Science.gov

Sample records for absorption spectrometry samples

  1. Determination of lead in fish samples by slurry sampling electrothermal atomic absorption spectrometry.

    PubMed

    Huang, S J; Jiang, S J

    2000-08-01

    Ultrasonic slurry sampling electrothermal atomic absorption spectrometry (USS-ETAAS) was been applied to the determination of lead in several fish samples. The influences of instrument operating conditions and slurry preparation on the signal were examined. Palladium and ammonium nitrate were used as the modifier to improve the signal. Since the sensitivity to lead in various fish slurries and aqueous solutions was different, the standard additions method was used for the determination of lead in these fish samples. The method was applied to the determination of lead in dogfish muscle reference material (DORM-2) and a swordfish muscle sample purchased from the local market. The analysis results agreed with the reference value. The accuracy was better than 6%. The precision between sample replicates was better than 16% with the USS-ETAAS method. The detection limit of lead estimated from standard additions curve was about 0.053-0.058 microgram g-1 in different samples.

  2. Microdroplet Sample Application in Electrothermal Atomization for Atomic Absorption Spectrometry.

    DTIC Science & Technology

    1982-03-29

    ad ideftify by Week amber) atomic absorption spectroscopy microsampl ing graphite- furnace AAS automation C> 20. AOSTRACT (Coninuhe an reveresi de It...furnace and spectrometer system as well as for partial support of this project. REFERENCES 1. J. D. Winefordner, Atomic Absorption Spectroscopy , G. F

  3. Determination of arsenic and selenium in environmental and agricultural samples by hydride generation atomic absorption spectrometry

    SciTech Connect

    Hershey, J.W.; Oostdyk, T.S.; Keliher, P.N.

    1988-11-01

    Agricultural and environmental samples are digested with acid, and arsenic and selenium are determined using hydride generation atomic absorption spectrometry. Interelement interferences are eliminated by high acid concentrations or cation-exchange resins. Agreement with standard reference material is excellent. The technique is also applied to actual samples.

  4. Differentiation and classification of beers with flame atomic spectrometry and molecular absorption spectrometry and sample preparation assisted by microwaves

    NASA Astrophysics Data System (ADS)

    Bellido-Milla, Dolores; Moreno-Perez, Juana M.; Hernández-Artiga, María. P.

    2000-07-01

    The characterization of beer samples has a lot of interest because their composition can affect the taste and stability of beer and consumer health. Flame atomic absorption spectrometry was used to determine Fe, Mn, Zn, Cu, Mg, Ca and Al. Sodium and K were determined by flame atomic emission spectrometry. A sample preparation method was developed, based on treatment with HNO 3 and H 2O 2 in a microwave oven. This has many advantages over the methods found in the literature. The combination of the results of atomic spectrometry and the spectrum obtained by molecular absorption spectrometry provides information on the inorganic and organic components of the samples. The application of chemometric techniques to chemical composition data could be extremely useful for food quality control. The metal concentrations, the molecular absorption spectrum, the pH and conductivity of each sample were subject to analysis of variance and linear discriminant analysis. Twenty-five different beer samples were used to differentiate and classify different types of beers.

  5. Determination of mercury in sewage sludge by direct slurry sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Baralkiewicz, Danuta; Gramowska, Hanka; Kózka, Małgorzata; Kanecka, Anetta

    2005-03-01

    Ultrasonic slurry sampling electrothermal atomic absorption spectrometry (ETAAS) method was elaborated to the determination of Hg in sewage sludge samples with the use of KMnO 4+Pd modifier. The minimum sample amount required for slurry preparation with respect to sample homogeneity was evaluated by weighting masses between 3 and 30 mg directly into the autosampler cups. Validation of the proposed method was performed with the use of Certified Reference Materials of sewage sludge, CRM 007-040 and CRM 144R. Two sewage sludge samples from Poznañ (Poland) city were analysed using the present direct method and a method with sample digestion, resulting in no difference within statistical error.

  6. [Determination of calcium and magnesium in wheat flour by suspension sampling-flame atomic absorption spectrometry].

    PubMed

    Liu, L; Zhang, Q; Hu, Y

    1999-06-01

    Suspension sampling technique was applied to flame atomic absorption spectrometry and was successfully used to determine calcium and magnesium in wheat flour. The wheat flour was suspended in agar sol containing dibutyl phthalate and made into suspension. Choice of suspension agent and elimination of chemical interference were studied. The test solution was injected into air-acetylene flame to determine calcium and magnesium by standard addition method. Determination results were consistent with those obtained by ashing method. The t-test showed that no difference was found between the two methods. Displacement of ashing method by suspension sampling method for the sample pretreatment is possible. This method is convenient, rapid and accurate.

  7. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  8. Solid sampling determination of magnesium in lithium niobate crystals by graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dravecz, Gabriella; Laczai, Nikoletta; Hajdara, Ivett; Bencs, László

    2016-12-01

    The vaporization/atomization processes of Mg in high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS) were investigated by evaporating solid (powder) samples of lithium niobate (LiNbO3) optical single crystals doped with various amounts of Mg in a transversally heated graphite atomizer (THGA). Optimal analytical conditions were attained by using the Mg I 215.4353 nm secondary spectral line. An optimal pyrolysis temperature of 1500 °C was found for Mg, while the compromise atomization temperature in THGAs (2400 °C) was applied for analyte vaporization. The calibration was performed against solid (powered) lithium niobate crystal standards. The standards were prepared with exactly known Mg content via solid state fusion of the oxide components of the matrix and analyte. The correlation coefficient (R value) of the linear calibration was not worse than 0.9992. The calibration curves were linear in the dopant concentration range of interest (0.74-7.25 mg/g Mg), when dosing 3-10 mg of the powder samples into the graphite sample insertion boats. The Mg content of the studied 19 samples was in the range of 1.69-4.13 mg/g. The precision of the method was better than 6.3%. The accuracy of the results was verified by means of flame atomic absorption spectrometry with solution sample introduction after digestion of several crystal samples.

  9. [Determination of Cu, Zn and Fe in Huaiyao by suspension sampling-flame atomic absorption spectrometry].

    PubMed

    Wei, Wei; Qu, Ling-bo; Li, Jian-jun; Li, Yan-hong

    2002-10-01

    A new method--suspension sampling technique was applied to flame atomic absorption spectrometry and was successfully used to determine Cu, Zn, Fe in Huaiyao. Then studied the choice of suspension agent and elimination of chemical interference. The huaiyao sample was suspended in agar sol, and injected into air-acetylene flame by using standard addition method to determine Cu, Zn, Fe. Determined results were consistent with those obtained by HNO3 + H2SO4 + HClO4 method. The t-test showed that no obvious difference was found between the two methods. Displacement of HNO3 + H2SO4 + HClO4 method by suspension sampling method for the sample pretreatment is possible. This method is convenient, rapid and accurate.

  10. Determination of arsenic in vegetable samples by hydride generation atomic absorption spectrometry

    SciTech Connect

    Navarro, M.; Lopez, M.C.; Lopez, H.; Sanchez, M.

    1992-11-01

    A procedure is described for the determination of arsenic in vegetable samples by hydride generation atomic absorption spectrometry. The samples are mineralized in a microwave acid digestion bomb with nitric acid in the presence of small amounts of vanadium pentoxide. The determination of arsenic is made by the standard addition method. A certified reference sample is analyzed, and the result obtained agreed well with the certified value. The detection limit (dry weight) was about 0.020 {mu}g/g. Reproducibility relative standard deviations ranged from 6.45% at 0.152 {mu}g As/g to 8.31% at 0.059 {mu}g As/g. The concentrations of arsenic in vegetable samples ranged from 0.029 to 0.444 {mu}g/g (fresh weight). 24 refs., 4 tabs.

  11. Slurry sampling electrothermal atomic absorption spectrometry as screening method for chromium in compost.

    PubMed

    Laborda, F; Górriz, M P; Castillo, J R

    2004-10-20

    Ultrasonic slurry sample introduction was applied to the determination of total chromium in composted materials by electrothermal atomic absorption spectrometry (ETAAS). The effect of grinding on the heterogeneity of the test samples and on the attainable precision was studied. The repeatability was influenced by the heterogeneity of the test samples at the mug-level, the R.S.D. of the measurements being 15%. The reproducibility depended on the heterogeneity of the test sample at the mg level, and it could be improved from 11 to 7% by increasing the grinding time. The characteristic mass was 2.6pg and the detection limit for the optimised procedure at the 0.04% (w/v) slurry concentration, 370ngg(-1). Good agreement with a certified reference material and with the conventional microwave assisted digestion method was found by using external calibration with aqueous standards. The performance of the method for screening purposes was evaluated.

  12. Solution and slurry sampling electrothermal atomic absorption spectrometry for the analysis of high purity quartz

    NASA Astrophysics Data System (ADS)

    Hauptkorn, Susanne; Krivan, Viliam

    1996-07-01

    A slurry sampling electrothermal atomic absorption spectrometry (ETAAS) method for the determination of Al, Cr, Cu, Fe, K, Li, Mg, Mn and Na at trace and ultratrace level in high purity quartz samples has been developed. The influence of atomization temperature, internal gas flow during atomization and carbide modification of the graphite tube on the background absorption has been studied. Simple quantification via calibration curves, recorded with aqueous standards, is possible for all elements except Al. The performance and the accuracy of the slurry sampling technique are compared to those of the analysis of hydrofluoric acid digests. With both methods, the blanks could be substantially reduced by minimization of sample handling. Because of essentially higher applicable sample portions, the solution technique provides lower limits of detection for all elements excluding Al, Na and K. For the slurry sampling technique, the achievable limits of detection are in the range of 2 (Mg) to 500 (Fe) ng g -1 and for the solution technique, they are between 0.4 (Mg) and 500 (Al) ng g -1. Thus, both developed methods are well suited for ultratrace analysis of high purity quartz for microelectronic applications. The results obtained by these two ETAAS techniques are compared with those of independent methods including neutron activation analysis.

  13. High purity polyimide analysis by solid sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Rafael F.; Carvalho, Gabriel S.; Duarte, Fabio A.; Bolzan, Rodrigo C.; Flores, Erico M. M.

    2017-03-01

    In this work, Cr, Cu, Mn, Na and Ni were determined in high purity polyimides (99.5%) by solid sampling graphite furnace atomic absorption spectrometry (SS-GFAAS) using Zeeman effect background correction system with variable magnetic field, making possible the simultaneous measurement at high or low sensitivity. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solution, linear calibration range, sample mass range and the use of chemical modifier. Calibration with aqueous standard solutions was feasible for all analytes. No under or overestimated results were observed and up to 10 mg sample could be introduced on the platform for the determination of Cr, Cu, Mn, Na and Ni. The relative standard deviation ranged from 3 to 20%. The limits of detection (LODs) achieved using the high sensitivity mode were as low as 7.0, 2.5, 1.7, 17 and 0.12 ng g- 1 for Cr, Cu, Mn, Na and Ni, respectively. No addition of chemical modifier was necessary, except for Mn determination where Pd was required. The accuracy was evaluated by analyte spike and by comparison of the results with those obtained by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry after microwave-assisted digestion in a single reaction chamber system and also by neutron activation analysis. No difference among the results obtained by SS-GFAAS and those obtained by alternative analytical methods using independent techniques. SS-GFAAS method showed some advantages, such as the determination of metallic contaminants in high purity polyimides with practically no sample preparation, very low LODs, calibration with aqueous standards and determination in a wide range of concentration.

  14. Stabilizing Agents for Calibration in the Determination of Mercury Using Solid Sampling Electrothermal Atomic Absorption Spectrometry

    PubMed Central

    Zelinková, Hana; Červenka, Rostislav; Komárek, Josef

    2012-01-01

    Tetramethylene dithiocarbamate (TMDTC), diethyldithiocarbamate (DEDTC), and thiourea were investigated as stabilizing agents for calibration purposes in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS). These agents were used for complexation of mercury in calibration solutions and its thermal stabilization in a solid sampling platform. The calibration solutions had the form of methyl isobutyl ketone (MIBK) extracts or MIBK-methanol solutions with the TMDTC and DEDTC chelates and aqueous solutions with thiourea complexes. The best results were obtained for MIBK-methanol solutions in the presence of 2.5 g L−1 TMDTC. The surface of graphite platforms for solid sampling was modified with palladium or rhenium by using electrodeposition from a drop of solutions. The Re modifier is preferable due to a higher lifetime of platform coating. A new SS-ETAAS procedure using the direct sampling of solid samples into a platform with an Re modified graphite surface and the calibration against MIBK-methanol solutions in the presence of TMDTC is proposed for the determination of mercury content in solid environmental samples, such as soil and plants. PMID:22654606

  15. Determination of nickel, chromium and cobalt in wheat flour using slurry sampling electrothermal atomic absorption spectrometry.

    PubMed

    González, M; Gallego, M; Valcárcel, M

    1999-05-01

    The slurry technique was applied to the determination of Ni, Cr and Co in wheat flour by electrothermal atomic absorption spectrometry (ETAAS). The influence of the graphite furnace temperature programme was optimized. Optimum sensitivity was obtained by using a mixture of 15% HNO(3)-10% H(2)O(2) as suspended medium for a 3% w/v slurry in the determination of Ni; lower concentrations of HNO(3) were necessary for the determination of Co and Cr (viz. 5 and 10%). The precision of direct analyses of the slurries was improved by using mechanical agitation between measurements; thus, the RSD of the measurements was ca. 5% for repeatability. The direct slurry sampling (SS) technique is suitable for the determination of Ni and Cr in wheat flour samples at levels of 150-450 and 30-72 ng g(-1), respectively, as it provides results similar to those obtained by ashing the sample. However, the typically low level of Co in these samples precluded its determination by the proposed method (the study was made in an SRM spiked wholemeal flour), at least in those samples that were contaminated with elevated concentrations of the metal (viz. more than 90 ng of Co per g of flour). The method provides a relative standard deviation of 6, 8, and 4% for Ni, Cr, and Co, respectively.

  16. Determination of total magnesium in biological samples using electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hulanicki, Adam; Godlewska, Beata; Brzóska, Malgorzata

    1995-11-01

    Magnesium content is an important diagnostic parameter in medicine. It is recognized that its determination in one compartment is not sufficient for reliable information about the magnesium status in the body. In addition to the common procedures of magnesium determination in blood by flame atomic absorption spectrometry, the procedure of electrothermal atomization has also been developed and applied to the analysis of blood fractions, mononuclear cells and isolated nuclei of liver cells. Electrothermal atomization is preferred in cases where the sample size is limited and the magnesium content low. The total errors are in the order of 3-4%. Various techniques of sample pretreatment have been tested and direct dilution with 0.05 mol l -1 nitric acid was optimal when the samples were not mineralized. The calibration graph based on standards containing albumin was found to give the best results, as the form of magnesium in the samples may influence the ashing and atomization processes. Good agreement was obtained for determination of magnesium in standard serum. The results are compared with those obtained by the standard flame atomization technique.

  17. Handling complex effects in slurry-sampling-electrothermal atomic absorption spectrometry by multivariate calibration.

    PubMed

    Felipe-Sotelo, M; Cal-Prieto, M J; Gómez-Carracedo, M P; Andrade, J M; Carlosena, A; Prada, D

    2006-07-07

    Analysis of solid samples by slurry-sampling-electrothermal atomic absorption spectrometry (SS-ETAAS) can imply spectral and chemical interferences caused by the large amount of concomitants introduced into the graphite furnace. Sometimes they cannot be solved using stabilized temperature platform furnace (STPF) conditions or typical approaches (previous sample ashing, use of chemical modifiers, etc.), which are time consuming and quite expensive. A new approach to handle interferences using multivariate calibrations (partial least squares, PLS, and artificial neural networks, ANN) is presented and exemplified with a real problem consisting on determining Sb in several solid matrices (soils, sediments and coal fly ash) as slurries by ETAAS. Experimental designs were implemented at different levels of Sb to develop the calibration matrix and assess which concomitants (seven ions were considered) modified the atomic signal mostly. They were Na+ and Ca2+ and they induced simultaneous displacement, depletion (enhancement) and broadening of the atomic peak. Here it is shown that these complex effects can be handled in a reliable, fast and cost-effective way to predict the concentration of Sb in slurry samples of several solid matrices. The method was validated predicting the concentrations of five certified reference materials (CRMs) and studying its robustness to current ETAAS problems. It is also shown that linear PLS can handle eventual non-linearities and that its results are comparable to more complex (non-linear) models, as those from ANNs.

  18. Determination of bismuth in environmental samples by slurry sampling graphite furnace atomic absorption spectrometry using combined chemical modifiers.

    PubMed

    Dobrowolski, Ryszard; Dobrzyńska, Joanna; Gawrońska, Barbara

    2015-01-01

    Slurry sampling graphite furnace atomic absorption spectrometry technique was applied for the determination of Bi in environmental samples. The study focused on the effect of Zr, Ti, Nb and W carbides, as permanent modifiers, on the Bi signal. Because of its highest thermal and chemical stability and ability to substantially increase Bi signal, NbC was chosen as the most effective modifier. The temperature programme applied for Bi determination was optimized based on the pyrolysis and atomization curves obtained for slurries prepared from certified reference materials (CRMs) of the soil and sediments. To overcome interferences caused by sulfur compounds, Ba(NO₃)₂ was used as a chemical modifier. Calibration was performed using the aqueous standard solutions. The analysis of the CRMs confirmed the reliability of the proposed analytical method. The characteristic mass for Bi was determined to be 16 pg with the detection limit of 50 ng/g for the optimized procedure at the 5% (w/v) slurry concentration.

  19. Determination of trace impurities in titanium dioxide by slurry sampling electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dong, Huang Mao; Krivan, Viliam; Welz, Bernhard; Schlemmer, Gerhard

    1997-10-01

    A slurry sampling electrothermal atomic absorption spectrometry method for the determination of Al, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl and Zn in powdered titanium dioxide is described. The behaviour of the titanium matrix in the atomizer and its interferences with the determination of Al, Fe, Co, Ni and Mn were studied. A tungsten carbide modified graphite tube was used to improve the signal shape and the repeatability for the determination of Fe. For all elements, except for Cd and Pb, quantification by a calibration curve established with aqueous standards was possible. No chemical modifier was used throughout in order to minimize contamination. For the contamination risk elements such as Ca, Fe, K, Mg, Na and Zn, the slurry sampling technique allows to achieve limits of detection (3 σ of the blank) 5-20 times lower than the solution technique, resulting for these elements in values of 1, 3, 0.5, 0.5, 0.9 and 2 ng g -1, respectively, and, generally being in the range of 0.2 ng g -1 (Cd) to 10 ng g -1 (Al and Tl). The results obtained by the slurry sampling technique are compared with those of other independent methods including four solution methods and neutron activation analysis.

  20. Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Citak, Demirhan; Mendil, Durali; Soylak, Mustafa

    2009-04-15

    A speciation procedure for As(III) and As(V) ions in environmental samples has been presented. As(V) was quantitatively recovered on aluminum hydroxide precipitate. After oxidation of As(III) by using dilute KMnO(4), the developed coprecipitation was applied to determination of total arsenic. Arsenic(III) was calculated as the difference between the total arsenic content and As(V) content. The determination of arsenic levels was performed by hydride generation atomic absorption spectrometry (HG-AAS). The analytical conditions for the quantitative recoveries of As(V) including pH, amount of aluminum as carrier element and sample volume, etc. on the presented coprecipitation system were investigated. The effects of some alkaline, earth alkaline, metal ions and also some anions were also examined. Preconcentration factor was calculated as 25. The detection limits (LOD) based on three times sigma of the blank (N: 21) for As(V) was 0.012 microg L(-1). The satisfactory results for the analysis of arsenic in NIST SRM 2711 Montana soil and LGC 6010 Hard drinking water certified reference materials for the validation of the method was obtained. The presented procedure was successfully applied to real samples including natural waters for arsenic speciation.

  1. Robotized sampling device for graphite furnace atomic absorption spectrometry slurry analysis with Varian SpectrAA instruments

    NASA Astrophysics Data System (ADS)

    Hoenig, Michel; Cilissen, Anne

    1993-08-01

    There is a growing interest in the determination by electrothermal atomic absorption spectrometry (ETAAS) of elements in solid samples without a dissolution stage, to avoid contamination and losses during the preparation of the sample. This approach may be particularly convenient when only small amounts of sample are available. Details of the above-mentioned program for the adaptation of the Gilson sample changer to Varian SpectrAA systems (X,Y,Z positions, timings etc.) are available on request.

  2. Determination of lead in fine particulates by slurry sampling electrothermal atomic absorption spectrometry.

    PubMed

    Yu, J C; Ho, K F; Lee, S C

    2001-01-02

    A simple method for determining lead in fine particulates (PM2.5) by using electrothermal atomic absorption spectrometry (ETAAS) has been developed. Particulates collected on Nuclepore filter by using a dichotomous sampler were suspended in diluted nitric acid after ultrasonic agitation. The dislodging efficiency is nearly 100% after agitation for 5 min. In order to study the suspension behavior of PM2.5 in solvents, a Brookhaven ZetaPlus Particle Size Analyzer was used to determine the particle size distribution and suspension behavior of air particulates in the solvent. The pre-digestion and modification effect of nitric acid would be discussed. Palladium was added as a chemical modifier and the temperature program of ETAAS was changed in order to improve the recovery. The slurry was introduced directly into a graphite tube for atomization. The metal content in the sample was determined by the standard addition method. In addition, a conventional acid digestion procedure was applied to verify the efficiency of the slurry sampling method. It offers a quick and efficient alternative method for heavy metal characterization in fine particulates.

  3. Fast determination of lead in lake sediment samples using electrothermal atomic absorption spectrometry with slurry samples introduction.

    PubMed

    Barałkiewicz, Danuta

    2002-01-04

    Lead concentration in lake sediment samples has been determined by means of ultrasonic slurry sampling electrothermal atomic absorption spectrometry USSS-ETAAS. The soil samples were suspended (0.025-0.15% w/v slurry) in four different liquid media containing 0.5% (v/v) nitric acid, 5% (v/v) nitric acid, 0.5% nitric acid+Triton X-100 and 5% nitric acid+Triton X-100. The effects of the instrumental operating conditions and slurry preparation on the signal were examined. Palladium and magnesium were used as modifiers to improve the signal quality. The procedure was validated by analysis of the certified reference lake sediment material LKSD-1, LKSD-2, LKSD-3 and LKSD-4. All analytical recoveries for lead in slurried lake sediment samples were satisfactory and varied from 95 to 104%. Relative standard deviation (R.S.D.) values were 4.8, 4.7, 4.5 and 5.5. The detection limits LODs of lead were 0.52, 0.45, 0.35, and 0.22 mug g(-1) for mass of sample 0.025, 0.050, 0.10 and 0.15 U, respectively.

  4. Determination of Hg, Cd, Mn, Pb and Sn in seafood by solid sampling Zeeman atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Detcheva, A.; Grobecker, K. H.

    2006-04-01

    Direct solid sampling Zeeman atomic absorption spectrometric methods were developed and applied to the determination of mercury, cadmium, manganese, lead and tin in seafood. All elements but mercury were measured by a third generation Zeeman atomic absorption spectrometry combined with an automatic solid sampler. In 3-field- and dynamic mode the calibrations concentration range was substantially extended and high amounts of analyte were detectable without laborious dilution of solid samples. The measurements were based on calibrations using certified reference materials of organic matrices. In case solid certified reference materials were not available calibration by aqueous standard solutions was proved to be an alternative. No matrix effects were observed under the optimized conditions. Results obtained were in good agreement with the certified values. Solid sampling Zeeman atomic absorption spectrometry proved to be a reliable, rapid and low-cost method for the control of trace elements in seafood.

  5. Determination of lead and manganese in biological samples and sediment using slurry sampling and flame atomic absorption spectrometry.

    PubMed

    Vieira, Daniel Rodrigues; Castro, Jacira Teixeira; Lemos, Valfredo Azevedo

    2011-01-01

    A procedure was developed for the determination of lead (Pb) and manganese (Mn) using slurry sampling. The two elements were detected using flame atomic absorption spectrometry with a slotted tube atom trap. Slurries were prepared by adding nitric acid solution (0.30%, w/v) to a powdered sample (0.10 g). After homogenization by ultrasonic bath for 15 min, the slurries were introduced directly into the detection equipment. Some conditions of the procedure were evaluated, such as acid concentration, presence of surfactants, and sonication time. Under optimized conditions, the LODs and LOQs achieved were 0.8 and 2.6 microg/g for Pb and 0.5 and 1.6 microg/g for Mn, respectively. The precision obtained varied between 3.1 and 5.8% (Mn), and 2.6 and 5.4% (Pb) for slurries of shrimp and sediment. The analytical curves were established using aqueous standards in nitric acid solutions. The accuracy of the method was assessed through the determination of Pb and Mn in the following certified reference materials: ERM-CE 278 (mussel tissue), CRM 397 (human hair), and SRM 1646a (estuarine sediment). The proposed procedure was successfully applied to the determination of Pb and Mn in six samples of shrimp powder, seasoning, and river sediment. The levels of Mn detected varied from 2.2 to 71.3 microg/g; Pb was detected in only one sediment sample (4.3 microg/g).

  6. Sample pre-treatment methods for the trace elements determination in seafood products by atomic absorption spectrometry.

    PubMed

    Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Adela

    2002-07-03

    Different sample pre-treatments for seafood products have been compared with determine trace elements (As, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se and Zn) by flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). Classic pre-treatments as microwave assisted-acid digestion and the slurry sampling technique were compared with new procedures such as microwave energy or ultrasound energy assisted-acid leaching process and enzymatic hydrolysis methodologies based on the use of pronase E. The methods were applied to DORM-1 and DOLT-1 reference materials with certified contents for the studied elements. The Student-Newman-Keuls (SNK) method was used to compare with element concentration means obtained with each sample pre-treatment and also the certified concentration means in both reference materials. Multivariate techniques such as principal components analysis (PCA) was also applied to comparative purposes.

  7. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    NASA Astrophysics Data System (ADS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; da Silva, Alessandra Furtado; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson José

    2005-06-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 °C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 °C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1.

  8. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Sardans, Jordi; Montes, Fernando; Peñuelas, Josep

    2010-02-01

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at μg L -1 levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages of

  9. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  10. Determination of sulphur in various vegetables by solid sampling high-resolution electrothermal molecular absorption spectrometry.

    PubMed

    Gunduz, Sema; Akman, Suleyman

    2015-04-01

    Sulphur was determined in various vegetables via molecular absorption of carbon monosulphide (CS) at 258.056 nm using a solid sampling high resolution continuum source electrothermal atomic absorption spectrometer (SS HR-CS ETAAS). Samples were dried, ground and directly introduced into the ruthenium coated graphite furnace as 0.05 to 0.50mg. All determinations were performed using palladium+citric acid modifier and applying a pyrolysis temperature of 1000 °C and a volatilisation temperature of 2400 °C. The results were in good agreement with certified sulphur concentrations of various vegetal CRM samples applying linear calibration technique prepared from thioacetamide. The limit of detection and characteristic mass of the method were 7.5 and 8.7 ng of S, respectively. The concentrations of S in various spinach, leek, lettuce, radish, Brussels sprouts, zucchini and chard samples were determined. It was showed that distribution of sulphur in CRM and grinded food samples were homogeneous even in micro-scale.

  11. Flame and graphite furnace atomic absorption spectrometry for trace element determination in vegetable oils, margarine and butter after sample emulsification.

    PubMed

    Ieggli, C V S; Bohrer, D; Do Nascimento, P C; De Carvalho, L M

    2011-05-01

    Trace element analysis plays an important role in oil characterisation and in the detection of oil adulteration because the quality of edible oils and fats is affected by their trace metal content. In this study, the quantification of selected metals in various oils and fats (rice oil, canola oil, sunflower oil, corn oil, soy oil, olive oil, light margarine, regular margarine and butter) was carried out using flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after sample emulsification. FAAS was used to determine the Na, K, Ca, Mg, Zn and Fe levels in the samples, while GFAAS was used for quantifying Cr, Ni, As, Pb, Cd, Cu and Mn, as these elements appeared in the samples at much lower concentrations. Tween-80 and Triton X-100 were employed as surfactants, and emulsions were prepared by a conventional method that involved heating and mixing of the constituents. Complete stabilisation was achieved through magnetic stirring for 15 min at room temperature. The evaluated figures of merit were linearity, accuracy and sensitivity, which were determined by the characteristic concentration and mass. Analysis of spiked samples demonstrated accuracy, which ranged from 90% (Na) to 112% (Fe) for FAAS and from 83% (Cd) to 121% (Pb) for GFAAS measurements. Atomic absorption spectrometry proved to be a promising approach for the analysis of metals in emulsified edible oils and fats. Additionally, under appropriate emulsification conditions (formulation, stirring time and temperature), the emulsions were homogeneous, had excellent stability, and had appropriate viscosity. The proposed method has proved to be simple, sensitive, reproducible, and economical.

  12. Determination of some trace elements in food and soil samples by atomic absorption spectrometry after coprecipitation with holmium hydroxide.

    PubMed

    Saracoglu, Sibel; Soylak, Mustafa; Cabuk, Dilek; Topalak, Zeynep; Karagozlu, Yasemin

    2012-01-01

    The determination of trace elements in food and soil samples by atomic absorption spectrometry was investigated. A coprecipitation procedure with holmium hydroxide was used for separation-preconcentration of trace elements. Trace amounts of copper(II), manganese(II), cobalt(II), nickel(ll), chromium(lll), iron(Ill), cadmium(ll), and lead(ll) ions were coprecipitated with holmium hydroxide in 2.0 M NaOH medium. The optimum conditions for the coprecipitation process were investigated for several commonly tested experimental parameters, such as amount of coprecipitant, effect of standing time, centrifugation rate and time, and sample volume. The precision, based on replicate analysis, was lower than 10% for the analytes. In order to verify the accuracy of the method, the certified reference materials BCR 141 R calcareous loam soil and CRM 025-050 soil were analyzed. The procedure was successfully applied for separation and preconcentration of the investigated ions in various food and soil samples. An amount of the solid samples was decomposed with 15 mL concentrated hydrochloric acid-concentrated nitric acid (3 + 1). The preconcentration procedure was then applied to the final solutions. The concentration of trace elements in samples was determined by atomic absorption spectrometry.

  13. Determination of fluorine in milk samples via calcium-monofluoride by electrothermal molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2013-05-01

    The determination of fluorine in milk samples via the molecular absorption of calcium mono-fluoride (CaF) was performed using a HR-CS-ETAAS. For this purpose, calcium was pipetted to graphite furnace together with samples. The amount of Ca and the graphite furnace program were optimised. Fluorine was determined in pyrolytically coated platforms at 606.440 nm applying a pyrolysis temperature of 700 °C and a molecule forming temperature of 2250 °C. Finally, applying standard addition technique, F contents of several milk samples were determined. The results obtained by linear calibration and standard addition techniques were significantly different which can be attributed to non-spectral interferences in milk due to matrix concomitants. Therefore, in order to tolerate the errors, the F contents of several milk samples were determined applying standard addition technique. However, since the ingredients of milk samples change for different kinds, the F in each sample was determined from its own standard addition curve. The range of F content for the milk samples were 0.027-0.543 μg mL(-1). The limit of detection and characteristic mass of the method were 0.26 and 0.13 ng of F, respectively.

  14. Determination of chromium, manganese and vanadium in sediments and soils by modifier—free slurry sampling electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mierzwa, J.; Sun, Yuh-Chang; Yang, Mo-Hsiung

    1998-01-01

    Slurried sediment and soil samples of the certified reference materials with a highly elevated level of the metals of interest (Mn, Cr and V) were analysed by electrothermal atomic absorption spectrometry (ETAAS) with Zeeman effect background correction. The method of slurry preparation and time-temperature programmes were optimized and, finally, the use of chemical modifiers was not necessary. The effect of alternate spectral lines and gas mini-flows on characteristic masses of analytes was studied. The homogeneity of samples and the influence of short sample grinding were also discussed. The simple, aqueous standard based calibration graphs (except Mn at the concentration > 1000 mg kg -1) were applied for the quantification of results. The results of determinations obtained by slurry sampling agreed well with the cetified values, and the relative standard deviations (RSDs) for the over-all analytical procedure repeatability (at slurries concentration level about 2 mg/2 ml) were less than 9.5%, except manganese (10.4%).

  15. Slurry sampling graphite furnace atomic absorption spectrometry: determination of trace metals in mineral coal.

    PubMed

    Silva, M M; Goreti, M; Vale, R; Caramão, E B

    1999-12-06

    A procedure for lead, cadmium and copper determination in coal samples based on slurry sampling using an atomic absorption spectrometer equipped with a transversely heated graphite tube atomizer is proposed. The slurries were prepared by weighing the samples directly into autosampler cups (5-30 mg) and adding a 1.5 ml aliquot of a diluent mixture of 5% v/v HNO(3), 0.05% Triton X-100 and 10% ethanol. The slurry was homogenized by manual stirring before measurement. Slurry homogenization using ultrasonic agitation was also investigated for comparison. The effect of particle size and the use of different diluent compositions on the slurry preparation were investigated. The temperature programmes were optimized on the basis of pyrolysis and atomization curves. Absorbance characteristics with and without the addition of a palladium-magnesium modifier were compared. The use of 0.05% m/v Pd and 0.03% m/v Mg was found satisfactory for stabilizing Cd and Pb. The calibration was performed with aqueous standards. In addition, a conventional acid digestion procedure was applied to verify the efficiency of the slurry sampling. Better recoveries of the analytes were obtained when the particle size was reduced to <37 mum. Several certified coal reference materials (BCR Nos. 40, 180, and 181) were analyzed, and good agreement was obtained between the results from the proposed slurry sampling method and the certificate values.

  16. Chromium determination in pharmaceutical grade barium sulfate by solid sampling electrothermal atomic absorption spectrometry with Zeeman-effect background correction.

    PubMed

    Bolzan, Rodrigo Cordeiro; Rodrigues, Luis Frederico; Mattos, Júlio Cezar Paz de; Dressler, Valderi Luiz; Flores, Erico Marlon de Moraes

    2007-11-15

    A procedure for chromium (Cr) determination in pharmaceutical grade barium sulfate by direct solid sampling electrothermal atomic absorption spectrometry (DSS-ET AAS) with Zeeman-effect background correction was developed. Operational conditions for the proposed procedure and the use of citric acid, ammonium phosphate, palladium and magnesium nitrate as chemical modifiers were evaluated. Pyrolysis and atomization temperatures were set at 1500 and 2400 degrees C, respectively and the use of matrix modifiers did not improve these conditions. Graphite platform presented high degradation rate, but minima changes were observed in the sensitivity or signal profile. Samples (0.3-1 mg) were weighted and introduced into the furnace using a manual solid sampling system. The linear concentration range of the calibration curve was from 100 to 1800 pg (R(2)>0.995). The characteristic mass was 7.7 pg and the limit of detection was 2.4 pg. Chromium concentration in commercial samples ranged from 0.45 to 1.06 microg g(-1) and these results were confirmed by standard addition method. The mean reproducibility was 12% (n=20 in a 3-day period) and repeatability was less than 9%. Results obtained using inductively coupled plasma optical emission spectrometry and conventional electrothermal atomic absorption spectrometry after extraction with HNO3 were around 20% lower than those obtained by the proposed procedure. It was assumed that the low results were due to incomplete extraction even using hard conditions related to temperature and pressure. The proposed procedure by DSS-ET AAS provided some advantages related to recommended pharmacopoeias methodology, as lower risks of contamination and analyte losses, higher specificity, accuracy and sensitivity, no toxic or unstable reagents are required, and calibration with aqueous standards was feasible.

  17. [Determination of trace silver in water samples by solid phase extraction portable tungsten-coil electrothermal atomic absorption spectrometry].

    PubMed

    Fan, Guang-yu; Jiang, Xiao-ming; Zheng, Cheng-bin; Hou, Xian-deng; Xu, Kai-lai

    2011-07-01

    A simple method has been developed for the determination of silver in environmental water samples using solid phase extraction with tungsten-coil electrothermal atomic absorption spectrometry. Silica gel was used as an adsorbent and packed into a syringe barrel for solid phase extraction of silver prior to its determination by using a portable tungsten-coil electrothermal atomic absorption spectrometer. Optimum conditions for adsorption and desorption of silver ion, as well as interferences from co-existing ions, were investigated. A sample pH value of 6.0, a sample loading flow rate of 4.0 mL x min(-1), and the mixture of 4% (m/v) thiourea and 2% (phi) nitrate acid with the eluent flow rate of 0.5 mL x min(-1) for desorption were selected for further studies. Under optimal conditions, a linear range of 0.20-4.00 ng x mL(-1), a limit of detection (3sigma) of 0.03 ng x mL(-1) and a preconcentration factor of 94 were achieved. The proposed method was validated by testing three environmental water samples with satisfactory results.

  18. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.

    PubMed

    Feichtmeier, Nadine S; Leopold, Kerstin

    2014-06-01

    In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution-continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27 ± 0.96 s mg(-1) was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.

  19. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R.; Welz, Bernhard; Carasek, Eduardo; de Andrade, Jailson B.

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%).

  20. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  1. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    PubMed

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results.

  2. Evaluation of arsenic, cobalt, copper and manganese in biological Samples of Steel mill workers by electrothermal atomic absorption Spectrometry.

    PubMed

    Afridi, H I; Kazi, T G; Kazi, N G; Jamali, M K; Arain, M B; Sirajuddin; Kandhro, G A; Shah, A Q; Baig, J A

    2009-02-01

    The determination of trace and toxic elements in biological samples (blood, urine and scalp hair samples) of human beings is an important clinical test. The aim of our present study was to determine the concentration of arsenic (As), copper (Cu), cobalt (Co) and manganese (Mn), in biological samples of male production workers (PW) and quality control workers (QW) of steel mill, with aged 25-55 years, to assess the possible influence of environmental exposure. For comparison purpose, the same biological samples of unexposed healthy males of same age group were collected as control subjects. The determination of all elements in biological samples was carried out by electrothermal atomic absorption spectrometry, prior to microwave assisted acid digestion. The accuracy of the As, Cu, Co and Mn measurements was tested by simultaneously analyzing certified reference materials (CRMs) and for comparative purposes conventional wet acid digestion method was used on the same CRMs. No significant differences were observed between the analytical results and the certified values, using both methods (paired t-test at P > 0.05). The results indicate that concentrations of As, Cu, Co and Mn in all three biological samples of the exposed workers (QW and PW) were significantly higher than those of the controls. The possible correlation of these elements with the etiology of different physiological disorders is discussed. The results were also demonstrated the need of attention for improvements in workplace, ventilation and industrial hygiene practices.

  3. Determination of tin and titanium in soils, sediments and sludges using electrothermal atomic absorption spectrometry with slurry sample introduction.

    PubMed

    López-García, Ignacio; Arnau-Jerez, Isabel; Campillo, Natalia; Hernández-Córdoba, Manuel

    2004-02-06

    Fast-heating programmes for determining titanium and tin in soils, sediments and sludges using electrothermal atomic absorption spectrometry (ETAAS) with slurry sampling are developed. For titanium determination, suspensions are prepared by weighing 5-40mg of sample and adding 25ml of a solution containing 50% (v/v) concentrated hydrofluoric acid. For tin determination, suspensions are prepared by weighing up to 300mg of sample and then adding 1ml of a solution containing 25% (v/v) concentrated hydrofluoric acid. Palladium (30mug) and ammonium dihydrogen phosphate (7% w/v) are used as matrix modifiers for titanium and tin, respectively. Prior mild heating in a microwave oven is recommended for titanium determination. Calibration is carried out using aqueous standards. The tin and titanium contents of a number of samples obtained by using the slurry approach agree with those obtained by means of a procedure based on the total dissolution of the samples using microwave oven digestion. The reliability of the procedures is also confirmed by analysing several certified reference materials.

  4. Restricted access carbon nanotubes for direct extraction of cadmium from human serum samples followed by atomic absorption spectrometry analysis.

    PubMed

    Barbosa, Adriano F; Barbosa, Valéria M P; Bettini, Jefferson; Luccas, Pedro O; Figueiredo, Eduardo C

    2015-01-01

    In this paper, we propose a new sorbent that is able to extract metal ions directly from untreated biological fluids, simultaneously excluding all proteins from these samples. The sorbent was obtained through the modification of carbon nanotubes (CNTs) with an external bovine serum albumin (BSA) layer, resulting in restricted access carbon nanotubes (RACNTs). The BSA layer was fixed through the interconnection between the amine groups of the BSA using glutaraldehyde as cross-linker. When a protein sample is percolated through a cartridge containing RACNTs and the sample pH is higher than the isoelectric point of the proteins, both proteins from the sample and the BSA layer are negatively ionized. Thus, an electrostatic repulsion prevents the interaction between the proteins from the sample on the RACNTs surface. At the same time, metal ions are adsorbed in the CNTs (core) after their passage through the chains of proteins. The Cd(2+) ion was selected for a proof-of-principle case to test the suitability of the RACNTs due to its toxicological relevance. RACNTs were able to extract Cd(2+) and exclude almost 100% of the proteins from the human serum samples in an online solid-phase extraction system coupled with thermospray flame furnace atomic absorption spectrometry. The limits of detection and quantification were 0.24 and 0.80 μg L(-1), respectively. The sampling frequency was 8.6h(-1), and the intra- and inter-day precisions at the 0.80, 15.0, and 30.0 μg L(-1) Cd(2+) levels were all lower than 10.1% (RSD). The recoveries obtained for human blood serum samples fortified with Cd(2+) ranged from 85.0% to 112.0%. The method was successfully applied to analyze Cd(2+) directly from six human blood serum samples without any pretreatment, and the observed concentrations ranged from

  5. Determination of Trace Silver in Water Samples by Online Column Preconcentration Flame Atomic Absorption Spectrometry Using Termite Digestion Product

    PubMed Central

    Bianchin, Joyce Nunes; Martendal, Edmar; Carasek, Eduardo

    2011-01-01

    A new method for Ag determination in water samples using solid phase extraction (SPE) coupled to a flow injection system and flame atomic absorption spectrometry was developed. The sorbent used for Ag preconcentration and extraction was the termite digestion product. Flow and chemical variables of the system were optimized through a multivariate procedure. The factors selected were adsorbent mass, buffer type and concentration, sample pH, and sample flow rate. The detection limit and precision were 3.4 μg L−1 and 3.8% (n = 6, 15 μg L−1), respectively. The enrichment factor and the linear working range were, respectively, 21 and 10–50 μg L−1. Results for recovery tests using different water samples were between 96 and 107%. The proposed methodology was applied with success for the determination of Ag in water used to wash clothes impregnated with silver nanoparticles, supplied by a factory located in Santa Catarina, Brazil. PMID:21804766

  6. Determination of vanadium in soils and sediments by the slurry sampling graphite furnace atomic absorption spectrometry using permanent modifiers.

    PubMed

    Dobrowolski, Ryszard; Adamczyk, Agnieszka; Otto, Magdalena

    2013-09-15

    A new analytical procedure for vanadium (V) determination in soils and sediments by the slurry sampling graphite furnace atomic absorption spectrometry (slurry sampling GFAAS) using the mixed permanent modifiers is described. Moreover, the comparison of action of the modifiers based on the iridium (Ir) and carbide-forming elements: tungsten (W) and niobium (Nb) deposited on the graphite tubes is studied, especially in terms of their analytical utility and determination sensitivity. The mechanism of their action was investigated using an X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray detector (EDX). Finally, the mixture of 0.3 μg of Ir and 0.04 μg of Nb was used for the graphite tube permanent modification. The analytical procedure was optimized on the basis of the data from pyrolysis and atomization temperature curves studies. The results obtained for the four certified reference materials (marine sediments: PACS-1 and MESS-1, lake sediment: SL-1, soil: San Joaquin Soil SRM 2709), using the slurry sampling GFAAS and the standard calibration method, were in good agreement with the certified values. The detection and quantification limits and characteristic mass calculated for the proposed procedure were 0.04 µg/g, 0.16 µg/g and 11.9 pg, respectively. The precision (RSD% less than 8%) and the accuracy of vanadium determination in the soil and sediment samples were acceptable.

  7. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  8. Determination of aluminium and manganese in human scalp hair by electrothermal atomic absorption spectrometry using slurry sampling.

    PubMed

    Bermejo-Barrera, P; Moreda-Piñeiro, A; Moreda-Piñeiro, J; Bermejo-Barrera, A

    1998-04-01

    Methods for the determination of aluminium and manganese in human scalp hair samples by electrothermal atomic absorption spectrometry using the slurry sampling technique were developed. Palladium and magnesium nitrate were used as chemical modifiers. Hair samples were pulverized using a zirconia vibrational mill ball, and were prepared as aqueous slurries. Determinations can be performed in the linear ranges of 1.9-150 mug l(-1) Al(3+) and 0.03-10.0 mug l(-1) Mn(2+). Limits of detection of 0.9 mg kg(-1) and 27.6 mug kg(-1) were obtained for aluminium and manganese, respectively. The analytical recoveries were between 99.6 and 101.8% for aluminium and in the 98.3-101.3% range for manganese. The repeatability of the methods (n=11), slurry preparation procedure and ETAAS measurement, was 16.0 and 7.9% for aluminium and manganese, respectively. The methods were finally applied to the aluminium and manganese determination in 25 scalp hair samples from healthy adults. The levels for aluminium were between 8.21 and 74.08 mg kg(-1), while concentrations between 0.03 and 1.20 mg kg(-1) were found for manganese.

  9. Comparison of selenium determination in liver samples by atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry.

    PubMed

    Miksa, Irina Rudik; Buckley, Carol L; Carpenter, Nancy P; Poppenga, Robert H

    2005-07-01

    Selenium (Se) is an essential trace element that is often deficient in the natural diets of domestic animal species. The measurement of Se in whole blood or liver is the most accurate way to assess Se status for diagnostic purposes. This study was conducted to compare hydride generation atomic absorption spectroscopy (HG-AAS) with inductively coupled plasma-mass spectrometry (ICP-MS) for the detection and quantification of Se in liver samples. Sample digestion was accomplished with magnesium nitrate and nitric acid for HG-AAS and ICP-MS, respectively. The ICP-MS detection was optimized for 82Se with yttrium used as the internal standard and resulted in a method detection limit of 0.12 microg/g. Selenium was quantified by both methods in 310 samples from a variety of species that were submitted to the Toxicology Laboratory at New Bolton Center (Kennett Square, PA) for routine diagnostic testing. Paired measurements for each sample were evaluated by a mean difference plot method. Limits of agreement were used to describe the maximum differences likely to occur between the 2 methods. Results suggest that under the specified conditions ICP-MS can be reliably used in place of AAS for quantitation of tissue Se at or below 2 microg/g to differentiate between adequate and deficient liver Se concentrations.

  10. Preconcentration of gold ions from water samples by modified organo-nanoclay sorbent prior to flame atomic absorption spectrometry determination.

    PubMed

    Afzali, Daryoush; Mostafavi, Ali; Mirzaei, Mohammad

    2010-09-15

    In this work, the applicability of modified organo nanoclay as a new and easy prepared solid sorbent for the preconcentration of trace amounts of Au(III) ion from water samples is studied. The organo nanoclay was modified with 5-(4'-dimethylamino benzyliden)-rhodanine and used as a sorbent for separation of Au(III) ions. The sorption of gold ions was quantitative in the pH range of 2.0-6.0. Quantitative desorption occurred with 6.0 mL of 1.0 mol L(-1) Na(2)S(2)O(3). The amount of eluted Au(III) was measured using flame atomic absorption spectrometry. In the initial solution the linear dynamic range was in the range of 0.45 ng mL(-1) to 10.0 microg mL(-1), the detection limit was 0.1 ng mL(-1) and the preconcentration factor was 105. Also, the relative standard deviation was +/-2.3% (n=8 and C=2.0 microg mL(-1)) and the maximum capacity of the sorbent was 3.9 mg of Au(III) per gram of modified organo nanoclay. The influences of the experimental parameters including sample pH, eluent volume and eluent type, sample volume, and interference of some ions on the recoveries of the gold ion were investigated. The proposed method was applied for preconcentration and determination of gold in different samples.

  11. Determination of cadmium in coal using solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry.

    PubMed

    da Silva, Alessandra Furtado; Borges, Daniel L G; Lepri, Fábio Grandis; Welz, Bernhard; Curtius, Adilson J; Heitmann, Uwe

    2005-08-01

    This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 microg) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 degrees C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 degrees C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 degrees C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 degrees C and atomization at 1500 degrees C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g(-1), calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6-1.2 mg were analyzed.

  12. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry

    PubMed Central

    Daşbaşı, Teslima; Kartal, Şenol; Saçmacı, Şerife; Ülgen, Ahmet

    2016-01-01

    A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4− complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time were studied in detail. The effect of interfering ions on the analyte recovery was also investigated. The calibration graph was linear in the range of 0.040–1.00 mg L−1 with detection limit of 4.0 μg L−1 (n = 13). The precision as relative standard deviation was 3% (n = 11, 0.20 mg L−1) and the enrichment factor was 74. The developed method was applied successfully for the determination of bismuth in various water, pharmaceutical, and cosmetic samples and the certified reference material (TMDA-64 lake water). PMID:26881186

  13. Comparison of different sample preparation methods for platinum determination in cultured cells by graphite furnace atomic absorption spectrometry

    PubMed Central

    Cai, Jing; Jia, Jinghui; Zhang, Yuzeng; Dong, Weihong

    2017-01-01

    Background Platinum-based agents are widely used in chemotherapy against solid tumors and insufficient intracellular drug accumulation is one of the leading causes of platinum resistance which is associated with poor survival of tumor patients. Thus, the detection of intracellular platinum is pivotal for studies aiming to overcome platinum resistance. In the present study, we aimed to establish a reliable graphite furnace atomic absorption spectrometry (GFAAS)-based assay to quantify the intracellular platinum content for cultured cells. Methods Several most commonly applied cell preparation methods, including 0.2% HNO3, 0.2% Triton X-100, concentrated nitric acid, RIPA combined with concentrated nitric acid and hydroxide, followed by GFAAS for platinum detection were compared in ovarian, cervical and liver cancer cell lines to obtain the optimal one, and parameters regarding linearity, accuracy, precision and sensitivity were evaluated. Influence of other metals on platinum detection and the storage conditions of samples were also determined. Results The treatment of cells with 0.2% HNO3 was superior to other approaches with fewer platinum loss and better repeatability. The recovery rate and precision of this method were 97.3%–103.0% and 1.4%–3.8%, respectively. The average recoveries in the presence of other metals were 95.1%–103.1%. The detection limit was 13.23 ug/L. The recovery rate of platinum remained acceptable even in cell samples stored in −20 °C or −80 °C for two months. Discussion After comparison, we found that 0.2% HNO3 was optimal for intracellular platinum quantification based on GFAAS, which presented values compatible with that of inductively-coupled plasma mass-spectrometry (ICP-MS), and this is partially attributed to the simplicity of this method. Moreover, the assay was proved to be accurate, sensitive, cost-effective and suitable for the research of platinum-based antitumor therapy. PMID:28123908

  14. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  15. Direct determination of selenium in serum by electrothermal atomic absorption spectrometry using automated ultrasonic slurry sampling

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Kang; Yen, Cheng-Chieh; Wei, Bai-Luh; Hu, Chao-Chin; Yu, Jya-Jyun; Chung, Chien; Kuo, Sheng-Chu

    1998-01-01

    Selenium concentration in body fluids is a good index to establish human selenium status. This work discusses the determination of selenium in serum by ETAAS using longitudinal Zeeman-effect background correction and combining the use of automated slurry sampling. The standard reference materials bovine serum (NIST, SRM 1598) and second-generation biological freeze-dried human serum are analyzed to verify the accuracy and precision of this technique. The direct method proposed in this study is used for the determination of selenium in human serum collected from healthy people of 19-25 years. The average accuracy values of certified reference serum samples and the recovery values of spiked samples indicate this method to be an efficient and rapid technique for determining selenium in biological samples.

  16. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from sample amounts used in solid sampling analysis, micro-scale distribution of fluorine in the samples was also determined.

  17. Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry.

    PubMed

    Ghaedi, M; Shokrollahi, A; Ahmadi, F; Rajabi, H R; Soylak, M

    2008-02-11

    A cloud point extraction procedure was presented for the preconcentration of copper, nickel and cobalt ions in various samples. After complexation with methyl-2-pyridylketone oxime (MPKO) in basic medium, analyte ions are quantitatively extracted to the phase rich in Triton X-114 following centrifugation. 1.0 mol L(-1) HNO(3) nitric acid in methanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for MPKO, Triton X-114 and HNO(3), bath temperature, centrifuge rate and time were optimized. Detection limits (3 SDb/m) of 1.6, 2.1 and 1.9 ng mL(-1) for Cu(2+), Co(2+) and Ni(2+) along with preconcentration factors of 30 and for these ions and enrichment factor of 65, 58 and 67 for Cu(2+), Ni(2+) and Co(2+), respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed procedure was applied to the analysis of biological, natural and wastewater, soil and blood samples.

  18. Cloud point extraction and flame atomic absorption spectrometry determination of lead (II) in environmental and food samples.

    PubMed

    Soylak, Mustafa; Yilmaz, Erkan; Ghaedi, Mehrorang; Montazerozohori, Mortaza; Sheibani, Marjan

    2012-01-01

    A cloud point extraction procedure for the preconcentration of Pb2+ in various samples following complexation with 2,2'-(1E,1'E)-1,1'-(2,2'-azanediylbis(ethane-2,1-diyl)bis(azan-1-yl-1-ylidene)) bis(ethan-1-yl-1-ylidene)diphenol in Triton X-114 after centrifugation is reported. A 0.5 mL portion of methanol acidified with 1.0 M HNO3 was added to the surfactant-rich phase prior to analysis by flame atomic absorption spectrometry. The influence of analytical parameters--including pH, concentrations of ligand, Triton X-114, and HNO3, bath temperature, heating time, and centrifugation rate and time--were optimized, and the effect of the matrix ions on the recovery of Pb2+ was investigated. An LOD of 1.9 ng/mL along with a preconcentration factor of 50 with RSD of 1.0% for Pb2+ were achieved. The proposed procedure was applied to the analysis of various real samples.

  19. Method development for Cd and Hg determination in biodiesel by electrothermal atomic absorption spectrometry with emulsion sample introduction.

    PubMed

    Aranda, Pedro R; Gásquez, José A; Olsina, Roberto A; Martinez, Luis D; Gil, Raúl A

    2012-11-15

    A novel method for analysis of biodiesel by electrothermal atomic absorption spectrometry is described. This analytical strategy involves sample preparation as emulsions for routine and reliable determination of Cd and Hg. Several experimental conditions were investigated, including emulsion stability and composition, furnace temperature program and matrix modification. Different calibration strategies were also evaluated, being the analyte addition method preferred both for Cd and Hg. The accuracy was verified through comparison with an acid digestion in a microwave closed system. The injection repeatability was evaluated as the average relative standard deviation (R.S.D %) for five successive firings and was better than 4.4% for Cd and 5.4% Hg respectively. The detection limits, evaluated by the 3σ concept of calculation (n=10), were of 10.2 μg kg(-1) (0.9 μg L(-1)) for Hg and 0.3 μg kg(-1) (0.04 μg L(-1)) for Cd. This method was successfully applied to the determination of Cd and Hg in biodiesel samples obtained from local vendors.

  20. Comparative determination of Ba, Cu, Fe, Pb and Zn in tea leaves by slurry sampling electrothermal atomic absorption and liquid sampling inductively coupled plasma atomic emission spectrometry.

    PubMed

    Mierzwa, J; Sun, Y C; Chung, Y T; Yang, M H

    1998-12-01

    The comparative determination of barium, copper, iron, lead and zinc in tea leaf samples by two atomic spectrometric techniques is reported. At first, slurry sampling electrothermal atomization atomic absorption spectrometry (ETAAS) was applied. The results of Ba and Pb determination were calculated using the method of standard additions, and results of Cu, Fe and Zn from the calibration graphs based on aqueous standards. These results were compared with the results obtained after microwave-assisted wet (nitric+hydrochloric+hydrofluoric acids) digestion in closed vessels followed by inductively coupled plasma-atomic emission spectrometric (ICP-AES) determination with the calibration by means of aqueous standards. The exception was lead determined after a wet digestion procedure by ETAAS. The accuracy of the studied methods was checked by the use of the certified reference material Tea GBW-07605. The recoveries of the analytes varied in the range from 91 to 99% for slurry sampling ETAAS, and from 92.5 to 102% for liquid sampling ICP-AES. The advantages of slurry sampling ETAAS method are simplicity of sample preparation and very good sensitivity. Slurry sampling ETAAS method is relatively fast but if several elements must be determined in one sample, the time of the whole microwave-assisted digestion procedure and ICP-AES determination will be shorter. However, worse detection limits of ICP-AES must also be taken into the consideration in a case of some analytes.

  1. Metal furnace heated by flame as a hydride atomizer for atomic absorption spectrometry: Sb determination in environmental and pharmaceutical samples.

    PubMed

    Figueiredo, Eduardo Costa; Dĕdina, Jirí; Arruda, Marco Aurélio Zezzi

    2007-10-15

    The present work describes a metallic hydride atomizer for atomic absorption spectrometry, by evaluating the performance of the Inconel 600((R)) tube. For this purpose, stibine was used as the model volatile compound and antimony determination in river and lake sediments and in pharmaceutical samples was carried out to assess the metal furnace performance. Some parameters are evaluated such as those referring to the generation and transport of the hydride (such as KBH(4) and acid concentrations, carrier gas flow rate, injected volume, etc.), as well as those referring to the metal furnace (such as tube hole area, flame composition, long-term stability, etc.). The method presents linear Sb concentration from 2 to 80mugL(-1) range (r>0.998; n=3) and the analytical frequency of ca. 140h(-1). The limit of detection (LOD) is 0.23mugL(-1) and the precision, expressed as R.S.D., is less than 5% (40mugL(-1); n=10). The accuracy is evaluated through the reference materials, and the results are similar at 95% confidence level according to the t-test.

  2. Determination of toxic elements in plastics from waste electrical and electronic equipment by slurry sampling electrothermal atomic absorption spectrometry.

    PubMed

    Santos, Mirian C; Nóbrega, Joaquim A; Baccan, Nivaldo; Cadore, Solange

    2010-06-15

    Cadmium, chromium, lead and antimony were determined in slurries prepared using pulverized samples of personal computers and mobile phones dispersed in dimethylformamide medium. Determinations were carried out by electrothermal atomic absorption spectrometry (ETAAS) using a graphite furnace atomic absorption spectrometer. The optimization of the experimental conditions (chemical modifier, pyrolysis time, pyrolysis temperature and atomization temperatures) was accomplished by evaluating pyrolysis and atomization curves. Optimization was also used to determine the temperatures corresponding to the best sensitivities and the lowest background signals. The pyrolysis temperatures were fixed at 600 degrees C (for Cd), 700 degrees C (for Pb), 1100 degrees C (for Sb), and 1200 degrees C (for Cr); atomization temperatures were established as 1400 degrees C (for Cd), 1300 degrees C (for Pb), 1900 degrees C (for Sb), and 2300 degrees C (for Cr), and the chemical modifier (50microg NH(4)H(2)PO(4)+3microg Mg(NO(3))(2) was used for Cd and Pb while 5microg Pd+3microg Mg(NO(3))(2) was used for Sb). The use of a chemical modifier for Cr determination was not necessary. The characteristic masses were 1.9pg for Cd, 32.3pg for Pb, 54.1pg for Sb, and 9.1pg for Cr. Calibration was performed using standard additions in a range of 5-20microgL(-1) for Cd, 5-30microgL(-1) for Cr, 12.5-50microgL(-1) for Pb, and 25-100microgL(-1) for Sb with linear correlation coefficients higher than 0.99. Limits of detection were 0.9, 1.4, 6.8, and 2.9microgL(-1) for Cd, Pb, Sb, and Cr, respectively. The results indicate that recoveries for all metals agreed at a 95% confidence level when a paired t-test was applied and presented good precision. The accuracy of the proposed method was evaluated by addition-recovery experiments, showing results in the 96-112% range, and also by comparison of the results using Student's t-test with another method developed using ETAAS for digested samples. Analyte

  3. Ultraviolet and Light Absorption Spectrometry.

    ERIC Educational Resources Information Center

    Hargis, L. G.; Howell, J. A.

    1984-01-01

    Reviews developments in ultraviolet and light absorption spectrometry from December 1981 through November 1983, focusing on the chemistry involved in developing suitable reagents, absorbing systems, and methods of determination, and on physical aspects of the procedures. Includes lists of spectrophotometric methods for metals, non-metals, and…

  4. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    PubMed

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025.

  5. Sequential determination of Cd and Cr in biomass samples and their ashes using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis.

    PubMed

    Duarte, Alvaro T; Dessuy, Morgana B; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2013-10-15

    High-resolution continuum source graphite furnace atomic absorption spectrometry, because of the use of only one radiation source for all elements, offers the possibility of sequential determination of two or more elements from the same sample aliquot if their volatilities are significantly different. Cd and Cr were determined sequentially in samples of biomass and biomass ashes employing direct solid sample analysis. The use of a chemical modifier was found to be not necessary, and calibration could be carried out using aqueous standard solutions. A pyrolysis temperature of 400°C and an atomization temperature of 1500°C were used for the determination of Cd; no losses of Cr were observed at this temperature. After the atomization of Cd the wavelength was changed and Cr atomized at 2600°C. The limits of detection (LOD) and quantification (LOQ) were 1.1 μg kg(-1) and 3.7 μg kg(-1), respectively, for Cd and 21 μg kg(-1) and 70 μg kg(-1), respectively, for Cr using the most sensitive line at 357.869 nm, or 90 μg kg(-1) and 300 μg kg(-1), respectively, using the less sensitive line at 428.972 nm. The precision, expressed as relative standard deviation was around 10%, which is typical for direct solid sample analysis. The values found for Cd in biomass samples were between <1.1 µg kg(-1) and 789 µg kg(-1), whereas those for Cr were between 7.9 mg kg(-1) and 89 mg kg(-1); the values found in the ashes were significantly lower for Cd, between <1.1 µg kg(-1) and 6.3 µg kg(-1), whereas the trend was not so clear for Cr, where the values were between 3.4 mg kg(-1) and 28 mg kg(-1).

  6. Determination of cadmium and lead in urine samples after dispersive solid-liquid extraction on multiwalled carbon nanotubes by slurry sampling electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R. M.; Herrero Latorre, C.

    2015-04-01

    A new method for the determination of Cd and Pb in urine samples has been developed. The method involves dispersive solid-phase extraction (DSPE), slurry sampling (SS), and subsequent electrothermal atomic absorption spectrometry (ETAAS). Oxidized multiwalled carbon nanotubes (MWCNTs) were used as the sorbent material. The isolated MWCNT/analyte aggregates were treated with nitric acid to form a slurry and both metals were determined directly by injecting the slurry into the ETAAS-atomizer. The parameters that influence the adsorption of the metals on MWCNTs in the DSPE process, the formation and extraction of the slurry, and the ETAAS conditions were studied by different factorial design strategies. The detection and quantification limits obtained for Cd under optimized conditions were 9.7 and 32.3 ng L- 1, respectively, and for Pb these limits were 0.13 and 0.43 μg L- 1. The preconcentration factors achieved were 3.9 and 5.4. The RSD values (n = 10) were less than 4.1% and 5.9% for Cd and Pb, respectively. The accuracy of the method was assessed in recovery studies, with values in the range 96-102% obtained for Cd and 97-101% for Pb. In addition, the analysis of certified reference materials gave consistent results. The DSPE-SS-ETAAS method is a novel and useful strategy for the determination of Pb and Cd at low levels in human urine samples. The method is sensitive, fast, and free of matrix interferences, and it avoids the tedious and time-consuming on-column adsorption and elution steps associated with commonly used SPE procedures. The proposed method was used to determine Cd and Pb in urine samples of unexposed healthy people and satisfactory results were obtained.

  7. Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan; Richter, Silke; Meckelburg, Angela

    Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H2SO4, and H3PO4. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes.

  8. Simultaneous determination of cobalt and nickel in vitamin B12 samples using high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Adolfo, Franciele Rovasi; do Nascimento, Paulo Cícero; Bohrer, Denise; de Carvalho, Leandro Machado; Viana, Carine; Guarda, Ananda; Nunes Colim, Alexsandro; Mattiazzi, Patricia

    2016-01-15

    Nickel and cobalt were simultaneously assayed in vitamin B12 formulations by using atomic spectrometry. The proposed method is based on a compromise between the proximity of specific Ni and Co spectral lines and the relative abundances of the analytes in the samples. The analytes were found in concentrations ranging from 9.48 to 26.20µg L(-1) (Ni) and from 156.90 to 279.25mg L(-1) (Co) in the commercial samples of vitamin B12. The limits of detection and quantification were 1.21 and 3.64mg L(-1) for Co and 0.39 and 1.19µg L(-1) for Ni. Sample cleanup was not necessary for the determinations, and the interferences were discussed.

  9. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    PubMed

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  10. Method development for the determination of cadmium in fertilizer samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and slurry sampling

    NASA Astrophysics Data System (ADS)

    Borges, Aline R.; Becker, Emilene M.; Lequeux, Céline; Vale, Maria Goreti R.; Ferreira, Sergio L. C.; Welz, Bernhard

    2011-07-01

    The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 μg Pd + 6 μg Mg in solution and 400 μg of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 °C and 1600 °C for the Pd-Mg modifier, and 500 °C and 1600 °C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 ± 1.3 μg g -1 and 16.4 ± 0.75 μg g -1 for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 ± 0.2 μg g -1 on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R 2) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g -1, and the limits of quantification were 25 and 27 ng g -1 for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 μg g -1 Cd, and hence below the maximum value of 20 μg g -1 Cd permitted by Brazilian legislation.

  11. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  12. Evaluation of solid sampling for determination of Mo, Ni, Co, and V in soil by high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Babos, Diego Victor; Barros, Ariane Isis; Ferreira, Edilene Cristina; Neto, José Anchieta Gomes

    2017-04-01

    New methods are proposed for the determination of Mo, Ni, Co, and V in soils using high-resolution continuum source graphite furnace atomic absorption spectrometry with direct solid sampling. Cobalt and V were simultaneously determined, and different analytical lines of Ni and V were monitored to adjust sensitivity for each sample. Accuracy was checked by means of soil certified reference materials, and also by flame atomic absorption spectrometry as comparative technique. The results for Mo, Ni, Co, and V found by proposed methods were in agreement with certified values and with those obtained by the comparative technique at 95% confidence level. The concentrations found in different soil samples were in the ranges 0.19-1.84 mg kg- 1 (Mo), 9.2-22.7 mg kg- 1 (Ni), 1.1-10.7 mg kg- 1 (Co), and 35.6-426.1 mg kg- 1 (V). The relative standard deviations were in the ranges 3.2-10% (Mo), 2.8-9.8% (Ni), 4.0-9.2% (Co), and 1.2-8.0% (V). The limits of quantification for Mo, Ni, Co, and V were 0.027, 0.071, 0.15, and 1.43 ng, respectively.

  13. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%.

  14. Slurry sampling for direct analysis of solid materials by electrothermal atomic absorption spectrometry (ETAAS). A literature review from 1990 to 2000.

    PubMed

    Cal-Prieto, M J; Felipe-Sotelo, M; Carlosena, A; Andrade, J M; López-Mahía, P; Muniategui, S; Prada, D

    2002-01-04

    The determination of trace metals in solid samples has traditionally been performed by acid digestion and subsequent measurement by a suitable instrumental technique. This dissolution step is time-consuming and it shows important drawbacks. For these reasons, in the past years many efforts have been focused on the direct analysis of solid samples. Among the developed methodologies, slurry sampling-electrothermal atomic absorption spectrometry combines the significant advantages of the solid and liquid sampling methods, and it can be already considered as a mature technique, that is widely utilized for metal determination in both organic and inorganic matrices, even for routine analysis. Accordingly, this work gives a retrospective view of the progresses of this technique during the past decade (1990-2000).

  15. The application of atomic absorption spectrometry for the determination of residual active pharmaceutical ingredients in cleaning validation samples.

    PubMed

    Bubnič, Zoran; Urleb, Uroš; Kreft, Katjuša; Veber, Marjan

    2011-03-01

    The objective of this work was the development and validation of atomic absorption spectrometric (AAS) methods for the determination of residual active pharmaceutical ingredients (API) in rinse samples for cleaning validation. AAS as an indirect method for the determination of API in rinse samples can be applied when it is in the form of salt with metal ions or when the metal ion is a part of the API's structure. The electrothermal AAS methods (aqueous and ethanol medium) for the determination of magnesium in esomeprazole magnesium and the flame AAS method for the determination of lithium in lithium carbonate in rinse samples were developed. Various combinations of solvents were tested and a combination of 1% aqueous or ethanol solution of nitric acid for esomeprazole magnesium and 0.1% aqueous solution of nitric acid for lithium carbonate were found to be the most suitable. The atomization conditions in the graphite furnace and in the flame were carefully studied to avoid losses of analyte and to achieve suitable sensitivity. The cleaning verification methods were validated with respect to accuracy, precision, linearity, limit of detection, and quantification. In all the cases, the limits of detection were at the microgram level. The methods were successfully applied for the determination of esomeprazole magnesium and lithium carbonate in rinse samples from cleaning procedures.

  16. Fast determination of phosphorus in honey, milk and infant formulas by electrothermal atomic absorption spectrometry using a slurry sampling procedure

    NASA Astrophysics Data System (ADS)

    López-García, I.; Viñas, P.; Romero-Romero, R.; Hernández-Córdoba, M.

    2007-01-01

    A procedure for the electrothermal atomic absorption spectrometric determination of phosphorus in honey, milk and infant formulas using slurried samples is described. Suspensions prepared in a medium containing 50% v/v concentrated hydrogen peroxide, 1% v/v concentrated nitric acid, 10% m/v glucose, 5% m/v sucrose and 100 mg l - 1 of potassium were introduced directly into the furnace. For the honey samples, multiple injection of the sample was necessary. The modifier selected was a mixture of 20 μg palladium and 5 μg magnesium nitrate, which was injected after the sample and before proceeding with the drying and calcination steps. Calibration was performed using aqueous standards prepared in the same suspension medium and the graph was linear between 5 and 80 mg l - 1 of phosphorus. The reliability of the procedure was checked by comparing the results obtained by the new developed method with those found when using a reference spectrophotometric method after a mineralization step, and by analyzing several certified reference materials.

  17. Determination of lead in wine and rum samples by flow injection-hydride generation-atomic absorption spectrometry.

    PubMed

    Elçi, Latif; Arslan, Zikri; Tyson, Julian F

    2009-03-15

    A method for direct determination of lead in wine and rum samples was developed, using a flow injection hydride generation system coupled to an atomic absorption spectrometer with flame-quartz atomizer (FI-HG-AAS). Lead hyride (PbH(4)) was generated using potassium ferricyanide (K(3)Fe(CN)(6)), as oxidant and sodium tetrahydroborate (NaBH(4)) as reductant. Samples were acidified to 0.40% (v/v) HCl for wine and to 0.30% (v/v) HCl for rum, which were then mixed on-line with 3% (m/v) K(3)Fe(CN)(6) solution in 0.03% (v/v) HCl prior to reaction with 0.2% (m/v) alkaline NaBH(4) solution. Lead contents of a rum and two different red wine samples were determined by FI-HG-AAS agreed with those obtained by ICP-MS. The analytical figures of merit of method developed were determined. The calibration curve was linear up to 8.0 microg L(-1) Pb with a regression coefficient of 0.998. The relative error was lower than 4.58%. The relative standard deviation (n=7) was better than 12%. A detection limit of 0.16 microg L(-1) was achieved for a sample volume of 170 microL.

  18. Method development for the determination of bromine in coal using high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Éderson R.; Castilho, Ivan N. B.; Welz, Bernhard; Gois, Jefferson S.; Borges, Daniel L. G.; Carasek, Eduardo; de Andrade, Jailson B.

    2014-06-01

    This work reports a simple approach for Br determination in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry. The molecular absorbance of the calcium mono-bromide (CaBr) molecule has been measured using the rotational line at 625.315 nm. Different chemical modifiers (zirconium, ruthenium, palladium and a mixture of palladium and magnesium nitrates) have been evaluated in order to increase the sensitivity of the CaBr absorption, and Zr showed the best overall performance. The pyrolysis and vaporization temperatures were 800 °C and 2200 °C, respectively. Accuracy and precision of the method have been evaluated using certified coal reference materials (BCR 181, BCR 182, NIST 1630a, and NIST 1632b) with good agreement (between 98 and 103%) with the informed values for Br. The detection limit was around 4 ng Br, which corresponds to about 1.5 μg g- 1 Br in coal, based on a sample mass of 3 mg. In addition, the results were in agreement with those obtained using electrothermal vaporization inductively coupled plasma mass spectrometry, based on a Student t-test at a 95% confidence level. A mechanism for the formation of the CaBr molecule is proposed, which might be considered for other diatomic molecules as well.

  19. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries.

    PubMed

    de Oliveira, Tatiane Milão; Augusto Peres, Jayme; Lurdes Felsner, Maria; Cristiane Justi, Karin

    2017-08-15

    Milk is an important food in the human diet due to its physico-chemical composition; therefore, it is necessary to monitor contamination by toxic metals such as Pb. Milk sample slurries were prepared using Triton X-100 and nitric acid for direct analysis of Pb using graphite furnace atomic absorption spectrometry - GF AAS. After dilution of the slurries, 10.00µl were directly introduced into the pyrolytic graphite tube without use of a chemical modifier, which acts as an advantage considering this type of matrix. The limits of detection and quantification were 0.64 and 2.14µgl(-1), respectively. The figures of merit studied showed that the proposed methodology without pretreatment of the raw milk sample and using external standard calibration is suitable. The methodology was applied in milk samples from the Guarapuava region, in Paraná State (Brazil) and Pb concentrations ranged from 2.12 to 37.36µgl(-1).

  20. Optimization of microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry.

    PubMed

    Soylak, Mustafa; Tuzen, Mustafa; Souza, Anderson Santos; das Graças Andrade Korn, Maria; Ferreira, Sérgio Luis Costa

    2007-10-22

    The present paper describes the development of a microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry (FAAS). The optimization step was performed using a full factorial design (2(3)) involving the factors: composition of the acid mixture (CMA), microwave power (MP) and radiation time (RT). The experiments of this factorial were carried out using a certified reference material of tea GBW 07605 furnished by National Research Centre for Certified Reference Materials, China, being the metal recoveries considered as response. The relative standard deviations of the method were found below 8% for the three elements. The procedure proposed was used for the determination of copper, zinc and nickel in several samples of tea from Turkey. For 10 tea samples analyzed, the concentration achieved for copper, zinc and nickel varied at 6.4-13.1, 7.0-16.5 and 3.1-5.7 (microg g(-1)), respectively.

  1. Radiocarbon dating of archaeological samples (sambaqui) using CO(2) absorption and liquid scintillation spectrometry of low background radiation.

    PubMed

    Mendonça, Maria Lúcia T G; Godoy, José M; da Cruz, Rosana P; Perez, Rhoneds A R

    2006-01-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO(2) absorption on Carbo-sorb and (14)C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H(3)PO(4) in a closed vessel in order to generate CO(2). The produced CO(2) was absorbed on Carbo-sorb. On saturation about 0.6g of carbon, as CO(2), was mixed with commercial liquid scintillation cocktail (Permafluor), and the (14)C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the (14)C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  2. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg(-1) and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v).

  3. Simultaneous and direct determination of iron and nickel in biological solid samples by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2013-11-15

    The simultaneous and direct determination of nickel and iron in plants and lichens has been investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry. The primary resonance line for nickel at 232.003 nm and the adjacent secondary line for iron at 232.036 nm have been used for this purpose. The optimization of the experimental conditions was performed using a pine needles certified reference material (SRM 1575a). The influence of pyrolysis and atomization temperatures, the amount of solid sample introduced into the graphite furnace and the use of aqueous or solid standard for calibration were studied. The spectral interferences caused by absorption of the concomitants of the solid sample were detected and corrected using a least square algorithm. Aliquots of 0.1-1mg of the solid samples were weighed onto the solid sampling platforms and analyzed directly, without addition of any reagents. The limits of detection were 25 µg kg(-1) for nickel and 0.40 mg kg(-1) for iron and the precision, expressed as the relative standard deviation, ranged from 7% to 12%. The proposed method was used to determine both metals in different bioindicator samples with successful results.

  4. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.

    PubMed

    Goudarzi, Nasser

    2009-02-11

    A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples.

  5. Evaluation of toxic metals in biological samples (scalp hair, blood and urine) of steel mill workers by electrothermal atomic absorption spectrometry.

    PubMed

    Afridi, Hassan I; Kazi, Tasneem G; Jamali, Mohammad K; Kazi, Gul H; Arain, Mohammad B; Jalbani, Nusrat; Shar, Ghulam Q; Sarfaraz, Raja A

    2006-10-01

    The determination of toxic metals in the biological samples of human beings is an important clinical screening procedure. This study aimed to assess the possible influence of environmental exposure on production workers (PW) and quality control workers (QCW) of a steel mill, all male subjects aged 25-55 years. In this investigation, the concentrations of Pb, Cd, Ni and Cr were determined in biological samples (blood, urine and scalp hair samples) from these steel mill workers in relation to controlled unexposed healthy subjects of the same age group. After pre-treatment with nitric acid-hydrogen peroxide, the samples were digested via a microwave oven, and for comparison purposes, the same samples were digested by the conventional wet acid digestion method. The samples digested were subjected to graphite furnace atomic absorption spectrometry (GFAAS). To assess the reliability of these methods, critical factors, such as detection limit(s), calibration range(s), accuracy and precision, were studied. Quality control for these procedures was established with certified sample of human hair, urine and whole blood. The results indicate that the level of lead, cadmium and nickel in scalp hair, blood and urine samples were significantly higher in both groups of exposed workers (QW and PW) than those of the controls. The possible connection of these elements with the etiology of disease is discussed. The results also show the need for immediate improvements in workplace ventilation and industrial hygiene practices.

  6. Feasibility of using solid sampling graphite furnace atomic absorption spectrometry for speciation analysis of volatile and non-volatile compounds of nickel and vanadium in crude oil.

    PubMed

    Silva, Márcia M; Damin, Isabel C F; Vale, Maria Goreti R; Welz, Bernhard

    2007-03-30

    A method for the direct determination of volatile and non-volatile nickel and vanadium compounds in crude oil without previous treatment using direct solid sampling graphite furnace atomic absorption spectrometry is proposed. The crude oil samples were weighed directly onto solid sampling platforms using a microbalance and introduced into a transversely heated solid sampling graphite tube. In previous work of our group losses of volatile nickel and vanadium compounds have been detected, whereas other nickel and vanadium compounds were thermally stable up to 1300 and 1600 degrees C, respectively. In order to avoid this problem different chemical modifiers (conventional and permanent) have been investigated. With 400microg of iridium as permanent modifier, the signal started to drop already after two atomization cycles, possibly because of an interaction of nickel (which is a catalyst poison) with iridium. Twenty micrograms of palladium applied in each determination was found to be optimum for both elements. The palladium was deposited on the platform and submitted to a drying step at 150 degrees C for 75s. After that the sample was added onto the platform and submitted to the furnace program. The influence of sample mass on the linearity of the response and on potential measurement errors was also investigated using four samples with different nickel content. For the sample with the lowest nickel concentration the relationship between mass and integrated absorbance was found to be non-linear when a high sample mass was introduced. It was suspected that the modifier had not covered the entire platform surface, which resulted in analyte losses. This problem could be avoided by using 40microL of 0.5g L(-1) Pd with 0.05% Triton X-100. Calibration curves were established with and without modifier, with aqueous standards, oil-in-water emulsions and the certified reference material NIST SRM 1634c (trace metals in residual fuel oil). The sensitivity for aqueous standards

  7. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  8. A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry for analysis of samples with high NaCl contents

    NASA Astrophysics Data System (ADS)

    Čánský, Zdeněk; Rychlovský, Petr; Petrová, Zuzana; Matousek, J. P.

    2007-03-01

    A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry has been developed for determination of lead and cadmium in samples with high salt contents. To separate the analyte from the sample matrix, the analyte was in-situ quantitatively electrodeposited on a platinum sampling capillary serving as the cathode (sample volume, 20 μL). The spent electrolyte containing the sample matrix was then withdrawn, the capillary with the analyte deposited was washed with deionized water and the analyte was stripped into a chemically simple electrolyte (5 g/L NH 4H 2PO 4) by reversing the polarity of the electrodeposition circuit. Electrothermal atomization using a suitable optimized temperature program followed. A fully automated manifold was designed for this coupled technique and the appropriate control software was developed. The operating conditions for determination of Pb and Cd in samples with high contents of inorganic salts were optimized, the determination was characterized by principal analytical parameters and its applicability was verified on analyses of urine reference samples. The absolute limits of detection for lead and cadmium (3 σ criterion) in a sample containing 30 g/L NaCl were 8.5 pg and 2.3 pg, respectively (peak absorbance) and the RSD values amounted to 1.6% and 1.9% for lead (at the 40 ng mL - 1 level) and cadmium (at the 4.0 ng mL - 1 level), respectively. These values (and also the measuring sensitivity) are superior to the results attained in conventional electrothermal atomic absorption spectrometric determination of Pb and Cd in pure solutions (5 g/L NH 4H 2PO 4). The sensitivity of the Pb and Cd determination is not affected by the NaCl concentration up to a value of 100 g/L, demonstrating an efficient matrix removal during the electrodeposition step.

  9. Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples

    NASA Astrophysics Data System (ADS)

    Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.

    2015-09-01

    The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.

  10. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    NASA Astrophysics Data System (ADS)

    Araujo, Rennan G. O.; Vignola, Fabíola; Castilho, Ivan N. B.; Borges, Daniel L. G.; Welz, Bernhard; Vale, Maria Goreti R.; Smichowski, Patricia; Ferreira, Sérgio L. C.; Becker-Ross, Helmut

    2011-05-01

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3σ), based on ten atomizations of an unexposed filter, was 40 ng g - 1 , corresponding to 0.12 ng m - 3 in the air for a typical air volume of 1440 m 3 collected within 24 h. The limit of quantification was 150 ng g -1, equivalent to 0.41 ng m -3 in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g -1 and 381 ± 24 ng g -1. These values correspond to a mercury concentration in the air between < 0.12 ng m -3 and 1.47 ± 0.09 ng m -3. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  11. Strontium mono-chloride - A new molecule for the determination of chlorine using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Éderson R.; Welz, Bernhard; Lopez, Alfredo H. D.; de Gois, Jefferson S.; Caramori, Giovanni F.; Borges, Daniel L. G.; Carasek, Eduardo; de Andrade, Jailson B.

    2014-12-01

    A new method has been developed for the determination of chlorine in biological reference materials using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) of the strontium mono-chloride (SrCl) molecule and direct solid sample analysis. The use of the SrCl molecule for high-temperature MAS was not described up to now in the literature. Preliminary time-dependent density functional theory calculations of the SrCl structure were carried out in order to obtain reasonable estimates of the absorption spectrum of the target molecule. The calculations, which were carried out at BHandHLyp/def2-QZVP level of theory, proved a very accurate and inexpensive way to get information about the spectrum of the SrCl molecule, which enabled us to perform the Cl determination with good sensitivity and specificity. The molecular absorption of the SrCl molecule has been measured using the wavelength at 635.862 nm, and zirconium and palladium have been evaluated as the chemical modifiers in order to increase the sensitivity of the gaseous SrCl molecule generated in the graphite furnace. The pyrolysis and vaporization temperatures were 600 °C and 2300 °C, respectively. Accuracy and precision of the method have been evaluated using biological certified reference materials of both animal and plant origins, showing good agreement with the informed and certified values. Limit of detection and characteristic mass were 1.0 and 2.2 ng, respectively. The results found using HR-CS GF MAS were in agreement (95% confidence level) compared to those obtained by electrothermal vaporization-inductively coupled plasma mass spectrometry.

  12. Fast sequential multi-element determination of major and minor elements in environmental samples and drinking waters by high-resolution continuum source flame atomic absorption spectrometry.

    PubMed

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2015-01-07

    The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88-115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8-9 mL of sample.

  13. Automatic On-line Solid-phase Extraction-Electrothermal Atomic Absorption Spectrometry Exploiting Sequential Injection Analysis for Trace Vanadium, Cadmium and Lead Determination in Human Urine Samples.

    PubMed

    Giakisikli, Georgia; Ayala Quezada, Alejandro; Tanaka, Junpei; Anthemidis, Aristidis N; Murakami, Hiroya; Teshima, Norio; Sakai, Tadao

    2015-01-01

    A fully automated sequential injection column preconcentration method for the on-line determination of trace vanadium, cadmium and lead in urine samples was successfully developed, utilizing electrothermal atomic absorption spectrometry (ETAAS). Polyamino-polycarboxylic acid chelating resin (Nobias chelate PA-1) packed into a handmade minicolumn was used as a sorbent material. Effective on-line retention of chelate complexes of analytes was achieved at pH 6.0, while the highest elution effectiveness was observed with 1.0 mol L(-1) HNO3 in the reverse phase. Several analytical parameters, like the sample acidity, concentration and volume of the eluent as well as the loading/elution flow rates, have been studied, regarding the efficiency of the method, providing appropriate conditions for the analysis of real samples. For a 4.5 mL sample volume, the sampling frequency was 27 h(-1). The detection limits were found to be 3.0, 0.06 and 2.0 ng L(-1) for V(V), Cd(II) and Pb(II), respectively, with the relative standard deviations ranging between 1.9 - 3.7%. The accuracy of the proposed method was evaluated by analyzing a certified reference material (Seronorm(TM) trace elements urine) and spiked urine samples.

  14. Direct determination of silicon in powdered aluminium oxide by use of slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry.

    PubMed

    Minami, H; Yoshida, T; Okutsu, K; Zhang, Q; Inoue, S; Atsuya, I

    2001-08-01

    A direct method for determination of silicon in powdered high-purity aluminium oxide samples, by slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry (GF-AAS), has been established. A slurry sample was prepared by 10-min ultrasonication of a powdered sample in an aqueous solution containing both sodium carbonate and boric acid as a mixed flux. An appropriate portion of the slurry was introduced into a pyrolytic graphite furnace equipped with a platform. Silicon compounds to be determined and aluminium oxide were fused by the in situ fusion process with the flux in the furnace under optimized heating conditions, and the silicon absorbance was then measured directly. The calibration curve was prepared by use of a silicon standard solution containing the same concentration of the flux as the slurry sample. The accuracy of the proposed method was confirmed by analysis of certified reference materials. The proposed method gave statistically accurate values at the 95% confidence level. The detection limit was 3.3 microg g(-1) in solid samples, when 300 mg/20 mL slurry was prepared and a 10 microL portion of the slurry was measured. The precision of the determination (RSD for more than four separate determinations) was 14% and 2%, respectively, for levels of 10 and 100 microg g(-1) silicon in aluminium oxide.

  15. Determination of chlorine via the CaCl molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis.

    PubMed

    Guarda, Ananda; Aramendía, Maite; Andrés, Irene; García-Ruiz, Esperanza; do Nascimento, Paulo Cícero; Resano, Martín

    2017-01-01

    This work investigates the possibilities of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of Cl in solid samples via the CaCl molecule and measurement of its molecular absorption. The method proposed is based on addition of 400µg Ca as molecule-forming reagent and of 20µgPd as chemical modifier, which helps to stabilize the analyte and enhances sensitivity. The molecular spectrum for CaCl offers different lines with different limits of detection and linear ranges, which permitted to analyze solid samples with different Cl contents. The lowest limit of detection (0.75ng Cl, corresponding to 0.75µgg(-1) for a typical sample mass of 1mg) could be achieved by combination of three of the most sensitive lines in the vicinity of 620.862nm, while the amplest linear range (up to 860ng Cl) was achieved by selection of the less sensitive line at 377.501nm. The method developed enabled the direct determination of Cl in solid samples using simple external calibration with aqueous standards. Good precision (5-9% RSD) and accuracy was attained in a series of certified samples of very different nature (i.e. coal, iron oxide, polyethylene, human hair, pine needles, rice flour and milk) and with very different Cl contents, ranging from about 50µgg(-1) to 1% (w/w) Cl. The method appears as particularly useful for Cl determination in samples with elevated Ca contents, for which biased results with other diatomic molecules, such as AlCl or SrCl, may be obtained.

  16. Simultaneous determination of iron and nickel in fluoropolymers by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Soares, Bruno M; Santos, Rafael F; Bolzan, Rodrigo C; Muller, Edson I; Primel, Ednei G; Duarte, Fabio A

    2016-11-01

    This paper reports the development of a method of simultaneous determination of iron and nickel in fluoropolymers by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with direct solid sampling. In order to carry out simultaneous measurements, both the main resonance line of nickel (232.003nm) and the adjacent secondary line of iron (232.036nm) were monitored in the same spectral window. The proposed method was optimized with a perfluoroalkoxy (PFA) sample and was applied to the determination of iron and nickel in fluorinated ethylene propylene (FEP) and modified polytetrafluoroethylene (PTFE-TFM) samples. Pyrolysis and atomization temperatures, as well as the use of Pd and H2 (during pyrolysis) as chemical modifiers, were carefully investigated. Compromise temperatures for pyrolysis and atomization of both analytes were achieved at 800 and 2300°C, respectively, using only 0.5Lmin(-1) H2 as chemical modifier during pyrolysis. Calibration curves were performed with aqueous standards by using a single solution which contained both analytes. Limits of detection were 221 and 9.6ngg(-1) for iron and nickel, respectively. Analyte concentrations in all samples ranged from 3.53 to 12.4µgg(-1) for iron and from 37 to 78ngg(-1) for nickel, with relative standard deviation less than 19%. Accuracy was evaluated by comparing these results with those obtained by inductively coupled plasma mass spectrometry after sample digestion by microwave-induced combustion and no significant statistical difference was observed.

  17. Synthesis of a new molecularly imprinted polymer for sorption of the silver ions from geological and antiseptic samples for determination by flame atomic absorption spectrometry.

    PubMed

    Hashemi-Moghaddam, Hamid; Yahyazadeh, Faegheh; Vardini, Mohammad Taghi

    2014-01-01

    A new molecularly imprinted polymer (MIP) was synthesized using methacrylic acid (functional monomer), ethylene glycol dimethacrylate (crosslinker), 2,2'-azobisisobutironitril (initiator), silver (Ag) dithizone complex (template), and chloroform (porogenic solvent). This process was a noncovalent, bulk, thermal radical-polymerization. To compare the performance of this polymer, control polymer (nonimprinted polymer) was prepared under well-defined conditions without the use of a template. Extraction experiments were performed on the MIP and a nonimprinted polymer. Then, various parameters were optimized, such as pH, time, concentration of sample, and type of eluent for elution of Ag from polymer. In addition, interfering effects were investigated on the absorption of Ag by the MIP. This polymer was used for the rapid extraction and preconcentration of Ag from an antiseptic and geological sample. Finally, the amount of Ag was measured by flame atomic absorption spectrometry after preconcentration by the synthesized MIP, and results were compared with a direct inductively coupled plasma method. The results showed high performance of this method in preconcentration of Ag.

  18. Optimization of high-resolution continuum source graphite furnace atomic absorption spectrometry for direct analysis of selected trace elements in whole blood samples.

    PubMed

    Wójciak-Kosior, Magdalena; Szwerc, Wojciech; Strzemski, Maciej; Wichłacz, Zoltan; Sawicki, Jan; Kocjan, Ryszard; Latalski, Michał; Sowa, Ireneusz

    2017-04-01

    Trace analysis plays an important role in medicine for diagnosis of various disorders; however, the appropriate sample preparation is required mostly including mineralization. Although graphite furnace atomic absorption spectrometry (GF AAS) allows the investigation of biological samples such as blood, serum, and plasma without this step, it is rarely used for direct analysis because the residues of the rich organic matrix inside the furnace are difficult to remove and this may cause spectral/matrix interferences and decrease the lifetime of the graphite tube. In our work, the procedure for determination of Se, Cr, Mn, Co, Ni, Cd and Pb with the use of the high resolution continuum source GF-AAS technique in whole blood samples with minimum sample pre-treatment was elaborated. The pyrolysis and atomization temperature as well as the time of signal integration were optimized to obtain the highest intensity and repeatability of the analytical signal. Moreover, due to the apparatus modification, an additional step was added in the for graphite furnace temperature program with minimal argon flow and maximal flow of air during pyrolysis stage to increase the oxidative condition for better matrix removal. The accuracy and precision of the optimized method was verified using certified reference material (CRM) Seronorm Trace Elements Whole Blood L-1 and the developed method was applied for trace analysis of blood samples from volunteer patients of the Orthopedics Department.

  19. Use of slurry sampling for the direct determination of zinc in yogurt by high resolution-continuum source flame atomic absorption spectrometry.

    PubMed

    Brandao, Geovani C; de Jesus, Raildo M; da Silva, Erik G P; Ferreira, Sergio L C

    2010-06-15

    This paper presents an analytical procedure for the direct determination of zinc in yogurt employing sampling slurry and high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). The step optimization established the experimental conditions of: 2.0molL(-1) hydrochloric acid, a sonication time of 20min and a sample mass of 1.0g for a slurry volume of 25mL. This method allows the determination of zinc with a limit of quantification of 0.32microgg(-1). The precision expressed as relative standard deviation (RSD) were 0.82 and 2.08% for yogurt samples containing zinc concentrations of 4.85 and 2.49microgg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of non-fat milk powder furnished by the National Institute of Standard and Technology. The proposed method was applied for the determination of zinc in seven yogurt samples. The zinc content was varied from 2.19 to 4.85microgg(-1). These results agreed with those reported in the literature. The samples were also analyzed after acid digestion and zinc determination by FAAS. No statistical difference was observed between the results obtained by both of the procedures performed.

  20. Determination of lead in medicinal plants by high-resolution continuum source graphite furnace atomic absorption spectrometry using direct solid sampling.

    PubMed

    Figuerêdo Rêgo, Jardes; Virgilio, Alex; Nóbrega, Joaquim A; Gomes Neto, José A

    2012-10-15

    A procedure is proposed for Pb determination in medicinal plants by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) using direct solid sampling. Among Pd(NO(3))(2), Pd/Mg(NO(3))(2), NH(4)H(2)PO(4) and the W-coated platform tested as chemical modifiers, Pd(NO(3))(2) presented the best performance. Calibration plots (10-1000 pg Pb) with regression coefficients better than 0.999 were typically obtained. Accuracy was checked for Pb determination in five plant certified reference materials. Results were in agreement with reference values at a 95% confidence level (paired t-test). Medicinal plant samples were analyzed by the proposed procedure and line-source GF AAS using slurry sampling as a comparative technique. The RSD was 10% (n=3) for a sample containing 0.88 μg g(-1) Pb. The limit of quantification (dry mass) was 0.024 μg g(-1). The contents of Pb in medicinal plant samples varied in the 0.30-1.94 μg g(-1) range.

  1. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry

    PubMed Central

    Naeemullah; Kazi, Tasneem Gul; Shah, Faheem; Afridi, Hassan Imran; Khan, Sumaira; Arian, Sadaf Sadia; Brahman, Kapil Dev

    2012-01-01

    Cloud point extraction (CPE) has been used for the preconcentration and simultaneous determination of cobalt (Co) and lead (Pb) in fresh and wastewater samples. The extraction of analytes from aqueous samples was performed in the presence of 8-hydroxyquinoline (oxine) as a chelating agent and Triton X-114 as a nonionic surfactant. Experiments were conducted to assess the effect of different chemical variables such as pH, amounts of reagents (oxine and Triton X-114), temperature, incubation time, and sample volume. After phase separation, based on the cloud point, the surfactant-rich phase was diluted with acidic ethanol prior to its analysis by the flame atomic absorption spectrometry (FAAS). The enhancement factors 70 and 50 with detection limits of 0.26 μg L−1 and 0.44 μg L−1 were obtained for Co and Pb, respectively. In order to validate the developed method, a certified reference material (SRM 1643e) was analyzed and the determined values obtained were in a good agreement with the certified values. The proposed method was applied successfully to the determination of Co and Pb in a fresh surface and waste water sample. PMID:23227429

  2. Determination of selenium in marine biological tissues by transverse heated electrothermal atomic absorption spectrometry with longitudinal Zeeman background correction and automated ultrasonic slurry sampling.

    PubMed

    Méndez, H; Alava, F; Lavilla, I; Bendicho, C

    2001-01-01

    A fast, sensitive, and reliable method for determination of selenium in marine biological tissues by electrothermal atomic absorption spectrometry with slurry sampling was developed. Slurries were prepared from fresh and frozen seafood samples that were previously homogenized, dried, and ground; particle sizes <100 microm were taken for analysis. A 3% (v/v) HNO3 solution containing 0.01% (v/v) Triton X-100 was used as slurry diluent. Slurries were mixed on an automated ultrasonic slurry sampler at 20% amplitude for 30 s just before an aliquot was injected into the furnace. The method was successfully validated against the following certified reference materials: NRCC CRM DORM-2 (Dogfish muscle); NRCC CRM TORT-2 (Lobster hepatopancreas); NRCC CRM DOLT-2 (Dogfish liver); and BCR CRM 278 (Mussel tissue), and was subsequently applied to determination of Se in 10 marine biological samples. The influences of the drying procedure (oven-, microwave-, and freeze-drying), matrix modifier amount, mass of solid material in cup, and pipetting sequence are discussed. The limit of determination of Se was 0.16 microg/g and the repeatability, estimated as between-batch precision, was in the range of 4-8%. Se contents in the samples ranged from 0.6 to 2.8 microg/g. The proposed method should be useful for fast assessment of the daily dietary intake of Se.

  3. Feasibility of using in situ fusion for the determination of Co, Cr and Mn in Portland cement by direct solid sampling graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Intima, Danielle Polidorio; de Oliveira, Elisabeth; Oliveira, Pedro Vitoriano

    2009-06-01

    In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 µg of sample. The in situ fusion was accomplished using 10 µL of a flux mixture 4.0% m/v Na 2CO 3 + 4.0% m/v ZnO + 0.1% m/v Triton® X-100 added over the cement sample and heated at 800 °C for 20 s. The resulting mould was completely dissolved with 10 µL of 0.1% m/v HNO 3. Limits of detection were 0.11 µg g - 1 for Co, 1.1 µg g - 1 for Cr and 1.9 µg g - 1 for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student's t-test, p < 0.05). In general, the relative standard deviation was lower than 12% ( n = 5).

  4. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    NASA Astrophysics Data System (ADS)

    Virgilio, Alex; Nóbrega, Joaquim A.; Rêgo, Jardes F.; Neto, José A. Gomes

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 °C and 2400 °C, respectively. Slopes of calibration curves (50-750 pg Cr, R2 > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 μg g- 1 Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 ± 2.1 μg g- 1 Cr. The limit of detection was 3.3 ng g- 1 Cr.

  5. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples.

  6. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    NASA Astrophysics Data System (ADS)

    Huber, Charles S.; Vale, Maria Goreti R.; Welz, Bernhard; Andrade, Jailson B.; Dessuy, Morgana B.

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg- 1 and 4.7 mg kg- 1, respectively.

  7. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed).

  8. Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry.

    PubMed

    Olmedo, P; Pla, A; Hernández, A F; López-Guarnido, O; Rodrigo, L; Gil, F

    2010-02-05

    For biological monitoring of heavy metal exposure in occupational toxicology, usually whole blood and urine samples are the most widely used and accepted matrix to assess internal xenobiotic exposure. Hair samples and saliva are also of interest in occupational and environmental health surveys but procedures for the determination of metals in saliva and hair are very scarce and to our knowledge there is no validation of a method to quantify Cr, Cd, Mn, Ni and Pb in four different human biological materials (whole blood, urine, saliva and axilary hair) by electrothermal atomization atomic absorption spectrometry (ETAAS). In the present study, quantification methods for the determination of Cr, Cd, Mn, Ni and Pb in whole blood, urine, saliva and axilary hair were validated according to the EU common standards. Pyrolisis and atomization temperatures have been determined. The main parameters evaluated were: detection and quantification limits, linearity range, repeatability, reproducibility, recovery and uncertainty. Accuracy of the methods was tested with the whole blood, urine and hair certified reference materials and recoveries of the spiked samples were acceptable ranged from 96.3 to 107.8%.

  9. Determination of ultra-trace amounts of prosthesis-related metals in whole blood using volumetric absorptive micro-sampling and tandem ICP - Mass spectrometry.

    PubMed

    Bolea-Fernandez, Eduardo; Phan, Kim; Balcaen, Lieve; Resano, Martín; Vanhaecke, Frank

    2016-10-19

    This paper reports on an evaluation of the suitability of a novel sample collection approach, volumetric absorptive micro-sampling (VAMS), in the context of the determination of ultra-trace concentrations of prosthesis-related metals (Al, Ti, V, Co, Cr, Ni, Sr and Zr) in whole blood. In a first phase, a simple dilute-and-shoot approach (100-fold dilution) followed by tandem ICP - mass spectrometry (ICP-MS/MS) analysis was developed for the accurate and sensitive determination of the target elements. The ICP-MS/MS method relies on the use of mass shift reactions proceeding when pressurizing the collision/reaction cell (CRC) with CH3F/He for dealing with spectral overlap. Limits of detection (LoDs) between 0.3 and 30 ng L(-1) were attained in a multi-element approach. The accuracy of the method was demonstrated via successful analysis of the reference materials Seronorm Whole Blood Levels 1 and 3, and real venous blood samples, spiked with the target elements at different concentration levels (5-50 μg L(-1)). Although the implementation of VAMS devices introduced contamination problems for Al, Cr and Ni, VAMS followed by ICP-MS/MS analysis shows potential for future real-life routine applications when assessing levels of Ti, V, Co, Sr and/or Zr.

  10. Determination of Lead in Water Samples Using a New Vortex-Assisted, Surfactant-Enhanced Emulsification Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Pan, Weiliang; Tang, Xiaohui; Zhou, Guangming; Mao, Yufeng; Su, Xaioxuan

    2016-04-01

    A low toxic solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction (LT-VSLLME) combined with graphite furnace atomic absorption spectrometry was developed for the extraction and determination of lead (Pb) in water samples. In the LT-VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which acted as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The influences of analytical parameters, including extraction solvent type and its volume, surfactant type and its volume, pH, concentration of chelating agent, salt effect and extraction time were investigated. Under the optimized conditions, a good relative standard deviation of 3.69% at 10 ng L(-1) was obtained. The calibration graph showed a linear pattern in the ranges of 5-30 ngL(-1), with a limit of detection of 0.76 ng L(-1). The linearity was obtained by five points in the concentration range of 5-30 ngL(-1). The enrichment factor was 320. The procedure was applied to wastewater and river water, and the accuracy was assessed through the analysis of the recovery experiments.

  11. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples.

  12. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results.

  13. Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling.

    PubMed

    Krawczyk, Magdalena

    2014-01-01

    In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level.

  14. Development of an ultrasonic slurry sampling method for the determination of Cu and Mn in antibiotic tablets by electrothermal atomic absorption spectrometry.

    PubMed

    de Paula, Carlos Eduardo R; Caldas, Luiz Fernando S; Brum, Daniel M; Cassella, Ricardo J

    2012-07-01

    A new method is described for simple, efficient and rapid determination of Cu and Mn in tablets of antibiotics (ciprofloxacin and cephalexin) by electrothermal atomic absorption spectrometry (ETAAS) using slurry sampling. In order to optimize the procedure, several variables that could affect the performance of the method were investigated. In the best conditions, the tablets could be analyzed by introducing into the graphite tube 20 μl of a slurry prepared with approximately 90-100mg of the sample and 2 ml of a solution containing 5% m/v of Triton X-114 and 2.8 M of HNO(3). Before the introduction, the slurries were sonicated for 15 min at 40% of amplitude (130 W maximum power) with an ultrasonic probe. The developed method was applied in the determination of Cu and Mn in four samples, and the results were compared with those obtained by focused microwave acid digestion with aqua regia (1:3 mixture of HNO(3):HCl). There was no statistical difference between the obtained values at 95% confidence level when a paired Student t-test was applied.

  15. Green Preconcentration of Trace Amounts of Copper from Water and Food Samples onto Novel Organo-Nanoclay Prior to Flame Atomic Absorption Spectrometry.

    PubMed

    Beyki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah

    2014-01-01

    In this work, the nanoclay was intercalated with acyclovir (9-[(2-hydroxyethoxy) methyl] guanine), the toxicity of which to mammalian cells is very low. We used no organic solvents for preparation of modified clay and desorption of Cu ions from the sorbent. Batch and column methods were used, and sorption of Cu was quantitative (>98%) in the pH range of 7.5 to 10.0. Quantitative desorption occurred with 5.0 mL of 3.0 M HCl, and the amount of Cu(II) was measured by using flame atomic absorption spectrometry. In the initial solution the linear dynamic range and the LOD were 3.0-1000.0 and 0.58 μg/L, respectively. With 500.0 mL of sample, an enrichment factor of 100 was obtained. The RSD was 2.0% (n = 8, concentration = 0.5 mg/L), and the maximum capacity of the sorbent was 45.0 mg/g. The influence of experimental parameters including sample pH, ionic strength, type and volume of the eluent, and interference of some ions on the recoveries of Cu was investigated. The proposed method using a new and easier prepared solid sorbent was applied to the determination of Cu in different real samples with satisfactory results.

  16. On-line preconcentration/determination of zinc from water, biological and food samples using synthesized chelating resin and flame atomic absorption spectrometry.

    PubMed

    Yılmaz, Sibel; Tokalıoğlu, Serife; Sahan, Serkan; Ulgen, Ahmet; Sahan, Ahmet; Soykan, Cengiz

    2013-04-01

    An on-line flow injection pre-concentration-flame atomic absorption spectrometry method was developed to determine trace zinc in water (tap, dam, and well water), biological (hair and nail), and liver samples. As a solid phase extractant, a synthesized new chelating resin, poly(2-thiozylmethacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propane sulfonic acid) was used. The resin was characterized by Fourier transform infrared spectroscopy, elemental analysis, and surface area by nitrogen sorption. A pre-concentration factor of 40-fold for a sample volume of 12.6 mL was obtained by using the time-based technique. The detection limit for the pre-concentration method was found to be 2.2 μg L(-1). The precision (as RSD,%) for 10 replicate determinations at the 0.04 μg mL(-1) Zn concentration was 1.2%. The calibration graph using the pre-concentration system for zinc was linear with a correlation coefficient of 0.998 in the concentration range from 0.005 to 0.05 μg mL(-1). The applicability and accuracy of the developed method were estimated by the analysis spiked water, biological, liver samples (83-105%), and also certified reference material TMDA-70 (fortified lake water) and SPS-WW1 Batch 111-Wastewater. The results were in agreement with the certified values.

  17. Selenium measurement in human plasma with Zeeman effect electrothermal atomic absorption spectrometry: sample stability and calibration method.

    PubMed

    Sabé, Rosa; Rubio, Roser; García-Beltrán, Lydia

    2003-01-01

    The dual aim of the present study is the investigation of the stability of plasma samples for selenium determination with time and temperature and the assessment of the calibration method. A comparative study is performed, using two calibration methods: standard addition to each sample and matrix matched curve. Our findings show that, in general, significant differences in the selenium content are observed when comparing the results obtained with these two calibration methods. Plasma samples stored at -20 degrees C are stable relative to the selenium content for a period of at least one year.

  18. Optimization of microwave digestion for mercury determination in marine biological samples by cold vapour atomic absorption spectrometry.

    PubMed

    Cardellicchio, Nicola; Di Leo, Antonella; Giandomenico, Santina; Santoro, Stefania

    2006-01-01

    Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.

  19. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    PubMed

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation.

  20. A novel ionic liquid/micro-volume back extraction procedure combined with flame atomic absorption spectrometry for determination of trace nickel in samples of nutritional interest.

    PubMed

    Dadfarnia, Shayesteh; Shabani, Ali Mohammad Haji; Bidabadi, Mahboubeh Shirani; Jafari, Abbas Ali

    2010-01-15

    A simple, highly sensitive and environment-friendly method for the determination of trace amount of nickel ion in different matrices is proposed. In the preconcentration step, the nickel from 10 mL of an aqueous solution was extracted into 500 microL of ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C(4)MIM][PF(6)], containing PAN as complexing agent. Subsequently, the PAN complex was back-extracted into 250 microL of nitric acid solution, and 100 microL of it was analyzed by flow injection flame atomic absorption spectrometry (FI-FAAS). The main parameter influencing the extraction and determination of nickel, such as pH, concentration of PAN, extraction time and temperature, ionic strength, and concentration of stripping acid solution, were optimized. An enhancement factor of 40.2 was achieved with 25 mL sample. The limit of detection (LOD) and quantification obtained under the optimum conditions were 12.5 and 41.0 microg L(-1), respectively. To validate the proposed methods two certified reference materials 681-I and BCR No. 288 were analyzed and the results were in good agreement with the certified values. The proposed method was successfully applied to determination of nickel in water samples, rice flour and black tea.

  1. Determination of trace aluminum in biological and water samples by cloud point extraction preconcentration and graphite furnace atomic absorption spectrometry detection.

    PubMed

    Sang, Hongbo; Liang, Pei; Du, Dan

    2008-06-15

    A cloud point extraction (CPE) method for the preconcentration of trace aluminum prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The CPE method is based on the complex of Al(III) with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP), and then entrapped in non-ionic surfactant Triton X-114. PMBP was used not only as chelating reagent in CPE preconcentration, but also as chemical modifier in GFAAS determination. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of PMBP and Triton X-114, equilibration temperature and time, were investigated in detail. An enrichment factor of 37 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of this method for Al(III) is 0.09 ng mL(-1), and the relative standard deviation is 4.7% at 10 ng mL(-1) Al(III) level (n=7). The proposed method has been applied for determination of trace amount of aluminum in biological and water samples with satisfactory results.

  2. [Direct determination of lead and cadmium in soil by slurry-sampling graphite furnace atomic absorption spectrometry using matrix modification technique].

    PubMed

    Sun, Han-Wen; Wen, Xiao-Hua; Liang, Shu-Xuan

    2006-05-01

    A method for the direct determination of lead and cadmium in soil by slurry-sampling graphite furnace-atomic absorption spectrometry using NH4 H2 PO4 as matrix modifier was developed. The effects of slurry stability, particle size of sample, matrix modifiers, ashing temperature, atomization temperature and common coexistent components on the signal intensities of lead and cadmium were investigated. The apparent activation energies of lead and cadmium were measured based on the linear relationship between the logarithm value of atomization peak time and atomization temperature. The mechanism of matrix modification was discussed. Under optimized conditions, the detection limit was 9.05 x 10(-10) g x mL(-1) for Pb and 1.76 x 10(-11) g x mL(-1) for Cd. The recoveries were in the range of 91%-97% for Pb and 93%-109% for Cd. The relative standard deviations were in the range of 4.2%-7.8%.

  3. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  4. Ultrasound-assisted ion-pair dispersive liquid-liquid microextraction of trace amounts of lead in water samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Afzali, Daryoush; Mohadesi, Ali Reza; Falahnejad, Masoumeh; Bahadori, Behnoosh

    2013-01-01

    A new ion-pair dispersive liquid-liquid microextraction method is described for separation and preconcentration of trace amounts of lead in different water samples. Graphite furnace atomic absorption spectrometry was used for determination of lead. The ion association complex between lead and iodide ions that forms is PbI4(-2)-tetradecyl-dimethylbenzylammonium, which is extracted into fine droplets of chlorobenzene. In order to reach the optimized experimental conditions, the influence of different parameters, such as concentration of KI, nature and volume of extraction solvents, pH effect, extraction time, and the period and speed of sonication and centrifugation, were optimized. The LOD was 0.08 ng/mL and the linear dynamic range was 0.20-8.0 ng/mL in initial solution with a correlation coefficient of 0.9985. Under the optimum conditions, the enrichment factor was 555.5. The proposed method was successfully applied for separation and determination of lead in sea, rain, river, and drinking water samples.

  5. [Speciation analysis of chromium(VI) and chromium(III) in water sample using flame atomic absorption spectrometry with TOA-benzene extraction separation system].

    PubMed

    Shawket, Abliz; Wang, Ji-De; Horshida

    2005-12-01

    A rapid and sensitive method for the sequential determination of Cr(VI) and Cr(III) in water samples based on flame atomic absorption spectrometry with TOA-benzene extraction separation system has been developed. In the H2SO4 medium. Cr(VI) in sample solution was extracted into the organic phase by using the TOA-Benzene and Cr(III) remained in the water phase. Cr(VI) in the organic phase and Cr(III) in the water phase were determined separately by AAS. This method is simple, fast and of microscale. The results obtained by this method agreed well with those obtained by conventional method. The recoveries are 95.0%-102% for Cr(VI) and 94.8-103% for Cr(III). The relative standard deviations were 2.9% for Cr(VI) and 2.6% for Cr(Ill). The system has enrichment effect for Cr(VI), and the detection limits are 6.6 microg x L(-1) for Cr(VI) and 0.20 mg x L(-1) for Cr(III). The maximum extracted amount of Cr(VI) by TOA was 4.6 mg x mL(-1).

  6. Multivariate approach in the optimization procedures for the direct determination of manganese in serum samples by graphite furnace atomic absorption spectrometry.

    PubMed

    Fabrino, Henrique José Ferraz; Silveira, Josianne Nicácio; Neto, Waldomiro Borges; Goes, Alfredo Miranda; Beinner, Mark Anthony; da Silva, José Bento Borba

    2011-10-01

    A method for direct determination of manganese (Mn) in human serum by graphite furnace atomic absorption spectrometry (GFAAS) was proposed in this work. The samples were only diluted 1:4 with nitric acid 1% (v/v) and Triton(®) X-100 0.1% (v/v). The optimization of the instrumental conditions was made using multivariate approach. A factorial design (2(3)) was employed to investigate the tendency of the most intense absorbance signal. The pyrolysis and atomization temperatures and the use of modifier were available and only the parameter modifier use did not have a significant effect on the response. A Center Composed Design (CCD) presented best temperatures of 430 °C and 2568 °C for pyrolysis and atomization, respectively. The method allowed the determination of manganese with a curve varying from 0.7 to 3.3 μg/L. Recovery studies in three concentration levels (n=7 for each level) presented results from 98 ± 5 to 102 ± 7 %. The detection limit was 0.2 μg/L, the quantifying limit was 0.7 μg/L, and the characteristic mass, 1.3 ± 0.2 pg. Intra- and interassay studies showed coefficients of variation of 4.7-7.0% (n=21) and 6-8%(n=63), respectively. The method was applied for the determination of manganese in 53 samples obtaining concentrations from 3.9 to 13.7 μg/L.

  7. Assessment of the Halogen Content of Brazilian Inhalable Particulate Matter (PM10) Using High Resolution Molecular Absorption Spectrometry and Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry, with Direct Solid Sample Analysis.

    PubMed

    de Gois, Jefferson S; Almeida, Tarcisio S; Alves, Jeferson C; Araujo, Rennan G O; Borges, Daniel L G

    2016-03-15

    Halogens in the atmosphere play an important role in climate change and also represent a potential health hazard. However, quantification of halogens is not a trivial task, and methods that require minimum sample preparation are interesting alternatives. Hence, the aim of this work was to evaluate the feasibility of direct solid sample analysis using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS) for F determination and electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICP-MS) for simultaneous Cl, Br, and I determination in airborne inhalable particulate matter (PM10) collected in the metropolitan area of Aracaju, Sergipe, Brazil. Analysis using HR-CS MAS was accomplished by monitoring the CaF molecule, which was generated at high temperatures in the graphite furnace after the addition of Ca. Analysis using ETV-ICP-MS was carried out using Ca as chemical modifier/aerosol carrier in order to avoid losses of Cl, Br, and I during the pyrolysis step, with concomitant use of Pd as a permanent modifier. The direct analysis approach resulted in LODs that were proven adequate for halogen determination in PM10, using either standard addition calibration or calibration against a certified reference material. The method allowed the quantification of the halogens in 14 PM10 samples collected in a northeastern coastal city in Brazil. The results demonstrated variations of halogen content according to meteorological conditions, particularly related to rainfall, humidity, and sunlight irradiation.

  8. In situ emulsification microextraction using a dicationic ionic liquid followed by magnetic assisted physisorption for determination of lead prior to micro-sampling flame atomic absorption spectrometry.

    PubMed

    Shokri, Masood; Beiraghi, Asadollah; Seidi, Shahram

    2015-08-19

    For the first time, a simple and efficient in situ emulsification microextraction method using a dicationic ionic liquid followed by magnetic assisted physisorption was presented to determine trace amounts of lead. In this method, 400 μL of 1.0 mol L(-1) lithium bis (trifluoromethylsulfonyl) imide aqueous solution, Li[NTf2], was added into the sample solution containing 100 μL of 1.0 mol L(-1) 1,3-(propyl-1,3-diyl) bis (3-methylimidazolium) chloride, [pbmim]Cl2, to form a water immiscible ionic liquid, [pbmim][NTf2]2. This new in situ formed dicationic ionic liquid was applied as the acceptor phase to extract the lead-ammonium pyrrolidinedithiocarbamate (Pb-APDC) complexes from the sample solution. Subsequently, 30 mg of Fe3O4 magnetic nanoparticles (MNPs) were added into the sample solution to collect the fine droplets of [pbmim][NTf2]2, physisorptively. Finally, MNPs were eluted by acetonitrile, separated by an external magnetic field and the obtained eluent was subjected to micro-sampling flame atomic absorption spectrometry (FAAS) for further analysis. Comparing with other microextraction methods, no special devices and centrifugation step are required. Parameters influencing the extraction efficiency such as extraction time, pH, concentration of chelating agent, amount of MNPs and coexisting interferences were studied. Under the optimized conditions, this method showed high extraction recovery of 93% with low LOD of 0.7 μg L(-1). Good linearity was obtained in the range of 2.5-150 μg L(-1) with determination coefficient (r(2)) of 0.9921. Relative standard deviation (RSD%) for seven repeated measurements at the concentration of 10 μg L(-1) was 4.1%. Finally, this method was successfully applied for determination of lead in some water and plant samples.

  9. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  10. A dried urine spot test to simultaneously monitor Mo and Ti levels using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Rello, L.; Lapeña, A. C.; Aramendía, M.; Belarra, M. A.; Resano, M.

    2013-03-01

    Home-based collection protocols for clinical specimens are actively pursued as a means of improving life quality of patients that require frequent controls, such as patients with metallic prosthesis, for whom monitoring the evolution of Mo and Ti in biological fluids may play a decisive role to detect prosthesis mal-functioning. The collection of biological fluids on clinical filter papers provides a simple way to implement these protocols. This work explores the potential of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous and direct determination of Mo and Ti in urine, after its deposition onto clinical filter paper, giving rise to a dried urine spot. The approach used for depositing the sample was found crucial to develop a quantitative method, since the filter paper acts as a chromatographic support and produces a differential distribution of the target analytes. Furthermore, the high spreading of urine onto a filter paper results in a small amount of urine per surface unit, and thus, ultimately, in lack of sensitivity. In order to circumvent these problems, the use of an alternative approach based on the use of pre-cut 17 × 19 mm filter paper pieces onto which larger amounts of sample (500 μL) can be retained by single deposition was proposed and evaluated. In this way, an approximately 12-fold increase in sensitivity and a more homogeneous distribution of the target analytes were obtained, permitting the development of a quantification strategy based on the use of matrix-matched urine samples of known analyte concentrations, which were subjected to the same procedure as the samples. Accuracy of this method, which provides LODs of 1.5 μg L- 1 for Mo and 6.5 μg L- 1 for Ti, was demonstrated after analysis of urine reference materials. Overall, the performance of the method developed is promising, being likely suitable for determination of other analytes in dried urine spots.

  11. Slurry sampling graphite furnace atomic absorption spectrometry: a preliminary examination of results from an international collaborative study

    NASA Astrophysics Data System (ADS)

    Miller-Ihli, N. J.

    1995-06-01

    An international collaborative study was initiated to evaluate the current state-of-the-art for solid sampling. Samples were sent to 28 laboratories and data were received from 18 collaborators, 16 of which reported slurry results. A preliminary check of performance using NIST SRM 1643c acidified water, showed that at least 13 laboratories were able to provide accurate results within ±10% of the mean certified Pb and Cr concentrations. The focus of this work was slurry analytical data reported by collaborators. Average performance by collaborators for the determination of Pb in NIST SRM 2704 Buffalo River Sediment was 103% recovery based on the mean certified reference value and was 84% recovery based on the mean certified reference value for NRCC PACS-1, a marine estuarine sediment, which was identified to collaborators as an unknown sediment. Average performance by collaborators for Cr in SRM 2704 was 96% based on the mean certified reference value and was 78% recovery based on the mean certified reference value for PACS-1. The use of secondary wavelengths and the importance of analysis of a representative subsample are highlighted. Possible problems leading to inaccurate results being reported by collaborators are discussed including the use of mini-flows, matrix modifiers, low atomization temperatures, short atomization times, and expulsion losses.

  12. Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling

    NASA Astrophysics Data System (ADS)

    Borges, Aline R.; Becker, Emilene M.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Welz, Bernhard

    2014-02-01

    In this work, chemical modifiers in solution (Pd/Mg, NH4H2PO4 and NH4NO3/Pd) were compared with permanent modifiers (Ir and Ru) for the determination of lead in fertilizer and limestone samples using slurry sampling and graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. The analytical line at 283.3 nm was used due to some spectral interference observed at 217.0 nm. The NH4H2PO4 was abandoned due to severe spectral interference even at the 283.3-nm line. For Pd/Mg and NH4NO3/Pd the optimum pyrolysis and atomization temperatures were 900 °C and 1900 °C, respectively. For Ru and Ir, the integrated absorbance signal was stable up to pyrolysis temperatures of 700 °C and 900 °C, respectively, and up to atomization temperature of 1700 °C. The limit of detection (LOD) was 17 ng g- 1 using Pd/Mg and 29 ng g- 1 using NH4NO3/Pd. Among the permanent modifiers investigated, the LOD was 22 ng g- 1 Pb for Ir and 10 ng g- 1 Pb for Ru. The accuracy of the method was evaluated using the certified reference material NIST SRM 695. Although Ru provided lower LOD, which can be attributed to a lower blank signal, only the modifiers in solution showed concordant values of Pb concentration for the NIST SRM 695 and the most of analyzed samples. Moreover, the Pd/Mg modifier provided the highest sensitivity and for this reason it is more suitable for the determination of Pb in fertilizers samples in slurry; besides this it presented a better signal-to-noise ratio than NH4NO3/Pd.

  13. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    NASA Astrophysics Data System (ADS)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-05-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  14. Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples

    NASA Astrophysics Data System (ADS)

    Li, Shengqing; Cai, Shun; Hu, Wei; Chen, Hao; Liu, Hanlan

    2009-07-01

    A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium-DDTC complex was formed and extracted into the fine droplets of HMIMPF 6. After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 µL of HMIMPF 6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L - 1 , and the characteristic mass ( m0, 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L - 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2-106%.

  15. Hollow fiber liquid phase microextraction combined with graphite furnace atomic absorption spectrometry for the determination of methylmercury in human hair and sludge samples

    NASA Astrophysics Data System (ADS)

    Jiang, Hongmei; Hu, Bin; Chen, Beibei; Zu, Wanqing

    2008-07-01

    Two methods, based on hollow fiber liquid-liquid-liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L - 1 HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 μg L - 1 and 0.4 μg L - 1 (as Hg) with precisions (RSDs (%), c = 5 μg L - 1 (as Hg), n = 5) of 13% and 11% for HF-LLLPME-GFAAS and HF-LPME-GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L - 1 was obtained. Finally, HF-LLLME-GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99-113%. In order to validate the method, HF-LLLME-GFAAS was also applied to the analysis of a certified reference material of NRCC DORM-2 dogfish

  16. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia

    2015-01-01

    Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine sediment samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS AAS) and direct solid sample analysis has been developed. The application of fast programs in combination with direct solid sampling allows to eliminate the drying and pretreatment steps, however makes impossible the use of liquid standards for calibration. Iridium treated platforms were applied throughout the present study. Calibration technique based on the use of solid certified reference materials (marine sediments) similar to the nature of the analyzed sample and statistics of regression analysis were applied to the real sediment samples. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signals. The ISO-17025 requirements and Eurachem guidelines were followed in the validation of the proposed analytical procedure. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability reproducibility, limits of detection and quantification and expanded uncertainty (k = 2) for all investigated elements were assessed. Two different approaches for the estimation of measurement uncertainty were applied and obtained results compared. The major contributors to the combined uncertainty of the analyte mass fraction were found to be the homogeneity of the samples and the microbalance precision. The influence of sample particle sizes on the total combined uncertainty was also evaluated. Traceability to SI system of units of the obtained by the proposed analytical procedure results was demonstrated. Additionally, validation of the methodology developed was effectuated by the comparison of the obtained results with independent method e.g. ICP-MS with external calibration. The use of solid sampling HR CS AAS for the determination of trace elements in marine sediment matrix gives significant advantages

  17. Determination of trace lead in water samples by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel.

    PubMed

    Liu, Rui; Liang, Pei

    2008-03-21

    Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer TiO2) was prepared by sol-gel method and characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorptive capability of immobilized nanometer TiO2 for lead was assessed in this work using column method. It was found that lead can be quantitatively retained by immobilized nanometer TiO2 in the pH range 4-7, then eluted completely with 1.0molL(-1) HCl. The adsorption capacity of immobilized nanometer TiO2 for Pb was found to be 3.16mgg(-1). A new method has been developed for the determination of trace lead based on preconcentration with a microcolumn packed with immobilized nanometer TiO2 prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS). The detection limit of this method for Pb was 9.5ngL(-1) with an enrichment factor of 50, and the relative standard deviations (R.S.D.s) was 3.2% at the 10ngmL(-1) Pb level. The method was validated using a certified reference material, and was applied for the determination of trace lead in water samples.

  18. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.

    PubMed

    Citak, Demirhan; Tuzen, Mustafa

    2013-01-01

    A new and simple method for the determination of trace amounts of Cu(II) was developed by combination of dispersive liquid-liquid microextraction (DLLME) preconcentration and microsample introduction flame atomic absorption spectrometry. In this method, ethanol and chloroform were chosen as disperser and extraction solvents, respectively, and 1-nitroso-2-naphthol was used as the complexing agent. The factors affecting the extraction efficiency and determination of Cu(II), including extraction and disperser solvent nature and volume, concentration of the complexing agent, pH of the solution, extraction time, and matrix ions, were investigated. Under optimal conditions, the LOD for Cu(II) was 0.95 microg/L with a preconcentration factor of 70. The RSD was 1.9%. The accuracy of the developed DLLME method was verified by determination of Cu(II) in a certified reference material (NRCC-SLRS-4 river water). The relative error was -3.31%. The developed preconcentration procedure was successfully applied to the analysis of bottled drinking water samples.

  19. Direct determination of arsenic and antimony in naphtha by electrothermal atomic absorption spectrometry with microemulsion sample introduction and iridium permanent modifier.

    PubMed

    Cassella, Ricardo J; Barbosa, Bruno Alberto R S; Santelli, Ricardo E; Rangel, Alessandra T

    2004-05-01

    This paper reports the determination of arsenic and antimony in naphtha by employing electrothermal atomic absorption spectrometry (ETAAS) as the analytical technique. In order to promote the direct determination of the analytes in the very volatile naphtha, the formation of a microemulsion with different surfactants (Triton X-100 and Brij-35) and different chemical modification strategies were tested. The results indicated that Triton X-100 is the best emulsification agent for naphtha in both As and Sb determination when it is employed at a concentration of 1% w/v in the microemulsion. Under these conditions, the microemulsion was stabile for at least 2 h. By using Brij-35 it was possible to achieve good stability only in the first 15 min. Among all chemical modification approaches investigated (Ir permanent modifier, W-Ir permanent modifier, and Pd modifier), the Ir permanent modifier provided better sensitivity for both analytes and allowed a higher pyrolysis temperature, which decreased the background signals at lower levels. Under the best conditions established in this work, an RSD of 4.6% (20 microg L(-1)) and a detection limit of 2.7 microg L(-1) were observed for arsenic. For antimony, an RSD of 4.0% (20 microg L(-1)) and a detection limit of 2.5 microg L(-1) were obtained. The accuracy of the procedure was assessed by analyzing spiked samples of naphtha from different origins.

  20. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mirabi, Ali; Dalirandeh, Zeinab; Rad, Ali Shokuhi

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe3O4 as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L-1 HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml-1 and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results.

  1. Investigation of novel rapidly synergistic cloud point extraction pattern for bismuth in water and geological samples coupling with flame atomic absorption spectrometry determination.

    PubMed

    Wen, Xiaodong; Zhao, Yu; Deng, Qingwen; Ji, Shoulian; Zhao, Xia; Guo, Jie

    2012-04-01

    Rapidly synergistic cloud point extraction (RS-CPE) greatly simplified and accelerated the procedure of traditional cloud point extraction (CPE). In order to expand the application of RS-CPE, this work was carried out after the establishment of the improved extraction technique. The new established extraction method was firstly applied for bismuth extraction and determination coupled with flame atomic absorption spectrometry (FAAS) in this work. The improved RS-CPE was accomplished in the room temperature in 1 min. Non-ionic surfactant Triton X-100 (TX-100) was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. TX-100 has a relatively high cloud point temperature (CPT), which limited its application in CPE. In this work, TX-100 accomplished the RS-CPE procedure in room temperature successfully. The factors influencing RS-CPE, such as concentrations of reagents, pH, conditions of phase separation, effect of environmental temperatures, salt effect and instrumental conditions, were studied systematically. Under the optimal conditions, the limit of detection (LOD) for bismuth was 4.0 μg L(-1), with sensitivity enhancement factor (EF) of 43. The proposed method greatly improved the sensitivity of FAAS for the determination of bismuth and was applied to the determination of trace bismuth in real and certified samples with satisfactory analytical results. The proposed method was rapid, simple, and sensitive.

  2. Ligandless dispersive liquid--liquid microextraction of iron in biological and foodstuff samples and its determination by Electrothermal atomic absorption spectrometry.

    PubMed

    Madadizadeh, Mohadeseh; Taher, Mohammad Ali; Ashkenani, Hamid

    2013-01-01

    A new, simple, and efficient method comprising ligandless dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry is reported for the preconcentration and determination of ultratrace amounts of Fe(III). Carbon tetrachloride and acetone were used as the extraction and disperser solvents, respectively. Some effective parameters of the microextraction such as choice of extraction and disperser solvents, their volume, extraction time and temperature, salt and surfactant effect, and pH were optimized. Under the optimum conditions, the calibration curve was linear in the range of 0.02 to 0.46 microg/L of Fe(III), with LOD and LOQ of 5.2 and 17.4 ng/L, respectively. The RSD for seven replicated determinations of Fe(IIl) ion at 0.1 microg/L concentration level was 5.2%. Operational simplicity, rapidity, low cost, good repeatability, and low consumption of extraction solvent are the main advantages of the proposed method. The method was successfully applied to the determination of iron in biological, food, and certified reference samples.

  3. Determination of trace amounts of Pd(II) ions in water and road dust samples by flame atomic absorption spectrometry after preconcentration on modified organo nanoclay.

    PubMed

    Afzali, Daryoush; Mostafavi, Al; Afzali, Zahra

    2010-01-01

    This paper describes the application of organo nanoclay, an easily prepared and stable solid sorbent, to the preconcentration of trace amounts of palladium ions in aqueous solution. The organo nanoclay was prepared by adding tetradecyldimethylbenzylamonium chloride onto montmorillonite, which was then modified with 1-(2-pyridylazo)-2-naphthol. The modified nanoclay was used as a solid sorbent for separation and preconcentration of trace amounts of Pd(II) ions, and a simple, sensitive, and economical method was developed for determination of trace amounts of palladium by flame atomic absorption spectrometry. The sorption of Pd(II) ions was quantitative in the pH range of 1.5-5.0, whereas quantitative desorption occurred with 5.0 mL of a mixture containing 1.0 M thiourea and 1.0 M HCl. The RSD of the method was +/- 2.1% (n = 10; concn = 0.5 microg/mL), and the LOD (3sigma(bl); sigma = SD and bl = blank) was 0.1 ng/mL. The calibration curve was linear for concentrations of 0.5-8.0 microg/mL in the initial solution, and the preconcentration factor was 140. The maximum capacity of the sorbent was 2.4 mg Pd(II)/g modified organo nanoclay. The influences of the experimental parameters, including sample pH, eluant volume, eluant type, sample volume, and interfering ions, on the recoveries of the palladium ion were investigated. The proposed method was applied to the preconcentration and determination of palladium in different samples.

  4. Direct determination of Hg in polymers by solid sampling-graphite furnace atomic absorption spectrometry. A comparison of the performance of line source and continuum source instrumentation

    NASA Astrophysics Data System (ADS)

    Resano, M.; Briceño, J.; Belarra, M. A.

    2009-06-01

    This work explores the potential of solid sampling-graphite furnace atomic absorption spectrometry (SS-GFAAS) for the fast and direct determination of Hg in polymers. Eight certified reference materials with different composition (polyethylene-PE-, polystyrene-PS-, poly vinyl chloride-PVC- and acrylonitrile butadiene styrene-ABS-) were selected for the study, covering a wide Hg content range (from 20 to 1100 μg g - 1 ). The difficulties found in achieving a selective atomization of the analyte from these samples were partially mitigated by the maintenance of the Ar flow during the atomization step, leading to an improved signal-to-background ratio. Even then, when a line source (LS) GFAAS instrument was employed for analysis, it was only possible to develop truly accurate procedures relying on the use of aqueous standards for calibration for PE and PVC samples, and different atomization conditions (1200 °C and 1300 °C, respectively) were needed for the two types of samples. The use of high-resolution continuum source (HR-CS) GFAAS instrumentation permitted to improve this situation significantly thanks to its higher potential for the correction of high and fast changing background. With such an instrument, satisfactory results could be obtained for all the samples under study using the same atomization conditions (1200 °C) and aqueous standard solutions for calibration. Additionally, the HR-CS GFAAS technique presented a lower limit of detection (0.6 μg g - 1 for CS and 2.2 μg g - 1 for LS), a broader linear range (10 to 320 Hg ng for CS, and 20 to 200 ng for LS), and a somewhat improved sensitivity (approximately 0.0030 s ng - 1 for CS using the three central pixels for quantification, and approximately 0.0025 s ng - 1 for LS). Overall, the use of HR-CS GFAAS permits obtaining significant advantages for the determination of this complex analyte in plastics, such as straightforward calibration with aqueous standards, a high sample throughput (15 min per

  5. Fast heating induced impulse halogenation of refractory sample components in electrothermal atomic absorption spectrometry by direct injection of a liquid halogenating agent.

    PubMed

    György, Krisztina; Ajtony, Zsolt; Van Meel, Katleen; Van Grieken, René; Czitrovszky, Aladár; Bencs, László

    2011-09-15

    A novel electrothermal atomic absorption spectrometry (ETAAS) method was developed for the halogenation of refractory sample components (Er, Nd and Nb) of lithium niobate (LiNbO(3)) and bismuth tellurite (Bi(2)TeO(5)) optical single crystals to overcome memory effects and carry-over. For this purpose, the cleaning step of a regular graphite furnace heating program was replaced with a halogenation cycle. In this cycle, after the graphite tube cooled to room temperature, a 20 μL aliquot of liquid carbon tetrachloride (CCl(4)) was dispensed with a conventional autosampler into the graphite tube. The CCl(4) was partially dried at 80°C under the mini-flow (40 cm(3) min(-1)) condition of the Ar internal furnace gas (IFG), then the residue was decomposed (pyrolyzed) by fast furnace heating at 1900-2100°C under interrupted flow of the IFG. This step was followed by a clean-out stage at 2100°C under the maximum flow of the IFG. The advantage of the present method is that it does not require any alteration to the graphite furnace gas supply system in contrast to most of the formerly introduced halogenation techniques. The effectiveness of the halogenation method was verified with the determination of Er and Nd dopants in the optical crystals. In these analyses, a sensitivity decrease was observed, which was likely due to the enhanced deterioration of the graphite tube surface. Therefore, the application of mathematical correction (resloping) of the calibration was also required. The calibration curves were linear up to 1.5 and 10 μmol L(-1) for Er and Nd, respectively. Characteristic masses of 18 and 241 pg and the limit of detection (LOD) values of 0.017 and 0.27 μmol L(-1) were found for Er and Nd, respectively. These LOD data correspond to 0.68 μmol mol(-1) Er and 11 μmol mol(-1) Nd in solid bismuth tellurite samples. The analytical results were compared with those obtained by a conventional ETAAS method and validated with X-ray fluorescence spectrometry analysis.

  6. Development of an analytical method for the determination of arsenic in gasoline samples by hydride generation-graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Emilene M.; Dessuy, Morgana B.; Boschetti, Wiliam; Vale, Maria Goreti R.; Ferreira, Sérgio L. C.; Welz, Bernhard

    2012-05-01

    The purpose of the present work was to optimize the conditions for the determination of arsenic in gasoline with hydride generation-graphite furnace atomic absorption spectrometry after acid digestion using a full two-level factorial design with center point. The arsine was generated in a batch system and collected in a graphite tube coated with 150 μg Ir as a permanent modifier. The sample volume, the pre-reduction conditions, the temperature program and modifier mass were kept fixed for all experiments. The estimated main effects were: reducing agent concentration (negative effect), acid concentration (negative effect) and trapping temperature (positive effect). It was observed that there were interactions between the variables. Moreover, the curvature was significant, indicating that the best conditions were at the center point. The optimized parameters for arsine generation were 2.7 mol L- 1 hydrochloric acid and 1.6% (w/v) sodium tetrahydroborate. The optimized conditions to collect arsine in the graphite furnace were a trapping temperature of 250 °C and a collection time of 30 s. The limit of detection was 6.4 ng L- 1 and the characteristic mass was 24 pg. Two different systems for acid digestion were used: a digester block with cold finger and a microwave oven. The concentration of arsenic found with the proposed method was compared with that obtained using a detergentless microemulsion and direct graphite furnace determination. The results showed that the factorial design is a simple tool that allowed establishing the appropriate conditions for sample preparation and also helped in evaluating the interaction between the factors investigated.

  7. Speciation and determination of ultra trace amounts of inorganic tellurium in environmental water samples by dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry.

    PubMed

    Najafi, Nahid Mashkouri; Tavakoli, Hamed; Alizadeh, Reza; Seidi, Shahram

    2010-06-18

    A simple and powerful method has been developed for the rapid and selective determination of Te(IV) and Te(VI), employing dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry using palladium as permanent modifier. Under acidic conditions pH 1, only Te(IV) can form a complex with ammonium pyrrolidine dithiocarbamate (APDC) and therefore be extracted into fine droplets of carbon tetrachloride (extraction solvent) which are dispersed with ethanol into the water sample solution. After centrifugation, Te(IV) was determined in the sedimented organic phase while Te(VI) remained in the aqueous phase. Total inorganic tellurium was determined after the reduction of the Te(VI) to Te(IV). Te(VI) was calculated as the difference between the measured total inorganic tellurium and Te(IV) content. The effective parameters for improving the efficiency of microextraction process were investigated by using experimental and central composite designs. Under optimal conditions the enrichment factor was 125 and the calibration graph was linear in the range of 0.015-1 ng mL(-1) with detection limit and characteristic mass of 0.004 ng mL(-1) and 0.033 pg, respectively. The relative standard deviation for 0.5 ng mL(-1) of tellurium measurement was 3.6% (n=6) at ash and atomization temperature, 900 and 2600 degrees C, respectively. The recoveries of spiked Te(IV) and Te(VI) to the environmental water samples were 89.6-101.3% and 96.6-99.1%, respectively. The accuracy is also evaluated by applying the proposed method to certified reference material (NIST SRM 1643e), for which the result was in a good agreement with the certified values reported for this CRM (95% confidence level).

  8. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.

    PubMed

    Kahe, Hadi; Chamsaz, Mahmoud

    2016-11-01

    A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L(-1) Bi (III) with a limit of detection (LOD) of 0.16 μg L(-1) (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L(-1) of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.

  9. A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2015-05-01

    A relatively rapid, accurate and precise solid phase extraction method is presented for the determination of cadmium(II) and lead(II) in various food and water samples. Quantitation is carried out by flame atomic absorption spectrometry (FAAS). The method is based on the retention of the trace metal ions on Dowex Marathon C, a strong acid cation exchange resin. Some important parameters affecting the analytical performance of the method such as pH, flow rate and volume of the sample solution; type, concentration, volume, flow rate of the eluent; and matrix effects on the retention of the metal ions were investigated. Common coexisting ions did not interfere on the separation and determination of the analytes. The detection limits (3 σb) for Cd(II) and Pb(II) were found as 0.13 and 0.18 μg L(-1), respectively, while the limit of quantification values (10 σb) were computed as 0.43 and 0.60 μg L(-1) for the same sequence of the analytes. The precision (as relative standard deviation was lower than 4% at 5 μg L(-1) Cd(II) and 10 μg L(-1) Pb(II) levels, and the preconcentration factor was found to be 250. The accuracy of the proposed procedure was verified by analysing the certified reference materials, SPS-WW2 Batch 108 wastewater level 2 and INCT-TL-1 tea leaves, with the satisfactory results. In addition, for the accuracy of the method the recovery studies (⩾ 95%) were carried out. The method was applied to the determination of the analytes in the various natural waters (lake water, tap water, waste water with boric acid, waste water with H2SO4) and food samples (pomegranate flower, organic pear, radish leaf, lamb meat, etc.), and good results were obtained. While the food samples almost do not contain cadmium, they have included lead at low levels of 0.13-1.12 μg g(-1).

  10. Combining single-particle inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy to evaluate the release of colloidal arsenic from environmental samples.

    PubMed

    Gomez-Gonzalez, Miguel Angel; Bolea, Eduardo; O'Day, Peggy A; Garcia-Guinea, Javier; Garrido, Fernando; Laborda, Francisco

    2016-07-01

    Detection and sizing of natural colloids involved in the release and transport of toxic metals and metalloids is essential to understand and model their environmental effects. Single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was applied for the detection of arsenic-bearing particles released from mine wastes. Arsenic-bearing particles were detected in leachates from mine wastes, with a mass-per-particle detection limit of 0.64 ng of arsenic. Conversion of the mass-per-particle information provided by SP-ICP-MS into size information requires knowledge of the nature of the particles; therefore, synchrotron-based X-ray absorption spectroscopy (XAS) was used to identify scorodite (FeAsO4·2H2O) as the main species in the colloidal particles isolated by ultrafiltration. The size of the scorodite particles detected in the leachates was below 300-350 nm, in good agreement with the values obtained by TEM. The size of the particles detected by SP-ICP-MS was determined as the average edge of scorodite crystals, which show a rhombic dipyramidal form, achieving a size detection limit of 117 nm. The combined use of SP-ICP-MS and XAS allowed detection, identification, and size determination of scorodite particles released from mine wastes, suggesting their potential to transport arsenic. Graphical abstract Analytical approach for the detection and size characterization of As-bearing particles by SP-ICP-MS and XAS in environmental samples.

  11. Freon (CHF3)-assisted atomization for the determination of titanium using ultrasonic slurry sampling-graphite furnace atomic absorption spectrometry (USS-GFAAS): a simple and advantageous method for solid samples.

    PubMed

    Asfaw, Alemayehu; Wibetoe, Grethe

    2004-06-01

    A simple and advantageous method for the determination of titanium using graphite furnace atomic absorption spectrometry with slurry sampling has been developed. Titanium is one of the refractory elements that form thermally stable carbides in the graphite tube, which leads to severe memory effects. Trifluoromethane (Freon-23) was applied in the purge gas during the atomization step or alternatively just prior to the atomization to successfully eliminate the problems of carbide formation and increase the lifetime of the furnace tube which could be used for more than 600 heating cycles. A flow rate of 40 mL min(-1) (5% of Freon in argon) was used to obtain symmetrical peaks with no tailing. However, when the gas flow rate was too high (250 mL min(-1)) the peak-tailing and memory effects reappeared. Ti was determined in various materials covering a wide range of concentrations, from 2.8 microg g(-1) to 12% (m/m) Ti. The accuracy of the method was confirmed by analyzing certified reference materials (CRMs) or by comparing the results with those obtained using inductively coupled plasma-atomic emission spectrometry (ICP-AES) after decomposition of the samples. The materials analyzed were soil, plant, human hair, coal, urban particulate matters, toothpaste, and powdered paint.

  12. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples.

    PubMed

    Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin

    2016-07-01

    In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples.

  13. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  14. Absorption mode FTICR mass spectrometry imaging.

    PubMed

    Smith, Donald F; Kilgour, David P A; Konijnenburg, Marco; O'Connor, Peter B; Heeren, Ron M A

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here, we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image, and then, these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode "Datacubes" for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  15. Determination of Fe(II) and Fe(III) in small samples by microbore ion chromatography and photometric, atomic absorption spectrometry and total-reflection X-ray fluorescence detection

    NASA Astrophysics Data System (ADS)

    Sinner, T.; Hoffmann, P.; Ortner, H. M.

    1993-02-01

    Iron(II) and iron(III) are determined after separation on an ion Chromatographie column by various detection systems. "On-line" detection was achieved by the use of a photometer with a flow cell of 0.8 μl; for "off-line" detection, graphite furnace atomic absorption spectrometry or total-reflection X-ray fluorescence were used. The applicability of the methods is shown for standard solutions and atmospheric samples. As a typical result, 50 μg/l of iron can be determined in a 10 μl sample with a nucrobore ion chromatograph-photometer and atomic absorption system and 40 μg/l of iron in a microbore ion chromatograph-total-reflection X-ray fluorescence combination.

  16. [Application of atomic absorption spectrometry in the engine knock detection].

    PubMed

    Chen, Li-Dan

    2013-02-01

    Because existing human experience diagnosis method and apparatus for auxiliary diagnosis method are difficult to diagnose quickly engine knock. Atomic absorption spectrometry was used to detect the automobile engine knock in in innovative way. After having determined Fe, Al, Cu, Cr and Pb content in the 35 groups of Audi A6 engine oil whose travel course is 2 000 -70 000 kilometers and whose sampling interval is 2 000 kilometers by atomic absorption spectrometry, the database of primary metal content in the same automobile engine at different mileage was established. The research shows that the main metal content fluctuates within a certain range. In practical engineering applications, after the determination of engine oil main metal content and comparison with its database value, it can not only help to diagnose the type and location of engine knock without the disintegration and reduce vehicle maintenance costs and improve the accuracy of engine knock fault diagnosis.

  17. Comparison of UV absorption and electrospray mass spectrometry for the high-performance liquid chromatographic determination of domoic acid in shellfish and biological samples.

    PubMed

    Lawrence, J F; Lau, B P; Cleroux, C; Lewis, D

    1994-01-21

    Domoic acid, a neurotoxic amino acid produced by the marine diatom Nitchia pungens multiseries, was determined in samples of anchovies, razor clams, mussels, crab, rat serum, urine and feces by HPLC with UV absorption and electrospray (ESI) mass spectrometric (MS) detection. Shellfish samples were extracted with methanol-water followed by clean-up of the extracts with solid-phase extraction cartridges (strong anion or strong cation exchange). An aliquot of the fraction containing the domoic acid was analysed by HPLC. HPLC column size, mobile phase composition and flow-rate were selected so that essentially the same conditions could be used for both HPLC-UV and HPLC-ESI-MS with selected ion monitoring (SIM) determinations. These included the use of acetonitrile-water-formic acid as the mobile phase, at a flow-rate of 0.2 ml/min (split 13:1 for HPLC-ESI-MS-SIM, 10 microliters/min to the mass spectrometer). The results indicated that extracts found positive by the HPLC-UV method could be readily confirmed directly by HPLC-ESI-MS-SIM without additional sample treatment down to levels of 0.1 micrograms/g of domoic acid. This study demonstrates the use of HPLC-ESI-MS-SIM for the routine confirmation of domoic acid in a wide variety of samples.

  18. New anion-exchange solid-phase extraction support used for preconcentration and determination of lead in water samples by flame atomic absorption spectrometry.

    PubMed

    Panahi, Homayon Ahmad; Feizbakhsh, Ali Reza; Tafazoli, Zahra; Moniri, Elham; Nezhati, Mahshid Nikpour; Moghaddam, Hamid Hashemi; Kelahrodi, Somayeh Rangbar

    2010-01-01

    A new chelating resin was prepared by coupling Amberlite XAD-2 with Brilliant Green through an azo spacer. The resulting resin has been characterized by FTIR spectrometry, elemental analysis, and thermogravimetric analysis and studied for the preconcentration and determination of trace Pb(II) ions from solution samples. The anionic complex of Pb(II) and iodide was retained on the resin by the formation of an ion associate with Brilliant Green on Amberlite XAD-2 in weak acidic medium. The optimum pH value for sorption of the metal ion was 5.5. The sorption capacity of the functionalized resin is 53.8 mg/g. The chelating resin can be reused for 20 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 103% was obtained for the metal ion with 0.1 M EDTA as the eluting agent. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The resin was subjected to evaluation through batch binding and column chromatography of Pb(II). The equilibrium adsorption data of Pb(II) on modified resin were analyzed by Langmuir, Freundlich, and Temkin models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined to be 0.192, 13.189, and 3.418 at pH 5.5 and 25 degrees C. The method was applied for lead ion determination in tap water samples.

  19. Preconcentration and determination of boron in milk, infant formula, and honey samples by solid phase extraction-electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    López-García, I.; Viñas, P.; Romero-Romero, R.; Hernández-Córdoba, M.

    2009-02-01

    This work presents alternative procedures for the electrothermal atomic absorption spectrometric determination of boron in milk, infant formulas, and honey samples. Honey samples (10% m/v) were diluted in a medium containing 1% v/v HNO 3 and 50% v/v H 2O 2 and introduced in the atomizer. A mixture of 20 µg Pd and 0.5 µg Mg was used for chemical modification. Calibration was carried out using aqueous solutions prepared in the same medium, in the presence of 10% m/v sucrose. The detection limit was 2 µg g - 1 , equivalent to three times the standard error of the estimate ( sy/ x) of the regression line. For both infant formulas and milk samples, due to their very low boron content, we used a procedure based on preconcentration by solid phase extraction (Amberlite IRA 743), followed by elution with 2 mol L - 1 hydrochloric acid. Detection limits were 0.03 µg g - 1 for 4% m/v honey, 0.04 µg g - 1 for 5% m/v infant formula and 0.08 µg mL - 1 for 15% v/v cow milk. We confirmed the accuracy of the procedure by comparing the obtained results with those found via a comparable independent procedure, as well by the analysis of four certified reference materials.

  20. Cloud point extraction for determination of lead in blood samples of children, using different ligands prior to analysis by flame atomic absorption spectrometry: a multivariate study.

    PubMed

    Shah, Faheem; Kazi, Tasneem Gul; Afridi, Hassan Imran; Naeemullah; Arain, Muhammad Balal; Baig, Jameel Ahmed

    2011-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of lead (Pb(2+)) from digested blood samples after simultaneous complexation with ammonium pyrrolidinedithiocarbamate (APDC) and diethyldithiocarbamate (DDTC) separately. The complexed analyte was quantitatively extracted with octylphenoxypolyethoxyethanol (Triton X-114). The multivariate strategy was applied to estimate the optimum values of experimental factors. Acidic ethanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometer (FAAS). The detection limit value of Pb(2+) for the preconcentration of 10 mL of acid digested blood sample was 1.14 μg L(-1). The accuracy of the proposed methods was assessed by analyzing certified reference material (whole blood). Under the optimized conditions of both CPE methods, 10 mL of Pb(2+) standards (10 μg L(-1)) complexed with APDC and DDTC, permitted the enhancement factors of 56 and 42, respectively. The proposed method was used for determination of Pb(2+) in blood samples of children with kidney disorders and healthy controls.

  1. Method development for the control determination of mercury in seafood by solid-sampling thermal decomposition amalgamation atomic absorption spectrometry (TDA AAS).

    PubMed

    Torres, D P; Martins-Teixeira, M B; Silva, E F; Queiroz, H M

    2012-01-01

    A very simple and rapid method for the determination of total mercury in fish samples using the Direct Mercury Analyser DMA-80 was developed. In this system, a previously weighted portion of fresh fish is combusted and the released mercury is selectively trapped in a gold amalgamator. Upon heating, mercury is desorbed from the amalgamator, an atomic absorption measurement is performed and the mercury concentration is calculated. Some experimental parameters have been studied and optimised. In this study the sample mass was about 100.0 mg. The relative standard deviation was lower than 8.0% for all measurements of solid samples. Two calibration curves against aqueous standard solutions were prepared through the low linear range from 2.5 to 20.0 ng of Hg, and the high linear range from 25.0 to 200.0 ng of Hg, for which a correlation coefficient better than 0.997 was achieved, as well as a normal distribution of the residuals. Mercury reference solutions were prepared in 5.0% v/v nitric acid medium. Lyophilised fish tissues were also analysed; however, the additional procedure had no advantage over the direct analysis of the fresh fish, and additionally increased the total analytical process time. A fish tissue reference material, IAEA-407, was analysed and the mercury concentration was in agreement with the certified value, according to the t-test at a 95% confidence level. The limit of quantification (LOQ), based on a mercury-free sample, was 3.0 µg kg(-1). This LOQ is in accordance with performance criteria required by the Commission Regulation No. 333/2007. Simplicity and high efficiency, without the need for any sample preparation procedure, are some of the qualities of the proposed method.

  2. EPA Method 245.1: Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine mercuric chloride and methoxyethylmercuric acetate as total mercury using cold vapor atomic absorption spectrometry.

  3. Column chromatographic pre-concentration of iron(III) in alloys and biological samples with 1-nitroso-2-naphthol-3,6-disulphonate and benzyldimethyltetradecylammonium-perchlorate adsorbent supported on naphthalene using atomic absorption spectrometry.

    PubMed

    Miura, J; Arima, S; Satake, M

    1990-09-01

    The solid ion-pair material produced from the reaction between benzyldimethyltetradecylammonium chloride (BDTA) and sodium perchlorate on naphthalene provides the basis for a simple, rapid and selective technique for pre-concentrating iron from up to 500 ml of aqueous solution. Iron reacts with disodium 1-nitroso-2-naphthol-3,6-disulphonate (Nitroso-R salt) to form a water-soluble coloured chelate anion. The iron chelate anion forms a water-insoluble, stable iron-Nitroso-R-BDTA complex on naphthalene packed in a column. Trace amounts of iron are quantitatively retained on naphthalene in the pH range 3.5-7.5 and at a flow-rate of 1-2 ml min-1. The solid mass is dissolved out from the column with 5 ml of N,N-dimethylformamide and iron is determined by means of an atomic absorption spectrometer at 248 nm. The calibration graph is linear for concentrations of iron over the range of 0.5-20 micrograms in 5 ml of final solution. The standard deviation and relative standard deviation were calculated. The detection limit of the method was 0.0196 micrograms ml-1 of iron. The sensitivity for 1% absorption was 0.072 microgram ml-1 (0.165 microgram ml-1 by direct atomic absorption spectrometry of aqueous solution). The proposed method was applied to the determination of iron in standard alloys and biological samples.

  4. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry.

    PubMed

    Galbeiro, Rafaela; Garcia, Samara; Gaubeur, Ivanise

    2014-04-01

    Cloud point extraction (CPE) was used to simultaneously preconcentrate trace-level cadmium, nickel and zinc for determination by flame atomic absorption spectrometry (FAAS). 1-(2-Pyridilazo)-2-naphthol (PAN) was used as a complexing agent, and the metal complexes were extracted from the aqueous phase by the surfactant Triton X-114 ((1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol). Under optimized complexation and extraction conditions, the limits of detection were 0.37μgL(-1) (Cd), 2.6μgL(-1) (Ni) and 2.3μgL(-1) (Zn). This extraction was quantitative with a preconcentration factor of 30 and enrichment factor estimated to be 42, 40 and 43, respectively. The method was applied to different complex samples, and the accuracy was evaluated by analyzing a water standard reference material (NIST SRM 1643e), yielding results in agreement with the certified values.

  5. Correction of structured molecular background by means of high-resolution continuum source electrothermal atomic absorption spectrometry--determination of antimony in sediment reference materials using direct solid sampling.

    PubMed

    Araujo, Rennan G O; Welz, Bernhard; Vignola, Fabiola; Becker-Ross, Helmut

    2009-12-15

    A simple, fast and accurate procedure is proposed for the determination of antimony in certified sediment reference materials using direct solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry and iridium as a permanent modifier. The less sensitive resonance line at 231.147 nm has been used in order to allow the introduction of larger sample mass. Six certified reference materials, one river, one estuarine and four marine sediments have been analyzed. The use of iridium as a permanent modifier caused an increase of 30% in sensitivity and stabilized antimony in the sediment to a pyrolysis temperature of 1100 degrees C. Significant background absorption with pronounced rotational fine structure was observed at the optimum atomization temperature of 2100 degrees C, which coincided with the analyte atomic absorption in time. This background was found to be due to the electron excitation spectra of mostly the SiO and in part the PO molecules, and could be eliminated by applying a least-squares background correction algorithm. A characteristic mass of 28 pg Sb was obtained, and the limit of detection (3sigma, n=10) was 0.02 microg g(-1), calculated for 0.2 mg of sample. The results obtained for six certified reference materials with concentrations between 0.40 and 11.6+/-2.6 microg g(-1) Sb were in agreement with the certified values according to a Student's t-test for a 95% confidence level, using aqueous standards for calibration. The precision, expressed as relative standard deviation, ranged between 7% and 17% (n=5).

  6. Optimization of a new resin, Amberlyst 36, as a solid-phase extractor and determination of copper(II) in drinking water and tea samples by flame atomic absorption spectrometry.

    PubMed

    Kendüzler, Erdal; Türker, Ali Rehber

    2005-11-01

    A new simple and reliable method has been developed to separate and preconcentrate trace copper ion in drinking water and tea samples for subsequent measurement by flame atomic absorption spectrometry (FAAS). The copper ions are adsorbed quantitatively during passage of aqueous solutions through Amberlyst 36 cation exchange resin. After the separation and preconcentration stage, the analyte was eluted with a potassium cyanide solution and determined by FAAS. Different factors including pH of sample solution, sample volume, amount of resin, flow rate of aqueous solution, volume and concentration of eluent, and matrix effects for preconcentration were examined. The analytical figures of merit for the determination of copper are as follows: analytical detection limit (3 sigma), 0.26 microg/L; precision (RSD), 3.1% for 100 microg/L; enrichment factor, 200 (using 1000 mL of sample solution and 5 mL of eluent); time of analysis, 3.5 h (for obtaining enrichment factor of 200); capacity of resin, 125 mg/g. The method was applied for copper determination by FAAS in tap water, commercial natural spring water, commercial treated drinking water, and commercial tea bag sample. The accuracy of the method is confirmed by analyzing tea leaves (GBW 07605). The results demonstrated good agreement with the certified values.

  7. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  8. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  9. The use of rapidly synergistic cloud point extraction for the separation and preconcentration of trace amounts of Ni (II) ions from food and water samples coupling with flame atomic absorption spectrometry determination.

    PubMed

    Rahnama, Reyhaneh; Najafi, Marzieh

    2016-03-01

    A novel improved preconcentration method known as rapidly synergistic cloud point extraction (RS-CPE) was established for nickel preconcentration and determination prior to its determination by flame atomic absorption spectrometry. In this work, the traditional CPE pattern was changed and greatly simplified in order to be applicable in metal extraction and detection. This method was accomplished in room temperature in 1 min. Non-ionic surfactant Triton X-114 was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. The various parameters affecting the extraction and preconcentration of nickel such as sample pH, 2,2'-Furildioxime concentration, amounts of octanol, amounts of Triton X-114, type of diluting solvent, extraction time, and ionic strength were investigated and optimized. Under optimal conditions, the calibration curve showed an excellent linearity in the concentration range of 2-200 μg L(-1), and the limit of detection was 0.6 μg L(-1) for nickel. The developed method was successfully applied for the determination of nickel in food and water samples. The results showed that, the proposed method can be used as a cheap, rapid, and efficient method for the extraction and preconcentration of nickel from real samples.

  10. Utilization of W/Mg(NO 3) 2 modifiers for the direct determination of As and Sb in soils, sewage sludge and sediments by solid sampling electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Török, Peter; Žemberyová, Mária

    2010-04-01

    A simple method has been developed for the determination of arsenic and antimony in environmental samples by solid sampling electrothermal atomic absorption spectrometry, which was validated using certified reference materials of soils (S-VM — Soil Eutric Cambisol; S-MS — Soil Orthic Luvisols; S-SP — Soil Rendzina), sewage sludge (WT-L; WT-M) and sediments (NIES2; GBW07906). The analytical procedure combines solid sampling with utilization of a matrix modifier admixture containing 5 µg of W and 5 µg of Mg. The tungsten in the admixture serves to stabilize the solid matrix during atomisation, which results in dramatically reduced non-specific absorption compared with the conventional palladium modifier. Magnesium was efficient in reducing the accumulation of the matrix residue on the platform. An alternative resonance line of 197.2 nm for arsenic and 206.8 nm for Sb was used in order to eliminate the spectral interferences caused by aluminum compounds, and silicon and iron compounds, respectively. Under optimized experimental conditions, the effective in situ analyte/matrix separation was achieved so that the use of aqueous standards for calibration became possible. With the modifier, a 3 SD detection limit of 0.5 µg g -1 As and 0.1 µg g -1 Sb and 10 SD quantification limit of 1.7 µg g -1As and 0.3 µg g -1 Sb and a characteristic mass of 65 pg As and 53 pg Sb were obtained. For all the matrices under scrutiny, a good agreement with certified values was achieved with RSD values less than 10%.

  11. Study of the analytical methods for iron determination in complex organic liquids by atomic absorption spectrometry

    SciTech Connect

    Torre, M.; Gonzalez, M.C.; Jimenez, O.; Rodriquez, A.R. )

    1990-01-01

    In the determination of iron in complex organic liquids by atomic absorption spectrometry (A.A.S.), methods of sample preparation, such as dilution with an organic solvent and sample pretreatment to destroy organic material, are investigated. Moreover, methods of analysis using calibration curve and standard additions are presented. The possible cause of error associated with iron determination in organic samples by flame (F-A.A.S.) and graphite furnace (GF-A.A.S.) atomic absorption spectrometry are discussed. From all of these studies, the use of graphite furnace atomic absorption spectrometry after sample dilution with methyl isobutyl ketone, and the use of the method of standard additions are advised for iron determination.

  12. Maps and tables showing data and analyses of semiquantitative emmission spectrometry and atomic-absorption spectrophotometry of rock samples, Ugashik, Bristol Bay, and part of Karluk quadrangles, Alaska

    USGS Publications Warehouse

    Wilson, F.H.; O'Leary, R. M.

    1986-01-01

    The accompanying maps and tables show analytical data and data analyses from rock samples collected in conjunction with geologic mapping in the Ugashik, Bristol Bay and western Karluck quadrangles from 1979 through 1981. This work was conducted under the auspices of the Alaska Mineral Resource Assessment Program (AMRAP). A total of 337 samples were collected for analysis, primarily in areas of surficial alteration. The sample locations are shown on sheet 1: they are concentrated along the Pacific Ocean side of the area because the Bristol Bay lowlands part of the map is predominantly unconsolidated Quaternary deposits. Sample collection was by the following people, with their respective two letter identifying code shown in parentheses: W.H. Allaway (AY), J.E. Case (CE), D.P. Cox (CX), R.L. Detterman, (DT), T.G. Theodore (MK), F.H. Wilson (WS), and M.E. Yount (YB).

  13. Effect of different precursors on generation of reference spectra for structural molecular background correction by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: Determination of antimony in cosmetics.

    PubMed

    Barros, Ariane Isis; Victor de Babos, Diego; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2016-12-01

    Different precursors were evaluated for the generation of reference spectra and correction of the background caused by SiO molecules in the determination of Sb in facial cosmetics by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis. Zeolite and mica were the most effective precursors for background correction during Sb determination using the 217.581nm and 231.147nm lines. Full 2(3) factorial design and central composite design were used to optimize the atomizer temperature program. The optimum pyrolysis and atomization temperatures were 1500 and 2100°C, respectively. A Pd(NO3)2/Mg(NO3)2 mixture was employed as the chemical modifier, and calibration was performed at 217.581nm with aqueous standards containing Sb in the range 0.5-2.25ng, resulting in a correlation coefficient of 0.9995 and a slope of 0.1548s ng(-1). The sample mass was in the range 0.15-0.25mg. The accuracy of the method was determined by analysis of Montana Soil (II) certified reference material, together with addition/recovery tests. The Sb concentration found was in agreement with the certified value, at a 95% confidence level (paired t-test). Recoveries of Sb added to the samples were in the range 82-108%. The limit of quantification was 0.9mgkg(-1) and the relative standard deviation (n=3) ranged from 0.5% to 7.1%. From thirteen analyzed samples, Sb was not detected in ten samples (blush, eye shadow and compact powder); three samples (two blush and one eye shadow) presented Sb concentration in the 9.1-14.5mgkg(-1) range.

  14. Tables showing analyses of semiquantitative spectrometry and atomic-absorption spectrophotometry of rock samples collected in the Ugashik, Bristol Bay, and western part of the Karluk quadrangles, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; O'Leary, Richard M.

    1987-01-01

    The accompanying tables list chemical analyses of 337 rock samples that were collected in 1979, 1980, and 1981 in conjunction with geologic mapping in the Ugashik, Bristol Bay, and part of Karluk quadrangles. This work was conducted under the auspices of the Alaska Mineral Resource Assessment Program (AMRAP). This report is to accompany Wilson and O'Leary (1986) which inadvertently is missing most of the data tables listed here. Together the two reports contain the complete data from all samples collected for the Ugashik AMRAP.

  15. Synthesis and application of a nanoporous ion-imprinted polymer for the separation and preconcentration of trace amounts of vanadium from food samples before determination by electrothermal atomic absorption spectrometry.

    PubMed

    Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Dehghanpoor Frashah, Shahab

    2016-04-01

    A vanadium ion-imprinted polymer was synthesized in the presence of V(V) and N-benzoyl-N-phenyl hydroxyl amine using 4-vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2'-azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion-imprinted polymer was used as the sorbent in the development of the solid-phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples.

  16. Use of Doehlert and constrained mixture designs in the development of a photo-oxidation procedure using UV radiation/H₂O₂ for decomposition of landfill leachate samples and determination of metals by flame atomic absorption spectrometry.

    PubMed

    Bezerra, Marcos A; Souza, Antônio D S; Oliveira, Rafael V; Oliveira, Djalma M; Cardoso, Luiz A M; Sousa Filho, Hélio R

    2015-03-01

    This work proposes the use of photo-oxidation degradation with UV radiation/H2O2 as sample treatment for the determination of Fe, Zn, Mn, Ni and Co in municipal solid waste landfill leachate by flame atomic absorption spectrometry (FAAS). Three variables (pH, irradiation time and buffer concentration) were optimized using Doehlert design and the proportions of mixture components submitted to UV radiation (leachate sample, buffer solution and H2O2 30%, v/v) were optimized using a constrained mixture design. Using the experimental conditions established, this procedure allows limits of detection of 0.075, 0.025, 0.010, 0.075 and 0.041 µg mL-1, and the precision levels expressed as relative standard (%RSD, 0.5 µg mL-1) were 3.6, 1.8, 1.3, 3.3 and 1.7%, for Fe, Mn, Zn, Ni and Co respectively. Recovery tests were carried out for evaluation of the procedure accuracy and recoveries were between 92 and 106% for the studied metals. This procedure has been applied for the analysis of the landfill leachate collected in Jequié, a city of the southwestern region of the State of Bahia, Brazil. The results were compared with those obtained by acid digestion. There was no significant difference between the results obtained by the two methods based on paired t-test at 95% confidence level.

  17. Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet combined with flame atomic absorption spectrometry for the fast determination of cadmium in water samples.

    PubMed

    Peng, Guilong; Lu, Ying; He, Qiang; Mmereki, Daniel; Tang, Xiaohui; Zhong, Zhihui; Zhao, Xiaolong

    2016-01-01

    A novel vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet (VSLLME-SFO) was developed for the fast, simple and efficient determination of cadmium (Cd) in water samples followed by flame atomic absorption spectrometry (FAAS). In the VSLLME-SFO process, the addition of surfactant (as an emulsifier), could enhance the mass transfer from the aqueous solution into the extraction solvent. The extraction solvent could be dispersed into the aqueous phase under vigorous shaking with the vortex. In this paper, we investigated the influences of analytical parameters, including pH, extraction solvent type and its volume, surfactant type and its volume, concentration of chelating agent, salt effect and vortex time, on the extraction efficiency of Cd. Under the optimized conditions, the limit of detection was 0.16 μg/L. The analyte enrichment factor was 37.68. The relative standard deviation was 3.2% (10 μg/L, n = 10) and the calibration graph was linear, ranging from 0.5 to 30 μg/L. The proposed method was successfully applied for the analysis of ultra-trace Cd in river water and wastewater samples.

  18. Ligandless surfactant mediated solid phase extraction combined with Fe₃O₄ nano-particle for the preconcentration and determination of cadmium and lead in water and soil samples followed by flame atomic absorption spectrometry: multivariate strategy.

    PubMed

    Jalbani, N; Soylak, M

    2014-04-01

    In the present study, a microextraction technique combining Fe3O4 nano-particle with surfactant mediated solid phase extraction ((SM-SPE)) was successfully developed for the preconcentration/separation of Cd(II) and Pb(II) in water and soil samples. The analytes were determined by flame atomic absorption spectrometry (FAAS). The effective variables such as the amount of adsorbent (NPs), the pH, concentration of non-ionic (TX-114) and centrifugation time (min) were investigated by Plackett-Burman (PBD) design. The important variables were further optimized by central composite design (CCD). Under the optimized conditions, the detection limits (LODs) of Cd(II) and Pb(II) were 0.15 and 0.74 µg/L, respectively. The validation of the proposed procedure was checked by the analysis of certified reference materials of TMDA 53.3 fortified water and GBW07425 soil. The method was successfully applied for the determination of Cd(II) and Pb(II) in water and soil samples.

  19. Separation and preconcentration of Ag(I) in aqueous samples by flotation as an ion-associate using iodide and ferroin followed the determination by flame atomic absorption spectrometry.

    PubMed

    Hosseini, Mohammad Saeid; Hashemi-Moghaddam, Hamid; Kardan-Moghaddam, Gholamreza

    2007-01-01

    A simple method for separation/preconcentration and determination of Ag(I) in aqueous samples is described. The method is based on formation of an ion-associate between Ag(I)-iodide complex and ferroin, which can be floated at the interface of the aqueous/n-heptane phases. The flotation process was carried out using 500-ml aliquot of the aqueous solution and the floated layer was dissolved in 5 ml of 1 M HNO3 containing methanol (50% v/v) as the solvent. The Ag(I) content was then determined by flame atomic absorption spectrometry (FAAS). The method so could be considered as an enrichment process, was achieved to a quantitative feature, when the pH of the solution was adjusted to 4 and the concentrations of iodide and ferroin were about 3.2 x 10(-4) M and 6.25 x 10(-5) M, respectively. The LOD and RSD (n = 7) were obtained 1.0 x 10(-8) M and 2.4%, respectively. It was found that a large number of cations and anions even at high considerably foreign ion/Ag(I) ratios were not interfered. The method was applied satisfactorily to recovery of Ag(I) from different aqueous samples.

  20. Determination of Ultra-trace Rhodium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction Using 2-(5-Iodo-2-Pyridylazo)-5-Dimethylaminoaniline as a Chelating Agent.

    PubMed

    Han, Quan; Huo, Yanyan; Wu, Jiangyan; He, Yaping; Yang, Xiaohui; Yang, Longhu

    2017-03-24

    A highly sensitive method based on cloud point extraction (CPE) separation/preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection has been developed for the determination of ultra-trace amounts of rhodium in water samples. A new reagent, 2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline (5-I-PADMA), was used as the chelating agent and the nonionic surfactant TritonX-114 was chosen as extractant. In a HAc-NaAc buffer solution at pH 5.5, Rh(III) reacts with 5-I-PADMA to form a stable chelate by heating in a boiling water bath for 10 min. Subsequently, the chelate is extracted into the surfactant phase and separated from bulk water. The factors affecting CPE were investigated. Under the optimized conditions, the calibration graph was linear in the range of 0.1-6.0 ng/mL, the detection limit was 0.023 ng/mL for rhodium and relative standard deviation was 3.67% (c = 1.0 ng/mL, n = 11).The method has been applied to the determination of trace rhodium in water samples with satisfactory results.

  1. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Resano, Martín; Flórez, María del Rosario; Queralt, Ignasi; Marguí, Eva

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH4F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g- 1 (Pd), 8.3 μg g- 1 (Pt) and 9.3 μg g- 1 (Rh) for catalysts, which decreased to 0.08 μg g- 1 (Pd), 0.15 μg g- 1 (Pt) and 0.10 μg g- 1 (Rh) for pharmaceuticals.

  2. Study on solid-phase extraction and flame atomic absorption spectrometry for the selective determination of cadmium in water and plant samples with modified clinoptilolite.

    PubMed

    Malekpour, Akbar; Hajialigol, Saeed; Taher, Mohammad Ali

    2009-12-15

    A sensitive, simple separation and solid-phase procedure, which is sorption and desorption of cadmium on modified clinoptilolite zeolite (with surfactant and neothorine), for preconcentration of cadmium prior to analysis by FAAS is described. The sorbent has exhibited good sorption potential for cadmium at pH 5. Cadmium was eluted from the column by nitric acid which resulted in preconcentration factor of 160. Thermodynamic behaviors for the process are investigated and adsorption process is interpreted in term of Freundlich equation. A detection limit of 0.015 ng mL(-1) was obtained and it is shown that calibration curve is linear from 0.01 to 4.0 microg mL(-1) in the final solution. Furthermore, the effects of various parameters such as pH, flow rate of the sample and eluent solution were studied. This method was successfully applied for determination of cadmium in various plant and real water samples.

  3. Vortex-assisted ionic liquid microextraction coupled to flame atomic absorption spectrometry for determination of trace levels of cadmium in real samples

    PubMed Central

    Chamsaz, Mahmoud; Atarodi, Atefe; Eftekhari, Mohammad; Asadpour, Saeid; Adibi, Mina

    2012-01-01

    A simple and rapid vortex assisted ionic liquid based liquid–liquid microextraction technique (VALLME) was proposed for preconcentration of trace levels of cadmium. According to this method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Cadmium preconcentration was mediated by chelation with the 8-hydroxyquinoline (oxine) reagent and an IL, 1-octyl-3-methylimidazolium hexafluorophosphate ([Omim][PF6]) was chosen as the extraction solvent to extract the hydrophobic complex. Several variables such as sample pH, concentration of oxine, volume of [Omim][PF6] and extraction time were investigated in details and optimum conditions were selected. Under the optimum conditions, the limit of detection (LOD) was 2.9 μg L−1 for Cd (ІІ) and relative standard deviation (RSD%) for five replicate determinations of 125 μg L−1 was 4.1%. The method was successfully applied to the determination of cadmium in tap water, apple and rice samples. PMID:25685399

  4. Vortex-assisted ionic liquid microextraction coupled to flame atomic absorption spectrometry for determination of trace levels of cadmium in real samples.

    PubMed

    Chamsaz, Mahmoud; Atarodi, Atefe; Eftekhari, Mohammad; Asadpour, Saeid; Adibi, Mina

    2013-01-01

    A simple and rapid vortex assisted ionic liquid based liquid-liquid microextraction technique (VALLME) was proposed for preconcentration of trace levels of cadmium. According to this method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Cadmium preconcentration was mediated by chelation with the 8-hydroxyquinoline (oxine) reagent and an IL, 1-octyl-3-methylimidazolium hexafluorophosphate ([Omim][PF6]) was chosen as the extraction solvent to extract the hydrophobic complex. Several variables such as sample pH, concentration of oxine, volume of [Omim][PF6] and extraction time were investigated in details and optimum conditions were selected. Under the optimum conditions, the limit of detection (LOD) was 2.9 μg L(-1) for Cd (ІІ) and relative standard deviation (RSD%) for five replicate determinations of 125 μg L(-1) was 4.1%. The method was successfully applied to the determination of cadmium in tap water, apple and rice samples.

  5. Speciation of Cr(III) and Cr(VI) in geological and water samples by ytterbium(III) hydroxide coprecipitation system and atomic absorption spectrometry.

    PubMed

    Duran, Ali; Tuzen, Mustafa; Soylak, Mustafa

    2011-07-01

    A novel coprecipitation method with ytterbium(III) hydroxide has been established for speciation of Cr(III) and Cr(VI) in geological and water samples. At pH 10, while Cr(III) was quantitatively recovered, Cr(VI) was recovered under 10% levels. Total chromium was determined reducing of Cr(VI) to Cr(III) in acidic media with KI reagent. The concentration of Cr(VI) was calculated by the concentration difference between the total chromium and Cr(III). For the quantitative recovery of Cr(III), parameters such as pH, amount of ytterbium, centrifugation time and speed, matrix effect, KI amount, and sample volume were investigated. The preconcentration factor was 30. The limit of detection was obtained as 1.1 μg/L for Cr(III). The accuracy was checked by analyte addition and analyses of standard reference materials (TMDA-54.4 Certified Reference Water, NIST 2710 Montana Soil). Method has been successfully applied to the chromium speciation for industrial waste water of leather factories located in Bor-Nigde, and also for mine and soil samples.

  6. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    PubMed

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2016-09-29

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg(-1); ICP-MS, 437ngg(-1)) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses.

  7. Temperature-controlled ionic liquid-liquid-phase microextraction for the pre-concentration of lead from environmental samples prior to flame atomic absorption spectrometry.

    PubMed

    Bai, Huahua; Zhou, Qingxiang; Xie, Guohong; Xiao, Junping

    2010-03-15

    Hydrophobic ionic liquid could be dispersed into infinite droplets under driving of high temperature, and then they can aggregate as big droplets at low temperature. Based on this phenomenon a new liquid-phase microextraction for the pre-concentration of lead was developed. In this experiment, lead was transferred into its complex using dithizone as chelating agent, and then entered into the infinite ionic liquid drops at high temperature. After cooled with ice-water bath and centrifuged, lead complex was enriched in the ionic liquid droplets. Important parameters affected the extraction efficiency had been investigated including the pH of working solution, amount of chelating agent, volume of ionic liquid, extraction time, centrifugation time, and temperature, etc. The results showed that the usually coexisting ions containing in water samples had no obvious negative effect on the recovery of lead. The experimental results indicated that the proposed method had a good linearity (R=0.9951) from 10 ng mL(-1) to 200 ng mL(-1). The precision was 4.4% (RSD, n=6) and the detection limit was 9.5 ng mL(-1). This novel method was validated by determination of lead in four real environmental samples for the applicability and the results showed that the proposed method was excellent for the future use and the recoveries were in the range of 94.8-104.1%.

  8. Chromium and iron determinations in food and herbal plant samples by atomic absorption spectrometry after solid phase extraction on single-walled carbon nanotubes (SWCNTs) disk.

    PubMed

    Soylak, Mustafa; Unsal, Yunus Emre

    2010-06-01

    A preconcentration-separation procedure has been established based on solid phase extraction of Fe(III) and Cr(III) on single-walled carbon nanotubes (SWCNTs) disk. The analyte ions were quantitatively recovered at pH 8.0 on single-walled carbon nanotubes disk that contains 30 mg of nanotube. The influences of matrix components were tolerable. The detection limits for iron and chromium were calculated as 2.12 and 4.08 microg/l, respectively. The presented method was validated by the analysis of lichen (IAEA-336), CRM025-050 Metals on soil and BCR-032 Moroccan Phosphate rock certified reference materials. The method was successfully applied to the preconcentration and separation of iron and chromium in some food and herbal plant samples from Turkey.

  9. Application of Dispersive Liquid-Liquid Microextraction with Graphite Furnace Atomic Absorption Spectrometry for Determination of Trace Amounts of Zinc in Water Samples

    PubMed Central

    Mazloomifar, Ali

    2013-01-01

    A selective and simple method for separation and preconcentration of zinc ions was developed by using dispersive liquid-liquid microextraction. Parameters that have an effect on the microextraction efficiency such as volume of extraction and disperser solvent, extraction time, and adding salt were investigated. Under optimum conditions, a preconcentration factor of 250 was obtained. The limit of detection (LOD) obtained under the optimal conditions was 0.09 ng mL−1. The linearity of method was obtained in range of 0.2–50 ng mL−1 with a correlation coefficient (r) of 0.9974. The relative standard deviation for 10 replicate determinations at 1.0 ng mL−1 of zinc was 2.53%. The proposed method was successfully applied to the analysis of zinc in water sample. PMID:23737791

  10. A photo-oxidation procedure using UV radiation/H 2O 2 for decomposition of wine samples — Determination of iron and manganese content by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    dos Santos, Walter N. L.; Brandão, Geovani C.; Portugal, Lindomar A.; David, Jorge M.; Ferreira, Sérgio L. C.

    2009-06-01

    This paper proposes the use of photo-oxidation with UV radiation/H 2O 2 as sample pretreatment for the determination of iron and manganese in wines by flame atomic absorption spectrometry (FAAS). The optimization involved the study of the following variables: pH and concentration of buffer solution, concentrated hydrogen peroxide volume and irradiation time. The evaluation of sample degradation was monitored by measuring the absorbance at the maximum wavelength of red wine (530 nm). Using the experimental conditions established during the optimization (irradiation time of 30 min, oxidant volume of 2.5 mL, pH 10, and a buffer concentration of 0.15 mol L - 1 ), this procedure allows the determination of iron and manganese with limits of detection of 30 and 22 μg L - 1 , respectively, for a 5 mL volume of digested sample. The precision levels, expressed as relative standard deviation (RSD), were 2.8% and 0.65% for iron and 2.7% and 0.54% for manganese for concentrations of 0.5 and 2.0 mg L - 1 , respectively. Addition/recovery tests for evaluation of the accuracy were in the ranges of 90%-111% and 95%-107% for iron and manganese, respectively. This digestion procedure has been applied for the determination of iron and manganese in six wine samples. The concentrations varied from 1.58 to 2.77 mg L - 1 for iron and from 1.30 to 1.91 mg L - 1 for manganese. The results were compared with those obtained by an acid digestion procedure and determination of the elements by FAAS. There was no significant difference between the results obtained by the two methods based on a paired t-test (at 95% confidence level).

  11. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of mercury in water and food samples employing cold vapor atomic absorption spectrometry.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein

    2015-09-01

    We describe a nanosized Hg(II)-imprinted polymer that was prepared from methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as cross-linker, 2,2'-azobisisobutyronitrile (AIBN) as radical initiator, 2, 2'-di pyrydyl amine as a specific ligand, and Hg (II) as the template ions by precipitation polymerization method in methanol as the progeny solvent. Batch adsorption experiments were carried out as a function of pH, Hg (II) imprinted polymer amount, adsorption and desorption time, volume, and concentration of eluent. The synthesized polymer particles were characterized physically and morphologically by using infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopic techniques. The maximum adsorption capacity of the ion-imprinted and non-imprinted sorbent was 27.96 and 7.89 mg g(-1), respectively. Under optimal conditions, the detection limit for mercury was 0.01 μg L(-1) and the relative standard deviation was 3.2 % (n = 6) at the 1.00 μg L(-1). The procedure was applied to determination of mercury in fish and water samples with satisfactory results.

  12. On-line speciation and determination of Cr(III) and Cr(VI) in drinking and waste water samples by reversed-phase high performance liquid chromatography coupled with atomic absorption spectrometry.

    PubMed

    Sarica, Deniz Yurtsever; Türker, A Rehber; Erol, Esra

    2006-07-01

    A simple, rapid, and selective on-line method for the speciation and determination of Cr(III) and Cr(VI) in aqueous solutions by ion-pairing HPLC coupled with flame atomic absorption spectrometry (FAAS) is described. The composition of the mobile phase has been optimized for better separation. The effects of column temperature, volume of injection loop, fuel flow rate of FAAS, and nebulizer suction rate of FAAS have also been investigated. Separation is accomplished in almost 2.5 min on a 25 cm length C18 column at 40 degrees C. The selectivity of the method has been established by investigating the effect of interfering elements on chromium determination. The detection limit (3sigma) achieved by the method was calculated as 3.7 ng/mL for Cr(III) and 2.0 ng/mL for Cr(VI). The proposed method has been validated by analyzing certified reference material (BCR 544) and successfully applied to the analysis of drinking water and wastewater samples with a relative error below 6%.

  13. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L- 1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L- 1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract.

  14. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    PubMed

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively.

  15. In-situ separation of the matrix for the direct determination of traces of chromium, cobalt, and nickel in titanium dioxide powder by electrothermal atomic-absorption spectrometry with slurry sampling.

    PubMed

    Zhu, X; Hu, B; Wang, L; Li, S; Jiang, Z

    2001-10-01

    A novel method has been developed for the direct determination of traces of chromium, cobalt, and nickel in TiO2 powder; it entails slurry sampling and electrothermal atomic-absorption spectrometry (ETAAS) with a polytetrafluoroethylene (PTFE) slurry (6% m/v) as fluorinating reagent. The factors which could affect the vaporization of the matrix and analytes were studied in detail; the fluorinating vaporization behavior of the analyte both in the slurry and in solution were also investigated. Owing to the in-situ separation of the matrix, the matrix influences were reduced significantly. The proposed method has been applied to the direct determination of traces of chromium, cobalt, and nickel in high-purity TiO2 powder without chemical pretreatment. Under the optimum experimental conditions the detection limits of the analytes (Cr, Co, and Ni) were 1.9 ng g(-1), 2.4 ng g(-1) and 5.4 ng g(-1), respectively, the relative standard deviations (RSD) were 3.4% (n=6, c=7.0 ng mL(-1)), 2.9% (n=6, c=0.70 ng mL(-1)), and 7.6% (n=6, c=4.0 ng mL(-1)), again respectively, and the characteristic masses for Cr, Co, and Ni were 8.4 pg/ 0.0044A, 9.3 pg/0.0044A, and 40.0 pg/0.0044A, respectively.

  16. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    PubMed

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e).

  17. The role of atomic absorption spectrometry in geochemical exploration

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.

    1992-01-01

    In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.

  18. Fluorine speciation analysis using reverse phase liquid chromatography coupled off-line to continuum source molecular absorption spectrometry (CS-MAS): identification and quantification of novel fluorinated organic compounds in environmental and biological samples.

    PubMed

    Qin, Zhiwei; McNee, David; Gleisner, Heike; Raab, Andrea; Kyeremeh, Kwaku; Jaspars, Marcel; Krupp, Eva; Deng, Hai; Feldmann, Jörg

    2012-07-17

    Driven by increasing demand for the monitoring of industrial perfluorinated compounds (PFCs), the identification of novel fluorine containing compounds (FOCs) and the tracking of organofluorine drugs and their degradation products, there is a clear need for sensitive, fluorine-specific detection of unknown FOCs. Here we report the first ever direct fluorine-specific (speciation) method; capable of individually detecting untargeted FOCs in environmental and biological samples through the application of continuum source molecular absorption spectrometry (CS-MAS) using a commercial CS-AAS. Two model FOCs (2,4,6, trifluorobenzoic acid (TFBA) and 5-fluoroindol-5-carboxylic acid (FICA)) were used, achieving fluorine-specific detection across a range of 0.1 to 300 ng/mL fluorine, corresponding to a limit of detection of 4 pg F and 5.26 nM for both compounds. Both TFBA and FICA showed a similar response to CS-MAS detection, potentially enabling the quantification of fluorine content in novel FOCs without having molecular standards available. This paper also reports the use of reverse-phase high performance liquid chromatography (RP-HPLC) coupled off-line with CS-MAS for the identification of single organofluorines in a mixture of FOCs via fraction collection. The linear range of both FOCs was determined to be from 1 to 500 ng/mL. The limits of detection of those species were just above 1 ng/mL (100 pg) and can therefore compete with targeted analytical methods such as ESI-MS. Finally, as a proof of principle the analysis of a fluoride-containing groundwater sample from Ghana demonstrated that this method can be used in the detection of novel FOCs, with identification achieved through parallel ESI-MS. Coupled HPLC-CS-MAS/ESI-MS is the first analytical methodology capable of selectively detecting and identifying novel FOCs, making possible the quantification of all fluorine containing compounds in one sample. This is the necessary analytical requirement to perform

  19. Absorption Mode FT-ICR Mass Spectrometry Imaging

    SciTech Connect

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O'Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  20. Millimeter wave absorption spectra of biological samples

    SciTech Connect

    Gandhi, O.P.; Hagmann, M.J.; Hill, D.W.; Partlow, L.M.; Bush, L.

    1980-01-01

    A solid-state computer-controlled system has been used to make swept-frequency measurements of absorption of biological specimens from 26.5 to 90.0 GHz. A wide range of samples was used, including solutions of DNA and RNA, and suspensions of BHK-21/C13 cells, Candida albicans, C krusei, and Escherichia coli. Sharp spectra reported by other workers were not observed. The strong absorbance of water (10--30 dB/mm) caused the absorbance of all aqueous preparations that we examined to have a water-like dependence on frequency. Reduction of incident power (to below 1.0 microW), elimination of modulation, and control of temperature to assure cell viability were not found to significantly alter the water-dominated absorbance. Frozen samples of BHK-21/C13 cells tested at dry ice and liquid nitrogen temperatures were found to have average insertion loss reduced to 0.2 dB/cm but still showed no reproducible peaks that could be attributed to absorption spectra. It is concluded that the special resonances reported by others are likely to be in error.

  1. Accelerator mass spectrometry of small biological samples.

    PubMed

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  2. Literature study of microwave-assisted digestion using electrothermal atomic absorption spectrometry.

    PubMed

    Chakraborty, R; Das, A K; Cervera, M L; De La Guardia, M

    1996-05-01

    The literature on the use of microwave-assisted digestion procedures for subsequent sample analysis by means of electrothermal atomic absorption spectrometry (ETAAS) is reviewed. The literature survey reveals that this digestion technique has been applied mainly for biological materials. The elements most extensively determined by this method are cadmium and lead followed by copper, chromium, nickel and iron. The microwave digestion conditions, ETAAS furnace programmes and analytical details of the developed methodologies have been carefully revised.

  3. Piezoelectric-tuned microwave cavity for absorption spectrometry

    DOEpatents

    Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.

    1978-01-01

    Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.

  4. Determination of nanogram amounts of bismuth in rocks by atomic absorption spectrometry with electrothermal atomization

    USGS Publications Warehouse

    Kane, J.S.

    1979-01-01

    Bismuth concentrations as low as 10 ng g-1 in 100-mg samples of geological materials can be determined by atomic absorption spectrometry with electrothermal atomization. After HF-HClO4 decomposition of the sample, bismuth is extracted as the iodide into methyl isobutyl ketone and is then stripped with ethylenediaminetetraacetic acid into the aqueous phase. Aliquots of this solution are pipetted into the graphite furnace and dried, charred, and atomized in an automated sequence. Atomic absorbance at the Bi 223.1-nm line provides a measure of the amount of bismuth present. Results are presented for 14 U.S. Geological Survey standard rocks. ?? 1979.

  5. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  6. Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Ye, Juanjuan; Liu, Shuxia; Tian, Miaomiao; Li, Wanjun; Hu, Bin; Zhou, Weihong; Jia, Qiong

    2014-01-01

    A simple and highly selective procedure for on-line determination of trace levels of Au, Pd, and Pt in mine samples has been developed using flow injection-column adsorption preconcentration coupled with graphite furnace atomic absorption spectrophotometry (FI-column-GFAAS). The precious metals were adsorbed on the as-synthesized magnetic nanoparticles functionalized with 4'-aminobenzo-15-crown-5-ether packed into a micro-column and then eluted with 2% thiourea + 0.1 mol L(-1) HCl solution prior to the determination by GFAAS. The properties of the magnetic adsorbents were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Various experimental parameters affecting the preconcentration of Au, Pd, and Pt were investigated and optimized. Under the optimal experimental conditions, the detection limits of the developed technique were 0.16 ng mL(-1) for Au, 0.28 ng mL(-1) for Pd, and 1.01 ng mL(-1) for Pt, with enrichment factors of 24.3, 13.9, and 17.8, respectively. Precisions, evaluated as repeatability of results, were 1.1%, 3.9%, and 4.4% respectively for Au, Pd, and Pt. The developed method was validated by the analysis of Au, Pd, and Pt in certified reference materials and mine samples with satisfactory results.

  7. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    PubMed

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll).

  8. Modified Activated Carbon Prepared from Acorn Shells as a New Solid-Phase Extraction Sorbent for the Preconcentration and Determination of Trace Amounts of Nickel in Food Samples Prior to Flame Atomic Absorption Spectrometry.

    PubMed

    Ebrahimi, Bahram

    2017-03-01

    A new solid-phase extraction (SPE) sorbent was introduced based on acidic-modified (AM) activated carbon (AC) prepared from acorn shells of native oak trees in Kurdistan. Hydrochloric acid (15%, w/w) and nitric acid (32.5%, w/w) were used to condition and modify AC. The IR spectra of AC and AM-AC showed that AM lead to the formation of increasing numbers of acidic functional groups on AM-AC. AM-AC was used in the SPE method for the extraction and preconcentration of Ni+2 prior to flame atomic absorption spectrometric determination at ng/mL levels in model and real food samples. Effective parameters of the SPE procedure, such as the pH of the solutions, sorbent dosage, extraction time, sample volume, type of eluent, and matrix ions, were considered and optimized. An enrichment factor of 140 was obtained. The calibration curve was linear with an R2 of 0.997 in the concentration range of 1-220 ng/mL. The RSD was 5.67% (for n = 7), the LOD was 0.352 ng/mL, and relative recoveries in vegetable samples ranged from 96.7 to 103.7%.

  9. Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS).

    PubMed

    Duran, Celal; Gundogdu, Ali; Bulut, Volkan Numan; Soylak, Mustafa; Elci, Latif; Sentürk, Hasan Basri; Tüfekci, Mehmet

    2007-07-19

    A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L(-1) HNO3 in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 microg L(-1). The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.

  10. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGES

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  11. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  12. Determination of tetraalkyllead compounds in gasoline by liquid chromatography-atomic absorption spectrometry

    USGS Publications Warehouse

    Messman, J.D.; Rains, T.C.

    1981-01-01

    A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.

  13. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    EPA Science Inventory

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
    compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  14. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  15. The environmental effects of trace elements concentration in sea snails using atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    El-Amri, F. A.

    2003-05-01

    Water pollution bas increased in heavy industrialised areas. Most industrial water wastes end up in the sea. Monitoring the elemental composition in marine organisms, such as snails, provides the essential elements in living organisms and through the food chain to man. 50 samples of each of two kinds of snails have been collected from the west coast of Libya. Samples were digeste with nitric acid and the concentration of Copper, Iron, Magnesium and Zinc were determined by atomic absorption spectrometry. The results shows that Mg has the highest value while the Copper has the lowest in both kind of snaiis. A pattern of the trace elements concentration was investigated regarding the size and kind of snails.

  16. The direct determination of HgS by thermal desorption coupled with atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Coufalík, Pavel; Zvěřina, Ondřej; Komárek, Josef

    2016-04-01

    This research was aimed at the direct determination of HgS in environmental samples by means of thermal desorption coupled with atomic absorption spectrometry. Operating parameters of the apparatus used for thermal desorption (including a prototype desorption unit) are described in this work, as well as the procedure for measuring mercury release curves together with an evaluation of the analytical signal including two methods of peak integration. The results of thermal desorption were compared with HgS contents obtained by sequential extraction. The limits of quantification of the proposed method for the selective determination of the black and red forms of HgS were 4 μg kg- 1 and 5 μg kg- 1, respectively. The limit of quantification of red HgS in soils was 35 μg kg- 1. The developed analytical procedure was applied to soil and sediment samples from historical mining areas.

  17. Determination of selenium in urine by hydride generation atomic absorption spectrometry.

    PubMed

    Navarro, M; Lopez, H; Lopez, M C; Perez, V

    1996-01-01

    A procedure has been developed for determination of total selenium in urine by hydride generation atomic absorption spectrometry. Mineralization was performed with a nitric acid-perchloric acid mixture on a thermostated digestion block. The method was validated by comparison with the method involving mineralization in a microwave acid digestion bomb containing nitric acid and small amounts of vanadium pentoxide. Se(VI) was reduced to Se(IV) by dissolution in 7N HCl. Sample recoveries, precision studies, and analyses of a certified reference material demonstrated the reliability and accuracy of this technique. Urine samples had selenium concentrations ranging from 4.6 to 50.3 micrograms/L. These values correspond to an average of 54.9 micrograms per person per day total ingested and bioavailable Se in the daily diet.

  18. Laser ablation sample transfer for mass spectrometry imaging.

    PubMed

    Park, Sung-Gun; Murray, Kermit K

    2015-01-01

    Infrared laser ablation sample transfer (IR-LAST) is a novel ambient sampling technique for mass spectrometry. In this technique, a pulsed mid-IR laser is used to ablate materials that are collected for mass spectrometry analysis; the material can be a solid sample or deposited on a sample target. After collection, the sample can be further separated or analyzed directly by mass spectrometry. For IR-LAST sample transfer tissue imaging using MALDI mass spectrometry, a tissue section is placed on a sample slide and material transferred to a target slide by scanning the tissue sample under a focused laser beam using transmission-mode (back side) IR laser ablation. After transfer, the target slide is analyzed using MALDI imaging. The spatial resolution is approximately 400 μm and limited by the spread of the laser desorption plume. IR-LAST for MALDI imaging provides several new capabilities including ambient sampling, area to spot concentration of ablated material, multiple ablation and analysis from a single section, and direct deposition on matrix-free nanostructured targets.

  19. Liquid-absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, S.

    1990-12-11

    A system is described for detecting trace concentrations of an analyte in air and includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container in which is disposed a wettable material extending substantially the entire length of the container. One end of the wettable material is continuously wetted with an analyte-sorbing liquid, which flows to the other end of the container. Sample air is flowed through the container in contact with the wetted material for trapping and preconcentrating the traces of analyte in the sorbing liquid, which is then collected at the other end of the container and discharged to the detector. The wetted material may be a wick comprising a bundle of fibers, one end of which is immersed in a reservoir of the analyte-sorbing liquid, or may be a liner disposed on the inner surface of the container, with the sorbing liquid being centrifugally dispersed onto the liner at one end thereof. The container is preferably vertically oriented so that gravity effects the liquid flow. 4 figs.

  20. Liquid-absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting trace concentrations of an analyte in air and includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container in which is disposed a wettable material extending substantially the entire length of the container. One end of the wettable material is continuously wetted with an analyte-sorbing liquid, which flows to the other end of the container. Sample air is flowed through the container in contact with the wetted material for trapping and preconcentrating the traces of analyte in the sorbing liquid, which is then collected at the other end of the container and discharged to the detector. The wetted material may be a wick comprising a bundle of fibers, one end of which is immersed in a reservoir of the analyte-sorbing liquid, or may be a liner disposed on the inner surface of the container, with the sorbing liquid being centrifugally dispersed onto the liner at one end thereof. The container is preferably vertically oriented so that gravity effects the liquid flow.

  1. Determination of nickel in active pharmaceutical ingredients by electrothermal atomic absorption spectrometry.

    PubMed

    Bubnič, Zoran; Urleb, Uroš; Kreft, Katjuša; Veber, Marjan

    2010-03-01

    An electrothermal atomic absorption spectrometric procedure for the determination of nickel in active pharmaceutical ingredients was developed. Since the recoveries of nickel by the direct dissolution of samples in diluted nitric acid were low and caused errors in the determination of Ni in pharmaceutical samples, different approaches for sample pre-treatment were examined. It was found that the microwave digestion was the most suitable way for sample preparation. Various combinations of digestion agents and different microwave conditions were tested. The combination of nitric acid and hydrogen peroxide was found to be the most appropriate. The validity of the method was evaluated by recovery studies of spiked samples and by the comparison of the results obtained by inductively coupled plasma mass spectrometry (ICP-MS). The recovery ranged from 87.5 to 104.0% and a good agreement was achieved between both methods. The detection limit and the limit of quantification were 0.6 and 2.1 µg g-1 respectively. The precision of the method was confirmed by the determination of Ni in the spiked samples and was below 4%, expressed in terms of a relative standard deviation. The method was applied to the determination of nickel in production samples of active pharmaceutical ingredients and intermediates.

  2. Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry.

    PubMed

    de Jesus, Robson M; Silva, Laiana O B; Castro, Jacira T; de Azevedo Neto, Andre D; de Jesus, Raildo M; Ferreira, Sergio L C

    2013-03-15

    In this paper, a method for the determination of mercury in phosphate fertilizers using slurry sampling and cold vapor atomic absorption spectrometry (CV QT AAS) is proposed. Because mercury (II) ions form strong complexes with phosphor compounds, the formation of metallic mercury vapor requires the presence of lanthanum chloride as a release agent. Thiourea increases the amount of mercury that is extracted from the solid sample to the liquid phase of the slurry. The method is established using two steps. First, the slurry is prepared using the sample, lanthanum chloride, hydrochloric acid solution and thiourea solution and is sonicated for 20 min. Afterward, mercury vapor is generated using an aliquot of the slurry in the presence of the hydrochloric acid solution and isoamylic alcohol with sodium tetrahydroborate solution as the reducing agent. The experimental conditions for slurry preparation were optimized using two-level full factorial design involving the factors: thiourea and lanthanum chloride concentrations and the duration of sonication. The method allows the determination of mercury by external calibration using aqueous standards with limits of detection and quantification of 2.4 and 8.2 μg kg(-1), respectively, and precision, expressed as relative standard deviation, of 6.36 and 5.81% for two phosphate fertilizer samples with mercury concentrations of 0.24 and 0.57 mg kg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of phosphate fertilizer that was provided by the National Institute of Standards & Technology (NIST). The method was applied to determine mercury in six commercial samples of phosphate fertilizers. The mercury content varied from 33.97 to 209.28 μg kg(-1). These samples were also analyzed employing inductively coupled plasma mass spectrometry (ICP-MS). The ICP-MS results were consistent with the results from our proposed method.

  3. Determination of cadmium and lead in edible oils by electrothermal atomic absorption spectrometry after reverse dispersive liquid-liquid microextraction.

    PubMed

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2014-06-01

    The dispersive liquid-liquid microextraction of edible oils with a low volume of an acidic solution in the presence of isopropyl alcohol allows cadmium and lead to be completely separated into the aqueous phase. After centrifugation, the metals are determined by electrothermal atomization atomic absorption spectrometry using a palladium salt for chemical modification in the heating cycle. Using a 10 g oil sample, the enrichment factor is 140, which permits detection limits of 0.6 and 10 ng kg(-1) for cadmium and lead, respectively. The results agree with those obtained after sample mineralization. Data for the cadmium and lead levels for 15 samples of different characteristics are given.

  4. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  5. Small sample Accelerator Mass Spectrometry for biomedical applications

    NASA Astrophysics Data System (ADS)

    Salehpour, M.; Håkansson, K.; Possnert, G.

    2015-10-01

    The Accelerator Mass Spectrometry activities at Uppsala University include a group dedicated to the biomedical applications, involving natural level samples, as well as 14C-labeled substances requiring separate handling and preparation. For most applications sufficient sample amounts are available but many applications are limited to samples sizes in the μg-range. We have developed a preparation procedure for small samples biomedical applications, where a few μg C can be analyzed, albeit with compromised precision. The latest results for the small sample AMS method are shown and some of the biomedical activities at our laboratory are presented.

  6. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  7. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D2 and Xe lamps within 200-400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3-5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  8. Determination of Mo and V in multiphase gasoline emulsions by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Santana Sodré dos Santos, Denilson; Paixão Teixeira, Alete; das Graças Andrade Korn, Maria; Sena Gomes Teixeira, Leonardo

    2006-05-01

    This paper proposes an alternative analytical method using electrothermal atomic absorption spectrometry to determine Mo and V in multiphase gasoline emulsions. Samples were prepared by mixing gasoline with a nitric acid solution (0.1% v/v) and two cationic surfactants. The mixture was sonicated, resulting in an emulsive system. Calibration was done by using the aforementioned solutions with added analyte. The detection limits (3 σ) of Mo and V were 0.9 μg l - 1 and 4.7 μg l - 1 , respectively. The accuracy and precision of the proposed method were evaluated by the analysis of samples spiked with metallo-organic standard and the relative standard deviation obtained ranged from 1.2% to 4.4% in samples spiked with 2 μg l - 1 of each metal. The recovery rates varied from 91.2% to 101.6%. The proposed method was applied to determine Mo and V in samples of gasoline from different gas stations.

  9. Determination of silicon in serum and urine by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Zhuo-er

    1995-09-01

    A sensitive, simple and accurate method for the routine determination of trace silicon in serum and urine by Zeeman electrothermal atomic absorption spectrometry is described. The samples are directly determined after 20-fold dilution of serum and 100-fold dilution of urine. No L'vov platform is used. The signal enhancement of silicon atomization in pyrolytic graphite coated graphite tubes is achieved by using a mixture of calcium chloride and lanthanum nitrate as chemical modifier. The interferences arising from the biological matrices have been eliminated by the addition of ammonium dihydrogenphosphate in the sample solutions. The aqueous calibration curve is linear to at least 300 μg l -1, the characteristic mass is 37 pg (integrated absorbance signal), whereas the detection limit (3SD) is 1.5 μg l -1 for silicon in both diluted serum and urine samples. The recoveries of silicon added to the diluted samples are 101 ± 1.8% for sera and 98.2 ± 3.5% for the urine specimens, independent of the dilution ratio. The silicon measurement results for the serum and urine from healthy adults and for the serum from the patients with chronic renal failure on hemodialysis are presented.

  10. Consistency of ARESE II Cloud Absorption Estimates and Sampling Issues

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Marshak, A.; Cahalan, R. F.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Data from three cloudy days (March 3, 21, 29, 2000) of the ARM Enhanced Shortwave Experiment II (ARESE II) were analyzed. Grand averages of broadband absorptance among three sets of instruments were compared. Fractional solar absorptances were approx. 0.21-0.22 with the exception of March 3 when two sets of instruments gave values smaller by approx. 0.03-0.04. The robustness of these values was investigated by looking into possible sampling problems with the aid of 500 nm spectral fluxes. Grand averages of 500 nm apparent absorptance cover a wide range of values for these three days, namely from a large positive (approx. 0.011) average for March 3, to a small negative (approximately -0.03) for March 21, to near zero (approx. 0.01) for March 29. We present evidence suggesting that a large part of the discrepancies among the three days is due to the different nature of clouds and their non-uniform sampling. Hence, corrections to the grand average broadband absorptance values may be necessary. However, application of the known correction techniques may be precarious due to the sparsity of collocated flux measurements above and below the clouds. Our analysis leads to the conclusion that only March 29 fulfills all requirements for reliable estimates of cloud absorption, that is, the presence of thick, overcast, homogeneous clouds.

  11. Gamma ray spectrometry of LDEF samples at SRL

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1992-01-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which were reported to collect noticeable Be-7 on their leading surfaces. No significant Be-7 was detected in the samples analyzed.

  12. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    PubMed

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC.

  13. Iron analysis in atmospheric water samples by atomic absorption spectroscopy (AAS) in water-methanol.

    PubMed

    Sofikitis, A M; Colin, J L; Desboeufs, K V; Losno, R

    2004-01-01

    To distinguish between Fe(II) and Fe(III) species in atmospheric water samples, we have adapted an analytical procedure based on the formation of a specific complex between Fe(II) and ferrozine (FZ) on a chromatographic column. After elution of Fe(III), the Fe(II) complex is recovered with water-methanol (4:1). The possibility of trace iron measurements in this complex medium by graphite-furnace atomic-absorption spectrometry has been investigated. A simplex optimization routine was required to complete the development of the analytical method.

  14. Application of thermospray flame furnace atomic absorption spectrometry for investigation of silver nanoparticles.

    PubMed

    Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya

    2017-03-01

    Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min(-1) through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.

  15. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    EPA Science Inventory


    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  16. Determination of mercury in carbon black by cold vapor atomic absorption spectrometry.

    PubMed

    Hepp, Nancy M

    2006-01-01

    Recently, a new color additive, D&C Black No. 2, a high-purity furnace black in the general category of carbon blacks, was listed as a color subject to batch certification by the U.S. Food and Drug Administration. A simple procedure was developed to determine mercury (Hg) in D&C Black No. 2, which is limited by specification to not more than 1 ppm Hg. The method uses partial acid digestion followed by cold vapor atomic absorption and was developed by modifying a method used for other color additives. The carbon black samples are treated with a mixture of nitric and hydrochloric acids and heated by microwave in sealed Teflon vessels. The resulting solutions, which are stable to Hg loss for at least 1 week, are diluted and analyzed for Hg using cold vapor atomic absorption spectrometry. Validation was performed by spiking carbon black samples with inorganic Hg (HgNO3) at levels from 0.1 to 1.5 microg/g, and by analyzing 2 standard reference materials. At the specification level of 1 ppm Hg (1 microg Hg/g), the 95% confidence interval was +/-0.01 ppm Hg (0.01 microg Hg/g). The method developed in this study gave good results for very difficult-to-analyze materials, such as coal standard reference materials and carbon black. By eliminating volatility and adsorption factors through the formation of HgCl4(-2) complexes, one can avoid using extremely hazardous acids such as HF and HClO4.

  17. Effects of Solution Physical Properties on Copper and Chromium Signals in Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Rocha, Fàbio R. P.; Nòbrega, Joaquim A.

    1996-10-01

    Instrumental techniques, such as flame atomic absorption spectrometry (FAAS), are frequently used in chemical analysis. Independently of the technique used, the chemical principles must be considered to assure that the analytical results are correct. In FAAS, the most critical step is the sample introduction, since solutions need to be converted in an aerosol (nebulization process) that should contain drops with suitable size to attain the flame. Solution physical properties, such as viscosity and surface tension, can severely affect the analytical signals. Solutions with high viscosity are less easily aspirated and the analyte mass that reach the flame is reduced. The surface tension of the solution affects the size of the drops generated by the nebulization process and can modify the quantity of analyte that attain the flame. This work describes an experiment that allow demonstrating the effects of viscosity and surface tension on analytical signals, using a set of copper solutions prepared in different concentrations of ethanol and chromium solutions prepared in surfactant (tetrapropylammonium bromide) medium. The experiment can be carried out in a 4 h laboratory class and is useful to demonstrate to undergraduate students the effects of samples physical properties on the analytical signals in FAAS.

  18. Liquid phase microextraction and ultratrace determination of cadmium by modified graphite furnace atomic absorption spectrometry.

    PubMed

    Nazari, Saeid

    2009-06-15

    A powerful microextraction technique was used for determination of cadmium in water samples using liquid phase microextraction (LPME) followed by graphite furnace atomic absorption spectrometry (GF-AAS). In a preconcentration step, cadmium was extracted from a 2 ml of its aqueous sample in the pH 7 as 5,7-dibromoquinoline-8-ol (DBQ) complex into a 4 microl drop of benzyl alcohol. After extraction, the micro drop was retracted and directly transferred into a graphite tube modified by [W.Rh.Pd](c). Some effective parameters on extraction and complex formation, such as type and volume of organic solvent, pH, concentration of chelating agent, extraction time and stirring rate were optimized. Under the optimum conditions, the enrichment factor and recovery were 450% and 90%, respectively. The calibration graph was linear in the range of 0.008-1 microg L(-1) with correlation coefficient of 0.9961 under the optimum conditions of the recommended procedure. The detection limit based on the 3Sb criterion was 0.0035 microg L(-1) and relative standard deviation (RSD) for eight replicate measurement of 0.1 microg L(-1) and 0.4 microg L(-1) cadmium was 5.2% and 4.5%, respectively. The characteristic concentration was 0.0032 microg L(-1) equivalent to a characteristic mass of 12.8 fg. In order to evaluate the accuracy and recovery of the presented method the procedure was applied to the analysis of reference materials and seawater.

  19. Monitoring of trace elements in honey from the Republic of Macedonia by atomic absorption spectrometry.

    PubMed

    Stankovska, Elena; Stafilov, Trajce; Sajn, Robert

    2008-07-01

    Contents of Zn, Cu, Fe, Mn, Cd, Na, K, Ca and Mg in 123 honey samples from different regions of the Republic of Macedonia were determined by atomic absorption spectrometry. A microwave digestion system was applied for digestion of the samples. The mean content for the elements determined was found to be: 2.252, 0.696, 1.885, 1.752, 0.004, 29.52, 984.8, 40.11, 18.24 mg kg(-1) for Zn, Cu, Fe, Mn, Cd, Na, K, Ca and Mg, respectively. Based on a comparison of statistical parameters, the spatial distribution of particular elements in Macedonian honey and the results of factor analysis, two natural and one anthropogenic geochemical associations were identified. The natural geochemical associations (Mg, Mn, Ca, K and Fe, Zn, Ca, -K, -Na) are influenced mainly by lithology. The anthropogenic associations (Cd and -Cu) are mostly a result of metallurgical activities, namely lead production in the town of Veles.

  20. Determination of tellurium in indium antimonide semiconductor material by electrothermal atomic absorption spectrometry.

    PubMed

    Shiue, M Y; Sun, Y C; Yang, M H

    2001-08-01

    A method for the determination of the dopant concentration of tellurium in dissolved indium antimonide semiconductor material by electrothermal atomic absorption spectrometry (ETAAS) was developed. Efforts were made to investigate the optimal conditions of the furnace heating program and the effect of palladium modifier on the variation of tellurium and the background absorbance. According to the results obtained, the presence of palladium chemical modifier in the analysis of indium antimonide allowed the successful retention of tellurium in the graphite tube, and the optimum mass of palladium modifier was found to be dependent on the sample matrix concentration. The absorbance profile of tellurium and the background level were significantly improved when a pyrolysis temperature of 1100 degrees C and an atomization temperature of 2200 degrees C were employed in the optimized heating program. With the use of this method, a detection limit of 0.8 microg g(-1) tellurium in indium antimonide could be achieved. The applicability of the proposed method was evaluated by comparison with two independent methods, i.e. slurry sampling-ETAAS and ICP-MS. From the good agreement between the results, it was demonstrated that the proposed method is suitable for the determination of typical dopant concentrations of tellurium in indium antimonide.

  1. Near edge X-ray absorption mass spectrometry on coronene

    SciTech Connect

    Reitsma, G.; Deuzeman, M. J.; Hoekstra, R.; Schlathölter, T.; Boschman, L.; Hoekstra, S.

    2015-01-14

    We have investigated the photoionization and photodissociation of free coronene cations C{sub 24}H{sub 12}{sup +} upon soft X-ray photoabsorption in the carbon K-edge region by means of a time-of-flight mass spectrometry approach. Core excitation into an unoccupied molecular orbital (below threshold) and core ionization into the continuum both leave a C 1s vacancy, that is subsequently filled in an Auger-type process. The resulting coronene dications and trications are internally excited and cool down predominantly by means of hydrogen emission. Density functional theory was employed to determine the dissociation energies for subsequent neutral hydrogen loss. A statistical cascade model incorporating these dissociation energies agrees well with the experimentally observed dehydrogenation. For double ionization, i.e., formation of intermediate C{sub 24}H{sub 12}{sup 3+⋆}trications, the experimental data hint at loss of H{sup +} ions. This asymmetric fission channel is associated with hot intermediates, whereas colder intermediates predominantly decay via neutral H loss.

  2. Microwave-assisted extraction and ultrasonic slurry sampling procedures for cobalt determination in geological samples by electrothermal atomic absorption spectroscopy.

    PubMed

    Felipe-Sotelo, M; Carlosena, A; Fernández, E; López-Mahía, P; Muniategui, S; Prada, D

    2004-06-17

    Slurry sampling is compared to microwave-assisted acid digestion for cobalt determination in soil/sediment samples by electrothermal atomic absorption spectrometry (ETAAS). Furnace temperature programs and appropriate amounts of three chemical modifiers were optimised in order to get the highest signals and good separations between the atomic and background signals. Using nitric acid (0.5% (v/v)) as liquid medium, no chemical modifier was needed. The detection limit, based on integrated absorbance, was 0.04mugg(-1) for digests and slurries. Within-batch precision and analytical recoveries were satisfactory for both procedures. Accuracy was tested by analysing a reference soil and a sediment from IRMM. The methods were further compared employing a set of roadside soils and estuarine sediments. As no significant differences (95% confidence) were found, practical analytical properties were suggested in order to select one of them.

  3. Assessment of homogeneity and minimum sample mass for cadmium analysis in powdered certified reference materials and real rice samples by solid sampling electrothermal vaporization atomic fluorescence spectrometry.

    PubMed

    Mao, Xuefei; Liu, Jixin; Huang, Yatao; Feng, Li; Zhang, Lihua; Tang, Xiaoyan; Zhou, Jian; Qian, Yongzhong; Wang, Min

    2013-01-30

    To optimize analytical quality controls of solid sampling electrothermal vaporization atomic fluorescence spectrometry (SS-ETV-AFS), the homogeneity (H(E)) of rice samples and their minimum sample mass (M) for cadmium analysis were evaluated using three certified reference materials (CRMs) and real rice samples. The effects of different grinding degrees (particle sizes <0.85, <0.25, <0.15, and >1 mm) on H(E) and M of real rice samples were also investigated. The calculated M values of three CRMs by the Pauwels equation were 2.19, 19.76, and 3.79 mg. The well-ground real rice samples (particle size <0.25 mm) demonstrated good homogeneity, and the M values were 3.48-4.27 mg. On the basis of these results, the Cd concentrations measured by the proposed method were compared with the results by microwave digestion graphite furnace atomic absorption spectrometry with a 0.5 g sample mass. There was no significant difference between these two methods, which meant that SS-ETV-AFS could be used to accurately detect Cd in rice with several milligrams of samples instead of the certified value (200 mg) or the recommended mass (200-500 mg) of the methods of the Association of Official Analytical Chemists.

  4. Determination of cadmium in biodiesel using microemulsion and electrothermal atomization atomic absorption spectrometry.

    PubMed

    Lima, Adriana S; Silva, Deise G; Teixeira, Leonardo S G

    2015-01-01

    This work aimed to prepare biodiesel microemulsions for the subsequent quantification of cadmium via graphite furnace atomic absorption spectrometry (GFAAS). The biodiesel samples were prepared using n-propanol as an emulsifier, 10% (v/v) nitric acid as the aqueous phase, and biodiesel. Pseudoternary phase diagrams were constructed to determine the microemulsion region with the specified components. The optimized conditions for microemulsion formation were 57.6% (v/v) n-propanol, 21.2% (v/v) biodiesel, and 21.2% (v/v) nitric acid solution. The stability of the microemulsified system was investigated using aqueous and organic standards, and the system was found to be stable for at least 240 min. The applied pyrolysis and atomization temperatures were 800 and 2000 °C, respectively, and 5 μg of aluminum was used as the chemical modifier. The obtained limits of detection and quantification were 0.2 and 0.5 μg kg(-1), respectively, and the characteristic mass was 1.6 pg. The precision, expressed as the relative standard deviation (% R.S.D., n = 10), was 2.5% for a sample with a cadmium concentration of 6.5 μg kg(-1). The accuracy was determined from addition and recovery experiments, with results varying from 93 to 108% recovery. This study demonstrates that the proposed method based on the use of a microemulsion formation in sample preparation can be applied as an efficient alternative for the determination of cadmium in biodiesel by GFAAS. Cadmium determination in biodiesel samples of different origins (soybean, corn, cotton, and sunflower) was evaluated after acid digestion using the inductively coupled plasma-mass spectrometry (ICP-MS) technique, and the obtained results were compared to the results obtained using the proposed method. The paired t test (95% confidence level) did not show significant differences. The concentrations of cadmium found ranged from 5.3 to 8.0 μg kg(-1).

  5. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization

    PubMed Central

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-01-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 oC) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user–friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source. PMID:26582511

  6. Atomic Absorption Spectrometry Analysis of Trace Elements in Degenerated Intervertebral Disc Tissue

    PubMed Central

    Kubaszewski, Łukasz; Zioła-Frankowska, Anetta; Frankowski, Marcin; Nowakowski, Andrzej; Czabak-Garbacz, Róża; Kaczmarczyk, Jacek; Gasik, Robert

    2014-01-01

    Background Few studies have investigated trace elements (TE) in human intervertebral disc (IVD) tissue. Trace element presence can have diverse meanings: essential TE show the metabolic modalities of the tissue, while environmentally-related TE indicate pollution and tissue-specific absorption and accumulation. IVD is a highly specific compartment with impaired communication with adjacent bone. Analysis of TE in IVD provides new insights regarding tissue metabolism and IVD communication with other tissues. Material/Methods Thirty intervertebral discs were acquired from 22 patients during surgical treatment for degenerative disease. Atomic absorption spectrometry was used to evaluate the concentrations of Al, Cd, Pb, Cu, Ni, Mo, Mg, and Zn. Results Al, Pb, Cu, Mg, and Zn were detected in all samples. Pb was significantly positively correlated with age, and Ni concentration was weakly correlated with population count in the patient’s place of residence. Only Cu was observed in higher concentrations in IVD compared to in other tissues. Significant positive correlations were observed between the following pairs: Mg/Zn, Mg/Al, Mg/Pb, Zn/Al, Zn/Pb, and Al/Pb. Negative correlations were observed between Mg/Cd, Zn/Cd, Mg/Mo, and Mo/Pb. Conclusions This study is one of few to profile the elements in intervertebral discs in patients with degenerative changes. We report significant differences between trace element concentrations in intervertebral discs compared to in other tissues. Knowledge of the TE accumulation pattern is vital for better understanding intervertebral disc nutrition and metabolism. PMID:25366266

  7. A new approach to mineralization of flaxseed (Linum usitatissimum L.) for trace element analysis by flame atomic absorption spectrometry.

    PubMed

    Oliveira, João P S; Silva, Francisco L F; Monte, Raimundo J G; Matos, Wladiana O; Lopes, Gisele S

    2017-06-01

    A new approach to the analysis of Cu, Fe, Mn and Zn in flaxseed was developed based on infrared-assisted acid digestion. Quantitation by flame atomic absorption spectrometry yields results in agreement with those arising from aggressive total decomposition using conventional microwave-assisted (MW) digestions. A full factorial design in two levels was applied to evaluate the impact of significant variables for all elements to determine optimal experimental conditions. A desirability function revealed these to be: 2.0g sample mass, 8mL of HNO3 and 8min of heating time in the IR system. Precision better than 10% (RSD) was obtained, superior to that of a combined IR-MW approach. Sample preparation based on IR-assisted digestion provides a rapid and inexpensive alternative to other conventional techniques for the analysis of complex samples and is able to accommodate relatively large masses of sample, alleviating potential homogeneity issues as well as enhancing detection power.

  8. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of "fluorine as a probe in medicinal chemistry" an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells.

  9. Determination of total gaseous lead in the atmosphere by honeycomb denuder/electrothermal atomic absorption spectrometry.

    PubMed

    Zhang, Bicheng; Wu, Tao; Yu, Jimmy C

    2005-09-01

    A technique is described for the determination of total gaseous lead in the atmosphere by honeycomb denuder collection, followed by an electrothermal atomic absorption spectrometry (ETAAS) measurement. The collection efficiency of the honeycomb denuder in which a solution containing 2% HNO3/2% glycerine/1% ammonium dihydrogenphosphate was coated for trapping the gaseous lead in the atmosphere was 98.8%. The linear absorbance response was obtained for a concentration range of 0-1.39 microg m(-3) of lead in the atmosphere. A precision of 4.8% RSD (peak-height absorbance, n = 11) for an aqueous solution of 1 ng of lead standard, characteristic masses (CM) of 23 pg and detection limit (3sigma) of 54 pg for an aqueous solution of 0.01 ng lead standard was achieved with 100 microg ammonium dihydrogenphosphate as a chemical modifier. The average recovery of lead in three standard samples prepared by the independent digestion of NIST SRM 1648 (Urban Particulate Matter) using our analytical system was 97.8%. The total content of the gaseous lead in the atmosphere of our laboratories was 0.35-0.38 microg m(-3).

  10. Determination of arsenic in a nickel alloy by flow injection hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hanna, C. P.; Tyson, J. F.; Offley, S. G.

    1992-08-01

    The development of a method for the direct determination of trace arsenic quantities in nickel alloy digests, by flow injection hydride generation atomic absorption spectrometry, is described. An optimization study of the manifold and chemical parameters produced system performance, in terms of tolerance of the nickel matrix and sensitivity, such that matrix removal and pre-reduction of As(V) to As (III) prior to arsine generation were eliminated. Full recovery of the As(V) signal from a solution containing 5 ng ml -1 in the presence of 60 μg ml -1 nickel was obtained. Validation of the method was achieved by analyzing a British Chemical Standard (BCS) Certified Reference Material (CRM) #346 IN nickel alloy containing arsenic at a concentration of 50 μg g -1. Following dissolution in nitric and hydrofluoric acids by a microwave assisted procedure, the only subsequent preparation required was dilution by the appropriate factor. Up to 60 injections h -1 may be made, with a detection limit of 0.5 ng ml -1 arsenic (250 pg absolute) as As(V) in a 500 μl sample. The peak height characteristic concentration is 0.46 ng ml -1, with a relative standard deviation of 3.5% for a 10 ng ml -1 As(V) standard ( n = 6).

  11. Direct analysis of reference biofluids by coupled in situ electrodeposition-electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matousek, Jaroslav P.; Powell, Kipton J.

    1999-12-01

    The application of coupled in situ electrodeposition-electrothermal atomic absorption spectrometry (ED-ETAAS) to the determination of Pb in biological standard reference materials is described. In situ electrodeposition at a cell voltage of 3.0 V from 25-μl samples onto electrodeposited Pd is used to quantitatively separate the analyte from blood and urine matrices. With subsequent withdrawal of spent electrolyte, this overcomes the atomisation problems inherent with high salt and organic contents. ED-ETAAS is applied with minimal sample pre-treatment (acidification). The electrolysis process aids decomposition of the organic matrix, and the release of trace elements. Evolution of H 2 at the cathode counters fouling of the Pd modifier surface. The palladium deposit is renewed in situ for each determination. For AMI certified lyophilised blood, diluted 1+3 with 0.1 M HCl (18.1 μg/l Pb), the R.S.D. was 3.0% (peak height; n=5) and the detection limit (3 σ blank; n=5) was 1.5 μg/l. Results for certified blood samples were AMI 72.3±4.3 μg/l (certified 76.2±7.6 μg/l) and Seronorm 34.2±2.0 μg/l (36±4 μg/l). The result for NIST SRM 2670 normal urine acidified to 1% HNO 3 was 8.1±0.6 μg/l (recommended value 10 μg/l).

  12. Metal content monitoring in Hypericum perforatum pharmaceutical derivatives by atomic absorption and emission spectrometry.

    PubMed

    Gomez, María R; Soledad, Cerutti; Olsina, Roberto A; Silva, María F; Martínez, Luis D

    2004-02-18

    Metals have been investigated in different plant materials in order to establish their normal concentration range and consider their role in plants as part of human medicinal treatment. Metal monitoring as a pattern recognition method is a promising tool in the characterization and/or standardization of phytomedicines. In the present work measurable amounts of Ca, Cu, K, Li, Mg, Mn, Na, Ni, and Zn were detected in phytopharmaceutical derivatives of Hypericum perforatum by atomic techniques. Atomic methodologies like flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS) allow reliable determination of mineral content in pharmaceutical quality control of medicinal plants. Additionally, capillary electrophoresis (CE) patterns of characteristic components (fingerprints) have been performed for the search of adulterants in phytopharmaceutical products.

  13. Determination of trace amounts of molybdenum in plant tissue by solvent extraction-atomic-absorption and direct-current plasma emission spectrometry.

    PubMed

    Lajunen, L H; Kubin, A

    1986-03-01

    Methods are presented for determination of molybdenum in plant tissue by flame and graphite-furnace atomic-absorption spectrometry and direct-current argon-plasma emission spectrometry. The samples are digested in HNO(3)-H(2)SO(4)-HC1O(4) mixture, and Mo is separated and concentrated by chelation and extraction. Three organic solvents (methyl isobutyl ketone, di-isobutyl ketone and isoamyl alcohol) and two ligands (8-hydroxyquinoline and toluene-3,4-dithiol) were studied. The procedure were tested on pine needle and birch leaf samples.

  14. Determination of antimony by using tungsten trap atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Titretir, Serap; Kendüzler, Erdal; Arslan, Yasin; Kula, İbrahim; Bakırdere, Sezgin; Ataman, O. Yavuz.

    2008-08-01

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH 3 is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 °C. Following the preconcentration step, the trap is heated to 895 °C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH 4 solutions, H 2 and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l - 1 using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17.

  15. Determination of cadmium and lead in urine by derivative flame atomic absorption spectrometry using the atom trapping technique

    NASA Astrophysics Data System (ADS)

    Han-wen, Sun; De-qiang, Zhang; Li-li, Yang; Jian-min, Sun

    1997-06-01

    A method is described for the determinations of cadmium and lead in urine by derivative flame atomic absorption spectrometry with a modified water-cooled stainless steel atom trapping tube. The effects of the trap position, the flame conditions, the coolant flow rates, and the collection time were studied. With a 1 min collection time, the characteristic concentrations (derivative absorbance of 0.0044) for cadmium and lead were 0.028 and 1.4 μg L -1, the detection limits (3σ) were 0.02 and 0.27 μg L -1, respectively. The detection limits and sensitivities of the proposed method were 2 and 3 orders of magnitude higher for 1-3 min collection time than those of conventional flame atomic absorption spectrometry for cadmium and lead, respectively. Urine samples from a small population of normal individuals have been analyzed for cadmium and lead by the proposed method. Satisfactory recoveries of 91-110% and 91-106%, for Cd and Pb were obtained with these urine samples.

  16. Contents of cadmium, mercury and lead in fish from the Atlantic sea (Morocco) determined by atomic absorption spectrometry.

    PubMed

    Chahid, Adil; Hilali, Mustapha; Benlhachimi, Abdeljalil; Bouzid, Taoufiq

    2014-03-15

    As a part of a specific monitoring program, lead (Pb) cadmium (Cd) and mercury (Hg) concentrations in important species of fish from various fishing ports of the southern Kingdom of Morocco (Sardina pilchardus, Scomber scombrus, Plectorhinchus mediterraneus, Trachurus trachurus, Octopus vulgaris, Boops boops, Sarda sarda, Trisopterus capelanus, and Conger conger) were investigated by the Moroccan Reference Laboratory (NRL) for trace elements in foodstuffs of animal origin. The samples were analysed for lead and cadmium by a graphite furnace atomic absorption spectrometry (GFAAS); and for mercury by cold vapour atomic absorption spectrometry (CVAAS). The results were expressed as μg/g of wet weight (w/w). The levels of Cd, Pb and Hg in muscles of fish were 0.009-0.036, 0.013-0.114 and 0.049-0.194 μg/g, respectively. The present study showed that different metals were present in the sample at different levels but within the maximum residual levels prescribed by the EU for the fish and shellfish from these areas, in general, should cause no health problems for consumers.

  17. Ultra sound absorption measurements in rock samples at low temperatures

    NASA Technical Reports Server (NTRS)

    Herminghaus, C.; Berckhemer, H.

    1974-01-01

    A new technique, comparable with the reverberation method in room acoustics, is described. It allows Q-measurements at rock samples of arbitrary shape in the frequency range of 50 to 600 kHz in vacuum (.1 mtorr) and at low temperatures (+20 to -180 C). The method was developed in particular to investigate rock samples under lunar conditions. Ultrasound absorption has been measured at volcanics, breccia, gabbros, feldspar and quartz of different grain size and texture yielding the following results: evacuation raises Q mainly through lowering the humidity in the rock. In a dry compact rock, the effect of evacuation is small. With decreasing temperature, Q generally increases. Between +20 and -30 C, Q does not change much. With further decrease of temperature in many cases distinct anomalies appear, where Q becomes frequency dependent.

  18. Determination of cadmium in spring water by graphite-furnace atomic absorption spectrometry after coprecipitation with ytterbium hydroxide.

    PubMed

    Atsumi, Kousuke; Minami, Tomoharu; Ueda, Joichi

    2005-06-01

    A coprecipitation method with ytterbium hydroxide was studied for the determination of cadmium in water samples by graphite-furnace atomic absorption spectrometry. Up to 40 ng of cadmium in water samples was quantitatively coprecipitated with ytterbium hydroxide at pH 8.0-11.2. The concentration factor was 100 fold. The coprecipitated cadmium was sensitively determined without any influence of ytterbium and the calibration curve was linear from 0.1 to 4 ng/mL of cadmium. The detection limit (signal/noise = 2) was 2.9 pg/mL in 100 mL of the initial sample solution. Twenty-nine diverse ions tested did not interfere with the determination in at least a 10000-fold mass ratio to cadmium. The proposed method was successfully applied to the determination of cadmium in spring water.

  19. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    PubMed

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  20. Determination of Mercury in an Assortment of Dietary Supplements Using an Inexpensive Combustion Atomic Absorption Spectrometry Technique

    PubMed Central

    Levine, Michael A.; Weber, Frank X.; Hu, Ye; Perlmutter, Jason; Grohse, Peter M.

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 μg per week. PMID:18924735

  1. Separation and preconcentration of chromium species by selective absorption on Lemna minor and determination by slurry atomisation electrothermal atomic absorption spectrometry.

    PubMed

    Zhu, G; Li, S

    2001-08-01

    A novel method for the separation and preconcentration of Cr(III)/Cr(VI) with Lemna minor and determination by slurry atomization electrothermal atomic absorption spectrometry (ETAAS) was developed. A sample solution was added to a polyethylene beaker containing 10 mg of 160 mesh pre-treated Lemna minor, adjusted to pH 1.0, stirred for 8 min for selective absorption of Cr(III) and then centrifuged. The upper layer of solution was transferred into another polyethylene beaker containing 10 mg of 160 mesh pre-treated Lemna minor, adjusted to pH 5.0, stirred for 12 min for adsorption of the residual Cr(VI) and centrifuged. The two residues in two centrifuge tubes were washed twice with water, 2 ml of agar solution added, stirred for 2 min, then two slurries were prepared and used for the determination of Cr(III) and Cr(VI) by ETAAS. Detection limits (3sigma) of 0.01 microg L(-1) for Cr(III) and 0.03 microg L(-1) for Cr(VI) were obtained. The relative standard deviation was 2.8% for Cr(III) and 3.3% for Cr(VI) at the 1 microg L(-1) level. The method was applied to the determination of Cr(III)/Cr(VI) in water samples. The analytical recoveries of Cr(III) and Cr(VI) added to samples were 97-102 and 96-103%, respectively.

  2. Evaluation of propolis polyphenols absorption in humans by liquid chromatography/tandem mass spectrometry.

    PubMed

    Gardana, Claudio; Simonetti, Paolo; Berti, Cristiana; Pietta, Piergiorgio

    2007-01-01

    Propolis has various biological activities such as antibacterial, antiviral, antioxidant, immunostimulating and antiinflammatory, which are generally ascribed to the polyphenolic fraction. The aim of this study was to evaluate the absorption of the main polyphenols [caffeic acid (CA), pinobanksin-5methyl ether (P-5ME), pinobanksin (Pb), chrysin (C), pinocembrin (P), galangin (G), pinobanksin-3-acetate, pinobanksin esters and caffeic acid phenylethyl ester (CAPE)] from a dewaxed and standardized extract of propolis (EPID). Fifteen healthy volunteers consumed 5 mL EPID in water, corresponding to 125 mg of flavonoids. Blood samples were collected before, each hour for 8 h and 24 h after EPID intake. After deconjugation by beta-glucuronidase/sulfatase the plasma samples were analyzed by a selective liquid chromatography/tandem mass spectrometry (LC/MS/MS) method using morin as internal standard (I.S.). A kinetic profile characterized by two t(max), respectively at 1 h and about 5 h post-ingestion, was observed in all the subjects. The two peaks may be due to enterohepatic cycling. Among the various polyphenols ingested, only P-5ME, Pb, C, P and G were detected in plasma and C(max)t(1h) were 65.7 +/- 13.3, 46.5 +/- 12.7, 79.5 +/- 18.6, 168.1 +/- 16.3 and 113.7 +/- 16.8 ng/mL, respectively. These levels decreased significantly after 8 h and were no longer detectable 24 h after EPID intake. The recovery of the extraction for CA, Pb, C, P, G and I.S. from spiked plasma was 95.2 +/- 3.1, 93.1 +/- 3.6, 91 +/- 2.5, 96.4 +/- 4.2, 93.4 +/- 2.4 and 85.5 +/- 2.4%, respectively. The results of this study evidence that flavonoids from EPID are absorbed, metabolized and Pb-5ME and G seem to have apparent absorption, measured as (AUC/dose), higher than C, P and Pb.

  3. Feasibility of filter atomization in high-resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Heitmann, Uwe; Becker-Ross, Helmut; Katskov, Dmitri

    2006-03-01

    A prototype spectrometer for high-resolution continuum source atomic absorption spectrometry (HR-CS AAS), built at ISAS Berlin, Germany, was combined with a graphite filter atomizer (GFA), earlier developed at TUT, Pretoria, South Africa. The furnace and auto-sampler units from a commercial AA spectrometer, model AAS vario 6 (Analytik Jena AG, Jena, Germany), were employed in the instrument. Instead of conventional platform tube, the GFA was used to provide low measurement susceptibility to interferences and short determination cycle. The GFA was modified according to the design of the furnace unit and optimal physical parameters of its components (filter and collector) found. Afterwards, optimal GFA was replicated and tested to outline analytical performances of the HR-CS GFA AA spectrometer in view of prospects of multi-element analysis. In particular, reproducibility of performances, repeatability of analytical signals, lifetime, temperature limit and duration of the measurement cycle were examined, and elements available for determination justified. The results show that the peak area of the atomic absorption signal is reproduced in various GFA copies within ± 4% deviation range. The GFA can stand temperatures of 2800 °C with 6 s hold time for 55 temperature cycles, and 2700 °C (8 s) for about 200 cycles. Only the external tube is prone to destruction while the filter and collector do not show any sign of erosion caused by temperature or aggressive matrix. Analytical signals are affected insignificantly by tube aging. Repeatability of the peak area remains within 1.1-1.7% RSD over more than hundred determination cycles. Peak areas are proportional to the sample volume of injected organic and inorganic liquids up to at least 50 μL. The drying stage is combined with hot sampling and cut down to 15-20 s. The list of metals available for determination with full vapor release includes Al, Co, Cr, Ni, Pt as well as more volatile metals. Characteristic masses at

  4. Mercury speciation in hair by headspace injection-gas chromatography-atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg).

    PubMed

    Gao, Y; De Galan, S; De Brauwere, A; Baeyens, W; Leermakers, M

    2010-10-15

    The speciation of Hg in human hair was carried out with combustion-atomic absorption spectrometry for total Hg (THg) and headspace-gas chromatography-atomic fluorescence spectrometry (HS-GC-AFS) for methylmercury (MMHg). The determination of total Hg in hair was carried out with the AMA analyzer (Advanced Mercury Analyser 254). Accuracy and reproducibility were assessed on a Certified Reference hair sample (IAEA-086 CRM), yielding, respectively, a recovery of 97.5% and a RSD of 3.2%. Analyses of 10 blank measurements resulted in a detection limit of 1.5 ng g(-1) of THg for a 20mg sample of human hair. MMHg concentrations in hair were assessed with HS-GC-AFS in a single analysis step. Either acid or alkaline extraction can be applied because they yielded very similar results on a IAEA-086 CRM: we observed a recovery of 103% and a RSD of 7% with acid extraction and a recovery of 110% and a RSD of 9% with alkaline extraction. Optimization of the headspace vial, injection and GC parameters is described. The detection limit of the MMHg determination in human hair, which amounts to 0.04 ng g(-1) for a 20mg sample, is far below the concentrations observed in natural samples. The number of samples that can be analyzed per hour, respectively, amounts to 8 for THg and 4 for MMHg. Finally, Hg speciation in natural human hair samples was carried out by combining both AMA and HS-GC-AFS analysis methods. THg levels were at the μg g(-1), level, with an average MMHg fraction of about 70%.

  5. Screening Samples for Arsenic by Inductively Coupled Plasma-Mass Spectrometry for Treaty Samples

    DTIC Science & Technology

    2014-02-01

    hydrolysis products chlorovinyl arsonous acid (CVAA). One of the missions of the Forensic Analytical Center is to screen samples for compliance with the... Forensic Analytical Center (ECBC-FAC) is a designated lab under the Organization for the Prohibition of Chemical Weapons (OPCW). This organization is...FAC Forensic Analytical Center GC-MS gas chromatography-mass spectrometry HPLC high-performance liquid chromatography ICP-MS inductively coupled

  6. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  7. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Krawczyk, Magdalena

    2007-03-01

    The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H 2Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an "integrated trap") was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3 σ), was 0.9 ng mL - 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% ( n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  8. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    SciTech Connect

    Rey-Raap, Natalia

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  9. Determination and interference studies of bismuth by tungsten trap hydride generation atomic absorption spectrometry.

    PubMed

    Kula, Ibrahim; Arslan, Yasin; Bakirdere, Sezgin; Titretir, Serap; Kendüzler, Erdal; Ataman, O Yavuz

    2009-11-15

    The determination of bismuth requires sufficiently sensitive procedures for detection at the microg L(-1) level or lower. W-coil was used for on-line trapping of volatile bismuth species using HGAAS (hydride generation atomic absorption spectrometry); atom trapping using a W-coil consists of three steps. Initially BiH(3) gas is formed by hydride generation procedure. The analyte species in vapor form are transported through the W-coil trap held at 289 degrees C where trapping takes place. Following the preconcentration step, the W-coil is heated to 1348 degrees C; analyte species are released and transported to flame-heated quartz atom cell where the atomic signal is formed. In our study, interferences have been investigated in detail during Bi determination by hydride generation, both with and without trap in the same HGAAS system. Interferent/analyte (mass/mass) ratio was kept at 1, 10 and 100. Experiments were designed for carrier solutions having 1.0M HNO(3). Interferents such as Fe, Mn, Zn, Ni, Cu, As, Se, Cd, Pb, Au, Na, Mg, Ca, chloride, sulfate and phosphate were examined. The calibration plot for an 8.0 mL sampling volume was linear between 0.10 microg L(-1) and 10.0 microg L(-1) of Bi. The detection limit (3s/m) was 25 ng L(-1). The enhancement factor for the characteristic concentration (C(o)) was found to be 21 when compared with the regular system without trap, by using peak height values. The validation of the procedure was performed by the analysis of the certified water reference material and the result was found to be in good agreement with the certified values at the 95% confidence level.

  10. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nascentes, Clésia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A. Z.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1, respectively. The relative standard deviations varied from 2.7% to 7.3% ( n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1; Mn: 110-348 μg l -1, Pb: 13.0-32.9 μg l -1, and Zn: 52.7-226 μg l -1. Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery.

  11. Fast sequential determination of antimony and lead in pewter alloys using high-resolution continuum source flame atomic absorption spectrometry.

    PubMed

    Dessuy, Morgana B; de Jesus, Robson M; Brandao, Geovani C; Ferreira, Sergio L C; Vale, Maria Goreti R; Welz, Bernhard

    2013-01-01

    A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element.

  12. Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry

    USGS Publications Warehouse

    Huffman, Claude; Mensik, J.D.; Riley, L.B.

    1967-01-01

    The two methods presented for the determination of traces of gold in geologic materials are the cyanide atomic-absorption method and the fire-assay atomic-absorption method. In the cyanide method gold is leached with a sodium-cyanide solution. The monovalent gold is then oxidized to the trivalent state and concentrated by extracting into methyl isobutyl ketone prior to estimation by atomic absorption. In the fire-assay atomic-absorption method, the gold-silver bead obtained from fire assay is dissolved in nitric and hydrochloric acids. Gold is then concentrated by extracting into methyl isobutyl ketone prior to determination by atomic absorption. By either method concentrations as low as 50 parts per billion of gold can be determined in a 15-gram sample.

  13. Determination of boron in silicon-doped gallium arsenide by electrothermal atomic absorption spectrometry and ultraviolet-visible spectrophotometry.

    PubMed

    Taddia, Marco; Cerroni, Maria Grazia; Morelli, Elio; Musiani, Andrea

    2002-01-01

    Two methods have been developed for the determination of boron impurities in silicon-doped gallium arsenide (GaAs) for electronics. The first method employs the electrothermal atomic absorption spectrometry (ETAAS), the second, the UV-Vis molecular absorption spectrophotomety. In both cases the GaAs sample is decomposed with aqua regia (1+1). To prevent Ga(III) interference on the ETAAS determination of boron, a double extraction of the chlorogallic acid (HGaCl4) in diethyl ether is performed. To improve the overall ETAAS performance, the graphite tubes were pre-treated with iridium(III) and tungsten(IV). A mixed chemical modifier containing Ni(II), Sr(II) and citric acid was also used. The characteristic mass (m0) is 301 +/- 47 pg and the detection limit (3sB) is 2.4 microg g(-1). The classic UV-Vis spectrophotometric procedure using curcumin was also extended to the determination of boron in GaAs. By masking Ga(III) with EDTA and a preliminary extraction of boron with 2-ethyl-hexane 1,3-diol, performed on a semi-micro scale, a detection limit of 0.6 microg g(-1) was achieved. Both methods were applied to the analysis of two Si-doped GaAs samples which were suspected of being boron-contaminated. Results are compared with those obtained by direct analysis of the decomposed sample solution using the inductively coupled plasma atomic emission spectrometry (ICP-AES).

  14. Determination of Low Levels of Lead in Beer Using Solid-Phase Extraction and Detection by Flame Atomic Absorption Spectrometry

    PubMed Central

    Alves, Vanessa N.; Borges, Simone S. O.; Neto, Waldomiro B.; Coelho, Nívia M. M.

    2011-01-01

    In this study, a method for the determination of low concentrations of lead in beer samples using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the online preconcentration system, such as sample pH, preconcentration flow rate, eluent flow rate, eluent concentration, particle size, and sorbent mass, were studied. The optimum extraction conditions were obtained using a sample pH of 6.0, sample flow rate of 6.0 mL min−1, 63.0 mg of sorbent mass, and 2.0 mol L−1 HNO3 at a flow rate of 2.0 mL min−1 as the eluent. With the optimized conditions, the preconcentration factor, precision, detection limit, consumption index, and sample throughput were estimated as 93, 0.3% (10.0 μg L−1, n = 7), 7.5 μg L−1, 0.11 mL, and 23 samples per hour, respectively. The method developed was successfully applied to beer samples and recovery tests, with recovery ranging from 80% to 100%. PMID:22013389

  15. Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Souza, Gilberto B.; Carrilho, Elma Neide V. M.; Oliveira, Camila V.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    A rapid sample preparation method is proposed for decomposition of milk powder, corn bran, bovine and fish tissues, containing certified contents of the analytes. The procedure involves sample combustion in a commercial stainless steel oxygen bomb operating at 25 bar. Most of the samples were decomposed within 5 min. Diluted nitric acid or water-soluble tertiary amines 10% v/v were used as absorption solutions. Calcium, Cu, K, Mg, Na, P, S and Zn were recovered with the bomb washings and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ethanol mixed with paraffin was used as a combustion aid to allow complete combustion. A cooling step prior releasing of the bomb valve was employed to increase the efficiency of sample combustion. Iodine was also determined in milk samples spiked with potassium iodide to evaluate the volatilization and collection of iodine in amine CFA-C medium and the feasibility of its determination by ICP-OES with axial view configuration. Most of the element recoveries in the samples were between 91 and 105% and the certified and found contents exhibited a fair agreement at a 95% confidence level.

  16. A simple indirect automatic method to determine total iodine in milk products by flame atomic absorption spectrometry.

    PubMed

    Yebra, M C; Bollaín, M H

    2010-07-15

    A simple, precise and accurate automatic method for the determination of total iodine in milk products by indirect atomic absorption spectrometry is proposed. Iodide in solutions resulting from alkaline ashing of samples is precipitated with silver ion in a precipitation-dissolution flow manifold, which allows performing on-line the retention of the silver iodide precipitate formed on a filter, its wash with diluted ammonia and its dissolution with a diluted thiosulfate solution. Dissolved silver is also determined on-line by flame atomic absorption, and the achieved amount of this metal is proportional to that of iodine in the sample. The proposed method is very selective, avoids interferences from anions present in the samples, which can be also precipitated with silver, because these silver compounds are dissolved with ammonia at the washing step. This method allows the determination of iodine in the range 0.011-0.35 microg mL(-1) with a relative standard deviation between 1.3 and 6.8% at a rate of ca. 17 samplesh(-1).

  17. Identification of Unknown Contaminants in Water Samples from ISS Employing Liquid Chromatography/Mass Spectrometry/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Schultz, John R.

    2008-01-01

    Mass Spectrometry/Mass Spectrometry (MS/MS) is a powerful technique for identifying unknown organic compounds. For non-volatile or thermally unstable unknowns dissolved in liquids, liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) is often the variety of MS/MS used for the identification. One type of LC/MS/MS that is rapidly becoming popular is time-of-flight (TOF) mass spectrometry. This technique is now in use at the Johnson Space Center for identification of unknown nonvolatile organics in water samples from the space program. An example of the successful identification of one unknown is reviewed in detail in this paper. The advantages of time-of-flight instrumentation are demonstrated through this example as well as the strategy employed in using time-of-flight data to identify unknowns.

  18. Role of a binary metallic modifier in the determination of cadmium in graphite furnace atomic absorption spectrometry.

    PubMed

    Morimoto, Syun; Ashino, Tetsuya; Wagatsuma, Kazuaki

    2010-01-01

    In order to discuss the matrix modifier effect of palladium, iron, and a mixture of palladium and iron for the determination of cadmium in graphite-furnace atomic absorption spectrometry (GF-AAS), we measured the absorption profiles of a cadmium line at various compositions of these elements. Variations in the gas temperature were also estimated with the progress of atomization, by using a two-line method under the assumption of a Boltzmann distribution. The atomic absorption of cadmium appeared on the way of heating from the charring temperature to the atomizing temperature while the gas temperature was still low; it was thus considered that cadmium was atomized through direct conductive heating from the wall of the graphite furnace. Therefore, the effectiveness of modifiers for cadmium would be determined through any reactions on the furnace wall at the programmed charring and atomizing temperatures. The addition of iron, palladium, and an iron-palladium mixture all enhanced the absorption signal of cadmium compared to a pure cadmium sample; however, their effects were different from one another. Each addition of iron or palladium to the sample solution led to an enhancement of the cadmium absorbance, indicating that iron or palladium individually became an effective matrix modifier for the determination of cadmium. However, the addition of palladium was ineffective for the matrix modification in the coexistence of large amounts of iron. Although these phenomena are very complicated, and thus cannot be understood completely, any metallurgical reaction between the constituent elements during heating of the furnace wall, such as the formation of solid solutions and intermetallic compounds, would cause the effect of a matrix modifier in GF-AAS.

  19. Simultaneous determination of cadmium and lead in wine by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Freschi, Gian P. G.; Dakuzaku, Carolina S.; de Moraes, Mercedes; Nóbrega, Joaquim A.; Gomes Neto, José A.

    2001-10-01

    A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l -1 HNO 3 and in 1+1 v/v diluted wine using mixtures of Pd(NO 3) 2+Mg(NO 3) 2 and NH 4H 2PO 4+Mg(NO 3) 2 as chemical modifiers. With 5 μg Pd+3 μg Mg as the modifiers and a two-step pyrolysis (10 s at 400°C and 10 s at 600°C), the formation of carbonaceous residues inside the atomizer was avoided. For 20 μl of sample (wine+0.056 mol l -1 HNO 3, 1+1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 μg l -1 Cd and 5.0-50 μg l -1 Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 μg l -1 for Cd, 0.8 μg l -1 for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 μg l -1 and for Pb at 500 μg l -1. The relative standard deviations ( n=12) were typically <8% for Cd and <6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Pb was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level.

  20. Determination of mercury in fish samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liaw, Ming-Jyh; Jiang, Shiuh-Jen; Li, Yi-Ching

    1997-06-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to the determination of mercury in several fish samples. The effects of instrument operating conditions and slurry preparation on the ion signals are reported. Palladium was used as modifier to delay the vaporization of mercury in this study. As the vaporization behavior of mercury in fish slurry and aqueous solution is quite different, the standard addition method was used for the determination of mercury in reference materials. The detection limit of mercury estimated from the standard addition curve was in the range 0.002-0.004 μg g -1 for different samples. This method has been applied to the determination of mercury in dogfish muscle reference material (DORM-1 and DORM-2) and dogfish liver reference material (DOLT-1). Accuracy was better than 4% and precision was better than 7% with the USS-ETV-ICP-MS method.

  1. Determination of occupational exposure to organotin compounds after multivariate optimization of a liquid chromatography flame atomic absorption spectrometry system

    NASA Astrophysics Data System (ADS)

    Nygren, Olle

    1993-07-01

    The detection limit, obtained with a previously developed liquid chromatography flame atomic absorption spectrometry system, was not low enough for the determination of occupational exposure to organotin compounds. Optimization of the system was thus necessary. Many experimental factors may influence the response of the system, and interaction effects between these parameters may also be expected. With optimization by multivariate methods, the response of the system was improved and a 2.5-times better detection limit for organotin compounds was obtained, which was adequate for determination of occupational exposure. The system was employed for determination of occupational exposure to organotin-based wood preservatives at an impregnation plant. No exposure to butyltin compounds above 1/10 of the threshold limit value could be measured at any sampling place. It was also found that up to 30% of the tributyltin in impregnation solutions in use was dealkylated to less fungitoxic dibutyltin compounds, which may affect the quality of the impregnation.

  2. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    USGS Publications Warehouse

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  3. Impact of the analytical blank in the uncertainty evaluation of the copper content in waters by flame atomic absorption spectrometry.

    PubMed

    de Oliveira, Elcio Cruz; Monteiro, Maria Inês Couto; Pontes, Fernanda Veronesi Marinho; de Almeida, Marcelo Dominguez; Carneiro, Manuel Castro; da Silva, Lílian Irene Dias; Alcover Neto, Arnaldo

    2012-01-01

    Chemical analysts use analytical blanks in their analyses, but seldom is this source of uncertainty evaluated. Generally, there is great confusion. Although the numerical value of the blank, in some situations, can be negligible, its source of uncertainty cannot be. This article discusses the uncertainty contribution of the analytical blank using a numerical example of the copper content in waters by flame atomic absorption spectrometry. The results indicate that the uncertainties of the analytical blank can contribute up to 50% when the blank sample is considered in this analysis, confirming its high impact. This effect can be primarily observed where the analyte concentration approaches the lower range of the analytical curve. Even so, the blank is not always computed. Therefore, the relevance of the analytical blank can be confirmed by uncertainty evaluation.

  4. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    USGS Publications Warehouse

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  5. Determination of cadmium by electrothermal atomic absorption spectrometry after microwave-assisted digestion of animal tissues and sewage sludges.

    PubMed

    Chakraborty, R; Das, A K; Cervera, M L; De La Guardia, M

    1996-04-01

    The determination of cadmium in different sample types has been carried out by electrothermal atomization atomic absorption spectrometry with D(2)-background correction using a unpyrocoated graphite tube, after pressurized microwave-assisted digestion. Five chemical modifiers [(NH(4))(2)HPO(4), Pd(NO)(3))(2), Ni(NO(3))(2), thiourea and Triton X-100] have been assayed and nickel nitrate has been found to be most effective for an accurate determination of cadmium in mussel tissue, pig kidney and sewage sludge. The characteristic mass of the method is of the order of 1 pg and the limit of detection is lower than 0.1 ng/ml.

  6. The determination of wear metals in used lubricating oils by flame atomic absorption spectrometry using sulphanilic acid as ashing agent.

    PubMed

    Ekanem, E J; Lori, J A; Thomas, S A

    1997-11-01

    A simple and reliable ashing procedure is proposed for the preparation of used lubricating oil samples for the determination of calcium, magnesium, zinc, iron, chromium and nickel by flame atomic absorption spectrometry. Sulphanilic acid was added to oil samples and the mixture coked and the coke ashed at 550 degrees C. The solutions of the ash were analysed by flame AAS for the metals. The release of calcium, zinc, iron and chromium was improved by the addition of sulphanilic acid to samples. The relative standard deviations of metal concentration results in the initial oil samples were 1.5% for Ca (1500 mg l(-1) level), 0.3% for Mg (100 mg l(-1) level), 3.1% for Zn (1500 mg l(-1) level), 0.7% for Fe (500 mg l(-1) level), 0.02% for Cr (50 mg l(-1) level) and 0.002% for Ni (10 mg l(-1) level). The optimum sample size for efficient metal release was 20 g while the optimum sulphanilic acid to oil ratio was 0.05 g per gram of oil for Zn and Cr and 0.10 g for Ca and Fe. Results obtained by this procedure were highly reproducible and comparable with those obtained for the same samples using standard procedures.

  7. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil.

  8. [The application of atomic absorption spectrometry in automatic transmission fault detection].

    PubMed

    Chen, Li-dan; Chen, Kai-kao

    2012-01-01

    The authors studied the innovative applications of atomic absorption spectrometry in the automatic transmission fault detection. After the authors have determined Fe, Cu and Cr contents in the five groups of Audi A6 main metal in automatic transmission fluid whose travel course is respectively 10-15 thousand kilometers, 20-26 thousand kilometers, 32-38 thousand kilometers, 43-49 thousand kilometers, and 52-58 thousand kilometers by atomic absorption spectrometry, the authors founded the database of primary metal content in the Audi A6 different mileage automatic transmission fluid (ATF). The research discovered that the main metal content in the automatic transmission fluid increased with the vehicles mileage and its normal metal content level in the automatic transmission fluid is between the two trend lines. The authors determined the main metal content of automatic transmission fluid which had faulty symptoms and compared it with its database value. Those can not only judge the wear condition of the automatic transmission which had faulty symptoms but also help the automobile detection and maintenance personnel to diagnose automatic transmission failure reasons without disintegration. This reduced automobile maintenance costs, and improved the quality of automobile maintenance.

  9. Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Lepri, Fábio G.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Borges, Daniel L. G.; Welz, Bernhard; Heitmann, Uwe

    2006-08-01

    Phosphorus is not one of the elements that are typically determined by atomic absorption spectrometry, but this technique nevertheless offers several advantages that make it attractive, such as the relatively great freedom from interferences. As the main resonance lines for phosphorus are in the vacuum-ultraviolet, inaccessible by conventional atomic absorption spectrometry equipment, Ĺvov and Khartsyzov proposed to use the non-resonance doublet at 213.5 / 213.6 nm. Later it turned out that with conventional equipment it is necessary to use a chemical modifier in order to get reasonable sensitivity, and lanthanum was the first one suggested for that purpose. In the following years more than 30 modifiers have been proposed for the determination of this element, and there is no consensus about the best one. In this work high-resolution continuum source atomic absorption spectrometry has been used to investigate the determination of phosphorus without a modifier and with the addition of selected modifiers of very different nature, including the originally recommended lanthanum modifier, several palladium-based modifiers and sodium fluoride. As high-resolution continuum source atomic absorption spectrometry is revealing the spectral environment of the analytical line at high resolution, it became obvious that without the addition of a modifier essentially no atomic phosphorus is formed, even at 2700 °C. The absorption measured with line source atomic absorption spectrometry in this case is due to the PO molecule, the spectrum of which is overlapping with the atomic line. Palladium, with or without the addition of calcium or ascorbic acid, was found to be the only modifier to produce almost exclusively atomic phosphorus. Lanthanum and particularly sodium fluoride produced a mixture of P and PO, depending on the atomization temperature. This fact can explain at least some of the discrepancies found in the literature and some of the phenomena observed in the

  10. Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination.

    PubMed

    Molaakbari, Elaheh; Mostafavi, Ali; Afzali, Daryoush

    2011-01-30

    In this article, we consider ionic liquid based ultrasound-assisted dispersive liquid-liquid microextraction of trace amounts of rhodium from aqueous samples and show that this is a fast and reliable sample pre-treatment for the determination of rhodium ions by flame atomic absorption spectrometry. The Rh(III) was transferred into its complex with 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol as a chelating agent, and an ultrasonic bath with the ionic liquid, 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at room temperature was used to extract the analyte. The centrifuged rhodium complex was then enriched in the form of ionic liquid droplets and prior to its analysis by flame atomic absorption spectrometry, 300 μL ethanol was added to the ionic liquid-rich phase. Finally, the influence of various parameters on the recovery of Rh(III) was optimized. Under optimum conditions, the calibration graph was linear in the range of 4.0-500.0 ng mL(-1), the detection limit was 0.37 ng mL(-1) (3S(b)/m, n = 7) and the relative standard deviation was ±1.63% (n = 7, C = 200 ng mL(-1)). The results show that ionic liquid based ultrasound assisted dispersive liquid-liquid microextraction, combined with flame atomic absorption spectrometry, is a rapid, simple, sensitive and efficient analytical method for the separation and determination of trace amounts of Rh(III) ions with minimum organic solvent consumption.

  11. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  12. Comparison of two digestion procedures for the determination of lead in lichens by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Moreira, Fátima R.; Borges, Renato M.; Oliveira, Rosália M.

    2005-06-01

    The efficiency of two procedures for the digestion of lichen was investigated using a heating block and a microwave oven. In the open vessels, concentrated nitric acid was added to the samples, left for 1 h, and the addition of 30% (v / v) hydrogen peroxide completed the digestion. In the closed system, the complete digestion was performed using concentrated nitric acid and hydrogen peroxide, reducing the amount of chemicals, time and contamination risk. Both digestion methods gave comparable results, and recoveries were statistically not different. For a lichen sample spiked with 10 μg Pb, the recovery was 111% and 110% using microwave and heating block digestion, respectively, while it was 100% and 103% for a 100 μg Pb spike. For the determination by electrothermal atomic absorption spectrometry samples were diluted 20 times with water and a volume of 20 μL was injected into the graphite furnace without chemical modifier. Pyrolysis and atomization temperatures of 700 °C and 1500 °C, respectively, were used. The characteristic mass was 8.4 ± 0.6 pg for aqueous calibration solutions and 8.9 ± 0.8 pg for samples. Calibration was against matrix matched standards. The recovery test showed some contamination problem with the lowest concentrations in both procedures. The detection limits were 4.4 μg L - 1 with microwave oven and 5.4 μg L - 1 with the heating block in the undiluted blank.

  13. Evaluation of oxidant media for the determination of lead in food slurries by hydride generation atomic absorption spectrometry.

    PubMed

    Madrid, Y; Bonilla, M; Cámara, C

    1990-05-01

    Several oxidant media were evaluated for the generation of lead hydride from slurry samples and their application to the determination of lead in vegetables and fish by hydride generation atomic absorption spectrometry. Three oxidant - acid media were compared: hydrogen peroxide - nitric acid, ammonium persulphate - nitric acid and potassium dichromate - lactic acid. The powdered samples were suspended in Triton X-100 and shaken with 10.0 g of blown zirconia spheres until a slurry was formed. The potassium dichromate - lactic acid medium was the most satisfactory for the determination of lead in fish and vegetables, providing the lowest detection limits as a result of its high sensitivity and low blank values. The ammonium persulphate - nitric acid medium gave good accuracy, precision and selectivity for vegetables (1-2 p.p.m. of lead); however, with fish (0.1-1 p.p.m. of lead) it was only a semi-quantitative medium for the determination of lead owing to its lack of sensitivity and selectivity. The hydrogen peroxide - nitric acid medium was unsatisfactory for the generation of lead hydride from slurry samples because of decomposition of hydrogen peroxide by the organic matter in the sample.

  14. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    PubMed

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P < 0.01). There was no significant difference between coagulated and uncoagulated samples run by atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  15. Flow injection sample pretreatment in the determination of trace elements in waters by atomic spectrometry

    SciTech Connect

    Tyson, J.F.

    1995-12-31

    Flow injection (FI) techniques are a way of automating sampling pretreatment procedures with direct coupling to the instrument. For a variety of reasons, flame atomic absorption spectrometry (FAAS) would be the method of choice for the determination of trace elements in water samples were it not for some of the inherent limitations of this technique. These limitations are concerned with the various interferences that arise from matrix components and with the atom number density in the source. This together with the various noise sources sets detection limits which are not low enough for many applications. Thus many FI procedures are devised with the aim of overcoming these limitations and thus solid phase extraction (SPE) as a means of preconcentration features largely in recently published work. Results will be presented for the determination of trace elements in water samples (both fresh and saline) in which SPE procedures were used to (a) remove the potentially interfering sea-water matrix for determinations using ICP-MS and (b) preconcentrate cadmium from surface waters prior to determination by FAAS. Hydride generation methods have been applied for the determination of selenium and arsenic. In highly saline media the elevated recoveries of Se have been investigated and for the determination of As, an evaluation of the claim that the use of surfactants improves the performance of a flow based hydride generation system has critically evaluated.

  16. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  17. Determination of some heavy metals by flame atomic absorption spectrometry before coprecipitation with neodymium hydroxide.

    PubMed

    Soylak, Mustafa; Kizil, Nebiye

    2011-01-01

    A procedure is described for the determination of trace amounts of Cd(II), Ni(II), Cu(II), Pb(II), Fe(III), Co(II), and Mn(II) that combines flame atomic absorption spectrometry with neodymium hydroxide coprecipitation. The influences of analytical parameters (amount of neodymium, pH of the model solutions, etc.) that affect quantitative recoveries of the analyte ions were investigated. The effects of concomitant ions were also examined. The detection limits for analytes were found in the range of 0.2-3.3 microg/L. The validation of the presented procedure was controlled by analysis of certified reference materials (National Institute of Standards and Technology 1570a spinach leaves and TMDA 54.4 fortified lake water). The applications of the procedure were performed by the analysis of water, food, and herbal plants from Turkey.

  18. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included.

  19. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    PubMed

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  20. Assessment of toxic metals in raw and processed milk samples using electrothermal atomic absorption spectrophotometer.

    PubMed

    Kazi, Tasneem Gul; Jalbani, Nusrat; Baig, Jameel Ahmed; Kandhro, Ghulam Abbas; Afridi, Hassan Imran; Arain, Mohammad Balal; Jamali, Mohammad Khan; Shah, Abdul Qadir

    2009-09-01

    Milk and dairy products have been recognized all over the world for their beneficial influence on human health. The levels of toxic metals (TMs) are an important component of safety and quality of milk. A simple and efficient microwave assisted extraction (MAE) method has been developed for the determination of TMs (Al, Cd, Ni and Pb), in raw and processed milk samples. A Plackett-Burman experimental design and 2(3)+star central composite design, were applied in order to determine the optimum conditions for MAE. Concentrations of TMs were measured by electrothermal atomic absorption spectrometry. The accuracy of the optimized procedure was evaluated by standard addition method and conventional wet acid digestion method (CDM), for comparative purpose. No significant differences were observed (P>0.05), when comparing the values obtained by the proposed MAE method and CDM (paired t-test). The average relative standard deviation of the MAE method varied between 4.3% and 7.6% based on analyte (n=6). The proposed method was successfully applied for the determination of understudy TMs in milk samples. The results of raw and processed milk indicated that environmental conditions and manufacturing processes play a key role in the distribution of toxic metals in raw and processed milk.

  1. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has

  2. Selective speciation of inorganic antimony on tetraethylenepentamine bonded silica gel column and its determination by graphite furnace atomic absorption spectrometry.

    PubMed

    Mendil, Durali; Bardak, Hilmi; Tuzen, Mustafa; Soylak, Mustafa

    2013-03-30

    A speciation system for antimony (III) and antimony (V) ions that based on solid phase extraction on tetraethylenepentamine bonded silica gel has been established. Antimony was determined by graphite furnace atomic absorption spectrometry (GF-AAS). Analytical conditions including pH, sample volume, etc., were studied for the quantitative recoveries of Sb (III) and Sb (V). Matrix effects on the recovery were also investigated. The recovery values and detection limit for antimony (III) at optimal conditions were found as >95% and 0.020 μg L(-1), respectively. Preconcentration factor was calculated as 50. The capacity of adsorption for the tetraethylenepentamine bonded silica gel was 7.9 mg g(-1). The validation was checked by analysis of NIST SRM 1573a Tomato laves and GBW 07605 Tea certified reference materials. The procedure was successfully applied to speciation of antimony in tap water, mineral water and spring water samples. Total antimony was determined in refined salt, unrefined salt, black tea, rice, tuna fish and soil samples after microwave digestion and presented enrichment method combination.

  3. Analysis of metals in marine sediments by microwave extraction and flame, hydride generation and cold vapor atomic-absorption spectrometry

    SciTech Connect

    Martinez-Garcia, M.L.; Zubieta, A.C.; Lorenzo, S.M.; Lopez-Mahia, P.; Rodriguez, D.P.

    1999-01-01

    A simple and fast metal extraction method that combines closed vessels and microwave heating for the simultaneous extraction of ten selected heavy metals (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Zn) from marine sediments is proposed. Digestion conditions, i.e., power and times microwave irradiation, reagent extractant, sample amount, were optimized to recover the potentially available metallic fraction not bound in silicates. A nitric acid and two step microwave program was established. The resulting solutions were analyzed by flame (FAAS), hydride generation (HG-AAS) and cold vapor (CV-AAS) atomic absorption spectrometry. Quantifications were made using direct calibration with aqueous standards. The recoveries of the spiked samples investigated ranged from 89 to 113%. The results obtained from analyzing the BCR certified reference sediment CRM 277 Estuarine Sediment were in good agreement with the certified values (93--105%), except for low values for chromium (79%). The relative standard deviations for the determination of metals were less than 4%. Finally, the technique designed herein was applied to sediment samples from La Coruna estuary, NW Spain.

  4. Determination of platinum and palladium in road dust after their separation on immobilized fungus by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Woińska, Sylwia; Godlewska-Żyłkiewicz, Beata

    2011-07-01

    A flow solid phase extraction procedure based on biosorption of Pt(IV) and Pd(II) on Aspergillus sp. immobilized on cellulose resin Cellex-T was proposed for the separation and preconcentration of Pt and Pd before their determination by electrothermal atomic absorption spectrometry (ETAAS). The analytical conditions including sample pH, eluent type, flow rates of sample and eluent solutions were examined. The analytes were selectively retained on the biosorbent in acidic medium (pH 1) and subsequently eluted from the column with 1 mL of thiourea solution (0.25 mol L - 1 thiourea in 0.3 mol L - 1 HCl). The reproducibility of the procedure was below 5%. The limit of detection of the method was 0.020 ng mL - 1 for Pt and 0.012 ng mL - 1 for Pd. The method validation was performed by analysis of certified reference materials BCR-723 (tunnel dust) and SARM-76 (platinum ore). The developed separation procedure was applied to the determination of Pt and Pd in road dust samples by ETAAS. The applied biosorbent is characterized by high sorption capacity: 0.47 mg g - 1 for Pt and 1.24 mg g - 1 for Pd.

  5. Direct determination of Cu and Zn in fruit juices and bovine milk by thermospray flame furnace atomic absorption spectrometry.

    PubMed

    Nascentes, Clésia C; Arruda, Marco A Z; Nogueira, Ana Rita A; Nóbrega, Joaquim A

    2004-11-15

    In the present work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu and Zn determination in bovine milk and fruit juice samples without any pretreatment. TS-FF-AAS system was optimized and a sample volume of 300mul was injected into the carrier stream (0.014moll(-1) HNO(3) at a flow rate of 0.4mlmin(-1)), and it was introduced into a hot Ni tube. The detection limits obtained for Cu and Zn in aqueous solution were 2.2 and 0.91mugl(-1), respectively, and 3.2mugl(-1) for Cu in a medium containing water-soluble tertiary amines. The relative standard deviations varied from 2.7 to 4.2% (n=12). Sample preparation was carried out by simple dilution in water or in water-soluble tertiary amines medium. Accuracy was checked by performing addition-recovery experiments as well as by using reference materials (whole milk powder, non-fat milk powder, and infant formula). Recoveries varied from 97.7 to 105.3% for Cu and Zn. All results obtained for reference materials were in agreement with certified values at a 95% confidence level.

  6. Automated on-line preconcentration of trace aqueous mercury with gold trap focusing for cold vapor atomic absorption spectrometry.

    PubMed

    Puanngam, Mahitti; Dasgupta, Purnendu K; Unob, Fuangfa

    2012-09-15

    A fully automated system for the determination of trace mercury in water by cold vapor atomic absorption spectrometry (CVAAS) is reported. The system uses preconcentration on a novel sorbent followed by liberation of the mercury and focusing by a gold trap. Mercury ions were extracted from water samples by passage through a solid phase sorbent column containing 2-(3-(2-aminoethylthio)propylthio)ethanamine modified silica gel. The captured mercury is released by thiourea and then elemental Hg is liberated by sodium borohydride. The vapor phase Hg is recaptured on a gold-plated tungsten filament. This is liberated as a sharp pulse (half-width<2 s) by directly electrically heating the tungsten filament in a dry argon stream. The mercury is measured by CVAAS; no moisture removal is needed. The effects of chloride and selected interfering ions were studied. The sample loading flow rate and argon flow rates for solution purging and filament sweeping were optimized. An overall 50-fold improvement in the limit of detection was observed relative to direct measurement by CVAAS. With a relatively modest multi-user instrument we attained a limit of detection of 35 ng L(-1) with 12% RSD at 0.20 μg L(-1) Hg level. The method was successfully applied to accurately determine sub-μg L(-1) level Hg in standard reference water samples.

  7. Determination of plutonium in environmental samples by AMS and alpha spectrometry.

    PubMed

    Hrnecek, E; Steier, P; Wallner, A

    2005-01-01

    Environmental samples from nuclear weapons test sites at the atolls of Mururoa and Fangataufa (French Polynesia, south Pacific) have been analyzed for their content of plutonium isotopes by applying the independent techniques of decay counting (Alpha Spectrometry) and accelerator mass spectrometry (AMS). Here, we propose the combination of both techniques which results in a maximum of information on the isotopic signature of Pu in environmental samples. Plutonium was chemically separated from the bulk material by anion exchange. (242)Pu was used as an internal standard for both AMS and alpha spectrometry. The samples for alpha spectrometry were prepared by micro-precipitation with NdF(3). After alpha spectrometry, the samples were reprocessed for AMS. Pu was co-precipitated with Fe(OH)(3) and finally, solid samples were prepared. At the VERA (Vienna Environmental Research Accelerator) facility, the various Pu isotopes were separated by their isotopic masses and quantified by the AMS technique. A good agreement of the results obtained from the AMS measurements was found with those obtained from Alpha Spectrometry. Overall, the data agree on average within 10% of each other. Isotope ratios for (238)Pu, (239)Pu and (240)Pu can be extracted from our investigations. Alpha spectrometry delivers data for the (238)Pu and the combination of ((239+240))Pu concentrations in those samples. In addition, the AMS technique provides information on the individual concentrations of (240)Pu and (239)Pu.

  8. Quantitative analysis for a color-change of humidity indicator by microscopic absorption spectrometry.

    PubMed

    Matsumoto, Tomoko; Mitsumura, Yoko; Miyamoto, Miyuki; Matsumoto, Jin; Shiragami, Tsutomu; Fueda, Yoshiyuki; Nobuhara, Kazunori; Yasuda, Masahide

    2011-01-01

    A sensitive and easily distinguishable cobalt-free humidity indicator of porphyrin-silica gel-MgCl(2) composite was prepared from pH-induced spectra changeable tetraarylporphyrin, silica gel (SiO(2)), and MgCl(2). The pH change arose from proton release under dry conditions, and proton capture under humid conditions by a reversible reaction between MgCl(2) and a silanol group of SiO(2). A pink-orange porphyrin-Si(OH)(2)-MgCl(2) composite was dried to give a green protonated porphyrin-SiO(2)Mg composite. The optimized concentrations of MgCl(2) to make the concentrations of protonated porphyrin maximum under dry conditions were determined by absorption spectrometry of the green composite using a confocal laser scanning microscope as a microscopic spectrometer. Moreover, the green composite was prepared by heating dichloro(tetraarylporphyrinato)phosphorus chloride with MgCl(2) and SiO(2). The humidity-sensitivity of the green composite was evaluated by the absorption spectra under controlled humidity. A distinguishable color change of the green composite took place below 30% of relative humidity.

  9. Determination of trace elements in coal and coal fly ash by joint-use of ICP-AES and atomic absorption spectrometry.

    PubMed

    Iwashita, Akira; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira; Fujita, Yoshio; Yamashita, Toru

    2007-01-15

    Microwave-acid digestion (MW-AD) followed by inductively coupled plasma-atomic emission spectrometry (ICP-AES), graphite furnace atomic absorption spectrometry (GFAAS), and hydride generation atomic absorption spectrometry (HGAAS) were examined for the determination of various elements in coal and coal fly ash (CFA). Eight certified reference materials (four coal samples and four CFA samples) were tested. The 10 elements (As, Be, Cd, Co, Cr, Mn, Ni, Pb, Sb, and Se), which are described in the Clean Air Act Amendments (CAAA), were especially considered. For coal, the HF-free MW-AD followed by ICP-AES was successful in the determination of various elements except for As, Be, Cd, Sb, and Se. These elements (except for Sb) were well-determined by use of GFAAS (Be and Cd) and HGAAS (As and Se). For CFA, the addition of HF in the digestion acid mixture was needed for the determination of elements, except for As, Sb, and Se, for which the HF-free MW-AD was applicable. The use of GFAAS (Be and Cd) or HGAAS (Sb and Se) resulted in the successful determination of the elements for which ICP-AES did not work well. The protocol for the determination of the 10 elements in coal and CFA by MW-AD followed by the joint-use of ICP-AES, GFAAS, and HGAAS was established.

  10. Determination of cadmium and lead at low levels by using preconcentration at fullerene coupled to thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Pereira-Filho, E. R.; Berndt, H.; Arruda, M. A. Z.

    2004-04-01

    A new and sensitive method for Cd and Pb determinations, based on the coupling of thermospray flame furnace atomic absorption spectrometry and a preconcentrator system, was developed. The procedure comprised the chelating of Cd and Pb with ammonium pyrrolidinedithiocarbamate with posterior adsorption of the chelates on a mixture (40 mg) of C 60 and C 70 at a flow rate of 2.0 ml min -1. These chelates were eluted from the adsorbent by passing a continuous flow of ethanol (80% v/v) at 0.9 ml min -1 to a nickel tube placed in an air/acetylene flame. After sample introduction into the tube by using a ceramic capillary (0.5 mm i.d.), the analytical signals were registered as peak height. Under these conditions, improvement factors in detectability of 675 and 200 were obtained for Cd and Pb, respectively, when compared to conventional flame atomic absorption spectrometry. Spiked samples (mineral and tap waters) and drinking water containing natural concentrations of Cd were employed for evaluating accuracy by comparing the results obtained from the proposed methodology with those using electrothermal atomic absorption spectrometry. In addition, certified reference materials (rye grass, CRM 281 and pig kidney, CRM 186) were also adopted for the accuracy tests. Due to the good linearity ranges for Cd (0.5-5.0 μg l -1) and Pb (10-250 μg l -1), samples with different concentrations could be analyzed. Detection limits of 0.1 and 2.4 μg l -1 were obtained for Cd and Pb, respectively, and RSD values <4.5% were observed ( n=10). Finally, a sample throughput of 24 determinations per hour was possible.

  11. Determination of some heavy metal levels in soft drinks on the Ghanaian market using atomic absorption spectrometry method.

    PubMed

    Ackah, Michael; Anim, Alfred Kwablah; Zakaria, Nafisatu; Osei, Juliet; Saah-Nyarko, Esther; Gyamfi, Eva Tabuaa; Tulasi, Delali; Enti-Brown, Sheriff; Hanson, John; Bentil, Nash Owusu

    2014-12-01

    Twenty-three soft drink samples (i.e., four pineapple-based fruit drinks, eight citrus-based fruit juices, one soya-based drink, three cola carbonated drinks, one apple-based fruit drink, and six cocktail fruit drinks) were randomly purchased from retail outlets in an urban market in Accra and analyzed for the concentrations of iron, cobalt, cadmium, zinc, lead, and copper using flame atomic absorption spectrometry. The mean concentration of iron and cadmium were 0.723 ± 0.448 mg/L and 0.032 ± 0.012 mg/L, respectively. The mean cobalt concentration was 0.071 ± 0.049 mg/L, while the mean Zn concentration in the samples was 0.060 ± 0.097 mg/L. The mean concentrations of Pb and Cu in the fruit juice samples were 0.178 ± 0.091 mg/L and 0.053 ± 0.063 mg/L respectively. About 78 % of the samples exceeded the United States Environmental Protection Agency (USEPA) maximum contaminant level of 0.3 mg/L prescribed for iron, whereas all the samples exceeded the USEPA maximum contaminant level of 0.005 mg/L prescribed for cadmium. About 91 % of the samples exceeded the EU maximum contaminant level prescribed for lead insoft drinks.

  12. Automated continuous monitoring of inorganic and total mercury in wastewater and other waters by flow-injection analysis and cold-vapour atomic absorption spectrometry

    PubMed Central

    Birnie, S. E.

    1988-01-01

    An automated continuous monitoring system for the determination of inorganic and total mercury by flow-injection analysis followed by cold-vapour atomic absorption spectrometry is described. The method uses a typical flow-injection manifold where digestion and reduction of the injected sample takes place. Mercury is removed by aeration from the flowing stream in a specially designed air-liquid separator and swept into a silica cell for absorption measurement at a wavelength of 253.7 nm. A calibration curve up to 10 μg Hg ml-1 using three different path length cells is obtained with a detection limit of 0.02 μg Hg ml-1. The sampling rate of an injection every 3 min produces 20 results per hour from a flowing stream. PMID:18925201

  13. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium and nickel in drinking and wastewater samples.

    PubMed

    Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar

    2013-01-01

    A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.

  14. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    NASA Astrophysics Data System (ADS)

    Gil, Sandra; Fragueiro, Sandra; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-μl volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium.

  15. Determination of molybdenum in plants by vortex-assisted emulsification solidified floating organic drop microextraction and flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Oviedo, Jenny A.; Fialho, Lucimar L.; Nóbrega, Joaquim A.

    2013-08-01

    A fast and sensitive procedure for extraction and preconcentration of molybdenum in plant samples based on solidified floating organic drop microextraction combined with flame atomic absorption spectrometry and discrete nebulization was developed. 8-Hydroxyquinoline (8-HQ) was used as complexing agent. The experimental conditions established were: 0.5% m v- 1 of 8-HQ, 60 μL of 1-undecanol as the extractant phase, 2 min vortex extraction time, centrifugation for 2 min at 2000 rpm, 10 min into an ice bath and discrete nebulization by introducing 200 μL of solution. The calibration curve was linear from 0.02 to 4.0 mg L- 1 with a limit of detection of 4.9 μg L- 1 and an enhancement factor of 67. The relative standard deviations for ten replicate measurements of 0.05 and 1.0 mg L- 1 Mo were 6.0 and 14.5%, respectively. The developed procedure was applied for determining molybdenum in corn samples and accuracy was proved using certified reference materials.

  16. A new coupling of ionic liquid based-single drop microextraction with tungsten coil electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Wen, Xiaodong; Deng, Qingwen; Wang, Jiwei; Yang, Shengchun; Zhao, Xia

    2013-03-01

    In this work, an improved method of ionic liquid based-single drop microextraction (IL-SDME) preconcentration was firstly coupled with tungsten coil electrothermal atomic absorption spectrometry (W-coil ET-AAS) detection. The new coupling was developed and applied for the determination of ultra-trace cadmium. Experimental parameters influencing the performance of IL-SDME as well as instrumental conditions were studied systematically, including IL-drop volume, chelating agent concentration, pH, stirring rate and time, heating program of W-coil ET-AAS, flow rate of carrier gas. Under the optimal conditions, the limit of detection (LOD) for cadmium was 0.015 μg L-1 (sampling amount on W-coil was 10 μL). The sensitivity enhancement factor was 42, while the improvement factor of LOD was 33. The established method was applied to determine cadmium in standard reference materials of rice and real water samples successfully. The developed IL-SDME-W-coil ET-AAS coupling represents a simple, green and highly sensitive method for cadmium determination.

  17. Preconcentration of lead using solidification of floating organic drop and its determination by electrothermal atomic absorption spectrometry

    PubMed Central

    Chamsaz, Mahmoud; Akhoundzadeh, Jeiran; Arbab-zavar, Mohammad Hossein

    2012-01-01

    A simple microextraction method based on solidification of a floating organic drop (SFOD) was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Ammonium pyrolidinedithiocarbamate (APDC) was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The extracted complex was diluted with ethanol and injected into a graphite furnace. An orthogonal array design (OAD) with OA16 (45) matrix was employed to study the effects of different parameters such as pH, APDC concentration, stirring rate, sample solution temperature and the exposure time on the extraction efficiency. Under the optimized experimental conditions the limit of detection (based on 3 s) and the enhancement factor were 0.058 μg L−1 and 113, respectively. The relative standard deviation (RSD) for 8 replicate determinations of 1 μg L−1 of Pb was 8.8%. The developed method was validated by the analysis of certified reference materials and was successfully applied to the determination of lead in water and infant formula base powder samples. PMID:25685441

  18. Determination of nickel in saliva by electrothermal atomic absorption spectrometry using various chemical modifiers with Zeeman-effect background correction.

    PubMed

    Burguera, E; Sanchez de Briceño, A; Rondon, C E; Burguera, J L; Burguera, M; Carrero, P

    1998-07-01

    The profile of nickel signal using electrothermal atomic absorption spectrometry with deuterium and Zeeman-effect background correction is presented. The Zeeman effect system of background correction offered definitive advantages and therefore was used for the determination of nickel in saliva in the presence of various isomorphous metals. The highest nickel absorbance values corresponded at 200, 300, 300, 300, 600, and 200 ng of Tb, Mg, Sm, Lu, Tm, and Pd, respectively. On the other hand, the addition of Eu, Er, and Ho decreased the nickel signal. The presence on each modifier alone does not eliminate the matrix interference. However, the use of 200 ng of Pd in conjuction with 300 ng of Lu has a higher sensitivity, offers an advantage against interference from the background of saliva matrix and produces good recoveries (98 to 102% from unspiked and spiked saliva samples). The limit of detection was 0.11 micrograms/L for a characteristic mass of 16.6 pg of nickel using Pd-Lu as modifier. The within-batch precision varied between 0.8 and 1.5% relative standard deviations. The analysis of thirty samples of whole saliva gave an average of 0.81 +/- 0.30 of micrograms/L of Ni (range from 0.5 to 2.0 micrograms/L of Ni). The agreement between the observed and certified values obtained from a Seronorm Blood Serum Standard Reference Material was good.

  19. Nickel and strontium nitrates as modifiers for the determination of selenium in wine by Zeeman electrothermal atomic absorption spectrometry.

    PubMed

    Cvetković, J; Stafilov, T; Mihajlović, D

    2001-08-01

    A mixed matrix modifier of nickel and strontium nitrates was used as a chemical modifier for the determination of selenium in wines by Zeeman electrothermal atomic absorption spectrometry. Wine samples were heated on a boiling water bath with small amounts of nitric acid and hydrogen peroxide. For complete elimination of interference, especially from sulfates and phosphates, selenium is complexed with ammonium pyrolidinedithiocarbamate (APDTC), extracted into methyl isobutyl ketone (MIBK), and measured by ETAAS. The graphite furnace temperature program was optimized for both aqueous and organic solutions. Pyrolysis temperatures of 1300 degrees C and 800 degrees C were chosen for aqueous and organic solutions, respectively; 2700 degrees C and 2100 degrees C were used as optimum atomization temperatures for aqueous and organic solutions, respectively. The optimum modifier mass established is markedly lower than those presented in the literature. The platform atomization ensures pretreatment stabilization up to 1100 degrees C and 1600 degrees C, respectively, for organic and aqueous selenium solutions. The procedure was verified by the method of standard addition. The investigated wine samples originated from the different regions of the Republic of Macedonia. The selenium concentration varied from not detectable to 0.93 microg L(-1).

  20. Capillary Absorption Spectrometer for 13C Isotopic Composition of Pico to Subpico Molar Sample Quantities

    NASA Astrophysics Data System (ADS)

    Moran, J.; Kelly, J.; Sams, R.; Newburn, M.; Kreuzer, H.; Alexander, M.

    2011-12-01

    Quick incorporation of IR spectroscopy based isotope measurements into cutting edge research in biogeochemical cycling attests to the advantages of a spectroscopy versus mass spectrometry method for making some 13C measurements. The simple principles of optical spectroscopy allow field portability and provide a more robust general platform for isotope measurements. We present results with a new capillary absorption spectrometer (CAS) with the capability of reducing the sample size required for high precision isotopic measurements to the picomolar level and potentially the sub-picomolar level. This work was motivated by the minute sample size requirements for laser ablation isotopic studies of carbon cycling in microbial communities but has potential to be a valuable tool in other areas of biological and geological research. The CAS instrument utilizes a capillary waveguide as a sample chamber for interrogating CO2 via near IR laser absorption spectroscopy. The capillary's small volume (~ 0.5 mL) combined with propagation and interaction of the laser mode with the entire sample reduces sample size requirements to a fraction of that accessible with commercially available IR absorption including those with multi-pass or ring-down cavity systems. Using a continuous quantum cascade laser system to probe nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 permits sample measurement at low analyte pressures (as low as 2 Torr) for further sensitivity improvement. A novel method to reduce cw-fringing noise in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level after averaging 1,000 scans in 10 seconds. Detection limits down to the 20 picomoles have been observed, a concentration of approximately 400 ppm at 2 Torr in the waveguide with precision and accuracy at or better than 1 %. Improvements in detection and signal averaging electronics and laser power and mode quality are

  1. [Determination of Pb and Cd in atomospheric particulates by flame atomic absorption spectrometry coupled with on-line flow injection pretreatment with ultrasonic leaching].

    PubMed

    Gao, Yan; Wang, Dong-hai; Lin, Yu-bin; Li, Jian-yi; Kong, Qing-zhen

    2003-04-01

    In this paper, the method for extracting the metals from the filter membrane of the atomospheric particulates with ultrasonic leaching was reported. The dissolution conditions of kinds and acidity as well as the interference conditions were studied. The method of determination Pb and Cd of the atomospheric particulates by flame atomic absorption spectrometry coupled with on-line flow injection preconcentration was proved to be rapid and accuracy. The recoveries are more than 97%. The relative standard deviation of six samples are less than 2.6%.

  2. Stratospheric trace gas sampling with chemical absorption filters

    NASA Technical Reports Server (NTRS)

    Bonelli, J. E.; Lazrus, A. L.; Gandrud, B. W.

    1978-01-01

    Recent interest in stratospheric chemistry, sparked in part by the suggested roles of atomic chlorine (Cl) and nitrogen oxides (NOx) in the catalytic destruction of ozone (O3), has made sampling and measurement of trace constituents above the tropopause highly desirable. An ongoing research program in the In Situ Studies Project at the National Center for Atmospheric Research carries out aircraft and balloon-borne stratospheric chemical sampling at regular intervals by using chemically impregnated filters to collect particles and reactive gases.

  3. Determination of inorganic and total mercury by vapor generation atomic absorption spectrometry using different temperatures of the measurement cell

    NASA Astrophysics Data System (ADS)

    Kaercher, Luiz Eduardo; Goldschmidt, Fabiane; Paniz, José Neri Gottfried; de Moraes Flores, Érico Marlon; Dressler, Valderi Luiz

    2005-06-01

    A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg 2 + or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 °C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg 2 + concentrations. Parameters such as the type of acid (HCl or HNO 3) and its concentration, reductant (NaBH 4) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg 2 + and total Hg determinations were: 1.0 mol l - 1 HCl as carrier solution, carrier flow rate of 3.5 ml min - 1 , 0.1% (m/v) NaBH 4, reductant flow rate of 1.0 ml min - 1 and carrier gas flow rate of 200 ml min - 1 . The relative standard deviation (RSD) is lower than 5.0% for a 1.0 μg l - 1 Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g - 1 . Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l - 1 HCl solution for analyte extraction. The Hg 2 + and CH 3Hg + concentrations found were in agreement with certified ones.

  4. Uncertainty of gamma-ray spectrometry measurement of environmental samples due to uncertainties in matrix composition, density and sample geometry.

    PubMed

    Kaminski, S; Jakobi, A; Wilhelm, Chr

    2014-12-01

    This paper is intended to identify the uncertainties of activities in environmental samples measured with gamma-ray spectrometry that result from uncertainties in matrix composition, density and geometrical dimensions of the sample. For that purpose efficiencies were calculated for a wide range of environmental matrices such as fresh and ashed food samples, water samples and soil samples. Compositions were mainly taken from literature. Densities and geometry parameters were varied in a range occurring in practice. Considered energies cover a range from 46.5keV to 2000keV. Finally, a couple of recommendations in respect to gamma-ray spectrometric measurements of environmental samples are given.

  5. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  6. Determination of trace amounts of tin in geological materials by atomic absorption spectrometry

    USGS Publications Warehouse

    Welsch, E.P.; Chao, T.T.

    1976-01-01

    An atomic absorption method is described for the determination of traces of tin in rocks, soils, and stream sediments. A dried mixture of the sample and ammonium iodide is heated to volatilize tin tetraiodide -which is then dissolved in 5 % hydrochloric acid, extracted into TOPO-MIBK, and aspirated into a nitrous oxide-acetylene flame. The limit of determination is 2 p.p.m. tin and the relative standard deviation ranges from 2 to 14 %. Up to 20 % iron and 1000 p.p.m. Cu, Pb, Zn, Mn, Hg, Mo, V, or W in the sample do not interfere. As many as 50 samples can be easily analyzed per man-day. ?? 1976.

  7. Determination of tributyltin in tissues and sediments by graphite furnace atomic absorption spectrometry

    SciTech Connect

    Stephenson, M.D.; Smith, D.R.

    1988-04-01

    A method for the determination of tributyltin (TBT) in tissue and sediments has been developed for environmental samples. The technique involves extraction with methylene chloride and isolation of TBT from mono- and dibutyltin with a sodium hydroxide wash. The TBT is then back extracted and converted to elemental Sn with nitric acid. Analysis is by Zeeman graphite furnace atomic absorption spectrophotometry. Recoveries of spiked samples were between 99% and 111% for mussel and fish tissues and 72% and 99% for various sediments. The limit of quantification was 0.0025 ..mu..g/g for tissue (on a wet weight basis). This technique was developed in response to their need to process large numbers of environmental samples with a minimum time investment.

  8. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: A multivariate study

    NASA Astrophysics Data System (ADS)

    Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-01

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.

  9. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: a multivariate study.

    PubMed

    Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-10

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls.

  10. [Determination of rubidium and cesium in chloride type oilfield water by flame atomic absorption spectrometry].

    PubMed

    Ye, Xiu-Shen; Zhang, Shan-Ying; Li, Hai-Jun; Li, Wu; Wu, Zhi-Jian

    2009-03-01

    Flame atomic absorption spectrometry (FAAS) was applied to the determination of rubidium and cesium in chloride type oilfield water by considering the interferences of the coexistent K+, Na+, Ca2+, and Mg2+ ions, Standard curve method and standard addition method were compared in the determination of rubidium and cesium in the simulated oilfield water and the real oilfield water from the Nanyishan region in Qaidam Basin. Although rubidium and cesium have similar physical-chemical properties, they present different characters during their analyses using the FAAS technique. When the standard addition method was used for the determination of rubidium and cesium in the simulated oilfield water, the results of rubidium were very poor, whereas the results of cesium were satisfactory. When the standard curve method was used for the determination of rubidium and cesium in the simulated oilfield water, the results of both rubidium and cesium were satisfactory within the linear ranges of the standard curves. For the real oilfield water, standard addition method is also only applicable for the determination of cesium with a recovery ranging from 90% to 110%. While standard curve method is applicable for the determination of both rubidium and cesium with a recovery ranging from 90% to 110%.

  11. Optimization of electrothermal atomization parameters for simultaneous multielement atomic absorption spectrometry

    USGS Publications Warehouse

    Harnly, J.M.; Kane, J.S.

    1984-01-01

    The effect of the acid matrix, the measurement mode (height or area), the atomizer surface (unpyrolyzed and pyrolyzed graphite), the atomization mode (from the wall or from a platform), and the atomization temperature on the simultaneous electrothermal atomization of Co, Cr, Cu, Fe, Mn, Mo, Ni, V, and Zn was examined. The 5% HNO3 matrix gave rise to severe irreproducibility using a pyrolyzed tube unless the tube was properly "prepared". The 5% HCl matrix did not exhibit this problem, and no problems were observed with either matrix using an unpyrolized tube or a pyrolyzed platform. The 5% HCl matrix gave better sensitivities with a pyrolyzed tube but the two matrices were comparable for atomization from a platform. If Mo and V are to be analyzed with the other seven elements, a high atomization temperature (2700??C or greater) is necessary regardless of the matrix, the measurement mode, the atomization mode, or the atomizer surface. Simultaneous detection limits (peak height with pyrolyzed tube atomization) were comparable to those of conventional atomic absorption spectrometry using electrothermal atomization above 280 nm. Accuracies and precisions of ??10-15% were found in the 10 to 120 ng mL-1 range for the analysis of NBS acidified water standards.

  12. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  13. Investigation on binding of nitric oxide to horseradish peroxidase by absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Qiang, Li; Zhu, Shuhua; Ma, Hongmei; Zhou, Jie

    2010-01-01

    Binding of nitric oxide to horseradish peroxidase (HRP) has been investigated by absorption spectrometry in 0.2 M anaerobic phosphate buffer solution (pH 7.4). Based on this binding equilibrium, a model equation for evaluating the binding constant of nitric oxide to HRP is developed and the binding constant is calculated to be (1.55 ± 0.06) × 10 4 M -1, indicating that HRP can form a stable complex with nitric oxide. The type of inhibition by nitric oxide is validated on the basis of studying initial reaction rates of HRP-catalyzed oxidation of guaiacol in the presence of hydrogen peroxide and nitric oxide. The inhibition mechanism is found to follow an apparent non-competitive inhibition by Lineweaver-Burk method. Based on this kinetic mechanism, the binding constant is also calculated to be (5.22 ± 0.06) × 10 4 M -1. The values of the binding constant determined by the two methods are almost identical. The non-competitive inhibition model is also applicable to studying the effect of nitric oxide on other metalloenzymes, which catalyze the two-substrate reaction with the "ping-pong" mechanism.

  14. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    SciTech Connect

    Carkeet, C; Dueker, S R; Lango, J; Buchholz, B A; Miller, J W; Green, R; Hammock, B D; Roth, J R; Anderson, P J

    2006-01-26

    There is need for an improved test of human ability to assimilate dietary vitamin B{sub 12}. Assaying and understanding absorption and uptake of B{sub 12} is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of {sup 14}C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ({sup 14}C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B{sub 12} in the range of normal dietary intake. The B{sub 12} used was quantitatively labeled with {sup 14}C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B{sub 12} or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with {sup 14}C-DMB specifically labeled in the C2 position, cells produced {sup 14}C-B{sub 12} of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified {sup 14}C-B{sub 12} was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B{sub 12} assimilation.

  15. Determination of some antihistaminic drugs by atomic absorption spectrometry and colorimetric methods.

    PubMed

    El-Kousy, N; Bebawy, L I

    1999-08-01

    Atomic absorption spectrometry (AAS) and colourimetric methods have been developed for the determination of pizotifen (I), ketotifen (II) and loratadine (III). The first method depends on the reaction of the three drugs (I); (II) and (III) with cobalt thiocyanate reagent at pH 2 to give ternary complexes. These complexes are readily extracted with organic solvent and estimated by indirect atomic absorption method via the determination of the cobalt content in the formed complex after extraction in 0.1 M hydrochloric acid. It was found that the three drugs can be determined in the concentration ranges from 10 to 74, 12 to 95 and 10 to 93 microg ml(-1) with mean percentage recovery of 99.71+/-0.87, 99.70+/-0.79 and 99.62+/-0.75%, respectively. The second method is based on the formation of orange red ion pairs as a result of the reaction between (I); (II) and (III) and molybdenum thiocyanate with maximum absorption at 469.5 nm in dichloromethane. Appropriate conditions were established for the colour reaction. Under the proposed conditions linearity was obeyed in the concentration ranges 3.5-25, 5-37.5 and 2.5-22.5 microg ml(-1) with mean percentage recovery of 99.60+/-0.41, 100.11+/-0.43 and 99.31+/-0.47% for (I): (II) and (III), respectively. The third method depends on the formation of radical ion using 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). The colour formed was measured at 588 nm for the three drugs (I); (II) and (III), respectively. The method is valid in concentration range 10-80 microg ml(-1) with mean percentage recovery 99.75+/-0.44, 99.94+/-0.72 and 99.17+/-0.36% for (I); (II) and (III), respectively. The proposed methods were applied to the analysis of pharmaceutical preparations. The results obtained were statistically analysed and compared with those obtained by applying the official and reference methods.

  16. Determination of sodium and potassium in nanoliter volumes of biological fluids by furnace atomic absorption spectrometry

    SciTech Connect

    Nash, L.A.; Peterson, L.N.; Nadler, S.P.; Levine, D.Z.

    1988-11-01

    Renal tubular fluid samples are nanoliter (10/sup -9/ L) volumes containing sodium and potassium concentrations that are within the range of determination by furnace atomic absorption. Modification of nanoliter handling techniques and the use of microboats with the IL 951/655 provided a method for rapid precise analyses (relative standard deviation of 5%). Determinations of sodium and potassium were precise; however, inaccuracies occurred with anion substitution of sodium salts. NaHCO/sub 3/ solutions gave consistently higher peak height absorbance and area absorbance compared with those of NaCl: the peak area absorbance correlated linearly with the concentration of bicarbonate. Pretreatment of the microboat with boric acid eliminated this phenomenon and the associated inaccuracy. Comparison of determination of sodium in nanoliter samples by graphite furnace atomic absorption with macroanalysis by flame emission gave relative errors of less than 2.0%. Addition of sodium and potassium to tubular fluid samples yielded mean recoveries of 102.6% and 99.7%, respectively. The authors conclude that graphite furnace can be an accurate method for measurement of sodium and potassium in nanoliter volumes of biological fluids.

  17. Gamma-ray spectrometry of LDEF samples at SRL

    SciTech Connect

    Winn, W.G.

    1991-07-22

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectroscopy. The study quantified particle induced activations of {sup 22}Na, {sup 46}Sc, {sup 51}Cr, {sup 54}Mn, {sup 56}Co, {sup 57}Co, {sup 58}Co, and {sup 60}Co. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which have been reported to collect noticeable {sup 7}Be on their leading surfaces. No significant {sup 7}Be was detected in the samples analyzed. The Underground Counting Facility at Savannah River Laboratory (SRL) was used in this work. The facility is 50 ft. underground, constructed with low-background shielding materials, and operated as a clean room. The most sensitive analyses were performed with a 90%-efficient HPGe gamma-ray detector, which is enclosed in a purged active/passive shield. Each sample was counted for one to six days in two orientations to yield more representative average activities for the sample. The non-standard geometries of the LDEF samples prompted the development of a novel calibration method, whereby the efficiency about the samples surfaces (measured with point sources) predicted the efficiency for the bulk sample.

  18. Determination of trace amounts of zinc by flame atomic absorption spectrometry after preconcentration with modified clinoptilolite zeolite.

    PubMed

    Hajialigol, Saeed; Taher, Mohammad Ali; Malekpour, Akbar

    2008-01-01

    Natural clinoptilolite was used as a sorbent material for solid-phase extraction and preconcentration of zinc. Clinoptilolite was first saturated with cadmium (II) and then modified with benzyldimethyltetradecylammonium chloride for increasing adsorption of 3-(2-arsenophenylazo)-4,5-dihydroxy-2,7-naphthalene disulfonic acid (neothorin). Zinc was quantitatively retained on the adsorbent by the column method in the pH range of 3.8-4.2 at a flow rate of 1 mL/min. It was eluted from the column with 5.0 mL 2 M nitric acid solution at a flow rate of 1 mL/min and determined by flame atomic absorption spectrometry at 213.9 nm. Zinc could be concentrated from a 0.03 microg/L solution with a preconcentration factor of 170. Relative standard deviation for 8 replicate determinations of 2.5 microg zinc in the final solution was 0.92%. The interference of a large number of anions and cations was studied in detail to optimize the conditions, and the method was successfully applied for determination of zinc in standard and real water samples.

  19. Calcium in the developing Ambystoma neural axis shown by 3H and fluorescent chlortetracycline and atomic absorption spectrometry

    SciTech Connect

    Moran, D.J. )

    1990-12-01

    The calcium ion has been implicated in the mediation of the morphogenetic movements that occur during neural tube formation. The present study identifies high levels of calcium in the neuroepithelium of the neural plate, folds, and tube. These levels are substantially higher than those discerned elsewhere in the embryo. The calcium is localized in morphogenetically active regions by using the antibiotic chlortetracycline (CTC) which chelates calcium and is demonstrated in this investigation by both autoradiography and calcium-linked fluorescence. The specificity of CTC reaction for calcium in the developing neural axis is confirmed by EGTA competition. A comparison of the actual calcium levels in the developing neural axis (dorsal) with equivalently weighted ventral tissues was obtained by atomic absorption spectrometry (AAS). This method provides a total count of the calcium without any loss during tissue processing. For AAS, living tissues were precisely excised and immediately dessicated. Each tissue sample (dry weight 1.5 mg) was then solubilized for analysis. The spectrometric data reveal that the embryonic dorsal aspect forming the neural tube contains 57% more calcium than an equivalent weight of the ventral aspect.

  20. Tellurium speciation analysis using hydride generation in situ trapping electrothermal atomic absorption spectrometry and ruthenium or palladium modified graphite tubes.

    PubMed

    Yildirim, Emrah; Akay, Pınar; Arslan, Yasin; Bakirdere, Sezgin; Ataman, O Yavuz

    2012-12-15

    Speciation of tellurium can be achieved by making use of different kinetic behaviors of Te(IV) and Te(VI) upon their reaction with sodium borohydride using hydride generation. While Te(IV) can form H(2)Te, Te(VI) will not form any volatile species during the course of hydride formation and measurement by atomic absorption spectrometry. Quantitative reduction of Te(VI) was achieved through application of a microwave assisted prereduction of Te(VI) in 6.0 mol/L HCl solution. Enhanced sensitivity was achieved by in situ trapping of the generated H(2)Te species in a previously heated graphite furnace whose surface was modified using Pd or Ru. Overall efficiency for in situ trapping in pyrolytically coated graphite tube surface was found to be 15% when volatile analyte species are trapped for 60s at 300°C. LOD and LOQ values were calculated as 0.086 ng/mL and 0.29 ng/mL, respectively. Efficiency was increased to 46% and 36% when Pd and Ru surface modifiers were used, respectively. With Ru modified graphite tube 173-fold enhancement was obtained over 180 s trapping period with respect to ETAAS; the tubes could be used for 250 cycles. LOD values were 0.0064 and 0.0022 ng/mL for Pd and Ru treated ETAAS systems, respectively, for 180 s collection of 9.6 mL sample solution.

  1. Minimization of volatile nitrogen oxides interference in the determination of arsenic by hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Moraes Flores, Érico Marlon; da Silva, Letícia Longhi Cirne; Barin, Juliano Smanioto; Saidelles, Ana Paula Fleig; Zanella, Renato; Dressler, Valderi Luis; Paniz, José Neri Gottfried

    2001-10-01

    In this study emphasis was given to minimize the interference of volatile nitrogen oxides from digestion procedures with nitric acid on the determination of arsenic by hydride generation atomic absorption spectrometry (HG AAS). Sulfamic acid (SA) is proposed to minimize this interference by employing three procedures for the digestion of hair in closed systems: conventional and microwave (MW) heating in polytetrafluorethylene (PTFE) vessels and by MW heating in glass vials. Hair samples were digested with H 2SO 4+HNO 3 or HNO 3+H 2O 2 mixtures. Concentrated hydrochloric acid was added for the digestion for the procedure in glass vials. The accuracy of the procedures with PTFE vessels was verified by the spike recoveries of organic ( p-aminobenzenearsonic acid and dimethyl arsinic acid, from 92 to 101%) and inorganic (sodium arsenate, from 98 to 102%) arsenic compounds. For the procedure in glass vials the recovery was from 86 to 97% for organic As and from 97 to 102% for inorganic As. The results obtained for a certified hair reference material using the three digestion procedures were well within the 95% confidence interval of the certificate when SA was added to the solutions. However, when SA was not added, recoveries were low and non-reproducible signals and high background levels were observed. Urea, benzoic acid and hydroxylamine hydrochloride were also studied (maximum As recovery of 90% using hydroxylamine hydrochloride) but the best results were obtained with use of SA.

  2. [Trace Analysis of Lead in Copper Gluconate by Atomic Absorption Spectrometry after Separation by Co-Precipitation with Bismuth].

    PubMed

    Ito, Michio; Ishiguro, Satoshi; Takahashi, Fumihito; Nomura, Takakazu; Sugimoto, Toshiaki; Nishimura, Tsutomu

    2015-01-01

    In order to determine trace amounts of lead in copper gluconate by atomic absorption spectrometry (AAS), the authors investigated a separation and pre-concentration procedure using a co-precipitation technique with bismuth. After ashing 2.0 g of the sample by means of a dry process, the ash was dissolved in (1→100) nitric acid and 75 μg of bismuth was added. Lead was co-precipitated by using an ammonium solution controlled to pH 9.5-10.5. The precipitate was left at room temperature for over 15 minutes to age, and then washed with a (3→100) ammonium solution three times. The precipitate was dissolved in (1→100) nitric acid and then analyzed by AAS. The quantification limit of this method was 0.5 mg/kg, and the trueness, repeatability and intermediate precision were 99.6%, 4.2% and 4.2% at the spiked concentration of 0.5 mg/kg, and 94.4%, 2.8% and 4.0% at the spiked concentration of 5.0 mg/kg, respectively. Thus, the present method for trace analysis of lead in copper gluconate was validated.

  3. Size separation method for absorption characterization in brown carbon: Application to an aged biomass burning sample

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Robert A.; Young, Cora J.

    2016-01-01

    The majority of brown carbon (BrC) in atmospheric aerosols is derived from biomass burning (BB) and is primarily composed of extremely low volatility organic carbons. We use two chromatographic methods to compare the contribution of large and small light-absorbing BrC components in aged BB aerosols with UV-vis absorbance detection: (1) size exclusion chromatography (SEC) and (2) reverse phase high-performance liquid chromatography. We observe no evidence of small molecule absorbers. Most BrC absorption arises from large molecular weight components (>1000 amu). This suggests that although small molecules may contribute to BrC absorption near the BB source, analyses of aerosol extracts should use methods selective to large molecular weight compounds because these species may be responsible for long-term BrC absorption. Further characterization with electrospray ionization mass spectrometry (MS) coupled to SEC demonstrates an underestimation of the molecular size determined through MS as compared to SEC.

  4. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively.

  5. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    PubMed

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil.

  6. Evidence for aluminum-binding erythropoietin by size-exclusion chromatography coupled to electrothermal absorption atomic spectrometry.

    PubMed

    Veiga, Marlei; Bohrer, Denise; Noremberg, Simone; do Nascimento, Paulo C; de Carvalho, Leandro M

    2011-11-01

    Erythropoietin (EPO) is a glycoprotein that stimulates erythropoiesis and is clinically used for treating anemia during chronic renal failure and for anemia in preterm infants. EPO formulations usually have elevated rates of contamination due to aluminum (Al), which is toxic to both types of patients. Size-exclusion chromatography (SEC) coupled with graphite furnace atomic absorption spectrometry (GF AAS) was employed to separate proteins and to quantify the amount of aluminum present in the elution volume corresponding to EPO and, therefore, to evaluate possible binding. Because EPO formulations contain human serum albumin (HSA), a chromatographic method was optimized for the separation of these proteins. Subsequent to the chromatographic separation, 1-mL fractions of the column effluent were collected, and the Al content in these aliquots was measured by GF AAS. EPO and HSA samples were incubated with Al for 4h at 4°C and 37°C as well as for 16 h at 4°C and 37°C. Afterwards, they were injected into the chromatographic system. These samples were also submitted to ultrafiltration (10 and 50 kDa membranes), and Al was measured in the ultrafiltrates. The results showed that Al was present in the eluent volume corresponding to the EPO peak but not in the HSA peak in the chromatograms. Temperature strengthened the interaction because the Al present in the EPO fraction was 3 times higher at 37°C compared to 4°C. Thirty-eight percent of the Al present in a 2.4 μg/mL EPO standard solution, and approximately 50% of the Al in formulation samples containing approximately 11 μg/mL EPO and either citrate or phosphate, were non-ultrafiltrable, which suggests that EPO is an effective Al acceptor in vitro.

  7. Apparatus for preparing a sample for mass spectrometry

    DOEpatents

    Villa-Aleman, E.

    1994-05-10

    An apparatus is described for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed. 1 figures.

  8. Apparatus for preparing a sample for mass spectrometry

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed.

  9. Selection of the optimal combination of water vapor absorption lines for detection of temperature in combustion zones of mixing supersonic gas flows by diode laser absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mironenko, V. R.; Kuritsyn, Yu. A.; Bolshov, M. A.; Liger, V. V.

    2016-12-01

    Determination of a gas medium temperature by diode laser absorption spectrometry (DLAS) is based on the measurement of integral intensities of the absorption lines of a test molecule (generally water vapor molecule). In case of local thermodynamic equilibrium temperature is inferred from the ratio of the integral intensities of two lines with different low energy levels. For the total gas pressure above 1 atm the absorption lines are broadened and one cannot find isolated well resolved water vapor absorption lines within relatively narrow spectral interval of fast diode laser (DL) tuning range (about 3 cm-1). For diagnostics of a gas object in the case of high temperature and pressure DLAS technique can be realized with two diode lasers working in different spectral regions with strong absorption lines. In such situation the criteria of the optimal line selection differs significantly from the case of narrow lines. These criteria are discussed in our work. The software for selection the optimal spectral regions using the HITRAN-2012 and HITEMP data bases is developed. The program selects spectral regions of DL tuning, minimizing the error of temperature determination δT/T, basing on the attainable experimental error of line intensity measurement δS. Two combinations of optimal spectral regions were selected - (1.392 & 1.343 μm) and (1.392 & 1.339 μm). Different algorithms of experimental data processing are discussed.

  10. Sampling probe for microarray read out using electrospray mass spectrometry

    DOEpatents

    Van Berkel, Gary J.

    2004-10-12

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  11. Porosity estimation of alumina samples based on resonant backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Mokhles Gerami, F.; Kakuee, O.; Mohammadi, S.

    2016-04-01

    In this work, columnar porous alumina samples were investigated using the 16O(α,α)16O resonance scattering at 3.045 MeV. If the incident energy is slightly above the resonance energy, a resonance peak appears in the energy spectra of the backscattered ions. The position and width of this peak for non-porous samples are mainly determined by the experimental setup, whilst for porous materials, the peak position shifts towards higher energies under certain conditions. This effect can be explained by the lower amount of material which the ions encounter along the backscattered trajectories. The energy shift of the resonance peak towards higher energies was revealed experimentally and discussed theoretically. The estimated porosities of the samples based on this energy shift were compared with those evaluated from the graphical analysis of the images obtained by field emission scanning electron microscopy.

  12. Capillary absorption spectrometer and process for isotopic analysis of small samples

    SciTech Connect

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  13. An improved electrothermal atomic absorption spectroscopy method for the determination of lithium in molybdenum oxide using slurry sampling and a tungsten atomizer

    NASA Astrophysics Data System (ADS)

    Dočekal, Bohumil; Krivan, Viliam

    1993-11-01

    A transversely heated tungsten-tube atomizer, WETA 82, was used for the direct determination of lithium in ultra-high purity molybdenum trioxide by slurry sampling electrothermal atomic absorption spectrometry. Optimized conditions with regard to sample preparation, temperature program, possible spectral interferences and depressive effects of sample matrix were presented. Analytical performance of the conventional graphite atomizer and the tungsten atomizer were compared. Using the WETA 82 atomizer, a detection limit for lithium of 2 ng g -1 can be achieved, which is one order of magnitude lower than that for conventional graphite atomizers.

  14. [Determination of metals in Ginkgo biloba leaves by atomic absorption spectrometry with microwave digestion].

    PubMed

    Jiang, Bo; Jiang, Guo-Bin; Liu, Chang-Jian; Ma, Kun; Jin, Li-Ming; Gao, Jiang-Mei

    2010-03-01

    Microwave digestion technique was used in the decomposition of Ginkgo biloba leaves from six different trees at the same age in the same area. HNO3-H2O2 (5 : 1 v/v) was used as microwave digestion agent at a suitable temperature and time. The contents of Ca, Mg, K, Na, Cu, Zn and Zn/Cu were determined by flame atomic absorption spectrometry to study the distribution rule of metallic elements in the trees at the same age and in the same area. The recovery ratio ranged from 95.2% to 104.6%. The results showed that there were certain differences between different trees in the distribution of metallic elements. The contents of calcium were from 39 586 to 48 320 microg x g(-1), and those of magnesium from 10 076 to 12 918 microg x g(-1), of potassium from 2 004 to 5 240 microg x g(-1), of sodium from 9.05 to 35.30 microg x g(-1), and of copper from 1.50 to 3.05 microg x g(-1), while Zn/Cu values were from 2.68 to 5.93 in the leaves of 6 different trees in the same growing area. Therefore there were abounding calcium, magnesium and potassium, while the content of sodium and Zn/Cu values were lower, and the metal contents were different in the leaves. The experimental results provided useful bases for studying the distribution rule of metallic elements in Ginkgo biloba leaves, the relationship between the contents of calcium, magnesium, potassium and sodium and the Zn/Cu value in ginkgo biloba leaves and the treatment for cardio-cerebral vascular disease.

  15. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  16. A sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode.

    PubMed

    Schreck, Simon; Gavrila, Gianina; Weniger, Christian; Wernet, Philippe

    2011-10-01

    A novel sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode based on sample cells with x-ray transparent silicon nitride membranes is introduced. The sample holder allows for a reliable preparation of ultrathin liquid films with an adjustable thickness in the nm-μm range. This enables measurements of high quality x-ray absorption spectra of liquids in transmission mode, as will be shown for the example of liquid H(2)O, aqueous solutions of 3d-transition metal ions and alcohol-water mixtures. The fine structure of the x-ray absorption spectra is not affected by the sample thickness. No effects of the silicon nitride membranes were observed in the spectra. It is shown how an inhomogeneous thickness of the sample affects the spectra and how this can be avoided.

  17. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    EPA Science Inventory

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  18. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miller, Dennis D.; Rutzke, Michael A.

    Atomic spectroscopy has played a major role in the development of our current database for mineral nutrients and toxicants in foods. When atomic absorption spectrometers became widely available in the 1960s, the development of atomic absorption spectroscopy (AAS) methods for accurately measuring trace amounts of mineral elements in biological samples paved the way for unprecedented advances in fields as diverse as food analysis, nutrition, biochemistry, and toxicology (1). The application of plasmas as excitation sources for atomic emission spectroscopy (AES) led to the commercial availability of instruments for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) beginning in the late 1970s. This instrument has further enhanced our ability to measure the mineral composition of foods and other materials rapidly, accurately, and precisely. More recently, plasmas have been joined with mass spectrometers (MS) to form inductively coupled plasma-mass spectrometer ICP-MS instruments that are capable of measuring mineral elements with extremely low detection limits. These three instrumental methods have largely replaced traditional wet chemistry methods for mineral analysis of foods, although traditional methods for calcium, chloride, iron, and phosphorus remain in use today (see Chap. 12).

  19. Modern Atmospheric Pressure Surface Sampling/Ionization Techniques in Mass Spectrometry

    SciTech Connect

    Pasilis, Sofie P; Van Berkel, Gary J

    2012-01-01

    Over the last few years, there has been a rapid increase in atmospheric pressure surface sampling/ionization techniques for mass spectrometry, dramatically expanding the range of sample types that can be analyzed. The growth in this field of mass spectrometry has also resulted in a plethora of new acronyms. In this encyclopedia article, the various techniques are first sorted into four major categories based on the method used for analyte desorption and then subcategorized by ionization method. The underlying principles of operation are explained and some representative applications are described.

  20. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  1. Qualitative and quantitative analysis of environmental samples by laser-induced breakdown spectrometry

    NASA Astrophysics Data System (ADS)

    Zorov, N. B.; Popov, A. M.; Zaytsev, S. M.; Labutin, T. A.

    2015-10-01

    The key achievements in the determination of trace amounts of components in environmental samples (soils, ores, natural waters, etc.) by laser-induced breakdown spectrometry are considered. Unique capabilities of this method make it suitable for rapid analysis of metals and alloys, glasses, polymers, objects of cultural heritage, archaeological and various environmental samples. The key advantages of the method that account for its high efficiency are demonstrated, in particular, a small amount of analyzed material, the absence of sample preparation, the possibility of local and remote analysis of either one or several elements. The use of chemometrics in laser-induced breakdown spectrometry for qualitative sample classification is described in detail. Various approaches to improving the figures of merit of quantitative analysis of environmental samples are discussed. The achieved limits of detection for most elements in geochemical samples are critically evaluated. The bibliography includes 302 references.

  2. Direct Characterization of Bulk Samples by Internal Extractive Electrospray Ionization Mass Spectrometry

    PubMed Central

    Zhang, Hua; Gu, Haiwei; Yan, Feiyan; Wang, Nannan; Wei, Yiping; Xu, Jianjun; Chen, Huanwen

    2013-01-01

    A straight-forward analytical strategy called internal extractive electrospray ionization mass spectrometry (iEESI-MS), which combines solvent extraction of chemicals inside a bulk sample with in situ electrospray ionization mass spectrometry, has been established to directly characterize the interior of a bulk sample with molecular specificity. The method allows both qualitative and quantitative analysis of analytes distributed in a 3-dimensional volume (e.g., 1 ~ 100 mm3) of various synthetic and biological matrices (e.g., chewing gum, leaves, fruits, roots, pork, lung tissues) without either mashing the sample or matrix separation. Using different extraction solvents, online chromatographic separation of chemicals inside the sample volume was observed during iEESI-MS analysis. The presented method is featured by the high speed of analysis, high sensitivity, low sample consumption and minimal sample preparation and/or degradation, offering unique possibilities for advanced applications in plant science, clinical diagnosis, catalyst studies, and materials science. PMID:23970067

  3. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review

    PubMed Central

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  4. Isolation of Pu-isotopes from environmental samples using ion chromatography for accelerator mass spectrometry and alpha spectrometry.

    PubMed

    Chamizo, E; Jiménez-Ramos, M C; Wacker, L; Vioque, I; Calleja, A; García-León, M; García-Tenorio, R

    2008-01-14

    A radiochemical method for the isolation of plutonium-isotopes from environmental samples, based on the use of specific extraction chromatography resins for actinides (TEVA), Eichrom Industries, Inc.), has been set up in our laboratory and optimised for their posterior determination by alpha spectrometry (AS) or accelerator mass spectrometry (AMS). The proposed radiochemical method has replaced in our lab a well-established one based on the use of a relatively un-specific anion-exchange resin (AG) 1X8, Bio-rad Laboratories, Inc.), because it is clearly less time consuming, reduces the amounts and molarities of acid wastes produced, and reproducibly gives high radiochemical yields. In order to check the reliability of the proposed radiochemical method for the determination of plutonium-isotopes in different environmental matrixes, twin aliquots of a set of samples were prepared with TEVA and with AG 1X8 resins and measured by AS. Some samples prepared with TEVA resins were measured as well by AMS. As it is shown in the text, there is a comfortable agreement between AS and AMS, which adequately validates the method.

  5. Determination of thallium in wine by electrothermal atomic absorption spectrometry after extraction preconcentration

    NASA Astrophysics Data System (ADS)

    Cvetković, Julijana; Arpadjan, Sonja; Karadjova, Irina; Stafilov, Trajče

    2002-06-01

    A simple method for extraction electrothermal atomic absorption spectroscopy (ETAAS) determination of Tl in wine is described. The wine sample is decomposed with a mixture of nitric acid and hydrogen peroxide and both thallium species Tl(I) and Tl(III) are extracted from 0.5 mol l -1 KI solution into iso-butyl methyl ketone (IBMK). Optimal parameters for ETAAS measurement of the iodide complexes extracted were defined for two different instruments: Perkin Elmer Zeeman 3030 (HGA 600) and Varian SpectrAA-880 (GTA-100). Modifiers of tartaric acid, Pd [ammoniumtetrachloropaladate (II)] or Ag (silver nitrate) were investigated for thermal stabilization of such extremely volatile species as iodide complexes of Tl. The analytical procedure developed permits 50-fold preconcentration and determination of 0.05 μg l -1 Tl in wine. The relative standard deviation ranges from 6 to 12% for the concentration range 0.2-1 μg l -1 Tl in wine.

  6. [Determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry].

    PubMed

    Lin, Li; Chen, Guang; Chen, Yuhong

    2011-07-01

    A method was established for the determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP/ MS). Alkaline extraction and IC-ICP/MS were applied as the sample pre-treatment method and the detection technique respectively, for iodate and iodide determination. Moreover, high-temperature pyrolysis absorption was adopted as the pre-treatment method for total iodine analysis, which finally converted all the iodine species into iodide and measured the iodide by IC-ICP/MS. The recoveries of iodine for alkaline extraction and high-temperature pyrolysis absorption were 89.6%-97.5% and 95.2%-111.2%, respectively. The results were satisfactory. The detection limit of iodine was 0.010 mg/kg. The iodine and its speciation contents in several kinds of plant samples such as seaweeds, kelp, cabbage, tea leaf and spinach were investigated. It was shown that the iodine in seaweeds mainly existed as organic iodine; while the ones in kelp, cabbage, tea leaf and spinach mainly existed as inorganic iodine.

  7. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    SciTech Connect

    Barnett, J. Matthew

    2008-08-22

    Since the mid-1980s the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity of particulate radioactive air samples. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor® 3000) used at PNNL for self absorption effects. There were two methods used in the study, 1) to compare the radioactivity concentration by direct gas-flow proportional counting of the filter to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection and 2) to evaluate sample filters by high resolution visual/infrared microscopy to determine the depth of material loading on or in the filter fiber material. Sixty samples were selected from the archive for acid digestion in the first method and about 30 samples were selected for high resolution visual/infrared microscopy. Mass loading effects were also considered. From the sample filter analysis, large error is associated with the average self absorption factor, however, when the data is compared directly one-to-one, statistically, there appears to be good correlation between the two analytical methods. The mass loading of filters evaluated was <0.2 mg cm-2 and was also compared against other published results. The microscopy analysis shows the sample material remains on the top of the filter paper and does not imbed into the filter media. Results of the microscopy evaluation lead to the conclusion that there is not a mechanism for significant self absorption. The overall conclusion is that self-absorption is not a significant factor in the analysis of filters used at PNNL for radioactive air stack sampling of radionuclide particulates and that an applied correction factor is conservative in determining overall sample activity. A new self absorption factor of 1.0 is recommended.

  8. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, A.

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, nutrition, and biomedicine. Emphasis is being placed on: (1) generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; (2) computer modelings of ICP discharges to predict the behavior of new and existing plasmas; (3) diagnostic studies of high temperature plasmas and sample introduction systems to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; (4) development and characterization of new, low cost sample introduction systems that consume microliter or microgram quantities of samples; and (5) investigation of new membrane separators for stripping solvent from sample aerosol to reduce various interferences and to enhance sensitivity and selectivity in plasma spectrometry.

  9. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers.

    PubMed

    Lu, Feng; Belkin, Mikhail A

    2011-10-10

    We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.

  10. A simple and fast ultrasound-assisted extraction procedure for Fe and Zn determination in milk-based infant formulas using flame atomic absorption spectrometry (FAAS).

    PubMed

    Machado, Ignacio; Bergmann, Gabriela; Pistón, Mariela

    2016-03-01

    A simple and fast ultrasound-assisted procedure for the determination of iron and zinc in infant formulas is presented. The analytical determinations were carried out by flame atomic absorption spectrometry. Multivariate experiments were performed for optimization; in addition, a comparative study was carried out using two ultrasonic devices. A method using an ultrasonic bath was selected because several samples can be prepared simultaneously, and there is less contamination risk. Analytical precision (sr(%)) was 3.3% and 4.1% for iron and zinc, respectively. Trueness was assessed using a reference material and by comparison of the results obtained analyzing commercial samples using a reference method. The results were statistically equivalent to the certified values and in good agreement with those obtained using the reference method. The proposed method can be easily implemented in laboratories for routine analysis with the advantage of being rapid and in agreement with green chemistry.

  11. Application of High Resolution-Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS): determination of trace elements in tea and tisanes.

    PubMed

    Paz-Rodríguez, Beatriz; Domínguez-González, María Raquel; Aboal-Somoza, Manuel; Bermejo-Barrera, Pilar

    2015-03-01

    A new application of HR-CS FAAS (High Resolution-Continuum Source Flame Atomic Absorption Spectrometry) has been developed for the determination of several trace elements (Ca, Co, Cu, Fe, Mn, Ni, Na and Zn) in infusions made from tea, rooibos and tea with seaweed samples. The proposed methods are fast, inexpensive and show good performances: the mean analytical recovery was approximately 100%. The mean limit of detection was 29.4 μg/l, and the mean limit of quantification was 98.0 μg/l (both limits refer to the brewed samples). Due to the matrix effect observed, the standard addition method had to be applied. Preliminary classification (based on metal contents) using chemometric techniques such as PCA (Principal Component Analysis) and CA (Cluster Analysis), was successful for infusions made from rooibos and tea with seaweed, but inconclusive for black and green teas.

  12. Speciation of platinum in blood plasma and urine by micelle-mediated extraction and graphite furnace atomic absorption spectrometry.

    PubMed

    Mortada, Wael I; Hassanien, Mohammed M; El-Asmy, Ahmed A

    2013-10-01

    A highly sensitive and selective technique for the speciation of platinum by cloud point extraction prior to determination by graphite furnace atomic absorption spectrometry (GFAAS) was described. The separation of Pt(II) from Pt(IV) was performed in the presence of 4-(p-chlorophenyl)-1-(pyridin-2-yl)thiosemicarbazide (HCPTS) as chelating agent and Triton X-114 as a non-ionic surfactant. The extraction of Pt(II)-HCPTS complex needs temperature higher than the cloud point temperature of Triton X-114 and pH = 7, while Pt(IV) remains in the aqueous phase. The Pt(II) in the surfactant phase was analyzed by GFAAS, and the concentration of Pt(IV) was calculated by subtraction of Pt(II) from total platinum which was directly determined by GFAAS. The effect of pH, concentration of chelating agent, surfactant, and equilibration temperature were investigated. An enrichment factor of 42 was obtained for the preconcentration of Pt(II) with 50 mL solution. Under the optimum experimental conditions, the calibration curve was linear up to 30 μgL(-1) with detection limit of 0.08 μgL(-1) and the relative standard deviation was 1.8%. No considerable interference was observed due to the presence of coexisting anions and cations. The accuracy of the results was verified by analyzing different spiked samples (tap water, blood plasma and urine). The proposed method was applied to the speciation analysis of Pt in blood plasma and urine with satisfactory results.

  13. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1990-01-01

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, biomedicine and nutrition. Emphasis is being placed on: generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; diagnostic studies of high-temperature plasmas to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; development and characterization of new sample introduction systems that consume microliter or microgram quantities of samples, and investigation of new membrane separators for striping solvent from sample aerosol to reduce various interferences and to enhance sensitivity in plasma spectrometry.

  14. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Montaser, Akbar

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, biomedicine and nutrition. Emphasis is being placed on: generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; diagnostic studies of high-temperature plasmas to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; development and characterization of new sample introduction systems that consume microliter or microgram quantities of samples, and investigation of new membrane separators for striping solvent from sample aerosol to reduce various interferences and to enhance sensitivity in plasma spectrometry.

  15. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  16. Determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn by Inductively Coupled Plasma Mass Spectroscopy or Flame Atomic Absorption Spectrometry after On-line Preconcentration and Solvent Extraction by Flow Injection System

    PubMed

    Bortoli; Gerotto; Marchiori; Mariconti; Palonta; Troncon

    1996-11-01

    The concentrations of Cd, Co, Cu, Mn, Ni, Pb, and Zn in natural and sea waters are too low to be directly determined with by flame atomic absorption spectrometry (FAAS) or graphite furnace atomic absorption spectrometry (GFAAS). Specific sample preparations are requested that make possible the determination of these analytes by preconcentration or extraction. These techniques are affected by severe problems of sample contamination. In this work Cd, Co, Cu, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS) or by atomic absorption spectrometry, in fresh and seawater samples, after on-line preconcentration and following solvent elution with a flow injection system. Bonded silica with octadecyl functional group C18, packed in a microcolumn of 100-μl capacity, was used to collect diethyldithiocarbamate complexes of the heavy metals in aqueous solutions. The metals are complexed with a chelating agent, adsorbed on the C18 column, and eluted with methanol directly in the flow injection system. The methanolic stream can be addressed to FAAS for direct determination of Cu, Ni, and Zn, or collected in a vial for successive analysis by GFAAS. The eluted samples can be also dried in a vacuum container and restored to a little volume with concentrated HNO3 and Milli-Q water for analysis by ICP-MS or GFAAS.

  17. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  18. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption-elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L- 1, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64-22.9 μg Pb L- 1).

  19. Emergence and consequences of lateral sample heterogeneity in glow discharge spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Ray, Steven J.; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M.

    2016-12-01

    Conventional glow discharge emission or mass spectrometry requires the assumption that the surface of the sample is homogeneous. However, recent developments in glow discharge imaging appear to offer an opportunity to obtain three-dimensional concentration maps, in which this assumption is no longer necessary. Here, experiments, models, and a summary of earlier work are combined to examine the sputtering behavior of elemental and morphological heterogeneities in a sample. The theoretical model reveals gaps in current knowledge of glow discharge sputtering of heterogeneous samples, particularly indicating that heterogeneity in the sample leads to roughened crater bottoms and how additional morphology can evolve. Additionally, a three-dimensional profiling microscope is used to characterize the effects of surface inclusions on the sputtering process in a DC glow discharge in a reduced-pressure argon environment. Findings have important implications for bulk analysis, depth-profiling, and elemental surface mapping with glow discharge spectrometry.

  20. Analysis of low Z elements in various environmental samples with total reflection X-ray fluorescence (TXRF) spectrometry

    NASA Astrophysics Data System (ADS)

    Hoefler, H.; Streli, C.; Wobrauschek, P.; Óvári, M.; Záray, Gy.

    2006-11-01

    Recently there is a growing interest in low Z elements such as carbon, oxygen up to sulphur and phosphorus in biological specimen. Total reflection X-ray fluorescence (TXRF) spectrometry is a suitable technique demanding only very small amounts of sample. On the other side, the detection of low Z elements is a critical point of this analytical technique. Besides other effects, self absorption may occur in the samples, because of the low energy of the fluorescence radiation. The calibration curves might be not linear any longer. To investigate this issue water samples and samples from human cerebrospinal fluid were used to examine absorption effects. The linearity of calibration curves in dependence of sample mass was investigated to verify the validity of the thin film approximation. The special requirements to the experimental setup for low Z energy dispersive fluorescence analysis were met by using the Atominstitute's TXRF vacuum chamber. This spectrometer is equipped with a Cr-anode X-ray tube, a multilayer monochromator and a SiLi detector with 30 mm 2 active area and with an ultrathin entrance window. Other object on this study are biofilms, living on all subaqueous surfaces, consisting of bacteria, algae and fungi embedded in their extracellular polymeric substances (EPS). Many trace elements from the water are bound in the biofilm. Thus, the biofilm is a useful indicator for polluting elements. For biomonitoring purposes not only the polluting elements but also the formation and growth rate of the biofilm are important. Biofilms were directly grown on TXRF reflectors. Their major elements and C-masses correlated to the cultivation time were investigated. These measured masses were related to the area seen by the detector, which was experimentally determined. Homogeneity of the biofilms was checked by measuring various sample positions on the reflectors.

  1. Determination of iodine via the spectrum of barium mono-iodide using high-resolution continuum source molecular absorption spectrometry in a graphite furnace

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Okruss, Michael; Welz, Bernhard; Morés, Silvane

    2009-07-01

    Molecular absorption spectra of the diatomic molecules AlI, GaI, InI, TlI, MgI, CaI, SrI and BaI, generated in a graphite furnace, were studied using a high-resolution echelle spectrometer with the aim of finding a simple, reliable and sensitive analytical method for the determination of iodine. Among them, the barium mono-iodide (BaI) was found to have the strongest absorption bands around 538 nm and 560 nm, each of them consisting of a series of well-resolved rotational lines with half-widths of about 40-50 pm. The strongest BaI line, the band head at 538.308 nm has been evaluated systematically for its analytical use for the determination of iodine. High concentrations of hydrochloric acid (or chloride), hydrofluoric acid (or fluoride), iron, potassium and sodium resulted in significant reduction of the BaI molecular absorption. Apart from this, no other serious spectral or non-spectral interference has been observed. Different chemical forms of iodine, such as iodide, iodate and organically bound iodine produced identical BaI absorption sensitivity. The detection limit for iodine was 600 pg, and the calibration curve was linear up to 250 ng iodine. Two real samples with different chemical forms of iodine were analyzed using the proposed method. One sample was an iodide pill with a specified iodide content of 200 mg, the other one was a thyroid hormone pill with a specified content of 63.5 mg. The results were in good or satisfactory agreement with those of independent methods, the potentiometric titration and the inductively coupled plasma time-of-flight mass spectrometry (ICP-ToF-MS); the deviations were 2% and 8% for the iodide and the thyroid hormone sample, respectively. The relative standard deviation of the analytical results ( n = 3) was below 2%.

  2. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    PubMed

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  3. Thermal neutron absorption cross section and clay mineral content for Miocene Carpathian samples

    PubMed

    Woznicka

    2000-12-01

    A correlation between the thermal neutron absorption cross section and the clay volume for samples from the chosen geological region is discussed. A comparison of the calculated and measured absorption cross sections as a function of clay volume allows an estimate to be made on the presence of highly absorbing impurities in clays. From the example presented, it was deduced that 105 ppm of B or 25 ppm of Gd in the clay minerals in the samples tested would be sufficient to explain the difference between the experimental and calculated cross sections.

  4. Anomalous non-resonant microwave absorption in SmFeAs(O,F) polycrystalline sample

    NASA Astrophysics Data System (ADS)

    Onyancha, R. B.; Shimoyama, J.; Singh, S. J.; Hayashi, K.; Ogino, H.; Srinivasu, V. V.

    2017-02-01

    Here we present the non-resonant microwave absorption (NRMA) studies on SmFeAsO0.88F0.12 polycrystalline sample measured at 6.06 K with the magnetic field swept from -250 G to +250 G at a frequency of 9.45 GHz. It was observed that the (NRMA) line shape evolves as a function of microwave power. Again, the signal intensity increases from 22.83 μW to 0.710 mW where it reaches a maximum and quite remarkably it changed from 'normal' absorption to 'anomalous' absorption at 2.247 mW, then the intensity decreases with further increase of microwave power. The crossover from 'normal' to 'anomalous' NRMA absorption and its dependence on microwave power is a new phenomenon in iron pnictides superconductors and we have attributed this anomaly to come from non-hysteretic Josephson junction.

  5. Atmospheric sampling glow discharge ionizataion and triple quadrupole tandem mass spectrometry for explosives vapor detection

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.; Hart, K.J.; Glish, G.L.; Grant, B.C.; Chambers, D.M.

    1993-08-01

    The detection and identification of trace vapors of hidden high explosives is an excellent example of a targeted analysis problem. It is desirable to push to ever lower levels the quantity or concentration of explosives material that provides an analytical signal, while at the same time discriminating against all other uninteresting material. The detection system must therefore combine high sensitivity with high specificity. This report describes the philosophy behind the use of atmospheric sampling glow discharge ionization, which is a sensitive, rugged, and convenient means for forming anions from explosives molecules, with tandem mass spectrometry, which provides unparalleled specificity in the identification of explosives-related ions. Forms of tandem mass spectrometry are compared and contrasted to provide a summary of the characteristics to be expected from an explosives detector employing mass spectrometry/mass spectrometry. The instrument developed for the FAA, an atmospheric sampling glow discharge/triple quadrupole mass spectrometer, is described in detail with particular emphasis on the ion source/spectrometer interface and on the capabilities of the spectrometer. Performance characteristics of the system are also described as they pertain to explosives of interest including a description of an automated procedure for the detection and identification of specific explosives. A comparison of various tandem mass spectrometers mated with atmospheric sampling glow discharge is then described and preliminary studies with a vapor preconcentration system provided by the FAA will be described.

  6. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  7. Nuclear chemistry of returned lunar samples: Nuclide analysis by gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Okelley, G. D.

    1975-01-01

    Primordial and cosmogenic radionuclide concentrations are determined nondestructively by gamma-ray spectrometry in soil and rock samples from the returned Apollo 17 sample collection from Taurus-Littrow and Descartes. Geochemical evidence in support of field geology speculation concerning layering of the subfloor basalt flows is demonstrated along with a possible correlation of magmatic fractionation of K/U as a function of depth. The pattern of radionuclide concentrations observed in these samples is distinct due to proton bombardment by the intense solar flares of August 4-9, 1972. Such radionuclide determinations are used in determining lunar sample orientation and characterizing solar flare activity.

  8. La pulvérisation par ultra-sons appliquée à la spectrometrie d'absorption atomique.

    PubMed

    Spitz, J; Uny, G

    1968-07-01

    Ultrasonic nebulization applied to atomic absorption spectrometry gives a sensitivity ten to twenty times better than that which can be obtained by classical pneumatic nebulization. This gain in sensitivity is primarily due to the quantity of aerosol introduced into the flame, but is equally due to the fineness of the droplets that are formed. The study of certain parameters (frequency, power applied to the emitter, geometry of the nebulizing chamber, gas flow) has led to the specification of an ultrasonic nebulizer that can be conveniently used for routine analyses.

  9. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry.

    PubMed

    Bianchin, Joyce Nunes; Martendal, Edmar; Mior, Renata; Alves, Vanessa Nunes; Araújo, Cleide Sandra Tavares; Coelho, Nívia Maria Melo; Carasek, Eduardo

    2009-04-30

    In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L(-1), a sample flow rate of 4.5 mL min(-1) and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 microg L(-1) and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 microg L(-1), with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 microg L(-1), n=7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.

  10. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    SciTech Connect

    Klein, Adam

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  11. Germanium determination by flame atomic absorption spectrometry: an increased vapor pressure-chloride generation system.

    PubMed

    Kaya, Murat; Volkan, Mürvet

    2011-03-15

    A new chloride generation system was designed for the direct, sensitive, rapid and accurate determination of the total germanium in complex matrices. It was aimed to improve the detection limit of chloride generation technique by increasing the vapor pressure of germanium tetrachloride (GeCl(4)). In order to do so, a novel joint vapor production and gas-liquid separation unit equipped with a home-made oven was incorporated to an ordinary nitrous oxide-acetylene flame atomic absorption spectrometer. Several variables such as reaction time, temperature and acid concentration have been investigated. The linear range for germanium determination was 0.1-10 ng mL(-1) for 1 mL sampling volume with a detection limit (3s) of 0.01 ng mL(-1). The relative standard deviation (RSD) was 2.4% for nine replicates of a 1 ng mL(-1) germanium solution. The method was validated by the analysis of one non-certified and two certified geochemical reference materials, respectively, CRM GSJ-JR-2 (Rhyolite), and GSJ-JR-1 (Rhyolite), and GBW 07107 (Chinese Rock). Selectivity of the method was investigated for Cd(2+), Co(2+), Cu(2+), Fe(3+), Ga(3+), Hg(2+), Ni(2+), Pb(2+), Sn(2+), and Zn(2+) ions and ionic species of As(III), Sb(III), Te(IV), and Se(IV).

  12. Quantitation of vitamin B6 in biological samples by isotope dilution mass spectrometry

    SciTech Connect

    Hachey, D.L.; Coburn, S.P.; Brown, L.T.; Erbelding, W.F.; DeMark, B.; Klein, P.D.

    1985-11-15

    Methods have been developed for the simultaneous quantitative analysis of vitamin B6 forms in biological samples by isotope dilution mass spectrometry using deuterated forms of pyridoxine, pyridoxal, pyridoxamine, and pyridoxic acid. The biological fluid or tissue sample was homogenized and then treated with a cocktail containing appropriate amounts of each deuterated vitamer, as well as the deuterated, phosphorylated vitamer forms. The individual vitamers were isolated from the homogenate by a complex high-performance liquid chromatographic procedure that provided separate fractions for each of the six vitamers found in biological samples. Aldehydic B6 vitamers were reduced to the alcohol form prior to acetylation and analysis by gas chromatography/mass spectrometry (GC/MS). The three resulting vitamers were analyzed by electron ionization GC/MS using a silicone capillary column. The methods have been applied to analysis of vitamin B6 in liver, milk, urine, and feces at levels as low as 0.02 nmol/ml.

  13. A chemometric approach to the comparison of different sample treatments for metals determination by atomic absorption spectroscopy in aceto Balsamico tradizionale di Modena.

    PubMed

    Cocchi, Marina; Franchini, Giancarlo; Manzini, Daniela; Manfredini, Matteo; Marchetti, Andrea; Ulrici, Alessandro

    2004-06-30

    A comparison of different digestion procedures has been carried out for the analysis of metal concentration in samples of vinegars and Aceto Balsamico Tradizionale of Modena (ABTM) coming from an unique barrel set. In particular, classical wet, dry ashing, and closed vessel microwave digestion procedure have been utilized and compared for each investigated species. In a few cases, direct metal determination on ABTM (without treatment procedure) is proposed as possible alternative to sample manipulation. Flame atomic absorption spectrometry was used for the quantification of iron and zinc, while graphite furnace atomic absorption spectrometry was used for all the other elements (i.e., chromium, manganese, cobalt, nickel, copper, cadmium, and lead). The comparison among the different sample treatments was carried out by the use of statistical and chemometric tools. In particular, principal component analysis and ANOVA approaches were used to discriminate between the diverse analytical methods. Furthermore, for all the dissolving techniques, the analytical metal recovery was always evaluated by the application of the recovery function on the same sample matrix. In general, the recoveries were fairly good, ranging from 90 to 103%, except for Cd and Pb with dry ashing, which showed recovery values close to 55% and 67%, respectively. As regards the metals concentration of the investigated samples, the experimental data reveal for some species the presence of concentration slightly over the legal limit fixed for wine and wine vinegar.

  14. Feasibility of dispersive liquid-liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Seeger, Tassia S.; Rosa, Francisco C.; Bizzi, Cezar A.; Dressler, Valderi L.; Flores, Erico M. M.; Duarte, Fabio A.

    2015-03-01

    A method for extraction and preconcentration of Cu and Fe in red and white wines using dispersive liquid-liquid microextraction (DLLME) and determination by flame atomic absorption spectrometry (F AAS) was developed. Extraction was performed using sodium diethyldithiocarbamate as chelating agent and a mixture of 40 μL of 1,2-dichlorobenzene (extraction solvent) and 900 μL of methanol (dispersive solvent). Some parameters that influencing the extraction efficiency such as pH (2 to 5), concentration of chelating agent (0 to 2%), effect of salt addition (0 to 10%), number of washing steps (1 to 4) and centrifugation time (0 to 15 min) were studied. Accuracy was evaluated after microwave-assisted digestion in closed vessels and analytes were determined by inductively coupled plasma optical emission spectrometry. Agreement with the proposed method ranged from 91 to 110 and from 89 to 113% for Cu and Fe, respectively. Calibration of F AAS instrument was performed using analyte addition method and limits of detection were 6.3 and 2.4 μg L- 1 for Cu and Fe, respectively. The proposed method was applied for the determination of Cu and Fe in five samples of red wine and three samples of white wine, with concentration ranging from 21 to 178 μg L- 1 and from 1.38 to 3.74 mg L- 1, respectively.

  15. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    SciTech Connect

    Ford, Michael J; Deibel, Michael A.; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  16. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil

    PubMed Central

    2013-01-01

    Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference

  17. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    NASA Astrophysics Data System (ADS)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  18. A fast and accurate microwave-assisted digestion method for arsenic determination in complex mining residues by flame atomic absorption spectrometry.

    PubMed

    Pantuzzo, Fernando L; Silva, Julio César J; Ciminelli, Virginia S T

    2009-09-15

    A fast and accurate microwave-assisted digestion method for arsenic determination by flame atomic absorption spectrometry (FAAS) in typical, complex residues from gold mining is presented. Three digestion methods were evaluated: an open vessel digestion using a mixture of HCl:HNO(3):HF acids (Method A) and two microwave digestion methods using a mixture of HCl:H(2)O(2):HNO(3) in high (Method B) and medium-pressure (Method C) vessels. The matrix effect was also investigated. Arsenic concentration from external and standard addition calibration curves (at a 95% confidence level) were statistically equal (p-value=0.122) using microwave digestion in high-pressure vessel. The results from the open vessel digestion were statistically different (p-value=0.007) whereas in the microwave digestion in medium-pressure vessel (Method C) the dissolution of the samples was incomplete.

  19. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    NASA Astrophysics Data System (ADS)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  20. Evaluation of cadmium in greenhouse soils and agricultural products of Jiroft (Iran) using microwave digestion prior to atomic absorption spectrometry determination.

    PubMed

    Afzali, Daryoush; Fathirad, Fariba; Afzali, Zahra; Majdzadeh-Kermani, Seyed Mohammad Javad

    2015-03-01

    This study determines total levels of potentially toxic trace element, Cd (II) in Jiroft (Kerman, Iran) greenhouse soil and agricultural products that are grown in these greenhouses (tomatoes and cucumbers), and the comparison with soil outside of greenhouse using microwave digestion prior to flame atomic absorption spectrometry determination. The results show that the cadmium concentration in greenhouse soil is 0.9-1.9 mg kg(-1) and out of greenhouse is 0.4-1.0 mg kg(-1). Also, cadmium concentration range in tomatoes and cucumbers is about 0.07-0.40 mg kg(-1). The obtained results show that the concentration of this metal in greenhouse soil is higher than outside soil samples and is below the safe limit.

  1. Effects of iron concentration level in extracting solutions from contaminated soils on the determination of zinc by flame atomic absorption spectrometry with two background correctors.

    PubMed

    Waterlot, Christophe; Pelfrêne, Aurélie; Douay, Francis

    2012-01-01

    Zinc and iron concentrations were determined after digestion, water, and three-step sequential extractions of contaminated soils. Analyses were carried out using flame absorption spectrometry with two background correctors: a deuterium lamp used as the continuum light source (D(2) method) and the high-speed self-reversal method (HSSR method). Regarding the preliminary results obtained with synthetic solutions, the D(2) method often emerged as an unsuitable configuration for compensating iron spectral interferences. In contrast, the HSSR method appeared as a convenient and powerful configuration and was tested for the determination of zinc in contaminated soils containing high amounts of iron. Simple, fast, and interference-free method, the HSSR method allows zinc determination at the ppb level in the presence of large amounts of iron with high stability, sensitivity, and reproducibility of results. Therefore, the HSSR method is described here as a promising approach for monitoring zinc concentrations in various iron-containing samples without any pretreatment.

  2. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method.

  3. Reduced Sampling Size with Nanopipette for Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    PubMed Central

    Kohigashi, Tsuyoshi; Otsuka, Yoichi; Shimazu, Ryo; Matsumoto, Takuya; Iwata, Futoshi; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Mass spectrometry imaging (MSI) with ambient sampling and ionization can rapidly and easily capture the distribution of chemical components in a solid sample. Because the spatial resolution of MSI is limited by the size of the sampling area, reducing sampling size is an important goal for high resolution MSI. Here, we report the first use of a nanopipette for sampling and ionization by tapping-mode scanning probe electrospray ionization (t-SPESI). The spot size of the sampling area of a dye molecular film on a glass substrate was decreased to 6 μm on average by using a nanopipette. On the other hand, ionization efficiency increased with decreasing solvent flow rate. Our results indicate the compatibility between a reduced sampling area and the ionization efficiency using a nanopipette. MSI of micropatterns of ink on a glass and a polymer substrate were also demonstrated. PMID:28101441

  4. [Determination of trace niobium and tantalum in rock sample by atomic emission spectrometry].

    PubMed

    Li, Hui-zhi; Zhou, Chang-li; Luo, Chuan-nan

    2002-10-01

    This paper describes the determination of trace Nb and Ta in sample using carbon powder and hafnium oxide as buffer by atomic emission spectrometry (AES). Hafnium has been selected as internal standard, since it has scinilar evaporation curve as those of Nb and Ta. Samples can be analyzed without chemical pretreatment. The sample was directly loaded onto the ordinary electrode. The method is simple, rapid and accurate. The range of determination for Nb and Ta are 0%-0.25% and 0%-0.125% respectively, and the detection limits are found to be 0.003% and 0.001%, respectively. Satisfactory results are obtained.

  5. Analysis of volatile organic compounds in groundwater samples by gas chromatography-mass spectrometry

    SciTech Connect

    Bernhardt, J.

    1995-08-23

    The Savannah River Site contains approximately 1500 monitoring wells from which groundwater samples are collected. Many of these samples are sent off-site for various analyses, including the determination of trace volatile organic compounds (VOCs). This report describes accomplishments that have been made during the past year which will ultimately allow VOC analysis to be performed on-site using gas chromatography-mass spectrometry. Through the use of the on-site approach, it is expected that there will be a substantial cost savings. This approach will also provide split-sample analysis capability which can serve as a quality control measure for off-site analysis.

  6. Supercritical fluid extraction and direct fluid injection mass spectrometry for the determination of trichothecene mycotoxins in wheat samples

    SciTech Connect

    Kalinoski, H.T.; Udseth, H.R.; Wright, B.W.; Smith, R.D.

    1986-10-01

    The application of on-line supercritical fluid extraction with chemical ionization mass spectrometry and collision induced dissociation tandem mass spectrometry for the rapid identification of parts-per-million levels of several trichothecene mycotoxins is demonstrated. Supercritical carbon dioxide is shown to allow identification of mycotoxins with minimum sample handling in complex natural matrices (e.g., wheat). Tandem mass spectrometry techniques are employed for unambiguous identification of compounds of varying polarity, and false positives from isobaric compounds are avoided. Capillary column supercritical fluid chromatography-mass spectrometry of a supercritical fluid extract of the same sample was also performed and detection limits in the parts-per-billion range appear feasible.

  7. Direct high-resolution alpha spectrometry from nuclear fuel particles in an outdoor air sample.

    PubMed

    Pöllänen, R; Siiskonen, T

    2008-01-01

    The potential use of direct high-resolution alpha spectrometry to identify the presence of transactinium elements in air samples is illustrated in the case when alpha-particle-emitting radionuclides are incorporated in nuclear fuel particles. Alpha particle energy spectra are generated through Monte Carlo simulations assuming a nuclide composition similar to RBMK (Chernobyl) nuclear fuel. The major alpha-particle-emitting radionuclides, in terms of activity, are 242Cm, 239Pu and 240Pu. The characteristics of the alpha peaks are determined by fuel particle properties as well as the type of the air filter. It is shown that direct alpha spectrometry can be readily applied to membrane filter samples containing nuclear fuel particles when rapid nuclide identification is of relevance. However, the development of a novel spectrum analysis code is a prerequisite for unfolding complex alpha spectra.

  8. Electrothermal atomization atomic absorption spectrometry for the determination of lead in urine: results of an interlaboratory study

    NASA Astrophysics Data System (ADS)

    Parsons, Patrick J.; Slavin, Walter

    1999-05-01

    Results of an interlaboratory study are reported for the determination of lead in urine. Two levels of a lyophilized material containing biologically-bound lead were prepared using pooled urine obtained from lead-poisoned children undergoing the CaNa 2EDTA mobilization test. The materials were circulated to a group of reference laboratories that participate in the `New York State Proficiency Testing Program for Blood Lead'. Results of the initial round-robin gave all-method consensus target values of 145±22 μg/l (S.D.) for lot 17 and 449±43 μg/l (S.D.) for lot 20. The interlaboratory exercise was repeated some 5 years later and consensus target values were re-calculated using the grand mean (excluding outliers) of results reported by laboratories using electrothermal atomization atomic absorption spectrometry (ETAAS). The re-calculated target values were 139±10 μg/l (S.D.) and 433±12 μg/l (S.D.). The urine reference materials were also analyzed for lead by several laboratories using other instrumental techniques including isotope dilution (ID), inductively coupled plasma (ICP) mass spectrometry (MS), flame atomic absorption with extraction, ICP-atomic emission spectrometry, ID-gas chromatography MS and flow injection-hydride generation AAS, thus providing a rich source of analytical data with which to characterize them. The materials were also used in a long-term validation study of an ETAAS method developed originally for blood lead determinations that has since been used unmodified for the determination of lead in urine also. Recently, urine lead method performance has been tracked in a proficiency testing program specifically for this analysis. In addition, a number of commercial control materials have been analyzed and evaluated.

  9. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    SciTech Connect

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-01-01

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creating a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.

  10. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE PAGES

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-01-01

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  11. Determination of impurities in (124)I samples by high resolution gamma spectrometry.

    PubMed

    de Almeida, M C M; da Silva, R L; Delgado, J U; Poledna, R; de Araújo, M T F; Laranjeira, A S; de Veras, E; Braghirolli, A M S; dos Santos, G R; Lopes, R T

    2016-03-01

    (124)I is a radionuclide used in the diagnosis of tumors. The National Health Agency requires identification and activity measurement of impurities. Using gamma spectrometry with an efficiency calibrated high-purity germanium detector, impurities (125)I and (126)I in an (1)(24)I production sample were identified. Activity ratios of (125)I and (126)I to (124)I were approximately 0.5% and 98%, respectively.

  12. Preparation of protein samples for mass spectrometry and N-terminal sequencing.

    PubMed

    Glenn, Gary

    2014-01-01

    The preparation of protein samples for mass spectrometry and N-terminal sequencing is a key step in successfully identifying proteins. Mass spectrometry is a very sensitive technique, and as such, samples must be prepared carefully since they can be subject to contamination of the sample (e.g., due to incomplete subcellular fractionation or purification of a multiprotein complex), overwhelming of the sample by highly abundant proteins, and contamination from skin or hair (keratin can be a very common hit). One goal of sample preparation for mass spec is to reduce the complexity of the sample - in the example presented here, mitochondria are purified, solubilized, and fractionated by sucrose density gradient sedimentation prior to preparative 1D SDS-PAGE. It is important to verify the purity and integrity of the sample so that you can have confidence in the hits obtained. More protein is needed for N-terminal sequencing and ideally it should be purified to a single band when run on an SDS-polyacrylamide gel. The example presented here involves stably expressing a tagged protein in HEK293 cells and then isolating the protein by affinity purification and SDS-PAGE.

  13. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  14. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    SciTech Connect

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  15. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    NASA Astrophysics Data System (ADS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin

    2015-05-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L- 1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L- 1, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009-88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3-116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix.

  16. Determination of metals in lubricating oils by flame atomic absorption spectrometry using a single-bore high-pressure pneumatic nebulizer.

    PubMed

    Mora, J; Todolí, J L; Sempere, F J; Canals, A; Hernandis, V

    2000-12-01

    The behaviour of a single-bore high-pressure pneumatic nebulizer (SBHPPN) as a tool for the analysis of lubricating oils by flame atomic absorption spectrometry (FAAS) was investigated. The effects of the sample oil content [from 10% to 100% (w/w) oil in 4-methylpentan-2-one, IBMK] and the carrier nature (IBMK and methanol) on the characteristics of the aerosols generated, on the analyte transport efficiency and on the analytical figures of merit in FAAS were studied. A pneumatic concentric nebulizer (PCN) was used for comparison. Increasing the oil content increases the viscosity of the sample. With the PCN this gives rise to coarser aerosols, making it impossible to nebulize samples with an oil content higher than 70% (w/w). Using the SBHPPN, the viscosity of the sample scarcely affects the characteristics of the primary aerosols. Hence, the SBHPPN is able, by using the appropriate carrier, to nebulize pure lubricating oils. Among the carriers tested, IBMK is the most advisable because it is fully miscible with all the oil samples. The SBHPPN provides higher sensitivities and lower limits of detection than the PCN. Compared with a method based on organic dilution, the use of the SBHPPN for the direct analysis of lubricating oils by FAAS makes it possible, in addition to increasing the analysis throughput, to detect elements at lower concentrations. Moreover, the SBHPPN provides similar results to those obtained using a previous acid digestion step.

  17. High current–density anodic electrodissolution in flow–injection systems for the determination of aluminium, copper and zinc in non–ferroalloys by flame atomic absorption spectrometry

    PubMed Central

    Giacomozzi, César Augusto; de Queiróz, Roldão R. U.; Souza, Ivan Gonçalves

    1999-01-01

    An automatic procedure with a high current-density anodic electrodissolution unit (HDAE) is proposed for the determination of aluminium, copper and zinc in non-ferroalloys by flame atomic absorption spectrometry, based on the direct solid analysis. It consists of solenoid valve-based commutation in a flow-injection system for on-line sample electro-dissolution and calibration with one multi-element standard, an electrolytic cell equipped with two electrodes (a silver needle acts as cathode, and sample as anode), and an intelligent unit. The latter is assembled in a PC-compatible microcomputer for instrument control, and for data acquisition and processing. General management of the process is achieved by use of software written in Pascal. Electrolyte compositions, flow rates, commutation times, applied current and electrolysis time were investigated. A 0.5 mol l-1 HN03 solution was elected as electrolyte and 300 A/cm2 as the continuous current pulse. The performance of the proposed system was evaluated by analysing aluminium in Al-alloy samples, and copper/zinc in brass and bronze samples, respectively. The system handles about 50 samples per hour. Results are precise (R.S.D. < 2%) and in agreement with those obtained by ICP-AES and spectrophotometry at a 95% confidence level. PMID:18924839

  18. Selecting Sample Preparation Workflows for Mass Spectrometry-Based Proteomic and Phosphoproteomic Analysis of Patient Samples with Acute Myeloid Leukemia

    PubMed Central

    Hernandez-Valladares, Maria; Aasebø, Elise; Selheim, Frode; Berven, Frode S.; Bruserud, Øystein

    2016-01-01

    Global mass spectrometry (MS)-based proteomic and phosphoproteomic studies of acute myeloid leukemia (AML) biomarkers represent a powerful strategy to identify and confirm proteins and their phosphorylated modifications that could be applied in diagnosis and prognosis, as a support for individual treatment regimens and selection of patients for bone marrow transplant. MS-based studies require optimal and reproducible workflows that allow a satisfactory coverage of the proteome and its modifications. Preparation of samples for global MS analysis is a crucial step and it usually requires method testing, tuning and optimization. Different proteomic workflows that have been used to prepare AML patient samples for global MS analysis usually include a standard protein in-solution digestion procedure with a urea-based lysis buffer. The enrichment of phosphopeptides from AML patient samples has previously been carried out either with immobilized metal affinity chromatography (IMAC) or metal oxide affinity chromatography (MOAC). We have recently tested several methods of sample preparation for MS analysis of the AML proteome and phosphoproteome and introduced filter-aided sample preparation (FASP) as a superior methodology for the sensitive and reproducible generation of peptides from patient samples. FASP-prepared peptides can be further fractionated or IMAC-enriched for proteome or phosphoproteome analyses. Herein, we will review both in-solution and FASP-based sample preparation workflows and encourage the use of the latter for the highest protein and phosphorylation coverage and reproducibility. PMID:28248234

  19. Quantification of absorption, retention and elimination of two different oral doses of vitamin A in Zambian boys using accelerator mass spectrometry

    SciTech Connect

    Aklamati, E K; Mulenga, M; Dueker, S R; Buchholz, B A; Peerson, J M; Kafwembe, E; Brown, K H; Haskell, M J

    2009-10-12

    A recent survey indicated that high-dose vitamin A supplements (HD-VAS) had no apparent effect on vitamin A (VA) status of Zambian children <5 y of age. To explore possible reasons for the lack of response to HD-VAS among Zambian children, we quantified the absorption, retention, and urinary elimination of either a single HDVAS (60 mg) or a smaller dose of stable isotope (SI)-labeled VA (5 mg), which was used to estimate VA pool size, in 3-4 y old Zambian boys (n = 4 for each VA dose). A 25 nCi tracer dose of [{sup 14}C{sub 2}]-labeled VA was co-administered with the HD-VAS or SI-labeled VA, and 24-hr stool and urine samples were collected for 3 and 7 consecutive days, respectively, and 24-hr urine samples at 4 later time points. Accelerator Mass Spectrometry (AMS) was used to measure the cumulative excretion of {sup 14}C in stool and urine 3d after dosing to estimate, respectively, absorption and retention of the VAS and SI-labeled VA. The urinary elimination rate (UER) was estimated by plotting {sup 14}C in urine vs. time, and fitting an exponential equation to the data. Estimates of mean absorption, retention and the UER were 83.8 {+-} 7.1%, 76.3 {+-} 6.7%, and 1.9 {+-} 0.6%/d, respectively, for the HD-VAS and 76.5 {+-} 9.5%, 71.1 {+-} 9.4%, and 1.8 {+-} 1.2%/d, respectively for the smaller dose of SI-labeled VA. Estimates of absorption, retention and the UER did not differ by size of the VA dose administered (P=0.26, 0.40, 0.88, respectively). Estimated absorption and retention were negatively associated with reported fever (P=0.011) and malaria (P =0.010). HD-VAS and SI-labeled VA were adequately absorbed, retained and utilized in apparently healthy Zambian preschool-age boys, although absorption and retention may be affected by recent infections.

  20. Effect of magnesium acetylacetonate on the signal of organic forms of vanadium in graphite furnace atomic absorption spectrometry.

    PubMed

    Kowalewska, Zofia; Welz, Bernhard; Castilho, Ivan N B; Carasek, Eduardo

    2013-01-15

    The aim of this work was to investigate the influence of magnesium acetylacetonate (MgA) on the signal of organic forms of vanadium in xylene solution by graphite furnace atomic absorption spectrometry. MgA alone or mixed with palladium acetylacetonate (PdA) was considered as a chemical modifier. It has been found that MgA does not improve, but decreases significantly the integrated absorbance of V in the form of alkyl-aryl sulfonates, acetylacetonates, porphyrins and in lubricating oils, while its effect is negligible in the case of "dark products" from petroleum distillation, i.e., heavy oil fractions and residues. The decrease is also observed in the presence of Pd. The MgA (or MgA+PdA) effect on the integrated absorbance of V has been studied using the following variants: different ways of modifier application, various pyrolysis temperature, additional application of air ashing, preliminary pretreatment with iodine and methyltrioctylammonium chloride, application of various graphite furnace heating systems (longitudinal or transverse) and various optical and background correction systems (medium-resolution line source spectrometer with deuterium background correction or high-resolution continuum source spectrometer). The experiments indicate formation of more refractory compounds as a possible reason for the decrease of the integrated absorbance for some forms of V in the presence of MgA. The application of MgA as a chemical modifier in V determination is not recommended. Results of this work have general importance as, apart from the intentional use of MgA as a modifier, organic Mg compounds, present in petroleum products for other reason (e.g. as an additive), can influence the signal of V compounds and hence the accuracy in V determination. Generally, petroleum products with known amount of V are recommended as standards; however, lubricating oils can be inadequate for "dark products" from petroleum distillation. In the case of unknown samples it is

  1. Extraction of full absorption peaks in airborne gamma-spectrometry by filtering techniques coupled with a study of the derivatives. Comparison with the window method.

    PubMed

    Guillot, L

    2001-01-01

    In this paper, an adaptation of a spectral profile analysis method, currently used in high-resolution spectrometry, to airborne gamma measurements is presented. A new algorithm has been developed for extraction of full absorption peaks by studying the variations in the spectral profile of data recorded with large-volume NaI detectors (16 l) with a short sampling time (2 s). The use of digital filters, taking into consideration the characteristics of the absorption peaks, significantly reduced the counting fluctuations, making detection possible based on study of the first and second derivatives. The absorption peaks are then obtained by modelling, followed by subtraction of the Compton continuum in the detection window. Compared to the conventional stripping ratio method, spectral profile analysis offers similar performance for the natural radioelements. The 137Cs 1SD detection limit is approximately 1200 Bq/m2 in a natural background of 200 Bq/kg 40K, 33 Bq/kg 238U and 33 Bq/kg 232Th. At low energy the very high continuum leads to detection limits similar to those obtained by the windows method, but the results obtained are more reliable. In the presence of peak overlaps, however, analysis of the spectral profile alone is not sufficient to separate the peaks, and further processing is necessary. Within the framework of environmental monitoring studies, spectral profile analysis is of great interest because it does not require any assumptions about the nature of the nuclides. The calculation of the concentrations from the results obtained is simple and reliable, since only the full absorption contributions are taken into consideration. A quantitative estimate of radioactive anomalies can thus be obtained rapidly.

  2. Speciation of nickel in airborne particulate matter by means of sequential extraction in a micro flow system and determination by graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry.

    PubMed

    Fuichtjohann, L; Jakubowski, N; Gladtke, D; Klocko, D; Broekaert, J A

    2001-12-01

    A four-stage sequential extraction procedure for the speciation of nickel has been applied to ambient aerosol samples. The determination of the soluble, sulfidic, metallic and oxidic Ni fractions in particulate matter was carried out by graphite furnace (electrothermal) atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). An EDTA solution, a mixture of diammonium citrate and hydrogen peroxide, and a KCuCl3 solution were used as leaching agents for the determination of the soluble, sulfidic and metallic species, respectively, and nitric acid was used for the determination of oxidic compounds after microwave digestion of particulate matter sampled on filters. A new micro scale filter holder placed in a closed flow injection analysis (FIA) system for use in nickel speciation by means of sequential extraction, and the results of the optimisation of the extraction conditions are described. The temperature program for ETAAS was optimised for all extraction solutions with the aid of temperature curves. Pyrolysis temperatures of 900. 600 and 1,000 degrees C were found to be optimum for EDTA, hydrogen peroxide plus ammonium citrate and KCuCl3-containing solutions, respectively. Airborne dust was sampled on lilters at two locations near to a metallurgical plant in Dortmund, Germany. Concentrations in the low ng m(-3) range down to the detections limits (0.1-0.3 ng m(-3)) and various nickel species were found to be present in the collected dust. The mean fractions of total nickel (sampling period of one month) were found to contain 36+20% of soluble, 6 +/- 4% of sulfidic, 11 +/- 15% of metallic and 48 +/- 18% of oxidic nickel.

  3. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    PubMed Central

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  4. Direct and simultaneous determination of Cr and Fe in crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Dittert, Ingrid M.; Silva, Jessee S. A.; Araujo, Rennan G. O.; Curtius, Adilson J.; Welz, Bernhard; Becker-Ross, Helmut

    2009-06-01

    A simple, fast and sensitive direct method for the simultaneous determination of Cr and Fe in crude oil samples is proposed using high-resolution continuum source graphite furnace atomic absorption spectrometry. No sample preparation is used except for a 10-minute homogenization in an ultrasonic bath. Aliquots of 0.1-4 mg of the samples are weighed onto solid sampling platforms and analyzed directly using aqueous standards for calibration. The simultaneous determination was possible because there is a secondary Fe line at 358.120 nm in the vicinity of the most sensitive Cr line at 357.868 nm, and both absorption lines were within the wavelength interval covered by the linear charge-coupled device array detector. It has also been of advantage that the sensitivity ratio between the two analytical lines corresponded roughly to the concentration ratio of the two elements found in crude oil, and that both analytes have very similar volatility, so that no compromises had to be made regarding pyrolysis and atomization temperatures. Two oil reference materials have been analyzed and the results were in agreement with the certified or reported values. Characteristic masses of 3.6 pg and 0.5 ng were obtained for Cr and Fe, respectively. The limits of detection (3 σ, n = 10) were 1 µg kg - 1 for Cr and 0.6 mg kg - 1 for Fe, and the precision, expressed as the relative standard deviation, ranged from 4 to 20%, which is often acceptable for a rapid direct analytical procedure. Five crude oils samples were analyzed.

  5. Analysis of bioethanol samples through Inductively Coupled Plasma Mass Spectrometry with a total sample consumption system

    NASA Astrophysics Data System (ADS)

    Sánchez, Carlos; Lienemann, Charles-Philippe; Todolí, Jose-Luis

    2016-10-01

    Bioethanol real samples have been directly analyzed through ICP-MS by means of the so called High Temperature Torch Integrated Sample Introduction System (hTISIS). Because bioethanol samples may contain water, experiments have been carried out in order to determine the effect of ethanol concentration on the ICP-MS response. The ethanol content studied went from 0 to 50%, because higher alcohol concentrations led to carbon deposits on the ICP-MS interface. The spectrometer default spray chamber (double pass) equipped with a glass concentric pneumatic micronebulizer has been taken as the reference system. Two flow regimes have been evaluated: continuous sample aspiration at 25 μL min- 1 and 5 μL air-segmented sample injection. hTISIS temperature has been shown to be critical, in fact ICP-MS sensitivity increased with this variable up to 100-200 °C depending on the solution tested. Higher chamber temperatures led to either a drop in signal or a plateau. Compared with the reference system, the hTISIS improved the sensitivities by a factor included within the 4 to 8 range while average detection limits were 6 times lower for the latter device. Regarding the influence of the ethanol concentration on sensitivity, it has been observed that an increase in the temperature was not enough to eliminate the interferences. It was also necessary to modify the torch position with respect to the ICP-MS interface to overcome them. This fact was likely due to the different extent of ion plasma radial diffusion encountered as a function of the matrix when working at high chamber temperatures. When the torch was moved 1 mm plasma down axis, ethanolic and aqueous solutions provided statistically equal sensitivities. A preconcentration procedure has been applied in order to validate the methodology. It has been found that, under optimum conditions from the point of view of matrix effects, recoveries for spiked samples were close to 100%. Furthermore, analytical concentrations for real

  6. Research on the self-absorption corrections for PGNAA of large samples

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Bo; Liu, Zhi; Chang, Kang; Li, Rui

    2017-02-01

    When a large sample is analysed with the prompt gamma neutron activation analysis (PGNAA) neutron self-shielding and gamma self-absorption affect the accuracy, the correction method for the detection efficiency of the relative H of each element in a large sample is described. The influences of the thickness and density of the cement samples on the H detection efficiency, as well as the impurities Fe2O3 and SiO2 on the prompt γ ray yield for each element in the cement samples, were studied. The phase functions for Ca, Fe, and Si on H with changes in sample thickness and density were provided to avoid complicated procedures for preparing the corresponding density or thickness scale for measuring samples under each density or thickness value and to present a simplified method for the measurement efficiency scale for prompt-gamma neutron activation analysis.

  7. Summary of gamma spectrometry on local air samples from 1985--1995

    SciTech Connect

    Winn, W.G.

    1997-04-02

    This report summarizes the 1985--1995 results of low-level HPGe gamma spectrometry analysis of high-volume air samples collected at the Aiken Airport, which is about 25 miles north of SRS. The author began analyzing these samples with new calibrations using the newly developed GRABGAM code in 1985. The air sample collections were terminated in 1995, as the facilities at the Aiken Airport were no longer available. Air sample measurements prior to 1985 were conducted with a different analysis system (and by others prior to 1984), and the data were not readily available. The report serves to closeout this phase of local NTS air sample studies, while documenting the capabilities and accomplishments. Hopefully, the information will guide other applications for this technology, both locally and elsewhere.

  8. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis.

    PubMed

    Yeung, Yee-Guide; Stanley, E Richard

    2010-02-01

    Detergents are required for the extraction of hydrophobic proteins and for the maintenance of their solubility in solution. However, the presence of detergents in the peptide samples severely suppresses ionization in mass spectrometry (MS) analysis and decreases chromatographic resolution in LC-MS. Thus, detergents must be removed for sensitive detection of peptides by MS. This unit describes a rapid protocol in which ethyl acetate extraction is used to remove octylglucoside from protease digests without loss of peptides. This procedure can also be used to reduce interference by sodium dodecyl sulfate, Nonidet P-40, or Triton X-100 in peptide samples for MS analysis.

  9. Determination of femtogram quantities of protactinium in geologic samples by thermal ionization mass spectrometry

    SciTech Connect

    Pickett, D.A.; Murrell, M.T.; Williams, R.W. )

    1994-04-01

    We describe a procedure for measurement of [sup 231]Pa in geologic samples by isotope dilution thermal ionization mass spectrometry, using [sup 233]Pa as a spike isotope, which provides marked improvements in precision and sample size relative to established decay counting techniques. This method allows determination of as little as a few tens of femtograms of [sup 231]Pa (approximately 10[sup 3] atoms) with a conservative estimated uncertainty of [+-]1% (95% confidence level). Applications of [sup 231]Pa-[sup 235]U systematics to uranium-series geochemistry and geochronology should be greatly enhanced by this approach. 31 refs., 4 figs., 1 tab.

  10. Selective cloud point extraction and graphite furnace atomic absorption spectrometric determination of molybdenum (VI) ion in seawater samples.

    PubMed

    Filik, Hayati; Cengel, Tayfun; Apak, Reşat

    2009-09-30

    A cloud point extraction process using the nonionic surfactant Triton X-114 to extract molybdenum from aqueous solutions was investigated. The method is based on the complexation reaction of Mo(VI) with 1,2,5,8-tetrahydroxyanthracene-9,10-dione (quinalizarine: QA) and micelle-mediated extraction of the complex. The enriched analyte in the surfactant-rich phase was determined by graphite furnace atomic absorption spectrometry (GFAAS). The optimal extraction and reaction conditions (e.g. pH, reagent and surfactant concentrations, temperature, incubation and centrifugation times) were evaluated and optimized. Under the optimized experimental conditions, the limit of detection (LOD) for Mo(VI) was 7.0 ng L(-1) with an preconcentration factor of approximately 25 when 10 mL of sample solution was preconcentrated to 0.4 mL. The proposed method (with extraction) showed linear calibration within the range 0.03-0.6 microg L(-1). The relative standard deviation (RSD) was found to be 3.7% (C(Mo(VI))=0.05 microg L(-1), n=5) for pure standard solutions, whereas RSD for the recoveries from real samples ranged between 2 and 8% (mean RSD=3.9%). The method was applied to the determination of Mo(VI) in seawater and tap water samples with a recovery for the spiked samples in the range of 98-103%. The interference effect of some cations and anions was also studied. In the presence of foreign ions, no significant interference was observed. In order to verify the accuracy of the method, a certified reference water sample was analysed and the results obtained were in good agreement with the certified values.

  11. Continuous ultrasound-assisted extraction coupled to a flow injection-flame atomic absorption spectrometric system for calcium determination in seafood samples.

    PubMed

    Moreno-Cid, A; Yebra, M C

    2004-05-01

    Calcium was extracted on-line from solid seafood samples by a simple and rapid continuous ultrasound-assisted extraction system. This system is connected to a flow injection manifold, which allows the on-line flame atomic absorption spectrometric determination of calcium. This method enables the analysis of solid samples avoiding time-consuming traditional sample preparation methods and their inherent errors. The on-line manifold for calcium determination is the simplest possible, because a volume of 250 microL of acid extract is injected into an ultrapure water carrier stream. The acid extract was diluted on-line with lanthanum, which also acts as masking agent in order to avoid chemical interferences. The continuous monitoring of the calcium signal was accomplished by flame atomic absorption spectrometry. A Plackett-Burman experimental design was used for the optimisation of the continuous leaching procedure. The method allowed a total sampling frequency of 40 samples per hour, with a relative standard deviation for the complete procedure of 0.9% (for a sample containing 3414.35 mg/kg calcium (dry mass)). The limit of detection was found to be 44.4 mg/kg (dry mass) for 5 mg of sample. The analytical procedure was applied to real seafood samples.

  12. Paper-capillary spray for direct mass spectrometry analysis of biofluid samples.

    PubMed

    Ren, Yue; Chiang, Spencer; Zhang, Wenpeng; Wang, Xiao; Lin, Ziqing; Ouyang, Zheng

    2016-02-01

    Paper spray has been developed as an ambient ionization method for direct analysis of biological samples using mass spectrometry. While distinct advantages of paper spray have been demonstrated, especially for quantitative analysis and design of disposable sample cartridges, the need for improvement has also been recognized, especially for the use with miniature mass spectrometers. In this study, we made an improvement to the sampling and ionization by adding a capillary emitter to the paper substrate to produce a paper-capillary spray, which has been shown to have significant, positive impact on the sensitivity and reproducibility for direct mass spectrometry analysis. The paper-capillary devices were fabricated and the effects of the geometry, the treatment of the capillary emitters, as well as the sample disposition methods were characterized. The method's analytical performance was also characterized for analysis of therapeutic drugs in blood samples. Quantitation of cotinine in blood using a commercial triple quadrupole and sitagliptin (Januvia®) in blood using a desktop Mini 12 ion trap mass spectrometer was also demonstrated.

  13. Quantitative Determination of Absolute Organohalogen Concentrations in Environmental Samples by X-ray Absorption Spectroscopy

    SciTech Connect

    Leri,A.; Hay, M.; Lanzirotti, A.; Rao, W.; Myneni, S.

    2006-01-01

    An in situ procedure for quantifying total organic and inorganic Cl concentrations in environmental samples based on X-ray absorption near-edge structure (XANES) spectroscopy has been developed. Cl 1s XANES spectra reflect contributions from all Cl species present in a sample, providing a definitive measure of total Cl concentration in chemically heterogeneous samples. Spectral features near the Cl K-absorption edge provide detailed information about the bonding state of Cl, whereas the absolute fluorescence intensity of the spectra is directly proportional to total Cl concentration, allowing for simultaneous determination of Cl speciation and concentration in plant, soil, and natural water samples. Absolute Cl concentrations are obtained from Cl 1s XANES spectra using a series of Cl standards in a matrix of uniform bulk density. With the high sensitivity of synchrotron-based X-ray absorption spectroscopy, Cl concentration can be reliably measured down to the 5-10 ppm range in solid and liquid samples. Referencing the characteristic near-edge features of Cl in various model compounds, we can distinguish between inorganic chloride (Cl{sub inorg}) and organochlorine (Cl{sub org}), as well as between aliphatic Cl{sub org} and aromatic Cl{sub org}, with uncertainties in the range of {approx}6%. In addition, total organic and inorganic Br concentrations in sediment samples are quantified using a combination of Br 1s XANES and X-ray fluorescence (XRF) spectroscopy. Br concentration is detected down to {approx}1 ppm by XRF, and Br 1s XANES spectra allow quantification of the Br{sub inorg} and Br{sub org} fractions. These procedures provide nondestructive, element-specific techniques for quantification of Cl and Br concentrations that preclude extensive sample preparation.

  14. Speciation of methyl- and butyltin compounds and inorganic tin in oysters by hydride generation atomic absorption spectrometry

    SciTech Connect

    Han, J.S.; Weber, J.H.

    1988-02-15

    Because of the toxicity of tributyltin originating from many antifouling marine paints, there is much concern about its effect on aquatic life and, particularly, on shellfish. This paper describes speciation of inorganic tin, methyltin compounds, and butyltin compounds from oyster samples. The authors validated the hydride generation atomic absorption spectrophotometric technique by demonstrating ca. 100% recovery from spiked samples and by the absence of any organotin decomposition products. Absolute detection limits (3sigma) are 1.1-2.5 ng for 0.1-g oyster samples (wet weight). This method is superior to published techniques because of careful validation, low limits of detection, and minimal sample manipulation.

  15. Fast arsenic speciation in water by on-site solid phase extraction and high-resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mihucz, Victor G.; Bencs, László; Koncz, Kornél; Tatár, Enikő; Weiszburg, Tamás; Záray, Gyula

    2017-02-01

    A method of high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS), combined with on-site separation/solid phase extraction (SPE) has been developed for the speciation of inorganic As (iAs) in geothermal and drinking water samples. The HR-CS-GFAAS calibration curves were linear up to 200 μg/L As, but using second order polynomial fitting, accurate calibration could be performed up to 500 μg/L. It has been demonstrated that sample pH should not be higher than 8 for an accurate speciation of As(V) with a recovery of ≈ 95%. Geothermal water had fairly high salt content (≈ 2200 mg/L) due to the presence of chlorides and sulfates at mg/L levels. Therefore, a two-fold dilution of these types of samples before SPE is recommended, especially, for total As determinations, when the As concentration is as high as 400 μg/L. For drinking water, sampled from public wells with records of As concentrations higher than the 10 μg/L in the past, the reduction of As contamination below the WHO's health limit value could be observed. However, the electrical conductivity was close to 2500 μS/cm, i.e., the guideline limit for drinking water, which was due to their higher chloride content. The proposed fit-for-purpose SPE-HR-CS-GFAAS method could be a candidate for screening drinking water quality.

  16. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.

    PubMed

    Karadaş, Cennet; Kara, Derya

    2017-04-01

    A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL(-1) for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials.

  17. Ultrasound-Assisted Emulsification Microextraction Based on Solidification Floating Organic Drop Trace Amounts of Manganese Prior to Graphite Furnace Atomic Absorption Spectrometry Determination

    PubMed Central

    Mohadesi, Alireza; Falahnejad, Masoumeh

    2012-01-01

    In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504

  18. Rapid leaching of Cr(VI) in soil with Na3PO4 in the determination of hexavalent chromium by electrothermal atomic absorption spectrometry.

    PubMed

    Mandiwana, Khakhathi L

    2008-01-15

    A method has been developed that leaches Cr(VI) selectively from soil samples. Hexavalent chromium was leached completely from soil with 0.01molL(-1) Na(3)PO(4). This was achieved by boiling the soil-reagent solution mixture for a period of 5min. The leached Cr(VI) was then quantified by electrothermal atomic absorption spectrometry (ET-AAS) after filtration of the sample solutions through Hydrophilic Millipore PVDF 0.45microm filter. Statistical evaluations indicated that the new developed method is reliable since neither its comparison with the established method nor the comparison of the sum of the concentrations of chromium species to that of the total concentration of chromium show any difference at 95% level of confidence. The spiking of soil samples with Cr(III) standards before pretreatment show that Cr(III) was not oxidized to Cr(VI) during leaching as the Cr(VI) content never increased. The detection limit established was 0.07microg g(-1), which is an improvement to that of the US EPA method 3060A by a factor of more than 500. The maximum concentrations of Cr(VI) found in soil samples collected around the new chromium mine was 8.0microg g(-1) and falls within acceptable level of 15microg g(-1) in accordance with the Italian Guidelines.

  19. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  20. High resolution Fourier transform spectrometry in emission and absorption in the visible and UV ranges

    NASA Astrophysics Data System (ADS)

    Luc, Paul

    1995-07-01

    This paper gives the main results obtained at Laboratoire Aimé Cotton, using Fourier transform spectroscopy (FTS) in the visible and UV ranges. After a rapid historical survey, a description of the fourth generation interferometer, which is specially designed to record visible and UV light will be given. Typical results in emission and absorption spectroscopy, including the metrological applications, will follow.

  1. Selective precipitation of potassium in seawater samples for improving the sensitivity of plain γ-ray spectrometry

    SciTech Connect

    Ferrante, Marco De Angelis, Francesco; Nisi, Stefano Laubenstein, Matthias

    2015-08-17

    An analytical method is presented to reduce the amount of {sup 40}K in sea water samples, in order to lower its interference in γ-ray analysis below 1.4 MeV due to the Compton continuum. Sodium tetraphenylborate was used to successfully precipitate {sup 40}K in the samples. A custom procedure for precipitation of potassium was developed and it was evaluated for its selectivity, reproducibility and efficiency, using conventional analytical techniques such as atomic absorption spectrophotometry and inductively coupled plasma mass spectrometry (ICP-MS). This work has shown that the selective precipitation of potassium with sodium tetraphenylborate has led to a decrease of detection limit of radio nuclides such as {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 137}Cs, {sup 134}Cs, {sup 133}I, {sup 134}I, {sup 60}Co in γ-analysis. In particular, the detection limit for nuclides with emissions in the energy window energy below 1400 keV is improved by almost one order of magnitude.

  2. Amino acid analysis in micrograms of meteorite sample by nanoliquid chromatography-high-resolution mass spectrometry.

    PubMed

    Callahan, Michael P; Martin, Mildred G; Burton, Aaron S; Glavin, Daniel P; Dworkin, Jason P

    2014-03-07

    Amino acids and their enantiomers in a 360 microgram sample of Murchison meteorite were unambiguously identified and quantified using chemical derivatization and nanoliquid chromatography coupled to nanoelectrospray ionization high resolution orbitrap mass spectrometry techniques. The distribution and abundance of amino acids were similar to past studies of Murchison meteorite but the samples used here were three orders of magnitude lower. The analytical method was also highly sensitive, and some amino acid reference standards were successfully detected at a level of ∼200 attomoles (on column). These results may open up the possibility for investigating other less studied, sample-limited extraterrestrial samples (e.g., micrometeorites, interplanetary dust particles, and cometary particles) for biologically-relevant organic molecules.

  3. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Chen, Hao

    2016-06-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.

  4. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    USGS Publications Warehouse

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  5. Temporal and spatial temperature distributions in transversely heated graphite tube atomizers and their analytical characteristics for atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Sperling, Michael; Welz, Bernard; Hertzberg, Joachim; Rieck, Christof; Marowsky, Gerd

    1996-07-01

    The important role which temperature plays in atomic absorption spectrometry (AAS) for the formation and detection of atoms in the absorption volume is discussed and the literature is reviewed. Non-homogeneous temperature distribution in the absorption volume is in contradiction to one of the prerequisites for the application of Beer's law used in AAS to convert absorbance into analyte concentration or mass, and is particularly troublesome for an "absolute analysis" envisaged for electrothermal atomic absorption spectrometry (ETAAS). Coherent anti-Stokes Raman scattering (CARS) is used to study the gas-phase temperature distribution in a state-of-the-art transversely heated graphite tube atomizer (THGA). The effect of the internal gas flow on the size of the heated atmosphere is studied by steady-state temperature measurements. Temporally and spatially resolved measurements make it possible to study the temperature field within the atomizer volume in all three dimensions during the rapid heating of the furnace to final temperatures in the range 2173-2673 K. The role of the integrated platform of the THGA on the temperature field is investigated by temperature measurements of the gas phase in the presence and absence of the platform. The platform is identified as the major source of temperature gradients inside the tube volume, which may be as high as 1000 K in the radial direction during rapid heating. These gradients are most pronounced for heating cycles starting at room temperature and gradually decrease with increasing starting temperature. Shortly after the tube wall reaches its final temperature, the gas-phase temperature equilibrates and approaches the wall temperature. Because of the unavoidable contact with the cold environment at the open ends of the tube, minor temperature gradients are observed in the gas phase also in longitudinal direction, which can be further reduced by restricting the openings with end caps. The results obtained for the THGA are

  6. The application of solid sorbents for the purification of aluminum contaminated chemicals used as modifiers in electrothermal atomic absorption spectrometry.

    PubMed

    Bulska, E; Pyrzyńska, K

    1996-06-01

    Various microcolumns with solid sorbents (ion exchange resins, functionalised cellulose sorbents, chelating resins) have been tested with respect to their ability for the purification of aluminum contaminated chemicals used as modifiers in electrothermal atomic absorption spectrometry. The purification of NaNO(3), Mg(NO(3))(2), K(2)SO(4) and (NH(4))(2)HPO(4) has been the most effective with an almost 100% efficiency, when Spheron-Oxine was used as chelating resin. The sorption of aluminum from KOH solution has been found to be very high (around 90%) for all investigated sorbents. However, the best results have been obtained with anion-exchange resins. It has been difficult to purify concentrated mineral acids (HCl, H(2)SO(4)). A retention of aluminum above 80% has been achieved only when Cellex P, Chelex 100 or Amberlite XAD-2 have been used.

  7. Diagnostics of reactive pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam Mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cunge, Gilles

    2011-10-01

    Pulsed plasmas are promising for etching applications in the microelectronic industry. However, many new phenomena are involved when a high density discharge is pulsed. To better understand these processes it is necessary to probe the radicals' kinetics with a microsecond resolution. We have developed several diagnostics to reach this goal including broad band absorption spectroscopy with UV LEDs to detect small polyatomic radicals and with a deuterium VUV source to detect larger closed shell molecules and the modulated mass spectrometry to monitor atomic species. We will discuss the impact of the plasma pulsing frequency and duty cycle on the radical densities in Cl2 based plasmas, and the consequences on plasma processes. Work done in collaboration with Paul Bodart, Melisa Brihoum, Maxime Darnon, Erwin Pargon, Olivier Joubert, and Nader Sadeghi, CNRS/LTM.

  8. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    SciTech Connect

    Barnett, J. Matthew; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-02-17

    Since the mid-1980s, Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as the correction factor for self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. This value accounts for activity that cannot be detected by direct counting of alpha and beta particles. Emissions can be degraded or blocked by filter fibers for particles buried in the filter material or by inactive dust particles collected with the radioactive particles. These filters are used for monitoring air emissions from PNNL stacks for radioactive particles. This paper describes an effort to re-evaluate self-absorption effects in particulate radioactive air sample filters (Versapor® 3000, 47 mm diameter) used at PNNL. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Filter ratios were calculated by dividing the initial counts by the post-digestion counts with the expectation that post-digestion counts would be higher because digestion would expose radioactivity embedded in the filter in addition to that on top of the filter. Contrary to expectations, the post digestion readings were almost always lower than initial readings and averaged approximately half the initial readings for both alpha and beta activity. Before and after digestion readings appeared to be related to each other, but with a low coefficient of determination (R^2) value. The ratios had a wide range of values indicating that this method did not provide sufficient precision to quantify self-absorption

  9. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry.

    PubMed

    Muramoto, Shin; Forbes, Thomas P; van Asten, Arian C; Gillen, Greg

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal intensity to the amount of drug deposited on the surface were generated from inkjet-printed arrays of cocaine, methamphetamine, and heroin with a deposited-mass ranging nominally from 10 pg to 50 ng per spot. These curves were used to construct concentration maps that visualized the spatial distribution of the drugs on top of a fingerprint, as well as being able to quantify the amount of drugs in a given area within the map. For the drugs on the fingerprint on silicon, ToF-SIMS showed great success, as it was able to generate concentration maps of all three drugs. On the fingerprint on paper, only the concentration map of cocaine could be constructed using ToF-SIMS and DESI-MS, as the signals of methamphetamine and heroin were completely suppressed by matrix and substrate effects. Spatially resolved quantification of illicit drugs using imaging mass spectrometry is possible, but the choice of substrates could significantly affect the results.

  10. Investigation of the transported heavy metal ions in xylem sap of cucumber plants by size exclusion chromatography and atomic absorption spectrometry.

    PubMed

    Mihucz, V G; Tatár, E; Kmethy, B; Záray, G; Cseh, E

    2000-07-15

    An 'off-line' high performance liquid chromatography-graphite furnace atomic absorption spectrometry (HPLC-GF-AAS) method using a size exclusion chromatography (SEC) column was developed to investigate heavy metal ions in xylem sap samples of cucumber plants grown in hydroponics containing iron as Fe(III)-ethylenediaminetetraacetate (Fe(III) EDTA), Fe(III) citrate or FeCl3 and exposed to lead, nickel or vanadium contamination. The SEC chromatogram of the samples contained the peak of nitrate ions (in significant concentration approximately 1400 microg/ml) and some small, unidentified compounds with molecular weight lower than 700 Da. The results indicate that Cu and Mn--which were added to the hydroponics as nutrient elements--determined in the collected fractions during the chromatographic runs are transported in the xylem vessels together with small inorganic ions like nitrate ions. In case of nickel other low-molecular weight compounds eluting earlier than the nitrate ions may take part in its transport toward the shoots. Lead could not be detected in the above mentioned fractions. Determination of vanadium in the fractions was not expected since it could not be detected in the sap samples.

  11. Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box Behnken design

    NASA Astrophysics Data System (ADS)

    Maranhão, Tatiane De A.; Martendal, Edmar; Borges, Daniel L. G.; Carasek, Eduardo; Welz, Bernhard; Curtius, Adilson J.

    2007-09-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 °C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 °C for Pb and 800 °C for Cd, using a graphite tube with a platform treated with 500 μg Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L- 1 for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%.

  12. Solid phase extraction of mercury on sulfur loaded with N-(2-chloro benzoyl)-N'-phenylthiourea as a new adsorbent and determination by cold vapor atomic absorption spectrometry.

    PubMed

    Pourreza, N; Parham, H; Kiasat, A R; Ghanemi, K; Abdollahi, N

    2009-06-15

    This paper reports sulfur powder loaded with N-(2-chloro benzoyl)-N'-phenylthiourea as a new solid phase extractor for determination of ultra trace amounts of mercury. The mercury ions were retained on a mini-column filled with the solid phase at a flow rate of 16 mL min(-1). The retained Hg(II) ions were eluted with 3 mol L(-1) solution of HCl and measured by cold vapor atomic absorption spectrometry (CV-AAS). The mercury vapors were generated by a homemade Reaction Cell-Gas Liquid Separator (RC-GLS). The effect of different variables such as pH, sample flow rate, amounts of ligand loaded on sulfur and SnCl2 concentration was investigated. Calibration curve was linear in the range of 0.02-1.20 microg L(-1) with r=0.9991 (n=8). The limit of detection (LOD) based on three times the standard deviation of the blank was 0.012 and 0.003 microg L(-1) when 250 and 1000 mL sample volumes were used, respectively. The relative standard deviation (R.S.D.) for determination of 0.04 and 1.00 microg L(-1) of Hg(II) was 3.9 and 1.2% (n=8), respectively. The method was successfully applied to determine Hg(II) in water and marine samples.

  13. Validated method for the determination of platinum from a liposomal source (SPI-77) in human plasma using graphite furnace Zeeman atomic absorption spectrometry.

    PubMed

    Meerum Terwogt, J M; Tibben, M M; Welbank, H; Schellens, J H; Beijnen, J H

    2000-02-01

    A sensitive analytical method based on flameless atomic absorption spectrometry with Zeeman correction has been validated for the quantitative determination in human plasma of platinum originating from cisplatin in a liposomal source, SPI-77. The performance of the method was acceptable over a sample concentration range of 0. 125-1.25 micromol platinum/L and the lower limit of quantification was determined to be 1.25 micromol platinum/L in undiluted clinical samples. The performance data of the assay were investigated using both a calibration curve with carboplatin in plasma ultrafiltrate and diluted human plasma samples spiked with SPI-77. The recoveries, between-day and the within-day precisions of both methods of calibration were not significantly different allowing carboplatin ultrafiltrate calibration standards to be used to quantify platinum derived from SPI-77 in human plasma. Apparently, the liposomal formulation had no significant influence on the determination of platinum. The usefulness of the presented method was demonstrated in a phase I clinical and pharmacokinetic study. In addition, in vitro experiments were carried out to determine the distribution of SPI-77 in blood. The results indicated that platinum from SPI-77 mainly concentrates in plasma and that binding to and/or endocytosis in red blood cells is negligible.

  14. Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Rivas, Ricardo E.; López-García, Ignacio; Hernández-Córdoba, Manuel

    2009-04-01

    A new procedure for the determination of inorganic arsenic (III,V) and antimony (III,V) in water samples by dispersive liquid-liquid micro extraction separation and electrothermal atomic absorption spectrometry (ETAAS) is presented. At pH 1, As(III) and Sb(III) are complexed with ammonium pyrrolidine dithiocarbamate and extracted into the fine droplets formed when mixing carbon tetrachloride (extraction solvent), methanol (disperser solvent) and the sample solution. After extraction, the phases are separated by centrifugation, and As(III) and Sb(III) are determined in the organic phase. As(V) and Sb(V) remain in the aqueous layer. Total inorganic As and Sb are determined after the reduction of the pentavalent forms with sodium thiosulphate. As(V) and Sb(V) are calculated by difference. The detection limits are 0.01 and 0.05 µg L - 1 for As(III) and Sb(III), respectively, with an enrichment factor of 115. The relative standard deviation is in the 2.9-4.5% range. The procedure has been applied to the speciation of inorganic As and Sb in bottled, tap and sea water samples with satisfactory results.

  15. Automatic kinetic bioaccessibility assay of lead in soil environments using flow-through microdialysis as a front end to electrothermal atomic absorption spectrometry.

    PubMed

    Cocovi-Solberg, David J; Rosende, Maria; Miró, Manuel

    2014-06-03

    In-line microdialysis is in this work hyphenated to electrothermal atomic absorption spectrometry via a dedicated flow-based interface for monitoring the batchwise leaching test endorsed by the Standards, Measurements and Testing Program (SM&T) of the European Commission. The bioaccessible pool of lead in soils is measured using 0.43 mol/L AcOH as extractant. The proposed method allows to gain knowledge of leaching kinetics at real-time, simplify the overall procedure by accurate detection of steady-state conditions and overcome sample filtration or centrifugation. Soil leachates were automatically sampled at specified timeframes (e.g, every 20 or 80 min), processed in an external container (where dilution can be applied at will) and further injected into the atomizer. The method was experimentally validated by comparison of in situ microdialysis sampling results with in-line microfiltration in two soils of varying physicochemical properties. A mathematical framework was used for discrimination of different metal fractions (that is, readily mobilizable against slowly mobilizable lead) and also for estimating the total extractable lead under actual steady-state conditions. We have demonstrated that bioaccessibility tests lasting 16 h as endorsed by SM&T might not suffice for ascertainment of maximum (steady-state) bioaccessibility of lead in terrestrial environments as demanded in risk assessment programs.

  16. Imidazole-Modified Nanoporous Silica for Lead Ion Solid Phase Extraction Prior to Determination from Industrial Wastewaters by Flame Atomic Absorption Spectrometry.

    PubMed

    Behbahani, Ali; Ardjmand, Mehdi

    2015-01-01

    A new method was applied to produce modified nanoporous silica as a novel sorbent for Pb(II) ion SPE from industrial wastewater samples. In this modified method, the produced nanoporous silica has a higher functional group loading, which leads to a higher preconcentration factor as well as a lower LOD. This modified nanoporous silica was used for preconcentration prior to subsequent determination of Pb(II) ions by flame atomic absorption spectrometry. Various parameters such as the eluent, pH of the sample solution, and flow rate were optimized during this work. Also, the effect of a variety of ions on preconcentration and recovery of Pb(II) ions was investigated. The LOD, defined as five times the SD of the blank, was determined to be lower than 0.1 mg/L with an RSD of <2%. The accuracy of the method was established by analyzing standard reference materials with certified Pb concentrations. Finally, the established method was successfully applied for determination of the Pb(II) ion concentration in industrial wastewater samples.

  17. Speciation of antimony(III) and antimony(V) by electrothermal atomic absorption spectrometry after ultrasound-assisted emulsification of solidified floating organic drop microextraction.

    PubMed

    Wen, Shengping; Zhu, Xiashi

    2013-10-15

    A simple, sensitive and efficient method of ultrasound-assisted emulsification of solidified floating organic drop microextraction (USE-SFODME) coupled to electrothermal atomic absorption spectrometry for the speciation of antimony at different oxidation state Sb(III)/Sb(V) in environmental samples was established. In this method, the hydrophobic complex of Sb(III) with sodium diethyldithiocarbamate (DDTC) is extracted by 1-undecanol at pH 9.0, while Sb(V) remains in aqueous phase. Sb(V) content can be calculated by subtracting Sb(III) from the total antimony after reducing Sb(V) to Sb(III) by l-cysteine. Various factors affecting USE-SFODME including pH, extraction solvent and its volume, concentration of DDTC, sonication time, and extraction temperature were investigated. Under the optimized conditions, the calibration curve was linear in the range from 0.05 to 10.0 ng mL(-1), with the limit of detection (3σ) 9.89 ng L(-1) for Sb(III). The relative standard deviation for Sb(III) was 4.5% (n=9, c=1.0 ng mL(-1)). This method was validated against the certified reference materials (GSB 07-1376-2001, GBW07441), and applied to the speciation of antimony in environmental samples (soil and water samples) with satisfactory results.

  18. Direct Mass Spectrometry Analysis of Biofluid Samples Using Slug Flow Microextraction NanoESI**

    PubMed Central

    Ren, Yue; McLuckey, Morgan N.; Liu, Jiangjiang; Ouyang, Zheng

    2015-01-01

    Direct mass spectrometry (MS) analysis of biofluids with simple procedures represents a key step in translation of MS technologies to the clinical and point-of-care applications. The current study reports the development of a single-step method using slug flow microextraction and nanoESI (electrospray ionization) for MS analysis of organic compounds in blood and urine. High sensitivity and quantitation precision have been achieved for analysis of therapeutic and illicit drugs in 5 μL samples. Real-time chemical derivatization has been incorporated for analyzing anabolic steroids. The monitoring of enzymatic functions has also been demonstrated with the cholinesterase in wet blood. PMID:25284028

  19. Pyrolysis-mass spectrometry/pattern recognition on a well-characterized suite of humic samples

    USGS Publications Warehouse

    MacCarthy, P.; DeLuca, S.J.; Voorhees, K.J.; Malcolm, R.L.; Thurman, E.M.

    1985-01-01

    A suite of well-characterized humic and fulvic acids of freshwater, soil and plant origin was subjected to pyrolysis-mass spectrometry and the resulting data were analyzed by pattern recognition and factor analysis. A factor analysis plot of the data shows that the humic acids and fulvic acids can be segregated into two distinct classes. Carbohydrate and phenolic components are more pronounced in the pyrolysis products of the fulvic acids, and saturated and unsaturated hydrocarbons contribute more to the humic acid pyrolysis products. A second factor analysis plot shows a separation which appears to be based primarily on whether the samples are of aquatic or soil origin. ?? 1985.

  20. Effect of sample compositions on chemical analysis using matrix-assisted laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schriemer, David; Dai, Yuqin; Li, Liang

    1996-11-01

    Matrix-assisted laser desorption ionization (MALDI) is an effective ionization technique for mass spectrometry. It take advantages of some unique properties of certain organic chemicals to provide entrapment, isolation, vaporization, and ionization of the analyte of interest. While the main application of the MALDI technique is currently in the area of biological molecule analysis, it is possible to use this technique for monitoring polymer chemistry such as degradation processes. This is potentially important for studying and developing environmentally degradable polymers. Direct analysis of the analyte in real-world samples is possible with MALDI. However, there is a significant effect of the overall composition of a sample on the detectability and performance of MALDI. Two examples are given to illustrate the positive and negative effects of buffers, salts, and additives on the MALDI sample preparation.

  1. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R E

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  2. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment.

    PubMed

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro

    2011-01-01

    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were <0.2-2.3 µg/L. The results of the present study indicated that the proposed method was suitable for determining bromate concentrations in drinking water without sample pretreatment.

  3. Joint Bounding of Peaks Across Samples Improves Differential Analysis in Mass Spectrometry-Based Metabolomics

    PubMed Central

    2017-01-01

    As mass spectrometry-based metabolomics becomes more widely used in biomedical research, it is important to revisit existing data analysis paradigms. Existing data preprocessing efforts have largely focused on methods which start by extracting features separately from each sample, followed by a subsequent attempt to group features across samples to facilitate comparisons. We show that this preprocessing approach leads to unnecessary variability in peak quantifications that adversely impacts downstream analysis. We present a new method, bakedpi, for the preprocessing of both centroid and profile mode metabolomics data that relies on an intensity-weighted bivariate kernel density estimation on a pooling of all samples to detect peaks. This new method reduces this unnecessary quantification variability and increases power in downstream differential analysis. PMID:28221771

  4. Determination of metals in composite diet samples by inductively coupled plasma-mass spectrometry.

    PubMed

    Melnyk, Lisa Jo; Morgan, Jeffrey N; Fernando, Reshan; Pellizzari, Edo D; Akinbo, Olujide

    2003-01-01

    A study was conducted to evaluate the applicability of inductively coupled plasma-mass spectrometry (ICP-MS) techniques for determination of metals in composite diets. Aluminum, cadmium, chromium, copper, lead, manganese, nickel, vanadium, and zinc were determined by this method. Atmospheric pressure microwave digestion was used to solubilize analytes in homogenized composite diet samples, and this procedure was followed by ICP-MS analysis. Recovery of certified elements from standard reference materials ranged from 92 to 119% with relative standard deviations (RSDs) of 0.4-1.9%. Recovery of elements from fortified composite diet samples ranged from 75 to 129% with RSDs of 0-11.3%. Limits of detection ranged from 1 to 1700 ng/g; high values were due to significant amounts of certain elements naturally present in composite diets. Results of this study demonstrate that low-resolution quadrupole-based ICP-MS provides precise and accurate measurements of the elements tested in composite diet samples.

  5. Direct solid sample analysis with graphite furnace atomic absorption spectrometry—a fast and reliable screening procedure for the determination of inorganic arsenic in fish and seafood.

    PubMed

    Zmozinski, Ariane V; Llorente-Mirandes, Toni; Damin, Isabel C F; López-Sánchez, José F; Vale, Maria Goreti R; Welz, Bernhard; Silva, Márcia M

    2015-03-01

    Direct solid sample analysis with graphite furnace atomic absorption spectrometry (SS-GF AAS) was investigated initially with the intention of developing a method for the determination of total As in fish and other seafood. A mixture of 0.1% Pd+0.06% Mg+0.06% Triton X-100 was used as the chemical modifier, added in solution over the solid samples, making possible the use of pyrolysis and atomization temperatures of 1200 °C and 2400 °C, respectively. The sample mass had to be limited to 0.25 mg, as the integrated absorbance did not increase further with increasing sample mass. Nevertheless, the recovery of As from several certified reference materials was of the order of 50% lower than the certified value. Strong molecular absorption due to the phosphorus monoxide molecule (PO) was observed with high-resolution continuum source AAS (HR CS AAS), which, however, did not cause any spectral interference. A microwave-assisted digestion with HNO3/H2O2 was also investigated to solve the problem; however, the results obtained for several certified reference materials were statistically not different from those found with direct SS-GF AAS. Accurate values were obtained using inductively coupled plasma mass spectrometry (ICP-MS) to analyze the digested samples, which suggested that organic As compounds are responsible for the low recoveries. HPLC-ICP-MS was used to determine the arsenobetaine (AB) concentration. Accurate results that were not different from the certified values were obtained when the AB concentration was added to the As concentration found by SS-GF AAS for most certified reference materials (CRM) and samples, suggesting that SS-GF AAS could be used as a fast screening procedure for inorganic As determination in fish and seafood.

  6. Minimum detectable activity concentration in direct alpha spectrometry from outdoor air samples: continuous monitoring versus separate sampling and counting.

    PubMed

    Pöllänen, R; Siiskonen, T

    2006-02-01

    Rapid method for identifying the presence of alpha particle emitting radionuclides in outdoor air is of paramount importance should a nuclear or radiological incident occur. Minimum detectable activity concentrations of U, U, Pu, and Pu in outdoor air are calculated for two direct alpha spectrometry methods: continuous air monitoring is compared with separate sampling and subsequent alpha particle counting in a vacuum chamber. The radon progeny activity concentration typical for outdoor air and the effects for the alpha particle spectra caused by the properties of the filter and the aerosol particles are taken into account using measurements and Monte Carlo simulations. Continuous air monitoring is a faster method for identifying the presence of (trans)uranium elements when their activity concentration is considerably higher than the typical detection limit. Separate sampling and counting in a vacuum chamber is a more sensitive method when concentrations are close to the detection limit and when the duration of the sampling-counting cycle is greater than approximately 2 h. The method may serve as a tool for rapid field measurements.

  7. Rapid determination of (237)Np in soil samples by multi-collector inductively-coupled plasma mass spectrometry and gamma spectrometry.

    PubMed

    Yi, Xiaowei; Shi, Yanmei; Xu, Jiang; He, Xiaobing; Zhang, Haitao; Lin, Jianfeng

    A radiochemical procedure is developed for the determination of (237)Np in soil with multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) and gamma-spectrometry. (239)Np (milked from (243)Am) was used as an isotopic tracer for chemical yield determination. The neptunium in the soil is separated by thenoyl-trifluoracetone extraction from 1 M HNO3 solution after reducing Np to Np(IV) with ferrous sulfamate, and then purified with Dowex 1 × 2 anion exchange resin. (239)Np in the resulting solution is measured with gamma-spectrometry for chemical yield determination while the (237)Np is measured with MC-ICP-MS. Measurement results for soil samples are presented together with those for two reference samples. By comparing the determined value with the reference value of the (237)Np activity concentration, the feasibility of the procedure was validated.

  8. Accelerator mass spectrometry of ultra-small samples with applications in the biosciences

    NASA Astrophysics Data System (ADS)

    Salehpour, Mehran; Håkansson, Karl; Possnert, Göran

    2013-01-01

    An overview is presented covering the biological accelerator mass spectrometry activities at Uppsala University. The research utilizes the Uppsala University Tandem laboratory facilities, including a 5 MV Pelletron tandem accelerator and two stable isotope ratio mass spectrometers. In addition, a dedicated sample preparation laboratory for biological samples with natural activity is in use, as well as another laboratory specifically for 14C-labeled samples. A variety of ongoing projects are described and presented. Examples are: (1) Ultra-small sample AMS. We routinely analyze samples with masses in the 5-10 μg C range. Data is presented regarding the sample preparation method, (2) bomb peak biological dating of ultra-small samples. A long term project is presented where purified and cell-specific DNA from various part of the human body including the heart and the brain are analyzed with the aim of extracting regeneration rate of the various human cells, (3) biological dating of various human biopsies, including atherosclerosis related plaques is presented. The average built up time of the surgically removed human carotid plaques have been measured and correlated to various data including the level of insulin in the human blood, and (4) In addition to standard microdosing type measurements using small pharmaceutical drugs, pre-clinical pharmacokinetic data from a macromolecular drug candidate are discussed.

  9. Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences.

    PubMed

    Goodwin, Richard J A

    2012-08-30

    Mass spectrometry imaging (MSI) enables the direct analysis of molecules from the surface of a wide variety of samples, allowing the multiplex measurement of both abundance and distribution of small molecules, lipids, peptides and proteins. As the technology has been refined an increasing number of ionization methods and mass analyzers has been used that enable increased spatial and spectral resolution measurements to be made at an increased speed. Alongside the instrumentation improvements there has been optimization of sample preparation procedures that allow the highest quality data to be obtained, reproducibly, from an ever increasing diversity of samples. This review will consider the development and standardization of sample preparation methods applicable to MSI, describing the stages and procedures undertaken from the instance of sample collection, through storage, preparation and on through final processing prior to analysis. Recent technical advancements will be highlighted and areas where further experimentation and optimization may well be required will be described. All aspects of the sample preparation pipeline will be considered in detail, with examples from the literature used to emphasize why rigorous sample preparation for MSI is vital to achieve the most accurate, reproducible and validated MSI data possible.

  10. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    NASA Astrophysics Data System (ADS)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  11. 210Pb and 210Po determination in environmental samples using liquid scintillation counting and alpha spectrometry

    NASA Astrophysics Data System (ADS)

    Pérez Sánchez, D.; Martin Sánchez, A.; Jurado Vargas, M.

    2003-01-01

    A simple radiochemical procedure has been developed to determine 210Pb and 210Po in environmental samples from the same matrix. Sediment samples are decomposed by leaching with mineral acids or by microwave digestion, while water samples are pre-concentrated. One part of the resulting solution, spiked with 209Po, is used for 210Po determination by spontaneous deposition onto nickel disks (α-spectrometry). The other part is assayed for 210Pb, separating the Pb either by anion-exchange (sediment samples), or by solvent extraction (water samples). The 210Pb source is finally prepared by precipitation as oxalate and the chemical recovery determined by gravimetry. The 210Pb activity concentration is determined by liquid scintillation. A standard sediment sample supplied by IAEA and spiked water samples were analysed to check the procedure. The 210Pb and 210Po measurements agreed well with the certifications, deviations being less than 10%. The mean recoveries for Pb and Po were (70±12)% and (77±8%) for sediments, and (70±10)% and (81±7)% for waters, respectively.

  12. An atomic-absorption method for the determination of gold in large samples of geologic materials

    USGS Publications Warehouse

    VanSickle, Gordon H.; Lakin, Hubert William

    1968-01-01

    A laboratory method for the determination of gold in large (100-gram) samples has been developed for use in the study of the gold content of placer deposits and of trace amounts of gold in other geologic materials. In this method the sample is digested with bromine and ethyl ether, the gold is extracted into methyl isobutyl ketone, and the determination is made by atomicabsorption spectrophotometry. The lower limit of detection is 0.005 part per million in the sample. The few data obtained so far by this method agree favorably with those obtained by assay and by other atomic-absorption methods. About 25 determinations can be made per man-day.

  13. Multi-element analysis of manganese nodules by atomic absorption spectrometry without chemical separation

    USGS Publications Warehouse

    Kane, J.S.; Harnly, J.M.

    1982-01-01

    Five manganese nodules, including the USGS reference nodules A-1 and P-1, were analyzed for Co, Cu, Fe, K, Mg, Mn, Na, Ni and Zn without prior chemical separation by using a simultaneous multi-element atomic absorption spectrometer with an air-cetylene flame. The nodules were prepared in three digestion matrices. One of these solutions was measured using sixteen different combinations of burner height and air/acetylene ratios. Results for A-1 and P-1 are compared to recommended values and results for all nodules are compared to those obtained with an inductively coupled plasma. The elements Co, Cu, Fe, K, Mg, Mn, Na, Ni, and Zn are simultaneously determined with a composite recovery for all elements of 100 ?? 7%, independent of the digestion matrices, heights in the flame, or flame stoichiometries examined. Individual recoveries for Co, K, and Ni are considerably poorer in two digests than this composite figure, however. The optimum individual recoveries of 100 ?? 5% and imprecisions of 1-4%, except for zinc, are obtained when Co, K, Mn, Na and Ni are determined simultaneously in a concentrated digest, and in another analytical sequence, when Cu, Fe, Mg, Mn and Zn are measured simultaneously after dilution. Determination of manganese is equally accurate in the two sequences; its measurement in both assures internal consistency between the two measurement sequences. This approach improves analytical efficiency over that for conventional atomic absorption methods, while minimizing loss of accuracy or precision for individual elements. ?? 1982.

  14. Automated combustion accelerator mass spectrometry for the analysis of biomedical samples in the low attomole range.

    PubMed

    van Duijn, Esther; Sandman, Hugo; Grossouw, Dimitri; Mocking, Johannes A J; Coulier, Leon; Vaes, Wouter H J

    2014-08-05

    The increasing role of accelerator mass spectrometry (AMS) in biomedical research necessitates modernization of the traditional sample handling process. AMS was originally developed and used for carbon dating, therefore focusing on a very high precision but with a comparably low sample throughput. Here, we describe the combination of automated sample combustion with an elemental analyzer (EA) online coupled to an AMS via a dedicated interface. This setup allows direct radiocarbon measurements for over 70 samples daily by AMS. No sample processing is required apart from the pipetting of the sample into a tin foil cup, which is placed in the carousel of the EA. In our system, up to 200 AMS analyses are performed automatically without the need for manual interventions. We present results on the direct total (14)C count measurements in <2 μL human plasma samples. The method shows linearity over a range of 0.65-821 mBq/mL, with a lower limit of quantification of 0.65 mBq/mL (corresponding to 0.67 amol for acetaminophen). At these extremely low levels of activity, it becomes important to quantify plasma specific carbon percentages. This carbon percentage is automatically generated upon combustion of a sample on the EA. Apparent advantages of the present approach include complete omission of sample preparation (reduced hands-on time) and fully automated sample analysis. These improvements clearly stimulate the standard incorporation of microtracer research in the drug development process. In combination with the particularly low sample volumes required and extreme sensitivity, AMS strongly improves its position as a bioanalysis method.

  15. Online coupling of electrochemical reactions with liquid sample desorption electrospray ionization-mass spectrometry.

    PubMed

    Li, Jiwen; Dewald, Howard D; Chen, Hao

    2009-12-01

    The combination of electrochemistry (EC) and mass spectrometry (MS) is a powerful analytical tool to study redox reactions. This work reports the online coupling of a thin-layer electrochemical flow cell with liquid sample desorption electrospray ionization mass spectrometry (DESI-MS) and its applications in investigating various electrochemical reactions of biological molecules such as oxidative formation and reductive cleavage of disulfide bonds and online derivatization of peptides/proteins. As a result of the direct sampling nature of DESI, several useful features of such a coupling have been found, including simple instrumentation, fast response time (e.g., 3.6 s in the case of dopamine oxidation), freedom to choose a favorable ionization mode of DESI or traditional electrolysis solvent systems, and the absence of background signal possibly resulting from ionization when the cell is off (e.g., in the case of dopamine oxidation). More importantly, with the use of this new coupling apparatus, three disulfide bonds of insulin were fully cleaved by electrolytic reduction and both the A and B chains of the protein were successfully detected online by DESI-MS. In addition, online tagging of free cysteine residues of peptides/proteins employing electrogenerated dopamine o-quinone can be performed. These revealed characteristics of the coupling along with examined electrochemical reactions suggest that EC/DESI-MS has good potential in bioanalysis.

  16. [Laser induced breakdown spectra of coal sample and self-absorption of the spectral line].

    PubMed

    Zhang, Gui-yin; Ji, Hui; Jin, Yi-dong

    2014-12-01

    The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd·YAG laser as radiation source. With the assignment of the spectral lines, it was found that besides the elements C, Si, Mg, Fe, Al, Ca, Ti, Na and K, which are reported to be contained in coal, the presented sample also contains trace elements, such as Cd, Co, Hf, Ir, Li, Mn, Ni, Rb, Sr, V, W, Zn, Zr etc, but the spectral lines corresponding to O and H elements did not appear in the spectra. This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher. The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent. Increasing laser energy further will make self-absorption more obvious. The presence of self-absorption can be attributed to two factors. One is the higher transition rate of K atoms, and the other is that the increase in laser intensity induces the enhancement of the particle number density in the plasma.

  17. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    SciTech Connect

    Fara, M.; Novak, F.

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  18. Mass Spectrometry-based characterization of endogenous peptides and metabolites in small volume samples

    PubMed Central

    Ong, Ta-Hsuan; Tillmaand, Emily G.; Makurath, Monika; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2015-01-01

    Technologies to assay single cells and their extracellular microenvironments are valuable in elucidating biological function, but there are challenges. Sample volumes are low, the physicochemical parameters of the analytes vary widely, and the cellular environment is chemically complex. In addition, the inherent difficulty of isolating individual cells and handling small volume samples complicates many experimental protocols. Here we highlight a number of mass spectrometry (MS)-based measurement approaches for characterizing the chemical content of small volume analytes, with a focus on methods used to detect intracellular and extracellular metabolites and peptides from samples as small as individual cells. MS has become one of the most effective means for analyzing small biological samples due to its high sensitivity, low analyte consumption, compatibility with a wide array of sampling approaches, and ability to detect a large number of analytes with different properties without preselection. Having access to a flexible portfolio of MS-based methods allows quantitative, qualitative, untargeted, targeted, multiplexed, spatially resolved investigations of single cells and their similarly scaled extracellular environments. Combining MS with on-line and off-line sample conditioning tools, such as microfluidic and capillary electrophoresis systems, significantly increases the analytical coverage of the sample’s metabolome and peptidome, and improves individual analyte characterization / identification. Small volume assays help to reveal the causes and manifestations of biological and pathological variability, as well as the functional heterogeneity of individual cells within their microenvironments and within cellular populations. PMID:25617659

  19. Validation of a mass spectrometry method to quantify oak ellagitannins in wine samples.

    PubMed

    García-Estévez, Ignacio; Escribano-Bailón, M Teresa; Rivas-Gonzalo, Julián C; Alcalde-Eon, Cristina

    2012-02-15

    Detection and individual quantification of oak wood ellagitannins in oak barrel aged red wine samples are difficult mainly due to their low levels and the similarity between their structures. In this work, a quantification method using mass spectrometry has been developed and validated to quantify wine ellagitannins after sample fractionation with a previously reported method. The use of an internal standard is a requirement to correct mass signal variability. (-)-Gallocatechin, among the different tested compounds, was the only one that proved to be a suitable internal standard making possible the accurate and individual quantification of the main oak wood ellagitannins. The developed methodology has been used to detect and quantify these ellagitannins in different Spanish commercial wines, proving its usefulness.

  20. Determination of uranium 238 in urine samples for workers in the phosphate industry using alpha spectrometry