRF to the analysis of samples with a wide variety of matrices could be demonstrated by the analysis of certified reference materials such as SiC, Al 2O 3, powdered bovine liver and borate ore with a single calibration. The correlation coefficients of the plots for the values found for Ca, Fe and Ti by SlS-TXRF in the boron nitride powders as well as in the before mentioned samples versus the reference values for the respective samples over a

  1. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry.

    PubMed

    Bianchin, Joyce Nunes; Martendal, Edmar; Mior, Renata; Alves, Vanessa Nunes; Araújo, Cleide Sandra Tavares; Coelho, Nívia Maria Melo; Carasek, Eduardo

    2009-04-30

    In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L(-1), a sample flow rate of 4.5 mL min(-1) and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 microg L(-1) and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 microg L(-1), with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 microg L(-1), n=7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%. PMID:19203591

  2. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry.

    PubMed

    Bianchin, Joyce Nunes; Martendal, Edmar; Mior, Renata; Alves, Vanessa Nunes; Araújo, Cleide Sandra Tavares; Coelho, Nívia Maria Melo; Carasek, Eduardo

    2009-04-30

    In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L(-1), a sample flow rate of 4.5 mL min(-1) and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 microg L(-1) and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 microg L(-1), with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 microg L(-1), n=7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.

  3. Atmospheric sampling glow discharge ionizataion and triple quadrupole tandem mass spectrometry for explosives vapor detection

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.; Hart, K.J.; Glish, G.L.; Grant, B.C.; Chambers, D.M.

    1993-08-01

    The detection and identification of trace vapors of hidden high explosives is an excellent example of a targeted analysis problem. It is desirable to push to ever lower levels the quantity or concentration of explosives material that provides an analytical signal, while at the same time discriminating against all other uninteresting material. The detection system must therefore combine high sensitivity with high specificity. This report describes the philosophy behind the use of atmospheric sampling glow discharge ionization, which is a sensitive, rugged, and convenient means for forming anions from explosives molecules, with tandem mass spectrometry, which provides unparalleled specificity in the identification of explosives-related ions. Forms of tandem mass spectrometry are compared and contrasted to provide a summary of the characteristics to be expected from an explosives detector employing mass spectrometry/mass spectrometry. The instrument developed for the FAA, an atmospheric sampling glow discharge/triple quadrupole mass spectrometer, is described in detail with particular emphasis on the ion source/spectrometer interface and on the capabilities of the spectrometer. Performance characteristics of the system are also described as they pertain to explosives of interest including a description of an automated procedure for the detection and identification of specific explosives. A comparison of various tandem mass spectrometers mated with atmospheric sampling glow discharge is then described and preliminary studies with a vapor preconcentration system provided by the FAA will be described.

  4. Evaluation of a method for arsenic(III) and antimony(III) determination by vapour phase molecular absorption spectrometry using graphite furnace volati

    NASA Astrophysics Data System (ADS)

    Galban, J.; Marcos, E.; Lamana, J.; Castillo, J. R.

    1993-01-01

    This paper presents a procedure for determining As(III) and Sb(III) by vapour phase molecular absorption spectrometry (VPMAS). The chlorides of these elements are volatilized from aqueous solutions in a L'vov platform inside the graphite furnace of an atomic absorption spectrophotometer. Molecular absorption is measured at 205 nm for arsenic chloride and 220 nm for antimony chloride. Both species are formed in the sample drying stage. A study of the temperature program led to different results in each case. In the case of arsenic, a two-step program (one mixed drying and volatilization step, and another cleaning step) is found to be best, whereas in the case of antimony, three separate steps can be used (drying, volatilization and cleaning). In both cases, optimum volatilization was obtained with low HCl concentrations, and volatilization fell off sharply as HCl concentration increased. Under optimum generation and determination conditions, the linear response range is from 0.06 to 3.75 μg for As(III), and from 0.30 to 5.0 μg for Sb(III) with relative standard deviations of 2.1% for As(III) and 2.5% for Sb(III). The effect of other anions and cations on the arsenic analytical signal was studied, and other halides were found to interfere. The method was applied to arsenic determination in an arsenic ore.

  5. Nuclear chemistry of returned lunar samples: Nuclide analysis by gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Okelley, G. D.

    1975-01-01

    Primordial and cosmogenic radionuclide concentrations are determined nondestructively by gamma-ray spectrometry in soil and rock samples from the returned Apollo 17 sample collection from Taurus-Littrow and Descartes. Geochemical evidence in support of field geology speculation concerning layering of the subfloor basalt flows is demonstrated along with a possible correlation of magmatic fractionation of K/U as a function of depth. The pattern of radionuclide concentrations observed in these samples is distinct due to proton bombardment by the intense solar flares of August 4-9, 1972. Such radionuclide determinations are used in determining lunar sample orientation and characterizing solar flare activity.

  6. Determination of selenium, zinc and cadmium in antidandruff shampoos by atomic spectrometry after microwave assisted sample digestion.

    PubMed

    Salvador, A; Pascual-Martí, M C; Aragó, E; Chisvert, A; March, J G

    2000-05-01

    Microwave assisted pre-treatments for atomic spectrometric determination (inductive coupled plasma-optical emission spectrometry, ICP-OES or flame atomic absorption spectrometry, FAAS) of metallic elements, usually present in antidandruff shampoos, are proposed. They are based on the digestion of the sample with HNO(3) into a closed reactor, which is irradiated at 800 W for a few minutes. Selenium was determined by ICP-OES. The limit of detection was 0.11 mg l(-1); the relative standard deviation (R.S.D.) for the selenium content in the samples was in the 0.6-3.6% range. The results obtained were in agreement with the label contents and the recovery of the proposed method was in the 100-106% range. Zinc and cadmium were determined by FAAS. The limit of detection for zinc determination was 0.078 mg l(-1); the R.S.D. for zinc contents was in the 0.8-8.6% range. A limit of detection of 0.09 mg l(-1) was obtained for cadmium determination; the R.S.D. for cadmium contents was in the 0.7-2.7% range. The determinations were performed after two different sample mineralization pre-treatments - dry ashing (in an electric furnace) and wet mineralization (in a microwave oven). Both methodologies provided comparable results for zinc and cadmium determination in shampoos. The proposed microwave assisted digestion procedures allow a precise and accurate determination of selenium, zinc and cadmium in commercial antidandruff shampoos, and the sample pre-treatment is less time-consuming than the classic methods.

  7. Feasibility of dispersive liquid-liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Seeger, Tassia S.; Rosa, Francisco C.; Bizzi, Cezar A.; Dressler, Valderi L.; Flores, Erico M. M.; Duarte, Fabio A.

    2015-03-01

    A method for extraction and preconcentration of Cu and Fe in red and white wines using dispersive liquid-liquid microextraction (DLLME) and determination by flame atomic absorption spectrometry (F AAS) was developed. Extraction was performed using sodium diethyldithiocarbamate as chelating agent and a mixture of 40 μL of 1,2-dichlorobenzene (extraction solvent) and 900 μL of methanol (dispersive solvent). Some parameters that influencing the extraction efficiency such as pH (2 to 5), concentration of chelating agent (0 to 2%), effect of salt addition (0 to 10%), number of washing steps (1 to 4) and centrifugation time (0 to 15 min) were studied. Accuracy was evaluated after microwave-assisted digestion in closed vessels and analytes were determined by inductively coupled plasma optical emission spectrometry. Agreement with the proposed method ranged from 91 to 110 and from 89 to 113% for Cu and Fe, respectively. Calibration of F AAS instrument was performed using analyte addition method and limits of detection were 6.3 and 2.4 μg L- 1 for Cu and Fe, respectively. The proposed method was applied for the determination of Cu and Fe in five samples of red wine and three samples of white wine, with concentration ranging from 21 to 178 μg L- 1 and from 1.38 to 3.74 mg L- 1, respectively.

  8. [Recent Development of Atomic Spectrometry in China].

    PubMed

    Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei

    2015-09-01

    As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.

  9. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil

    PubMed Central

    2013-01-01

    Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference

  10. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    NASA Astrophysics Data System (ADS)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  11. Evaluation of cadmium in greenhouse soils and agricultural products of Jiroft (Iran) using microwave digestion prior to atomic absorption spectrometry determination.

    PubMed

    Afzali, Daryoush; Fathirad, Fariba; Afzali, Zahra; Majdzadeh-Kermani, Seyed Mohammad Javad

    2015-03-01

    This study determines total levels of potentially toxic trace element, Cd (II) in Jiroft (Kerman, Iran) greenhouse soil and agricultural products that are grown in these greenhouses (tomatoes and cucumbers), and the comparison with soil outside of greenhouse using microwave digestion prior to flame atomic absorption spectrometry determination. The results show that the cadmium concentration in greenhouse soil is 0.9-1.9 mg kg(-1) and out of greenhouse is 0.4-1.0 mg kg(-1). Also, cadmium concentration range in tomatoes and cucumbers is about 0.07-0.40 mg kg(-1). The obtained results show that the concentration of this metal in greenhouse soil is higher than outside soil samples and is below the safe limit.

  12. Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction.

    PubMed

    Sun, Mei; Liu, Guijian; Wu, Qianghua

    2013-11-01

    A new method was developed for the determination of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry detection after cloud point extraction. Effective separation of organic and inorganic selenium in selenium-enriched rice was achieved by sequentially extracting with water and cyclohexane. Under the optimised conditions, the limit of detection (LOD) was 0.08 μg L(-1), the relative standard deviation (RSD) was 2.1% (c=10.0 μg L(-1), n=11), and the enrichment factor for selenium was 82. Recoveries of inorganic selenium in the selenium-enriched rice samples were between 90.3% and 106.0%. The proposed method was successfully applied for the determination of organic and inorganic selenium as well as total selenium in selenium-enriched rice.

  13. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    NASA Astrophysics Data System (ADS)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  14. Development of a simple method for the determination of lead in lipstick using alkaline solubilization and graphite furnace atomic absorption spectrometry.

    PubMed

    Soares, Aline Rodrigues; Nascentes, Clésia Cristina

    2013-02-15

    A simple method was developed for determining the total lead content in lipstick samples by graphite furnace atomic absorption spectrometry (GFAAS) after treatment with tetramethylammonium hydroxide (TMAH). Multivariate optimization was used to establish the optimal conditions of sample preparation. The graphite furnace heating program was optimized through pyrolysis and atomization curves. An aliquot containing approximately 50mg of the sample was mixed with TMAH and heated in a water bath at 60°C for 60 min. Using Nb as the permanent modifier and Pd as the chemical modifier, the optimal temperatures were 900°C and 1800°C for pyrolysis and atomization, respectively. Under optimum conditions, the working range was from 1.73 to 50.0 μg L(-1), with detection and quantification limits of 0.20 and 0.34 μg g(-1), respectively. The precision was evaluated under conditions of repeatability and intermediate precision and showed standard deviations of 2.37%-4.61% and 4.93%-9.75%, respectively. The % recovery ranged from 96.2% to 109%, and no significant differences were found between the results obtained using the proposed method and the microwave decomposition method for real samples. Lead was detected in 21 tested lipstick samples; the lead content in these samples ranged from 0.27 to 4.54 μg g(-1).

  15. Development of a simple method for the determination of lead in lipstick using alkaline solubilization and graphite furnace atomic absorption spectrometry.

    PubMed

    Soares, Aline Rodrigues; Nascentes, Clésia Cristina

    2013-02-15

    A simple method was developed for determining the total lead content in lipstick samples by graphite furnace atomic absorption spectrometry (GFAAS) after treatment with tetramethylammonium hydroxide (TMAH). Multivariate optimization was used to establish the optimal conditions of sample preparation. The graphite furnace heating program was optimized through pyrolysis and atomization curves. An aliquot containing approximately 50mg of the sample was mixed with TMAH and heated in a water bath at 60°C for 60 min. Using Nb as the permanent modifier and Pd as the chemical modifier, the optimal temperatures were 900°C and 1800°C for pyrolysis and atomization, respectively. Under optimum conditions, the working range was from 1.73 to 50.0 μg L(-1), with detection and quantification limits of 0.20 and 0.34 μg g(-1), respectively. The precision was evaluated under conditions of repeatability and intermediate precision and showed standard deviations of 2.37%-4.61% and 4.93%-9.75%, respectively. The % recovery ranged from 96.2% to 109%, and no significant differences were found between the results obtained using the proposed method and the microwave decomposition method for real samples. Lead was detected in 21 tested lipstick samples; the lead content in these samples ranged from 0.27 to 4.54 μg g(-1). PMID:23598019

  16. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method.

  17. Tandem focused ultrasound (TFU) combined with fast furnace analysis as an improved methodology for total mercury determination in human urine by electrothermal-atomic absorption spectrometry.

    PubMed

    Capelo, J L; Dos Reis, C D; Maduro, C; Mota, A

    2004-09-01

    A new sample preparation procedure based on tandem (that is, different diameter probe sonicators used in the same sample treatment) focused ultrasound (TFU) for mercury separation, preconcentration and back-extraction in aqueous solution from human urine has been developed. The urine is first oxidized with KMnO(4)/HCl/focused ultrasound (6mm probe). Secondly, the mercury is extracted and preconcentrated with dithizone and cyclohexane. Finally, the mercury is back-extracted and preconcentrated again with the aid of focused ultrasound (3mm probe). The procedure allows determining mercury by electrothermal atomic absorption spectrometry with fast furnace analysis and calibration against aqueous standards. Matrix modification is provided by the chemicals used in the sample treatment. The procedure is accomplished with low sample volume (8.5ml). Low volume and low concentration reagents are used. The sample treatment is rapid (less than 3min per sample) and avoids the use of organic phase in the graphite furnace. The preconcentration factor used in this work was 14. The limit of detection and the limit of quantification in urine were, respectively, 0.27 and 0.9mugl(-1). The relative standard deviation of aqueous standards (n=10) was 4% for a concentration of 100mugl(-1) and 5% for a concentration of 400mugl(-1). Recoveries from spiked urine with inorganic mercury, methyl-mercury, phenyl-mercury and diphenyl-mercury ranged from 86 to 98%.

  18. Comprehensive evaluation of direct injection mass spectrometry for the quantitative profiling of volatiles in food samples.

    PubMed

    Lebrón-Aguilar, R; Soria, A C; Quintanilla-López, J E

    2016-10-28

    Although qualitative strategies based on direct injection mass spectrometry (DIMS) have recently emerged as an alternative for the rapid classification of food samples, the potential of these approaches in quantitative tasks has scarcely been addressed to date. In this paper, the applicability of different multivariate regression procedures to data collected by DIMS from simulated mixtures has been evaluated. The most relevant factors affecting quantitation, such as random noise, the number of calibration samples, type of validation, mixture complexity and similarity of mass spectra, were also considered and comprehensively discussed. Based on the conclusions drawn from simulated data, and as an example of application, experimental mass spectral fingerprints collected by direct thermal desorption coupled to mass spectrometry were used for the quantitation of major volatiles in Thymus zygis subsp. zygis chemotypes. The results obtained, validated with the direct thermal desorption coupled to gas chromatography-mass spectrometry method here used as a reference, show the potential of DIMS approaches for the fast and precise quantitative profiling of volatiles in foods.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644978

  19. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    NASA Astrophysics Data System (ADS)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  20. Comprehensive evaluation of direct injection mass spectrometry for the quantitative profiling of volatiles in food samples.

    PubMed

    Lebrón-Aguilar, R; Soria, A C; Quintanilla-López, J E

    2016-10-28

    Although qualitative strategies based on direct injection mass spectrometry (DIMS) have recently emerged as an alternative for the rapid classification of food samples, the potential of these approaches in quantitative tasks has scarcely been addressed to date. In this paper, the applicability of different multivariate regression procedures to data collected by DIMS from simulated mixtures has been evaluated. The most relevant factors affecting quantitation, such as random noise, the number of calibration samples, type of validation, mixture complexity and similarity of mass spectra, were also considered and comprehensively discussed. Based on the conclusions drawn from simulated data, and as an example of application, experimental mass spectral fingerprints collected by direct thermal desorption coupled to mass spectrometry were used for the quantitation of major volatiles in Thymus zygis subsp. zygis chemotypes. The results obtained, validated with the direct thermal desorption coupled to gas chromatography-mass spectrometry method here used as a reference, show the potential of DIMS approaches for the fast and precise quantitative profiling of volatiles in foods.This article is part of the themed issue 'Quantitative mass spectrometry'.

  1. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    SciTech Connect

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  2. Determination of total selenium in pharmaceutical and herbal supplements by hydride generation and graphite furnace atomic absorption spectrometry.

    PubMed

    Kazi, Tasneem G; Kolachi, Nida F; Afridi, Hassan I; Brahman, Kapil Dev; Shah, Faheem

    2014-01-01

    The total selenium (Se) was determined in herbal and pharmaceutical supplements used for liver diseases. The total Se contents were determined in different pharmaceutical and herbal supplements by hydride generation atomic absorption spectrometry (HGAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after microwave-assisted acid digestion. The accuracy of the techniques was evaluated by using certified reference material and the standard addition method. The recoveries of total Se were 99.4 and 99.0% for HGAAS and GFAAS, respectively. The precision of the techniques expressed as RSD were 2.34 and 4.54% for HGAAS and GFAAS measurements, respectively. The LOD values for HGAAS and GFAAS were 0.025 and 0.052 pglg, respectively. The concentrations of Se in pharmaceutical and herbal supplements were found in the range of 19.2-53.8 and 25.0-42.5 pg/g, respectively, corresponding to 35-76% and 45-76% of the total recommended dose of Se for adults.

  3. Determination of total selenium in pharmaceutical and herbal supplements by hydride generation and graphite furnace atomic absorption spectrometry.

    PubMed

    Kazi, Tasneem G; Kolachi, Nida F; Afridi, Hassan I; Brahman, Kapil Dev; Shah, Faheem

    2014-01-01

    The total selenium (Se) was determined in herbal and pharmaceutical supplements used for liver diseases. The total Se contents were determined in different pharmaceutical and herbal supplements by hydride generation atomic absorption spectrometry (HGAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after microwave-assisted acid digestion. The accuracy of the techniques was evaluated by using certified reference material and the standard addition method. The recoveries of total Se were 99.4 and 99.0% for HGAAS and GFAAS, respectively. The precision of the techniques expressed as RSD were 2.34 and 4.54% for HGAAS and GFAAS measurements, respectively. The LOD values for HGAAS and GFAAS were 0.025 and 0.052 pglg, respectively. The concentrations of Se in pharmaceutical and herbal supplements were found in the range of 19.2-53.8 and 25.0-42.5 pg/g, respectively, corresponding to 35-76% and 45-76% of the total recommended dose of Se for adults. PMID:25632445

  4. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry.

    PubMed

    Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet

    2007-03-28

    Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels. PMID:17386783

  5. Evaluation of procedures for (226)Ra determination in samples with high barium concentration by α-particle spectrometry.

    PubMed

    Benedik, L

    2016-03-01

    The γ emitter (133)Ba is the most often used tracer in determination of (226)Ra by α-particle spectrometry. If the source for α-particle spectrometry is prepared by microcoprecipitation, a high Ba concentration causes a thicker source layer which results in reduced counting efficiency due to self-absorption on the α spectrometer and consequently lower result for (226)Ra, while not effecting the measurement of (133)Ba in γ-ray spectrometry. If the electrodeposition is used, recoveries of deposited Ra and Ba are not necessarily the same and impurities of other α emitters may interfere with the α spectrum.

  6. Characterization of gunpowder samples using time-of-flight secondary ion mass spectrometry (TOF-SIMS).

    PubMed

    Mahoney, Christine M; Gillen, Greg; Fahey, Albert J

    2006-04-20

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was utilized to obtain characteristic mass spectra from three different smokeless powders and six different black powder samples. In these mass spectra, peaks indicative of both the organic and inorganic additive constituents in the gunpowders were observed. TOF-SIMS was able to successfully differentiate between the different black and smokeless gunpowder samples analyzed with the aid of principal components analysis (PCA), a multivariate statistical analysis approach often used to reduce the dimensionality of complex data. TOF-SIMS was also used to obtain information about the spatial distribution of the various additives contained within the gunpowder samples. SIMS imaging demonstrated that that the samples could potentially be characterized by their 2-D structure, which varied from sample to sample. These results clearly demonstrate the feasibility of utilizing TOF-SIMS as a tool for the characterization and differentiation of gunpowder samples for general forensic applications.

  7. Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry.

    PubMed

    Scheerlinck, E; Dhaenens, M; Van Soom, A; Peelman, L; De Sutter, P; Van Steendam, K; Deforce, D

    2015-12-01

    Sample preparation is the crucial starting point to obtain high-quality mass spectrometry data and can be divided into two main steps in a bottom-up proteomics approach: cell/tissue lysis with or without detergents and a(n) (in-solution) digest comprising denaturation, reduction, alkylation, and digesting of the proteins. Here, some important considerations, among others, are that the reagents used for sample preparation can inhibit the digestion enzyme (e.g., 0.1% sodium dodecyl sulfate [SDS] and 0.5 M guanidine HCl), give rise to ion suppression (e.g., polyethylene glycol [PEG]), be incompatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) (e.g., SDS), and can induce additional modifications (e.g., urea). Taken together, all of these irreproducible effects are gradually becoming a problem when label-free quantitation of the samples is envisioned such as during the increasingly popular high-definition mass spectrometry (HDMS(E)) and sequential window acquisition of all theoretical fragment ion spectra (SWATH) data-independent acquisition strategies. Here, we describe the detailed validation of a reproducible method with sufficient protein yield for sample preparation without any known LC-MS/MS interfering substances by using 1% sodium deoxycholate (SDC) during both cell lysis and in-solution digest. PMID:26302362

  8. Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry.

    PubMed

    Scheerlinck, E; Dhaenens, M; Van Soom, A; Peelman, L; De Sutter, P; Van Steendam, K; Deforce, D

    2015-12-01

    Sample preparation is the crucial starting point to obtain high-quality mass spectrometry data and can be divided into two main steps in a bottom-up proteomics approach: cell/tissue lysis with or without detergents and a(n) (in-solution) digest comprising denaturation, reduction, alkylation, and digesting of the proteins. Here, some important considerations, among others, are that the reagents used for sample preparation can inhibit the digestion enzyme (e.g., 0.1% sodium dodecyl sulfate [SDS] and 0.5 M guanidine HCl), give rise to ion suppression (e.g., polyethylene glycol [PEG]), be incompatible with liquid chromatography-tandem mass spectrometry (LC-MS/MS) (e.g., SDS), and can induce additional modifications (e.g., urea). Taken together, all of these irreproducible effects are gradually becoming a problem when label-free quantitation of the samples is envisioned such as during the increasingly popular high-definition mass spectrometry (HDMS(E)) and sequential window acquisition of all theoretical fragment ion spectra (SWATH) data-independent acquisition strategies. Here, we describe the detailed validation of a reproducible method with sufficient protein yield for sample preparation without any known LC-MS/MS interfering substances by using 1% sodium deoxycholate (SDC) during both cell lysis and in-solution digest.

  9. Electrothermal atomization atomic absorption spectrometry for the determination of lead in urine: results of an interlaboratory study

    NASA Astrophysics Data System (ADS)

    Parsons, Patrick J.; Slavin, Walter

    1999-05-01

    Results of an interlaboratory study are reported for the determination of lead in urine. Two levels of a lyophilized material containing biologically-bound lead were prepared using pooled urine obtained from lead-poisoned children undergoing the CaNa 2EDTA mobilization test. The materials were circulated to a group of reference laboratories that participate in the `New York State Proficiency Testing Program for Blood Lead'. Results of the initial round-robin gave all-method consensus target values of 145±22 μg/l (S.D.) for lot 17 and 449±43 μg/l (S.D.) for lot 20. The interlaboratory exercise was repeated some 5 years later and consensus target values were re-calculated using the grand mean (excluding outliers) of results reported by laboratories using electrothermal atomization atomic absorption spectrometry (ETAAS). The re-calculated target values were 139±10 μg/l (S.D.) and 433±12 μg/l (S.D.). The urine reference materials were also analyzed for lead by several laboratories using other instrumental techniques including isotope dilution (ID), inductively coupled plasma (ICP) mass spectrometry (MS), flame atomic absorption with extraction, ICP-atomic emission spectrometry, ID-gas chromatography MS and flow injection-hydride generation AAS, thus providing a rich source of analytical data with which to characterize them. The materials were also used in a long-term validation study of an ETAAS method developed originally for blood lead determinations that has since been used unmodified for the determination of lead in urine also. Recently, urine lead method performance has been tracked in a proficiency testing program specifically for this analysis. In addition, a number of commercial control materials have been analyzed and evaluated.

  10. Thorium determination in intercomparison samples and in some Romanian building materials by gamma ray spectrometry.

    PubMed

    Pantelica, A; Georgescu, I I; Murariu-Magureanu, M D; Margaritescu, I; Cincu, E

    2001-01-01

    Thorium content in zircon sand, thorium ore and a thorium liquid sample (EU Laboratories Network Intercomparison), as well as in some Romanian building materials: sand, wood, tufa, asbestos-cement. cement mill dust, coal fly ash, bricks, and tile (28 samples) was deterimined by gamma ray spectrometry. For the building materials, 226Ra, 40K and 137Cs specific activities were also measured. The results were compared with the Romanian legal norms concerning the highest admissible levels for 232Th, 226Ra. and 40K radioactivity. and to Th, U, and K concentration values previously determined in our laboratory on similar types of samples.

  11. Determination of ultra trace amounts of copper by a multi-injection technique of electrothermal atomic absorption spectrometry after using solid-phase extraction.

    PubMed

    Sabermahani, Fatemeh; Taher, Mohammad Ali

    2014-01-01

    A new method using a multi-injection technique combined with SPE was developed for the determination of copper (Cu) in environmental samples. The method is based on SPE of copper ions on naphthalene as its 2-(5-bromo-2-pyridylazo)- 5-diethylaminophenol (5-Br-PADAP)-ammonium tetraphenylborate complex, in the pH range 6.0-9.5, and determined by electrothermal atomic absorption spectrometry. No chemical modifier is required in the graphite furnace. The detection limit can be reduced to 1.5 ng/L using an injection volume of 25.0 μL (five 5.0 μL) without interference by the matrixes. The optimum pyrolysis and atomization temperatures were 500 and 2200°C, respectively, for the concentrated solution of Cu. The sensitivity for 1% absorption was 2.6 pg Cu. Eight replicate determinations for 0.1 μg Cu in 5.0mL dimethylformamide gave an RSD of 2.3% for a single injection and 2.7% for a multi-injection. The procedure was validated with certified reference materials and successfully applied to the determination of copper in water and plant samples. PMID:25632448

  12. Crosslinked poly (4-vinylpyridine-ethylene glycol dimethacrylate) used for preconcentration of Cd(II) and its determination by flow injection flame atomic absorption spectrometry.

    PubMed

    Tarley, César Ricardo Teixeira; Farias, Natália Cristina Botteon; Lima, Giovana de Fátima; de Oliveira, Fernanda Midori; Bonfílio, Rudy; Dragunski, Douglas Cardoso; Clausen, Débora Nobile; Segatelli, Mariana Gava

    2014-01-01

    The main purpose of this research was to synthesize crosslinked poly(4-vinylpyridine-ethylene glycol dimethacrylate) and evaluate its feasibility for highly sensitive and selective determination of Cd in water samples by using flow injection flame atomic absorption spectrometry. The crosslinked polymer, prepared by bulk polymerization, was characterized by FTIR spectrometry and scanning electron microscopy. The flow injection solid-phase method was based on preconcentration of 20.0 mL of sample through 100 mg of the polymer packed into a minicolumn at pH 8.25 using a flow rate of 6.0 mL/min, followed by elution with 1.0 M HNO3. The sample solution parameters influencing the preconcentration behavior of Cd ions, such as pH, buffer concentration, and flow rate, were simultaneously studied and optimized using a Doehlert matrix. Values of 0.10 microg/L, 2.0-210 microg/L, 32.3, 18/h, 9.7/min, and 0.62 mL were obtained for LOD, linear range, preconcentration factor, sample throughput, concentration efficiency, and consumption index, respectively. The effect of the presence of the inorganic cations Pb(II), U(IV), Co(II), Hg(II), Cu(II), As(II), Mg(II), Sb(III), Ni(II), Th(IV), Ba(II), and Ca(II) on the method was studied, and the preconcentration of Cd was observed to have no interference. The accuracy of the method was assessed by analysis of natural water samples using addition and recovery tests and inductively coupled plasma/MS as a reference technique, as well as by analysis of a standard reference material of trace elements in water. PMID:24830174

  13. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    PubMed

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  14. [Application of solid sampling graphite furnace atomic absorption spectrophotometry to mensuration of brain iron content in rats].

    PubMed

    Zhang, Nan; Sheng, Qing-hai; Shi, Zhen-hua; Zhang, Zhi-guo; Duan, Xiang-lin; Chang, Yan-zhong

    2009-04-01

    In the present study, the authors performed the solid sampling and detected the iron levels in cortex, hippocampus and striatum of rat brain by GFAAS. The authors' results showed that there are no remarkable difference between the data obtained by solid sampling graphite furnace atomic absorption and liquid sampling graphite furnace atomic absorption. Compared to liquid sampling graphite furnace atomic absorption, the sample pre-treatment stage was obviously simplified, the cost was reduced significantly, and the time was shortened significantly in the solid sampling GFAAS. This study will be beneficial to the mensuration of iron content in micro-tissue of animal by solid sampling GFASS.

  15. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri; Hlongwane, Miranda; Heitmann, Uwe; Florek, Stefan

    2012-05-01

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 μg·L- 1 using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed.

  16. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE PAGES

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-01-01

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  17. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    SciTech Connect

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-01-01

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creating a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.

  18. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin

    2015-05-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L- 1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L- 1, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009-88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3-116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix.

  19. High current–density anodic electrodissolution in flow–injection systems for the determination of aluminium, copper and zinc in non–ferroalloys by flame atomic absorption spectrometry

    PubMed Central

    Giacomozzi, César Augusto; de Queiróz, Roldão R. U.; Souza, Ivan Gonçalves

    1999-01-01

    An automatic procedure with a high current-density anodic electrodissolution unit (HDAE) is proposed for the determination of aluminium, copper and zinc in non-ferroalloys by flame atomic absorption spectrometry, based on the direct solid analysis. It consists of solenoid valve-based commutation in a flow-injection system for on-line sample electro-dissolution and calibration with one multi-element standard, an electrolytic cell equipped with two electrodes (a silver needle acts as cathode, and sample as anode), and an intelligent unit. The latter is assembled in a PC-compatible microcomputer for instrument control, and for data acquisition and processing. General management of the process is achieved by use of software written in Pascal. Electrolyte compositions, flow rates, commutation times, applied current and electrolysis time were investigated. A 0.5 mol l-1 HN03 solution was elected as electrolyte and 300 A/cm2 as the continuous current pulse. The performance of the proposed system was evaluated by analysing aluminium in Al-alloy samples, and copper/zinc in brass and bronze samples, respectively. The system handles about 50 samples per hour. Results are precise (R.S.D. < 2%) and in agreement with those obtained by ICP-AES and spectrophotometry at a 95% confidence level. PMID:18924839

  20. Mercury speciation in sea food by flow injection cold vapor atomic absorption spectrometry using selective solid phase extraction.

    PubMed

    Vereda Alonso, E; Siles Cordero, M T; García de Torres, A; Cañada Rudner, P; Cano Pavón, J M

    2008-10-19

    An on-line inorganic and organomercury species separation, preconcentration and determination system consisting of cold vapor atomic absorption spectrometry (CV-AAS or CV-ETAAS) coupled to a flow injection (FI) method was studied. The inorganic mercury species was retained on a column (i.d., 3 mm; length 3 cm) packed to a height of 0.7 cm with a chelating resin aminopropyl-controlled pore glass (550 A) functionalized with [1,5-bis (2 pyridyl)-3-sulphophenyl methylene thiocarbonohydrazyde] placed in the injection valve of a simple flow manifold. Methylmercury is not directly determined. Previous oxidation of the organomercurial species permitted the determination of total mercury. The separation of mercury species was obtained by the selective retention of inorganic mercury on the chelating resin. The difference between total and inorganic mercury determined the organomercury content in the sample. The inorganic mercury was removed on-line from the microcolumn with 6% (m/v) thiourea. The mercury cold vapor generation was performed on-line with 0.2% (m/v) sodium tethrahydroborate and 0.05% (m/v) sodium hydroxide as reducing solution. The determination was performed using CV-AAS and CV-ETAAS, both approaches have been used and compared for the speciation of mercury in sea food. A detection limit of 10 and 6 ng l(-1) was achieved for CV-AAS and CV-ETAAS, respectively. The precision for 10 replicate determinations at the 1 microg l(-1) Hg level was 3.5% relative standard deviation (R.S.D.), calculated from the peak heights obtained. Both approaches were validated with the use of two certified reference materials and by spiking experiments. By analyzing the two biological certified materials, it was evident that the difference between the total mercury and inorganic mercury corresponds to methylmercury. The concentrations obtained by both techniques were in agreement with the certified values or with differences of the certified values for total Hg(2+) and CH(3)Hg

  1. Quantification of absorption, retention and elimination of two different oral doses of vitamin A in Zambian boys using accelerator mass spectrometry

    SciTech Connect

    Aklamati, E K; Mulenga, M; Dueker, S R; Buchholz, B A; Peerson, J M; Kafwembe, E; Brown, K H; Haskell, M J

    2009-10-12

    A recent survey indicated that high-dose vitamin A supplements (HD-VAS) had no apparent effect on vitamin A (VA) status of Zambian children <5 y of age. To explore possible reasons for the lack of response to HD-VAS among Zambian children, we quantified the absorption, retention, and urinary elimination of either a single HDVAS (60 mg) or a smaller dose of stable isotope (SI)-labeled VA (5 mg), which was used to estimate VA pool size, in 3-4 y old Zambian boys (n = 4 for each VA dose). A 25 nCi tracer dose of [{sup 14}C{sub 2}]-labeled VA was co-administered with the HD-VAS or SI-labeled VA, and 24-hr stool and urine samples were collected for 3 and 7 consecutive days, respectively, and 24-hr urine samples at 4 later time points. Accelerator Mass Spectrometry (AMS) was used to measure the cumulative excretion of {sup 14}C in stool and urine 3d after dosing to estimate, respectively, absorption and retention of the VAS and SI-labeled VA. The urinary elimination rate (UER) was estimated by plotting {sup 14}C in urine vs. time, and fitting an exponential equation to the data. Estimates of mean absorption, retention and the UER were 83.8 {+-} 7.1%, 76.3 {+-} 6.7%, and 1.9 {+-} 0.6%/d, respectively, for the HD-VAS and 76.5 {+-} 9.5%, 71.1 {+-} 9.4%, and 1.8 {+-} 1.2%/d, respectively for the smaller dose of SI-labeled VA. Estimates of absorption, retention and the UER did not differ by size of the VA dose administered (P=0.26, 0.40, 0.88, respectively). Estimated absorption and retention were negatively associated with reported fever (P=0.011) and malaria (P =0.010). HD-VAS and SI-labeled VA were adequately absorbed, retained and utilized in apparently healthy Zambian preschool-age boys, although absorption and retention may be affected by recent infections.

  2. Assessment of Personality and Absorption for Mediated Environments in a College Sample.

    PubMed

    Parsons, Thomas D; Barnett, Michael; Melugin, Patrick R

    2015-12-01

    While technological advancement enhances the effectiveness and versatility of mediated environments, researchers have sought to better understand how endogenous characteristics of individuals relate to the ways in which mediated environments are experienced. Although the Big Five personality traits and absorption have shown marked relations with reports of immersion, further investigation of these traits is needed. In particular, there is need for a psychometrically sound model that integrates these concepts. The aim of this study was to build upon previous research looking at the Big Five personality traits, absorption, and immersion in a large sample of college-aged individuals. Results indicate that the Big Five traits of neuroticism, openness to experience, and extraversion are positively related to immersion and that openness to experience possesses the strongest relationship with immersive tendency overall. By integrating an established measure of absorption, a more psychometrically sound model was achieved. PMID:26652674

  3. Assessment of Personality and Absorption for Mediated Environments in a College Sample.

    PubMed

    Parsons, Thomas D; Barnett, Michael; Melugin, Patrick R

    2015-12-01

    While technological advancement enhances the effectiveness and versatility of mediated environments, researchers have sought to better understand how endogenous characteristics of individuals relate to the ways in which mediated environments are experienced. Although the Big Five personality traits and absorption have shown marked relations with reports of immersion, further investigation of these traits is needed. In particular, there is need for a psychometrically sound model that integrates these concepts. The aim of this study was to build upon previous research looking at the Big Five personality traits, absorption, and immersion in a large sample of college-aged individuals. Results indicate that the Big Five traits of neuroticism, openness to experience, and extraversion are positively related to immersion and that openness to experience possesses the strongest relationship with immersive tendency overall. By integrating an established measure of absorption, a more psychometrically sound model was achieved.

  4. Determination of impurities in (124)I samples by high resolution gamma spectrometry.

    PubMed

    de Almeida, M C M; da Silva, R L; Delgado, J U; Poledna, R; de Araújo, M T F; Laranjeira, A S; de Veras, E; Braghirolli, A M S; dos Santos, G R; Lopes, R T

    2016-03-01

    (124)I is a radionuclide used in the diagnosis of tumors. The National Health Agency requires identification and activity measurement of impurities. Using gamma spectrometry with an efficiency calibrated high-purity germanium detector, impurities (125)I and (126)I in an (1)(24)I production sample were identified. Activity ratios of (125)I and (126)I to (124)I were approximately 0.5% and 98%, respectively. PMID:26653211

  5. Determination of total iodine in food samples using inductively coupled plasma-mass spectrometry.

    PubMed

    Benkhedda, Karima; Robichaud, André; Turcotte, Stéphane; Béraldin, Franca J; Cockell, Kevin A

    2009-01-01

    A method was developed and validated for the extraction and determination of total iodine (I) in food composite samples, representing different foods available on the Canadian market, by inductively coupled plasma-mass spectrometry (ICP-MS). Prior to analysis, samples were digested in a closed microwave system using a mixture of nitric acid and perchloric acid. The detection limit for iodine determination was 29 nglg and precisions of 10 and 1.3% were obtained for 10 replicate measurements of 100 and 1000 ng/g standards, respectively. The method was validated using Certified Reference Materials and spike recovery measurements in food samples and was applied for the determination of iodine in a variety of food composite samples from the Canadian Total Diet Study. The high sample throughput of ICP-MS makes the method suitable for analysis of large numbers of food samples with varying matrixes, such as for Total Diet Studies.

  6. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  7. Feature selection strategies for quality screening of diesel samples by infrared spectrometry and linear discriminant analysis.

    PubMed

    Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; de la Guardia, Miguel

    2013-01-30

    A rapid approach has been developed for the characterization of diesel quality, based on attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectrometry, which could be useful for diagnosing the sample quality condition. As a supervised technique, linear discriminant analysis (LDA) was employed to process the spectrometric data. The role of variable selection methods was also evaluated. Successive projection algorithm (SPA) and genetic algorithm (GA) feature selection techniques were applied prior to the discriminative procedure. It was aimed to compare the effect of feature selection procedures on classification capability of IR spectrometry for the diesel samples according to their quality passed or quality failed situation. Predictive capability of LDA was compared with that obtained by GA-LDA and SPA-LDA. Results showed 91.1%, 93.3% and 95.6% of accuracy for LDA, GA-LDA and SPA-LDA respectively. Thus SPA-LDA together with ATR-FTIR spectrometry was proposed as a fast screening analytical test for the evaluation of quality passed/failed situation in diesel samples. PMID:23597899

  8. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    SciTech Connect

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  9. Sample introduction in ICP spectrometry by hydraulic high-pressure nebulization

    NASA Astrophysics Data System (ADS)

    Luo, S. K.; Berndt, H.

    1994-05-01

    Hydraulic high-pressure nebulization (HHPN) is a new aerosol generation technique in atomic spectrometry. Owing to the high aerosol yield of about 50%, the application of HHPN in ICP spectrometry requires a desolvation unit. The constructed unit consists of a heated tube and a two-stage condenser (liquid cooler, Peltier module cooler). The liquid cooled Peltier module offers variability of condensation temperature between +15 and -40°C. This temperature range is also sufficient for solvent-plasma load control of highly volatile organic solvents. The desolvation unit offers condensation efficiency of 97% for aqueous samples (-5°C) and 94% for methanol (-25°C). The analyte mass transport efficiency amounts to about 24%. In inductively coupled plasma atomic emission spectrometry (ICP-AES), significant improvements in sensitivity and detection limits of about one order of magnitude were obtained for most of the elements under investigation. Using an HPLC pump (100-400 bar), the additional facilities of an on-line high-performance flow system is offered (high-performance flow atomic spectrometry).

  10. Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fábio G.; Borges, Daniel L. G.; Welz, Bernhard; Silva, Márcia M.; Heitmann, Uwe

    2008-02-01

    The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D 2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D 2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D 2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D 2 BC system of LS AAS.

  11. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    PubMed Central

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  12. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective.

  13. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis.

    PubMed

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  14. Analysis of bioethanol samples through Inductively Coupled Plasma Mass Spectrometry with a total sample consumption system

    NASA Astrophysics Data System (ADS)

    Sánchez, Carlos; Lienemann, Charles-Philippe; Todolí, Jose-Luis

    2016-10-01

    Bioethanol real samples have been directly analyzed through ICP-MS by means of the so called High Temperature Torch Integrated Sample Introduction System (hTISIS). Because bioethanol samples may contain water, experiments have been carried out in order to determine the effect of ethanol concentration on the ICP-MS response. The ethanol content studied went from 0 to 50%, because higher alcohol concentrations led to carbon deposits on the ICP-MS interface. The spectrometer default spray chamber (double pass) equipped with a glass concentric pneumatic micronebulizer has been taken as the reference system. Two flow regimes have been evaluated: continuous sample aspiration at 25 μL min- 1 and 5 μL air-segmented sample injection. hTISIS temperature has been shown to be critical, in fact ICP-MS sensitivity increased with this variable up to 100-200 °C depending on the solution tested. Higher chamber temperatures led to either a drop in signal or a plateau. Compared with the reference system, the hTISIS improved the sensitivities by a factor included within the 4 to 8 range while average detection limits were 6 times lower for the latter device. Regarding the influence of the ethanol concentration on sensitivity, it has been observed that an increase in the temperature was not enough to eliminate the interferences. It was also necessary to modify the torch position with respect to the ICP-MS interface to overcome them. This fact was likely due to the different extent of ion plasma radial diffusion encountered as a function of the matrix when working at high chamber temperatures. When the torch was moved 1 mm plasma down axis, ethanolic and aqueous solutions provided statistically equal sensitivities. A preconcentration procedure has been applied in order to validate the methodology. It has been found that, under optimum conditions from the point of view of matrix effects, recoveries for spiked samples were close to 100%. Furthermore, analytical concentrations for real

  15. Speciation of methyl- and butyltin compounds and inorganic tin in oysters by hydride generation atomic absorption spectrometry

    SciTech Connect

    Han, J.S.; Weber, J.H.

    1988-02-15

    Because of the toxicity of tributyltin originating from many antifouling marine paints, there is much concern about its effect on aquatic life and, particularly, on shellfish. This paper describes speciation of inorganic tin, methyltin compounds, and butyltin compounds from oyster samples. The authors validated the hydride generation atomic absorption spectrophotometric technique by demonstrating ca. 100% recovery from spiked samples and by the absence of any organotin decomposition products. Absolute detection limits (3sigma) are 1.1-2.5 ng for 0.1-g oyster samples (wet weight). This method is superior to published techniques because of careful validation, low limits of detection, and minimal sample manipulation.

  16. Analysis of iodine in food samples by inductively coupled plasma-mass spectrometry.

    PubMed

    Todorov, Todor I; Gray, Patrick J

    2016-01-01

    This work shows a method for the determination of iodine in a variety of food samples and reference materials using inductively coupled plasma-mass spectrometry (ICP-MS) following alkaline extraction. Optimisation of the addition of organic carbon showed that a minimum of 3% 2-propanol was necessary for a constant ratio of iodine to internal standard. The limit of quantification (LOQ), calculated as 30σ for the method, was 36 ng g(-1) in solid food samples. For method validation, seven standard reference materials (SRM) and 21 fortified food samples were used. The precision (%RSD) of the measurements was in the 2-7% range. Accuracies for the SRMs were 85-105%, while the fortified food samples showed 81-119% recoveries, including a number of samples fortified at 50% of the LOQ.

  17. Summary of gamma spectrometry on local air samples from 1985--1995

    SciTech Connect

    Winn, W.G.

    1997-04-02

    This report summarizes the 1985--1995 results of low-level HPGe gamma spectrometry analysis of high-volume air samples collected at the Aiken Airport, which is about 25 miles north of SRS. The author began analyzing these samples with new calibrations using the newly developed GRABGAM code in 1985. The air sample collections were terminated in 1995, as the facilities at the Aiken Airport were no longer available. Air sample measurements prior to 1985 were conducted with a different analysis system (and by others prior to 1984), and the data were not readily available. The report serves to closeout this phase of local NTS air sample studies, while documenting the capabilities and accomplishments. Hopefully, the information will guide other applications for this technology, both locally and elsewhere.

  18. Determination of femtogram quantities of protactinium in geologic samples by thermal ionization mass spectrometry

    SciTech Connect

    Pickett, D.A.; Murrell, M.T.; Williams, R.W. )

    1994-04-01

    We describe a procedure for measurement of [sup 231]Pa in geologic samples by isotope dilution thermal ionization mass spectrometry, using [sup 233]Pa as a spike isotope, which provides marked improvements in precision and sample size relative to established decay counting techniques. This method allows determination of as little as a few tens of femtograms of [sup 231]Pa (approximately 10[sup 3] atoms) with a conservative estimated uncertainty of [+-]1% (95% confidence level). Applications of [sup 231]Pa-[sup 235]U systematics to uranium-series geochemistry and geochronology should be greatly enhanced by this approach. 31 refs., 4 figs., 1 tab.

  19. Ultrasound-assisted emulsification microextraction based on solidification floating organic drop trace amounts of manganese prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Mohadesi, Alireza; Falahnejad, Masoumeh

    2012-01-01

    In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn(+2) at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50-10.0 ng mL(-1) with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL(-1) was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504

  20. Ultrasound-assisted extraction for the determination of Cu, Mn, Ca, and Mg in alternative oilseed crops using flame atomic absorption spectrometry.

    PubMed

    Peronico, Vanessa Cruz Dias; Raposo, Jorge Luiz

    2016-04-01

    An ultrasound-assisted extraction procedure was evaluated for the multi-element determination of Cu, Mn, Ca, and Mg in alternative oilseed crops using flame atomic absorption spectrometry. The best results were obtained when 0.3g of samples were used to extract the mineral content using 10 mL of a 1.40 mol L(-1) HNO3 solution for 10 min at 25 °C. The accuracy and precision of the analysis were evaluated using two oilseed reference materials, and the results were in agreement with reference values at 95% confidence level (paired t-test). The method was used to analyze five oilseed samples and the results were in agreement with those obtained using a closed-vessel microwave-assisted acid digestion system for sample preparation. The relative standard deviations were 0.52-6.13% for all of the standard and sample measurements, and the limits of detection were 666.7, 416.7, 333.4 μg g(-1), and 3.5 mg g(-1) for Cu, Mn, Ca, and Mg, respectively. PMID:26593618

  1. Time-resolved inductively coupled plasma mass spectrometry measurements with individual, monodisperse drop sample introduction.

    PubMed

    Dziewatkoski, M P; Daniels, L B; Olesik, J W

    1996-04-01

    Individual ion clouds, each produced in the ICP from a single drop of sample, were monitored using time-resolved mass spectrometry and optical emission spectrometry simultaneously. The widths of the ion clouds in the plasma as a function of distance from the point of initial desolvated particle vaporization in the ICP were estimated. The Li(+) cloud width (full width at halfmaximum) varied from 85 to 272 μs at 3 and 10 mm from the apparent vaporization point, respectively. The Sr(+) cloud width varied from 97 to 142 μs at 5 and 10 mm from the apparent vaporization point, respectively. The delays between optical and mass spectrometry signals were used to measure gas velocities in the ICP. The velocity data could then be used to convert ion cloud peak widths in time to cloud sizes in the ICP. Li(+) clouds varied from 2.1 to 6.6 mm (full width at half-maximum) and Sr(+) clouds varied from 2.4 to 3.5 mm at the locations specified above. Diffusion coefficients were estimated from experimental data to be 88, 44, and 24 cm(2)/s for Li(+), Mg(+), and Sr(+), respectively. The flight time of ions from the sampling orifice of the mass spectrometer to the detector were mass dependent and varied from 13 to 21 μs for Mg(+) to 93 to 115 μs for Pb(+).

  2. Paper-capillary spray for direct mass spectrometry analysis of biofluid samples.

    PubMed

    Ren, Yue; Chiang, Spencer; Zhang, Wenpeng; Wang, Xiao; Lin, Ziqing; Ouyang, Zheng

    2016-02-01

    Paper spray has been developed as an ambient ionization method for direct analysis of biological samples using mass spectrometry. While distinct advantages of paper spray have been demonstrated, especially for quantitative analysis and design of disposable sample cartridges, the need for improvement has also been recognized, especially for the use with miniature mass spectrometers. In this study, we made an improvement to the sampling and ionization by adding a capillary emitter to the paper substrate to produce a paper-capillary spray, which has been shown to have significant, positive impact on the sensitivity and reproducibility for direct mass spectrometry analysis. The paper-capillary devices were fabricated and the effects of the geometry, the treatment of the capillary emitters, as well as the sample disposition methods were characterized. The method's analytical performance was also characterized for analysis of therapeutic drugs in blood samples. Quantitation of cotinine in blood using a commercial triple quadrupole and sitagliptin (Januvia®) in blood using a desktop Mini 12 ion trap mass spectrometer was also demonstrated.

  3. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry.

    PubMed

    Gonzáles, A P S; Firmino, M A; Nomura, C S; Rocha, F R P; Oliveira, P V; Gaubeur, I

    2009-03-23

    The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 molL(-1) HNO(3). The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 microgL(-1), with a detection limit estimated as 3 microgL(-1) at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n=20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111% range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level. PMID:19264168

  4. Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lariviere, Dominic; Taylor, Vivien F.; Evans, R. Douglas; Cornett, R. Jack

    2006-08-01

    The determination of naturally occurring and anthropogenic radionuclides in the environment by inductively coupled plasma mass spectrometry has gained recognition over the last fifteen years, relative to radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment, and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels (fg range) of many radioisotopes, including those with half-lives between 1 and 1000 years, without requiring very complex sample pre-concentration schemes. However, the identification and quantification of radioisotopes in environmental matrices is still hampered by a variety of analytical issues such as spectral (both atomic and molecular ions) and non-spectral (matrix effect) interferences and instrumental limitations (e.g., abundance sensitivity). The scope of this review is to highlight recent analytical progress and issues associated with the determination of radionuclides by inductively coupled plasma mass spectrometry. The impact of interferences, instrumental limitations (e.g., degree of ionization, abundance sensitivity, detection limits) and low sample-to-plasma transfer efficiency on the measurement of radionuclides by inductively coupled plasma mass spectrometry will be described. Solutions that overcome these issues will be discussed, highlighting their pros and cons and assessing their impact on the measurement of environmental radioactivity. Among the solutions proposed, mass and chemical resolution through the use of sector-field instruments and chemical reactions/collisions in a pressurized cell, respectively, will be described. Other methods, such as unique sample introduction equipment (e.g., laser ablation, electrothermal vaporisation, high efficiency nebulization) and instrumental modifications/optimizations (e.g., instrumental vacuum, radiofrequency power, guard electrode) that improve sensitivity and performance

  5. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  6. Serum and tissue selenium contents related to renal disease and colon cancer as determined by electrothermal atomic absorption spectrometry.

    PubMed

    Marchante-Gayón, J M; Sánchez-Uría, J E; Sanz-Medel, A

    1996-12-01

    Microwave digestion with nitric acid and hydrogen peroxide was applied to the determination of selenium in biological tissues by Electrothermal Atomic Absorption Spectrometry (ETAAS). Validation of this method is presented in terms of adequate recovery of selenium from standard reference materials and the method is applied to carcinogen human colon tissue. Ultramicrofiltration was used to study selenium protein binding and its fractionation and speciation in blood serum. These studies showed that 95% of the total selenium in serum seems to be bonded to high-molecular-weight proteins. Experiments with renal failure patients showed lower selenium levels than in the health population (0.57 +/- 0.23 mM versus 0.81 +/- 0.11 mM). A wider distribution pattern of total serum selenium concentration (from 0.1 to 1 mM) was clearly observed in renal failure patients. However, the ultramicrofiltrable selenium fraction was always constant, even in the presence of desferrioxamine (DFO).

  7. Diagnostics of reactive pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam Mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cunge, Gilles

    2011-10-01

    Pulsed plasmas are promising for etching applications in the microelectronic industry. However, many new phenomena are involved when a high density discharge is pulsed. To better understand these processes it is necessary to probe the radicals' kinetics with a microsecond resolution. We have developed several diagnostics to reach this goal including broad band absorption spectroscopy with UV LEDs to detect small polyatomic radicals and with a deuterium VUV source to detect larger closed shell molecules and the modulated mass spectrometry to monitor atomic species. We will discuss the impact of the plasma pulsing frequency and duty cycle on the radical densities in Cl2 based plasmas, and the consequences on plasma processes. Work done in collaboration with Paul Bodart, Melisa Brihoum, Maxime Darnon, Erwin Pargon, Olivier Joubert, and Nader Sadeghi, CNRS/LTM.

  8. Selective precipitation of potassium in seawater samples for improving the sensitivity of plain γ-ray spectrometry

    SciTech Connect

    Ferrante, Marco De Angelis, Francesco; Nisi, Stefano Laubenstein, Matthias

    2015-08-17

    An analytical method is presented to reduce the amount of {sup 40}K in sea water samples, in order to lower its interference in γ-ray analysis below 1.4 MeV due to the Compton continuum. Sodium tetraphenylborate was used to successfully precipitate {sup 40}K in the samples. A custom procedure for precipitation of potassium was developed and it was evaluated for its selectivity, reproducibility and efficiency, using conventional analytical techniques such as atomic absorption spectrophotometry and inductively coupled plasma mass spectrometry (ICP-MS). This work has shown that the selective precipitation of potassium with sodium tetraphenylborate has led to a decrease of detection limit of radio nuclides such as {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 137}Cs, {sup 134}Cs, {sup 133}I, {sup 134}I, {sup 60}Co in γ-analysis. In particular, the detection limit for nuclides with emissions in the energy window energy below 1400 keV is improved by almost one order of magnitude.

  9. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    USGS Publications Warehouse

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  10. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Chen, Hao

    2016-06-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.

  11. Amino acid analysis in micrograms of meteorite sample by nanoliquid chromatography-high-resolution mass spectrometry.

    PubMed

    Callahan, Michael P; Martin, Mildred G; Burton, Aaron S; Glavin, Daniel P; Dworkin, Jason P

    2014-03-01

    Amino acids and their enantiomers in a 360 microgram sample of Murchison meteorite were unambiguously identified and quantified using chemical derivatization and nanoliquid chromatography coupled to nanoelectrospray ionization high resolution orbitrap mass spectrometry techniques. The distribution and abundance of amino acids were similar to past studies of Murchison meteorite but the samples used here were three orders of magnitude lower. The analytical method was also highly sensitive, and some amino acid reference standards were successfully detected at a level of ∼200 attomoles (on column). These results may open up the possibility for investigating other less studied, sample-limited extraterrestrial samples (e.g., micrometeorites, interplanetary dust particles, and cometary particles) for biologically-relevant organic molecules. PMID:24529954

  12. Amino acid analysis in micrograms of meteorite sample by nanoliquid chromatography-high-resolution mass spectrometry.

    PubMed

    Callahan, Michael P; Martin, Mildred G; Burton, Aaron S; Glavin, Daniel P; Dworkin, Jason P

    2014-03-01

    Amino acids and their enantiomers in a 360 microgram sample of Murchison meteorite were unambiguously identified and quantified using chemical derivatization and nanoliquid chromatography coupled to nanoelectrospray ionization high resolution orbitrap mass spectrometry techniques. The distribution and abundance of amino acids were similar to past studies of Murchison meteorite but the samples used here were three orders of magnitude lower. The analytical method was also highly sensitive, and some amino acid reference standards were successfully detected at a level of ∼200 attomoles (on column). These results may open up the possibility for investigating other less studied, sample-limited extraterrestrial samples (e.g., micrometeorites, interplanetary dust particles, and cometary particles) for biologically-relevant organic molecules.

  13. Development of high-temperature pulsed slit nozzle and its application to supersonic jet absorption spectrometry.

    PubMed

    Kawamura, S; Lin, C H; Imasaka, T

    1994-11-01

    A high-temperature pulsed slit nozzle, consisting of a circular pulsed nozzle and an interface to convert a circular flow into a slit flow has been constructed. The absorption spectrum is measured by scanning the wavelength of the monochromator equipped with a xenon arc lamp and by detecting the transmitted light through a jet with a photomultiplier. A rotationally cooled spectrum is clearly observed for aniline only when a long slit nozzle is employed. The absorptivity increases proportionally to the slit length at least up to 6 cm. The time for recording a spectrum is 3.5 min, which is reduced to several seconds by transmitting a white light through a jet and by measuring the spectrum with an optical multichannel analyzer. The detection limit is estimated to a partial vapor pressure of 0.4 torr for aniline. The present system can be conveniently used in routine analysis, because of a wide spectral coverage of the lamp source.

  14. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application.

    PubMed

    He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper

    2011-04-15

    Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.

  15. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    SciTech Connect

    Barnett, J. Matthew; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-02-17

    Since the mid-1980s, Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as the correction factor for self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. This value accounts for activity that cannot be detected by direct counting of alpha and beta particles. Emissions can be degraded or blocked by filter fibers for particles buried in the filter material or by inactive dust particles collected with the radioactive particles. These filters are used for monitoring air emissions from PNNL stacks for radioactive particles. This paper describes an effort to re-evaluate self-absorption effects in particulate radioactive air sample filters (Versapor® 3000, 47 mm diameter) used at PNNL. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Filter ratios were calculated by dividing the initial counts by the post-digestion counts with the expectation that post-digestion counts would be higher because digestion would expose radioactivity embedded in the filter in addition to that on top of the filter. Contrary to expectations, the post digestion readings were almost always lower than initial readings and averaged approximately half the initial readings for both alpha and beta activity. Before and after digestion readings appeared to be related to each other, but with a low coefficient of determination (R^2) value. The ratios had a wide range of values indicating that this method did not provide sufficient precision to quantify self-absorption

  16. Use of factorial design and Doehlert matrix for multivariate optimisation of an on-line preconcentration system for lead determination by flame atomic absorption spectrometry.

    PubMed

    Ferreira, S L C; dos Santos, W N L; Bezerra, M A; Lemos, V A; Bosque-Sendra, J M

    2003-02-01

    A system for on-line preconcentration and determination of lead by flame atomic absorption spectrometry (FAAS) was proposed. It was based on the sorption of lead(II) ions on a minicolumn of polyurethane foam loaded with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM). The optimisation step was carried out using two-level full factorial and Doehlert designs for the determination of the optimum conditions for lead preconcentration. The proposed procedure allowed the determination of lead with a detection limit of 2.2 microg L(-1), and a precision, calculated as relative standard deviation (RSD), of 2.4 and 6.8 for a lead concentration of 50.0 and 10.0 microg L(-1), respectively. A preconcentration factor of 45 and a sampling frequency of 27 samples per hour were obtained. The recovery achieved for lead determination in the presence of several cations demonstrated that this procedure has enough selectivity for analysis of environmental samples. The validation was carried out by analysis of certified reference material. This procedure was applied to lead determination in natural food. PMID:12589511

  17. Imidazole-Modified Nanoporous Silica for Lead Ion Solid Phase Extraction Prior to Determination from Industrial Wastewaters by Flame Atomic Absorption Spectrometry.

    PubMed

    Behbahani, Ali; Ardjmand, Mehdi

    2015-01-01

    A new method was applied to produce modified nanoporous silica as a novel sorbent for Pb(II) ion SPE from industrial wastewater samples. In this modified method, the produced nanoporous silica has a higher functional group loading, which leads to a higher preconcentration factor as well as a lower LOD. This modified nanoporous silica was used for preconcentration prior to subsequent determination of Pb(II) ions by flame atomic absorption spectrometry. Various parameters such as the eluent, pH of the sample solution, and flow rate were optimized during this work. Also, the effect of a variety of ions on preconcentration and recovery of Pb(II) ions was investigated. The LOD, defined as five times the SD of the blank, was determined to be lower than 0.1 mg/L with an RSD of <2%. The accuracy of the method was established by analyzing standard reference materials with certified Pb concentrations. Finally, the established method was successfully applied for determination of the Pb(II) ion concentration in industrial wastewater samples.

  18. Speciation of antimony(III) and antimony(V) by electrothermal atomic absorption spectrometry after ultrasound-assisted emulsification of solidified floating organic drop microextraction.

    PubMed

    Wen, Shengping; Zhu, Xiashi

    2013-10-15

    A simple, sensitive and efficient method of ultrasound-assisted emulsification of solidified floating organic drop microextraction (USE-SFODME) coupled to electrothermal atomic absorption spectrometry for the speciation of antimony at different oxidation state Sb(III)/Sb(V) in environmental samples was established. In this method, the hydrophobic complex of Sb(III) with sodium diethyldithiocarbamate (DDTC) is extracted by 1-undecanol at pH 9.0, while Sb(V) remains in aqueous phase. Sb(V) content can be calculated by subtracting Sb(III) from the total antimony after reducing Sb(V) to Sb(III) by l-cysteine. Various factors affecting USE-SFODME including pH, extraction solvent and its volume, concentration of DDTC, sonication time, and extraction temperature were investigated. Under the optimized conditions, the calibration curve was linear in the range from 0.05 to 10.0 ng mL(-1), with the limit of detection (3σ) 9.89 ng L(-1) for Sb(III). The relative standard deviation for Sb(III) was 4.5% (n=9, c=1.0 ng mL(-1)). This method was validated against the certified reference materials (GSB 07-1376-2001, GBW07441), and applied to the speciation of antimony in environmental samples (soil and water samples) with satisfactory results.

  19. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    PubMed

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. PMID:27260436

  20. Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box Behnken design

    NASA Astrophysics Data System (ADS)

    Maranhão, Tatiane De A.; Martendal, Edmar; Borges, Daniel L. G.; Carasek, Eduardo; Welz, Bernhard; Curtius, Adilson J.

    2007-09-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 °C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 °C for Pb and 800 °C for Cd, using a graphite tube with a platform treated with 500 μg Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L- 1 for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%.

  1. Imidazole-Modified Nanoporous Silica for Lead Ion Solid Phase Extraction Prior to Determination from Industrial Wastewaters by Flame Atomic Absorption Spectrometry.

    PubMed

    Behbahani, Ali; Ardjmand, Mehdi

    2015-01-01

    A new method was applied to produce modified nanoporous silica as a novel sorbent for Pb(II) ion SPE from industrial wastewater samples. In this modified method, the produced nanoporous silica has a higher functional group loading, which leads to a higher preconcentration factor as well as a lower LOD. This modified nanoporous silica was used for preconcentration prior to subsequent determination of Pb(II) ions by flame atomic absorption spectrometry. Various parameters such as the eluent, pH of the sample solution, and flow rate were optimized during this work. Also, the effect of a variety of ions on preconcentration and recovery of Pb(II) ions was investigated. The LOD, defined as five times the SD of the blank, was determined to be lower than 0.1 mg/L with an RSD of <2%. The accuracy of the method was established by analyzing standard reference materials with certified Pb concentrations. Finally, the established method was successfully applied for determination of the Pb(II) ion concentration in industrial wastewater samples. PMID:26525261

  2. Novel extraction induced by emulsion breaking as a tool for the determination of trace concentrations of Cu, Mn and Ni in biodiesel by electrothermal atomic absorption spectrometry.

    PubMed

    Pereira, Fernanda M; Zimpeck, Renata C; Brum, Daniel M; Cassella, Ricardo J

    2013-12-15

    This work proposes a novel method for the determination of trace concentrations of Cu, Mn and Ni in biodiesel samples by electrothermal atomic absorption spectrometry. In order to overcome problems related to the organic matrix in the direct introduction of the samples, a new extraction approach was investigated. The method was based on the extraction induced by emulsion breaking, in which metals were transferred from the biodiesel to an acid aqueous phase after formation and breaking of a water-in-oil emulsion prepared by mixing the biodiesel sample with an aqueous solution containing surfactant and nitric acid. Several parameters that could influence the performance of the system were evaluated. Quantitative extractions of the analytes were obtained when the extraction was performed using an emulsifier solution containing 2.1 mol L(-1) of HNO3 and 7% m/v of Triton X-100. The extraction time had remarkable influence on the efficiency of the process, being necessary an agitation time of 60 min to achieve maximum extraction. The limits of quantification were below 1 µg L(-1) for the three analytes under study. The accuracy of the method was tested by application of a recovery test (recovery percentages between 89% and 109% were observed) and by comparison with a well-established method, taken as reference. PMID:24209306

  3. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent — Cold vapor atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Duan, Taicheng; Song, Xuejie; Xu, Jingwei; Guo, Pengran; Chen, Hangting; Li, Hongfei

    2006-09-01

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO 3 and subsequently reduced by NaBH 4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min - 1 sample loading rate. The detection limit was 0.2 ng L - 1 and much lower than that of conventional method (around 15.8 ng L - 1 ). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L - 1 of Hg and the linear working curve is from 20 to 2000 ng L - 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.

  4. On-line micro-volume introduction system developed for lower density than water extraction solvent and dispersive liquid-liquid microextraction coupled with flame atomic absorption spectrometry.

    PubMed

    Anthemidis, Aristidis N; Mitani, Constantina; Balkatzopoulou, Paschalia; Tzanavaras, Paraskevas D

    2012-07-01

    A simple and fast preconcentration/separation dispersive liquid-liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L(-1) and 3.3% for lead and 0.12 μg L(-1) and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.

  5. Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Rivas, Ricardo E.; López-García, Ignacio; Hernández-Córdoba, Manuel

    2009-04-01

    A new procedure for the determination of inorganic arsenic (III,V) and antimony (III,V) in water samples by dispersive liquid-liquid micro extraction separation and electrothermal atomic absorption spectrometry (ETAAS) is presented. At pH 1, As(III) and Sb(III) are complexed with ammonium pyrrolidine dithiocarbamate and extracted into the fine droplets formed when mixing carbon tetrachloride (extraction solvent), methanol (disperser solvent) and the sample solution. After extraction, the phases are separated by centrifugation, and As(III) and Sb(III) are determined in the organic phase. As(V) and Sb(V) remain in the aqueous layer. Total inorganic As and Sb are determined after the reduction of the pentavalent forms with sodium thiosulphate. As(V) and Sb(V) are calculated by difference. The detection limits are 0.01 and 0.05 µg L - 1 for As(III) and Sb(III), respectively, with an enrichment factor of 115. The relative standard deviation is in the 2.9-4.5% range. The procedure has been applied to the speciation of inorganic As and Sb in bottled, tap and sea water samples with satisfactory results.

  6. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry.

    PubMed

    Muramoto, Shin; Forbes, Thomas P; van Asten, Arian C; Gillen, Greg

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal intensity to the amount of drug deposited on the surface were generated from inkjet-printed arrays of cocaine, methamphetamine, and heroin with a deposited-mass ranging nominally from 10 pg to 50 ng per spot. These curves were used to construct concentration maps that visualized the spatial distribution of the drugs on top of a fingerprint, as well as being able to quantify the amount of drugs in a given area within the map. For the drugs on the fingerprint on silicon, ToF-SIMS showed great success, as it was able to generate concentration maps of all three drugs. On the fingerprint on paper, only the concentration map of cocaine could be constructed using ToF-SIMS and DESI-MS, as the signals of methamphetamine and heroin were completely suppressed by matrix and substrate effects. Spatially resolved quantification of illicit drugs using imaging mass spectrometry is possible, but the choice of substrates could significantly affect the results.

  7. [Analysis of polycyclic aromatic hydrocarbons in air samples by gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Zhao, Bo; Li, Yuqing; Zhang, Sukun; Han, Jinglei; Xu, Zhencheng; Fang, Jiande

    2014-09-01

    A method of gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS) has been optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in air samples. In the analysis step, isotope dilution was introduced to the quantification of PAHs. The GC-MS/MS method was applied to the analysis of the real air samples around a big petrochemical power plant in South China. The results were compared with those obtained by gas chromatography coupled to mass spectrometry (GC-MS). The results showed that better selectivity and sensitivity were obtained by GC-MS/MS. It was found that the external standard of deuterated-PAHs and internal standard of hexamethyl benzene were disturbed seriously with GC-MS, and the problems were both solved effectively by GC-MS/MS. Therefore more accurate quantification results of PAHs were obtained with GC-MS/MS. For the analysis of real samples, the RSDs of relative response factors ranged from 2.60% to 15.6% in standard curves; the recoveries of deuterated-PAHs ranged from 55.2% to 82.3%; the recoveries of spiked samples ranged from 98.9% to 111%; the RSDs of parallel specimens ranged from 6.50% to 18.4%; the concentrations of field blank samples ranged from not detected to 44.3 pg/m3; and the concentrations of library blank samples ranged from not detected to 36.5 pg/m3. The study indicated that the application of GC-MS/MS on the analysis of PAHs in air samples was recommended. PMID:25752088

  8. Speciation of arsenic(III)/arsenic(V) and selenium(IV)/ selenium(VI) using coupled ion chromatography - hydride generation atomic absorption spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple analytical methods have been developed to speciate inorganic arsenic and selenium in the ppb range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determinations of the redox states arsenite A...

  9. Direct determination of particulate elements in edible oils and fats using an ultrasonic slurry sampler with graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    van Dalen, Gerard; de Galan, Leo

    1994-12-01

    Through the use of an ultrasonic slurry mixer, graphite furnace atomic absorption spectrometry (GFAAS) can be applied for the fully automated determination of particulate iron and nickel in edible oils and fats. The unsupervised ultrasonic slurry autosampler yields the same accuracy and somewhat better precision than the much more laborious manual GFAAS method.

  10. Pyrolysis-mass spectrometry/pattern recognition on a well-characterized suite of humic samples

    USGS Publications Warehouse

    MacCarthy, P.; DeLuca, S.J.; Voorhees, K.J.; Malcolm, R.L.; Thurman, E.M.

    1985-01-01

    A suite of well-characterized humic and fulvic acids of freshwater, soil and plant origin was subjected to pyrolysis-mass spectrometry and the resulting data were analyzed by pattern recognition and factor analysis. A factor analysis plot of the data shows that the humic acids and fulvic acids can be segregated into two distinct classes. Carbohydrate and phenolic components are more pronounced in the pyrolysis products of the fulvic acids, and saturated and unsaturated hydrocarbons contribute more to the humic acid pyrolysis products. A second factor analysis plot shows a separation which appears to be based primarily on whether the samples are of aquatic or soil origin. ?? 1985.

  11. Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry.

    PubMed

    Betti, M; Rasmussen, G; Koch, L

    1996-07-01

    A double-focusing Glow Discharge Mass Spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from Thermal Ionization Mass Spectrometry (TIMS). For boron and lithium at microg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques.

  12. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R E

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  13. Miniaturizing sample spots for matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Tu, Tingting; Gross, Michael L.

    2009-01-01

    The trend of miniaturization in bioanalytical chemistry is shifting from technical development to practical application. In matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), progress in miniaturizing sample spots has been driven by the needs to increase sensitivity and speed, to interface with other analytical microtechnologies, and to develop miniaturized instrumentation. We review recent developments in miniaturizing sample spots for MALDI-MS. We cover both target modification and microdispensing technologies, and we emphasize the benefits with respect to sensitivity, throughput and automation. We hope that this review will encourage further method development and application of miniaturized sample spots for MALDI-MS, so as to expand applications in analytical chemistry, protein science and molecular biology. PMID:20161086

  14. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment.

    PubMed

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro

    2011-01-01

    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples