Science.gov

Sample records for absorption spectrophotometry technique

  1. Computer programs for absorption spectrophotometry.

    PubMed

    Jones, R N

    1969-03-01

    Brief descriptions are given of twenty-two modular computer programs for performing the basic numerical computations of absorption spectrophotometry. The programs, written in Fortran IV for card input and output, are available from the National Research Council of Canada. The input and output formats are standardized to permit easy interfacing to yield more complex data processing systems. Though these programs were developed for ir spectrophotometry, they are readily modified for use with digitized visual and uv spectrophotometers. The operations covered include ordinate and abscissal unit and scale interconversions, ordinate addition and subtraction, location of band maxima and minima, smoothing and differentiation, slit function convolution and deconvolution, band profile analysis and asymmetry quantification, Fourier transformation to time correlation curves, multiple overlapping band separation in terms of Cauchy (Lorentz), Gauss, Cauchy-Gauss product, and Cauchy-Gauss sum functions and cell path length determination from fringe spacing analysis. PMID:20072266

  2. Electrothermal atomic absorption spectrophotometry of nickel in tissue homogenates

    SciTech Connect

    Sunderman, F.W. Jr.; Marzouk, A.; Crisostomo, M.C.; Weatherby, D.R.

    1985-01-01

    A method for analysis of Ni concentrations in tissues is described, which involves (a) tissue dissection with metal-free obsidian knives, (b) tissue homogenization in polyethylene bags by use by a Stomacher blender, (c) oxidative digestion with mixed nitric, sulfuric, and perchloric acids, and (d) quantitation of Ni by electrothermal atomic absorption spectrophotometry with Zeeman background correction. The detection limit for Ni in tissues is 10 ng per g, dry weight; the coefficient of variation ranges from 7 to 15%, depending on the tissue Ni concentration; the recovery of Ni added in concentration of 20 ng per g, dry weight, to kidney homogenates averages 101 +/- 8% (mean +/-SD). In control rats, Ni concentrations are highest in lung (102 +/- 39 ng per g, dry weight) and lowest in spleen (35 +/- 16 ng per g, dry wt.). In descending order of Ni concentrations, the tissues of control rats rank as follows: lung > heart > bone > kidney > brain > testis > fat > liver > spleen. In rats killed 24 h after sc injection of NiCl/sub 2/ (0.125 mmol per kg, body weight) Ni concentrations are highest in kidney (17.7 +/- 2.5 ..mu..g per g, dry weight) and lowest in brain (0.38 +/- 0.14 ..mu..g per g, dry weight). In descending order of Ni concentrations, the tissues of NiCl/sub 2/-treated rats rank as follows: kidney >> lung > spleen > testis > heart > fat > liver > bone > brain. The present method fills the need for an accurate, sensitive, and practical technique to determine tissue Ni concentrations, with stringent precautions to minimize Ni contamination during tissue sampling and processing. 35 references, 5 figures, 1 table.

  3. Electrothermal atomic absorption spectrophotometry of nickel in tissue homogenates.

    PubMed

    Sunderman, F W; Marzouk, A; Crisostomo, M C; Weatherby, D R

    1985-01-01

    A method for analysis of Ni concentrations in tissues is described, which involves (a) tissue dissection with metal-free obsidian knives, (b) tissue homogenization in polyethylene bags by use of a "Stomacher" blender, (c) oxidative digestion with mixed nitric, sulfuric, and perchloric acids, and (d) quantitation of Ni by electrothermal atomic absorption spectrophotometry with Zeeman background correction. The detection limit for Ni in tissues is 10 ng per g, dry weight; the coefficient of variation ranges from 7 to 15 percent, depending on the tissue Ni concentration; the recovery of Ni added in concentration of 20 ng per g, dry weight, to kidney homogenates averages 101 +/- 8 percent (mean +/- SD). In control rats, Ni concentrations are highest in lung (102 +/- 39 ng per g, dry weight) and lowest in spleen (35 +/- 16 ng per g, dry wt.). In descending order of Ni concentrations, the tissues of control rats rank as follows: lung greater than heart greater than bone greater than kidney greater than brain greater than testis greater than fat greater than liver greater than spleen. In rats killed 24 h after sc injection of NiCl2 (0.125 mmol per kg, body weight) Ni concentrations are highest in kidney (17.7 +/- 2.5 micrograms per g, dry weight) and lowest in brain (0.38 +/- 0.14 micrograms per g, dry weight). In descending order of Ni concentrations, the tissues of NiCl2-treated rats rank as follows: kidney much greater than lung greater than spleen greater than testis greater than heart greater than fat greater than liver greater than bone greater than brain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4037701

  4. Comparison of liposome entrapment parameters by optical and atomic absorption spectrophotometry.

    PubMed

    Yoss, N L; Popescu, O; Pop, V I; Porutiu, D; Kummerow, F A; Benga, G

    1985-01-01

    Methods for the complete characterization of liposomes prepared by ether-injection are described in detail. The validity of atomic absorption spectrophotometry for measuring markers of trapped volume was checked by comparative determinations of markers with established optical spectrophotometrical methods. The favorable results using atomic absorption spectrophotometry to quantitate the marker Mn2+ are of particular relevance as manganese ion is also the paramagnetic probe in n.m.r. measurements of water permeability of liposomes; our results indicate that in such measurements no other marker need be incorporated. PMID:3986305

  5. Teaching Beer's Law and Absorption Spectrophotometry with a Smart Phone: A Substantially Simplified Protocol

    ERIC Educational Resources Information Center

    Kuntzleman, Thomas S.; Jacobson, Erik C.

    2016-01-01

    A very simple protocol for teaching Beer's Law and absorption spectrophotometry using a smart phone is described. Materials commonly found in high school chemistry laboratories or even around the house may be used. Data collection and analysis is quick and easy. Despite the simple nature of the experiment, excellent results can be achieved.

  6. Uranium isotopes quantitatively determined by modified method of atomic absorption spectrophotometry

    NASA Technical Reports Server (NTRS)

    Lee, G. H.

    1967-01-01

    Hollow-cathode discharge tubes determine the quantities of uranium isotopes in a sample by using atomic absorption spectrophotometry. Dissociation of the uranium atoms allows a large number of ground state atoms to be produced, absorbing the incident radiation that is different for the two major isotopes.

  7. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    PubMed

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC. PMID:15910814

  8. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  9. Analysis of lithium in deep basalt groundwaters using graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Dill, J.A.; Marcy, A.D.

    1986-05-01

    Lithium is under consideration for use as a reactive (sorptive) tracer in experiments designed to provide information regarding natural attenuation processes in a basalt-groundwater environment. In support of these activities, background lithium concentrations in samples obtained from a variety of test horizons have been determined using graphite furnace atomic absorption spectrophotometry. Significant interference was observed in these determinations and was found to be due to the presence of silicate in the samples. It was found that these problems could be circumvented through the use of alkaline silicate or synthetic groundwater matrix modifiers. This matrix effect was examined in some detail. Results obtained using the graphite furnace were compared to results obtained using inductively coupled plasma atomic emission spectroscopy.

  10. Removal of iron interferences by solvent extraction for geochemical analysis by atomic-absorption spectrophotometry

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.

  11. Indirect determination of trace phenol in water by atomic-absorption spectrophotometry.

    PubMed

    Bo-Xing, X; Tong-Ming, X; Ming-Neng, S; Yu-Zhi, F

    1985-03-01

    An indirect method for determination of trace phenol in water by atomic-absorption spectrophotometry (AAS) is described. The phenol is brominated in acidic solution with KBrO(3)-KBr solution at room temperature. The excess of bromine is reacted with KI and the I(2) produced is extracted into cyclohexane and then reduced back to I(-) with ascorbic acid. The I(-) is then complexed with Cd(2+) in sulphuric acid medium and the complex extracted into MIBK. The extract is analysed by flame AAS for Cd (and hence indirectly for phenol). The linear concentration range for determination of phenol is 6 x 10(-7)-0.9 x 10(-5)M in aqueous solution. Several foreign ions and organic substances do not interfere. PMID:18963829

  12. Determination of butyltin metabolites in the mouse liver by flameless atomic absorption spectrophotometry.

    PubMed

    Uneo, S; Susa, N; Furukawa, Y

    1995-08-01

    A new analytical method for observation of the metabolic status of butyltin compounds in the mouse liver was devised by a combination of extraction, purification and separation followed by quantitative analysis of each butyltin compound. After the extraction of all tin compounds from liver homogenate with ethyl acetate, these compounds were purified by combination of the fractional extract with organic solvents and column chromatography. The purified fraction was also analyzed by thin-layer chromatography, identifying each tin compound from differences in mobility on a silica gel plate. The tin content in the each separated spot on the plates was measured by flameless atomic absorption spectrophotometry after extraction by acid treatment. About 90% of tin was recovered by this method from the liver of mice which had been administered tri- or dibutyltin compound orally. This method will be useful for quantification of each metabolic product formed from butyltin compounds in vivo. PMID:8519922

  13. Stability of low concentration calibration standards for graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Bass, D A; TenKate, L B

    1993-11-01

    Graphite furnace atomic absorption spectrophotometry (GFAAS) is used for determination of ultra-trace metals in environmentally important samples. In the generation of GFAAS calibration curves for many environmental applications, low concentration calibration standards must be prepared dally, as required by the Statement of Work (SOW) for the US Environmental Protection Agency (EPA) Contract Laboratory Program (CLP). This results in significant time and work for the analyst and significant cost to the Analytical Chemistry Laboratory (ACL) for chemicals and waste management. While EPA SW 846 is less prescriptive than the CLP SOW, ACL has been following the CLP guidelines because in-house criteria regarding the stability of GFAAS standards have not been established. A study was conducted to determine the stability of GFAAS standards for analytes commonly used in the ACL (single and mixed) as a function of time. Data were collected over nine months. The results show that GFAAS standards for Sb, Pb, Se, Ag, and TI are stable for a longer period of time than currently assumed by the CLP SOW. Reducing the frequency of preparing these standards will increase efficiency, decrease the handling of hazardous the quantity of hazardous waste generated, and decrease the quantity of hazardous substances to be ordered and stocked by the laboratory. These benefits will improve GFAAS analysis quality, reduce costs, enhance safety, and lower environmental concerns.

  14. Determination of chromium and molybdenum in medical foods by graphite furnace atomic absorption spectrophotometry.

    PubMed

    Phifer, E C

    1995-01-01

    Graphite furnace atomic absorption spectrophotometry was used to determine chromium and molybdenum in 7 medical foods from 5 manufacturers. Linear standard curves were obtained for both elements for concentrations between 5 and 25 ng/mL. Detection limits were 0.24 ng/mL for Cr and 0.67 ng/mL for Mo. Characteristic masses were 3.1 and 14.7 pg for Cr and Mo, respectively. No difference was detected between wet and dry ashing methods, and dry ashing was used to complete the study. The method was validated by assaying various National Institute of Standards and Technology standard reference materials. Analysis of these products for Cr and Mo were within certified values. One product was evaluated by this method for reproducibility (n = 5). Relative standard deviations were 6.8 and 4.8% for Cr and Mo, respectively. This product contained 0.31 +/= 0.02 micrograms Cr/g and 0.63 +/- 0.03 micrograms Mo/g. The remaining products contained 0.09-1.28 micrograms Cr/g and 0.07-2.3 micrograms Mo/g. Mean recovery values were 98 +/- 14% (n = 14) for Cr at spike levels of 0.20-1.89 micrograms/g and 102 +/- 24% (n = 10) for Mo at spike levels of 0.30-1.89 micrograms/g. PMID:8664588

  15. Quantification of minerals and trace elements in raw caprine milk using flame atomic absorption spectrophotometry and flame photometry.

    PubMed

    Singh, Mahavir; Yadav, Poonam; Garg, V K; Sharma, Anshu; Singh, Balvinder; Sharma, Himanshu

    2015-08-01

    This study reports minerals and trace elements quantification in raw caprine milk of Beetal breed, reared in Northern India and their feed, fodder & water using flame atomic absorption spectrophotometry and flame photometry. The mineral and trace elements' concentration in the milk was in the order: K > Ca > Na > Fe > Zn > Cu. The results showed that minerals concentration in caprine milk was lesser than reference values. But trace elements concentration (Fe and Zn) was higher than reference values. Multivariate statistical techniques, viz., Pearsons' correlation, Cluster analysis (CA) and Principal component analysis (PCA) were applied to analyze the interdependences within studied variables in caprine milk. Significantly positive correlations were observed between Fe - Zn, Zn - K, Ca - Na and Ca - pH. The results of correlation matrix were further supported by Cluster analysis and Principal component analysis as primary cluster pairs were found for Ca - pH, Ca - Na and Fe - Zn in the raw milk. No correlation was found between mineral & trace elements content of the milk and feed. PMID:26243956

  16. [Determination of nine mineral elements in hulless barley by ultraviolet spectrophotometry and flame atomic absorption spectrometry].

    PubMed

    Liu, Jin; Zhang, Huai-Gang

    2010-04-01

    The contents of nine mineral elements, including sulphur, zinc, calcium, magnesium, potassium, sodium, iron, copper and manganese in five hulless barley (Hordeum vulgare L. var. nudum Hook. f.) lines were determined by ultraviolet spectrophotometry and flames atomic absorption spectrometry (FAAS). For the determination of sulphur, the samples were dissolved by magnesia and anhydrous sodium carbonate at 250 degrees C for 0. 5 h and at 550 degrees C for 3 h in the muffle furnace, and then a certain amount of barium chloride was put into the sample solution for colorimetry of the UV-Vs spectrophotometer. For the determination of other eight mineral elements, all of the samples were dissolved by a kind of incinerating method: first, the sample was put into the muffle furnace at 250 degrees C for 0. 5 h and at 550 degrees C for 2.5 h, then two droplets of 50%HNO3 were distributed into each sample, and the last step was putting the sample into the muffle furnace at 550 degrees C for 0.5 h. And then all of the ash was dissolved by 50%HNO3 to 50 milliliter and determined by flames atomic absorption spectrometry. The precision, accuracy, repeatability and stability of the method were discussed too. The results showed that the relative standard deviations (RSD) were between 1.2% and 3.7%; The average recoveries were 97.44%-101.52% and the relative standard deviations (RSD) of sample determination were 1.3%-3.8%. The repeatability experiment showed that the relative standard deviations (RSD) were 2.6%-6.1%. And the content of each mineral element was the same after 24 hours; All these showed that the method has a good precision, accuracy, repeatability and stability. In all the hulless barley samples, the average contents were in the order of K > S > Mg > Ca > Fe > Na > Zn > Mn > Cu, and the contents of zinc, iron and manganese closely related to people's health were relatively higher than other crops. The data of the experiment could provide an accurate and credible evidence

  17. [Study on determination of eight metal elements in Hainan arecanut leaf by flame atomic absorption spectrophotometry].

    PubMed

    Liu, Li-yun; Wang, Ping; Feng, Mei-li; Dong, Zhi-guo; Li, Jie

    2008-12-01

    Arecanut is a sort of palm that is important economic crop for the farmers in Hainan province of China, wherein there are many kinds of metal elements such as K, Ca, Na, Mg, Fe, Mn, Cu, Zn etc. These elements are important nutrition for the growth of arecanut. It is very valuable to study on the content of these metal elements in arecanut leaf in terms of plant nutriology of arecanut. The arecanut leaf in Wangling county, Hainan province of China was sampled by diagonal-field-sampling method. Refering to other plant sample determination by FAAS, the detailed studies are done with different digestion and determination methods. In the present paper the effects of mixed acid of HNO3-HClO4 digestion method on determining the amount of metal elements in the arecanut leaf by FAAS is reported, and another one is incineration digestion method. FAAS method was established for the determination of K, Ca, Mg, Na, Fe, Mn, Cu and Zn The samples were incinerated or heated with HNO3-HClO4 (4:1). In the meantime, the optimum parameters of FAAS and effects of different digestion methods on the results were discussed. The recovery rate of standard addition is 98.36%-102.38% in the first method; RSD is 0.42%-2.328% (n=6); The recovery rate of standard addition is 99.22%-103.72% in the second method; RSD is 0.58%-1.283 (n=6). The metal amount determined by the first method is lower than the second method, the ratio is 0.9703-0.9934. The two methods are satisfied, but the latter is better. It is precise enough to common experiment to use flame atomic absorption spectrophotometry with digestion by incineration If the especially precise experiment is required, the digestion methods with mixed acid of HNO3-HClO4 may be introduced. The paper introduced methods dependable for determination of some metal elements in order to study on some nutrient effects of these metal elements in arecanut. PMID:19248529

  18. [Use of solubilization for the preparation of samples for determination of heavy metals in biological materials using atomic absorption spectrophotometry].

    PubMed

    Pfüller, U; Fuchs, V; Golbs, S; Ebert, E; Pfeifer, D

    1980-01-01

    Solubilisation was tested for its suitability to prepare organic samples for metal determination. Flameless atomic-absorption spectrophotometry was used as test method. Copper, manganese, zinc, and chromium levels were determined from various organ systems of Wistar rat, in response to "normal" feeding of pelletised standard feed. A comparison between experimentally established concentrations, on the one hand, and literature data, on the other, suggested that solubilisation was applicable with good success to the preparation of samples from which to determine reliable values, in ppm and ppb, of the above elements. PMID:7436671

  19. Determination of silver in soils, sediments, and rocks by organic-chelate extraction and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Ball, J.W.; Nakagawa, H.M.

    1971-01-01

    A useful method for the determination of silver in soil, sediment, and rock samples in geochemical exploration has been developed. The sample is digested with concentrated nitric acid, and the silver extracted with triisooctyl thiophosphate (TOTP) in methyl isobutyl ketone (MIBK) after dilution of the acid digest to approximately 6 M. The extraction of silver into the organic extractant is quantitative and not affected by the nitric acid concentration from 4 M to 8 M, or by different volumes of TOTP-MIBK. The extracted silver is stable and remains in the organic phase up to several days. The silver concentration is determined by atomic absorption spectrophotometry. ?? 1971.

  20. Comparison of four methods for digesting food samples for determination of trace levels of cadmium by flameless atomic absorption spectrophotometry

    SciTech Connect

    Cabanis, M.T.; Cassanas, G.; Cabanis, J.C.; Brun, S.

    1988-01-01

    The authors compared 4 digestion procedures, namely, sulfuric-nitric acid in an open flask, nitric acid under pressure, sulfuric-nitric acid with refluxing, and nitric-hydrochloric-peroxide with refluxing, for the determination of cadmium by flameless atomic absorption spectrophotometry in 3 foodstuffs: rice, beef, and cream cheese. The foodstuffs were homogenized and divided into several batches for analysis. The results were evaluated using a 2-way cross analysis of variance. The study revealed that the digestion procedure was a highly significant factor (P < 10/sup -4/) in the analysis of the 3 foods; whereas the nature of the foodstuffs was not significant for rice and meat and only slightly significant (P < 10/sup -2/) for cream cheese. When the foodstuffs were spiked with a known amount of cadmium, they observed a loss of the metal when the sulfuric-nitric acid procedure in an open flask and the nitric-hydrochloric-peroxide digestion procedure were used. Taken together, the results of the present study indicate that the choice of the reagents used for digestion of foodstuffs is a crucial factor for cadmium determination by flameless atomic absorption spectrophotometry.

  1. Measurement of aluminum in neuronal tissues using electrothermal atomization atomic absorption spectrophotometry

    SciTech Connect

    Pierson, K.B.; Evenson, M.A.

    1986-07-01

    Studies characterizing aluminum complexes isolated from neuronal tissues require accurate and precise techniques for aluminum measurement. A solution of 0.01 M nitric acid containing 0.2% Triton X-100 was the optimal diluent for aluminum measurement under the experimental conditions used. Three National Bureau of Standards Standard Reference Materials (SRM) were digested, and the aluminum concentration of each was measured with a Perkin-Elmer 503 atomic absorption spectrophotometer equipped with a Perkin-Elmer HGA 2100 controller. The calculated detection limit of aluminum was 120 pg using 15-..mu..L sample injections (8 ..mu..g/L). Aluminum concentrations present in citrus leaves (SRM 1572), pine needles (SRM 1575), and tomato leaves (SRM 1573) were 100 +- 12 (certified value, 92 +- 15), 522 +- 45 (certified value, 454 +- 30), and 1273 +- 112 (provisional value, 1200) ..mu..g/g, respectively. The within- and between-day precision had coefficients of variation for citrus leaves, pine needles, and tomato leaves of 18 and 12%, 6.3 and 8.6%, and 3.7 and 8.7%, respectively. Aluminum absorbance was enhanced at high pH values and by zinc.

  2. Determination of Pb in Biological Samples by Graphite Furnace Atomic Absorption Spectrophotometry: An Exercise in Common Interferences and Fundamental Practices in Trace Element Determination

    ERIC Educational Resources Information Center

    Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.

    2004-01-01

    An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…

  3. SINGLE-LABORATORY EVALUATION OF SW-846 METHODS 7090/7091 DETERMINATION OF BERYLLIUM BY FLAME AND FURNACE ATOMIC ABSORPTION SPECTROPHOTOMETRY

    EPA Science Inventory

    The results of a single-laboratory study of the 'Determination of Beryllium by Flame and Furnace Atomic Absorption Spectrophotometry', are described. The study examined the application of these two powerful beryllium detection methods to the analysis of selected liquid and solid ...

  4. Development of mixed-waste analysis capability for graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Bass, D.A.; TenKate, L.B.; Wroblewski, A.

    1995-03-01

    Graphite furnace atomic absorption spectrophotometer (GFAAS) are typically configured with ventilation to capture potentially toxic and corrosive gases emitted from the vaporization of sample aliquots. When radioactive elements are present, additional concerns (such as meeting safety guidelines and ALARA principles) must be addressed. This report describes a modification to a GFAAS that provides additional containment of vaporized sample aliquots. The modification was found to increase containment by a factor of 80, given expected operating conditions. The use of the modification allows more mixed-waste samples to be analyzed, permits higher levels of radioactive samples to be analyzed, or exposes the analyst to less airborne radioactivity. The containment apparatus was attached to a Perkin-Elmer Zeeman 5000 spectrophotometer for analysis of mixed-waste samples; however, it could also be used on other systems and in other applications where greater containment of vaporized material is desired.

  5. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of antimony by automated-hydride atomic absorption spectrophotometry

    USGS Publications Warehouse

    Brown, G.E.; McLain, B.J.

    1994-01-01

    The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.

  6. A simple instrument for ultraviolet-visible absorption spectrophotometry in high temperature molten salt media

    NASA Astrophysics Data System (ADS)

    Li, Jianzhong; Dasgupta, Purnendu K.

    2000-06-01

    An inexpensive (absorption spectroscopic studies in molten chloride salts. The spectrometer consists of a replaceable fused silica cell of 9×9 mm square exterior cross-section housed in a temperature-controlled ceramic tubular furnace of 13 mm inner diameter. Light communication to and from the cell occurs via a pair of 1 mm core silica-on-silica optical fibers from diametrically opposite sides. The light source is a pulsed xenon flash lamp and detection is accomplished by a photodiode array spectrometer card housed in a personal computer. The system has been operated up to temperatures of 950 °C. The effective spectral range is 280-650 nm at 900 °C; higher wavelengths can be accessed at lower operating temperatures. A spectral snapshot can be acquired in as little as 1 ms. With 1 s integration time, the intrinsic system noise level is ˜2×10-4 absorbance units. The system is compact and energy efficient. Applications of the system are demonstrated with spectral studies of some metal chloride systems in an equimolar sodium and potassium chloride eutectic.

  7. Determination of Copper by Graphite Furnace Atomic Absorption Spectrophotometry: A Student Exercise in Instrumental Methods of Analysis.

    ERIC Educational Resources Information Center

    Williamson, Mark A.

    1989-01-01

    Discusses a student exercise which requires the optimizing of the charring and atomization temperatures by producing a plot of absorbance versus temperature for each temperature parameter. Notes that although the graphite furnace atomic absorption spectroscopy technique has widespread industrial use, there are no published, structured experiments…

  8. Gold analysis by the gamma absorption technique.

    PubMed

    Kurtoglu, Arzu; Tugrul, A Beril

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement. PMID:12485656

  9. Absorption technique for OH measurements and calibration

    SciTech Connect

    Bakalyar, D.M.; James, J.V.; Wang, C.C.

    1982-08-15

    An absorption technique is described which utilizes a stabilized frequency-doubled tunable dye laser and a long-path White cell with high mirror reflectivities both in the red and UV. In laboratory conditions we have been able to obtain routinely a detection sensitivity of 3 parts in 10/sup 6/ over absorption paths <1 m in length and a detection sensitivity of approx.6 parts in 10/sup 5/ over an absorption path of the order of 1 km. The latter number corresponds to 3 x 10/sup 6/ OH molecules/cm/sup 3/, and therefore the technique should be particularly useful for calibration of our fluorescence instrument for OH measurements. However, the presence of atmospheric fluctuations coupled with intensity variation accompanying frequency scanning appears to degrade the detection sensitivity in outdoor ambient conditions, thus making it unlikely that this technique can be employed for direct OH monitoring.

  10. Absorption technique for OH measurements and calibration

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; James, J. V.; Wang, C. C.

    1982-01-01

    An absorption technique is described which utilizes a stabilized frequency-doubled tunable dye laser and a long-path White cell with high mirror reflectivities both in the red and UV. In laboratory conditions it has been possible to routinely obtain a detection sensitivity of 3 parts in 1,000,000 over absorption paths less than 1 m in length and a detection sensitivity of approximately 6 parts in 100,000 over an absorption path of the order of 1 km. The latter number corresponds to 3,000,000 OH molecules/cu cm, and therefore the technique should be particularly useful for calibration the fluorescence instrument for OH measurements. However, the presence of atmospheric fluctuations coupled with intensity variation accompanying frequency scanning appears to degrade the detection sensitivity in outdoor ambient conditions, thus making it unlikely that this technique can be employed for direct OH monitoring.

  11. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of chromium in water by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    McLain, B.J.

    1993-01-01

    Graphite furnace atomic absorption spectrophotometry is a sensitive, precise, and accurate method for the determination of chromium in natural water samples. The detection limit for this analytical method is 0.4 microg/L with a working linear limit of 25.0 microg/L. The precision at the detection limit ranges from 20 to 57 percent relative standard deviation (RSD) with an improvement to 4.6 percent RSD for concentrations more than 3 microg/L. Accuracy of this method was determined for a variety of reference standards that was representative of the analytical range. The results were within the established standard deviations. Samples were spiked with known concentrations of chromium with recoveries ranging from 84 to 122 percent. In addition, a comparison of data between graphite furnace atomic absorption spectrophotometry and direct-current plasma atomic emission spectrometry resulted in suitable agreement between the two methods, with an average deviation of +/- 2.0 microg/L throughout the analytical range.

  12. Aqueous complexation of citrate with neodymium(III) and americium(III): a study by potentiometry, absorption spectrophotometry, microcalorimetry, and XAFS.

    PubMed

    Brown, M Alex; Kropf, A Jeremy; Paulenova, Alena; Gelis, Artem V

    2014-05-01

    The aqueous complexation of Nd(III) and Am(III) with anions of citrate was studied by potentiometry, absorption spectrophotometry, microcalorimetry, and X-ray absorption fine structure (XAFS). Using potentiometric titration data fitting the metal-ligand (L) complexes that were identified for Nd(III) were NdHL, NdL, NdHL2, and NdL2; a review of trivalent metal-citrate complexes is also included. Stability constants for these complexes were calculated from potentiometric and spectrophotometric titrations. Microcalorimetric results concluded that the entropy term of complex formation is much more dominant than the enthalpy. XAFS results showed a dependence in the Debye-Waller factor that indicated Nd(iii)-citrate complexation over the pH range of 1.56-6.12. PMID:24619154

  13. Spectrophotometry of comets at optical wavelengths

    NASA Technical Reports Server (NTRS)

    Ahearn, M. F.

    1982-01-01

    Techniques for spectrophotometry of comets are discussed, and results are reviewed for line and continuum spectrophotometry of comets at optical wavelengths. The techniques considered include photographic spectroscopy and spectrophotometry, photoelectric spectrophotometry, and methods based on the use of image dissector scanners, Fourier-transform instruments, and Fabry-Perot spectrometers. Results are summarized for the study of cometary emission features due to C2, CN, CH, OH, NH, C3, NH2, O, H, CO(plus), and H2O(plus). Relative abundances of various species in comets are examined, along with continuum spectrophotometry of the nuclei, comas, and tails of comets.

  14. Matrix effects on the determination of manganese in geological materials by atomic-absorption spectrophotometry under different flame conditions

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1978-01-01

    Suppression caused by five of the seven matrix elements studied (Si, Al, Fe, Ca and Mg) was observed in the atomic-absorption determination of manganese in geological materials, when synthetic solutions and the recommended oxidizing air-acetylene flame were used. The magnitude of the suppression effects depends on (1) the kind and concentration of the interfering elements, (2) the type of acid medium, and (3) the concentration of manganese to be determined. All interferences noted are removed or alleviated by using a reducing nitrous oxide-acetylene flame. The atomic-absorption method using this flame can be applied to the determination of total and extractable manganese in a wide range of geological materials without interferences. Analyses of six U.S. Geological Survey rock standards for manganese gave results in agreement with the reported values. ?? 1978.

  15. Does the prior application of the field kit bullet hole testing kit 3 on a suspected bullet hole bias the analysis of atomic absorption spectrophotometry?

    PubMed

    Seltenhammer, Monika H; Fitzl, Christine; Wieser, Ingo; Binder, Reinhard; Paula, Pia; Risser, Daniele U

    2014-09-01

    Forensic ballistics is the study of bullet trajectory and consists of determining gunshot residue (GSR) to identify bullet holes. Among several highly sensitive methods, atomic absorption spectrophotometry (AAS) is employed to analyze GSR in the laboratory. However, it is sometimes necessary to identify bullet holes immediately at a crime scene. The purpose of this examination was to determine whether the use of the field test Bullet Hole Testing Kit 3 (BTK3) on a suspected bullet hole would influence the outcome of AAS-analysis: Three commonly encountered firearms (Glock17, Tokarev, and Colt) were fired at skin, wood, and cloth. AAS-analysis was performed with and without previous BTK3 application. The results clearly indicate that there is no significant interaction on the grounds of BTK3 use (BTK3 vs. no-BTK3 [kit_nokit] [Pb: p = 0.1309; Sb: p = 0.9111], material*kit_nokit [Pb: p = 0.5960; Sb: p = 0.9930], distance*kit_nokit [Pb: p = 0.4014; Sb: p = 0.9184], and firearm type*kit_nokit [Pb: p = 0.9662; Sb: p = 0.9885]); hence, applying this field kit does not falsify later AAS outcomes. PMID:25040851

  16. Comparison of Adsorbed Mercury Screening Method With Cold-Vapor Atomic Absorption Spectrophotometry for Determination of Mercury in Soil

    NASA Technical Reports Server (NTRS)

    Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.

    2000-01-01

    A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.

  17. Low-volume, high-sensitivity assay for cadmium in blood and urine using conventional atomic absorption spectrophotometry.

    SciTech Connect

    Cerny, E. A.; Bhattacharyya, M. H.; Biosciences Division

    2003-03-15

    An assay for cadmium in whole blood and urine using deuterium background-correction electrothermal atomic absorption spectroscopy (D2-ETAAS) was developed. Cadmium (in a 1- to 2-ml sample) was bound to 15 mg anion-exchange resin, interfering ions were removed in a 2-ml Bio-Spin column, and cadmium was extracted into 100 {mu}l 1 M nitric acid for analysis. Cadmium in the sample extract was concentrated 7-fold for blood and 10-fold for urine over the starting material. These steps produced cadmium atomic absorption traces with high signal to background ratios and allowed analysis against aqueous standards. At {approx}0.1 ng Cd/ml, mean intra- and interassay coefficients of variation were 11-12%. Cadmium recovery for 0.1 to 0.6 ng added cadmium was 107{+-}4% for blood and 94{+-}4% for urine (mean{+-}SE, n=3). The mean detection limit (mean + 3x SD of blank) was 0.008 ng/ml for blood and 0.003 ng/ml for urine. Samples from 'unexposed' animals including humans ranged from 0.051{+-}0.000 to 0.229{+-}0.035 ng/ml. Values were approximately 10-fold lower than those obtained by the method of Stoeppler and Brandt using Zeeman background-correction ETAAS. This new high-sensitivity, low-volume assay will be useful for epidemiological studies, even those involving children, and will provide a means to help determine the contribution of cadmium to disease incidence in the general population.

  18. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  19. Solubility of Lead Sulfate in Water and in Sodium Sulfate Solutions: An Experiment in Atomic Absorption Spectrophotometry.

    ERIC Educational Resources Information Center

    Lehman, Thomas A.; Everett, Wayne W.

    1982-01-01

    Describes a set of undergraduate laboratory experiments which provide experience in deuteration and derivatization procedures applied to infrared spectroscopy. Basic skills in vacuum-line technique are also taught while measuring infrared spectra of deuterated solid samples and demonstrating the value of derivatization as an aid to interpreting…

  20. Determination of total tin in geological materials by electrothermal atomic-absorption spectrophotometry using a tungsten-impregnated graphite furnace

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    An electrothermal atomic-absorption spectrophotometric method is described for the determination of total tin in geological materials, with use of a tungsten-impregnated graphite furnace. The sample is decomposed by fusion with lithium metaborate and the melt is dissolved in 10% hydrochloric acid. Tin is then extracted into trioctylphosphine oxide-methyl isobutyl ketone prior to atomization. Impregnation of the furnace with a sodium tungstate solution increases the sensitivity of the determination and improves the precision of the results. The limits of determination are 0.5-20 ppm of tin in the sample. Higher tin values can be determined by dilution of the extract. Replicate analyses of eighteen geological reference samples with diverse matrices gave relative standard deviations ranging from 2.0 to 10.8% with an average of 4.6%. Average tin values for reference samples were in general agreement with, but more precise than, those reported by others. Apparent recoveries of tin added to various samples ranged from 95 to 111% with an average of 102%. ?? 1984.

  1. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of low-level silver by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    Damrau, D.L.

    1993-01-01

    Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.

  2. An isotope technique for measuring lactose absorption

    PubMed Central

    Salmon, P. R.; Read, A. E.; McCarthy, C. F.

    1969-01-01

    Expired radiocarbon dioxide has been collected by a simple autotitration method following the ingestion of lactose-1-14C. With this method, which is suitable for clinical use, 12 subjects with alactasia have been readily separated from 24 normals, both groups being defined by strict criteria. This test, which may be used to measure the absorption of other sugars, is especially suitable for population surveys and may be used to investigate the distribution of disaccharidase deficiency. A further advantage is that false low readings resulting from rapid plasma clearance of absorbed sugar do not occur with this method although they may do so in up to one in three lactose tolerance tests, thereby overestimating the prevalence of alactasia. PMID:5810982

  3. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  4. In vivo gallbladder absorption: a new dual-isotope technique

    SciTech Connect

    Conter, R.L.; Porter-Fink, V.; Denbesten, L.; Roslyn, J.J.

    1986-10-01

    Available methods for measuring in vivo gallbladder absorption preclude the use of animals in which hepatic bile enters the gallbladder via accessory or aberrant channels. However, accessory bile ducts are present in many of the animal models currently used in gallstone research. The aim of this study, therefore, was to evaluate a new dual-isotope technique that corrects for accessory bile flow and to compare data on electrolyte and water absorption with those derived from the standard, single-isotope technique. Prairie dogs underwent gallbladder exclusion by cystic duct ligation and common bile duct cannulation. Carbon 14-polyethylene glycol-labeled lactated Ringer's solution was instilled into the gallbladder while tritiated cholic acid was administered intravenously to label the bile acid pool. There is no correlation between water or electrolyte absorption and time, nor between water and electrolyte absorption, when these parameters are calculated by the standard, single-isotope technique. In contrast, use of the dual-isotope technique quantifies accessory bile duct flow and yields a linear increase in water and electrolyte absorption, both of which are time dependent. These data suggest that the dual-isotope technique provides a means to accurately measure in vivo gallbladder absorption in animals with or without accessory bile ducts.

  5. Tone-burst technique measures high-intensity sound absorption

    NASA Technical Reports Server (NTRS)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  6. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    SciTech Connect

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.; Keller, J.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, which is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.

  7. High reflector absorptance measurements by the surface thermal lensing technique

    SciTech Connect

    Chow, R.; Taylor, J.R.; Wu, Z.L.; Krupka, R.; Yang, T.

    1996-11-01

    Surface thermal lensing is an alternate configuration of a photothermal deflection system that was used to measure low levels of optical absorption. The thermal lensing configuration facilitated the alignment of the pump and probe laser beams by using a larger diameter probe beam. This technique was applied to high performance optical coatings, specifically high reflectors at 511 nm, zero degrees angle of incidence. The absorptance of these coatings was previously measured using a high power copper vapor laser system. A high power copper laser beam is focused onto a -2 mm diameter spot. A thermal camera senses the temperature rise with respect to the rest of the coating. The temperature change, power density and beam diameter were used with an empirical formula that yields optical absorption. The surface thermal lensing technique was able to resolve absorption levels lower than that achieved with the copper laser method.

  8. REMOTE MONITORING OF GASEOUS POLLUTANTS BY DIFFERENTIAL ABSORPTION LASER TECHNIQUES

    EPA Science Inventory

    A single-ended laser radar (LIDAR) system was designed, built, and successfully operated to measure range-resolved concentrations of NO2, SO2, and O3 in the atmosphere using a Differential Absorption of Scattered Energy (DASE) LIDAR technique. The system used a flash-lamp pumped ...

  9. Multi-filter spectrophotometry simulations

    NASA Technical Reports Server (NTRS)

    Callaghan, Kim A. S.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    To complement both the multi-filter observations of quasar environments described in these proceedings, as well as the proposed UBC 2.7 m Liquid Mirror Telescope (LMT) redshift survey, we have initiated a program of simulated multi-filter spectrophotometry. The goal of this work, still very much in progress, is a better quantitative assessment of the multiband technique as a viable mechanism for obtaining useful redshift and morphological class information from large scale multi-filter surveys.

  10. New analytical technique for carbon dioxide absorption solvents

    SciTech Connect

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive index models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.

  11. [Determination of total mercury in water samples, sediments and solids in suspension in aquatic systems by cold-vapor atomic absorption spectrophotometry].

    PubMed

    Vieira, J L; Passarelli, M M

    1996-06-01

    The use of metallic mercury in the extraction and concentration of gold causes the discarding of tons of this metal in the environment, leading to a considerable increase in the natural levels of the same and the contamination of the surrounding areas. Thus it is extremely important to monitor the presence of this metal in various sectors of the environment with a view aiming to preventing human exposure to excessive concentrations which can result in serious episodes of mercury poisoning. It is also important to estimate the possibility of river sediments becoming potential sources of contamination of human beings. The determination of total mercury was undertaken by using cold vapor atomic absorption spectrometry. River waters, as well as sediments and suspended solids were used as samples for the standardization of the analytical procedure. Later on, this method was tested on samples originating in gold mining areas for the purpose of assessing its validity. PMID:9110471

  12. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  13. Determination of the reduced sulfur species in the anoxic zone of the Black Sea: A comparison of the spectrophotometry and iodometry techniques

    NASA Astrophysics Data System (ADS)

    Dubinin, A. V.; Demidova, T. P.; Kremenetskii, V. V.; Kokryatskaya, N. M.; Rimskaya-Korsakova, M. N.; Yakushev, E. V.

    2012-04-01

    The report presents the results of the studies of the reduced sulfur species in the water of the anoxic zone of the Black Sea. The content of hydrogen sulfide was determined by means of spectrophotometry using dilution with oxygen-free distilled water. The detection limit of the H2S amounted to 0.3 μM with the method's precision below 3%. The accuracy of the spectrophotometric determination was verified by iodometry after the fixation of the hydrogen sulfide in zinc acetate under the distillation with argon from the acidified seawater sample.

  14. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  15. Spectrophotometry: Past and Present

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.

    2009-01-01

    I describe the rise of optical region spectrophotometry in the 1960's and 1970's when it achieved a status as a major tool in stellar research through its decline and near demise at present. With absolutely calibrated fluxes and Balmer profiles usually of H-gamma, astronomers used model atmospheres predictions to find both the effective temperatures and surface gravities of many stars. Spectrophotometry as I knew it was photometrically calibrated low dispersion spectroscopy with a typical resolution of order 25 A. A typical data set consists of 10 to 15 values covering most of the optical spectral region. The strengths and shortcomings of the rotating grating scanners are discussed. The accomplishments achieved using spectrophotometric data, which were obtained with instruments using photomultipliers, are reviewed. Extensions to other spectral regions are noted and attempts to use observations from space to calibrate the optical region will be discussed. There are two steps to fully calibrate flux data. The first requires the calibration of the fluxes of one or more standard stars against sources calibrated absolutely in a laboratory. The use of Vega as the primary standard has been both a blessing as it is so bright and a curse especially as modeling it correctly requires treating it as a fast rotating star seen nearly pole-on. At best its calibration has errors of about 1%. The other step is to apply extinction corrections for the Earth's atmosphere and then calibrate the fluxes using the fluxes of standard stars. Now the ASTRA Spectrophotometer promises a revitalization of the use and availability of optical flux data. Its design specifications included solutions to the problems of past optical spectrophotometric instruments.

  16. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.

    2011-11-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  17. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.

    2012-01-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  18. Differential optical absorption techniques for diagnostics of coal gasification. Technical progress report, April-June 1983

    SciTech Connect

    Not Available

    1983-08-01

    The application of differential optical absorption (DOA) techniques for the in-situ determination of the chemical composition of coal gasification process streams is investigated. Absorption spectra of relevant molecular species and the temperature and pressure effects on DOA-determined spectral characteristics of these species will be determined and cataloged. A system will be configured, assembled, and tested. 10 references, 1 figure.

  19. Absorption measurement of thin films by using photothermal techniques: The influence of thermal properties

    SciTech Connect

    Wu, Z.L.; Kuo, P.K.; Thomas, R.L.; Fan, Z.X.

    1995-12-31

    Photothermal techniques are widely used for measuring optical absorption of thin film coatings. In these applications the calibration of photothermal signal is typically based on the assumption that the thermal properties of the thin film make very little contribution. In this paper we take mirage technique as an example and present a detailed analysis of the influence of thin film thermal properties on absorption measurements. The results show that the traditional calibration method is not valid on surprisingly many situations.

  20. High-Sensitivity Spectrophotometry.

    ERIC Educational Resources Information Center

    Harris, T. D.

    1982-01-01

    Selected high-sensitivity spectrophotometric methods are examined, and comparisons are made of their relative strengths and weaknesses and the circumstances for which each can best be applied. Methods include long path cells, noise reduction, laser intracavity absorption, thermocouple calorimetry, photoacoustic methods, and thermo-optical methods.…

  1. Intestinal radiocalcium absorption in the goat: measurement by a double-isotope technique.

    PubMed

    Hove, K

    1984-01-01

    Intestinal radiocalcium absorption was measured in goats by a double-isotope technique involving injection of 45CaCl2 intravenously and 47CaCl2 into the abomasum. Cumulative absorption of radiocalcium was calculated by deconvolution analysis form curves of plasma radioactivity. Repeated measurements at 2 d intervals gave highly reproducible results (r 0.94, P less than 0.001). No systematic difference between two consecutive measurements was observed. A good agreement between absorption of radiocalcium from simultaneously administered 47CaCl2 and 45Ca-labelled hay (r 0.93, P less than 0.001) seems to justify the use of inorganic 47Ca as a tracer for Ca in ruminant diets. Two- to three-fold increases in radiocalcium absorption 48 h after oral treatment with 1,25-dihydroxycholecalciferol or leaves of Solanum malacoxylon showed the usefulness of the method in situations of rapidly changing Ca absorption. Endogenous adaptations in intestinal radiocalcium absorption from 20 to 43% were observed in lactating goats when Ca intakes decreased from 12 to 4 g/d. It is concluded that the double-isotope technique is a suitable method for studies of Ca absorption in ruminants when tracer is introduced into the abomasum. The test is completed in 3-4 h and may therefore be used in situations where the absorption of Ca undergoes rapid changes. PMID:6546295

  2. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry.

    PubMed

    Kunze, K; Zybin, A; Koch, J; Franzke, J; Miclea, M; Niemax, K

    2004-12-01

    Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur. PMID:15561625

  3. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    PubMed Central

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2015-01-01

    This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539

  4. Infrared Spectrophotometry of PHOBOS

    NASA Astrophysics Data System (ADS)

    Rivkin, A. S.; Trilling, D. E.; Plassmann, J. H.; Brown, R. H.; Bell, J. F., III

    1999-09-01

    We have obtained multispectral images of both the leading and trailing sides of Phobos from the IRTF at 10 wavelengths in the 1.65--3.5 mu m region. The observations were made on 26 April 1999 (UT), with the Cold Coronagraph (CoCo) on NSFCAM. The coronagraph effectively removes the scattered light of Mars from our observations. We find no evidence for a 3-mu m absorption feature (indicative of water of hydration) to within 5-10% on either hemisphere. This finding increases the likelihood that the unexpectedly low density of Phobos found by Viking and the Phobos 2 spacecraft is due to macroporosity effects (as suggested by Avanesov et al. Plan. Space Sci. 1991), among others) rather than compositional effects, since the spectral signature of plausible lower-density materials such as hydrated minerals and water ice have not been found. This is similar to the situation for 253 Mathilde, where the NEAR spacecraft encounter found a low density (Yeomans et al. Science 1997) while Rivkin et al. (Icarus 1997) found an anhydrous surface mineralogy, leading to an interpretation that macroporosity effects were important. The work of Murchie and Erard (Icarus 1996), using data from the Phobos 2 spacecraft, showed that Phobos could be separated into different geological units, based on color and morphology. The fresher areas associated with Stickney crater are bluer in color than the ``background'' areas. For comparison with this work, the ``blue'' unit dominates the leading hemisphere, the ``red'' unit the trailing hemisphere. In the 1.65--3.5 mu m region, we find the two hemispheres to have virtually identical spectra. When connected to visible spectra of Phobos (Murchie and Erard, among others), the leading hemisphere has strong similarities to T-class asteroid spectra. The spectrum of the trailing hemisphere resembles mature lunar soils more closely than any asteroid class.

  5. Microwave resonance lamp absorption technique for measuring temperature and OH number density in combustion environments

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.

    1988-01-01

    A simple technique for simultaneous determination of temperature and OH number density is described, along with characteristic results obtained from measurements using a premixed, hydrogen air flat flame burner. The instrumentation is based upon absorption of resonant radiation from a flowing microwave discharge lamp, and is rugged, relatively inexpensive, and very simple to operate.

  6. Sandwich concept: enhancement for direct absorption measurements by laser-induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Bublitz, S.; Paa, W.

    2012-11-01

    The new sandwich concept for absolute photo-thermal absorption measurements using the laser induced deflection (LID) technique is introduced and tested in comparison to the standard LID concept. The sandwich concept's idea is the decoupling of the optical materials for the pump and probe beams by placing a sample of investigation in between two optical (sandwich) plates. The pump beam is guided through the sample whereas the probe beams are deflected within the sandwich plates by the thermal lens that is generated by heat transfer from the irradiated sample. Electrical simulation and laser experiments reveal that using appropriate optical materials for the sandwich plates, the absorption detection limit for photo-thermally insensitive materials can be lowered by up to two orders of magnitude. Another advantage of the sandwich concept, the shrinking of the currently required minimum sample size, was used to investigate the laser induced absorption change in a Nd:YVO4 crystal at 1030nm. It was found that the absorption in Nd:YVO4 lowers due to the laser irradiation but partially recovers during irradiation breaks. Furthermore, absorption spectroscopy has been performed at two LBO crystals in the wavelength range 410...600nm to study the absorption structure around the SHG wavelengths of common high power lasers based on Neodymium doped laser crystals.

  7. A new technique to assess dermal absorption of volatile chemicals in vitro by thermal gravimetric analysis.

    PubMed

    Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar

    2006-10-01

    Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin. PMID:16631342

  8. Measurement of nanofluids absorption coefficient by Moiré deflectometry technique

    NASA Astrophysics Data System (ADS)

    Madanipour, Khosro; Koohian, Ataollah; Shahrabi Farahani, Shahrzad

    2015-05-01

    Nanoparticles exhibit many unique and interesting optical properties which make them very useful in biomedical applications. In order to employ NPs for disease treatment, comprehensive knowledge of their important properties is crucial. One of these parameters is absorption coefficient. In this work, absorption coefficient of a nanofluid (Au nanoparticles in water) is measured by using Moiré deflectometry technique. Two laser beams are used: a comparatively high intensity laser beam as interacting beam and a low intensity as a probe beam. This method is fast, easy and nonscanning, also insensitive to vibrations.

  9. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  10. X-ray phase imaging using a Gd-based absorption grating fabricated by imprinting technique

    NASA Astrophysics Data System (ADS)

    Yashiro, Wataru; Kato, Kosuke; Sadeghilaridjani, Maryam; Momose, Atsushi; Shinohara, Takenao; Kato, Hidemi

    2016-04-01

    A high-aspect-ratio absorption grating with a pitch of several µm is a key component of X-ray grating interferometery, which is an X-ray phase imaging technique that allows for highly sensitive X-ray imaging with a compact laboratory X-ray source. Here, we report that X-ray phase imaging was successfully performed at 15 keV by using a 23 ± 1-µm-height, 9-µm-pitch absorption grating (10 × 10 mm2) based on Gd (Gd60Cu25Al15) fabricated by a metallic glass imprinting technique. The imprinting technique is cost-efficient and has a high-production rate, and will be widely used for fabricating gratings not only for X-rays but also neutrons in the near future.

  11. Optical absorption depth profiling of photodegraded poly(vinylchloride) (PVC) films by quantitative photothermal deflection technique

    NASA Astrophysics Data System (ADS)

    Fu, S.-W.; Power, J. F.; Nepotchatykh, O. V.

    2000-05-01

    An improved photothermal beam deflection technique is applied for optical absorption depth profiling of UV photodegraded PVC films, for nondestructive evaluation of their decomposition mechanism. A new model-based on diffraction theory is used to describe the photothermal response (with bicell recording), induced by impulse irradiation of a depth dependent array of thin planar optical absorbers approximating the sample's depth profile. Improved techniques of alignment, sample preparation and quantitative deconvolution of the bicell impulse response have increased the signal repeatability and reduced the principal bias errors affecting this ill posed problem. By this technique and a stable solution of the inverse problem, the absorption coefficient depth profile is accurately reconstructed in PVC films. Experimental depth profiles were confirmed against destructive techniques run on identical samples of the degraded material. An excellent agreement was found between depth profiles recovered using the mirage effect and these reference methods. Observed absorption profiles were fully consistent with known patterns of depth dependent PVC degradation under nitrogen and oxygen atmospheres.

  12. Absorption-edge transmission technique using Ce- 139 for measurement of stable iodine concentration.

    PubMed

    Sorenson, J A

    1979-12-01

    We have investigated a technique for measuring stable iodine concentrations by absorption-edge transmission measurements using a Ce 139 radiation source. The lanthanum daughter emits characteristic x-rays whose energies just bracket the absorption edge of iodine at 33.2 keV. Relative transmission of these x-rays is sensitive to iodine concentration in the sample, but is relatively insensitive to other elements. By applying energy-selective beam filtration, it is possible to determine the relative transmission of these closely spaced x-ray energies with NaI(Tl) detectors. Optimizations of sample thickness, detector thickness, and Ce-139 source activity are discussed. Using sample volumes of about 10 ml, one can determine iodine concentration to an uncertainty (standard deviation) of +/- 5 microgram/ml with a 5-mCi source in a measurement time of 400 sec. Potential clinical applications of the in vitro technique are discussed, along with comparative aspects of the Ce-139 technique and other absorption and fluorescence techniques for measuring stable iodine. PMID:536797

  13. Improved multi-element measurement of absorption via the fecal monitoring technique

    SciTech Connect

    Gibson, R.S.; Gibson, I.L.; Weber, C.E.; Atkinson, S.A.

    1986-03-01

    The fecal monitoring technique for measuring the absorption of Mn, Se and Fe was studied in eight piglets using high resolution gamma spectrometry. Four day old piglets were fed a complete liquid diet for five days prior to the administration of an isotope dose (/sup 75/Se, /sup 54/Mn, /sup 59/Fe) equilibrated with the milk feeding. /sup 51/CrCl/sub 3/ was used as a fecal marker. Subsequently stool and urine samples were collected daily for 15-21 days. Following counting, the % fecal excretion of the administered dose was calculated. As 0 to 33% of the administered /sup 51/CrCl/sub 3/ was absorbed this fecal marker is inappropriate for piglets. Results indicate that endogenous excretion for each of the isotopes was not constant but decreased exponentially with time. An improved method for calculating the endogenous excretion was therefore developed. This method is based on the pattern of endogenous excretion in comparable piglets injected intravenously with the same isotopes, and on the level of endogenous excretion in the orally fed animals in the post-absorptive phase of excretion. These findings have important implications for the estimation of endogenous excretion in future fecal monitoring absorption studies. Previous results using the latter technique have frequently underestimated true absorption.

  14. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    NASA Technical Reports Server (NTRS)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  15. Coal thickness gauge using RRAS techniques, part 1. [radiofrequency resonance absorption

    NASA Technical Reports Server (NTRS)

    Rollwitz, W. L.; King, J. D.

    1978-01-01

    A noncontacting sensor having a measurement range of 0 to 6 in or more, and with an accuracy of 0.5 in or better is needed to control the machinery used in modern coal mining so that the thickness of the coal layer remaining over the rock is maintained within selected bounds. The feasibility of using the radiofrequency resonance absorption (RRAS) techniques of electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) as the basis of a coal thickness gauge is discussed. The EMR technique was found, by analysis and experiments, to be well suited for this application.

  16. Novel Cross-Band Relative Absorption (CoBRA) technique For Measuring Atmospheric Species

    NASA Astrophysics Data System (ADS)

    Prasad, N. S.; Pliutau, D.

    2013-12-01

    We describe a methodology called Cross-Band Relative Absorption (CoBRA) we have implemented to significantly reduce interferences due to variations in atmospheric temperature and pressure in molecular mixing ration measurements [1-4]. The interference reduction is achieved through automatic compensation based on selecting spectral line pairs exhibiting similar evolution behavior under varying atmospheric conditions. The method is applicable to a wide range of molecules including CO2 and CH4 which can be matched with O2 or any other well-mixed atmospheric molecule. Such matching results in automatic simultaneous adjustments of the spectral line shapes at all times with a high precision under varying atmospheric conditions of temperature and pressure. We present the results of our selected CoBRA analysis based on line-by-line calculations and the Modern Era Retrospective Analysis for Research and Applications (MERRA) dataset including more recent evaluation of the error contributions due to water vapor interference effects. References: 1) N. S. Prasad, D. Pliutau, 'Cross-band relative absorption technique for the measurement of molecular mixing ratios.', Optics Express, Vol. 21, Issue 11, pp. 13279-13292 (2013) 2) D. Pliutau and N. S. Prasad, "Cross-band Relative Absorption Technique for Molecular Mixing Ratio Determination," in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3L.4. 3) Denis Pliutau; Narasimha S. Prasad; 'Semi-empirical validation of the cross-band relative absorption technique for the measurement of molecular mixing ratios',.Proc. SPIE 8731, Laser Radar Technology and Applications XVIII, 87310L (May 20, 2013); doi:10.1117/12.2016661. 4) Denis Pliutau,; Narasimha S. Prasad; 'Comparative analysis of alternative spectral bands of CO2 and O2 for the sensing of CO2 mixing ratios' Proc. SPIE 8718, Advanced Environmental, Chemical, and Biological Sensing Technologies X, 87180L (May 31, 2013); doi:10.1117/12.2016337.

  17. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  18. In vivo measurement of human skin absorption of topically applied substances by a photoacoustic technique.

    PubMed

    Gutiérrez-Juárez, G; Vargas-Luna, M; Córdova, T; Varela, J B; Bernal-Alvarado, J J; Sosa, M

    2002-08-01

    A photoacoustic technique is used for studying topically applied substance absorption in human skin. The proposed method utilizes a double-chamber PA cell. The absorption determination was obtained through the measurement of the thermal effusivity of the binary system substance-skin. The theoretical model assumes that the effective thermal effusivity of the binary system corresponds to that of a two-phase system. Experimental applications of the method employed different substances of topical application in different parts of the body of a volunteer. The method is demonstrated to be an easily used non-invasive technique for dermatology research. The relative concentrations as a function of time of substances such as ketoconazol and sunscreen were determined by fitting a sigmoidal function to the data, while an exponential function corresponds to the best fit for the set of data for nitrofurazona, vaseline and vaporub. The time constants associated with the rates of absorption, were found to vary in the range between 10 and 58 min, depending on the substance and the part of the body. PMID:12214760

  19. The measurement of electrical properties of small particles using microwave Hall effect and absorption techniques

    SciTech Connect

    Walters, A.B.; Liu, C.C.; VAnnice, M.A.

    1995-12-01

    A microwave absorption technique based on cavity perturbation theory is applicable for electrical conductivity measurements of both small, single-crystal particles and finely divided powder samples when {sigma} values fall in either the low ({sigma}<0.1{Omega}{sup -1}cm{sup -1}) or the intermediate (0.1 <{sigma}<100{Omega}{sup -1}cm{sup -l}) conductivity region. If the skin depth of the material becomes significantly smaller than the sample dimension parallel to the E-field, an appreciable error can be introduced into the calculated conductivity values; however, this discrepancy is eliminated by correcting for the field attenuation associated with the penetration depth of the microwaves and accurate absolute values can be obtained. When combined with microwave Hall effect measurements of mobility, {mu}, carrier densities can be calculated, for electrons N{sub o}={sigma}/{rho}e{mu} where e is the electron charge and {sigma} is the density of the solid. This approach eliminates electrode contacts as well as errors due to charge transfer across grain boundaries and particle-particle contacts. The application of these microwave absorption techniques to small particles having high surface/volume ratios, such as catalyst supports and oxide catalysts, under controlled environments can provide fundamental information about absorption and catalytic processes on such semiconductor surfaces. Applications to ZnO, Li-promoted ZnO, and carbon black powders demonstrate this capability.

  20. High-Energy X-ray Absorption Diagnostics as an Experimental Combustion Technique

    NASA Astrophysics Data System (ADS)

    Dunnmon, Jared; Sobhani, Sadaf; Hinshaw, Waldo; Fahrig, Rebecca; Ihme, Matthias

    2015-11-01

    X-ray diagnostics such as X-ray Computed Tomography (XCT) have recently been utilized for measurement of scalar concentration fields in gas-phase flow phenomena. In this study, we apply high-energy X-ray absorption techniques to visualize a laboratory-scale flame via fluoroscopic measurements by using krypton as a radiodense tracer media. Advantages of X-ray absorption diagnostics in a combustion context, including application to optically inaccessible environments and lack of ambient photon interference, are demonstrated. Analysis methods and metrics for extracting physical insights from these data are presented. The accuracy of the diagnostic is assessed via comparison to known results from canonical flame configurations, and the potential for further applications is discussed. Support from the NDSEG fellowship, Bosch, and NASA are gratefully acknolwedged.

  1. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    SciTech Connect

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  2. The absorption of ultraviolet light by cell nuclei. A technique for identifying neoplastic change

    SciTech Connect

    Baisden, C.R.; Booker, D.; Wright, R.D. )

    1989-11-01

    A technique for measuring the absorption of 260-nm ultraviolet light by cell nuclei is described. The results of such measurements of normal thyroid epithelial cells and benign and malignant thyroid neoplastic cells demonstrate a progressive increase in absorbance that correlates with the histologic appearance of neoplasia. The possible theoretic basis for this phenomenon is explored. The increased nuclear absorbance observed in neoplastic cells is hypothesized to result from the disruption of hydrogen bonds between the DNA base pairs, which allows unwinding of the double helix and loss of the normal control of mitosis.

  3. Improved volcanic ash detection based on a hybrid reverse absorption technique

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho; Wong, Man Sing; Chung, Sung-Rae; Sohn, Eunha

    2014-06-01

    A noble volcanic ash (VA) detection method based on a hybrid reverse absorption technique was successfully applied in the analysis of major volcanic eruptions that occurred in Russia, Iceland, Chile, Italy, and Japan by using the MODerate-resolution Imaging Spectroradiometer (MODIS) observation data. Sensitivity studies using radiative-transfer simulations by using various environmental parameters such as ash loadings, sizes, layer heights, and surface emissions, revealed that VA effects on brightness temperatures (BT) can reach up to 40 K. The advantage of the hybrid algorithm is its ability to detect distinct VA pixels during the day and night from satellite observations. The results showed that the hybrid algorithm can minimize the false detection of VA pixels, while well-known reverse absorption methods show abundant false VA pixels over bright surfaces and cloud formations. Further, the time-and-space distribution of the VA pixels is in good agreement with the data pertaining to operational aerosol products obtained from the scanning imaging absorption spectrometer for atmospheric cartography (SCIAMACHY) instrument on board ESA's Envisat and the cloud-aerosol Lidar and infrared pathfinder satellite observations (CALIPSO). This novel algorithm is expected to provide a fine spatial and temporal resolution of VA monitoring from high spectral or geostationary satellite observation data.

  4. Absolute spectrophotometry of Neptune - 3390 to 7800 A

    NASA Astrophysics Data System (ADS)

    Bergstralh, J. T.; Neff, J. S.

    1983-07-01

    Absolute spectrophotometry of Neptune from 3390 to 7800 Å, with spectral resolution of 10 Å in the interval 3390 - 6055 and 20 Å in the interval 6055 - 7800 Å, is reported. The results are compared with filter photometry (Appleby, 1973; Wamsteker, 1973; Savage et al., 1980) and with synthetic spectra computed on the basis of a parameterization proposed by Podolak and Danielson (1977) for aerosol scattering and absorption. A CH4/H2 ratio is derived for the convectively mixed part of Neptune's atmosphere, and constrains optical properties of hypothetical aerosol layers.

  5. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry.

    PubMed

    Albalasmeh, Ammar A; Berhe, Asmeret Asefaw; Ghezzehei, Teamrat A

    2013-09-12

    A new UV spectrophotometry based method for determining the concentration and carbon content of carbohydrate solution was developed. This method depends on the inherent UV absorption potential of hydrolysis byproducts of carbohydrates formed by reaction with concentrated sulfuric acid (furfural derivatives). The proposed method is a major improvement over the widely used Phenol-Sulfuric Acid method developed by DuBois, Gilles, Hamilton, Rebers, and Smith (1956). In the old method, furfural is allowed to develop color by reaction with phenol and its concentration is detected by visible light absorption. Here we present a method that eliminates the coloration step and avoids the health and environmental hazards associated with phenol use. In addition, avoidance of this step was shown to improve measurement accuracy while significantly reducing waiting time prior to light absorption reading. The carbohydrates for which concentrations and carbon content can be reliably estimated with this new rapid Sulfuric Acid-UV technique include: monosaccharides, disaccharides and polysaccharides with very high molecular weight. PMID:23911443

  6. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  7. [Application of near-infrared absorption spectrum scanning techniques in gas quantitative measurement].

    PubMed

    Ding, Hui; Liang, Jian-Qi; Cui, Jun-Hong; Wu, Xiang-Nan; Li, Xian-Li

    2010-03-01

    A practical gas sensing system utilizing absorption spectrum scanning techniques was developed. Using the narrow-band transmission of a fiber tunable filter (TOF) and wavelength modulation technique, the so-called cross-sensing effects of the traditional spectrum absorption based gas sensor were reduced effectively and thus the target gas was detected sensitively and selectively. In order to reduce the effects of nonlinearity of TOF on the measurement results and improve the system stability in operation, the reflection spectrum of a reference FBG was monitored and employed to control the modulation region and center of TOF wavelength precisely. Moreover, a kind of weak signal detecting circuits was developed to detect the weak response signal of the system with high sensitivity. The properties of the proposed system were demonstrated experimentally by detection of acetylene. Approximate linear relationships between the system responses and the input acetylene concentrations were demonstrated by experiments. The minimum detectable acetylene of 5 x 10(-6), with signal-noise ratio of 3, was also achieved by experiments. PMID:20496683

  8. [Carbon monoxide gas detection system based on mid-infrared spectral absorption technique].

    PubMed

    Li, Guo-Lin; Dong, Ming; Song, Nan; Song, Fang; Zheng, Chuan-Tao; Wang, Yi-Ding

    2014-10-01

    Based on infrared spectral absorption technique, a carbon monoxide (CO) detection system was developed using the fundamental absorption band at the wavelength of 4.6 μm of CO molecule and adopting pulse-modulated wideband incandescence and dual-channel detector. The detection system consists of pulse-modulated wideband incandescence, open ellipsoid light-collec- tor gas-cell, dual-channel detector, main-control and signal-processing module. By optimizing open ellipsoid light-collector gas- cell, the optical path of the gas absorption reaches 40 cm, and the amplitude of the electrical signal from the detector is 2 to 3 times larger than the original signal. Therefore, by using the ellipsoidal condenser, the signal-to-noise ratio of the system will be to some extent increased to improve performance of the system. With the prepared standard CO gas sample, sensing characteris- tics on CO gas were investigated. Experimental results reveal that, the limit of detection (LOD) is about 10 ppm; the relative er- ror at the LOD point is less than 14%, and that is less than 7. 8% within the low concentration range of 20~180 ppm; the maxi- mum absolute error of 50 min long-term measurement concentration on the 0 ppm gas sample is about 3 ppm, and the standard deviation is as small as 0. 18 ppm. Compared with the CO detection systems utilizing quantum cascaded lasers (QCLs) and dis- tributed feedback lasers (DFBLs), the proposed sensor shows potential applications in CO detection under the circumstances of coal-mine and environmental protection, by virtue of high performance-cost ratio, simple optical-path structure, etc. PMID:25739235

  9. Evaluation of iron-containing carbon nanotubes by near edge X-ray absorption technique

    NASA Astrophysics Data System (ADS)

    Osorio, A. G.; Bergmann, C. P.

    2015-10-01

    The synthesis of carbon nanotubes (CNTs) via Chemical Vapor Deposition method with ferrocene results in CNTs filled with Fe-containing nanoparticles. The present work proposes a novel route to characterize the Fe phases in CNTs inherent to the synthesis process. CNTs were synthesized and, afterwards, the CNTs were heat treated at 1000 °C for 20 min in an inert atmosphere during a thermogravimetric experiment. X-Ray Absorption Spectroscopy (XAS) experiments were performed on the CNTs before and after the heat treatment and, also, during the heat treatment, e.g., in situ tests were performed while several Near-Edge X-Ray Absorption (XANES) spectra were collected during the heating of the samples. The XAS technique was successfully applied to evaluate the phases encapsulated by CNTs. Phase transformations of the Fe-based nanoparticles were also observed from iron carbide to metallic iron when the in situ experiments were performed. Results also indicated that the applied synthesis method guarantees that Fe phases are not oxidize. In addition, the results show that heat treatment under inert atmosphere can control which phase remains encapsulated by the CNTs.

  10. Optical Region Spectrophotometry: Past and Present

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.

    In the 1960s and 1970s optical region spectrophotometry achieved the status of a major tool in stellar research. New instrumentation, rotating grating scanners using photomultiplier tubes as detectors, and improved absolute calibrations of Vega made this possible. After this period the use of this technique declined to its near demise at present. The use of Vega as the primary standard has been both a blessing as it is so bright and a curse especially as modeling it correctly requires treating it as a fast rotating star seen nearly pole-on. It may be better to use several stars to define any future absolute calibration. With absolutely calibrated fluxes and Balmer profiles, often Hγ, investigators used the predictions of model atmospheres to find both the effective temperatures and the surface gravities of stars. The fluxes were photometrically calibrated low dispersion spectra with a typical resolution of order 25 Å. A typical data set consisted of 10-15 values covering most of the optical spectral region. At present two instrumental projects ACCESS and the ASTRA Spectrophotometer promise, respectively, a new substantially improved absolute calibration of the optical fluxes of several targets and the availability of a considerable amount of well-calibrated optical flux data for use in studies concerned with stellar properties. They jointly promise to revive optical region spectrophotometric studies.

  11. PMAS - Faint Object 3D Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Roth, M. M.; Becker, T.; Kelz, A.

    2002-01-01

    will describe PMAS (Potsdam Multiaperture Spectrophotometer) which was commissioned at the Calar Alto Observatory 3.5m Telescope on May 28-31, 2001. PMAS is a dedicated, highly efficient UV-visual integral field spectrograph which is optimized for the spectrophotometry of faint point sources, typically superimposed on a bright background. PMAS is ideally suited for the study of resolved stars in local group galaxies. I will present results of our preliminary work with MPFS at the Russian 6m Telescope in Selentchuk, involving the development of new 3D data reduction software, and observations of faint planetary nebulae in the bulge of M31 for the determination of individual chemical abundances of these objects. Using this data, it will be demonstrated that integral field spectroscopy provides superior techniques for background subtraction, avoiding the otherwise inevitable systematic errors of conventional slit spetroscopy. The results will be put in perspective of the study of resolved stellar populations in nearby galaxies with a new generation of Extremely Large Telescopes.

  12. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  13. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  14. Element-selective trace detection of toxic species in environmental samples using chromatographic techniques and derivative diode laser absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Koch, J.; Zybin, A.; Niemax, K.

    1998-10-01

    Very sensitive laser absorption techniques based on a double-beam scheme with logarithmic processing of the detector signals and wavelength modulation of laser diodes are presented. Detection limits equivalent to 10-7 absorption per square root of detection bandwidth are obtained if sufficient laser power is available and if the absorption is also subject to additional modulation. The analytical versatility of these techniques is demonstrated by quantitative analysis of very low concentrations of (i) Cr(VI) species in tap water and (ii) chlorinated poly-aromatics (chlorophenols) in plant extracts, both after chromatographic separation. The atomic absorption measurements were performed in an air-acetylene flame (Cr) and in a low-pressure microwave-induced plasma (chlorophenols).

  15. Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM).

    PubMed

    Röttgers, Rüdiger; Doxaran, David; Dupouy, Cecile

    2016-01-25

    The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a. PMID:26832563

  16. Characterization and Processing of Organic Nonlinear Optical Materials using Ellipsometric, Waveguiding, and Absorption Spectroscopy Techniques

    NASA Astrophysics Data System (ADS)

    Olbricht, Benjamin C.

    The first focus of this work is to describe methods for characterizing organic electro-optic materials. Teng-Man Ellipsometry and Attenuated Total Internal Reflection are reviewed. Experimental techniques for these instruments are described and the calculation of an electro-optic activity is derived. The two techniques are compared; it has been found that in Situ Teng-Man ellipsometry is useful to determine poling conditions but not for reliably evaluating electro-optic activity. Attenuated Total Internal Reflection is found to provide very reliable and precise measurements of electro-optic activity and linear optical constants. As a reference, many materials systems have been evaluated and their electro-optic activities are recorded herein. Methods for fabricating devices for test by Teng-Man ellipsometry and Attenuated Total Internal Reflection are presented. A process for inducing Pockel's response via contact-geometry electric field poling is also described, along with modifications to the simple slab dielectric device to enhance the efficacy of poling. An additional method for enhancing the efficiency of poling is presented. This technique relies on the photoisomerization of azobenzene dyes under 532nm radiation to reduce the dimensionality accessible to chromophores doped into the azobenzene matrix. This effect is known as "Laser Assisted Poling" and is shown to increase poling efficiency by more than two fold. The second purpose of this work is to present an experimental technique to measure the order parameter = 3cos 2q -12 . This method is known as Variable-Angle Polarization-Referenced Absorption Spectroscopy (VAPRAS). The experimental apparatus used for VAPRAS introduces small alterations to a UV/Vis Spectrophotometer and an order parameter is derived by exclusively using classical models for transmittance. VAPRAS provides an effective refractive index for the electro-optic material film which is used to calculate the order of absorbers in the film

  17. Novel Techniques and Approaches to Unravel the Nature of X-Ray Absorption Spectra

    SciTech Connect

    Groot, F. M. F. de

    2007-02-02

    This paper discusses the role of resonant inelastic X-ray scattering (RIXS) to unravel the nature of the states that are visible in the pre-edge region of the 3d metal K edges. The traditional pre-edge analysis into quadrupole transitions to the 3d-states plus dipole transitions to the 4p states is outlined, with special attention to the situation of TiO2. The general possibilities of RIXS are described, including the various possible cross-sections through the 2D RIXS plane. Recent developments in High-Energy Resolution Fluorescence Detection (HERFD) are discussed, that yield XANES-like spectra with unprecedented resolution. Using the 1s2p RIXS of LiCoO2 as example, the presence of an extra peak due to non-local dipole transitions is explained. The non-local nature of this dipole pre-edge peak is proven from its behavior in the 2D RIXS plane. The paper also discusses a range of selective X-ray absorption experiments, where the selectivity is towards (a) the spin-state, (b) the valence, (c) the neighbor atom and (d) the edge. In the outlook, a number of additional experimental routes is suggested, which shows that the use of RIXS, HERFD and selective XAS techniques is only just starting.

  18. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    NASA Astrophysics Data System (ADS)

    Rejeena, I.; Lillibai, Rahimkutty, M. H.; Nampoori, V. P. N.; Radhakrishnan, P.

    2014-10-01

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl2 solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  19. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    SciTech Connect

    Rejeena, I.; Lillibai,; Nampoori, V. P. N.; Radhakrishnan, P.; Rahimkutty, M. H.

    2014-10-15

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl{sub 2} solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  20. Ultraviolet spectrophotometry of degenerate stars

    NASA Technical Reports Server (NTRS)

    Greenstein, J. L.; Oke, J. B.

    1979-01-01

    Observations of one helium- and three hydrogen-atmosphere degenerates made with the International Ultraviolet Explorer are discussed. Fluxes in the UV give temperatures in good accordance with those determined from the ground and from the ANS satellite data. Profiles of the strong L-alpha absorption in two DA's fit predictions for the expected temperatures. Gravity determination is vitiated by their steep temperature dependence. If one accepts that theoretical predictions should be correct, corrections to the absolute IUE calibration derived are an upward shift of 3-5%, with irregular residuals attaining + or - 7%.

  1. An evaluation of techniques for the extraction of mineral absorption features from high spectral resolution remote sensing data

    NASA Technical Reports Server (NTRS)

    Rast, Michael; Hook, Simon J.; Alley, Ronald E.; Elvidge, Christopher D.

    1991-01-01

    Airborne Visible/Infrared Imaging Spectrometer data covering the wavelength range between 2000 and 2400 nm are examined for their ability to display the diagnostic mineral absorption features of certain alteration minerals, employing various data processing techniques. The techniques may be separated into two broad categories: scene based techniques that use parameters derived from the data themselves, and correction techniques utilizing external information such as solar/atmospheric models. Results indicate that the data corrected utilizing the LOWTRAN 7 atmospheric transfer code constrained with local weather station data are the most effective at showing the diagnostic absorption features of the regions of known mineralogy and introduce the least number of artifacts into the data.

  2. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  3. Determination of Iron in Milk Powdermicrowave Digestion and Flame Atomicabsorption Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyuan; Li, Bo

    To investigate the conditions of microwave digestion for determining Iron in milk powder by flame atomic absorption spectrophotometry(FAAS), the content of iron in milk powder was determined by flame atomic absorption spectrophotometry after the samples were microwavely digested under different conditions. The optimum parameters for microwave digestion were obtained by the orthogonal test at last. The best optimum parameters for microwave digestion was that, the volume of digestion solution was 8mL, the reagent proportion for HNO3 and H2O2 was 4:1, the digestion time was 8min, the digestion pressure was 2.6 Mpa and the digestion power was 1000 W. The content of Iron in assayed milk powder was 0.0560mg/g. Microwave digestion was a time-saving and practical pretreatment of samples.

  4. Limitation of fluorescence spectrophotometry in the measurement of naphthenic acids in oil sands process water.

    PubMed

    Lu, Weibing; Ewanchuk, Andrea; Perez-Estrada, Leonidas; Sego, Dave; Ulrich, Ania

    2013-01-01

    Fluorescence spectrophotometry has been proposed as a quick screening technique for the measurement of naphthenic acids (NAs). To evaluate the feasibility of this application, the fluorescence emission spectra of NAs extracted from three oil sands process water sources were compared with that of commercial NAs. The NAs resulting from the bitumen extraction process cannot be differentiated because of the similarity of the fluorescence spectra. Separation of the fluorescent species in NAs using high performance liquid chromatography with fluorescence detector proved unsuccessful. The acidic fraction of NAs is fluorescent but the basic fraction of NAs is not fluorescent, implying that aromatic acids in NAs give rise to the fluorescent signals. The concentrations of NAs in oil sands process water were measured by Fourier transform infrared spectroscopy (FTIR), fluorescence spectrophotometry and ultra high performance liquid chromatography-time of flight/mass spectrometry (UPLC-TOF/MS). Commercial Merichem and Kodak NAs are the best standards to use when measuring NAs concentration with FTIR and fluorescence spectrophotometry. In addition, the NAs concentrations measured by fluorescence spectrophotometry are about 30 times higher than those measured by FTIR and UPLC-TOF/MS. The findings in this study underscore the limitation of fluorescence spectrophotometry in the measurement of NAs. PMID:23379948

  5. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  6. Identification of Organic Colorants in Art Objects by Solution Spectrophotometry: Pigments.

    ERIC Educational Resources Information Center

    Billmeyer, Fred W., Jr.; And Others

    1981-01-01

    Describes solution spectrophotometry as a simple, rapid identification technique for organic paint pigments. Reports research which includes analytical schemes for the extraction and separation of organic pigments based on their solubilities, and the preparation of an extensive reference collection of spectral curves allowing their identification.…

  7. Combined Acquisition Technique (CAT) for Neuroimaging of Multiple Sclerosis at Low Specific Absorption Rates (SAR)

    PubMed Central

    Biller, Armin; Choli, Morwan; Blaimer, Martin; Breuer, Felix A.; Jakob, Peter M.; Bartsch, Andreas J.

    2014-01-01

    Purpose To compare a novel combined acquisition technique (CAT) of turbo-spin-echo (TSE) and echo-planar-imaging (EPI) with conventional TSE. CAT reduces the electromagnetic energy load transmitted for spin excitation. This radiofrequency (RF) burden is limited by the specific absorption rate (SAR) for patient safety. SAR limits restrict high-field MRI applications, in particular. Material and Methods The study was approved by the local Medical Ethics Committee. Written informed consent was obtained from all participants. T2- and PD-weighted brain images of n = 40 Multiple Sclerosis (MS) patients were acquired by CAT and TSE at 3 Tesla. Lesions were recorded by two blinded, board-certificated neuroradiologists. Diagnostic equivalence of CAT and TSE to detect MS lesions was evaluated along with their SAR, sound pressure level (SPL) and sensations of acoustic noise, heating, vibration and peripheral nerve stimulation. Results Every MS lesion revealed on TSE was detected by CAT according to both raters (Cohen’s kappa of within-rater/across-CAT/TSE lesion detection κCAT = 1.00, at an inter-rater lesion detection agreement of κLES = 0.82). CAT reduced the SAR burden significantly compared to TSE (p<0.001). Mean SAR differences between TSE and CAT were 29.0 (±5.7) % for the T2-contrast and 32.7 (±21.9) % for the PD-contrast (expressed as percentages of the effective SAR limit of 3.2 W/kg for head examinations). Average SPL of CAT was no louder than during TSE. Sensations of CAT- vs. TSE-induced heating, noise and scanning vibrations did not differ. Conclusion T2−/PD-CAT is diagnostically equivalent to TSE for MS lesion detection yet substantially reduces the RF exposure. Such SAR reduction facilitates high-field MRI applications at 3 Tesla or above and corresponding protocol standardizations but CAT can also be used to scan faster, at higher resolution or with more slices. According to our data, CAT is no more uncomfortable than TSE scanning. PMID

  8. AN INTRALABORATORY COMPARATIVE STUDY OF HYDRIDE GENERATION AND GRAPHITE FURNACE ATOMIC ABSORPTION TECHNIQUES FOR DETERMINING ORGANIC AND INORGANIC ARSENIC IN COMPLEX WASTEWATERS

    EPA Science Inventory

    A detailed intralaboratory comparison of the determination of arsenic in complex wastewater samples by hydride generation and graphite furnace atomic absorption techniques has been conducted. Two hydride generation techniques were employed. One consisted of the use of sodium boro...

  9. Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique.

    PubMed

    Bujard, Alban; Sol, Marine; Carrupt, Pierre-Alain; Martel, Sophie

    2014-10-15

    The parallel artificial membrane permeability assay (PAMPA) is a high-throughput screening (HTS) method that is widely used to predict in vivo passive permeability through biological barriers, such as the skin, the blood brain barrier (BBB) and the gastrointestinal tract (GIT). The PAMPA technique has also been used to predict the dissociation constant (Kd) between a compound and human serum albumin (HSA) while disregarding passive permeability. Furthermore, the assay is based on the use of two separate 5-point kinetic experiments, which increases the analysis time. In the present study, we adapted the hexadecane membrane (HDM)-PAMPA assay to both predict passive gastrointestinal absorption via the permeability coefficient logPe value and determine the Kd. Two assays were performed: one in the presence and one in the absence of HSA in the acceptor compartment. In the absence of HSA, logPe values were determined after a 4-h incubation time, as originally described, but the dimethylsulfoxide (DMSO) percentage and pH were altered to be compatible with the protein. In parallel, a second PAMPA assay was performed in the presence of HSA during a 16-h incubation period. By adding HSA, a variation in the amount of compound crossing the membrane was observed compared to the permeability measured in the absence of HSA. The concentration of compound reaching the acceptor compartment in each case was used to determine both parameters (logPe and logKd) using numerical simulations, which highlighted the originality of this method because these calculations required only two endpoint measurements instead of a complete kinetic study. It should be noted that the amount of compound that reaches the acceptor compartment in the presence of HSA is modulated by complex dissociation in the receptor compartment. Only compounds that are moderately bound to albumin (-3

  10. Fourier transform techniques for measuring absorption of transient species in optical limiting materials

    NASA Astrophysics Data System (ADS)

    Han, Yanong; Sonnenberg, Wendi; Short, Kurt W.; Spangler, Lee H.

    1999-10-01

    We have developed methods of measuring absorption of transient species utilizing stepped-scan Fourier transform interferometry that allows a combination of broad spectral coverage (10,000 - 15,000 cm-1 per spectrum), good spectral resolution, and up to ns temporal resolution with possibilities of extension to the ps domain. Nanosecond, psec or fsec laser systems, tunable from UV to IR can be used as the pump source to prepare the transient species. The absorption of that species is measured with broadband, incoherent light and can be simultaneously time and frequency resolved.

  11. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data

    SciTech Connect

    Schlaepfer, D.; Borel, C.C.; Keller, J.

    1996-03-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

  12. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    NASA Technical Reports Server (NTRS)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  13. Spectrophotometry B, A, and F stars. III

    NASA Astrophysics Data System (ADS)

    Adelman, S. J.; Pyper, D. M.

    1983-03-01

    Optical region energy distributions of 13 bright normal B, A, and F stars consistent with the Hayes-Latham calibration of Vega are presented. These scans contain more wavelength values than those given in previous papers in this series. The procedure of synthesizing u-b and b-y values from spectrophotometry is improved. Effective temperatures are found using the empirical calibration of Code and his colleagues and the fully line-blanketed solar composition model atmospheres of Kurucz.

  14. Fast spectrophotometry with compressive sensing

    NASA Astrophysics Data System (ADS)

    Starling, David; Storer, Ian

    2015-03-01

    Spectrophotometers and spectrometers have numerous applications in the physical sciences and engineering, resulting in a plethora of designs and requirements. A good spectrophotometer balances the need for high photometric precision, high spectral resolution, high durability and low cost. One way to address these design objectives is to take advantage of modern scanning and detection techniques. A common imaging method that has improved signal acquisition speed and sensitivity in limited signal scenarios is the single pixel camera. Such cameras utilize the sparsity of a signal to sample below the Nyquist rate via a process known as compressive sensing. Here, we show that a single pixel camera using compressive sensing algorithms and a digital micromirror device can replace the common scanning mechanisms found in virtually all spectrophotometers, providing a very low cost solution and improving data acquisition time. We evaluate this single pixel spectrophotometer by studying a variety of samples tested against commercial products. We conclude with an analysis of flame spectra and possible improvements for future designs.

  15. Dependence of intestinal glucose absorption on sodium, studied with a new arterial infusion technique

    PubMed Central

    Fisher, R. B.; Gardner, M. L. G.

    1974-01-01

    1. A new preparation of isolated rat jejunum plus ileum (ca. 100 cm) is described in which a saline infusate is pumped into the superior mesenteric artery, the superior mesenteric vein having been ligated. 2. The arterial infusate washes out the tissue spaces: the lumen is perfused in a single pass with a segmented flow as by Fisher & Gardner (1974). 3. At an arterial infusion rate of 3 ml./min, steady states are set up in the tissue fluid within 10-15 min: the compositions of the fluids bathing both sides of the mucosa can therefore be controlled. 4. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium is replaced by choline abruptly while the tissue fluid sodium is maintained at 144 m-equiv/l. by arterial infusion. 5. The rate of glucose absorption from the lumen is unaffected by replacement of sodium in the arterial infusate by choline. 6. Ouabain (10-4 M) in an arterial infusate containing sodium 144 m-equiv/l. causes inhibition of glucose and water absorption from the lumen. There is no effect of ouabain when the arterial infusate contains sodium, 0 or 72 m-equiv/l. 7. Arterial ouabain does not reverse the effects of depletion of luminal sodium. Simultaneous removal of luminal sodium and application of arterial ouabain causes faster inhibition of glucose absorption than does either treatment alone. 8. Glucose absorption is more likely to depend on rate of efflux of sodium from mucosal cell to tissue fluid than on a sodium gradient at the brush border or on intracellular sodium concentration. PMID:4422318

  16. Ileal mucosal absorption of bile acid in man: validation of a miniature flux chamber technique.

    PubMed Central

    Hosie, K B; Davie, R J; Panagamuwa, B; Grobler, S; Keighley, M R; Birch, N J

    1992-01-01

    A method that allows the quantitative assessment of ileal mucosal cell uptake and transport of bile acids in mucosal biopsy specimens has been validated. Viability of the tissue was confirmed by maintenance of normal cell morphology, wet weight, extracellular space, porosity to polyethylene glycol-900, lactate dehydrogenase release, and transmucosal potential difference. Using 14C-taurocholic acid, absorption was shown to be directional, capable of working against a concentration gradient, reduced by metabolic inhibitors, and sodium dependent. The system showed saturation kinetics with an estimated Km of 10 mumol/l. At a standard substrate concentration of 10 mumol/l ileal mucosal bile acid absorption was compared in patients with colorectal cancer (n = 6), ulcerative colitis (n = 10), and slow transit constipation (n = 8). There was no significant difference in tissue uptake or transport between the three groups. Images Figure 2 PMID:1582593

  17. Absorption of Polyelectrolytes on Colloidal Surfaces as Studied by Electrophoretic and Dynamic Light-Scattering Techniques.

    PubMed

    Okubo; Suda

    1999-05-15

    zeta-Potential and the effective diameter of the colloidal spheres absorbed with the macro-cations and macro-anions are studied by the electrophoretic light-scattering and dynamic light-scattering measurements. Colloidal spheres used are monodispersed polystyrene (220 nm in diameter) and colloidal silica spheres (110 nm). Macro-ions used are sodium polyacrylate, sodium polymethylacrylate, sodium poly(styrene sulfonate), and poly-4-vinyl pyridines quaternized with ethyl bromide, n-butyl bromide, benzyl chloride, and 5% hexadecyl bromide and 95% benzyl chloride. Reversal of colloidal surface charges from negative to positive occurs abruptly above the critical concentration of macro-ions by the excess absorption of the macro-cations onto the anionic colloidal spheres, i.e., avalanche-type absorption. The effective diameter of colloidal spheres including the absorbed layers increases substantially by four- to tenfold. In the presence of large amount of macro-cations aggregation of colloidal spheres mediated by the layers of absorbed macro-cations may occur. Absorption also occurs on the anionic colloidal spheres in the presence of an excess amount of macro-anions by the dipole-dipole-type attractive interactions. Copyright 1999 Academic Press. PMID:10222098

  18. Interaction of chlorophyll with light: Calculations of absorption spectra and dichroism with a new technique

    NASA Astrophysics Data System (ADS)

    Hamilton, Robert Bryan

    1999-12-01

    The response of a single chlorophyll molecule to light was studied using a semiempirical tight-binding model together with the Peierls substitution. Over a range of wavelengths, the absorption was calculated for unpolarized, linearly polarized, and circularly polarized light. The results are consistent with previous experiments, although detailed comparisons are not possible because the experiments involve chlorophyll molecules in more complicated environments. For unpolarized light, the absorption peaks in the red part of the visible spectrum. There is a secondary shoulder in the blue. For linearly polarized light, the absorption depends on wavelength and the direction of polarization. This can be understood as arising from the joint density of states for transitions at each photon energy, together with matrix-element effects (both of which are included in the present formulation). For circular polarization, the dichroism as a function of wavelength is slightly more subtle, but again can be understood in terms of matrix elements for the states involved in a transition at a given photon energy. We also found that an ``effective helicity'' is useful in understanding the circular dichroism. One advantage of the method used here is that it can be employed for other molecules that are important in photobiology-for example, retinal and melanin.

  19. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites. PMID:16043053

  20. X-ray absorption spectroscopy of Mn doped ZnO thin films prepared by rf sputtering technique

    SciTech Connect

    Yadav, Ashok Kumar; Jha, S. N.; Bhattacharyya, D.; Haque, Sk Maidul; Shukla, Dinesh; Choudhary, Ram Janay

    2015-11-15

    A set of r.f. sputter deposited ZnO thin films prepared with different Mn doping concentrations have been characterised by Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Spectroscopy (XANES) measurements at Zn, Mn and O K edges and at Mn L{sub 2,3} edges apart from long range structural characterisation by Grazing Incident X-ray Diffraction (GIXRD) technique. Magnetic measurements show room temperature ferromagnetism in samples with lower Mn doping which is however, gets destroyed at higher Mn doping concentration. The results of the magnetic measurements have been explained using the local structure information obtained from EXAFS and XANES measurements.

  1. A Low-Cost Quantitative Absorption Spectrophotometer

    ERIC Educational Resources Information Center

    Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd

    2012-01-01

    In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…

  2. NICKEL ABSORPTION AND KINETICS IN HUMAN VOLUNTEERS

    EPA Science Inventory

    Mathematical modelling was performed of the kinetics of nickel absorption, distribution and elimination in healthy human volunteers, who ingested NiS04 in drinking water or added food. ickel was analyzed by electrothermal atomic absorption spectrophotometry in serum, urine, and f...

  3. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  4. Light absorption by airborne aerosols: comparison of integrating plate and spectrophone techniques.

    PubMed

    Szkarlat, A C; Japar, S M

    1981-04-01

    An excellent correlation between the integrating plate (IP) and the photoacoustic methods for measuring aerosol light absorption has been found for airborne graphitic carbon in diesel vehicle exhaust. However, the regression coefficient depends on the orientation of the Teflon membrane filter during the IP analysis. With the collected particulates between the filter and the integrating plate, the IP response is 1.85 times that for the filter reversed. In either case the response ratio of the IP method to the photoacoustic method is >1.0, i.e., 2.43 vs 1.30. The IP calibration is also probably dependent on the nature of the filter medium. PMID:20309278

  5. Measurement of Hydrogen Absorption in Ternary Alloys with Volumetric (Sieverts Loop) Techniques

    SciTech Connect

    Aceves, S.

    2015-10-26

    The Sieverts loop is an inexpensive, robust and reliable methodology for calculating hydrogen absorption in materials [1]. In this approach, we start by storing a sample of the material being tested in the volume Vcell (Figure 1) and initiate the process by producing a high vacuum in the system while the material sample is heated to eliminate (most of) the hydrogen and other impurities previously absorbed. The system typically operates isothermally, with the volume Vref at ambient temperature and the sample at a temperature of interest – high enough to liquefy the alloy for the current application to nuclear fusion.

  6. Investigation of potential of differential absorption Lidar techniques for remote sensing of atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Butler, C. F.; Shipley, S. T.; Allen, R. J.

    1981-01-01

    The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed.

  7. Spectrophotometry of Io - Preliminary Voyager 1 results

    NASA Technical Reports Server (NTRS)

    Soderblom, L.; Johnson, T.; Kupferman, P.; Pieri, D.; Morrison, D.; Danielson, E.; Smith, B.; Veverka, J.; Sagan, C.; Cook, A.

    1980-01-01

    Multispectral images of Io acquired with the Voyager 1 narrow-angle camera agree with earth-based spectrophotometry to better than 10%. Although the surface materials have general spectral properties similar to various allotropes of sulfur, their ultraviolet (UV) reflectances are much higher. It is likely that varying amounts of SO2 frost mixed with or absorbed on sulfur-rich materials raises the UV reflectance. The possible association with large amounts of SO2 with low temperature forms of sulfur in the white patches on Io is consistent with Io surface models in which SO2 and S exist in thermally stable stratified zones.

  8. [Determination of trace elements in Spirulina platensis (Notdst.) Geitl. by flame atomic absorption spectrometry combined with microsampling pulse nebulization technique].

    PubMed

    Cheng, Cun-Gui; Hong, Qing-Hong; Li, Dan-Ting; Fan, Meng-Hai; Cai, Xiao-Dan

    2006-09-01

    The contents of trace elements Ni, Zn, Mn, Cu, Mg, Fe, Ca and Pb in Spirulina platensis (Notdst.) Geitl. were determined by flame atomic absorption spectrometry combined with microsampling pulse nebulization technique. The results of the determination show that Spirulina platensis (Notdst.) Geitl. are rich in the inorganic elements such as Mg, Zn, Fe, Ca and Cu. Its recovery ratio obtained by standard addition method ranged between 96.58% and 106.12%, and its RSD was lower than 4.26%. The result will provide scientific data for the study on the trace elements in Spirulina platensis (Notdst.) Geitl. and on their relativity of efficacy of medicine. PMID:17112058

  9. UV absorption technique for monitoring mobile source NO emissions. Final report, 1 October 1992-30 September 1993

    SciTech Connect

    Howard, R.P.; Phillips, W.J.

    1993-11-01

    Ultraviolet (UV) absorption techniques developed and used by the Arnold Engineering Development Center (AEDC) for measurements of nitric oxide (NO) in exhaust flows of turbine and liquid-propellant rocket engines have been adapted for measurements of NO in the exhausts of automobiles. Measurements were performed across a roadway with a 10-percent mixture of NO being released into the exhaust stream of a small truck traveling at speeds ranging from 6 to 30 mph. Emission factors for these simulated exhausts ranged from 0.92 to 23.05 gm/mi. Nitric oxide was detected in measurements using NO-resonance lamp radiation passed twice across the roadway for emission factors as low as 1.78 gm/mi. Nitric oxide absorption was not detected on exhaust measurements of automobiles traveling (coasting) at constant speeds. Nitric oxide was detected at measurable levels on automobiles forced to stop and then accelerate through the measurement station. Mobile source emissions, Nitric oxide, NO, Automobile exhaust, UV absorption.

  10. Multilayer thin film design for far ultraviolet polarizers using an induced transmission and absorption technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    An explanation of induced transmission for spectral regions excluding the far ultraviolet (FUV) is given to better understand how induced transmission and absorption can be used to design effective polarizers in the FUV spectral region. We achieve high s-polarization reflectance and a high degree of polarization (P equals (Rs-Rp)/(Rs+Rp)) by means of a MgF2/Al/MgF2 three layer structure on an opaque thick film of Al as the substrate. For example, our polarizer designed for the Lyman-alpha line (lambda equals 121.6 nm) has 87.95 percent reflectance for the s-polarization case and 0.43 percent for the p-polarization case, with a degree of polarization of 99.03 percent. If a double reflection polarizer is made with this design, it will have a degree of polarization of 99.99 percent and s-polarization throughput of 77.35 percent.

  11. Pseudorandom noise code-based technique for thin-cloud discrimination with CO2 and O2 absorption measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-12-01

    NASA Langley Research Center is working on a continuous wave (cw) laser-based remote sensing scheme for the detection of CO2 and O2 from space-based platforms suitable for an active sensing of CO2 emissions over nights, days, and seasons (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multifrequency, intensity modulated cw laser absorption spectrometer operating at 1.57 μm for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudonoise code-based technique for cloud and aerosol discrimination applications. The possibility of using maximum length sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated. Proof-of-concept experiments carried out using a sonar-based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  12. Pseudorandom Noise Code-Based Technique for Thin Cloud Discrimination with CO2 and O2 Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  13. Fabrication of controllable form submicrometer structures on positive photoresist by one-photon absorption direct laser writing technique

    NASA Astrophysics Data System (ADS)

    Tong, Quang Cong; Do, Minh Thanh; Journet, Bernard; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-04-01

    We demonstrate a very simple and low-cost method based on one-photon absorption direct laser writing technique to fabricate arbitrary two-dimensional (2D) polymeric submicrometer structures with controllable form. In this technique, a continuous-wave green laser beam (532 nm) with very weak power is tightly focused into a positive photoresist (S1805) by a high numerical aperture (NA) objective lens (OL), depolymerizing the polymer in a local submicrometer region. The focusing spot is then moved in a controllable trajectory by a 3D piezo translation stage, resulting in desired structures. The low absorption effect of the photoresist at the excitation wavelength allows obtaining structures with submicrometer size and great depth. In particular, by controlling the exposure dose, e.g. the scanning speed, and the scanning configuration, the structures have been created in positive (cylindrical material in air) or negative (air holes) form. The 2D square structures with periods in between 0.6 μm and 1 μm and with a feature size of about 150 nm have been demonstrated with an OL of NA = 0.9 (air-immersion). The fabricated results are well consistent with those obtained numerically by using a vectorial diffraction theory for high NA OLs. This investigation should be very useful for fabrication of photonic and plasmonic templates.

  14. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    NASA Astrophysics Data System (ADS)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-01-01

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which is usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.

  15. Screening Technique for Lead and Cadmium in Toys and Other Materials Using Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Brouwer, Henry

    2005-01-01

    A simple procedure to quickly screen different consumer products for the presence of lead, cadmium, and other metals is described. This screening technique avoids expending a lot of preparation time on samples known to contain low levels of hazardous metals where only samples testing positive for the desired elements need to be analyzed…

  16. Fourier-analytic technique for the separation of the signature of atmospheric ClO absorption from the solar background spectrum in the near ultraviolet

    SciTech Connect

    Burnett, E.B.

    1989-02-01

    The high-resolution ClO absorption signature in the region of 308.1 nm has a very low absorption fraction, of the order of 6 x 10/sup -5/, and linewidths comparable with those of the solar background spectrum. Because of the need for reliable absorption measurements of the abundance of this species, which is important in ozone photochemistry, a Fourier-analysis-based technique for the deconvolution of atmospheric solar absorption spectra in this region has been developed. The technique utilizes the regularity of the ClO spectrum and results in a significant reduction in the minimum signal-to-noise required for the retrieval of ClO abundances from absorption spectra.

  17. Multilayer Thin Film Polarizer Design for Far Ultraviolet using Induced Transmission and Absorption Technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Park, Jung Ho; Torr, Douglas G.

    1994-01-01

    Good theoretical designs of far ultraviolet polarizers have been reported using a MgF2/Al/MgF2 three layer structure on a thick Al layer as a substrate. The thicknesses were determined to induce transmission and absorption of p-polarized light. In these designs Al optical constants were used from films produced in ultrahigh vacuum (UHV: 10(exp -10) torr). Reflectance values for polarizers fabricated in a conventional high vacuum (p approx. 10(exp -6 torr)) using the UHV design parameters differed dramatically from the design predictions. Al is a highly reactive material and is oxidized even in a high vacuum chamber. In order to solve the problem other metals have been studied. It is found that a larger reflectance difference is closely related to higher amplitude and larger phase difference of Fresnel reflection coefficients between two polarizations at the boundary of MgF2/metal. It is also found that for one material a larger angle of incidence from the surface normal brings larger amplitude and phase difference. Be and Mo are found good materials to replace Al. Polarizers designed for 121.6 nm with Be at 60 deg and with Mo at 70 deg are shown as examples.

  18. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  19. Spectrophotometry of Planetary Nebulae in the Bulge of M31

    NASA Astrophysics Data System (ADS)

    Roth, Martin M.; Becker, Thomas; Kelz, Andreas; Schmoll, Jürgen

    2004-03-01

    We introduce crowded-field integral field (3D) spectrophotometry as a useful technique for the study of resolved stellar populations in nearby galaxies. The spectroscopy of individual extragalactic stars, which is now feasible with efficient instruments and large telescopes, is confronted with the observational challenge of accurately subtracting the bright, spatially and wavelength-dependent nonuniform background of the underlying galaxy. As a methodological test, we present a pilot study with selected extragalactic planetary nebulae (XPNe) in the bulge of M31, demonstrating how 3D spectroscopy is able to improve the limited accuracy of background subtraction that one would normally obtain with classical slit spectroscopy. It is shown that because of the absence of slit effects, 3D spectroscopy is a most suitable technique for spectrophometry. We present spectra and line intensities for five XPNe in M31, obtained with the MPFS instrument at the Russian 6 m Bolshoi Teleskop Azimutal'nij, INTEGRAL at the William Herschel Telescope , and PMAS at the Calar Alto 3.5 m telescope. The results for two of our targets, for which data are available in the literature, are compared with previously published emission-line intensities. The three remaining PNe have been observed spectroscopically for the first time. One object is shown to be a previously misidentified supernova remnant. Our monochromatic Hα maps are compared with direct Fabry-Pérot and narrowband filter images of the bulge of M31, verifying the presence of filamentary emission of the interstellar medium in the vicinity of our objects. We present an example of a flux-calibrated and continuum-subtracted filament spectrum and demonstrate how the interstellar medium component introduces systematic errors in the measurement of faint diagnostic PN emission lines when conventional observing techniques are employed. It is shown how these errors can be eliminated with 3D spectroscopy, using the full two

  20. Superresolution and other mathematical techniques for quantitative analysis of infrared absorption and emission spectra of gases

    NASA Astrophysics Data System (ADS)

    Davies, Nicholas M.; Lettington, Alan H.; Hilton, Moira

    1997-05-01

    Fourier transform IR (FTIR) spectroscopy has become a powerful analytical tool for the detection and measurement of atmospheric pollutant gases. This work describes the application of concentration analysis techniques to data recorded with a versatile FTIR spectroscopy system, developed at the University of Reading PHysics Department. Spectra were recorded at three separate sites, each possessing a distinct source of atmospheric pollution gases. The two sites monitored in the active mode were a traffic congested town center at rush hour and a dairy farm cow shed. The site monitored passively contained three 5 m high methane burners. The analysis techniques have been designed to provide rapid and accurate analysis of the spectrometer data, without the need for high computing power, thus making analysis possible in the field using a laptop PC. In an attempt to enhance the resolution of the spectral data, and therefore resolve overlapping spectral lines, a super- resolution algorithm has been tested on part of the recorded data. The results of applying the algorithm has been tested on part of the recorded data. The results of applying the algorithm, predominantly an image processing technique, are shown and improvements to the algorithm are discussed. Results from the urban and agricultural sites show that CO, CH4, and NH3 can be measured to a ppm level with a maximum uncertainly of 8 percent.

  1. Nonlinear-approximation technique for determining vertical ozone-concentration profiles with a differential-absorption lidar

    NASA Astrophysics Data System (ADS)

    Kovalev, Vladimir A.; Bristow, Michael P.; McElroy, James L.

    1996-08-01

    A new technique is presented for the retrieval of ozone-concentration profiles (O 3 ) from backscattered signals obtained by a multiwavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration profiles by signal noise and other phenomena such as aerosol inhomogeneity. Before the O 3 profiles are derived, the dominant measurement errors are estimated and uncertainty boundaries for the measured profiles are established. The off- to on-line signal ratio is transformed into an intermediate function, and analytical approximations of the function are then determined. The separation of low- and high-frequency constituents of the measured ozone profile is made by the application of different approximation fits to appropriate intermediate functions. The low-frequency constituents are approximated with a low-order polynomial fit, whereas the high-frequency constituents are approximated with a trigonometric fit. The latter fit makes it possible to correct the measured O 3 profiles in zones of large ozone-concentration gradients where the low-order polynomial fit is found to be insufficient. Application of this technique to experimental data obtained in the lower troposphere shows that erroneous fluctuations induced in the ozone-concentration profile by signal noise and aerosol inhomogeneity undergo a significant reduction in comparison with the results from the conventional technique based on straightforward numerical differentiation.

  2. Nonlinear-approximation technique for determining vertical ozone-concentration profiles with a differential-absorption lidar.

    PubMed

    Kovalev, V A; Bristow, M P; McElroy, J L

    1996-08-20

    A new technique is presented for the retrieval of ozone-concentration profiles (O(3)) from backscattered signals obtained by a multiwavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration profiles by signal noise and other phenomena such as aerosol inhomogeneity. Before the O(3) profiles are derived, the dominant measurement errors are estimated and uncertainty boundaries for the measured profiles are established. The off- to on-line signal ratio is transformed into an intermediate function, and analytical approximations of the function are then determined. The separation of low- and high-frequency constituents of the measured ozone profile is made by the application of different approximation fits to appropriate intermediate functions. The low-frequency constituents are approximated with a low-order polynomial fit, whereas the high-frequency constituents are approximated with a trigonometric fit. The latter fit makes it possible to correct the measured O(3) profiles in zones of large ozone-concentration gradients where the low-order polynomial fit is found to be insufficient. Application of this technique to experimental data obtained in the lower troposphere shows that erroneous fluctuations induced in the ozone-concentration profile by signal noise and aerosol inhomogeneity undergo a significant reduction in comparison with the results from the conventional technique based on straightforward numerical differentiation. PMID:21102905

  3. An indoor test campaign of the tomography long path differential optical absorption spectroscopy technique.

    PubMed

    Mettendorf, K U; Hartl, A; Pundt, I

    2006-02-01

    In this study we validate the two-dimensional long path DOAS tomography measurement technique by means of an indoor experiment with well-known concentration distributions. The experiment was conducted over an area of 10 m x 15 m using one and two cylindrical polycarbonate containers of diameter 2 m, respectively, filled with NO2. The setup was realized with three of the multibeam instruments recently developed by Pundt and Mettendorf (Appl. Opt., 2005, in press), which allow the simultaneous measurement along at least four light paths each. The configuration consisted of twelve simultaneous light beams, 39 horizontal light paths in total, and 18 different cylinder positions inside the field. It was found that for the discretization and inversion technique shown here reconstructions of the concentration distributions from experimental data agree well with simulated reconstructions. In order to draw conclusions for atmospheric applications, numerical studies including instrumental errors were carried out. It was found that with the presented measurement setup it is possible to measure and reconstruct one or two NO2 plumes of 600 m diameter and average concentrations above 4.2 ppbv each, on a scale of 13.5 km2. Theoretical investigations show that it should be possible to localize and quantify 600 m diameter plumes of SO2 > 1.5 ppbv, H2CO > 6.3 ppbv, HONO > 3.2 ppbv, and ozone > 46.2 ppbv. Larger plumes can be measured with higher precision. PMID:16470260

  4. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  5. Semi-empirical validation of the cross-band relative absorption technique for the measurement of molecular mixing ratios

    NASA Astrophysics Data System (ADS)

    Pliutau, Denis; Prasad, Narasimha S.

    2013-05-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  6. Multi-angle fluorometer technique for the determination of absorption and scattering coefficients of subwavelength nanoparticles.

    PubMed

    Shortell, Matthew P; Hewins, Rodney A; Fernando, Joseph F S; Walden, Sarah L; Waclawik, Eric R; Jaatinen, Esa A

    2016-07-25

    A thorough analysis of the resonance light scattering (RLS) technique for quantitative scattering measurements of subwavelength nanoparticles is reported. The systematic error associated with using a measurement at a single angle to represent all of the scattered light is investigated. In-depth analysis of the reference material was performed to identify and minimize the error associated with the reference material. Semiconductor ZnO nanobullets and spherical Au nanoparticles of various sizes were used to verify the approach. A simple and inexpensive modification to standard fluorometers is demonstrated using a glass prism allowing scattering measurements in the slightly forward and backwards directions. This allows quantification of the systematic error associated with RLS which is consistently overlooked. PMID:27464160

  7. CVF spectrophotometry of Pluto - Correlation of composition with albedo. [Circularly variable filter

    SciTech Connect

    Marcialis, R.L.; Lebofsky, L.A. Arizona Univ., Tucson )

    1991-02-01

    The present time-resolved, 0.96-2.65-micron spectrophotometry for the Pluto-Charon system indicates night-to-night variations in the depths of the methane absorptions such that the bands' equivalent width is near minimum light. The interpretation of these data in terms of a depletion of methane in dark regions of the planet, relative to bright ones, is consistent with the Buie and Fink (1987) observations. The near-IR spectrum of Pluto seems to be dominated by surface frost. It is suggested that the dark equatorial regions of Pluto are redder than those of moderate albedo. 28 refs.

  8. A technique for measurement of material damping in metals. [absorption of structural vibration

    NASA Technical Reports Server (NTRS)

    Heine, J. C.

    1976-01-01

    The paper outlines the theory, design, and application of an apparatus based on the single beam resonant dwell technique to determine the damping capacity of metallic materials by measuring the response of a structural element to excitation at a modal frequency. In this apparatus, a cantilever beam specimen of a test material is clamped to a bar which is connected at one end to an electromagnetic shaker and at the other to a heavy base. The thickness of the bar at the base end is reduced by two saw cuts to provide a pivot around which the remainder of the bar can rotate when excited by the shaker which is connected to the bar by a rod passing through a hole in the base. The response of the supporting system to shaker excitation is measured with an accelerometer mounted on the bar at the root of the specimen. Specimen response is measured optically with a low-power microscope with a reticle. Specimen loss factor is determined in terms of acceleration at the beam root, beam tip displacement, and the beam natural frequency.

  9. ABO blood grouping from hard and soft tissues of teeth by modified absorption-elution technique

    PubMed Central

    Ramnarayan, BK; Manjunath, M; Joshi, Anagha Ananth

    2013-01-01

    Background: Teeth have always been known as stable tissue that can be preserved both physically and chemically for long periods of time. Blood group substances have been known to be present in both the hard and soft tissues of the teeth. Objectives: This study aimed at detection of ABO blood group substances from soft and hard tissues of teeth and also to evaluate the reliability of teeth stored for a relatively long period as a source of blood group substances by absorption–elution technique with some modifications. Results: Blood group obtained from the teeth was compared with those obtained from the blood sample. Pulp showed a very large correlation in both fresh and long-standing teeth though it decreased slightly in the latter. Hard tissue showed a large correlation in both the groups indicating that hard tissue is quite reliable to detect blood group and that there is no much difference in the reliability in both the groups. However, combining pulp and hard tissue, correlation is moderate. Correlation of blood grouping with the age, sex, and jaw distribution was carried out. Conclusion: Blood group identification from hard and soft tissues of teeth aids in the identification of an individual. PMID:23960412

  10. Measurement of Organics Using Three FTIR Techniques: Absorption, Attenuated Total Reflectance, and Diffuse Reflectance

    NASA Astrophysics Data System (ADS)

    Gebel, M. E.; Kaleuati, M. A.; Finlayson-Pitts, B. J.

    2003-06-01

    This paper describes an undergraduate junior- and senior-level instrumental analysis experiment that uses three infrared analysis techniques: conventional transmission spectroscopy, attenuated total reflection (ATR) spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Using transmission spectroscopy, methyl t-butyl ether, MTBE, in a state-supplied certification gasoline was measured to be 11.3 ± 0.4 % (v/v, 2s), in agreement with the stated MTBE content of 10.9% (v/v). Measurements were also carried out on various brands of commercial gasoline and MTBE was found to vary from 9.2 to 12.2% (v/v). ATR was used to measure the ethanol content of different brands of vodka, which ranged from 36 to 40 % (v/v) in agreement with the labeled concentration of 40% (v/v). This part of the experiment highlights the significant advantages of using ATR for the analysis of aqueous solutions that cannot be carried out using normal transmission spectroscopy. Finally, DRIFTS measurements were made of total hydrocarbons in six soil samples. The results ranged from below the detection limit of 120 ppm (w/w) for soil from a path at a residential home to 915 ppm (w/w) for a sample from the center planter of a gas station. This part of the experiment illustrates the advantages of using DRIFTS to analyze solids compared to making pellets or mulls. This experiment is carried out during one seven-hour laboratory period.

  11. Analysis of diffential absorption lidar technique for measurements of anhydrous hydrogen chloride from solid rocket motors using a deuterium fluoride laser

    NASA Technical Reports Server (NTRS)

    Bair, C. H.; Allario, F.

    1977-01-01

    An active optical technique (differential absorption lidar (DIAL)) for detecting, ranging, and quantifying the concentration of anhydrous HCl contained in the ground cloud emitted by solid rocket motors (SRM) is evaluated. Results are presented of an experiment in which absorption coefficients of HCl were measured for several deuterium fluoride (DF) laser transitions demonstrating for the first time that a close overlap exists between the 2-1 P(3) vibrational transition of the DF laser and the 1-0 P(6) absorption line of HCl, with an absorption coefficient of 5.64 (atm-cm) to the -1 power. These measurements show that the DF laser can be an appropriate radiation source for detecting HCl in a DIAL technique. Development of a mathematical computer model to predict the sensitivity of DIAL for detecting anhydrous HCl in the ground cloud is outlined, and results that assume a commercially available DF laser as the radiation source are presented.

  12. Improved oral absorption and chemical stability of everolimus via preparation of solid dispersion using solvent wetting technique.

    PubMed

    Jang, Sun Woo; Kang, Myung Joo

    2014-10-01

    The aim of this study was to improve the physicochemical properties and oral absorption of poorly water-soluble everolimus via preparation of a solid dispersion (SD) system using a solvent wetting (SW) technique. The physicochemical properties, drug release profile, and bioavailability of SD prepared by SW process were also compared to SD prepared by the conventional co-precipitation method. Solid state characterizations using scanning electron microscopy, particle size analysis and X-ray powder diffraction indicated that drug homogeneously dispersed and existed in an amorphous state within the intact polymeric carrier. Whereas, a film-like mass was obtained by a co-precipitation method and further pulverization step was needed for tabletization. The drug release from the SD tablet prepared by SW process at a ratio of drug to hydroxypropyl methylcellulose of 1:15 was markedly higher than the drug alone and equivalent to the marketed product (Afinitor(®), Novartis Pharmaceuticals), a SD tablet prepared by co-precipitation method, archiving over 75% the drug release after 30 min. At the accelerated (40°C/75% R.H.) and stress (80°C) stability tests, the novel formula was more stable than drug powder and provided comparable drug stability with the commercially available product, which contains a potentially risky antioxidant, butylated hydroxyl toluene. The pharmacokinetic parameters after single oral administration in beagles showed no significant difference (P>0.01) between the novel SD-based tablet and the marketed product. The results of this study, therefore, suggest that the novel SD system prepared by the solvent wetting process may be a promising approach for improving the physicochemical stability and oral absorption of the sirolimus derivatives. PMID:25003829

  13. Tomographic multiaxis-differential optical absorption spectroscopy observations of Sun-illuminated targets: a technique providing well-defined absorption paths in the boundary layer.

    PubMed

    Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas

    2006-08-20

    A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO(2), HCHO, SO(2), H(2)O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg. PMID:16892129

  14. Complex noninvasive spectrophotometry in examination of patients with vibration disease

    NASA Astrophysics Data System (ADS)

    Tchernyi, V. V.; Rogatkin, D. A.; Gorenkov, R. V.; Karpov, V. N.; Shumskiy, V. I.; Lubchenko, P. N.

    2006-02-01

    A lot of industry workers all over the world have dealings with a strong mechanical vibration as with daily technology processes. Very often such long-time professional vibration causes the so-called professional "vibration disease", in English literature "white fingers syndrome", caused by a local vibration of hands. Among different clinical features of the vibration disease a leader's part of them consists of different cardiovascular and trophic disorders of tissues. The objects of the present study were the peripheral blood microcirculation, peripheral blood oxygenation and tissues hypoxia state in a finger skin under vibration disease. For this purpose we have used a combined noninvasive spectrophotometry diagnostic technique consisting of Laser-Doppler Flowmetry (LDF), Laser Fluorescent Diagnostics (LFD) and Tissues Reflectance Oximetry (TRO). The results show good possibilities of all mentioned above diagnostic methods in estimation of different vascular disorders. A good correlation between persistent microcirculation disorders and trophic disturbances revealed in tissues of distal ends of upper extremities of the patients with vibration disease was estimated. Additionally, in present study with the use of real and long-time TRO and LDF methods a good correlation between LDF and TRO data including correlation in detected rhythms of blood microcirculation was estimated as well.

  15. The role of spectrophotometry in the diagnosis of melanoma

    PubMed Central

    2010-01-01

    Background Spectrophotometry (SPT) could represent a promising technique for the diagnosis of cutaneous melanoma (CM) at earlier stages of the disease. Starting from our experience, we further assessed the role of SPT in CM early detection. Methods During a health campaign for malignant melanoma at National Cancer Institute of Naples, we identified a subset of 54 lesions to be addressed to surgical excision and histological examination. Before surgery, all patients were investigated by clinical and epiluminescence microscopy (ELM) screenings; selected lesions underwent spectrophotometer analysis. For SPT, we used a video spectrophotometer imaging system (Spectroshade® MHT S.p.A., Verona, Italy). Results Among the 54 patients harbouring cutaneous pigmented lesions, we performed comparison between results from the SPT screening and the histological diagnoses as well as evaluation of both sensitivity and specificity in detecting CM using either SPT or conventional approaches. For all pigmented lesions, agreement between histology and SPT classification was 57.4%. The sensitivity and specificity of SPT in detecting melanoma were 66.6% and 76.2%, respectively. Conclusions Although SPT is still considered as a valuable diagnostic tool for CM, its low accuracy, sensitivity, and specificity represent the main hamper for the introduction of such a methodology in clinical practice. Dermoscopy remains the best diagnostic tool for the preoperative diagnosis of pigmented skin lesions. PMID:20707921

  16. Structural Analysis of Freshwater-Cultured Pearls with Different Lusters Using the Extended X-Ray Absorption Fine Structure Technique

    NASA Astrophysics Data System (ADS)

    Monarumit, N.; Noirawee, N.; Phlayrahan, A.; Promdee, K.; Won-in, K.; Satitkune, S.

    2016-05-01

    The quality of freshwater-cultured pearls (Chamberlainia hainesiana) is determined by their luster, which is related to the content of the two CaCO3 mineral phases: aragonite and vaterite. The atomic structures of pearl samples were analyzed by the extended X-ray absorption fine structure (EXAFS) technique using synchrotron radiation to compare the atomic environment and atomic bonding around Ca atoms of high- and low-luster pearls. The Ca K-edge EXAFS spectra of the pearl samples were determined and interpreted in terms of the photoelectron wave number and the distance between Ca atoms and neighboring atoms. From the results, the wave oscillation of high-luster pearls is less than that of low-luster pearls. This indicates the presence of the aragonite phase in high-luster pearls and a combination of aragonite and vaterite phases in low-luster pearls, especially in the fi rst and second shells of Ca atoms. It can be concluded that the different lusters of freshwater-cultured pearls are related to the different CaCO3 phases in their structures.

  17. Applications of the direct photon absorption technique for measuring bone mineral content in vivo. Determination of body composition in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.

    1972-01-01

    The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.

  18. An efficient and accurate technique to compute the absorption, emission, and transmission of radiation by the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.

    1990-01-01

    CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.

  19. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  20. COMPENSATIONAL THREE-WAVELENGTH DIFFERENTIAL-ABSORPTION LIDAR TECHNIQUE FOR REDUCING THE INFLUENCE OF DIFFERENTIAL SCATTERING ON OZONE-CONCENTRATION MEASUREMENTS.

    EPA Science Inventory

    A three-wavelength differential-absorption lidar (DIAL) technique for the UV spectral region is presented that reduces the influence of aerosol differential scattering on measured O3-concentration profiles. The principal advantage of this approach is that, to a good first approxi...

  1. Quantitative analysis of deconvolved X-ray absorption near-edge structure spectra: a tool to push the limits of the X-ray absorption spectroscopy technique.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina; Persson, Ingmar; Mancini, Giordano; Della Longa, Stefano

    2014-09-15

    A deconvolution procedure has been applied to K-edge X-ray absorption near-edge structure (XANES) spectra of lanthanoid-containing solid systems, namely, hexakis(dmpu)praseodymium(III) and -gadolinium(III) iodide. The K-edges of lanthanoids cover the energy range 38 (La)-65 (Lu) keV, and the large widths of the core-hole states lead to broadening of spectral features, reducing the content of structural information that can be extracted from the raw X-ray absorption spectra. Here, we demonstrate that deconvolution procedures allow one to remove most of the instrumental and core-hole lifetime broadening in the K-edge XANES spectra of lanthanoid compounds, highlighting structural features that are lost in the raw data. We show that quantitative analysis of the deconvolved K-edge XANES spectra can be profitably used to gain a complete local structural characterization of lanthanoid-containing systems not only for the nearest neighbor atoms but also for higher-distance coordination shells. PMID:25171598

  2. Characterising the atmospheres of transiting exoplanets using narrowband spectrophotometry

    NASA Astrophysics Data System (ADS)

    Wilson, Paul Anthony; Sing, David; Nikolov, Nikolay; Lecavelier des Etangs, Alain; Pont, Frédéric; Fortney, Jonathan; Ballester, Gilda; Lopez-Morales, Mercedes; Desert, Jean-Michel; Vidal-Madjar, Alfred

    2015-08-01

    Transiting hot-Jupiters provide an excellent opportunity to detect and characterise exoplanetary atmospheres. However, to be able to perform a wide scale comparative exoplanetology we have to observe targets which are too faint for the Hubble Space Telescope (HST). To do this, we use the the 10.4 m Gran Telescopio Canarias (GTC) telescope together with unique tunable filters capable of precision narrowband photometry at specific wavelengths. This technique coupled with the use of the world’s largest optical telescope allows us to obtain photon-limited sub-mmag narrowband transit spectrophotometry, capable of detecting Na, K, TiO and other important atmospheric species. The detection (and non-detection) of such key species can provide information on the temperature profile of the atmosphere determine the presence and extent of condensate clouds and give us insight into the chemical processes at play. This information is vital to be able to discern different exoplanet atmospheres and will in the future allow us to categorise exoplanets into different sub-classes.In this talk I will present the ground based detection of potassium in HAT-P-1b and describe the techniques used to deal with the systematics present in the data. I will discuss, in context of HST observations, the effects resolution has on the measurements and how atmospheric signatures could be missed if the resolution is not sufficiently high. Tunable filters allow the atmosphere to be probed higher up, where the pressures are lower and where the temperatures may be higher. Such conditions could cause the dissociation of molecular hydrogen into atomic hydrogen by the EUV flux from the host star. This will have important effects on the amplitude of the detection of alkali metals. With studies such as this one, we are well on our way to performing comparative exoplanetology using statistical methods.

  3. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  4. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-06-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2- (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2- species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2-, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.

  5. Absorption of Low-Loss Optical Materials Measured at 1064 nm by a Position-Modulated Collinear Photothermal Detection Technique

    NASA Astrophysics Data System (ADS)

    Loriette, Vincent; Boccara, Claude

    2003-02-01

    A collinear photothermal detection bench is described that makes use of a position-modulated heating source instead of the classic power-modulated source. This new modulation scheme increases by almost a factor 2 the sensitivity of a standard mirage bench. This bench is then used to measure the absorption coefficient of OH-free synthetic fused silica at 1064 nm in the parts per 106 range, which, combined with spectrophotometric measurements, confirms that the dominant absorption source is the OH content.

  6. Technique for determination of human zinc absorption from measurement of radioactivity in a fecal sample or the body

    SciTech Connect

    Payton, K.B.; Flanagan, P.R.; Stinson, E.A.; Chodirker, D.P.; Chamberlain, M.J.; Valberg, L.S.

    1982-12-01

    The intestinal absorption of an oral dose of zinc chloride was determined from the ratio of /sup 65/Zn and a nonabsorbed radioactive marker, /sup 51/Cr, present in a single stool specimen or the body 24-72 h later. Chromic chloride had no effect on (/sup 65/Zn)zinc chloride absorption and /sup 51/Cr and /sup 65/Zn had similar intestinal transit times. In 17 healthy control subtects given 92 mumol ZnCl/sub 2/ labeled with 0.5 microCi /sup 65/Zn, 52 +/- 14% (SD) of the dose was taken up from the lumen. Intestinal absorption of /sup 65/Zn at 24 h correlated closely with /sup 65/Zn body retention of zinc measured by whole-body counting 7 days later, r . 0.995. Neither zinc absorption nor zinc retention correlated with blood leukocyte zinc levels. An average of 55% of /sup 65/Zn was retained in the body from doses of 18-90 mumol ZnCl/sub 2/ but a progressively smaller proportion of zinc was absorbed from doses of 180-900 mumol. The average absorption and body retention of /sup 65/Zn were significantly reduced in 7 patients with mucosal disease of the proximal intestine but they were not affected by resection of the lower jejunum, ileum, and colon. Thus the absorption of ZnCl/sub 2/ from a 92-mumol dose predominantly takes place by a rate-limited mechanism in the duodenum and upper jejunum.

  7. Excitonic emission and absorption resonances in V0.25W0.75Se2 single crystals grown by direct vapour transport technique

    NASA Astrophysics Data System (ADS)

    Solanki, G. K.; Pataniya, Pratik; Sumesh, C. K.; Patel, K. D.; Pathak, V. M.

    2016-05-01

    A systematic study on emission and absorption spectra of vanadium mixed tungsten diselenide single crystals grown by direct vapour transport (DVT) technique is reported. The grown crystals were characterized by energy dispersive analysis of X-ray (EDAX), which gives the confirmation about the stoichiometry. The structural characterizations were accomplished by X-ray diffraction (XRD), surface morphology and transmission electron microscopy (TEM). These characterizations were indicating the growth of V0.25W0.75Se2 single crystal from vapour phase. The optical response of this material has been observed by combination of UV-vis-NIR spectroscopy and photo luminescence (PL) spectroscopy. A detailed study of excitonic emission and absorption resonances was carried out on grown crystals. The energy band gap was calculated for indirect allowed transition with absorbed and emitted phonon. Additionally, absorption tail for grown crystal is found to obey the Urbach's rule.

  8. Cell effects on high-resolution transmission spectrophotometry

    NASA Astrophysics Data System (ADS)

    Soares, Oliverio D.

    1998-12-01

    Liquids molecular transmission spectrophotometry has a broad area of applications including spectrophotometry. The measurement of the spectral transmission factor could require levels of accuracy in the order of 10-3 to 10-4. This implies the need for detailed analysis of the corrections to compensate measuring cell unpairing, differences in refractive index between reference liquid (water or solvent) and corresponding spectral non-flatness as well as the multiple inter-reflection at the various dielectric interfaces. Procedures for self-correction of optical measuring cells unpairing and compensation of further effects are presented.

  9. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  10. Temperature Independent Differential Absorption Spectroscopy (tidas) and Simplified Atmospheric Air Mass Factor (samf) Techniques For The Measurement of Ozone Vertical Content From Gome Data

    NASA Astrophysics Data System (ADS)

    Zehner, C.; Casadio, S.; di Sarra, A.; Putz, E.

    A simple technique for the fast retrieval of ozone vertical amount from GOME (Global Ozone Monitoring Experiment) spectra is described in detail. The TIDAS (Tempera- ture Independent Differential Absorption Spectroscopy) technique uses GOME's ca- pability of measuring atmospheric spectra over a broad wavelength range with high spectral resolution. The ozone slant columns are retrieved by applying the Beer- Lambert law to two spectral windows where the ozone absorption cross sections show similar temperature dependence. A simple geometric air mass factor is computed for a fixed height spherical atmosphere (SAMF: Simplified Atmospheric air Mass Factor) to retrieve ozone vertical amounts. Vertical ozone values are compared to the GDP (GOME Data Processor), and to ground based ozone measurements.

  11. Absorption of low-loss optical materials measured at 1064 nm by a position-modulated collinear photothermal detection technique.

    PubMed

    Loriette, Vincent; Boccara, Claude

    2003-02-01

    A collinear photothermal detection bench is described that makes use of a position-modulated heating source instead of the classic power-modulated source. This new modulation scheme increases by almost a factor 2 the sensitivity of a standard mirage bench. This bench is then used to measure the absorption coefficient of OH-free synthetic fused silica at 1064 nm in the parts per 10(6) range, which, combined with spectrophotometric measurements, confirms that the dominant absorption source is the OH content. PMID:12564484

  12. Evolution of Instrumentation for UV-Visible Spectrophotometry. Part I.

    ERIC Educational Resources Information Center

    Altemose, Ines R.

    1986-01-01

    Traces the development of instruments used in spectrophotometry. Discusses how spectrophotometric measurements are made. Describes the color comparator, the filter photometer, and the spectrophotometer. Outlines the evolution of optical systems, including light sources, the monochromator, the photodetector, double-beam optics, and split-beam…

  13. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  14. Wavelength Anomalies in UV-Vis Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Tellinghuisen, J.

    2012-06-01

    Commercial spectrophotometers are great tools for recording absorption spectra of low-to-moderate resolution and high photometic quality. However, in the case of at least one such instrument, the Shimadzu UV-2101PC (and by assumption, similar Shimadzu models), the wavelength accuracy may not match the photometric accuracy. In fact the wavelength varies with slit width, spectral sampling interval, and even the specified range, with a smoothing algorithm invoked any time the spectrum includes more than 65 sampled wavelengths. This behavior appears not to be documented anywhere, but it has been present for at least 20 years and persists even in the latest software available to run the instrument. The wavelength shifts can be as large as 1 nm, so for applications where wavelength accuracy better than this is important, wavelength calibration must be done with care to ensure that the results are valid for the parameters used to record the target spectra.

  15. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma

    SciTech Connect

    Marshall, F. J. Radha, P. B.

    2014-11-15

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

  16. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma.

    PubMed

    Marshall, F J; Radha, P B

    2014-11-01

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions. PMID:25430361

  17. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.

    2000-01-01

    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  18. Resonance lamp absorption technique for simultaneous determination of the OH concentration and temperature at 10 spatial positions in combustion environments

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Gregory, Ray W.

    1994-01-01

    A rugged, easy to implement, line-of-sight absorption instrument which utilizes a low pressure water vapor microwave discharge cell as the light source, has been developed to make simultaneous measurements of the OH concentration and temperature at 10 spatial positions. The design, theory, and capability of the instrument are discussed. Results of the measurements obtained on a methane/air flat flame burner are compared with those obtained using a single-frequency, tunable dye laser system.

  19. Determination of uranium(IV) by derivative spectrophotometry of its complexes with hydroethylidenediphosphomic acid

    SciTech Connect

    Perfil'ev, V.A.; Mishchenko, V.T.; Poluektov, N.S.

    1985-05-20

    This paper reports on a study of the spectral characteristics of complex compounds of uranium-(IV) with a ligand containing the phosphonic groups - hydroxyethyllidenediphosphonic acid (HEDPA) - and its possible use for analysis. The method of derivative spectrophotometry has been used since absorption bands corresponding to a mixture of compounds can thus be resolved into absorption bands of the individual components, and their fine structure can be studied. The method ensures accuracy and reproducibility of the analysis of the mixture of compounds. It was found that, depending on the ratio of the components in the solution, compounds with composition of U(IV) . HEDPA . and U(IV) . 2 HEDPA are formed. It is shown that the complexes studied can be used for the determination of uraniun(IV) in pure salts (C /SUB min/ = 0.05 ..mu..g/ml) and also in the presence of iron (II) ions. In this latter case, the second derivatives of the absorption spectra were used.

  20. Spectrophotometry of 237 Stars in 7 Open Clusters

    NASA Astrophysics Data System (ADS)

    Clampitt, Lori; Burstein, David

    1997-08-01

    Spectrophotometry is presented for 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M39. The observations were taken by Lee McDonald and David Burstein using the Wampler single-channel scanner on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. Sixteen bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwidths 32Angstroms, 48 Angstroms or 64 Angstroms. Data are standardized to the Hayes-Latham system to mutual accuracy of 0.016 mag per passband. The accuracy of the spectrophotometry is assessed in three ways on a star-by-star basis. First, comparisons are made with previously published spectrophotometry for 19 stars observed in common. Second, (B-V) colors and uvby colors are compared for 236 stars and 221 stars, respectively. Finally, comparsions are made for 200 main sequence stars to the spectral synthesis models of Kurucz, fixing log g = 4.0 and [Fe/H] = 0.0, and only varying effective temperature. The accuracy of tests using uvby colors and the Kurucz models are shown to track each other closely, yielding an accuracy estimate (1 sigma ) of 0.01 mag for the 13 colors formed from bandpasses longward of the Balmer jump, and 0.02 mag for the 3 colors formed from the three bandpasses below the Balmer jump. In contrast, larger scatter is found relative to the previously published spectrophotometry of Bohm-Vitense & Johnson (16 stars in common) and Gunn & Stryker (3 stars). We also show that the scatter in the fits of the spectrophotometric colors and the uvby filter colors is a reasonable way to identify the observations of which specific stars are accurate to 1 sigma , 2 sigma , .... As such, the residuals from both the filter color fits and the Kurucz model fits are tabulated for each star where it was possible to make a comparison, so users of these data can choose stars according to the accuracy of the data

  1. Application of the Z-scan technique to determine the optical Kerr coefficient and two-photon absorption coefficient of magnetite nanoparticles colloidal suspension

    NASA Astrophysics Data System (ADS)

    Vivacqua, Marco; Espinosa, Daniel; Martins Figueiredo Neto, Antônio

    2012-06-01

    We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n2) and two-photon absorption coefficient (β). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n2 and β. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications.

  2. Near infrared quadruple wavelength spectrophotometry of the rat head.

    PubMed

    Hazeki, O; Tamura, M

    1989-01-01

    A quadruple wavelength method to monitor the changes in concentration of oxygenated and deoxygenated hemoglobin and the redox state of cytochrome oxidase within a living tissue is presented. The expected advantages of this technique over the triple wavelength method are (i) that it can compensate for the light scattering change of tissue itself or for instabilities of light source and photomultiplier, (ii) that it can treat the optical properties of the red blood cell in a tissue in the same way as in an in vitro model system, and (iii) that it requires no estimation of the absorption coefficient of cytochrome oxidase in situ. PMID:2551140

  3. [Are ultraviolet and visible spectroscopy and spectrophotometry obsolete methods in pharmaceutical analysis?].

    PubMed

    Görög, S; Babják, M; Gazdag, M; Horváth, P; Osztheimer, E; Rényei, M; Varga, K

    1999-04-01

    It has been investigated if UV-VIS spectroscopy and spectrophotometry can be regarded to be obsolete methods in pharmaceutical analysis. The conclusions are as follows. As a consequence of the introduction and spreading of highly efficient spectroscopic methods in the structural analysis of organic compounds the importance of UV-VIS spectroscopy as a structure elucidation tool has greatly decreased. At the same time, however, diode-array UV spectrophotometers used as HPLC detectors have created very convenient possibilities for the identification of minor components (impurities, degradation products, etc.) in drugs. This statement is illustrated by several practical examples. On the basis of some data taken from the British Pharmacopoeia 1998 it is stated that UV spectrophotometry as a quantitative analytical method still belongs to the most frequently used analytical techniques in pharmaceutical analysis. At the same time, however, the authors are of negative opinion about the up-to-dateness and usefulness of colorimetric methods still very often published for the determination of drug substances. PMID:10389299

  4. Derivative spectrophotometry in the analysis of mixtures of phenols and herbicides.

    PubMed

    Baranowska, I; Pieszko, C

    2000-12-01

    Derivative spectrophotometry (zero-crossing technique) was applied to the determination of selected phenols and herbicides in two-component mixtures. Methyl- and chlorophenols (3-methylphenol, 2,3- and 3,4-dimethylphenol, 2,5-, 2,6- and 3,4-dichlorophenol and 2,4,5-trichlorophenol) and triazine, uracil and urea herbicides (simazine, propazine, hexazinone, bromacil and metoxuron) were examined. The RSD values ranged between 0.05 and 4% and the recoveries obtained were between 97 and 110%. The developed derivative spectrophotometric method was also applied as a complementary technique for the separation of overlapping peaks of sample compounds obtained by HPLC with diode-array detection. Metoxuron and 3-methylphenol, metoxuron and 2,5-dichlorophenol and simazine and 2,6-dichlorophenol were determined simultaneously by this method at the level of 1 x 10(-3) g l-1. PMID:11219078

  5. Application of a diode-laser absorption technique with the d(2) transition of atomic rb for hypersonic flow-field measurements.

    PubMed

    Trinks, O; Beck, W H

    1998-10-20

    With a first application of semiconductor lasers to absorption measurements of seeded atomic Rb in high-enthalpy flow fields, a diagnostic technique for time-resolved determination of flow velocity and gas temperature with a line-shape analysis was developed. In our measurements a GaAlAs diode laser was used to scan repetitively at 15 kHz over 1.3 cm(-1) across the D(2) resonance transition (5S(1/2) ? 5P(3/2), 780.2 nm) of seeded atomic Rb to obtain multiple absorption line shapes. The time-dependent signal contains highly resolved spectral line-shape information, which we interpret by fitting the spectrally resolved line shapes to Voigt profiles. Kinetic temperatures in the range 900-1400 K and gas velocities in the range 3900-6200 ms(-1) were obtained from the Doppler-broadened component of the line shape and from the Doppler shift, respectively, of the absorption frequency. PMID:18301526

  6. Spectroscopy in an extremely thin vapor cell: Comparing the cell-length dependence in fluorescence and in absorption techniques

    NASA Astrophysics Data System (ADS)

    Sarkisyan, D.; Varzhapetyan, T.; Sarkisyan, A.; Malakyan, Yu.; Papoyan, A.; Lezama, A.; Bloch, D.; Ducloy, M.

    2004-06-01

    We compare the behavior of absorption and of resonance fluorescence spectra in an extremely thin Rb vapor cell as a function of the ratio of L/λ , with L the cell thickness (L˜150 1800 nm) and λ the wavelength of the Rb D2 line (λ=780 mn) . The Dicke-type coherent narrowing [

    G. Dutier et al., Europhys. Lett. 63, 35 (2003)
    ] is observed only in transmission measurements, in the linear regime, with its typical collapse and revival, which reaches a maximum for L= (2n+1) λ/2 ( n integer). It is shown not to appear in fluorescence, whose behavior-amplitude, and spectral width, is more monotonic with L . Conversely, at high-intensity, the sub-Doppler saturation effects are shown to be the most visible in transmission around L=nλ .

  7. Review of uranium bioassay techniques

    SciTech Connect

    Bogard, J.S.

    1996-04-01

    A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

  8. An improved computational technique for calculating electromagnetic forces and power absorptions generated in spherical and deformed body in levitation melting devices

    NASA Technical Reports Server (NTRS)

    Zong, Jin-Ho; Szekely, Julian; Schwartz, Elliot

    1992-01-01

    An improved computational technique for calculating the electromagnetic force field, the power absorption and the deformation of an electromagnetically levitated metal sample is described. The technique is based on the volume integral method, but represents a substantial refinement; the coordinate transformation employed allows the efficient treatment of a broad class of rotationally symmetrical bodies. Computed results are presented to represent the behavior of levitation melted metal samples in a multi-coil, multi-frequency levitation unit to be used in microgravity experiments. The theoretical predictions are compared with both analytical solutions and with the results of previous computational efforts for the spherical samples and the agreement has been very good. The treatment of problems involving deformed surfaces and actually predicting the deformed shape of the specimens breaks new ground and should be the major usefulness of the proposed method.

  9. An Improved Computational Technique for Calculating Electromagnetic Forces and Power Absorptions Generated in Spherical and Deformed Body in Levitation Melting Devices

    NASA Technical Reports Server (NTRS)

    Zong, Jin-Ho; Szekely, Julian; Schwartz, Elliot

    1992-01-01

    An improved computational technique for calculating the electromagnetic force field, the power absorption and the deformation of an electromagnetically levitated metal sample is described. The technique is based on the volume integral method, but represents a substantial refinement; the coordinate transformation employed allows the efficient treatment of a broad class of rotationally symmetrical bodies. Computed results are presented to represent the behavior of levitation melted metal samples in a multi-coil, multi-frequency levitation unit to be used in microgravity experiments. The theoretical predictions are compared with both analytical solutions and with the results or previous computational efforts for the spherical samples and the agreement has been very good. The treatment of problems involving deformed surfaces and actually predicting the deformed shape of the specimens breaks new ground and should be the major usefulness of the proposed method.

  10. Noise estimation technique to reduce the effects of 1/f noise in Open Path Tunable Diode Laser Absorption Spectrometry (OP-TDLAS)

    NASA Astrophysics Data System (ADS)

    Mohammad, Israa L.; Anderson, Gary T.; Chen, Youhua

    2014-06-01

    Many techniques using high frequency modulation have been proposed to reduce the effects of 1/f noise in tunable diode-laser absorption spectroscopy (TDLAS). The instruments and devices used by these techniques are not suitable for space applications that require small, low mass and low power instrumentation. A new noise estimation technique has already been proposed and validated for two lasers to reduce the effect of 1/f noise at lower frequencies. This paper extends the noise estimation technique and applies it using one distribution feedback (DFB) laser diode. In this method a DFB laser diode is excited at two slightly different frequencies, giving two different harmonics that can be used to estimate the total noise in the measurement. Simulations and experimental results on ammonia gas validate that the 1/f noise is effectively reduced by the noise estimation technique using one laser. Outdoor experimental results indicate that the effect of 1/f noise is reduced to more than 1/4 its normal value.

  11. A two-laser beam technique for improving the sensitivity of low frequency open path tunable diode laser absorption spectrometer (OP-TDLAS) measurements

    NASA Astrophysics Data System (ADS)

    Mohammad, Israa L.; Anderson, Gary T.; Chen, Youhua

    2013-09-01

    Open path tunable diode-laser absorption spectroscopy (OP-TDLAS) is a promising technique to detect low concentrations of possible biogenic gases on Mars. This technique finds the concentration of a gas by measuring the amount of laser light absorbed by gaseous molecules at a specific wavelength. One of the major factors limiting sensitivity in the TDLAS systems operating at low modulation frequencies is 1/f noise. 1/f noise is minimized in many spectroscopy systems by the use of high frequency modulation techniques. However, these techniques require complex instruments that include reference cells and other devices for calibration, making them relatively large and bulky. We are developing a spectroscopy system for space applications that requires small, low mass and low power instrumentation, making the high frequency techniques unsuitable. This paper explores a new technique using two-laser beam to reduce the affect of 1/f noise and increase the signal strength for measurements made at lower frequencies. The two lasers are excited at slightly different frequencies. An algorithm is used to estimate the noise in the second harmonic from the combined spectra of both lasers. This noise is subtracted from the signal to give a more accurate measurement of gas concentration. The error in estimation of 1/f noise is negligible as it corresponds to noise level made at much higher frequencies. Simulation results using ammonia gas and two lasers operating at 500 and 510 Hz respectively shows that this technique is able to decrease the error in estimation of gas concentration to 1/6 its normal value.

  12. A sensitive, spatially uniform photodetector for broadband infrared spectrophotometry

    SciTech Connect

    Iglesias, Enrique J.; Smith, Allan W.; Kaplan, Simon G

    2008-05-01

    We describe the design and performance of a liquid helium-cooled As:Si blocked-impurity-band photodetector system intended for spectrophotometry in the thermal infrared (2 to 30 {mu}m) spectral region. The system has been characterized for spectral sensitivity, noise, thermal stability, and spatial uniformity, and optimized for use with a Fourier-transform infrared spectrophotometer source for absolute goniometric reflectance measurements. Its performance is evaluated and compared to more common detector systems used in this spectral region, including room-temperature pyroelectric and liquid-N2-cooled photoconductive devices.

  13. Method for rapidly determining a pulp kappa number using spectrophotometry

    DOEpatents

    Chai, Xin-Sheng; Zhu, Jun Yong

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  14. A two-laser beam technique for improving the sensitivity of low frequency open path tunable diode laser absorption spectrometer (OP-TDLAS) measurements

    NASA Astrophysics Data System (ADS)

    Mohammad, Isra'a. Lateef

    Open path tunable diode-laser absorption spectroscopy (OP-TDLAS) is a promising technique that is proposed for detecting low concentrations of possible biogenic gases on Mars. This technique determines the concentration of a gas by measuring the amount of laser light absorbed by molecules at a specific wavelength that is characteristic of those molecules. One of the major factors limiting sensitivity in the OP-TDLAS systems is noise. At low modulation frequencies, 1/f noise usually dominates. This 1/f noise is minimized in many spectroscopy systems by use of high frequency techniques. However, these methods use complex instruments that include reference cells and other devices for calibration, making them relatively large and bulky. We have built a spectroscopy system for space applications that requires small, low mass and low power instrumentation, making the high frequency techniques unsuitable. This work explores a new technique that uses a two-laser beam to reduce the affect of 1/f noise and increase the signal strength for measurements made at lower frequencies. The two lasers are excited at slightly different frequencies. An algorithm is used to estimate the total noise in the second harmonic from the combined spectra of both lasers. This noise is subtracted from the signal to give a more accurate measurement of gas concentration. The error in estimation of 1/f noise is negligible as it corresponds to noise level made at much higher frequencies. Experimental results using ammonia gas and two lasers operating at 500 and 510 Hz respectively shows that this technique reduces the effect of 1/f noise by 1/3 its normal value. Furthermore, the error in estimation of gas concentration is also reduced.

  15. Development of a 2-micron Pulsed Differential Absorption Lidar for Atmospheric CO2 Concentration Measurement by Direct Detection Technique

    NASA Astrophysics Data System (ADS)

    Yu, J.; Singh, U. N.; Petros, M.; Bai, Y.

    2011-12-01

    Researchers at NASA Langley Research Center are developing a 2-micron Pulsed Differential Absorption Lidar instrument for ground and airborne measurements via direct detection method. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capbility by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. A key component of the CO2 DIAL system, transceiver, is an existing, airborne ready, robust hardware which can provide 250mJ at 10Hz with double pulse format specifically designed for DIAL instrument. The exact wavelengths of the transceiver are controlled by well defined CW seed laser source to provide the required injection source for generating on-and-off line wavelength pulses sequentially. The compact, rugged, highly reliable transceiver is based on the unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. They are designed to be adjustable and lockable and hardened to withstand vibrations that can occur in airborne operation. For the direct detection lidar application, a large primary mirror size is preferred. A 14 inch diameter telescope will be developed for this program. The CO2 DIAL/IPDA system requires many electronic functions to operate. These include diode, RF, seed laser, and PZT drivers; injection seeding detection and control; detector power supplies; and analog inputs to sample various sensors. Under NASA Laser Risk Reduction Program (LRRP), a control unit Compact Laser Electronics (CLE), is developed for the controlling the coherent wind lidar transceiver. Significant modifications and additions are needed to update it for CO2 lidar controls. The data acquisition system was built for ground CO2 measurement demonstration. The software will be updated for

  16. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India: Using aerosol light absorption technique

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Bisht, D. S.; Srivastava, A.

    2014-12-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5) and carbon monoxide (CO) was undertaken during 1st December 2011 to 31st March 2012 in Delhi, India. The mean mass concentrations of eBC, PM2.5 and CO were recorded as 12.1±8.7μg/m3, 182.75±114.5μg/m3 and 3.41±1.6ppm respectively. Also, the Absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with mean value of 1.09±0.11. The frequency of occurrence of AAE was ~17% less than unity whereas ~83% was greater than unity. The mass concentrations of eBC were found to be higher by ~34% of the average value of eBC (12.1μg/m3) during the study period. Sources of eBC were estimated and they were ~ 94% from fossil fuel (eBCff) combustion whereas only 6% was from wood burning (eBCwb). The ratio between eBCff and eBCwb was fifteen which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in night-time than daytime, it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher in between 18.00 to 21.00 hrs due to burning of wood / biomass. A significant correlation between eBC and PM2.5 (r=0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4μg/m3) during the month of December when the mean visibility (VIS) was lowest (1.31Km). Regression analysis among wind speed (WS), VIS, soot particles and CO were studied and significant negative relationships were seen as VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34) and CO (-0.65), however, in between WS among eBC (-0.68), eBCff (-0.67), eBCwb (-0.28) and CO (-0.53) respectively. The regression analysis indicated that emission of soot particles may be localized to fossil fuel combustion whereas wood/biomass burning emissions of black

  17. Controlled coupling of a single nanoparticle in polymeric microstructure by low one-photon absorption-based direct laser writing technique.

    PubMed

    Do, M T; Nguyen, D T T; Ngo, H M; Ledoux-Rak, I; Lai, N D

    2015-03-13

    We investigated the coupling of a single nanoparticle (NP) into a polymer-based photonic structure (PS). The low one-photon absorption microscopy with a two-step technique allowed us first to accurately determine the location of a NP and then to embed it as desired into an arbitrary PS. The coupling of a gold NP and a polymer-based PS was experimentally investigated showing a six-fold photon collection enhancement as compared to that of a NP in unpatterned film. The simulation results based on finite-difference time-domain calculation method confirmed this observation and showed a 2.86-fold enhancement in extraction efficiency thanks to the NP/PS coupling. PMID:25697121

  18. Development of a tunable diode laser absorption sensor for online monitoring of industrial gas total emissions based on optical scintillation cross-correlation technique.

    PubMed

    Zhang, Zhirong; Pang, Tao; Yang, Yang; Xia, Hua; Cui, Xiaojuan; Sun, Pengshuai; Wu, Bian; Wang, Yu; Sigrist, Markus W; Dong, Fengzhong

    2016-05-16

    We report the first application of gas total emission using a DFB diode laser for gas concentration measurements combined with two LEDs for gas velocity measurements. In situ gas total emissions and particle density measurements in an industrial pipeline using simultaneous tunable diode laser absorption spectroscopy (TDLAS) and optical scintillation cross-correlation technique (OSCC) are presented. Velocity mean values obtained are 7.59 m/s (OSCC, standard deviation is 1.37 m/s) and 8.20 m/s (Pitot tube, standard deviation is 1.47 m/s) in a steel plant pipeline for comparison. Our experiments demonstrate that the combined system of TDLAS and OSCC provides a new versatile tool for accurate measurements of total gas emissions. PMID:27409967

  19. A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry for analysis of samples with high NaCl contents

    NASA Astrophysics Data System (ADS)

    Čánský, Zdeněk; Rychlovský, Petr; Petrová, Zuzana; Matousek, J. P.

    2007-03-01

    A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry has been developed for determination of lead and cadmium in samples with high salt contents. To separate the analyte from the sample matrix, the analyte was in-situ quantitatively electrodeposited on a platinum sampling capillary serving as the cathode (sample volume, 20 μL). The spent electrolyte containing the sample matrix was then withdrawn, the capillary with the analyte deposited was washed with deionized water and the analyte was stripped into a chemically simple electrolyte (5 g/L NH 4H 2PO 4) by reversing the polarity of the electrodeposition circuit. Electrothermal atomization using a suitable optimized temperature program followed. A fully automated manifold was designed for this coupled technique and the appropriate control software was developed. The operating conditions for determination of Pb and Cd in samples with high contents of inorganic salts were optimized, the determination was characterized by principal analytical parameters and its applicability was verified on analyses of urine reference samples. The absolute limits of detection for lead and cadmium (3 σ criterion) in a sample containing 30 g/L NaCl were 8.5 pg and 2.3 pg, respectively (peak absorbance) and the RSD values amounted to 1.6% and 1.9% for lead (at the 40 ng mL - 1 level) and cadmium (at the 4.0 ng mL - 1 level), respectively. These values (and also the measuring sensitivity) are superior to the results attained in conventional electrothermal atomic absorption spectrometric determination of Pb and Cd in pure solutions (5 g/L NH 4H 2PO 4). The sensitivity of the Pb and Cd determination is not affected by the NaCl concentration up to a value of 100 g/L, demonstrating an efficient matrix removal during the electrodeposition step.

  20. Determination of the K absorption edge energy of Ho in element and its compounds using the bremsstrahlung technique

    NASA Astrophysics Data System (ADS)

    Niranjana, K. M.; Badiger, N. M.

    2013-05-01

    The K shell binding energies of Ho in element and in compounds Ho2O3 and HoF3 have been measured for the first time by adopting a novel method. The method involves a weak beta source, an external bremsstrahlung (EB) converter, element and compound targets and a high-resolution HPGe detector coupled to a 16K multichannel analyser. A spectrum of continuous EB photons, produced by the interaction of beta particles from a 90Sr-90Y radioactive source with an iron foil, is allowed to pass through the element and compound targets of Ho. The spectrum of transmitted EB photons is measured with a high-resolution HPGe detector spectrometer. The transmitted spectrum shows a sudden drop in intensity at K shell binding energy of the target. Such a sudden drop, which is essentially due to the onset of the K shell photoelectric effect, has been used to determine the K shell binding energy of Ho in element. The K shell binding energies of Ho in Ho2O3 and HoF3 compounds have also been determined using the same technique. From these data, the chemical shift in the K shell binding energy has been measured. It is found to be positive for Ho2O3 and negative for HoF3, indicating the dependence of the chemical shift on the crystal structure.

  1. [Determination of nine trace elements in Dioscorea opposita thumb by flame atomic absorption spectrophotometry].

    PubMed

    Zhang, Wei; Zhang, Zhuo-Yong; Shi, Yan-Zhi; Fan, Guo-Qiang

    2006-05-01

    The contents of the potassium, calcium, sodium, magnesium, copper, zinc, iron, manganese, strontium and nickel in Dioscorea opposita thumb were determined. The relative standard deviation(RSD) of the first eight contents is 0.43%, 1.10%, 4.41%, 0.68%, 1.44%, 1.88%, 1.29% and 0.03% respectively, and the percentage recovery is 90.0%-111.0%. The method is convenient and accurate. It can be used to determine the trace elements simultaneousy in Dioscorea opposita thumb. PMID:16883880

  2. Stimulated emission and excited state absorption in neodymium-doped CaNb2O6 single crystal fibers grown by the LHPG technique

    NASA Astrophysics Data System (ADS)

    Camargo, A. S. S.; Silva, R. Almeida; Andreeta, J. P.; Nunes, L. A. O.

    2005-04-01

    This work presents the structural and spectroscopic characterization of undoped and neodymium doped CaNb2O6 single crystal fibers grown by the low cost and versatile Laser Heated Pedestal Growth technique. To evaluate the potentialities of doped fibers, polarized absorption (σGSA,max 809nm = 5.85×10-20cm2 with FWHM = 18 nm), luminescence and lifetime (τexp = 145 μs) measurements were taken, and radiative properties were also assessed by the Judd Ofelt approach. The gain (σSE-σESA) spectrum was measured using the pump-probe technique and stimulated emission was observed at 1.064 μm with (σSE, max 1.064 μm = 7.2× 10-20 cm2 and FWHM = 12 nm). The results are comparable to those of other well known niobate bulk laser crystals, but the easier, cheaper and faster growth of compact CaNb2O6:Nd3+ single crystal fibers makes them more attractive media for compact optical devices, such as diode laser pumped miniature lasers in the near infrared region.

  3. Optical and infrared spectrophotometry of the symbiotic system V1016 Cygni

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Rossano, George S.; Cohen, Ross D.; Puetter, R. C.

    1990-01-01

    Spectrophotometry from 0.46 to 1.3 micron of the peculiar emission-line object V1016 Cyg is presented. The optical region displays a weak continuum underlying the rich emission-line spectrum detailed in past studies. The infrared spectrum consists of prominent emission lines of H I, He I, He II, forbidden Ni, O I, and forbidden S III overlying a strong stellar continuum. The latter displays bands at 0.94 micron and 1.13 micron characteristic of a late-type, oxygen-rich giant as well as an absorption at 1.05 micron which is due to VO. The presence of these molecular features indicates a spectral class of M6 or later for the cool secondary. The reddening of the secondary does not appear to be much different from that of the emission lines. Among the infrared emission features is the rarely seen permitted transition of neutral oxygen at 1.1287 micron. Its presence at a strength comparable to O I 8446 A, together with the absence of O I 13164 A, confirms the result of Strafella that the strong O I lines arise primarily from fluorescent excitation by Ly-beta.

  4. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry

    NASA Astrophysics Data System (ADS)

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-01

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM > FT > PFF > PCF > IFP > CFVP > FNT ⩾ DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R2 = 0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.

  5. Determination of cobalt and zinc in highpurity niobium, tantalum, molybdenum and tungsten metals by atomicabsorption spectrophotometry after separation by extraction.

    PubMed

    Donaldson, E M; Charette, D J; Rolko, V H

    1969-09-01

    A method for determining 0.0005-0.05% of cobalt and zinc in high-purity niobium, tantalum, molybdenum and tungsten metals by atomic-absorption spectrophotometry is described. After sample dissolution, cobalt and zinc are separated simultaneously from the matrix materials by chloroform extraction of their thiocyanatediantipyrylmethane ion-association complexes, at pH 3.25, from a citric acid medium approximately 1.2M in sodium thiocyanate. Interference from copper is eliminated with thiourea. Large amounts of iron interfere under the recommended conditions, but moderate amounts may be present in the sample solution without causing appreciable error in the results. Phosphorus (as orthophosphate) interferes in the extraction of cobalt from tungsten solutions. Moderate amounts of other impurities do not interfere in the proposed method. PMID:18960635

  6. Electrooptical remote sensing methods as nondestructive testing and measuring techniques in agriculture.

    PubMed

    Myers, V I; Allen, W A

    1968-09-01

    Characteristics of plants that influence reflectance and emission of electromagnetic energy are discussed. Four main spectral regions are influenced by plants. These wavelength bands include the visible region of chlorophyll absorption, very near ir wavelengths, where plant structure is of major importance, the near and middle ir wavelengths, where water and CO(2) absorption predominate, and the far ir region of thermal ir emission. Soil characteristics that influence reflectance and emission of energy are discussed. Nondestructive testing techniques described include laboratory spectrophotometry, field spectrometry, color photography, radiometry, and generation of line scan imagery. Spectrophotometer and spectrometer reflectance data obtained in the laboratory and field are related to interpretation of remote sensing imagery. Model studies that permit predictions of reflectance from plant canopies are described. The principle of multispectral sensing which permits utilization of multiple wavelength channels for establishing unique plant and soil signature is reviewed. PMID:20068888

  7. Light emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS): a novel technique for monitoring atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Thalman, Ryan M.; Volkamer, Rainer M.

    2009-08-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light- Emitting Diodes, LEDs) lends itself to the application of cavity enhanced DOAS (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e., does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), iodine monoxide (IO), water (H2O) and oxygen dimers (O4). Aerosol extinction is retrieved at two wavelengths by means of observing water and O4 and measuring pressure, temperature and relative humidity independently. The instrument components are presented, and the approach to measure aerosol extinction is demonstrated by means of a set of experiments where laboratory generated monodisperse aerosols are added to the cavity. The aerosol extinction cross section agrees well with Mie calculations, demonstrating that our setup enables measurements of the above gases in open cavity mode.

  8. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    PubMed

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. PMID:27260436

  9. Integrated approaches of x-ray absorption spectroscopic and electron microscopic techniques on zinc speciation and characterization in a final sewage sludge product.

    PubMed

    Kim, Bojeong; Levard, Clément; Murayama, Mitsuhiro; Brown, Gordon E; Hochella, Michael F

    2014-05-01

    Integration of complementary techniques can be powerful for the investigation of metal speciation and characterization in complex and heterogeneous environmental samples, such as sewage sludge products. In the present study, we combined analytical transmission electron microscopy (TEM)-based techniques with X-ray absorption spectroscopy (XAS) to identify and characterize nanocrystalline zinc sulfide (ZnS), considered to be the dominant Zn-containing phase in the final stage of sewage sludge material of a full-scale municipal wastewater treatment plant. We also developed sample preparation procedures to preserve the organic and sulfur-rich nature of sewage sludge matrices for microscopic and spectroscopic analyses. Analytical TEM results indicate individual ZnS nanocrystals to be in the size range of 2.5 to 7.5 nm in diameter, forming aggregates of a few hundred nanometers. Observed lattice spacings match sphalerite. The ratio of S to Zn for the ZnS nanocrystals is estimated to be 1.4, suggesting that S is present in excess. The XAS results on the Zn speciation in the bulk sludge material also support the TEM observation that approximately 80% of the total Zn has the local structure of a 3-nm ZnS nanoparticle reference material. Because sewage sludge is frequently used as a soil amendment on agricultural lands, future studies that investigate the oxidative dissolution rate of ZnS nanoparticles as a function of size and aggregation state and the change of Zn speciation during post sludge-processing and soil residency are warranted to help determine the bioavailability of sludge-born Zn in the soil environment. PMID:25602819

  10. Voyager absolute far-ultraviolet spectrophotometry of hot stars

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Forrester, W. T.; Shemansky, D. E.; Barry, D. C.

    1982-01-01

    Voyager observations in the 912-1200 A spectral region are used to indirectly intercompare absolute stellar spectrophotometry from previous experiments. Measurements of hot stars obtained by the Voyager 1 and 2 ultraviolet spectrometers show considerably higher 912-1200 A continuum fluxes than the recent observations of Brune et al. (1979) and Carruthers et al. (1981). The intercomparisons show all observations in basic agreement near 1200 A. The Carruthers et al. flux measurements are preferred down to 1050 A at which point the Voyager and Brune et al. values are respectively 60% higher and 60% lower. Below 1050 A the diasgreement among the observations becomes very large and the fluxes predicted by model atmospheres have been adopted. The pure hydrogen line-blanketed model atmosphere calculations of Wesemael et al. 1980) in comparison with Voyager observations of HZ 43 are used to adjust the Voyager calibration below 1050 A. This adjusted Voyager calibration, which is in good agreement with current model atmosphere fluxes for both early-type stars and DA white dwarfs, will be used for Voyager astronomical observations.

  11. Automated measurement of urinary creatinine by multichannel kinetic spectrophotometry.

    PubMed

    Ohira, Shin-Ichi; Kirk, Andrea B; Dasgupta, Purnendu K

    2009-01-15

    Urinary creatinine analysis is required for clinical diagnosis, especially for evaluation of renal function. Creatinine adjustment is also widely used to estimate 24-h excretion from spot samples. Few convenient validated approaches are available for in-house creatinine measurement for small- to medium-scale studies. Here we apply the Jáffe reaction to creatinine determination with zone fluidic multichannel kinetic spectrophotometry. Diluted urine sample and reagent, alkaline picric acid, were mixed by a computer-programmed dispenser and rapidly delivered to a four-channel detection cell. The absorbance change was monitored by a flow-through light-emitting diode-photodiode-based detector. Validation results against high-performance liquid chromatography-ultraviolet (HPLC-UV)/mass spectrometry (MS) are presented. Responses for 10-fold diluted samples were linear within clinically relevant ranges (0-250 mg/L after dilution). The system can analyze 70 samples per hour with a limit of detection of 0.76 mg/L. The relative standard deviation was 1.29% at 100 mg/L creatinine (n=225). Correlation with the HPLC (UV quantitation/MS confirmation) system was excellent (linear, r2=0.9906). The developed system allows rapid, simple, cost-effective, and robust creatinine analysis and is suitable for the analysis of large numbers of urine samples. PMID:18977332

  12. HUBBLE SPACE TELESCOPE SPECTROPHOTOMETRY AND MODELS FOR SOLAR ANALOGS

    SciTech Connect

    Bohlin, R. C.

    2010-04-15

    Absolute flux distributions for seven solar analog stars are measured from 0.3 to 2.5 {mu}m by Hubble Space Telescope (HST) spectrophotometry. In order to predict the longer wavelength mid-IR fluxes that are required for James Webb Space Telescope calibration, the HST spectral energy distributions are fit with Castelli and Kurucz model atmospheres; and the results are compared with fits from the MARCS model grid. The rms residuals in 10 broadband bins are all <0.5% for the best fits from both model grids. However, the fits differ systematically: the MARCS fits are 40-100 K hotter in T {sub eff}, 0.25-0.80 higher in log g, 0.01-0.10 higher in log z, and 0.008-0.021 higher in the reddening E(B - V), probably because their specifications include different metal abundances. Despite these differences in the parameters of the fits, the predicted mid-IR fluxes differ by only {approx}1%; and the modeled flux distributions of these G stars have an estimated ensemble accuracy of 2% out to 30 {mu}m.

  13. Noninvasive detection of plant nutrient stress using fiber optic spectrophotometry

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Wei; Asundi, Anand K.; Liew, Oi Wah; Boey, William S. L.

    2001-05-01

    In a previous paper, we described the use of fiber optic spectrophotometry as a non-destructive and sensitive method to detect early symptoms of plant nutrient deficiency. We report further developments of our work on Brassica chinensis var parachinensis (Bailey) showing reproducibility of our data collected at a different seasonal period. Plants at the mid-log growth phase were subjected to nutrient stress by transferring them to nitrate- and calcium- deficient nutrient solution in a standing aerated hydroponic system. After tracking changes in leaf reflectance by FOSpectr for nine days, the plants were returned to complete nutrient solution and their recovery was monitored for a further nine days. The responses of nutrient stressed plants were compared with those grown under complete nutrient solution over the 18-day trial period. We also compared the sensitivity of FOSpectr detection against plant growth measurements vis-a-vis average leaf number and leaf width and show that the former method gave an indication of nutrient stress much earlier than the latter. In addition, this work indicated that while normal and nutrient-stressed plants could not be distinguished within the first 7 days by tracking plant growth indicators, stressed plants did show a clear decline in average leaf number and leaf width in later stages of growth even after the plants were returned to complete nutrient solution. The results further reinforce the need for early detection of nutrient stress, as late remedial action could not reverse the loss in plant growth in later stages of plant development.

  14. Suspended nanoparticles in surfactant media as a microextraction technique for simultaneous separation and preconcentration of cobalt, nickel and copper ions for electrothermal atomic absorption spectrometry determination.

    PubMed

    Dadfarnia, Shayessteh; Shakerian, Farid; Shabani, Ali Mohammad Haji

    2013-03-15

    The aim of this study was to describe a new method of microextraction based on the suspension of alumina nanoparticles in the surfactant media for simultaneous separation and preconcentration of the ultra-traces of cobalt, nickel and copper ions. In this technique, the alumina nanoparticles were suspended in the non-ionic surfactant solution of Triton X-114. The analytes in the sample solution were adsorbed onto the nanoparticles. After the phase separation based on the cloud point of the mixture at 40 °C, the nanoparticles settled down in the surfactant rich phase. Then 120 μL of nitric acid (3.0 mol L(-1)) was added to the surfactant rich phase which caused desorption of the analytes. Finally, the liquid phase was separated by centrifugation from the nanoparticles and was used for the quantification of the analytes by the electrothermal atomic absorption spectrometry (ETAAS). The parameters affecting the extraction and detection processes were optimized. Under the optimized experimental conditions (i.e. pH∼8, Triton X-114, 0.05% (v/v); temperature 40 °C), a sample volume of 25 mL resulted in the enhancement factors of 198, 205 and 206 and detection limits (defined as 3Sb/m) of 2.5, 2.8 and 2.6 ng L(-1) for Co(II), Ni(II) and Cu(II) respectively. The sorbent showed high capacity for these metal ions (30-40 mg g(-1) sorbent). The method was successfully applied to the determination of the analytes in natural water samples. PMID:23598108

  15. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  16. Influence of medium and temperature on the hydrolysis kinetics of propacetamol hydrochloride: determination using derivative spectrophotometry.

    PubMed

    Barcia, Emilia; Martin, Alicia; Azuara, Ma Luz; Negro, Sofia

    2005-03-01

    Propacetamol hydrochloride (PRO) is a water-soluble prodrug of paracetamol (PA) which can be parenterally administered as analgesic for the treatment of postoperative pain, acute trauma, and gastric and/or intestinal disorders where oral administration is not possible. In these circumstances, PRO can be administered in physiologic or glucose solutions since it is rapidly and quantitatively hydrolyzed into PA by plasma estearases. We have studied the degradation kinetics of PRO in 5% glucose and 0.9% saline solutions at 4 degrees C and 25 degrees C (storage and room temperatures, respectively). The analytic technique used to determine PRO and PA quantitatively was first-derivative spectrophotometry. The degradation process of PRO can be best fitted to a second-order kinetics with independence of the medium used (saline or glucose solution). The hydrolysis kinetics of PRO conversion into PA depends on the temperature but not on the assay medium (saline or glucose solution). The degradation rate constants obtained for PRO were approximately 4.5 times higher at 25 degrees C than at 4 degrees C. The values of t(90%) for PRO were 3.17 h and 3.61 h at 25 degrees C, and 13.42 h and 12.36 h at 4 degrees C when the tests were performed in 5% glucose and 0.9% saline solutions, respectively. PMID:15744097

  17. Co-precipitation of Ni, Cr, Mn, Pb and Zn in industrial wastewater and sediment samples with copper(II) cyclo-hexylmethyldithiocarbamate for their flame atomic absorption spectrometric determination.

    PubMed

    Ipeaiyeda, Ayodele Rotimi; Odola, Adekunle Johnson

    2012-01-01

    A co-precipitation technique for nickel(II), chromium(II), manganese(II), lead(II) and zinc(II) with the aid of copper(II) cyclo-hexylmethyldithiocarbamate was established. The influences of some analytical parameters such as pH, sample volume, amounts of cyclo-hexylmethyldithiocarbamate and copper(II) on the recovery of metal ions were investigated. The heavy metals in the precipitate were determined by flame atomic absorption spectrophotometry. The range of detection limits for the heavy metals was 0.003-0.005 mg/L. The atomic spectrometric technique with co-precipitation procedure was successfully applied for the determination of Ni, Cr, Mn, Pb and Zn in industrial wastewater and sediment samples from Ladipo stream in Lagos, Nigeria. The mean concentrations for these metals using co-precipitation procedure were not significantly different from corresponding concentrations obtained using spectrometric techniques without co-precipitation procedure. PMID:22678206

  18. Studying the interaction between silica nanoparticles and metals by spectrophotometry

    NASA Astrophysics Data System (ADS)

    Revina, A. A.; Potapov, V. V.; Baranova, E. K.; Smirnov, Yu. V.

    2013-02-01

    The optical absorption spectra of water silica sols containing nanoparticles (NPs) of metals (Ag, Pd, Fe, and Pt) are investigated. Silica sols are obtained from natural hydrothermal solutions via membrane concentration (ultrafiltration). Water sols of silica with specific sizes, pH values, ζ potentials of SiO2 NP surfaces, and low concentrations of SiO2 NPs are used. Plasmon resonance in optical absorption spectra is used to study the interaction between silica and metal NPs. Parameters of plasmon resonance (position, height, and half-width of optical absorption bands), from which the degree of interaction is assessed, are determined. Relationships between the optical properties of the surfaces of nanoparticle-size silica particles, the method of their production, and the effect of adsorbed metal particles on these properties are established.

  19. Large three-photon absorption in Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} films studied using Z-scan technique

    SciTech Connect

    Saravanan, K. Venkata; Rao, S. Venugopal; Raju, K. C. James; Krishna, M. Ghanashyam; Tewari, Surya P.

    2010-06-07

    Large picosecond nonlinearities in Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films, grown at different temperatures in situ on (100) MgO substrates using rf magnetron sputtering technique, were studied using the Z-scan technique. The nonlinear absorption mechanism, studied near 800 nm using approx2 and 25 ps pulses, switched from reverse saturable absorption type in the films deposited at temperature<600 deg. C to three-photon absorption (3PA) in the films deposited at temperature>600 deg. C. The magnitude of the 3PA coefficient was estimated to be approx10{sup -21} cm{sup 3}/W{sup 2}. Two-photon absorption (2PA) was the dominant mechanism recorded with approx6 ns pulses. The observed behavior is correlated with morphological and crystallographic texture of the films. The linear refractive index and optical band gap of the films have also been calculated and these show a strong dependence on the substrate temperature.

  20. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  1. Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Isaure, Marie-Pierre; Manceau, Alain; Geoffroy, Nicolas; Laboudigue, Agnès; Tamura, Nobumichi; Marcus, Matthew A.

    2005-03-01

    The mobility and solid-state speciation of zinc in a pseudogley soil (pH = 8.2-8.3) before and after contamination by land-disposition of a dredged sediment ([Zn] = 6600 mg kg -1) affected by smelter operations were studied in a 50 m 2 pilot-scale test site and the laboratory using state-of-the-art synchrotron-based techniques. Sediment disposition on land caused the migration of micrometer-sized, smelter-related, sphalerite (ZnS) and franklinite (ZnFe 2O 4) grains and dissolved Zn from the sediment downwards to a soil depth of 20 cm over a period of 18 months. Gravitational movement of fine-grained metal contaminants probably occurred continuously, while peaks of Zn leaching were observed in the summer when the oxidative dissolution of ZnS was favored by non-flooding conditions. The Zn concentration in the <50 μm soil fraction increased from ˜61 ppm to ˜94 ppm in the first 12 months at 0-10 cm depth, and to ˜269 ppm in the first 15 months following the sediment deposition. Higher Zn concentrations and enrichments were observed in the fine (<2 μm) and very fine (<0.2 μm) fractions after 15 months (480 mg kg -1 and 1000 mg kg -1, respectively), compared to 200 mg kg -1 in the <2 μm fraction of the initial soil. In total, 1.2% of the Zn initially present in the sediment was released to the environment after 15 months, representing an integrated quantity of ˜4 kg Zn over an area of 50 m 2. Microfocused X-ray fluorescence (XRF), diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy techniques were used to image chemical associations of Zn with Fe and Mn, and to identify mineral and Zn species in selected points-of-interest in the uncontaminated and contaminated soil. Bulk average powder EXAFS spectroscopy was used to quantify the proportion of each Zn species in the soil. In the uncontaminated soil, Zn is largely speciated as Zn-containing phyllosilicate, and to a minor extent as zincochromite (ZnCr 2O 4), IVZn-sorbed turbostratic

  2. FTIR (Fourier transform infrared) spectrophotometry for thin film monitors: Computer and equipment integration for enhanced capabilities

    SciTech Connect

    Cox, J.N.; Sedayao, J.; Shergill, G.; Villasol, R. ); Haaland, D.M. )

    1990-01-01

    Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG), phosphosilicate (PSG), silicon oxynitride (SiON:H,OH), and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique, FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool, FTIR instruments can rapidly generate large amounts of data. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three caused of enhancement. First, the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it, instructing it to perform sophisticated processing, and returning the result to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second, the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third, processing of calibration spectra is performed on the minicomputer to optimize the accuracy and precision of a Partial Least Squares'' analysis mode. This model is then transferred to the data station in the fab. The analysis of BPSG thin films is discussed in this regard. The prospects for fully automated at-line monitoring and for real-time, in-situ monitoring will be discussed. 10 refs., 4 figs.

  3. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  4. Non-Heme Iron Absorption and Utilization from Typical Whole Chinese Diets in Young Chinese Urban Men Measured by a Double-Labeled Stable Isotope Technique

    PubMed Central

    Yang, Lichen; Zhang, Yuhui; Wang, Jun; Huang, Zhengwu; Gou, Lingyan; Wang, Zhilin; Ren, Tongxiang; Piao, Jianhua; Yang, Xiaoguang

    2016-01-01

    Background This study was to observe the non-heme iron absorption and biological utilization from typical whole Chinese diets in young Chinese healthy urban men, and to observe if the iron absorption and utilization could be affected by the staple food patterns of Southern and Northern China. Materials and Methods Twenty-two young urban men aged 18–24 years were recruited and randomly assigned to two groups in which the staple food was rice and steamed buns, respectively. Each subject received 3 meals containing approximately 3.25 mg stable 57FeSO4 (the ratio of 57Fe content in breakfast, lunch and dinner was 1:2:2) daily for 2 consecutive days. In addition, approximately 2.4 mg 58FeSO4 was administered intravenously to each subject at 30–60 min after dinner each day. Blood samples were collected from each subject to measure the enrichment of the 57Fe and 58Fe. Fourteen days after the experimental diet, non-heme iron absorption was assessed by measuring 57Fe incorporation into red blood cells, and absorbed iron utilization was determined according to the red blood cell incorporation of intravenously infused 58Fe SO4. Results Non-heme iron intake values overall, and in the rice and steamed buns groups were 12.8 ±2.1, 11.3±1.3 and 14.3±1.5 mg, respectively; the mean 57Fe absorption rates were 11±7%, 13±7%, and 8±4%, respectively; and the mean infused 58Fe utilization rates were 85±8%, 84±6%, and 85±10%, respectively. There was no significantly difference in the iron intakes, and 57Fe absorption and infused 58Fe utilization rates between rice and steamed buns groups (all P>0.05). Conclusion We present the non-heme iron absorption and utilization rates from typical whole Chinese diets among young Chinese healthy urban men, which was not affected by the representative staple food patterns of Southern and Northern China. This study will provide a basis for the setting of Chinese iron DRIs. PMID:27099954

  5. Percutaneous absorption in preterm infants.

    PubMed

    West, D P; Halket, J M; Harvey, D R; Hadgraft, J; Solomon, L M; Harper, J I

    1987-11-01

    The skin of preterm infants varies considerably in its level of maturity. To understand skin absorption in premature infants better, we report a technique for the assessment of percutaneous absorption at various gestational and postnatal ages using stable, isotope-labeled (13C6) benzoic acid. Our results indicate that in the preterm infant, this method detects enhanced skin absorption in the first postnatal days, which declines over three weeks to that expected of a full-term infant. This approach also indicates an inverse relationship between gestational age and skin absorption, as well as postnatal age and skin absorption. The reported technique is a safe and noninvasive method using a model skin penetrant for the study of percutaneous absorption in preterm infants from which basic data may be derived to add to our understanding of skin barrier function. PMID:3422856

  6. UV-Visible First-Derivative Spectrophotometry Applied to an Analysis of a Vitamin Mixture

    NASA Astrophysics Data System (ADS)

    Aberásturi, F.; Jiménez, A. I.; Jiménez, F.; Arias, J. J.

    2001-06-01

    A simple new experiment that uses UV-vis spectrophotometry to introduce undergraduate chemistry students to multicomponent analysis is presented and a method for the simultaneous determination of three vitamins using derivative spectrophotometry (zero-crossing method) is described. The methodology is simple and easy to apply and allows the determination of folic acid, pyridoxine, and thiamine over the concentration ranges 1.02-14.28, 1.00-16.00, and 6.00-20.00 mg mL-1, respectively. The resulting errors were nearly always less than 5%.

  7. Broadband optical absorption enhancement of N719 dye in ethanol by gold-silver alloy nanoparticles fabricated under laser ablation technique

    NASA Astrophysics Data System (ADS)

    Al-Azawi, Mohammed A.; Bidin, Noriah; Abbas, Khaldoon N.; Bououdina, Mohamed; Azzez, Shrook A.

    2016-04-01

    The formation of gold-silver alloy nanoparticles (Au-Ag alloy NPs) by a two-step process with a pulsed Nd:YAG laser without any additives is presented. Mixtures of Au and Ag colloidal suspensions were separately obtained by 1064-nm laser ablation of metallic targets immersed in ethanol. Subsequently, the as-mixed colloidal suspensions were reirradiated by laser-induced heating at the second-harmonic generation (532 nm) for different irradiation periods of time. The absorption spectra and morphology of the colloidal alloys were studied as a function of exposure time to laser irradiation. Transmission electron microscopy revealed the formation of monodispersed spherical nanoparticles with a homogeneous size distribution in all the synthesized samples. UV-vis and photoluminescence spectroscopy measurements were also employed to characterize the changes in the light absorption and emission of N719 dye solution with different concentrations of Au-Ag colloidal alloys, respectively. The localized surface plasmon resonance (LSPR) of Au-Ag alloy NPs enhanced the absorption and fluorescence peak of the dye solution. The mixture of dye molecules with a higher concentration of alloy NPs exhibited an additional coupling of dipole moments with the LSPR, thereby contributing to the improvement of the optical properties of the mixture.

  8. White LEDs as broad spectrum light sources for spectrophotometry: demonstration in the visible spectrum range in a diode-array spectrophotometric detector.

    PubMed

    Piasecki, Tomasz; Breadmore, Michael C; Macka, Mirek

    2010-11-01

    Although traditional lamps, such as deuterium lamps, are suitable for bench-top instrumentation, their compatibility with the requirements of modern miniaturized instrumentation is limited. This study investigates the option of utilizing solid-state light source technology, namely white LEDs, as a broad band spectrum source for spectrophotometry. Several white light LEDs of both RGB and white phosphorus have been characterized in terms of their emission spectra and energy output and a white phosphorus Luxeon LED was then chosen for demonstration as a light source for visible-spectrum spectrophotometry conducted in CE. The Luxeon LED was fixed onto the base of a dismounted deuterium (D(2) ) lamp so that the light-emitting spot was geometrically positioned exactly where the light-emitting spot of the original D(2) lamp is placed. In this manner, the detector of a commercial CE instrument equipped with a DAD was not modified in any way. As the detector hardware and electronics remained the same, the change of the deuterium lamp for the Luxeon white LED allowed a direct comparison of their performances. Several anionic dyes as model analytes with absorption maxima between 450 and 600 nm were separated by CE in an electrolyte of 0.01 mol/L sodium tetraborate. The absorbance baseline noise as the key parameter was 5 × lower for the white LED lamp, showing clearly superior performance to the deuterium lamp in the available, i.e. visible part of the spectrum. PMID:21077241

  9. In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques.

    PubMed

    Ozluer, Can; Kara, Hayriye Eda Satana

    2014-09-01

    The interaction between idarubicin and double stranded deoxyribonucleic acid (ds-DNA) was investigated by UV-VIS spectrophotometry, fluorescence and Raman spectroscopy techniques. The absorption spectra of idarubicin with ds-DNA showed a slight red shift and hypochromic effect. In the fluorescence experiments, emission peaks were decreased by adding ds-DNA. Using ethidium bromide (ETB) as a fluorescence probe, fluorescence quenching of the emission peak was observed in the ETB-DNA system when idarubicin was added. Moreover, similar results were obtained in Raman spectroscopy. Binding constants of idarubicin with ds-DNA were determined as 5.14×10(5) M(-1) and 5.8×10(5) M(-1) for UV-VIS spectrophotometry and fluorescence spectroscopy, respectively. The large binding constant indicated that idarubicin has a high affinity with ds-DNA. All the evidences indicated that the binding mode of idarubicin with DNA was an intercalative binding. Furthermore, quantitative determination of idarubicin in pharmaceutical formulation was done. PMID:24911270

  10. Classification of commercial wines from the Canary Islands (Spain) by chemometric techniques using metallic contents.

    PubMed

    Frías, Sergio; Conde, José E; Rodríguez-Bencomo, Juan J; García-Montelongo, Francisco; Pérez-Trujillo, Juan P

    2003-02-01

    Eleven elements, K, Na, Ca, Mg, Fe, Cu, Zn, Mn, Sr, Li and Rb, were determined in dry and sweet wines bearing the denominations of origin of El Hierro, La Palma and Lanzarote islands (Canary Islands, Spain). Analyses were performed by flame atomic absorption spectrophotometry, with the exceptions of lithium and rubidium for which flame atomic emission spectrophotometry was used. Sweet wines from La Palma were elaborated as naturally sweet with over-ripe grapes and significant differences were found in all the analysed elements with the exceptions of sodium, iron and rubidium with regard to dry wines from the same island. Contrarily, sweet wines from Lanzarote elaborated with grapes in a similar ripening state to dry wines did not present significant differences between them with the exception of strontium, the content of which was greater in dry wines. Among the three islands, significant differences in mean content were found with the exceptions of iron and copper. Cluster analysis and principal component analysis show differences in wines according to the island of origin and the ripening state of the grapes. Linear discriminant analysis using rubidium, sodium, manganese and strontium, the four most discriminant elements, gave 100% recognition ability and 95.6% prediction ability. The sensitivity and specificity obtained using soft independent modelling of class analogy (SIMCA) as a modelling multivariate technique were both 100% for El Hierro and Lanzarote, and 100 and 95%, respectively, for La Palma. The modelling and discriminant capacities of the different metals were also studied. PMID:18968916

  11. UV spectrophotometry for monitoring the performance of a yeast-based deoxygenation process to treat ships' ballast water.

    PubMed

    Veilleux, Éloïse; de Lafontaine, Yves; Thomas, Olivier

    2016-04-01

    This study assessed the usefulness of UV spectrophotometry for the monitoring of a yeast-based deoxygenation process proposed for ships' ballast water treatment to prevent the transfer of aquatic invasive species. Ten-day laboratory experiments using three treatment concentrations and different water types were conducted and resulted in complete oxygen depletion of treated waters. The treatment performance and quality of treated waters were determined by measuring the UV-visible absorbance spectra of water samples taken over time. Samples were also used for laboratory analysis of water quality properties. The UV absorbance spectra values were strongly correlated (r = 0.96) to yeast cell density in treated waters. The second-order derivative (D (2)) of the spectra varied greatly over time, and the spectrum profiles could be divided into two groups corresponding to the oxygenated and anoxic phases of the treatment. The D (2) value at 215 nm was strongly correlated (r = 0.94) to ammonia levels, which increased over time. The D (2) value at 225 nm was strongly correlated (r > 0.97) to DO concentration. Our results showed that UV spectrophotometry may provide a rapid assessment of the behavior and performance of the yeast bioreactor over time by quantifying (1) the density of yeast cells, (2) the time at which anoxic conditions were reached, and (3) a water quality index of the treated water related to the production of ammonia. We conclude that the rapidity of the technique confers a solid advantage over standard methods used for water quality analysis in laboratory and would permit the direct monitoring of the treatment performance on-board ships. PMID:26944435

  12. Determination of thallium at ultra-trace levels in water and biological samples using solid phase spectrophotometry

    NASA Astrophysics Data System (ADS)

    Amin, Alaa S.; El-Sharjawy, Abdel-Azeem M.; Kassem, Mohammed A.

    2013-06-01

    A new simple, very sensitive, selective and accurate procedure for the determination of trace amounts of thallium(III) by solid-phase spectrophotometry (SPS) has been developed. The procedure is based on fixation of Tl(III) as quinalizarin ion associate on a styrene-divinylbenzene anion-exchange resin. The absorbance of resin sorbed Tl(III) ion associate is measured directly at 636 and 830 nm. Thallium(I) was determined by difference measurements after oxidation of Tl(I) to Tl(III) with bromine. Calibration is linear over the range 0.5-12.0 μg L-1 of Tl(III) with relative standard deviation (RSD) of 1.40% (n = 10). The detection and quantification limits are 150 and 495 ng L-1 using 0.6 g of the exchanger. The molar absorptivity and Sandell sensitivity are also calculated and found to be 1.31 × 107 L mol-1 cm-1 and 0.00156 ng cm-2, respectively. The proposed procedure has been successfully applied to determine thallium in water, urine and serum samples.

  13. Determination of astaxanthin in Haematococcus pluvialis by first-order derivative spectrophotometry.

    PubMed

    Liu, Xiao Juan; Juan, Liu Xiao; Wu, Ying Hua; Hua, Wu Ying; Zhao, Li Chao; Chao, Zhao Li; Xiao, Su Yao; Yao, Xiao Su; Zhou, Ai Mei; Mei, Zhou Ai; Liu, Xin; Xin, Liu

    2011-01-01

    A highly selective, convenient, and precise method, first-order derivative spectrophotometry, was applied for the determination of astaxanthin in Haematococcus pluvialis. Ethyl acetate and ethanol (1:1, v/v) were found to be the best extraction solvent tested due to their high efficiency and low toxicity compared with nine other organic solvents. Astaxanthin coexisting with chlorophyll and beta-carotene was analyzed by first-order derivative spectrophotometry in order to optimize the conditions for the determination of astaxanthin. The results show that when detected at 432 nm, the interfering substances could be eliminated. The dynamic linear range was 2.0-8.0 microg/mL, with a correlation coefficient of 0.9916. The detection threshold was 0.41 microg/mL. The RSD for the determination of astaxanthin was in the range of 0.01-0.06%; the results of recovery test were 98.1-108.0%. The statistical analysis between first-order derivative spectrophotometry and HPLC by T-testing did not exceed their critical values, revealing no significant differences between these two methods. It was proved that first-order derivative spectrophotometry is a rapid and convenient method for the determination of astaxanthin in H. pluvialis that can eliminate the negative effect resulting from the coexistence of astaxanthin with chlorophyll and beta-carotene. PMID:22320081

  14. [Determination of trace manganese in coal gangue by catalytic spectrophotometry].

    PubMed

    Xia, C; He, X

    2001-02-01

    In HAc-NaAc solution trace Mn(II) catalyzes strongly decolorization reaction of bright green SF(BGSF) by oxidizing with potassium periodate and its catalytic extent is linear with the contents of Mn(II) in the certain range. Based on this study, a catalysis spectrophotometric method for determining trace Mn(II) was developed. The results show that the maximum absorption of the complex is at 651 nm and the detection limits of the method is 0.060 microgram.L-1 for Mn(II) and Beer's law is obeyed for Mn(II) in the range of 0.03-0.3 microgram.50 mL-1. The method has been applied to the determination of trace Mn in coal gangue with satisfactory results. PMID:12953587

  15. Vacuum ultraviolet spectrophotometry and effective temperatures of hot stars

    NASA Technical Reports Server (NTRS)

    Brune, W. H.; Mount, G. H.; Feldman, P. D.

    1979-01-01

    Absolutely calibrated ultraviolet stellar spectra from 3100 A to the hydrogen absorption edge at 912 A were obtained on 1977 February 17 by rocket observations above Woomera, Australia. Spectra taken at 15 A resolution have been compared with the observed fluxes from OAO 2 and with recent model-atmosphere fluxes of Kurucz for five hot stars: Gamma (2) Vel, Zeta Pup, Alpha Eri, Beta Cen, and Alpha Vir. The present data give fluxes which are generally lower than those obtained from OAO 2, with the largest deviations of about 20% between 1400 and 1700 A. Agreement with the models is good, although the model fluxes are substantially larger than the observed values below 1200 A. This discrepancy is greater for the higher-temperature stars. Effective temperatures are also determined and are in good agreement with previous results.

  16. Spectrophotometry of emission-line stars in the magellanic clouds

    NASA Technical Reports Server (NTRS)

    Bohannan, Bruce

    1990-01-01

    The strong emission lines in the most luminous stars in the Magellanic Clouds indicate that these stars have such strong stellar winds that their photospheres are so masked that optical absorption lines do not provide an accurate measure of photospheric conditions. In the research funded by this grant, temperatures and gravities of emission-line stars both in the Large (LMC) and Small Magellanic Clouds (SMC) have been measured by fitting of continuum ultraviolet-optical fluxes observed with IUE with theoretical model atmospheres. Preliminary results from this work formed a major part of an invited review 'The Distribution of Types of Luminous Blue Variables'. Interpretation of the IUE observations obtained in this grant and archive data were also included in a talk at the First Boulder-Munich Hot Stars Workshop. Final results of these studies are now being completed for publication in refereed journals.

  17. Spectrophotometry of peculiar B and A stars. XVIII - The helium rich variable stars HR 1890, Sigma Orionis E, and HD 37776

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Pyper, D. M.

    1985-01-01

    Optical region spectrophotometry at 3300-7850 A has been obtained for three helium rich stars, HR 1890, Sigma Ori E, and HD 37776, of the Orion OB1 Association. New uvby-beta photometry of HR 1890 and HD 37776 as well as published data are also used to investigate the variability of these stars. A new period of 1.53862 days was determined for HD 37776. For all three stars H-beta varies in antiphase with strong He I lines. The spectrophotometric bandpass containing the strong He I line at 4471 A varies in phase with the R index of Pedersen and Thomsen (1977). Evidence is found for weak absorption features which appear to be an extension of the 5200 A feature seen in cooler CP stars.

  18. Computational and experimental study of a multi-layer absorptivity enhanced thin film silicon solar cell

    NASA Astrophysics Data System (ADS)

    Hajimirza, Shima; Howell, John R.

    2014-08-01

    We report on the computational design, fabrication and validation of a multi-layer silicon based thin film solar cell. The cell structure consists of a thin absorber layer of amorphous silicon deposited on a back-reflector aluminum layer and coated on top with ITO transparent conductive oxide. The structure is mounted on a glass substrate. We first use constrained optimization techniques along with numerical solvers of the electromagnetic equations (i.e. FDTD) to tune the geometry of the design. The resulting structure suggests that photon absorptivity in the thin film silicon can be enhanced by as much as 100% over the uncoated layer. The proposed design is then fabricated using thin film deposition techniques, along with a control sample of bare silicon absorber for comparison. AFM imaging and spectrophotometry experiments are applied to image and record the surface roughness and measure the reflectivity spectrum of the sample. Using the measured reflectivity spectrum, we then use inverse optimization to estimate the realized thin film dimensions, deposition error and unwanted oxidation volume. At the end, we use a statistical Monte Carlo analysis as a second method of verification to demonstrate that the measured spectra are in accordance with the expected curves from simulation, and to estimate the effects of fabrication error.

  19. Novel Technique for Improving the Signal-to-Background Ratio of X-ray Absorption Near-Edge Structure Spectrum in Fluorescence Mode and Its Application to the Chemical State Analysis of Magnesium Doped in GaN

    NASA Astrophysics Data System (ADS)

    Yonemura, Takumi; Iihara, Junji; Saito, Yoshihiro; Ueno, Masaki

    2013-12-01

    A novel measurement technique for an X-ray absorption near-edge structure (XANES) for magnesium (Mg) doped in gallium nitride (GaN) has been developed. XANES spectra from Mg at very low concentrations of 1 ×1018/cm3 doped in GaN have successfully been obtained by optimizing the region of interest (ROI) and by using highly brilliant synchrotron radiation X-rays of SPring-8. The ROI is the limited energy region from an X-ray fluorescence spectrum to elicit signals of particular atoms. Using this new technique, we have investigated the effect of the annealing process for Mg-doped GaN on the XANES spectra. It has been found that the XANES spectra of Mg significantly changed as the annealing temperature increased. This indicates that the local structure around Mg atoms in GaN was modified by the annealing process.

  20. Spectrophotometry of Wolf-Rayet stars. I - Continuum energy distributions

    NASA Technical Reports Server (NTRS)

    Morris, Patrick W.; Brownsberger, Kenneth R.; Conti, Peter S.; Massey, Philip; Vacca, William D.

    1993-01-01

    All available low-resolution IUE spectra are assembled for Galactic, LMC, and SMC W-R stars and are merged with ground-based optical and NIR spectra in order to collate in a systematic fashion the shapes of these energy distributions over the wavelength range 0.1-1 micron. They can be consistently fitted by a power law of the form F(lambda) is approximately equal to lambda exp -alpha over the range 1500-9000 A to derive color excesses E(B-V) and spectral indices by removing the 2175-A interstellar absorption feature. The WN star color excesses derived are found to be in good agreement with those of Schmutz and Vacca (1991) and Koesterke et al. (1991). Significant heterogeneity in spectral index values was generally seen with any given subtype, but the groups consisting of the combined set of Galactic and LMC W-R stars, the separate WN and WC sequences, and the Galactic and LMC W-R stars all showed a striking and consistent Gaussian-like frequency distribution of values.

  1. Spectrophotometry of Pluto from 3500 to 7350 A

    SciTech Connect

    Barker, E.S.; Cochran, W.D.; Cochran, A.L.

    1980-01-01

    Spectra of Pluto have been obtained on six nights during February 1979 by the use of the Cassegrain Digicon spectrograph on the 2.1-m Struve reflector and the IDS spectrograph on the 2.7-m reflector of McDonald Observatory. These spectra, with nominal resolution of 6-7 A, have been reduced to relative fluxes. Relative albedos were then calculated using the solar irradiances of Arvesen et al. (1969). The spectra taken in the blue show no indication of the upturn in albedo at wavelengths less than 3800 A previously reported by Fix, et al. (1970). The lack of a UV upturn cannot be interpreted in terms of a Rayleigh scattering atmosphere unless the albedo of the underlying surface is known. From the lack of methane absorption at the wavelength of the 6190- or 7270-A methane bands, an upper limit of 1-3 m-am of gaseous CH4 is derived. The albedo curve has a constant slope between 3500 and 7300 A. The only other solar system body which has this feature is an S-type asteroid.

  2. Noise analysis for CCD-based ultraviolet and visible spectrophotometry.

    PubMed

    Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P

    2015-09-20

    We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4)  AU for the AvaSpec-3648 and 5.6×10(-4)  AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance. PMID:26406516

  3. Selective determination of the holmium in rare earth mixtures by second derivative spectrophotometry with 2-isobutylformyl-1,3-dione-indan and octylphenol poly-(ethyleneglycol)ether

    SciTech Connect

    Wang Naixing; Si Zhikun; Jiang Wei

    1996-09-01

    In this paper the absorption spectra of 4f electron transitions of the system of holmium with 2-isobutylformyl-1,3-dione-indan and TX-100 have been studied by normal and derivative spectrophotometry. The molar absorptivities are 98 (at 450 nm) and 21 (at 460 nm) 1 {center_dot} mol{sup -1} {center_dot} cm{sup -1}, respectively. The use of the second derivative spectra, eliminates the interference by other lanthanides and improves the sensitivity for holmium determination. The derivative molar absorptivity is 558 1 {center_dot} mol{sup -1} {center_dot} cm{sup -1}. The calibration graph was linear up to 25{mu}g/ml of holmium. The relative standard deviation evaluated from ten independent determinations of 8.0 {mu}g/ml holmium is 1.0%. The detection limit, obtained from the sensitivity of the calibration graph and for 3 S{sub b} (S{sub b} = standard deviation of a blank without holmium, n = 11), was found to be 0.31 {mu}g/ml of holmium. The quantification limit, obtained for 10 S{sub b}, was 1.0 {mu}g/ml of holmium. A method has been developed for determining holmium in a mixture of lanthanides by means of the second derivative spectra and the analytical results obtained are satisfactory.

  4. Near-field thermal lens detection at 257 nm as an alternative to absorption spectrometric detection in combination with electromigrative separation techniques.

    PubMed

    Ragozina, Natalia; Heissler, Stefan; Faubel, Werner; Pyell, Ute

    2002-09-01

    A device is presented that permits detection of analytes absorbing electromagnetic radiation at lambda = 257 nm (in fused-silica capillaries with 75-microm i.d.) via the near-field thermal lens effect. The detector was realized by using a frequency-doubled argon ion laser as pump laser and a laser diode (emission wavelength, 633 nm) coupled into a monomode optical fiber as probe laser. Comparing the performance of this detector to the performance of a commercial absorption spectrometric detector working at lambda = 257 nm equipped with a unit for on-column detection in fused-silica capillaries showed a substantial improvement in detection limits (up to 30-fold improvement) for the near-field thermal lens detector (NF-TLD). The feasibility of the NF-TLD for sensitive detection of nonfluorescent analytes in real samples after separation by micellar electrokinetic chromatography was shown taking the determination of nitroaromatic compounds in contaminated water from a former ammunition plant as an example. Dependence of the thermal lens signal on pump laser power, velocity of the mobile phase, and chopper frequency was investigated. A linear calibration range over 2 orders of magnitude was obtained. PMID:12236359

  5. The Uranian satellites and Hyperion - New spectrophotometry and compositional implications

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1983-01-01

    New reflectance spectra at 3.5 percent resolution have been obtained for Ariel, Titania, Oberon, and Hyperion in the 0.8 to 1.6-micron spectrum region. The new spectra show no absorptions other than the 1.5 micron water-ice feature (within the precision of the data), and demonstrate extension into the 0.8- to 1.6 micron region of the 1.5- to 2.5 micron spectral similarity ofo Ariel to Hyperion (Brown and Cruikshank, 1983). The new data confirm the presence of a dark, spectrally bland component on/in the water-ice surfaces of the Uranian satellites, which, with some reservations, has spectral similarities to the dark substance on the leading side of lapetus and the dark material on/in the surface of Hyperion, as well as other dark, spectrally neutral substances such as charcoal. Attempts were made to match the spectra of Ariel, Titania, and Oberon with additive reflectance mixes (aeral coverage) of fine-grained water frost and various dark components such as charcoal, lampblack, and charcoal-water-ice mixtures. The results were broad limits on the amounts of possible areal coverage of a charcoal-like spectral component on the surfaces of the Uranian satellites, but the data are not of sufficient precision to conclusively determine whether the dominant mode of contaminant dispersal is areal or voluminal. The effect of highly variegated albedos on the diameters derived by Brown, Cruikshank, and Morrison (1982) is found to be small.

  6. Methane absorption variations in the spectrum of Pluto

    SciTech Connect

    Buie, M.W.; Fink, U.

    1987-06-01

    The lightcurve phases of 0.18, 0.35, 0.49, and 0.98 covered by 5600-10,500 A absolute spectrophotometry of Pluto during four nights include minimum (0.98) light and one near-maximum (0.49) light. The spectra are noted to exhibit significant methane band absorption depth variations at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 A, with the minimum absorption occurring at minimum light and thereby indicating a 30-percent change in the methane column abundance in the course of three days. An attempt is made to model this absorption strength variation with rotational phase terms of an isotropic surface distribution of methane frost and a clear layer of CH4 gas. 34 references.

  7. Spectrophotometry of planetary atmosphere from the X-15 rocket airplane

    NASA Technical Reports Server (NTRS)

    Murcray, W. B.

    1973-01-01

    Nike-Apache and Nike-Tomahawk rocket flights using spectrophotometric techniques to investigate auroral activity are reported. The specific objectives were to obtain data relative to typical auroral situations, including quiet pre-breakup auroras, westward traveling surges, breakup auroras, and post-breakup auroras. It was found that excited atoms move considerable distances between excitation and emission owing to the high velocity wind conditions prevailing above 200 km. Based on the results of these observations, recommendations are made for future studies of ionized atmospheric activity at higher altitudes.

  8. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique

    PubMed Central

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-01-01

    Purpose: To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Methods: Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. Results: The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. Conclusion: The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases. PMID:27478794

  9. Red supergiants in the LMC - II. Spectrophotometry and model atmospheres

    NASA Astrophysics Data System (ADS)

    Oestreicher, M. O.; Schmidt-Kaler, Th.

    1998-09-01

    Spectrophotometric observations for 88 red supergiant candidates in the Large Magellanic Cloud are presented. The spectra range from 4800 to 7700Angstroms with a resolution of 10Angstroms. The error in the absolute fluxes is 0.04 to 0.05mag. The molecular bands of the member stars are often rather weak, i.e. many of these are not M- but K-type supergiants. The data are available on the Strasbourg stellar data base (CDS). Most of the red (super)giant model atmospheres available up to now do not reproduce the observations well. The models of Kurucz and Lejeune, Cuisinier & Buser - often applied especially to population synthesis - correctly describe the strengths of atomic lines and the overall increase of the flux towards the red, but strongly underestimate the strengths of molecular bands. The models presented by Plez, however, tend to reproduce the observed spectra well, except for the blue, as they include a more complete list of opacity sources. Concerning physical properties, only the Plez models give reliable results. Considering the relation between effective temperature and the strengths of molecular bands, both the Kurucz and Lejeune models predict much higher temperatures than derived from the interferometric radius measurements discussed by Schmidt-Kaler and Dyck et al. The temperatures given by the Plez models show a much better agreement with these observations. Furthermore, the relation between T_eff and molecular absorption is much more clearly defined. When considering metallicities, however, the Plez models also fail, as they predict a [Fe/H] distribution that is much too broad, and furthermore an increase of T_eff with increasing [Fe/H] which clearly contradicts models of stellar evolution. The effective temperatures based on the Plez models range mostly from 3500 to 4100K. The surface gravities derived on the basis of the Geneva evolutionary models range from logg=-0.3 to 0.3, while the bolometric luminosities based on BVRIJHK observations range

  10. Detection of tallow adulteration in cow ghee by derivative spectrophotometry

    PubMed Central

    Jirankalgikar, Nikhil M.; De, Subrata

    2014-01-01

    Context: Ghee is a widely consumed dairy product in India and that prepared from cow milk is mentioned in ayurvedic texts as an ingredient of many formulations/additive as well. Detection of cow ghee adulteration with vegetable oils/fats and animal body fats is a key concern. Indicated values for commonly used parameters to differentiate pure and adulterated ghee materials are many a times overlapping. Among reported techniques, ultraviolet fluorescence and paper chromatography technique are not that much sensitive while other methods require sophisticated instrumental facilities (such as gas chromatography, mass spectrometry) and costly analytical processes. Aims: The present paper deals with a promising spectroscopic method to determine the tallow adulteration in cow ghee. Materials and Methods: Ghee and tallow (taken in chloroform) as such and mixed in different proportions were scanned by spectrophotometer and their second order spectra were analyzed. Results: The value of the ratio of the absorbance of peaks at about 238 nm and 297 nm steadily decreases with the increasing proportion of tallow. This decrease shows consistent linearity suggesting its applicability for quantitative estimation of tallow in cow ghee. Conclusion: The developed derivative spectroscopic method is a rapid, sensitive, cost-effective method for detection of tallow adulteration in cow ghee. PMID:25097406

  11. Monitoring of monosaccharides, oligosaccharides, ethanol and glycerol during wort fermentation by biosensors, HPLC and spectrophotometry.

    PubMed

    Monošík, Rastislav; Magdolen, Peter; Stredanský, Miroslav; Šturdík, Ernest

    2013-05-01

    The aim of the present study was to analyze sugar levels (namely maltose, maltotriose, glucose and fructose) and alcohols (ethanol and glycerol) during the fermentation process in wort samples by amperometric enzymatic biosensors developed by our research group for industrial application, HPLC and spectrophotometry, and to compare the suitability of the presented methods for determination of individual analytes. We can conclude that for the specific monitoring of maltose or maltotriose only the HPLC method was suitable. On the other hand, biosensors and spectrophotometry reflected a decrease in total sugar concentration better and were able to detect both glucose and fructose in the later stages of fermentation, while HPLC was not. This can be attributed to the low detection limits and good sensitivity of the proposed methods. For the ethanol and glycerol analysis all methods proved to be suitable. However, concerning the cost expenses and time analysis, biosensors represented the best option. PMID:23265480

  12. Defects in silicon after B+ implantation: A study using a positron-beam technique, Rutherford backscattering, secondary neutral mass spectroscopy, and infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Eichler, S.; Gebauer, J.; Börner, F.; Polity, A.; Krause-Rehberg, R.; Wendler, E.; Weber, B.; Wesch, W.; Börner, H.

    1997-07-01

    The distribution of defects in Si (100), (110), and (111) after boron implantation and annealing processes was measured by means of different methods. Boron implantation was carried out at 300 K with three energies (50, 150, and 300 keV or 30, 90, and 180 keV) in multiple mode to obtain a homogeneously damaged layer. Ion fluences ranged from 1014 to 1016 B+ cm-2. The profile of vacancy-type defects was detected by variable-energy positron annihilation spectroscopy (VEPAS). The defect concentration increases proportionally to Φ, where Φ is the ion fluence. It was found that the line-shape parameter S of the positron-electron annihilation peak in the implanted layer increases with Φ. The divacancy (2v) concentration observed by infrared absorption spectroscopy (IRAS) was nearly constant in all samples (about 1.8×1019 cm-3). It can be concluded that divacancies are not the main vacancy-type defect and the increasing S parameter must be attributed to additional defects of larger open volume. A value Sdefect/Sbulk=1.048 was fitted for the dominating defect, where S2v/Sbulk=1.04. Rutherford backscattering (RBS) measurements were carried out to detect the distribution of displaced lattice atoms. The defect-production rate was proportional to Φ again. The concentration profiles of implanted ions were measured with sputtered neutral mass spectrometry (SNMS). In addition, Monte Carlo calculations were done with the TRIM code. The nearly homogenous defect distributions up to a depth of 1 μm found by VEPAS, TRIM, and RBS are in very good accordance. The samples were annealed up to 1150 K. It was found that the annealing behavior of vacancylike defects depends on the implantation dose and on the sample material under investigation. The divacancies are annealed at 470 K as measured by IRAS. An annealing stage of vacancy clusters at 725 K was observed in all samples by VEPAS. In Czochralski material, a decrease of the S parameter below the value of defect-free Si was

  13. Defects in silicon after B{sup +} implantation: A study using a positron-beam technique, Rutherford backscattering, secondary neutral mass spectroscopy, and infrared absorption spectroscopy

    SciTech Connect

    Eichler, S.; Gebauer, J.; Boerner, F.; Polity, A.; Krause-Rehberg, R.; Wendler, E.; Weber, B.; Wesch, W.; Boerner, H.

    1997-07-01

    The distribution of defects in Si (100), (110), and (111) after boron implantation and annealing processes was measured. Boron implantation was carried out at 300 K with three energies (50, 150, and 300 keV or 30, 90, and 180 keV) in multiple mode to obtain a homogeneously damaged layer. Ion fluences ranged from 10{sup 14} to 10{sup 16}B{sup +}cm{sup {minus}2}. The profile of vacancy-type defects was detected by variable-energy positron annihilation spectroscopy (VEPAS). The defect concentration increases proportionally to {radical}({Phi}), where {Phi} is the ion fluence. The line-shape parameter S of the positron-electron annihilation peak in the implanted layer increases with {Phi}. The divacancy (2v) concentration observed by infrared absorption spectroscopy (IRAS) was nearly constant in all samples (about 1.8{times}10{sup 19}cm{sup {minus}3}). It can be concluded that divacancies are not the main vacancy-type defect and the increasing S parameter must be attributed to additional defects of larger open volume. A value S{sub defect}/S{sub bulk}=1.048 was fitted for the dominating defect, where S{sub 2v}/S{sub bulk}=1.04. Rutherford backscattering (RBS) measurements were carried out to detect the distribution of displaced lattice atoms. The defect-production rate was proportional to {radical}({Phi}) again. The concentration profiles of implanted ions were measured with sputtered neutral mass spectrometry (SNMS). In addition, Monte Carlo calculations were done with the TRIM code. The nearly homogenous defect distributions up to a depth of 1 {mu}m found by VEPAS, TRIM, and RBS are in very good accordance. The samples were annealed up to 1150 K. It was found that the annealing behavior of vacancylike defects depends on the implantation dose and on the sample material under investigation. The divacancies are annealed at 470 K as measured by IRAS. An annealing stage of vacancy clusters at 725 K was observed in all samples by VEPAS. (Abstract Truncated)

  14. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  15. Spectrophotometry of Dust in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  16. A simple vapour phase decomposition (VPD) of quartz powder in a polypropylene vessel and determination of phosphorus by spectrophotometry.

    PubMed

    Thangavel, S; Dash, K; Chaurasia, S C

    2001-09-13

    A simple, low pressure, low temperature vapour phase decomposition (VPD) of quartz powder has been developed for the determination of phosphorus. A platinum dish containing the quartz or silicon powder was placed inside a polypropylene vessel containing 40 ml of 1:1 mixture of HF and HNO(3). After capping the vessel, the entire assembly was heated on a water bath at approximately 90 degrees C for 8 h. The platinum dish was removed from the vessel, the sample solution was treated with 0.5 ml of H(2)SO(4) and 0.5 ml of HClO(4) and was heated on a hot plate till HClO(4) fumed out. The resultant solution was diluted to 40 ml ( approximately 0.4N), analysed for phosphorus by spectrophotometry as an ion-pair of molybdophosphate with crystal violet. Phosphorus contamination by reagents has been drastically reduced (around 250 times) compared to the conventional dissolution procedure. The optimum reaction conditions were [H(+)]=0.42N, [H(+)]/Mo=62 for the formation of molybdophosphate and its extraction into n-butyl acetate. No interferences due to fluoride, silicate (active silica) and arsenic (V) upto 6.7x10(3),2.7x10(3) and 2.0x10(3) times the content of phosphorus, respectively were observed. The LOD was found to be 0.066 mug g(-1) (+/-3 s). RSD is 0.4-2.3% and the molar absorptivity is 2.7x10(5) l mole(-1) cm(-1). PMID:18968395

  17. Simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ by using second-derivative spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Han, Yanyan; Li, Yan; Si, Wei; Wei, Dong; Yao, Zhenxing; Zheng, Xianpeng; Du, Bin; Wei, Qin

    2011-09-01

    A new method of simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ is proposed here by using the second-derivative spectrophotometry method. In pH = 10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL -1 for Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+, respectively. The molar absorptivity of these color systems were 1.38 × 10 5, 1.01 × 10 5, 3.24 × 10 5, 1.07 × 10 5 and 1.29 × 10 5 L mol -1 cm -1. The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results.

  18. Simultaneous determination of Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ by using second-derivative spectrophotometry method.

    PubMed

    Han, Yanyan; Li, Yan; Si, Wei; Wei, Dong; Yao, Zhenxing; Zheng, Xianpeng; Du, Bin; Wei, Qin

    2011-09-01

    A new method of simultaneous determination of Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ is proposed here by using the second-derivative spectrophotometry method. In pH=10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL(-1) for Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+, respectively. The molar absorptivity of these color systems were 1.38×10(5), 1.01×10(5), 3.24×10(5), 1.07×10(5) and 1.29×10(5)Lmol(-1)cm(-1). The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results. PMID:21664176

  19. SUMMARY REPORT: EVALUATION OF A NEW FLUOROMETRIC TECHNIQUE THAT USES HIGHLY SELECTIVE INTERFERENCE FILTERS FOR MEASURING CHLOROPHYLL IN THE PRESENCE OF CHLOROPHYLL B AND PHEOPIGMENTS

    EPA Science Inventory

    A new fluorometric technique was compared to conventional fluorometry with and without pheophytin a (pheo a) correction and to spectrophotometry using Lorenzen's modified monochromatic equations and Jeffrey and Humphrey's trichromatic equation to calculate chlorophyll a (chl a). ...

  20. Probing potassium in the atmosphere of HD 80606b with tunable filter transit spectrophotometry from the Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Ford, Eric B.; Redfield, Seth; Fortney, Jonathan J.; Shabram, Megan; Deeg, Hans J.; Mahadevan, Suvrath

    2012-01-01

    We report observations of HD 80606 using the 10.4-m Gran Telescopio Canarias and the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) tunable filter imager. We acquired very high precision, narrow-band photometry in four bandpasses around the K I absorption feature during the 2010 January transit of HD 80606b and during out-of-transit observations conducted in 2010 January and April. We obtained differential photometric precisions of ˜2.08 × 10-4 for the in-transit flux ratio measured at 769.91 nm, which probes the K I line core. We find no significant difference in the in-transit flux ratio between observations at 768.76 and 769.91 nm. Yet, we find a difference of ˜8.09 ± 2.88 × 10-4 between these observations and observations at a longer wavelength that probes the K I wing (777.36 nm). While the presence of red noise in the transit data has a non-negligible effect on the uncertainties in the flux ratio, the 777.36-769.91 nm colour during transit shows no effects from red noise and also indicates a significant colour change, with a mean value of ˜8.99 ± 0.62 × 10-4. This large change in the colour is equivalent to a ˜4.2 per cent change in the apparent planetary radius with wavelength, which is much larger than the atmospheric scaleheight. This implies the observations probed the atmosphere at very low pressures as well as a dramatic change in the pressure at which the slant optical depth reaches unity between ˜770 and 777 nm. We hypothesize that the excess absorption may be due to K I in a high-speed wind being driven from the exoplanet's exosphere. We discuss the viability of this and alternative interpretations, including stellar limb darkening, star-spots and effects from Earth's atmosphere. We strongly encourage follow-up observations of HD 80606b to confirm the signal measured here. Finally, we discuss the future prospects for exoplanet characterization using tunable filter spectrophotometry.

  1. Visible absorption spectrum of liquid ethylene

    PubMed Central

    Nelson, Edward T.; Patel, C. Kumar N.

    1981-01-01

    The visible absorption spectrum of liquid ethylene at ≈ 108 K from 5500 Å to 7200 Å was measured by using a pulsed tunable dye laser, immersed-transducer, gated-detection opto-acoustic spectroscopy technique. The absorption features show the strongest band with an absorption coefficient of ≈2 × 10-2 cm-1 and the weakest band with an absorption coefficient of ≈1 × 10-4 cm-1. Proposed assignments of the observed absorption peaks involve combinations of overtones of local and normal modes of vibration of ethylene. PMID:16592978

  2. Optical and local structural study of Gd doped ZrO{sub 2} thin films deposited by RF magnetron sputtering technique

    SciTech Connect

    Haque, S. Maidul Shinde, D. D.; Misal, J. S.; Jha, S. N.; Bhattacharyya, D.; Sahoo, N. K.

    2015-06-24

    ZrO{sub 2} samples with 0, 7, 9, 11, 13 % Gd doping have been prepared by RF magnetron sputtering deposition technique for solid oxide fuel cell application. The optical properties of the samples have been studied by transmission spectrophotometry and spectroscopic ellipsometry while the local structure surrounding Zr sites has been characterized by extended x-ray absorption fine structure (EXAFS) measurement at Zr K edge with synchrotron radiation. It has been observed that beyond 11% Gd doping, band gap decreases and refractive index increases significantly and also oxygen and Zr coordinations surrounding Zr sites increase which indicates the formation of Gd clustering in ZrO{sub 2} matrix beyond this doping concentration.

  3. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively.

  4. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide.

    PubMed

    Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively. PMID:23727675

  5. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  6. Rocket instrument for far-UV spectrophotometry of faint astronomical objects.

    PubMed

    Hartig, G F; Fastie, W G; Davidsen, A F

    1980-03-01

    A sensitive sounding rocket instrument for moderate (~10-A) resolution far-UV (lambda1160-lambda1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employs a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed. PMID:20220923

  7. Verification of terahertz-wave spectrophotometry by Compton backscattering of coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Takahashi, Toshiharu

    2014-01-01

    We developed a continuous-spectrum light beam from Compton backscattering by using coherent synchrotron radiation in an L-band linac at the Kyoto University Research Reactor Institute. The ratio of Compton backscattered photons to background photons when coherent synchrotron radiation was used was three times larger than when coherent transition radiation was used. The transmission spectrum of a polystyrene film in the terahertz-wave region was evaluated by measuring the spectrum of the Compton backscattered photons and it roughly agreed with that measured by a Martin-Puplett-type interferometer. The spectrophotometry using Compton backscattering shows promise as a new tool for investigations in terahertz-wave science.

  8. Directly suspended droplet microextraction in combination with microvolume UV-vis spectrophotometry for determination of phosphate.

    PubMed

    Pena-Pereira, Francisco; Cabaleiro, Noelia; de la Calle, Inmaculada; Costas, Marta; Gil, Sandra; Lavilla, Isela; Bendicho, Carlos

    2011-08-15

    A miniaturized methodology for the determination of phosphate in waters has been developed by combining directly suspended droplet microextraction (DSDME) with microvolume spectrophotometry. The method is based on the extraction of the ion pair formed between 12-molybdophosphate and malachite green onto a microdrop of methyl isobutyl ketone and subsequent spectrophotometric determination with no dilution. An enrichment factor of 325 was obtained after 7.5 min of microextraction. The detection limit was 6.1 nM phosphate and the repeatability, expressed as relative standard deviation, was 2.7% (n=6). The method was successfully applied to the determination of dissolved reactive phosphorus in different freshwater samples. PMID:21726744

  9. Documentation for the machine-readable version of the Absolute Calibration of Stellar Spectrophotometry

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    The machine-readable data file of The Absolute Calibration of Stellar Spectrophotometry as distributed by the Astronomical Data Center is described. The data file contains the absolute fluxes for 16 stars published in Tables 1 and 2 of Johnson (1980). The absolute calibrations were accomplished by combining the 13-color photometry calibrations of Johnson and Mitchell (1975) with spectra obtained with a Michelson spectrophotometer and covering the wavelength range 4000 to 10300 A (Johnson 1977). The agreement between this absolute calibration and another recent one based upon data for a Lyr and 109 Vir by Tug, White and Lockwood (1977) is shown by Johnson (1980) to be quite good.

  10. Near-infrared and ultraviolet spectrophotometry of the young planetary nebula Hubble 12

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Rossano, George S.; Erwin, Peter; Puetter, R. C.; Feibelman, Walter A.

    1993-01-01

    The young planetary nebula Hubble 12 is observed using near-IR and UV spectrophotometry. The brightness of the O I lines, which is greater than in any other planetary nebula yet measured, indicates that fluorescent excitation by stellar continuum is the principal mechanism generating these lines. Extinction, electron density, and electron temperature are determined using infrared measurements combined with UV data and published optical observations. The range in extinction, density, and temperature implies that, within the ionized region, pockets of emission with distinctly different conditions exist. Logarithmic abundances for helium, oxygen, and sulfur are presented.

  11. Absolute spectrophotometry of Wolf-Rayet stars from 1200 to 7000 A - A cautionary tale

    NASA Technical Reports Server (NTRS)

    Garmany, C. D.; Conti, P. S.; Massey, P.

    1984-01-01

    It is demonstrated that absolute spectrophotometry of the continua of Wolf-Rayet stars may be obtained over the wavelength range 1200-7000 A using IUE and optical measurements. It is shown that the application of a 'standard' reddening law to the observed data gives spurious results in many cases. Additional UV extinction is apparently necessary and may well be circumstellar in origin. In such hot stars, the long-wavelength 'tail' of the emergent stellar continuum are measured. The inadequacy of previous attempts to determine intrinsic continua and effective temperatures of Wolf-Rayet stars is pointed out.

  12. Rocket instrument for far-UV spectrophotometry of faint astronomical objects

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Fastie, W. G.; Davidsen, A. F.

    1980-01-01

    A sensitive sounding rocket instrument for moderate (about 10-A) resolution far-UV (1160-1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employes a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed.

  13. Absorption spectra of irradiated XRCT radiochromic film

    NASA Astrophysics Data System (ADS)

    Butson, Martin J.; Cheung, Tsang; Yu, Peter K. N.

    2006-06-01

    Gafchromic XRCT radiochromic film is a self-developing high sensitivity radiochromic film product which can be used for assessment of delivered radiation doses which could match applications such as computed tomography (CT) dosimetry. The film automatically changes colour upon irradiation changing from a yellow to green/brown colour. The absorption spectra of Gafchromic XRCT radiochromic film as measured with reflectance spectrophotometry have been investigated to analyse the dosimetry characteristics of the film. Results show two main absorption peaks produced from irradiation located at 636 nm and 585 nm. This is similar to EBT Gafchromic film. A high level of sensitivity is found for this film with a 1 cGy applied dose producing an approximate net optical density change of 0.3 at 636 nm. This high sensitivity combined with its relatively energy independent nature around the 100 kVp to 150 kVp x-ray energy range provides a unique enhancement in dosimetric measurement capabilities over currently available dosimetry films for CT applications.

  14. Techniques of microchemistry and their applications to some transcurium elements at Berkeley and Oak Ridge. [Micro- to milligram scale

    SciTech Connect

    Peterson, J.R.

    1980-01-01

    This paper gives an account of the microchemical methods that were developed for preparing and studying submilligram amounts of berkelium-249, californium-249, and einsteinium-253 and their compounds. The studies involved absorption spectrophotometry primarily, and also x-ray and electron diffraction. (DLC)

  15. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves

    PubMed Central

    Merzlyak, Mark N.; Chivkunova, Olga B.; Solovchenko, Alexei E.; Naqvi, K. Razi

    2008-01-01

    The optical properties of leaves from five species, Norway maple (Acer platanoides L.), cotoneaster (Cotoneaster alaunica Golite), hazel (Corylus avellana L.), Siberian dogwood (Cornus alba L.), and Virginia creeper (Parthenocissus quinquefolia (L.) Planch.), differing in pigment composition and at different stages of ontogenesis, were studied. Anthocyanin absorption maxima in vivo, as estimated with spectrophotometry of intact anthocyanic versus acyanic leaves and microspectrophotometry of vacuoles in the leaf cross-sections, were found between 537 nm and 542 nm, showing a red shift of 5–20 nm compared with the corresponding maxima in acidic water–methanol extracts. In non-senescent leaves, strong anthocyanin absorption was found between 500 nm and 600 nm (with a 70–80 nm apparent bandwidth). By and large, absorption by anthocyanin in leaves followed a modified form of the Lambert–Beer law, showing a linear trend up to a content of nearly 50 nmol cm−2, and permitting thereby a non-invasive determination of anthocyanin content. The apparent specific absorption coefficients of anthocyanins at 550 nm showed no substantial dependence on the species. Anthocyanin contribution to total light absorption at 550 nm was followed in maple leaves in the course of autumn senescence. Photoprotection by vacuolar anthocyanins is discussed with special regard to their distribution within a leaf; radiation screening by anthocyanins predominantly localized in the epidermal cells in A. platanoides and C. avellana leaves was also evaluated. PMID:18796701

  16. Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry.

    PubMed

    Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe

    2015-01-01

    The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells. PMID:26263093

  17. Speciation of selenium in environmental samples by solid-phase spectrophotometry using 2,3-dichloro-6-(2,7-dihydroxy-naphthylazo)quinoxaline.

    PubMed

    Amin, Alaa S

    2014-01-01

    Solid-phase spectrophotometry was applied to determination of trace amounts of selenium (Se) in water, soil, plant materials, human hair, and a cosmetic preparation (lipstick). Se(IV) was sorbed in a dextran type lipophilic gel as a complex with 2,3-dichloro-6-(2,7-dihydroxy-naphthylazo)quinoxaline (DCDHNAQ), whereas Se(VI) was determined after boiling in HCI for 10 min to convert Se(VI) to Se(IV). Resin phase absorbances at 588 and 800 nm were measured directly, which allowed the determination of Se in the range of 0.2-3.3 microg/L with an RSD of 1.22%. The influences of analytical parameters including pH of the aqueous solution, amounts of DCDHNAQ, and sample volume were investigated. The molar absorptivities were found to be 1.09 x 10(6), 4.60 x 10(6), and 1.23 x 10(7) L/mol cm for 100, 500, and 1000 mL, respectively. The LOD and LOQ of the 500 mL sample method were 110 and 360 ng/L, respectively, when using 50 mg dextran type lipophilic gel. For a 1000 mL sample, the LOD and LOQ were 60 and 200 ng/L, respectively, using 50 mg of the exchanger. Increasing the sample volume enhanced the sensitivity. No considerable interferences were observed from other investigated anions and cations on the Se determination. PMID:24830171

  18. Comparative study between univariate spectrophotometry and multivariate calibration as analytical tools for quantitation of Benazepril alone and in combination with Amlodipine.

    PubMed

    Farouk, M; Elaziz, Omar Abd; Tawakkol, Shereen M; Hemdan, A; Shehata, Mostafa A

    2014-04-01

    Four simple, accurate, reproducible, and selective methods have been developed and subsequently validated for the determination of Benazepril (BENZ) alone and in combination with Amlodipine (AML) in pharmaceutical dosage form. The first method is pH induced difference spectrophotometry, where BENZ can be measured in presence of AML as it showed maximum absorption at 237nm and 241nm in 0.1N HCl and 0.1N NaOH, respectively, while AML has no wavelength shift in both solvents. The second method is the new Extended Ratio Subtraction Method (EXRSM) coupled to Ratio Subtraction Method (RSM) for determination of both drugs in commercial dosage form. The third and fourth methods are multivariate calibration which include Principal Component Regression (PCR) and Partial Least Squares (PLSs). A detailed validation of the methods was performed following the ICH guidelines and the standard curves were found to be linear in the range of 2-30μg/mL for BENZ in difference and extended ratio subtraction spectrophotometric method, and 5-30 for AML in EXRSM method, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits. PMID:24424258

  19. Near-infrared spectrophotometry of four Seyfert 1 galaxies and NGC 1275

    NASA Technical Reports Server (NTRS)

    Rudy, R. J.; Jones, B.; Levan, P. D.; Puetter, R. C.; Smith, H. E.; Willner, S. P.; Tokunaga, A. T.

    1982-01-01

    Low-resolution spectrophotometry from 2 to 4 microns is reported for the four Seyfert 1 galaxies Mrk 335, 3C 120, Mrk 509, NGC 7469, and the peculiar emission-line galaxy NGC 1275. The spectrum of NGC 7469 exhibits a strong 3.3-micron dust feature, indicating a thermal origin for the bulk of its considerable nonstellar infrared emission. NGC 1275 has a large stellar contribution to its infrared flux at wavelengths shortward of 3 microns. The spectrum from 3 to 4 microns fits a power law which fits the 10-micron and 20-micron broad bands, as well. A thermal model which can explain the spectrum of NGC 1275 is discussed. Mrk 335 displays a complex spectrum suggestive of thermal dust emission. 3C 120 and Mrk 509 have nonstellar infrared emission shortward of 2 microns, but the data are ambiguous as to whether this emission is thermal or nonthermal in origin.

  20. Spatially Multiplexed Micro-Spectrophotometry in Bright Field Mode for Thin Film Characterization

    PubMed Central

    Pini, Valerio; Kosaka, Priscila M.; Ruz, Jose J.; Malvar, Oscar; Encinar, Mario; Tamayo, Javier; Calleja, Montserrat

    2016-01-01

    Thickness characterization of thin films is of primary importance in a variety of nanotechnology applications, either in the semiconductor industry, quality control in nanofabrication processes or engineering of nanoelectromechanical systems (NEMS) because small thickness variability can strongly compromise the device performance. Here, we present an alternative optical method in bright field mode called Spatially Multiplexed Micro-Spectrophotometry that allows rapid and non-destructive characterization of thin films over areas of mm2 and with 1 μm of lateral resolution. We demonstrate an accuracy of 0.1% in the thickness characterization through measurements performed on four microcantilevers that expand an area of 1.8 mm2 in one minute of analysis time. The measured thickness variation in the range of few tens of nm translates into a mechanical variability that produces an error of up to 2% in the response of the studied devices when they are used to measure surface stress variations. PMID:27338398

  1. Fiber optic spectrophotometry monitoring of plant nutrient deficiency under hydroponic culture conditions

    NASA Astrophysics Data System (ADS)

    Liew, Oi Wah; Boey, William S. L.; Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min

    1999-05-01

    In this paper, fiber optic spectrophotometry (FOSpectr) was adapted to provide early detection of plant nutrient deficiency by measuring leaf spectral reflectance variation resulting from nutrient stress. Leaf reflectance data were obtained form a local vegetable crop, Brassica chinensis var parachinensis (Bailey), grown in nitrate-nitrogen (N)- and calcium (Ca)- deficient hydroponics nutrient solution. FOSpectr analysis showed significant differences in leaf reflectance within the first four days after subjecting plants to nutrient-deficient media. Recovery of the nutrient-stressed plants could also be detected after transferring them back to complete nutrient solution. In contrast to FOSpectr, plant response to nitrogen and calcium deficiency in terms of reduced growth and tissue elemental levels was slower and less pronounced. Thus, this study demonstrated the feasibility of using FOSpectr methodology as a non-destructive alternative to augment current methods of plant nutrient analysis.

  2. Determination of dry sludge in heavy oil by dual wavelength spectrophotometry

    SciTech Connect

    Fukui, Y.; Nakai, S.; Yamazoe, S. )

    1989-04-01

    Contents of dry sludge in heavy oils have been usually determined by the gravimetric methods. These methods involve complicated operations and require much time. Therefore, a simplified and rapid method for the determination of dry sludge has been awaited both for process control and quality control in a petroleum refinery. Recently, some spectrophotometric methods have been reported by Ono, Mirsayapova, et al., Kaibara, et al, and Fukui for the determination of asphaltene in residual oils. However, no spectrometric method for the determination of dry sludge has ever been reported. A novel method for the rapid determination of dry sludge has been achieved by dual wavelength spectrophotometry. Dry sludge can be determined directly without any solvent, using a thin-walled cell. The method is available for high viscosity oils up to 20,000 cSt {at}50{degree}C, and the time required for the determination is much reduced, compared with the conventional gravimetric methods.

  3. A quantitative and qualitative method to control chemotherapeutic preparations by Fourier transform infrared-ultraviolet spectrophotometry.

    PubMed

    Dziopa, Florian; Galy, Guillaume; Bauler, Stephanie; Vincent, Benoit; Crochon, Sarah; Tall, Mamadou Lamine; Pirot, Fabrice; Pivot, Christine

    2013-06-01

    Chemotherapy products in hospitals include a reconstitution step of manufactured drugs providing an adapted dosage to each patient. The administration of highly iatrogenic drugs raises the question of patients' safety and treatment efficiency. In order to reduce administration errors due to faulty preparations, we introduced a new qualitative and quantitative routine control based on Fourier Transform Infrared (FTIR) and UV-Visible spectrophotometry. This automated method enabled fast and specific control for 14 anticancer drugs. A 1.2 mL sample was used to assay and identify each preparation in less than 90 sec. Over a two-year period, 9370 controlled infusion bags showed a 1.49% nonconformity rate, under 15% tolerance from the theoretical concentration and 96% minimum identification matching factor. This study evaluated the reliability of the control process, as well as its accordance to chemotherapy deliverance requirements. Thus, corrective measures were defined to improve the control process. PMID:23014899

  4. Do GSM 900MHz signals affect cerebral blood circulation? A near-infrared spectrophotometry study

    NASA Astrophysics Data System (ADS)

    Wolf, Martin; Haensse, Daniel; Morren, Geert; Froehlich, Juerg

    2006-06-01

    Effects of GSM 900MHz signals (EMF) typical for a handheld mobile phone on the cerebral blood circulation were investigated using near-infrared spectrophotometry (NIRS) in a three armed (12W/kg, 1.2W/kg, sham), double blind, randomized crossover trial in 16 healthy volunteers. During exposure we observed borderline significant short term responses of oxyhemoglobin and deoxyhemoglobin concentration, which correspond to a decrease of cerebral blood flow and volume and were smaller than regular physiological changes. Due to the relatively high number of statistical tests, these responses may be spurious and require further studies. There was no detectable dose-response relation or long term response within 20min. The detection limit was a fraction of the regular physiological changes elicited by functional activation. Compared to previous studies using PET, NIRS provides a much higher time resolution, which allowed investigating the short term effects efficiently, noninvasively, without the use of radioactive tracers and with high sensitivity.

  5. Spatially Multiplexed Micro-Spectrophotometry in Bright Field Mode for Thin Film Characterization.

    PubMed

    Pini, Valerio; Kosaka, Priscila M; Ruz, Jose J; Malvar, Oscar; Encinar, Mario; Tamayo, Javier; Calleja, Montserrat

    2016-01-01

    Thickness characterization of thin films is of primary importance in a variety of nanotechnology applications, either in the semiconductor industry, quality control in nanofabrication processes or engineering of nanoelectromechanical systems (NEMS) because small thickness variability can strongly compromise the device performance. Here, we present an alternative optical method in bright field mode called Spatially Multiplexed Micro-Spectrophotometry that allows rapid and non-destructive characterization of thin films over areas of mm² and with 1 μm of lateral resolution. We demonstrate an accuracy of 0.1% in the thickness characterization through measurements performed on four microcantilevers that expand an area of 1.8 mm² in one minute of analysis time. The measured thickness variation in the range of few tens of nm translates into a mechanical variability that produces an error of up to 2% in the response of the studied devices when they are used to measure surface stress variations. PMID:27338398

  6. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  7. Developments of Si-PIN detectors for Continuous Spectro-photometry of Black Holes (CSPOB)

    SciTech Connect

    Bhoumik, Debashis; Mondal, Shyamal; Chakrabarti, S. K.

    2008-10-08

    The goal of the proposed small-satellite mission named Continuous Spectro-Photometry of Black holes (CSPOB) is to observe a given galactic black hole candidate for several months continuously or almost continuously. In the former case, two identical satellites are required, while one satellite is sufficient if we employ one satellite. Such an observation from 0.5keV to 30keV should answer several questions regarding the spectral and timing properties of accretion processes. In particular, on the origin of the sub-Keplerian component of the accretion flow which is observed in many black hole candidates. We present preliminary results on the development of X-ray detectors based on Hamamatsu made Si-PIN Photodiodes at our laboratory.

  8. Ultraviolet spectrophotometry of comet Giacobini-Zinner during the ICE encounter. [International Cometary Explorer (ICE)

    NASA Technical Reports Server (NTRS)

    Ahearn, Michael F.; Mcfadden, Lucy A.; Feldman, Paul D.; Boehnhardt, Hermann; Rahe, Juergen; Festou, Michael; Brandt, John C.; Maran, Stephen P.; Niedner, Malcom B.; Smith, Andrew M.

    1986-01-01

    The IUE spectrophotometry of Comet P/Giacobini-Zinner was acquired in support of the International Cometary Explorer (ICE) mission. The abundances (or upper limits) of UV-active species were calculated. During the ICE encounter the H2O production rate was 3 times 10 to the 28th power/sec, + or - 50%, consistent with values derived from the ICE experiments. Comparison of the abundance of CO2(+) ions with the total electron density measured by the plasma electron experiment on ICE indicates a deficiency of ions relative to electrons indicating a population of ions not detected by remote sensing. The absence of detectable Mg(+) rules out this species as a possible ion of M/Q = 24 detected by the Ion Composition Instrument, part of the ICE complement of instruments.

  9. Determination of glucosinolates in 19 Chinese medicinal plants with spectrophotometry and high-pressure liquid chromatography.

    PubMed

    Hu, Ye; Liang, Hao; Yuan, Qipeng; Hong, Yuancheng

    2010-08-01

    Glucosinolates were evaluated in 19 traditional Chinese medicinal plants involved in seven different families: Brassicaceae, Capparaceae, Euphorbiaceae, Phytolaccaceae, Tropaeolaceae, Caricaceae and Rubiaceae. The total glucosinolate contents were determined by spectrophotometry. Results showed that the high contents of total glucosinolates were found in some herbs of Brassicaceae, Capparaceae and Euphorbiaceae families, while low total glucosinolate contents were observed in two Rubiaceae herbs. In addition, eight glucosinolates (glucoraphanin, glucoraphenin, sinalbin, sinigrin, progoitrin, 4-hydroglucobrassicin, glucoiberin and glucoibervirin) in these herbs were measured using HPLC, and the data showed that individual glucosinolates and their contents varied at different degrees among the distinct species. The highest contents of cancer-protective compounds were found in the seeds of Raphanus sativus L. (glucoraphenin), Sinapis alba (sinalbin) and Phyllanthus emblica L. (sinigrin). PMID:20645206

  10. Regional variations of skin blood flow response to histamine: evaluation by spectrophotometry and laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Tur, Ethel; Aviram, Guy; Zeltser, D.; Brenner, Sarah; Maibach, Howard I.

    1996-01-01

    To study inherent differences in skin function related to regional variation, we tested the hypothesis that different reactivities of small blood vessels via their direct and indirect activation by histamine play an important role in the observed regional variation of processes. Histamine was administered to three cutaneous regions in 20 volunteers, and the induced response was quantified utilizing spectrophotometry and laser Doppler flowmetry. The back exhibited the greatest response, followed by the forearm and ankle in decreasing order of responsiveness. We suggest that the intensity of the wheal and flare response may partly be related to the local reactivity of the blood vessels once the histamine actually reached them, and to their indirect dilatation via the axonal reflex. These blood vessel response observations may provide initial insight into inherent functional differences influencing cutaneous manifestations of endogenous and exogenous diseases.

  11. Structural characterization of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    SciTech Connect

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-28

    The structure of Bi{sub 2}Te{sub 3} (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb{sub 2}Te{sub 3} have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20 K to 300 K for Bi{sub 2}Te{sub 3} and from 10 K to 298 K for Sb{sub 2}Te{sub 3}. The EXAFS technique for studying the local structure of the two compounds was conducted from 19 K to 298 K. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} are isostructural, with a space group of R3{sup ¯}m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M = Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi{sub 2}Te{sub 3} are similar to those of Sb{sub 2}Te{sub 3} within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi{sub 2}Te{sub 3} relative to Sb{sub 2}Te{sub 3}.

  12. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  13. Absorption of different lead compounds

    PubMed Central

    Barltrop, D.; Meek, F.

    1975-01-01

    A rapid method for the determination of relative absorption of dietary lead by rats is described. The influence of age, weight and dose rate has been determined and using standard conditions the tissue lead content of blood, kidney and femur are significantly correlated with each other and are a function of ingested lead. Eight lead compounds were evaluated using this technique and the findings related to lead acetate as a reference compound. Of the inorganic preparations studied, lead carbonate (basic) and metallic lead showed a twelve-fold difference in absorption, with the remaining compounds giving intermediate values. The absorption of lead from four organic compounds was determined from diets containing 7·5% corn oil added to the standard diet. Lead tallate was absorbed to the same degree as lead acetate, but lesser absorptions resulted from lead octoate, naphthenate and alsynate. The addition of corn oil to a final concentration of 7·5% of the diet enhanced the absorption of lead acetate. PMID:1208290

  14. Microcirculation Under an Elastic Bandage During Rest and Exercise - Preliminary Experience With the Laser-Doppler Spectrophotometry System O2C

    PubMed Central

    Sommer, Björn; Berschin, Gereon; Sommer, Hans-Martin

    2013-01-01

    There is an abundace of studies on the influence of rest and exercise as well as external compression on cutaneous, subcutaneous and muscle tissue blood flow using different measurement techniques. As a novel approach, we simultaneously examined the influence of a custom- made elastic thigh bandage on cutaneous and subcutaneous venous blood oxygenation (SO2), postcapillary venous filling pressures (rHb) and blood flow (flow) using the non-invasive laser- Doppler spectrophotometry system “Oxygen-to-see(O2C)”. Parameters were obtained in 20 healthy volunteers in 2 mm and 8 mm tissue depth during rest, 5 and 10 minutes of moderate bicycle exercise following a 10-minute recovery period. Without the bandage, results matched the known physiological changes indicating higher blood backflow from superficial and deep veins. Underneath the elastic bandage, we observed lower post-capillary filling pressures during exercise. However, after the bandage was removed in the post-exercise period, all obtained parameters of microcirculation remained increased, indicating a higher amount of local venous blood volume in this area. Our observations might be the result of external compression, thermoregulatory and exercise-dependent vascular mechanisms. With the O2C device, a promising new non- invasive technique of measuring local microcirculation in soft tissue exists. This study gives new insights in the field of non-invasive diagnostics with special regard to the influence of elastic bandages on local microcirculation. Key Points It can be demonstrated that a novel non-invasive laser-Doppler spectrophotometry system allows the determination of capillary-venous microcirculation in an in-vivo study during exercise-rest cycles. The results received with this technique indicate that a) without an elastic thigh bandage, turnover rates of capillary and post-capillary microperfusion in skin and subcutaneous fat tissue increase under physical exertion, b) skin blood flow decreases while

  15. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  16. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  17. The HI absorption "Zoo"

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1absorption (FW20) lies in the range 63 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1

  18. Determination of Se in soil samples using the proton induced X-ray emission technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Flocchini, Robert G.

    1993-04-01

    An alternative method for the direct determination of total Se in soil samples is presented. A large number of trace elements is present in soil at concentration values in the range of part per billion and tenths of parts of million. The most common are the trace elements of Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Br, Rb, Mo, Cd and Pb. As for biological samples many of these elements are of great importance for the nutrition of plants, while others are toxic and others have an unknown role. Selenium is an essential micronutrient for humans and animals but it is also known that in certain areas Se deficiency or toxicity has caused endemic disease to livestock and humans through the soil-plant-animal linkage. In this work the suitability of the proton induced X-ray emission (PIXE) technique as a fast and nondestructive technique useful to measure total the Se content in soil samples is demonstrated. To validate the results a comparison of data collected using the conventional atomic absorption spectrophotometry (AAS) method was performed.

  19. Non-invasive monitoring and quantitative analysis of patch test reactions by reflectance spectrophotometry, laser Doppler flowmetry and transepidermal water loss

    NASA Astrophysics Data System (ADS)

    Eikje, Natalja Skrebova; Arase, Seiji

    2008-02-01

    Reflectance spectrophotometry (RS), laser Doppler flowmetry (LDF) and transepidermal water loss (TEWL) techniques were simultaneously used to non-invasively monitor skin colour (SC), skin blood flow (SBF) and barrier function damage (BFD) in routinely patch-tested Japanese patients in dermatology clinic. The analytical quality, reliability and reproducibility of each technique were compared and analyzed in correlated to visual scoring patch test (PT) reactions as negative (-), doubtful (+?), weak (+) and strong (++/+++) at 48- and 72-hour monitoring. An attempt was made to quantify predominant in the clinic "+?"- and "+'"-PT-reactions. The relationship between 48 h and 72 h measurements in different reaction groups was poor for TEWL, LDF showed a tendency to decrease at 72 h, but good for RS. A correlation between visual scorings and instrumental mean values was poor for TEWL, good for LDF and excellent for RS. So, measurements by RS were the most statistically significant to non-invasively monitor and quantify doubtful, weak and strong PT reactions, accordingly providing continuous data grading of reaction intensity suitable in the clinic. Moreover, monitoring of SC changes was the most reliable parameter for the quantitative distinguishing of doubtful and weak reactions in pigmented skin.

  20. Optical Absorption, Stability and Structure of NpO2+ Complexeswith Dicarboxylic Acids

    SciTech Connect

    Guoxin Tian; Linfeng Rao

    2006-01-04

    Complexation of NpO2+ with oxalic acid (OX),2,2'-oxydiacetic acid (ODA), 2,2'-iminodiacetic acid (IDA) and 2,2'-thiodiacetic acid (TDA), has been studied using spectrophotometry in1 M NaClO4. Both the position and the intensity of the absorption band of NpO2+ at 980 nm are affected by the formation of NpO2+/dicarboxylate complexes, providing useful information on the complexation strength, the coordination mode and the structure of the complexes.

  1. Spatial variability of absorption properties in Lake Balaton, Hungary

    NASA Astrophysics Data System (ADS)

    Riddick, C. A.; Hunter, P. D.; Tyler, A. N.; Vicente, V. M.; Groom, S.; Horváth, H.; Kovacs, A.; Preston, T.; Presing, M.

    2013-12-01

    In order to improve robustness of current remote sensing algorithms for lake monitoring, it is vital to understand the variability of inherent optical properties (IOPs) within a lake. In this study, absorption coefficients were measured in situ at 38 stations in Lake Balaton, Hungary, using a WET Labs AC-S and AC-9 and compared to concurrent absorption measurements by dual beam spectrophotometry in the laboratory. The spatial variability of bulk and chlorophyll-specific absorption coefficients was examined across 5 basins, demonstrating a gradient in total absorption corresponding to the trophic gradient. Our data suggests that sampling conditions had an impact on particulate absorption, affecting the proportion attributed to non-algal particles (aNAP), phytoplankton (aph) or color dissolved organic matter (aCDOM). The specific absorption of phytoplankton (a*ph) spectra showed a distinct peak in the UV portion of the spectra in Basins 3 and 4 (east), which may be due to the presence of phytoplankton photoprotective pigments to compensate for lower CDOM levels in these basins. In contrast to oceans, particulate attenuation (cp) had a weaker relationship to chlorophyll-a (R2=0.15) than to total suspended matter (R2=0.84), particularly the inorganic fraction. Additionally, the relative contribution of particulate scattering (bp) to attenuation was significantly higher in Lake Balaton (up to 85-99%) than that found in previous lacustrine studies. bp also demonstrated a gradient across the lake, where values increased as the water progressed from phytoplankton-dominated to mineral-dominated. These results provide knowledge of the heterogeneity of the IOPs within Lake Balaton, which is to be considered for the future improvement of bio-optical algorithms for constituent retrieval in inland waters.

  2. Determination of attapulgite and nifuroxazide in pharmaceutical formulations by sequential digital derivative spectrophotometry.

    PubMed

    Toral, M Inés; Paine, Maximiliano; Leyton, Patricio; Richter, Pablo

    2004-01-01

    A new method for the sequential determination of attapulgite and nifuroxazide in pharmaceutical formulations by first- and second-derivative spectrophotometry, respectively, has been developed. In order to obtain the optimal conditions for nifuroxazide stability, studies of solvent, light, and temperature effects were performed. The results show that a previous hydrolysis of 2 h in 1.0 x 10(-1)M NaOH solution is necessary in order to obtain stable compounds for analytical purposes. Subsequently, the first- and second-derivative spectra were evaluated directly in the same samples. The sequential determination of the drugs can be performed using the zero-crossing method; the attapulgite determination was carried out using the first derivative at 278.0 nm and the nifuroxazide determination, using the second derivative at 282.0 nm. The determination ranges were 5.7 x 10(-6)-1.0 x 10(-4) and 3.7 x 10(-8) -1.2 x 10(-4)M for attapulgite and nifuroxazide, respectively. Repeatability (relative standard deviation) values of 1.2 and 3.0% were observed for attapulgite and nifuroxazide, respectively. The ingredients commonly found in commercial pharmaceutical formulations do not interfere. The proposed method was applied to the determination of these drugs in tablets. Further, infrared spectroscopy and cyclic voltammetry studies were carried out in order to obtain knowledge of the decomposition products of nifuroxazide. PMID:15675443

  3. A New Concept for Spectrophotometry of Exoplanets with Space-borne Telescopes

    NASA Astrophysics Data System (ADS)

    Matsuo, Taro; Itoh, Satoshi; Shibai, Hiroshi; Sumi, Takahiro; Yamamuro, Tomoyasu

    2016-06-01

    We propose a new concept for the spectral characterization of transiting exoplanets with future space-based telescopes. This concept, called densified pupil spectroscopy, allows us to perform high, stable spectrophotometry against telescope pointing jitter and deformation of the primary mirror. This densified pupil spectrometer comprises the following three roles: division of a pupil into a number of sub-pupils, densification of each sub-pupil, and acquisition of the spectrum of each sub-pupil with a conventional spectrometer. Focusing on the fact that the divided and densified sub-pupil can be treated as a point source, we discovered that a simplified spectrometer allows us to acquire the spectra of the densified sub-pupils on the detector plane‑an optical conjugate with the primary mirror‑by putting the divided and densified sub-pupils on the entrance slit of the spectrometer. The acquired multiple spectra are not principally moved on the detector against low-order aberrations such as the telescope pointing jitter and any deformation of the primary mirror. The reliability of the observation result is also increased by statistically treating them. Our numerical calculations show that because this method suppresses the instrumental systematic errors down to 10 ppm under telescopes with modest pointing accuracy, next generation space telescopes with more than 2.5 m diameter potentially provide opportunities to characterize temperate super-Earths around nearby late-type stars through the transmission spectroscopy and secondary eclipse.

  4. Spectrophotometry of the galaxies and nebulosity associated with the quasar III Zw 2

    NASA Technical Reports Server (NTRS)

    Green, R. F.; Williams, T. B.; Morton, D. C.

    1978-01-01

    Results are presented for spectrophotometry of the object III Zw 2, the faint nebulosity to the NW of its nucleus, and two associated galaxies (a normal elliptical and a more luminous late-type spiral). The object III Zw 2 is defined to be a quasar on the basis of its dominant starlike nucleus, redshift, and optical and radio variability. The spectrophotometrically measured redshifts of the two associated galaxies are shown to place III Zw 2 as a member of Zwicky Cluster 0007.7+1056, thus establishing the cosmological origin of the quasar's emission-line redshift of 0.089. It is found that the nebulosity to the NW of the quasar exhibits an emission-line spectrum at the same redshift as the nucleus with an underlying red continuum, that the strength of the forbidden lines relative to the permitted lines is 3 to 4 times greater than in the nucleus, and that the data for the nebulosity are not well fitted by a bremsstrahlung emission spectrum, but are consistent with a spectrum of starlight from an underlying galaxy at the system redshift of 0.089.

  5. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Khodadoust, Saeid; Ghaedi, Mehrorang

    2014-12-01

    In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100 μL of chloroform, 1.3 mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0 mg mL-1 of MR in initial solution with R2 = 0.995 (n = 5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015 mg mL-1, respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n = 5).

  6. Feasibility of spectro-photometry in X-rays (SPHINX) from the moon

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar

    2010-08-01

    Doing space Astronomy on lunar surface has several advantages. We present here feasibility of an All Sky Monitoring Payload for Spectro-photometry in X-rays (SPHINX) which can be placed on a lander on the moon or in a space craft orbiting around the moon. The Si-PIN photo-diodes and CdTe crystals are used to detect solar flares, bright gamma bursts, soft gamma-ray repeaters from space and also X-ray fluorescence (XRF) from lunar surface. We present the complete Geant4 simulation to study the feasibility of such an instrument in presence of Cosmic Diffused X-Ray Background (CDXRB). We find that the signal to noise ratio is sufficient for moderate to bright GRBs (above 5 keV), for the quiet sun (up to 100 keV), solar flares, soft gamma-ray repeaters, X-ray Fluorescence (XRF) of lunar surface etc. This is a low-cost system which is capable of performing multiple tasks while stationed at the natural satellite of our planet.

  7. Preliminary Results from the Array Camera for Optical to Near-IR Spectrophotometry (ARCONS)

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin A.; O'Brien, K.; Bumble, B.; Strader, M.; Meeker, S.; Stoughton, C.; Marsden, D.; Walter, A.; Szypyrt, P.; Ulbricht, G.

    2013-01-01

    In September 2012, the ARray Camera for Optical to Near-IR Spectrophotometry (ARCONS) was deployed at the 120" Shane telescope at Lick Observatory. ARCONS is a photon conuting integral field unit (IFU) that utilizes Microwave Kinetic Inductance Detectors (MKIDs), which are an emerging superconducting detector technology. MKIDs measure the energy (to within several percent) and arrival time (to within a microsecond) of detected photons. ARCONS contains a 2024 (46x44) pixel MKID array and has an operational bandwidth of 400 to 1100 nm. At the Shane telescope's Coudé focus, the array had a field of view of 22"x23". A variety of observations were made to demonstrate the potential applications of ARCONS's ability to do time-resolved low resolution spectro-imaging. Observations were made of short period compact binaries to look for spectral orbital variations. Observations of eclipsing white dwarfs were made to look for transit timing variations in orbital periods that would indicate the presence of additional companions. Observations were also made of faint galaxies to determine their redshifts, and observations of Low-Mass X-ray Binaries were made to probe the IR-emitting region of their jets. In another use of ARCONS's timing resolution, simultaneous optical and radio observations of the Crab pulsar were made, with the help of collaborators. In this talk I will discuss the preliminary results of a subset of these observations.

  8. Determination of myoglobin based on its enzymatic activity by stopped-flow spectrophotometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qi; Liu, Zhihong; Cai, Ruxiu

    2005-04-01

    A new method has been developed for the determination of myoglobin (Mb) based on its enzymatic activity for the oxidation of o-phenylenediamine (OPDA) with hydrogen peroxide. Stopped-flow spectrophotometry was used to study the kinetic behavior of the oxidation reaction. The catalytic activity of Mb was compared to other three kinds of catalyst. The time dependent absorbance of the reaction product, 2,3-diamimophenazine (DAPN), at a wavelength of 426 nm was recorded. The initial reaction rate obtained at 40 °C was found to be proportional to the concentration of Mb in the range of 1.0 × 10 -6 to 4.0 × 10 -9 mol L -1. The detection limit of Mb was found to be 9.93 × 10 -10 mol L -1. The relative standard deviations were within 5% for the determination of different concentrations of Mb. Excess of bovine serum albumin (BSA), Ca(II), Mg(II), Cu(II), glucose, caffeine, lactose and uric acid did not interfere.

  9. Direct UV Spectrophotometry and HPLC Determination of Triton X-100 in Split Virus Influenza Vaccine.

    PubMed

    Pavlović, Bojana; Cvijetić, Nataša; Dragačević, Luka; Ivković, Branka; Vujić, Zorica; Kuntić, Vesna

    2016-03-01

    One of the most commonly used surfactants in the production of split virus influenza vaccine is nonionic surfactant Triton X-100. After splitting of the virus is accomplished, Triton X-100 is removed from the vaccine by subsequent production steps. Because of toxicity of Triton X-100, which remains in the vaccine in residual amounts, a sufficiently sensitive method for its detection and quantification needs to be defined. Two methods for determination of Triton X-100 residuals were developed: the UV-spectrophotometry and HPLC methods. For both methods, preparation of vaccine samples and removal of proteins and virus particles were crucial: samples were treated with methanol (1:1) and then centrifuged at 25 000 × g for 30 min. After such treatment, the majority of vaccine components that interfered in the UV region were removed, and diluted samples could be directly measured. The chromatographic system included C18 column, step methanol gradient, and detection at 225 nm with a single peak of Triton X-100 at 12.6 min. Both methods were validated and gave satisfactory results for accuracy, precision, specificity, linearity, and robustness. LOQ was slightly lower for the HPLC method. Hence, it was shown that both methods are suitable for analysis of residual amounts of Triton X-100, with the advantages of the UV method being its simplicity and availability in most laboratories. PMID:26960682

  10. Binding study of tetracyclines to human serum albumin using difference spectrophotometry.

    PubMed

    Zia, H; Price, J C

    1976-02-01

    The binding of several tetracyclines to human serum albumin was studied using difference spectrophotometry and a spectrophotometric probe, 2-(4'-hydroxybenzeneazo)benzoic acid. Difference spectra observed for the interaction between the probe and human serum albumin were similar to probe-bovine serum albumin spectra but were less intense for a given concentration of probe and did not reach saturation as quickly. Difference spectra for the tetracyclines were dependent on the characteristics of the ring substituents. More hydrophobic substituents on the D and C rings tended to give more intense difference spectra, but charge-transfer complexing may also have been involved since methacycline with a methylene group in the 6-position showed the most intense spectra of the compounds studied. Solvent perturbation, pH, and urea studies tended to confirm that something other than hydrophobic binding of the tetracyclines was involved. Drug-probe displacement studies showed that methacycline gave the greatest probe displacement followed by doxycycline, chlortetracycline, oxytetracycline, and tetracycline. This order of displacement of the anionic probe indicates that both hydrophobic and charge-transfer binding are involved. Experiments with calcium ion and ethylenediaminetetraacetic acid showed that the difference spectra obtained with the tetracyclines and human serum albumin were not the result of metallic bridge-chelate formation. PMID:3641

  11. Determination of Oxytetracycline from Salmon Muscle and Skin by Derivative Spectrophotometry.

    PubMed

    Toral, M Inés; Sabay, Tamara; Orellana, Sandra L; Richter, Pablo

    2015-01-01

    A method was developed for the identification and quantification of oxytetracycline residues present in salmon muscle and skin using UV-Vis derivative spectrophotometry. With this method, it was possible to reduce the number of steps in the procedure typically required for instrumental analysis of a sample. The spectral variables, order of the derivative, scale factor, smoothing factor, and analytical wavelength were optimized using standard solutions of oxytetracycline dissolved in 900 mg/L oxalic acid in methanol. The matrix effect was significant; therefore, quantification for oxytetracycline residues was carried out using drug-free salmon muscle and skin samples fortified with oxytetracycline. The LOD and LOQ were found to be 271 and 903 μg/kg, respectively. The precision and accuracy of the method were validated using drug-free salmon muscle and skin tissues fortified at three different concentrations (8, 16, and 32 mg/kg) on 3 different days. The recoveries at all fortified concentrations were between 90 and 105%, and RSDs in all cases were less than 6.5%. This method can be used to screen out compliant samples and thereby reduce the number of suspect positive samples that will require further confirmatory analysis. PMID:26025109

  12. Fiber optic spectrophotometry for monitoring dissolved oxygen in a tropical ornamental fish tank environment

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min

    1999-05-01

    Using Fiber Optic Spectro-Photometry (FOSP) methodology, a set of high sensitivity fiber optic oxygen monitoring system performing NDT is developed for fish farming environment. The working principle of the sensor is based on the detection signal at a particular wavelength due to the fluorescence and quenching of coated dye (ruthenium complex) in response to oxygen concentration at the tip of the probe. This paper looks into the application of fiber optics oxygen sensor in an aquatic environment. A comparison study of the optical probe was made with a conventional electrochemical oxygen sensor. Both sensors were setup to monitor the dissolved oxygen of an aquatic system for a period of time. This new methodology offers an alternative choice for monitoring dissolved oxygen. Apart from the possibility to miniaturize the monitoring equipment for aquatic environment, it is also feasible to 'bundle' other chemical sensors together into one single cable, thus achieving compactness, effectiveness and yet without forgoing whatever the traditional electrochemical sensors could offer.

  13. Solid methane on Triton and Pluto - 3- to 4-micron spectrophotometry

    SciTech Connect

    Spencer, J.R.; Buie, M.W.; Bjoraker, G.L. Space Telescope Science Institute, Baltimore, MD NASA, Goddard Space Flight Center, Greenbelt, MD )

    1990-12-01

    Methane has been identified in the Pluto/Charon system on the basis of absorption features in the reflectance spectrum at 1.5 and 2.3 microns; attention is presently given to observations of a 3.25 micron-centered deep absorption feature in Triton and Pluto/Charon system reflectance spectra. This absorption may indicate the presence of solid methane, constituting either the dominant surface species or a mixture with a highly transparent substance, such as N2 frost. 35 refs.

  14. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.

    PubMed

    Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao

    2009-12-01

    Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption. PMID:19894682

  15. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  16. Blood oxygen saturation determined by transmission spectrophotometry of hemolyzed blood samples

    NASA Technical Reports Server (NTRS)

    Malik, W. M.

    1967-01-01

    Use of the Lambert-Beer Transmission Law determines blood oxygen saturation of hemolyzed blood samples. This simplified method is based on the difference in optical absorption properties of hemoglobin and oxyhemoglobin.

  17. Comparative analysis of sensitivity of different light-scattering techniques to blood oxygenation on the basis of multilayer tissue model

    NASA Astrophysics Data System (ADS)

    Kirillin, Mikhail Yu.; Priezzhev, Alexander V.; Myllylä, Risto

    2006-08-01

    This paper compares sensitivity to blood oxygenation of different schemes of detecting light scattered from or transmitted through a slab of tissue considered in the frames of a multilayer model. Comparison is made from the viewpoint of the sensitivity to oxygen saturation of certain blood volume confined within lower layers of different average thicknesses mimicking the upper and lower plexuses of skin, dermis and hypodermis. The model also includes upper layers, mimicking stratum corneum and epidermis, consisting of prickle and basal cell layers. The following signals were simulated with Monte Carlo technique and compared: diffuse scattering indicatrice, OCT signal, spatially resolved diffuse reflectance, time-of-flight and spectrophotometry signals. The optical parameters of the layers were chosen within the ranges corresponding to experimental data published in literature and our own OCT measurements. Heyney-Greenstein function was used as a phase function for all considered layers with anisotropy factor value varying for various layers. Blood fractions of different layers were chosen according to available data for diastolic state. We considered two wavelengths of 660 and 890 nm, located at different sides of the isobestic point of 805 nm, where the absorption coefficients of oxygenated and deoxygenated hemoglobin are equal. These wavelengths are used in pulse oximetry. Our simulation results show, that the highest sensitivity to changes in oxygen content in blood is at the wavelength of 660 nm, where the difference between absorption coefficient values is significant. For this wavelength all the techniques except OCT show good sensitivity to blood oxygenation in the model tissue. For the second wavelength goniophotometry, spatially resolved diffuse reflectance, and spectorphotometry exhibit sensitivity to oxygenation, but it is lower than for 660 nm due to a smaller absorption coefficient mismatch.

  18. Spectrophotometry of (32) Pomona, (145) Adeona, (704) Interamnia, (779) Nina, (330825) 2008 XE3, and 2012 QG42 and laboratory study of possible analog samples

    NASA Astrophysics Data System (ADS)

    Busarev, Vladimir V.; Barabanov, Sergey I.; Rusakov, Vyacheslav S.; Puzin, Vasiliy B.; Kravtsov, Valery V.

    2015-12-01

    Six asteroids including two NEAs, one of which is PHA, accessible for observation in September 2012 were investigated using a low-resolution (R ≈ 100) spectrophotometry in the range 0.35-0.90 μm with the aim to study features of their reflectance spectra. A high-altitude position of our Terskol Observatory (3150 m above sea level) favorable for the near-UV and visible-range observations of celestial objects allowed us to probably detect some new spectral features of the asteroids. Two subtle absorption bands centered at 0.53 and 0.74 μm were found in the reflectance spectra of S-type (32) Pomona and interpreted as signs of presence of pyroxenes in the asteroid surface matter and its different oxidation. Very similar absorption bands centered at 0.38, 0.44 and 0.67-0.71 μm have been registered in the reflectance spectra of (145) Adeona, (704) Interamnia, and (779) Nina of primitive types. We performed laboratory investigations of ground samples of known carbonaceous chondrites, Orguel (CI), Mighei (CM2), Murchison (CM2), Boriskino (CM2), and seven samples of low-iron Mg serpentines as possible analogs of the primitive asteroids. In the course of this work, we discovered an intense absorption band (up to ∼25%) centered at 0.44 μm in reflectance spectra of the low-Fe serpentine samples. As it turned out, the equivalent width of the band has a high correlation with content of Fe3+ (octahedral and tetrahedral) in the samples. It may be considered as a confirmation of the previously proposed mechanism of the absorption due to electronic transitions in exchange-coupled pairs (ECP) of Fe3+ neighboring cations. It means that the absorption feature can be used as an indicator of ferric iron in oxidized and hydrated low-Fe compounds on the surface of asteroids and other atmosphereless celestial bodies. Moreover, our measurements showed that the mechanism of light absorption is partially or completely blocked in the case of intermediate to high iron contents. Therefore

  19. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  20. Preparation of dry extract of Mikania glomerata Sprengel (Guaco) and determination of its coumarin levels by spectrophotometry and HPLC-UV.

    PubMed

    Soares e Silva, Luciana Soares E; da Santos da Silva, Luciane Santos; Brumano, Larissa; Stringheta, Paulo César; Aparecida de Oliveira Pinto, Miriam; Moreira Dias, Leticia Oliveira; de Sá Martins Muller, Camila; Scio, Elita; Fabri, Rodrigo Luiz; Castro, Helena C; da Penha Henriques do Amaral, Maria

    2012-01-01

    Guaco (Mikania glomerata Sprengel) syrup is one of the most popular herbal medicines used to treat the symptoms of asthmatic bronchitis, cough and hoarseness. The coumarin 2H-1-benzopyran-2-one, is one of the major constituents of Guaco and contributes to its pharmacological effects. The pharmaceutical capsule form of dry extract of Guaco is recommended by the Brazilian Program of Medicinal Plants and Herbal Medicines and used in primary health care. In order to identify a new protocol to obtain the raw material for Guaco capsule production we evaluated two methods, including a freezedrying process (lyophilization) and the spray-dryer technique, as well as the use of two adjuvants, Maltodextrins and Aerosil®, in different concentrations. The coumarin levels of the dried extracts were analyzed by UV-spectrophotometry and HPLC-UV/DAD. The adjuvant Aerosil® 8% showed better dry powder physical appearance. Lyophilization was observed to be the best process to obtain the dry extract of Guaco based on the measured coumarin levels. PMID:22932215

  1. Application of first-derivative, ratio derivative spectrophotometry, TLC-densitometry and spectrofluorimetry for the simultaneous determination of telmisartan and hydrochlorothiazide in pharmaceutical dosage forms and plasma.

    PubMed

    Bebawy, Lories I; Abbas, Samah S; Fattah, Laila A; Refaat, Heba H

    2005-10-01

    Four sensitive methods are described for the direct determination of telmisartan (TELM) and hydrochlorothiazide (HCT) in combined dosage forms without prior separation. The first method is a first derivative spectophotometry (1D) using a zero- crossing technique of measurement at 241.6 and 227.6 nm for TELM and HCT, respectively. The second method is the first derivative of ratio spectrophotometry (1DD) where the amplitudes were measured at 242.7 nm for TELM and 274.9 nm for HCT. The third method is based on TLC separation of the two drugs followed by the densitometric measurements of their spots at 295 and 225 nm for TELM and HCT, respectively. The separation was carried out on silica gel 60 F254 using butanol: ammonia 25% (8:2 v/v) as mobile phase. The fourth method is spectrofluorimetric determination of TELM, depending on measuring the native fluorescence of the drug in 1 M sodium hydroxide at lambda excitation 230 nm and emission at 365 nm. The proposed methods were applied successfully for the determination of the two drugs in bulk powder and in pharmaceutical formulations. The spectrofluorimetric method was utilized for the analysis of TELM in human plasma. PMID:16129437

  2. Cold-induced aggregation microextraction based on ionic liquids and fiber optic-linear array detection spectrophotometry of cobalt in water samples.

    PubMed

    Gharehbaghi, Maysam; Shemirani, Farzaneh; Farahani, Malihe Davudabadi

    2009-06-15

    A new simple and rapid cold-induced aggregation microextraction (CIAME) method was applied to preconcentrate cobalt(II) ions from water samples as a prior step to its determination by fiber optic-linear array detection spectrophotometry (FO-LADS). In this method, very small amounts of 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF(6)] and 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [Hmim][Tf(2)N] as hydrophobic ionic liquids (ILs) and extractant solvents were dissolved in the sample solution containing Triton X-114 (anti-sticking agent). 1-(2-Pyridylazo)-2-naphthol (PAN) was chosen as the complexing agent. After dissolving, the solution was cooled in the ice bath and a cloudy solution was formed of IL fine droplets due to the decrease of IL solubility. After centrifuging, the fine droplets of extractant phase were settled to the bottom of the conical-bottom centrifuge tube. Analysis was carried out by a fiber optic-linear array detector spectrophotometer at 570 nm. In this method, which is robust against high content of salt and water-miscible organic solvents, various parameters were investigated and optimized. The applicability of the technique was evaluated by the determination of trace amounts of cobalt in several water samples. Under the optimum conditions, the limit of detection (LOD) of the method was 0.14 ng mL(-1) and the relative standard deviation (R.S.D.) for 30 ng mL(-1) cobalt was 2.32%. PMID:19095354

  3. Studies with nonradioisotopic sodium chromate. I. Development of a technique for measuring red cell volume

    SciTech Connect

    Heaton, W.A.; Hanbury, C.M.; Keegan, T.E.; Pleban, P.; Holme, S. )

    1989-10-01

    A nonradioisotopic method for measuring red cell volume that involves the use of 52Cr-sodium chromate as the red cell label and of graphite furnace atomic absorption analysis of chromium is described. The technique allows the labelling of 20 mL of packed red cells with 40 to 50 micrograms of sodium chromate (Na2CrO4) in 30 minutes at 22 degrees C with 94 +/- 6 percent uptake. Approximately 40 micrograms of Na2CrO4 was injected for in vivo studies. This results in posttransfusion in vivo red cell chromium levels after sample processing in the range of 1 to 7 micrograms per L, which could be quantitated accurately (coefficient of variation = 4.7%) by Zeeman electrothermal atomic absorption spectrophotometry. The labeling concentration of chromium did not cause increased hemolysis, and the labeled cells exhibited an osmotic fragility curve similar to that of unlabeled, fresh ACD red cells. Red cell glutathione peroxidase was unaffected by labeling, although glutathione reductase was reduced by approximately 13 percent (p less than 0.05). The 52Cr red cell volume-measuring method was evaluated by concurrent in vivo studies with the standard 51Cr and 125I-albumin methods for that procedure. Simultaneous measurement of red cell volumes in seven volunteers by the 51Cr, 52Cr, and 125I-albumin techniques correlated highly with each other (r greater than 0.76), with mean values of 2294 +/- 199, 2191 +/- 180, and 2243 +/- 291 mL, respectively. The standard deviations of the differences were small: 134 mL for 52Cr versus 51Cr and 183 mL for 52Cr versus 125I.

  4. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  5. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    PubMed

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies. PMID:26340062

  6. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  7. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  8. Imaging of highly turbid media by the absorption method

    NASA Astrophysics Data System (ADS)

    Contini, Daniele; Liszka, Heather; Sassaroli, Angelo; Zaccanti, Giovanni

    1996-05-01

    The results of a study on imaging that is based on the absorption method are presented. This method is based on attenuation measurements carried out in the presence of a sufficiently high absorption coefficient by the use of a continuous-wave source. The benefit of absorption on image quality comes from the strong attenuation of photons traveling along long trajectories. When the absorption coefficient is increased, the received energy decreases, but the mean path length of received photons decreases. The effect of increasing the absorption coefficient is similar to that of decreasing the gating time when the time-gating technique is used. Experimental results showed that the spatial resolution obtained with the absorption technique is similar to that obtained with the time-gating technique. method, spatial resolution, turbid media.

  9. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  10. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy

    SciTech Connect

    Cai, Weiwei; Kaminski, Clemens F.

    2014-04-14

    We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.

  11. Spectrophotometry of Pluto-Charon mutual events - Individual spectra of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Sawyer, S. R.; Barker, E. S.; Cochran, A. L.; Cochran, W. D.

    1987-01-01

    Time-resolved spectra of the March 3 and April 4, 1987 mutual events of Pluto and Charon, obtained with spectral coverage from 5500 to 10,000 A with 25-A spectral resolution, are discussed. Charon has a featureless reflectance spectrum, with no evidence of methane absorption. Charon's reflectance appears neutral in color and corresponds to a geometric albedo of about 0.37 at 6000 A. The Pluto reflectance spectrum displays methane absorption bands at 7300, 7900, 8400, 8600, and 8900 A and is red in color, with a geometric albedo of about 0.56 at 6000 A.

  12. Determination of copper in tap water using solid-phase spectrophotometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Philipp, Warren H.; Tanner, Stephen P.

    1994-01-01

    A new application of ion exchange films is presented. The films are used in a simple analytical method of directly determining low concentrations of Cu(2+) in aqueous solutions, in particular, drinking water. The basis for this new test method is the color and absorption intensity of the ion when adsorbed onto the film. The film takes on the characteristic color of the adsorbed cation, which is concentrated on the film by many orders of magnitude. The linear relationship between absorbance (corrected for variations in film thickness) and solution concentration makes the determinations possible. These determinations agree well with flame atomic absorption determinations.

  13. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  14. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  15. A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques.

    PubMed

    Gleisner, Heike; Einax, Jürgen W; Morés, Silvane; Welz, Bernhard; Carasek, Eduardo

    2011-04-01

    A fast and reliable method has been developed for the determination of total and soluble fluorine in toothpaste, important quality control parameters in dentifrices. The method is based on the molecular absorption of gallium mono-fluoride, GaF, using a commercially available high-resolution continuum source atomic absorption spectrometer. Transversely heated platform tubes with zirconium as permanent chemical modifier were used throughout. Before each sample injection, a palladium and zirconium modifier solution and a gallium reagent were deposited onto the graphite platform and thermally pretreated to transform them into their active forms. The samples were only diluted and introduced directly into the graphite tube together with additional gallium reagent. Under these conditions the fluoride was stable up to a pyrolysis temperature of 550 °C, and the optimum vaporization (molecule formation) temperature was 1550 °C. The GaF molecular absorption was measured at 211.248 nm, and the limits of detection and quantification were 5.2 pg and 17 pg, respectively, corresponding to a limit of quantification of about 30 μg g(-1) (ppm) F in the original toothpaste. The proposed method was used for the determination of total and soluble fluorine content in toothpaste samples from different manufactures. The samples contained different ionic fluoride species and sodium monofluorophosphate (MFP) with covalently bonded fluorine. The results for total fluorine were compared with those obtained with a modified conventional headspace gas chromatographic procedure. Accuracy and precision of the two procedures were comparable, but the proposed procedure was much less labor-intensive, and about five times faster than the latter one. PMID:21215545

  16. Multiphoton absorption in amyloid protein fibres

    NASA Astrophysics Data System (ADS)

    Hanczyc, Piotr; Samoc, Marek; Norden, Bengt

    2013-12-01

    Fibrillization of peptides leads to the formation of amyloid fibres, which, when in large aggregates, are responsible for diseases such as Alzheimer's and Parkinson's. Here, we show that amyloids have strong nonlinear optical absorption, which is not present in native non-fibrillized protein. Z-scan and pump-probe experiments indicate that insulin and lysozyme β-amyloids, as well as α-synuclein fibres, exhibit either two-photon, three-photon or higher multiphoton absorption processes, depending on the wavelength of light. We propose that the enhanced multiphoton absorption is due to a cooperative mechanism involving through-space dipolar coupling between excited states of aromatic amino acids densely packed in the fibrous structures. This finding will provide the opportunity to develop nonlinear optical techniques to detect and study amyloid structures and also suggests that new protein-based materials with sizable multiphoton absorption could be designed for specific applications in nanotechnology, photonics and optoelectronics.

  17. Determination of ibuprofen in combined dosage forms and cream by direct UV spectrophotometry after solid-phase extraction.

    PubMed

    Sunaric, Slavica; Petkovic, Milica; Denic, Marko; Mitic, Snezana; Pavlovic, Aleksandra

    2013-01-01

    Solid-phase extraction method followed by direct UV spectrophotometry at 264 nm was developed and applied for the selective ibuprofen determination in two-component formulation of ibuprofen and pseudoephedrine-HCl, combined powder which contains ibuprofen in the form of salt with L-arginine and 10% ibuprofen cream. Procedures for ibuprofen determination in complex pharmaceutical preparations by direct UV spectrophotometry lack selectivity because of interferences of other active substances and fat components. A limited number of spectrophotometric methods applicable to these samples are based on derivative (first and second-order) UV spectroscopy. Common HPLC procedures are more selective but more expensive and for creams also require some type of extraction because the large amount of oily excipients would clog up the column. The proposed solid-phase extraction method proved to be suitable for analysis of ibuprofen in combined tablets, powders and creams by direct UV spectrophotometry. Also the method provides an effective clean-up of the cream and allows ibuprofen determination by HPLC analysis. For the extraction three different commercial sorbents were tested: anion exchange Oasis MAX, hydrophilic-lipophilic balanced Oasis HLB and reverse-phase Chromabond C18ec. The optimization of the SPE method was first done on standard ibuprofen solutions and then the suitability of the method was checked on solutions of commercial pharmaceutical samples. The method yields good results for all three types of commercial preparations on the anion-exchange Oasis MAX cartridges, with recoveries of 90-100.2%. The interferences in UV analysis were not registered and good precision (RSD < 6%) was obtained. The present method has been verified as accurate as the reference HPLC with the great advantage of less expensive instrumentation. For this reason, the method would be suitable for a routine and rapid drug quality control. PMID:23757930

  18. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  19. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  20. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  1. Dipeptide absorption in man

    PubMed Central

    Hellier, M. D.; Holdsworth, C. D.; McColl, I.; Perrett, D.

    1972-01-01

    A quantitative perfusion method has been used to study intestinal absorption of two dipeptides—glycyl-glycine and glycyl-l-alanine—in normal subjects. In each case, the constituent amino acids were absorbed faster when presented as dipeptides than as free amino acids, suggesting intact dipeptide transport. During absorption constituent amino acids were measured within the lumen and it is suggested that these represent amino acids which have diffused back to the lumen after absorption as dipeptide. Portal blood analyses during absorption of a third dipeptide, glycyl-l-lysine, have shown that this dipeptide, known to be transported intact from the intestinal lumen, is hydrolysed to its constitutent amino acids before it reaches portal venous blood. PMID:4652039

  2. Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry.

    PubMed

    Ehama, Makoto; Hashihama, Fuminori; Kinouchi, Shinko; Kanda, Jota; Saito, Hiroaki

    2016-06-01

    Determining the total particulate phosphorus (TPP) and particulate inorganic phosphorus (PIP) in oligotrophic oceanic water generally requires the filtration of a large amount of water sample. This paper describes methods that require small filtration volumes for determining the TPP and PIP concentrations. The methods were devised by validating or improving conventional sample processing and by applying highly sensitive liquid waveguide spectrophotometry to the measurements of oxidized or acid-extracted phosphate from TPP and PIP, respectively. The oxidation of TPP was performed by a chemical wet oxidation method using 3% potassium persulfate. The acid extraction of PIP was initially carried out based on the conventional extraction methodology, which requires 1M HCl, followed by the procedure for decreasing acidity. While the conventional procedure for acid removal requires a ten-fold dilution of the 1M HCl extract with purified water, the improved procedure proposed in this study uses 8M NaOH solution for neutralizing 1M HCl extract in order to reduce the dilution effect. An experiment for comparing the absorbances of the phosphate standard dissolved in 0.1M HCl and of that dissolved in a neutralized solution [1M HCl: 8M NaOH=8:1 (v:v)] exhibited a higher absorbance in the neutralized solution. This indicated that the improved procedure completely removed the acid effect, which reduces the sensitivity of the phosphate measurement. Application to an ultraoligotrophic water sample showed that the TPP concentration in a 1075mL-filtered sample was 8.4nM with a coefficient of variation (CV) of 4.3% and the PIP concentration in a 2300mL-filtered sample was 1.3nM with a CV of 6.1%. Based on the detection limit (3nM) of the sensitive phosphate measurement and the ambient TPP and PIP concentrations of the ultraoligotrophic water, the minimum filtration volumes required for the detection of TPP and PIP were estimated to be 15 and 52mL, respectively. PMID:27130091

  3. Detecting estrogenic activity in water samples withestrogen-sensitive yeast cells using spectrophotometry and fluorescencemicroscopy

    SciTech Connect

    Wozei, E.; Holman, H-Y.N.; Hermanowicz, S.W.; Borglin S.

    2006-03-15

    Environmental estrogens are environmental contaminants that can mimic the biological activities of the female hormone estrogen in the endocrine system, i.e. they act as endocrine disrupters. Several substances are reported to have estrogen-like activity or estrogenic activity. These include steroid hormones, synthetic estrogens (xenoestrogens), environmental pollutants and phytoestrogens (plant estrogens). Using the chromogenic substrate ortho-nitrophenyl-{beta}-D-galactopyranoside (ONPG) we show that an estrogen-sensitive yeast strain RMY/ER-ERE, with human estrogen receptor (hER{alpha}) gene and the lacZ gene which encodes the enzyme {beta}-galactosidase, is able to detect estrogenic activity in water samples over a wide range of spiked concentrations of the hormonal estrogen 17{beta}-estradiol (E2). Ortho-nitrophenol (ONP), the yellow product of this assay can be detected using spectrophotometry but requires cell lysis to release the enzyme and allow product formation. We improved this aspect in a fluorogenic assay by using fluorescein di-{beta}-D-galactopyranoside (FDG) as a substrate. The product was visualized using fluorescence microscopy without the need to kill, fix or lyse the cells. We show that in live yeast cells, the uptake of E2 and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximum enzyme-catalyzed fluorescent product formation evident after about 30 minutes of exposure to E2. The fluorogenic assay was applied to a selection of estrogenic compounds and the Synchrotron-based Fourier transform infrared (SR-FTIR) spectra of the cells obtained to better understand the yeast whole cell response to the compounds. The fluorogenic assay is most sensitive to E2, but the SR-FTIR spectra suggest that the cells respond to all the estrogenic compounds tested even when no fluorescent response was detected. These findings are promising and may shorten the duration of environmental water screening and monitoring regimes using

  4. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  5. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  6. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  7. Light-induced changes in subband absorption in a-Si:H using photoluminescence absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, S. Q.; Taylor, P. C.; Nitta, S.

    1991-08-01

    We have used the photoluminescence (PL) generated in a thin-film sample of a-Si:H to probe low absorption levels by measuring the absorption of the PL as it travels down the length of the film in a waveguide mode. This technique, which we have called PL absorption spectroscopy of PLAS, allows the measurement of values of the absorption coefficient α down to about 0.1 cm-1. Because this technique probes the top and bottom surfaces of the a-Si:H sample, it is important to separate surface from bulk absorption mechanisms. An improved sample geometry has been employed to facilitate this separation. One sample consisted of an a-Si1-xNix:H/a-Si:H/ a-Si1-xNx:H/NiCr layered structure where the silicon nitride layers served as the cladding layers for the waveguide. In a second sample the a-Si:H layer was interrupted near the middle for two separate, thin (100 Å) layers of a-Si1-xNx:H in order to check for the importance of the absorption at the silicon/silicon nitride interfaces in these PLAS measurements. Changes in the below-gap absorption on light soaking were examined using irradiation from an Ar+ laser (5145 Å, ˜200 mW/cm2 for 5.5 hours at 300 K). The silicon/silicon nitride interface is responsible for an absorption which has a shoulder near 1.2 eV while the bulk a-Si:H absorption exhibits no such shoulder. The metastable, optically-induced increase in the below gap absorption appears to come entirely from the bulk of the a-Si:H. These low temperature PLAS measurements are compared with those obtained at 300 K by photothermal deflection spectroscopy.

  8. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities.

    PubMed

    Saad, Ahmed S; Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R

    2016-01-01

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39±1.60 and 100.51±1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method. PMID:26253440

  9. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities

    NASA Astrophysics Data System (ADS)

    Saad, Ahmed S.; Abo-Talib, Nisreen F.; El-Ghobashy, Mohamed R.

    2016-01-01

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39 ± 1.60 and 100.51 ± 1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method.

  10. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  11. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  12. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition-atomic absorption spectrophotometry.

    PubMed

    Chen, Jingjing; Chakravarty, Pragya; Davidson, Gregg R; Wren, Daniel G; Locke, Martin A; Zhou, Ying; Brown, Garry; Cizdziel, James V

    2015-04-29

    The purpose of this work was to study the feasibility of using a direct mercury analyzer (DMA) to simultaneously determine mercury (Hg) and organic matter content in sediment and soils. Organic carbon was estimated by re-weighing the sample boats post analysis to obtain loss-on-ignition (LOI) data. The DMA-LOI results were statistically similar (p<0.05) to the conventional muffle furnace approach. A regression equation was developed to convert DMA-LOI data to total organic carbon (TOC), which varied between 0.2% and 13.0%. Thus, mercury analyzers based on combustion can provide accurate estimates of organic carbon content in non-calcareous sediment and soils; however, weight gain from moisture (post-analysis), measurement uncertainty, and sample representativeness should all be taken into account. Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed. Wetland sediments generally had higher levels of Hg than open water areas owing to a greater fraction of fine particles and higher levels of organic matter. Annual loading of Hg in open water areas was estimated at 4.3, 13.4, 19.2, 20.7, 129, and 135 ng cm(-2) yr(-1) for Beasley, Roundaway, Hampton, Washington, Wolf and Sky Lakes, respectively. Generally, the interval with the highest Hg flux was dated to the 1960s and 1970s. PMID:25847156

  13. Derivative spectrophotometry for the determination of faropenem in the presence of degradation products: an application for kinetic studies.

    PubMed

    Cielecka-Piontek, Judyta

    2013-07-01

    A simple and selective derivative spectrophotometric method was developed for the quantitative determination of faropenem in pure form and in pharmaceutical dosage. The method is based on the zero-crossing effect of first-derivative spectrophotometry (λ = 324 nm), which eliminates the overlapping effect caused by the excipients present in the pharmaceutical preparation, as well as degradation products, formed during hydrolysis, oxidation, photolysis, and thermolysis. The method was linear in the concentration range 2.5-300 μg/mL (r = 0.9989) at λ = 341 nm; the limits of detection and quantitation were 0.16 and 0.46 μg/mL, respectively. The method had good precision (relative standard deviation from 0.68 to 2.13%). Recovery of faropenem ranged from 97.9 to 101.3%. The first-order rate constants of the degradation of faropenem in pure form and in pharmaceutical dosage were determined by using first-derivative spectrophotometry. A statistical comparison of the validation results and the observed rate constants for faropenem degradation with these obtained with the high-performance liquid chromatography method demonstrated that both were compatible. PMID:23816120

  14. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  15. Spectrophotometric Determination of the Dissociation Constant of an Acid-Base Indicator Using a Mathematical Deconvolution Technique

    ERIC Educational Resources Information Center

    Alter, Krystyn P.; Molloy, John L.; Niemeyer, Emily D.

    2005-01-01

    A laboratory experiment reinforces the concept of acid-base equilibria while introducing a common application of spectrophotometry and can easily be completed within a standard four-hour laboratory period. It provides students with an opportunity to use advanced data analysis techniques like data smoothing and spectral deconvolution to…

  16. Experimental determination of terahertz atmospheric absorption parameters

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.

    2015-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high-­-resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.

  17. Percutaneous absorption from soil.

    PubMed

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  18. Simple spectrophotometry method for the determination of sulfur dioxide in an alcohol-thionyl chloride reaction.

    PubMed

    Zheng, Jinjian; Tan, Feng; Hartman, Robert

    2015-09-01

    Thionyl chloride is often used to convert alcohols into more reactive alkyl chloride, which can be easily converted to many compounds that are not possible from alcohols directly. One important reaction of alkyl chloride is nucleophilic substitution, which is typically conducted under basic conditions. Sulfur dioxide, the by-product from alcohol-thionyl chloride reactions, often reacts with alkyl chloride to form a sulfonyl acid impurity, resulting in yield loss. Therefore, the alkyl chloride is typically isolated to remove the by-products including sulfur dioxide. However, in our laboratory, the alkyl chloride formed from alcohol and thionyl chloride was found to be a potential mutagenic impurity, and isolation of this compound would require extensive safety measures. As a result, a flow-through process was developed, and the sulfur dioxide was purged using a combination of vacuum degassing and nitrogen gas sweeping. An analytical method that can quickly and accurately quantitate residual levels of sulfur dioxide in the reaction mixture is desired for in-process monitoring. We report here a simple ultraviolet (UV) spectrophotometry method for this measurement. This method takes advantage of the dramatic change in the UV absorbance of sulfur dioxide with respect to pH, which allows for accurate quantitation of sulfur dioxide in the presence of the strong UV-absorbing matrix. Each sample solution was prepared using 2 different diluents: 1) 50 mM ammonium acetate in methanol +1% v/v hydrochloric acid, pH 1.3, and 2) 50 mM ammonium acetate in methanol +1% glacial acetic acid, pH 4.0. The buffer solutions were carefully selected so that the UV absorbance of the sample matrix (excluding sulfur dioxide) at 276 nm remains constant. In the pH 1.3 buffer system, sulfur dioxide shows strong UV absorbance at 276 nm. Therefore, the UV absorbance of sample solution is the sum of sulfur dioxide and sample matrix. While in the pH 4.0 buffer system, sulfur dioxide has

  19. Multiplasmon Absorption in Graphene

    NASA Astrophysics Data System (ADS)

    Jablan, Marinko; Chang, Darrick E.

    2015-06-01

    We show that graphene possesses a strong nonlinear optical response in the form of multiplasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nanoribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nanodisks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.

  20. Chaotic Systems with Absorption

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions Dq obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D1 in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.

  1. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  2. Bacteria Adherence Properties of Nitrogen-Doped TiO2 Coatings by Plasma Surface Alloying Technique

    NASA Astrophysics Data System (ADS)

    Wang, Hefeng; Tang, Bin; Li, Xiuyan; Fan, Ailan

    Titanium nitride coatings on 316L stainless steel (S. S) were obtained by plasma surface alloying technique. Nitrogen-doped titanium dioxide (TiO2-xNx) was synthesized by oxidative annealing the resulted TiNx coatings in air. The reference TiO2 samples were also prepared by oxidation of sputtered Ti coatings. The as-prepared coatings were characterized by X-ray diffraction, glow discharge optical emission spectrometer (GDOES), scanning electron microscopy, X-ray hotoelectron spectroscopy and UV-Vis spectrophotometry, respectively. The bacteria adherence property of the TiO2-xNx coatings on stainless steel on the oral bacteria Streptococcus Mutans was investigated and compared with that of stainless steel by fluorescence microscopy. The mechanism of the bacteria adherence was discussed. The results show that the TiO2-xNx coatings are composed of anatase crystalline structure. SEM measurement indicates a rough surface morphology with three-dimensional homogenous protuberances after annealing treatment. Optical properties reveal an extended tailing of the absorption edge toward the visible region due to nitrogen presence. The band gap of the N-doped sample is reduced from 2.29 eV to 1.90 eV compared with the pure TiO2 one. Because of the different roughness and microstructure, the TiO2-xNx coatings inhibit the bacteria adherence.

  3. Spectrophotometry, colors, and photometric properties of the 67P/Churyumov-Gerasimenko nucleus from the OSIRIS instrument onboard the ROSETTA mission

    NASA Astrophysics Data System (ADS)

    Fornasier, Sonia; Hasselmann, Pedro; Feller, Clement; Barucci, Maria Antonietta; Lara, Luisa; Oklay, Nilda; Tubiana, Cecilia; Besse, Sebastien; Scholten, Frank; Sierks, Holger; Leyrat, Cedric; La Forgia, Fiorangela; Lazzarin, Monica; Pajola, Maurizio; Thomas, Nick; Pommerol, Antoine; Massironi, Matteo

    2015-04-01

    between the two lobes of the comet, and is both the most active and brightest surface on the comet. This region has a bluer spectral slope than the darker regions that we interpret being caused by a higher abundance of water ice in the surface composition, although we note that no water ice absorption bands have been detected with the VIRTIS infrared imaging spectrometer during the August-September observations at resolutions of 15-25 m/px (Capaccioni et al. 2015). The absence of large areas of water ice rich mixtures in VIRTIS data may be attributed to their lower spatial resolution than the OSIRIS images, together with the presence of non-volatile materials that may mask the water ice spectral absorptions. We will present the results of the global photometric properties in several filters, derived using the Hapke model, together with the analysis of the local colors spectrophotometry, and albedo variations of the 67P nucleus. This unique data set places further constraints on the origin and distribution of cometary activity on the surface. References: Capaccioni et al, 2015, Science, in press Sierks et al, 2015, Science, in press Thomas et al., 2015, Science, in press

  4. Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Ye, Juanjuan; Liu, Shuxia; Tian, Miaomiao; Li, Wanjun; Hu, Bin; Zhou, Weihong; Jia, Qiong

    2014-01-01

    A simple and highly selective procedure for on-line determination of trace levels of Au, Pd, and Pt in mine samples has been developed using flow injection-column adsorption preconcentration coupled with graphite furnace atomic absorption spectrophotometry (FI-column-GFAAS). The precious metals were adsorbed on the as-synthesized magnetic nanoparticles functionalized with 4'-aminobenzo-15-crown-5-ether packed into a micro-column and then eluted with 2% thiourea + 0.1 mol L(-1) HCl solution prior to the determination by GFAAS. The properties of the magnetic adsorbents were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Various experimental parameters affecting the preconcentration of Au, Pd, and Pt were investigated and optimized. Under the optimal experimental conditions, the detection limits of the developed technique were 0.16 ng mL(-1) for Au, 0.28 ng mL(-1) for Pd, and 1.01 ng mL(-1) for Pt, with enrichment factors of 24.3, 13.9, and 17.8, respectively. Precisions, evaluated as repeatability of results, were 1.1%, 3.9%, and 4.4% respectively for Au, Pd, and Pt. The developed method was validated by the analysis of Au, Pd, and Pt in certified reference materials and mine samples with satisfactory results. PMID:24274293

  5. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  6. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  7. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  8. The Hubble Space Telescope quasar absorption line key project. II - Data calibration and absorption-line selection

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Saxe, David H.; Weymann, Ray J.; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Sargent, W. L. W.

    1993-01-01

    We present the observational and data processing aspects of the Hubble Space Telescope Quasar Absorption Line Key Project. Topics discussed include the observational technique, calibration of the data, software that simulates the data, the automated procedure used to identify and characterize the absorption features, and the determination of the sensitivity limits of the survey.

  9. Scanning spectrophotometry for the dynamic study of tissue respiration in intact organs.

    PubMed

    Jarry, G; Marzouki, L; Debray, S; Ghesquiere, S; Besson, B; Hung, B M; Laurent, D

    1986-04-01

    For use with intact perfused organs a spectrophotometer system has been developed, both for dual-wavelength absorption measurements and for spectral scanning. A monochromator is used for illumination and scanning in the visible and near infrared. Optic fibres conduct light to the specimen under examination and from the specimen to a detecting photomultiplier. System control is exercised by a microcomputer, which also processes the collected data. The performance of the system on isolated perfused rat heart is demonstrated, in the spectral scanning mode and in the dual-wavelength mode, by studying simultaneously the kinetics of cytochrome aa3, and myoglobin oxidation-reduction. PMID:3012201

  10. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  11. Total absorption Cherenkov spectrometers

    NASA Astrophysics Data System (ADS)

    Malinovski, E. I.

    2015-05-01

    A short review of 50 years of work done with Cherenkov detectors in laboratories at the Lebedev Physical Institute is presented. The report considers some issues concerning the use of Cherenkov total absorption counters based on lead glass and heavy crystals in accelerator experiments.

  12. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  13. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  14. ZINC ABSORPTION BY INFANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  15. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  16. Line shape studies in CW dye laser intracavity absorption

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Brink, G. O.; Spence, S.; Lakkaraju, H. S.

    1980-01-01

    The line shape of the signals observed by intracavity absorption in an atomic beam of barium is studied as a function of absorber density. Complex structure is observed consisting of both absorption and enhancement features. Comparison is made with models of intracavity absorption, and it is concluded that the rate equation model in its present form does not explain the structure. On the other hand the super-regen model does seem able to partially account for the observed structure. The complexity of the line shape will directly affect those workers who are using intracavity absorption as a spectroscopic technique.

  17. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  18. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  19. Quantum-enhanced absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-02-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.

  20. Quantum-enhanced absorption refrigerators.

    PubMed

    Correa, Luis A; Palao, José P; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  1. Phase Fluctuation Absorption Spectroscopy of Small Particles

    NASA Astrophysics Data System (ADS)

    Fluckiger, David Ulrich

    The purpose of this dissertation is to establish a viable mass measurement technique for in situ aerosol. Adaptation of the photothermal effect in a Mach-Zehnder interferometer provided high mass sensitivity in an instrument employing Phase Fluctuation Laser Optical Heterodyne (PFLOH) absorption spectroscopy. The theory of aerosol absorption of electromagnetic energy and subsequent thermalization in continuum, Rayleigh regime region is presented. From this theory the general behavior of PFLOH detection of aerosol is described and shown to give a signal proportional to the absorption species mass. Furthermore the signal is shown to be linear in excitation energy and modulation frequency, and scalable. The instrument is calibrated and shown to behave as predicted. PFLOH detection is then used in determining the mass size distribution of the aerosol component of the ozone-isoprene and ozone -(alpha)-pinene products as a function of isoprene and (alpha) -pinene concentration.

  2. Microwave and optical saturable absorption in graphene.

    PubMed

    Zheng, Zhiwei; Zhao, Chujun; Lu, Shunbin; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun

    2012-10-01

    We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than 80 µW, evidencing the microwave saturable absorption property of graphene. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at 1053 nm, respectively. Herein, we are able to conclude that graphene is indeed a broadband saturable absorber that can operate at both microwave and optical band. PMID:23188285

  3. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  4. Assessment of cosmetic ingredients in the in vitro reconstructed human epidermis test method EpiSkin™ using HPLC/UPLC-spectrophotometry in the MTT-reduction assay.

    PubMed

    Alépée, N; Hibatallah, J; Klaric, M; Mewes, K R; Pfannenbecker, U; McNamee, P

    2016-06-01

    Cosmetics Europe recently established HPLC/UPLC-spectrophotometry as a suitable alternative endpoint detection system for measurement of formazan in the MTT-reduction assay of reconstructed human tissue test methods irrespective of the test system involved. This addressed a known limitation for such test methods that use optical density for measurement of formazan and may be incompatible for evaluation of strong MTT reducer and/or coloured chemicals. To build on the original project, Cosmetics Europe has undertaken a second study that focuses on evaluation of chemicals with functionalities relevant to cosmetic products. Such chemicals were primarily identified from the Scientific Committee on Consumer Safety (SCCS) 2010 memorandum (addendum) on the in vitro test EpiSkin™ for skin irritation testing. Fifty test items were evaluated in which both standard photometry and HPLC/UPLC-spectrophotometry were used for endpoint detection. The results obtained in this study: 1) provide further support for Within Laboratory Reproducibility of HPLC-UPLC-spectrophotometry for measurement of formazan; 2) demonstrate, through use a case study with Basazol C Blue pr. 8056, that HPLC/UPLC-spectrophotometry enables determination of an in vitro classification even when this is not possible using standard photometry and 3) addresses the question raised by SCCS in their 2010 memorandum (addendum) to consider an endpoint detection system not involving optical density quantification in in vitro reconstructed human epidermis skin irritation test methods. PMID:26891813

  5. Comparison of HPLC, UV spectrophotometry and potentiometric titration methods for the determination of lumefantrine in pharmaceutical products.

    PubMed

    da Costa César, Isabela; Nogueira, Fernando Henrique Andrade; Pianetti, Gérson Antônio

    2008-09-10

    This paper describes the development and evaluation of a HPLC, UV spectrophotometry and potentiometric titration methods to quantify lumefantrine in raw materials and tablets. HPLC analyses were carried out using a Symmetry C(18) column and a mobile phase composed of methanol and 0.05% trifluoroacetic acid (80:20), with a flow rate of 1.0ml/min and UV detection at 335nm. For the spectrophotometric analyses, methanol was used as solvent and the wavelength of 335nm was selected for the detection. Non-aqueous titration of lumefantrine was carried out using perchloric acid as titrant and glacial acetic acid/acetic anhydride as solvent. The end point was potentiometrically determined. The three evaluated methods showed to be adequate to quantify lumefantrine in raw materials, while HPLC and UV methods presented the most reliable results for the analyses of tablets. PMID:18571353

  6. Coupling laser ablation and atomic fluorescence spectrophotometry: an example using mercury analysis of small sections of fish scales.

    PubMed

    Beaudin, Luc; Johannessen, Sophia C; Macdonald, Robie W

    2010-11-01

    Mercury is a toxic element that exchanges among air, water, and sediments and biomagnifies into high trophic level organisms. Here, we present a novel combination of laser ablation with relatively low-cost cold vapor atomic fluorescence spectrophotometry to analyze Hg vaporized from targeted patches of fish scale 300-500 μm square. This method permits the analysis of multiple samples from the same scale, which is useful, because fish scale growth rings may provide an archive from which spatial and temporal trends in environmental Hg can be inferred at fine resolution. The detection limit of the method is 1.5 pg Hg, with a precision of 0.1 pg/μL. Developed using fish scales, the method could be adapted to other media, such as baleen, shells, nails, hair, teeth, wood and, possibly, varved sediments. PMID:20942426

  7. Combination of fluorescence imaging and local spectrophotometry in fluorescence diagnostics of early cancer of larynx and bronchi

    SciTech Connect

    Sokolov, Vladimir V; Filonenko, E V; Telegina, L V; Boulgakova, N N; Smirnov, V V

    2002-11-30

    The results of comparative studies of autofluorescence and 5-ALA-induced fluorescence of protoporphyrin IX, used in the diagnostics of early cancer of larynx and bronchi, are presented. The autofluorescence and 5-ALA-induced fluorescence images of larynx and bronchial tissues are analysed during the endoscopic study. The method of local spectrophotometry is used to verify findings obtained from fluorescence images. It is shown that such a combined approach can be efficiently used to improve the diagnostics of precancer and early cancer, to detect a primary multiple tumours, as well as for the diagnostics of a residual tumour or an early recurrence after the endoscopic, surgery or X-ray treatment. The developed approach allows one to minimise the number of false-positive results and to reduce the number of biopsies, which are commonly used in the white-light bronchoscopy search for occult cancerous loci. (laser biology and medicine)

  8. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  9. Catalog of far-ultraviolet objective-prism spectrophotometry: Skylab experiment S-019, ultraviolet steller astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.; Benedict, G. F.

    1979-01-01

    Ultraviolet stellar spectra in the wavelength region from 1300 to 5000 A (130 to 500) were photographed during the three manned Skylab missions using a 15 cm aperture objective-prism telescope. The prismatic dispersion varied from 58 A mm/1 at 1400 A to 1600 A mm/1 at 3000 A. Approximately 1000 spectra representing 500 stars were measured and reduced to observed fluxes. About 100 stars show absorption lines of Si IV, C IV, or C II. Numerous line features are also recorded in supergiant stars, shell stars, A and F stars, and Wolf-Rayet stars. Most of the stars in the catalog are of spectral class B, with a number of O and A type stars and a sampling of WC, WN, F and C type stars. Spectrophotometric results are tabulated for these 500 stars.

  10. Spectrophotometry /0.33 to 1.07 microns/ of 433 Eros and compositional implications

    NASA Technical Reports Server (NTRS)

    Pieters, C.; Gaffey, M. J.; Chapman, C. R.; Mccord, T. B.

    1976-01-01

    The spectral reflectance (0.33-1.07 micrometers) for the asteroid 433 Eros was determined as a function of rotational phase during January 28-30, and February 15, 1975. Interpretation of absorption features suggests Eros is composed of an undifferentiated assemblage of moderate to high temperature minerals (iron, pyroxene, and olivine, but no carbon). H-type ordinary chondrites are such assemblages, but it would be premature to conclude that Eros is like an H chondrite meteorite in composition until a better understanding is reached of possible physical differences between laboratory powders and asteroid regoliths for metal-bearing assemblages. There are no large-scale major compositional variations on the different sides of Eros.

  11. Double beam spectrophotometry in the far ultraviolet. 1: 1150 A to 3600 A.

    PubMed

    Schmitt, R G; Brehm, R K

    1966-07-01

    The instrument described is a double beam spectrophotometer with a wavelength range of 1150 A to 3600 A. Continua are supplied by three microwave-excited, rare-gas discharge lamps and a standard hydrogen lamp. A 1-m, normal-incidence, concave-grating monochromator is used. The beam splitting arrangement is an oscillating toroidal mirror, resonant at 11.3 c/s and arranged so that only a single reflection in each beam is required. The detectors are type EMI 6255S, each with a sodium salicylate phosphor. A ratio recording measuring system is used, with absorbance indicated on a 1.5-cycle logarithmic recorder. The performance data include vapor absorption spectra of several organic compounds and spectral reflectance measurements of magnesium-fluoride-coated aluminum surfaces. Stray light measurements are made by considering the constancy of absorbance vs pressure of water vapor at several wavelengths. PMID:20049029

  12. [Rate of controlled-release urea pervasion through membrane determined by ultraviolet spectrophotometry].

    PubMed

    Zuo, Xiu-jin; Wang, Zhen-xin; Dai, Xiao-min; Zhou, Yi; Ma, Xiao-jun

    2006-06-01

    Application of controlled-release nitrogenous fertilizers can improve the efficiency of fertilizers and reduce the environmental pollution. Controlled-release urea (coated urea) is one of the controlled-release nitrogenous fertilizers developed quickly in the recent years. The rate of controlled-release urea pervasion through membrane is the most important index of the capacity of controlled release. There is a maximum absorption at lambda=426 nm with complex in acidic solution, using p-dimethylaminozenzaldehyde as color reagent, and the absorbance exhibits a linear reponses to the urea concentration over the range of 7.5-210 microg x mL(-1). The method for determining the rate of controlled-release urea pervasion through membrane was realized through determining the content of urea in the liquor, the recovery efficiency of the method is 96.1%-103.9%. PMID:16961255

  13. Metallicity determinations for globular clusters through spectrophotometry of their integrated light

    NASA Astrophysics Data System (ADS)

    Brodie, J. P.; Hanes, D. A.

    1986-01-01

    Using an appropriately weighted combination of 16 indices of absorption line strength measured in low-dispersion spectra of the integrated light of globular clusters, metallicities Fe/H are determined for thirty-six clusters in the Galaxy. The results confirm the suggestion that Zinn's (1980) scale suffers a systematic error in the region of intermediate metallicity and support an explanation in which his metallicity-indicative Q39 index has been diluted by excess ultraviolet light in clusters with anomalously rich blue horizontal branches. The methods, which involve the measurement of spectral features arising from many species, produce estimates of metallicity which are insensitive to this problem. Good agreement is found with several recent studies, but a disagreement is noted for the most metal-rich clusters studied by Frogel, Cohen, and Persson (1983). Finally, a similar method with a modified calibration is used to determine metallicities for the nuclei of six galaxies.

  14. Seasonal skin colour changes in a sample teenage population measured by reflection spectrophotometry

    NASA Astrophysics Data System (ADS)

    Stringer, M. R.; Cruse-Sawyer, J. E.

    2007-11-01

    As part of a classroom-based research project, reflectance spectra from the skin of a group of teenage school students were recorded over a four-month period, from early spring to mid-summer. The relative changes in skin colour during the course of the study were quantified by integrating over the full wavelength range of the normalized reflectance spectra. Measurements made upon the inner forearm and the back of the hand produce results which indicate a decrease in total reflectance (increase in absorption) corresponding to different levels of tanning for limited and extended exposure to ambient sunlight, respectively. The rate of change of skin colour qualitatively matches that of the solar illuminance.

  15. Water-related absorption in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Shiryaev, A. A.; Kagi, H.; Navon, O.

    2003-04-01

    Cubic and coated diamonds from several localities (Brasil, Canada, Yakutia) were investigated using spectroscopic techniques. Special emphasis was put on investigation of water-related features of transmission Infra-red and Raman spectra. Presence of molecular water is inferred from broad absorption bands in IR at 3420 and 1640 cm-1. These bands were observed in many of the investigated samples. It is likely that molecular water is present in microinclusions in liquid state, since no clear indications of solid H_2O (ice VI-VII, Kagi et al., 2000) were found. Comparison of absorption by HOH and OH vibrations shows that diamonds can be separated into two principal groups: those containing liquid water (direct proportionality of OH and HOH absorption) and those with stronger absorption by OH group. Fraction of diamonds in every group depends on their provenance. There might be positive correlation between internal pressure in microinclusions (determined using quartz barometer, Navon et al., 1988) and affiliation with diamonds containing liquid water. In many cases absorption by HOH vibration is considerably lower than absorption by hydroxyl (OH) group. This may be explained if OH groups are partially present in mineral and/or melt inclusions. This hypothesis is supported by following fact: in diamonds with strong absorption by silicates and other minerals shape and position of the OH band differs from that in diamonds with low absorption by minerals. Moreover, in Raman spectra of individual inclusions sometimes the broad band at 3100 cm-1 is observed. This band is OH-related. In some samples water distribution is not homogeneous. Central part of the diamond usually contains more water than outer parts, but this is not a general rule for all the samples. Water absorption usually correlated with absorption of other components (carbonates, silicates and others). At that fibrous diamonds with relatively high content of silicates are characterized by molecular water. OH

  16. Methane overtone absorption by intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Obrien, James J.

    1990-01-01

    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres.

  17. Chaotic systems with absorption.

    PubMed

    Altmann, Eduardo G; Portela, Jefferson S E; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions D(q) obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D(1) in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results. PMID:24138240

  18. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  19. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  20. Electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic

    NASA Astrophysics Data System (ADS)

    Nagai, T.; Uehara, A.; Fujii, T.; Sato, N.; Yamana, H.

    2010-03-01

    In the non-aqueous reprocessing process of spent nuclear fuels by the pyro-electrochemical method, a spent fuel is dissolved into molten LiCl-KCl and NaCl-CsCl eutectics and dissolved uranium and plutonium are collected as either metal or oxide. However, the binary alkali chloride mixture with the lowest melting point is the LiCl-RbCl eutectic. In this study, electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic at various temperatures between 673 and 973 K were measured by the UV/Vis/NIR spectrophotometry. We confirmed that these spectra were similar to those in molten LiCl-KCl and NaCl-CsCl eutectics. The sensitive absorption bands of U4+ in LiCl-RbCl eutectic were found at 22000, 16500, 14900, 8600, and 4950 cm-1. The large absorption bands of U4+ over 25000 cm-1 increased with increasing melt temperature, while absorption peaks at 15500-4000 cm-1 decreased. The large absorption bands of U3+ in LiCl-RbCl eutectic were observed over 14000 cm-1. The sensitive absorption bands of U3+ at Vis/NIR region were found at 13300, 11500-11200, 9800-9400, and 8250 cm-1, and these peaks decreased with increasing temperature.

  1. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  2. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  3. Theoretical antideuteron-nucleus absorptive cross sections

    NASA Technical Reports Server (NTRS)

    Buck, W. W.; Norbury, J. W.; Townsend, L. W.; Wilson, J. W.

    1993-01-01

    Antideuteron-nucleus absorptive cross sections for intermediate to high energies are calculated using an ion-ion optical model. Good agreement with experiment (within 15 percent) is obtained in this same model for (bar p)-nucleus cross sections at laboratory energies up to 15 GeV. We describe a technique for estimating antinucleus-nucleus cross sections from NN data and suggest that further cosmic ray studies to search for antideuterons and other antinuclei be undertaken.

  4. Oxalic acid decreases calcium absorption in rats

    SciTech Connect

    Weaver, C.M.; Martin, B.R.; Ebner, J.S.; Krueger, C.A.

    1987-11-01

    Calcium absorption from salts and foods intrinsically labeled with /sup 45/Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO/sub 3/ and CaCl/sub 2/ than from CaC/sub 2/O/sub 4/ (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach.

  5. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    ERIC Educational Resources Information Center

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  6. Determination of trace amount of oxalic acid with zirconium(IV)-(DBS-arsenazo) by spectrophotometry

    NASA Astrophysics Data System (ADS)

    Zhai, Qing-Zhou

    2008-11-01

    A novel method is proposed for the determination of trace amount of oxalic acid in the present article. In 1.0 M hydrochloric acid medium, oxalic acid can react with the zirconium(IV) in Zr(IV)-(DBS-arsenazo) complex and replaces the DBS-arsenazo to produce a hyperchromic effect at 520 nm. The hyperchromic degree is proportional to the concentration of the oxalic acid added over a defined range. Based on this property, a new method for the spectrophotometric determination of trace oxalic acid was developed. Beer's law is held over the concentration range of 9.0 × 10 -6 to 5.0 × 10 -4 M for oxalic acid with a correlation coefficient of 0.9995. The apparent molar absorptivity of the method is ɛ520 nm = 1.16 × 10 3 L mol -1 cm -1 and the detection limit for oxalic acid is 0.815 μg/mL. The developed method was directly applied to the determination of oxalic acid in tomato samples with satisfactory results.

  7. Spectrophotometry of zonal cloud structure variations on Jupiter, 1988-1993

    NASA Astrophysics Data System (ADS)

    Tejfel, V. G.; Vdovichenko, V. D.; Sinyaeva, N. V.; Mosina, S. A.; Gajsina, W. N.; Kharitonova, G. A.; Aksenov, A. N.

    1994-04-01

    Global changes of zonal cloud structure on Jupiter have been observed and analyzed from data obtained with a 1-m telescope and a low-dispersion spectrograph in the spectral range wavelengths 400-680 nm, and with a 70-cm telescope and planetary three-channel spectrometer in the spectral range wavelengths 320-1100 nm during each Jovian apparition from 1988 to 1992. Variations of the observed meridional intensity profiles and relative spectrophotometric gradients are described as well as the changes of absolute spectral reflectivity of five main belts on Jupiter (North and South Equatorial belts, North and South Tropical zones, and Equatorial region). Some peculiarities in the behavior of spectrophotometric gradients may be interpreted as a result of increased Rayleigh scattering in the gas layer over the deeper effective cloud boundary within main dark belts. The polar limb darkening varies only slightly with wavelength and it may be considered as evidence for dark aerosols in the stratosphere at high latitudes. The intensity of the methane absorption band centered at 8860 A shows an increase from the equator to temperate latitudes throughout the 1988-1992 period, despite the large variations in belt and zone reflectivities observed during this period in the southern hemisphere.

  8. Optical spectrum of HDE 226868 = Cygnus X-1. II. Spectrophotometry and mass estimates

    SciTech Connect

    Gies, D.R.; Bolton, C.T.

    1986-05-01

    In part I of this series, Gies and Bolton (1982) have presented the results of radial velocity measures of 78 high-dispersion spectrograms of HDE 226868 = Cyg X-1. For the present study, 55 of the best plates considered by Gies and Bolton were selected to form 10 average spectra. An overall mean spectrum with S/N ratio = 300 was formed by coadding the 10 averaged spectra. There is no evidence for statistically significant variations of the spectral type about the mean value of 09.7 Iab, and all the absorption line strengths are normal for the spectral type. Evidence is presented that the He II lambda 4846 emission line is formed in the stellar wind above the substellar point on the visible star. Probable values regarding the mass for the visible star and its companion are 33 and 16 solar masses, respectively. Theoretical He II lambda 4686 emission line profiles are computed for the focused stellar wind model for the Cyg X-1 system considered by Friend and Castor (1982). 105 references.

  9. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization.

    PubMed

    Zhu, Yue; Chen, Chia-Hsiu; Wilson, Zechariah; Savukov, Igor; Hilty, Christian

    2016-09-01

    Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from (1)H and (19)F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions. PMID:27423094

  10. IUE and visual spectrophotometry of Markarian 9, Markarian 10, and 3C 390.3

    NASA Technical Reports Server (NTRS)

    Oke, J. B.; Goodrich, R. W.

    1981-01-01

    Ultraviolet spectra from IUE are combined with visual spectra for the three type I Seyfert galaxies Mrk 9, Mrk 10, and 3C 390.3. The 2175 A interstellar feature is measured well enough in Mrk 9 to indicate that the extinction corresponding to E(B-V) = 0.14 + or - 0.04 is in the galaxy. Mrk 10 displays evidence for 2175 A absorption and also yields E(B-V) = 0.14 + or - 0.07, while the continuum for 3C 390.3 is too weak to positively detect the feature. It is found, after correcting for reddening, that the line-intensity ratio L(alpha)/H(beta) ranges from 8 to 18, while that for H(alpha)/H(beta) goes from 2.1 to 5.4. It is noted that the He II 1640/4686 line ratio is uncertain but appears to be consistent with the recombination value of about 8. If photoionization is assumed, a comparison of the strengths of L(alpha) and H(beta) with the UV ionizing flux suggests that H(beta) is enhanced rather than L(alpha) depressed. When a comparison is made with similar ratios in quasars, L(alpha) is found to be much stronger and H(beta) slightly stronger in Seyferts than in quasars.

  11. Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry

    NASA Technical Reports Server (NTRS)

    Hapke, B.; Nelson, R.

    1975-01-01

    The decrease in the reflectivity of Venus in the near-UV can be explained if the clouds contain particles of elemental sulfur in addition to sulfuric acid. The low-resolution McDonald-Pittsburgh spectrum can be fitted by two sulfur-containing, multiple-scattering cloud models: (1) a mixed cloud consisting of one particle of elemental sulfur of radius 10 microns for every 670 particles of sulfuric acid of radius 1 micron, and (2) a layered cloud of optical thickness tau = 1.0 consisting of one-micron particles of sulfuric acid overlying a thick cloud of elemental sulfur particles of radius 3.6 microns. Some of the sulfur is incompletely polymerized. The source of the sulfur is photo-dissociation of COS, although some may also be recycled from the lower atmosphere. The sulfur plays a crucial role in the planetary meteorology of Venus since it is responsible for the bulk of the absorption of solar energy.

  12. Imaging Spectrophotometry of the Jet/ISM Interaction in IC5063

    NASA Technical Reports Server (NTRS)

    Cecil, G.; Schuft, B.; Morse, J.; Bland-Hawthorn, J.

    2004-01-01

    IC5063 is a somewhat dusty z=0.0110 S0 galaxy with a Seyfert 2 nucleus. It has a triple radio source that spans 3 arcsec, mostly blueshifted H I absorption that spans 700 km/s, and ionization cones that extend for more than 2 arcmins. We obtained fully sampled [O III]\\lambda5007 grids at 0."9 and 70 km/s FWHM resolution using the Rutgers Fabry-Perot system on the Blanco 4m telescope. Complementary long-slit spectra using the RC spectrograph on the Blanco, and Taurus Tunable Filter spectral images in H\\alpha and [N II]\\lambda6583, were also obtained to assess gaseous ionization conditions. We present the results of our analysis, and correlate spectral structures to those visible in archival WFPC2 images. We find that, in the region near the radio triple, gaseous ionization and line velocity width is tightly correlated, in excellent quantitative agreement with the high-velocity shock regime in the diagnostic emission-line ratio diagrams of Dopita & Sutherland. We separate kinematically gas in normal disk rotation that is illuminated by the AGN in the ionization cones from that agitated mechanically by the jet, and assess the energy input from both processes.

  13. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Chen, Chia-Hsiu; Wilson, Zechariah; Savukov, Igor; Hilty, Christian

    2016-09-01

    Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7 mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from 1H and 19F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions.

  14. Quantitation of Pyrantel Pamoate in Pharmaceuticals Using Permanganate by Visible Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Rajendraprasad, N.; Basavaiah, K.

    2014-03-01

    Two simple, accurate and precise spectrophotometric methods are developed and validated for the assay of pyrantel pamoate (PP) in pharmaceuticals. The methods employ the oxidative property of potassium permanganate (KMnO4) in acidic and alkaline conditions. In the first method (method A), PP is converted into its free base, pyrantel (PR), and treated with known excess of KMnO4 in acidic condition followed by the measurement of unreacted KMnO4 at 550 nm. Method B is based on the registration of absorbance of green colored chromogen formed due to the reduction of KMnO4 by PP in alkaline condition. The methods obeyed Beer's law over a range of 1-20 μg/ml in inverse manner, and 0.75-15 μg/ml for method A and method B, respectively, with apparent molar absorptivity values of 1.05ṡ104 and 2.85ṡ104 lṡmol-1ṡcm-1. The optical parameters such as limits of detection (LOD), quantification (LOQ), and the Sandell sensitivity values are also reported. The accuracy and precision of the methods are assessed on intra- and inter-day basis. A recovery study by standard addition procedure is also carried out for further assurance of accuracy. The developed methods are successfully applied to determine PP in tablets. The results are more satisfactory as per current ICH guidelines.

  15. Absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  16. An atomic-absorption method for the determination of gold in large samples of geologic materials

    USGS Publications Warehouse

    VanSickle, Gordon H.; Lakin, Hubert William

    1968-01-01

    A laboratory method for the determination of gold in large (100-gram) samples has been developed for use in the study of the gold content of placer deposits and of trace amounts of gold in other geologic materials. In this method the sample is digested with bromine and ethyl ether, the gold is extracted into methyl isobutyl ketone, and the determination is made by atomicabsorption spectrophotometry. The lower limit of detection is 0.005 part per million in the sample. The few data obtained so far by this method agree favorably with those obtained by assay and by other atomic-absorption methods. About 25 determinations can be made per man-day.

  17. Scattering with absorptive interaction

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Stingl, M.; Weiguny, A.

    1982-07-01

    The S matrix for a wide class of complex and nonlocal potentials is studied, with special attention given to the motion of singularities in the complex k plane as a function of the imaginary coupling strength. Modifications of Levinson's theorem are obtained and discussed. Analytic approximations to the S matrix in the vicinity of narrow resonances are exhibited and compared to numerical results of resonating-group calculations. The problem of defining resonances in the case of complex interactions is discussed, making contact with the usual analysis of scattering in terms of Argand diagrams. NUCLEAR REACTIONS Scattering theory, S matrix for absorptive potentials.

  18. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  19. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, Michael E.; Bien, Fritz; Bernstein, Lawrence S.

    1986-01-01

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

  20. Potassium emission absorption system. Topical report 12

    SciTech Connect

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  1. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    SciTech Connect

    Lopez-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernandez-Valle, M.E.; Alvarez de Buergo, M.; Fort, R.

    2010-02-15

    Slaked lime (Ca(OH){sub 2}) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH){sub 2}) into vaterite (CaCO{sub 3}), monohydrocalcite (CaCO{sub 3} . H{sub 2}O) and calcite (CaCO{sub 3}), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  2. [Simultaneous determination of platinum (IV) and palladium (II) using spectrophotometry method].

    PubMed

    Ma, Dong-Lan; Wang, Yun; Ma, Kuang-Biao; Wang, Jin-Ye

    2009-10-01

    The N-(m-methylphenyl)-N'-(sodium p-aminobenzenesulfonate)-thiourea (MMPT) was good reagent of water solubility. In the medium of an HAc-NaAc buffer solution and hexadecyltrimethylammonium bromide (CTMAB), MMPT can react with platinum (IV) and palladium (II) to form green and brown soluble complex. The maximum absorbance of the complex was at lambdaPt(max) = 754.4 nm and lambdaPD(max) = 304.6 nm. Beer's law was obeyed with the concentration in the range of 0-32.0 microg Pt(IV)/25 mL and 0-25.0 microg Pd(II)/25 mL for platinum (IV) and palladium(II) respectively. The correlated coefficient was r754.4 = 0.999 5 for platinum (IV); and r304.6 = 0.999 9 for palladium (II). Their molar absorption coefficients were epsilonPT(754.4 = 8.6 x 10(4) L x mol(-1) x cm(-1) and epsilonPd(304.6) = 7.4 x 10(4) L x mol(-1) x cm(-1) respectively. The contents of platinum (IV) and palladium (II) were converted by determination of the absorbency of mix solution of platinum (IV) and palladium (II) at 754.4 and 304.6 nm. Only Cu2+ and Co2+ interfered with the determination of palladium (II) among 50 coexistent ions, so the selectivity was good. It can be used for the determination of content of synthesis samples. The relative standard deviation (RSD) was less than 2.0%, and the recovery (%) was in the range of 96%-104%. The results are satisfactory. Because the reagent reacts with platinum (IV) and palladium (II) to form water soluble complex and does not require pre-separation for simultaneous determination of platinum (IV) and palladium (II), the method is easy to operate, rapid and environment-friendly. PMID:20038071

  3. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry. PMID:27139871

  4. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  5. Optical absorption in ion-implanted lead lanthanum zirconate titanate ceramics

    SciTech Connect

    Seager, C.H.; Land, C.E.

    1984-08-15

    Optical absorption measurements have been performed on unmodified and on ion-implanted lead lanthanum zirconate titanate ceramics using the photothermal deflection spectroscopy technique. Bulk absorption coefficients depend on the average grain size of the material while the absorption associated with the ion-damaged layers does not. The damage-induced surface absorptance correlates well with the photosensitivity observed in implanted PLZT devices, supporting earlier models for the enhanced imaging efficiency of the materials.

  6. Effects of xylitol on the absorption of /sup 203/Pb in mice and cockerels

    SciTech Connect

    Mykkaenen, H.M.; Salminen, S.J.

    1986-07-01

    Earlier studies have indicated that xylitol may increase the absorption and urinary excretion of dietary oxalate. It has also been indicated that xylitol increases the absorption of calcium. Intestinal absorption of lead, a divalent contaminant in the diet, is in many respects similar to that of calcium. The purpose of this study was to evaluate the effects of xylitol on the intestinal absorption of lead using two different approaches: the in situ ligated intestinal loop technique in cockerels and gastric gavage in mice.

  7. Application of portable fluorescence spectrophotometry for integrity testing of recycled water dual distribution systems.

    PubMed

    Hambly, Adam C; Henderson, Rita K; Baker, Andy; Stuetz, Richard M; Khan, Stuart J

    2015-01-01

    Water utilities supplying recycled water to households via a "third-pipe" or "dual reticulation" system have a need for a rapid, portable method to detect cross-connections within potable water reticulation networks. This study evaluates portable fluorimetry as a technique for cross-connection detection in the field. For the first time, an investigation of a full-scale dual reticulation water-recycling network has been carried out to identify cross-connections using a portable fluorimeter. We determined that this can be carried out with a 3 mL water sample, and unlike methods that are currently in use for cross-connection detection, can be achieved quickly without disruption to water flow or availability within the network. It was also revealed that fluorescence trigger values could be established with high levels of confidence by sampling less than 2.5% of the network. Fluorescence analysis was also able to uncover a single, real cross-connection event. As such, this paper is a fundamental demonstration of fluorescence as a reliable, highly portable technique for cross-connection detection within dual reticulation water recycling networks and further establishes the abilities of fluorescence devices as valuable field instruments for water quality monitoring. PMID:25506735

  8. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  9. Cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    Strange, M. G.

    1988-01-01

    The Cloud Absorption Radiometer (CAR) was developed to measure spectrally how light is scattered by clouds and to determine the single scattering albedo, important to meteorology and climate studies, with unprecedented accuracy. This measurement is based on ratios of downwelling to upwelling radiation within clouds, and so is not strongly dependent upon absolute radiometric calibration of the instrument. The CAR has a 5-inch aperture and 1 degree IFOV, and spatially scans in a plane orthogonal to the flight vector from the zenith to nadir at 1.7 revolutions per second. Incoming light is measured in 13 spectral bands, using silicon, germanium, and indium-antimonide detectors. Data from each channel is digitally recorded in flight with 10-bit (0.1 percent) resolution. The instrument incorporates several novel features. These features are briefly detailed.

  10. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  11. Spectrophotometry of Peculiar B-Stars and A-Stars - Part Nine - HD5797 HD12288 9-TAURI HD81009 HD111133 33-LIBRAE and HD216533

    NASA Astrophysics Data System (ADS)

    Adelman, S. J.

    1981-02-01

    Optical region spectrophotometry of λλ3300-7100 is presented for seven sharp-lined peculiar A stars: HD 5797, HD 12288, 9 Tauri, HD 81009, HD 111133, 33 Librae, and HD 216533. Many of proposed periods in the literature are questioned. Some of the deviations from the predictions of normal stellar atmospheres suggest that such continua are only remotely related to those of peculiar A stars.

  12. Formaldehyde in Alcoholic Beverages: Large Chemical Survey Using Purpald Screening Followed by Chromotropic Acid Spectrophotometry with Multivariate Curve Resolution

    PubMed Central

    Jendral, Julien A.; Monakhova, Yulia B.; Lachenmeier, Dirk W.

    2011-01-01

    A strategy for analyzing formaldehyde in beer, wine, spirits, and unrecorded alcohol was developed, and 508 samples from worldwide origin were analyzed. In the first step, samples are qualitatively screened using a simple colorimetric test with the purpald reagent, which is extremely sensitive for formaldehyde (detection limit 0.1 mg/L). 210 samples (41%) gave a positive purpald reaction. In the second step, formaldehyde in positive samples is confirmed by quantitative spectrophotometry of the chromotropic acid-formaldehyde derivative combined with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Calculation of UV-VIS and 13C NMR spectra confirmed the monocationic dibenzoxanthylium structure as the product of the reaction and disproved the widely cited para,para-quinoidal structure. Method validation for the spectrophotometric procedure showed a detection limit of 0.09 mg/L and a precision of 4.2–8.2% CV. In total, 132 samples (26%) contained formaldehyde with an average of 0.27 mg/L (range 0–14.4 mg/L). The highest incidence occurred in tequila (83%), Asian spirits (59%), grape marc (54%), and brandy (50%). Our survey showed that only 9 samples (1.8%) had formaldehyde levels above the WHO IPCS tolerable concentration of 2.6 mg/L. PMID:21760790

  13. Rapid determination of polysaccharides in BianTi Soft Extract by spectrophotometry coupled with gas chromatography-mass spectrometry.

    PubMed

    Zheng, Minxia; Shen, Jie; Yang, Kai; Qian, Songxiang; Feng, Sujuan

    2010-04-01

    A simple approach for the rapid determination of polysaccharides in BianTi Soft Extract using spectrophotometry coupled with gas chromatography-mass spectrometry (GC-MS) was developed. The mixed standard solution composed of D-glucose, D-mannose, galactose and D-xylose in different proportions (1.00: 1.01: 0.12: 0.05) was prepared according to the monosaccharide composition analysis of the polysaccharides by GC-MS. The determination of polysaccharides by UV-Vis spectrophotometer was performed after 35-min color reaction, in which 1 ml 5% phenol and 4 ml sulfate was used. The assay of the method validation has shown that the method was stable, reliable and feasible. Furthermore, the proposed method was successfully applied in the preparation procedure of BianTi Soft Extract, selecting out optimal decoction conditions and suitable decoction container. It suggests that the convenient method could be useful for the quality control of BianTi Soft Extract. Meanwhile, it may be an alternative for polysaccharides determination of other formulations. PMID:20668575

  14. The H-band emitting region of the luminous blue variable P Cygni: Spectrophotometry and interferometry of the wind

    SciTech Connect

    Richardson, N. D.; Gies, D. R.; Baron, F.; Parks, J. R.; Matson, R. A.; Touhami, Y.; Aldoretta, E. J.; McAlister, H. A.; Schaefer, G. H.; Ten Brummelaar, T. A.; Sturmann, J.; Sturmann, L.; Chesneau, O.; Monnier, J. D.; Che, X.; Clemens, D. P.; Taylor, B.; Morrison, N. D.; Kraus, S.; Ridgway, S. T.; and others

    2013-06-01

    We present the first high angular resolution observations in the near-infrared H band (1.6 μm) of the luminous blue variable star P Cygni. We obtained six-telescope interferometric observations with the CHARA Array and the MIRC beam combiner. These show that the spatial flux distribution is larger than expected for the stellar photosphere. A two-component model for the star (uniform disk) plus a halo (two-dimensional Gaussian) yields an excellent fit of the observations, and we suggest that the halo corresponds to flux emitted from the base of the stellar wind. This wind component contributes about 45% of the H-band flux and has an angular FWHM = 0.96 mas, compared to the predicted stellar diameter of 0.41 mas. We show several images reconstructed from the interferometric visibilities and closure phases, and they indicate a generally spherical geometry for the wind. We also obtained near-infrared spectrophotometry of P Cygni from which we derive the flux excess compared to a purely photospheric spectral energy distribution. The H-band flux excess matches that from the wind flux fraction derived from the two-component fits to the interferometry. We find evidence of significant near-infrared flux variability over the period from 2006 to 2010 that appears similar to the variations in the Hα emission flux from the wind.

  15. Episodes of apnea and bradycardia in the preterm newborn: impact on cerebral oxygenation measured by near-infrared spectrophotometry

    NASA Astrophysics Data System (ADS)

    Van Huffel, Sabine; Craemers, Johan; Lenaerts, Bart; Daniels, Hans; Naulaers, Gunnar; Casaer, Paul

    1998-12-01

    The objective of this study is to evaluate the effect of episodes of apneas and/or mild bradycardia (heart rate decreases of 10 to 20% or more) on cerebral oxyhemoglobin (HbO2) and reduced hemoglobin (Hb) concentration as measured by Near Infrared Spectrophotometry (NIRS). Measurements were carried out on 7 preterm infants who experienced apneic and bradycardiac events. It is shown how to characterize these events using time-frequency analysis. In addition to NIRS (performed with a NIRO-500 from Hamamatsu, Japan), the heart rate, ECG, peripheral arterial oxygen saturation (measured at the foot) and respiration (abdominal and thoracic pressure, and nasal airflow) were continuously recorded. The impact of apneic events and periodic breathing on these measurements reveals the clinical relevance of NIRS. In particular, we investigate whether these changes in heart rate and respiration also influence HbO2 and reduced Hb concentration in neonatal brain. These changes are characterized, as well as their relationships with the other simultaneously recorded signals such as peripheral arterial oxygen saturation.

  16. Retinopathy of prematurity and induced changes in arterial oxygen saturation with near infrared spectrophotometry: a retrospective cohort study

    NASA Astrophysics Data System (ADS)

    von Siebenthal, K.; Keel, M.; Dietz, V.; Fauchere, J. C.; Martin, X.; Wolf, Martin; Duc, G.; Bucher, H. U.

    1996-10-01

    Near-infrared spectrophotometry (NIRS) is a noninvasive method for measuring oxygenated and deoxygenated hemoglobin in the neonatal brain. Using oxygen as a tracer, it is possible to calculate cerebral blood flow (cbf) and hemoglobin concentration (cHbc), which corresponds to cerebral blood volume, by inducing small changes in arterial oxygen saturation. Variability of tcpO2 is considered to be associated with severe retinopathy of prematurity (ROP). A preliminary analysis without control found a 51 percent incidence of ROP in infants subjected to NIRS measurements whereas among infants who were not exposed to oxygen changes, only 29 percent developed ROP. A controlled study with matched pairs was performed. Thirty-nine premature newborns who had received NIRS recordings were matched with 39 out of 172 infants who had not received NIRS. Using this controlled study design there was no difference in the incidence and severity of ROP between the two groups. The conclusions are that: 1) small changes in oxygen saturation of 3 to 10 percent to measure cbf and cHbc did not increase the incidence or the degree of severity of ROP. 2) A controlled study design is important. Analyses of uncontrolled data would have led to the conclusion that oxygen changes as used with NIRS increase the risk of ROP.

  17. A New Method for Accurate Signal Processing in Measurements of Elemental Mercury Vapor by Atomic Fluorescence Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Ambrose, J. L., II; Jaffe, D. A.

    2015-12-01

    The most widely used method for quantifying atmospheric Hg is gold amalgamation pre-concentration, followed by thermal desorption (TD) and detection via atomic fluorescence spectrophotometry (AFS). Most AFS-based atmospheric Hg measurements are carried out using commercial analyzers manufactured by Tekran® Instruments Corp. (instrument models 2537A and 2537B). A generally overlooked and poorly characterized source of analytical uncertainty in these measurements is the method by which the raw Hg AFS signal is processed. In nearly all applications of Tekran® analyzers for atmospheric Hg measurements, researchers rely upon embedded software which automatically integrates the Hg TD peaks. However, Swartzendruber et al. (2009; doi:10.1016/j.atmosenv.2009.02.063) demonstrated that the Hg TD peaks can be more accurately defined, and overall measurement precision increased, by post-processing the raw Hg AFS signal; improvements in measurement accuracy and precision were shown to be more significant at lower sample loadings. Despite these findings, a standardized method for signal post-processing has not been presented. To better characterize uncertainty associated with Tekran® based atmospheric Hg measurements, and to facilitate more widespread adoption of an accurate, standardized signal processing method, we developed a new, distributable Virtual Instrument (VI) which performs semi-automated post-processing of the raw Hg AFS signal from the Tekran® analyzers. Here we describe the key features of the VI and compare its performance to that of the Tekran® signal processing method.

  18. Rapid determination of trace thiabendazole in apple juice utilizing dispersive liquid-liquid microextraction combined with fluorescence spectrophotometry.

    PubMed

    Li, Wei; Wang, Yuning; Huang, Limin; Wu, Ting; Hu, Huilian; Du, Yiping

    2015-09-01

    Food safety has become a large concern and prompts an urgent need for the development of rapid, simple and sensitive analytical methods that can monitor pesticide residues in foods. This study aimed to provide a method for quantitative determination of trace thiabendazole in apple juice. Due to its high sensitivity and selectivity, fluorescence spectrophotometry was utilized as a front end to dispersive liquid-liquid microextraction (DLLME). The experimental parameters that influenced the extraction were systematically investigated. Under optimum conditions, the whole procedure, including DLLME and analysis of one sample, was carried out within 5 min, and linearity was found in the 5-50 µg/L range with a correlation coefficient (r) of 0.9987. The limit of detection value was 2.2 µg/L. Good reproducibility was achieved based with a less than 4.5% relative standard deviation (RSD) for five replicates at different sample concentrations. This method was shown to be suitable for rapid and sensitive quantification of thiabendazole in apple juice. PMID:25645350

  19. Quantitative analysis of Eu 2+ and Eu 3+ in LiCl-KCl eutectic melt by spectrophotometry and electrochemistry

    NASA Astrophysics Data System (ADS)

    Kim, Tack-Jin; Uehara, Akihiro; Nagai, Takayuki; Fujii, Toshiyuki; Yamana, Hajimu

    2011-02-01

    The redox behavior of Eu 2+ and Eu 3+ in the LiCl-KCl eutectic at 773 K was investigated. Since the equilibrium potential of the melt is very close to the redox potential of the Eu 3+|Eu 2+ couple, the Eu 2+ and Eu 3+ species coexist. Quantitative analysis of Eu 2+ and Eu 3+ was performed by spectrophotometry and by potentiometry. Under the coexistence of Eu 2+ and Eu 3+, potentiometric titration of Eu ion using a yttria-stabilized zirconia membrane electrode (YSZME) was performed by changing the concentration of O 2-. The formation of the europium oxychloride, EuOCl, was confirmed by X-ray diffraction analysis, whiles no precipitation of the oxides, EuO and Eu 2O 3, was found. The equivalent point of the EuOCl formation ( x = [O 2-] added/[Eu] total) was shifted to a smaller value from the theoretical value ( x = 1) due to the coexisting Eu 2+. The contribution of the coexisting Eu 2+ to the formation of EuOCl was estimated by using [Eu 2+]/[Eu 3+] as determined by potentiometry and this was subtracted from the titration data. The solubility product of EuOCl was determined to be p ks(EuOCl) = 7.81 ± 0.10.

  20. Mode identification based on time-series spectrophotometry for the bright rapid sdB pulsator EC 01541-1409

    NASA Astrophysics Data System (ADS)

    Randall, S. K.; Fontaine, G.; Geier, S.; Van Grootel, V.; Brassard, P.

    2014-03-01

    We present an analysis of time-resolved spectrophotometry gathered with FORS/VLT for the rapidly pulsating hot B subdwarf EC 01541-1409 with the aim of identifying the degree index ℓ of the larger amplitude modes. This mode identification can be extremely useful in detailed searches for viable asteroseismic models in parameter space, and can be crucial for testing the validity of a solution a posteriori. To achieve it, we exploit the ℓ-dependence of the monochromatic amplitude, phase, and velocity-to-amplitude ratio of a mode as a function of wavelength. We use the ℓ-sensitive phase lag between the flux perturbation and the radial velocity as an additional diagnostic tool. On this basis, we are able to unambiguously identify the dominant 140.5 s pulsation of our target as a radial mode, and the second-highest amplitude periodicity at 145.8 s as an ℓ = 2 mode. We further exploit the exceptionally high-sensitivity data that we gathered for the dominant mode to infer modal properties that are usually quite difficult to estimate in sdB pulsators, namely the physical values of the dimensionless radius, temperature, and surface gravity perturbations. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal ID 087.D-0047).Appendix A is available in electronic form at http://www.aanda.org

  1. UV-visible scanning spectrophotometry and chemometric analysis as tools for carotenoids analysis in cassava genotypes (Manihot esculenta Crantz).

    PubMed

    Moresco, Rodolfo; Uarrota, Virgílio Gavicho; Pereira, Aline; Tomazzoli, Maíra Maciel; Nunes, Eduardo da C; Peruch, Luiz Augusto Martins; Gazzola, Jussara; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-01-01

    In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava (Manihot esculenta) genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromatography was performed. Cassava roots rich in β-carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The data set was used for the construction of a descriptive model by chemometric analysis. The genotypes of yellow-fleshed roots were clustered by the higher concentrations of cis-β-carotene and lutein. Inversely, cream-fleshed roots genotypes were grouped precisely due to their lower concentrations of these pigments, as samples rich in lycopene (red-fleshed) differed among the studied genotypes. The analytical approach (UV-Vis, HPLC, and chemometrics) used showed to be efficient for understanding the chemodiversity of cassava genotypes, allowing to classify them according to important features for human health and nutrition. PMID:26673931

  2. The measurement of absolute absorption of millimeter radiation in gases - The absorption of CO and O2

    NASA Technical Reports Server (NTRS)

    Read, William G.; Cohen, Edward A.; Pickett, Herbert M.; Hillig, Kurt W., II

    1988-01-01

    An apparatus is described that will measure absolute absorption of millimeter radiation in gases. The method measures the change in the quality factor of a Fabry-Perot resonator with and without gas present. The magnitude of the change is interpreted in terms of the absorption of the lossy medium inside the resonator. Experiments have been performed on the 115-GHz CO line and the 119-GHz O2 line at two different temperatures to determine the linewidth parameter and the peak absorption value. These numbers can be combined to give the integrated intensity which can be accurately calculated from results of spectroscopy measurements. The CO results are within 2 percent percent of theoretically predicted valves. Measurements on O2 have shown that absorption can be measured as accurately as 0.5 dB/km with this technique. Results have been obtained for oxygen absolute absorption in the 60-80-GHz region.

  3. The absorption of polymeric composites

    NASA Astrophysics Data System (ADS)

    Řídký, R.; Popovič, M.; Rolc, S.; Drdlová, M.; Krátký, J.

    2016-06-01

    An absorption capacity of soft, viscoelastic materials at high strain rates is important for wide range of practical applications. Nowadays there are many variants of numerical models suitable for this kind of analysis. The main difficulty is in selection of the most realistic numerical model and a correct setup of many unknown material constants. Cooperation between theoretical simulations and real testing is next crucial point in the investigation process. Standard open source material database offer material properties valid for strain rates less than 250 s-1. There are experiments suitable for analysis of material properties with strain rates close to 2000 s-1. The high strain-rate characteristics of a specific porous blast energy absorbing material measured by modified Split Hopkinson Pressure Bar apparatus is presented in this study. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. One of the possible solution leads to complex and frequency depended Young modulus of testing bars material. This testing technique was applied to materials composed of porous glass/ceramic filler and polymeric binder, with density of 125 - 300 kg/m3 and particle size in range of 50 µm - 2 mm. The achieved material model was verified in practical application of sandwich structure includes polymeric composites under a blast test.

  4. Comparison of absorption after inhalation and instillation of uranium octoxide.

    PubMed

    Pellow, P G D; Hodgson, S A; Hodgson, A; Rance, E; Ellender, M; Guilmette, R A; Stradling, G N

    2003-01-01

    Values for the absorption parameters were compared after inhalation or intratracheal instillation of 1.5 microm mass median aerodynamic diameter (MMAD) 233U3O8 particles into the lungs of HMT strain rats. The two sets of parameter values were similar, as were the calculated dose coefficients and predicted biokinetics for workers. Hence the inhalation and instillation techniques can probably both be used to generate values of the absorption parameters for U3O8. PMID:14526937

  5. Transient absorption microscopy studies of single metal and semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Johns, Paul; Sajini-Devadas, Mary; Hartland, Gregory V.

    2015-08-01

    Transient absorption microscopy is an experimental technique that allows nanomaterials to be studied with ultrafast time resolution and diffraction limited spatial resolution. This paper describes recent results from using transient absorption microscopy to investigate energy relaxation processes in single metal and semiconductor nanowires. The processes that have been examined include charge carrier trapping in semiconductor nanostructures, the motion of surface plasmon polaritons in metal nanowires, and the damping of the acoustic breathing modes of metal nanowires by high viscosity solvents.

  6. Experimental study of the light absorption in sea water by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Velásquez, A.; Sira, E.; Silva, S.; Cabrera, H.

    2016-01-01

    Thermal lens spectroscopy is well known as highly sensitive technique enabling measurements of low absorption and concentration determination of various compounds. The optical absorption coefficients of doubly distilled water and samples of water from different places of the open Ocean and different coastal regions have been measured at 532.8 nm wavelength using this technique. The method enables sensitive, rapid and reproducible determination of small variations of the absorption coefficient which are related with small trace contaminations in sea water.

  7. Optical Absorption Spectra of Sodium Borate Cobalt Doped Glasses

    SciTech Connect

    Elokr, M. M.; Hassan, M. A.; Yaseen, A. M.; Elokr, R.

    2007-02-14

    Glassy system: xNa2O-(100-x-y)B2O3-yCo3O4 has been prepared by conventional melt quenching technique. Optical absorption spectra have been obtained in the range 300 - 2500 nm at room temperature. An absorption edge was observed in the near UV range, the analysis of which reveals that indirect transition is the dominant absorption mechanism. All prepared samples exhibit blue color, indicating that the Co ions are acted upon by tetrahedral ligand field. Obtained spectra were used to estimate some ligand field parameters.

  8. Synthesis and nonlinear optical absorption of novel chalcone derivative compounds

    NASA Astrophysics Data System (ADS)

    Rahulan, K. Mani; Balamurugan, S.; Meena, K. S.; Yeap, G.-Y.; Kanakam, Charles C.

    2014-03-01

    3-(4-(dimethylamino)phenyl)-1-(4-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)phenyl)prop-2-en-1-one was synthesized and its third order nonlinear optical properties have been investigated using a z-scan technique with nanosecond laser pulses at 532 nm. The nonlinear absorption behavior of the compound in chloroform presents a distinct difference at different laser intensity. Interestingly, the compound showed a switchover from saturable absorption (SA) to reverse saturable absorption (RSA) with the increase of excitation intensity. Our studies suggest that compound could be used as a potential candidate for optical device applications such as optical limiters.

  9. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  10. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  11. Ultrafast transient absorption measurements of heme proteins

    NASA Astrophysics Data System (ADS)

    Ye, Xiong; Demidov, Andrey; Wang, Wei; Christian, James; Champion, Paul

    1998-03-01

    Transient absorption spectra reveal the dynamics and intermediate states of the heme active site after ligand photodissociation, which helps clarify the physical process of ligand dissociation and geminate recombination. To measure the transient absorption spectra, we apply a femtosecond pump-probe technique with frequency resolved detection using a multichannel diode array. The femtosecond pulse output from a regenerative laser amplifier system is split in two; one beam pumps the optical parametric amplifier to produce a tunable wavelength pump pulse, the other beam generates a white light continuum that is varied in time with respect to pump pulse and probe the transient absorbance of the sample. We make a comparative study of myoglobin with different ligands, mutants and pH conditions.

  12. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  13. Absorption lineshapes of molecular aggregates revisited

    SciTech Connect

    Gelzinis, Andrius; Valkunas, Leonas; Abramavicius, Darius

    2015-04-21

    Linear absorption is the most basic optical spectroscopy technique that provides information about the electronic and vibrational degrees of freedom of molecular systems. In simulations of absorption lineshapes, often diagonal fluctuations are included using the cumulant expansion, and the off-diagonal fluctuations are accounted for either perturbatively, or phenomenologically. The accuracy of these methods is limited and their range of validity is still questionable. In this work, a systematic study of several such methods is presented by comparing the lineshapes with exact results. It is demonstrated that a non-Markovian theory for off-diagonal fluctuations, termed complex time dependent Redfield theory, gives good agreement with exact lineshapes over a wide parameter range. This theory is also computationally efficient. On the other hand, accounting for the off-diagonal fluctuations using the modified Redfield lifetimes was found to be inaccurate.

  14. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    PubMed

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror. PMID:26368258

  15. Ozone flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Dickerson, R. R.; Stedman, D. H.

    1981-01-01

    Flow visualization techniques using ozone for tracing gas flows are proposed whereby ozone is detected through its strong absorption of ultraviolet light, which is easily made visible with fluorescent materials, or through its reaction with nitric oxide to form excited nitrogen dioxide, which in relaxing emits detectable light. It is shown that response speeds in the kHz range are possible with an ultraviolet detection system for initial ozone concentrations of about 1%.

  16. Single-particle absorption spectroscopy by photothermal contrast.

    PubMed

    Yorulmaz, Mustafa; Nizzero, Sara; Hoggard, Anneli; Wang, Lin-Yung; Cai, Yi-Yu; Su, Man-Nung; Chang, Wei-Shun; Link, Stephan

    2015-05-13

    Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations. PMID:25849105

  17. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  18. Epidermal melanin absorption in human skin

    NASA Astrophysics Data System (ADS)

    Norvang Nilsen, Lill T.; Fiskerstrand, Elisanne J.; Nelson, J. Stuart; Berns, Michael W.; Svaasand, Lars O.

    1996-01-01

    The principle of laser induced selective photothermolysis is to induced thermal damage to specific targets in such a manner that the temperature of the surrounding tissue is maintained below the threshold for thermal damage. The selectivity is obtained by selection of a proper wavelength and pulse duration. The technique is presently being used in the clinic for removal of port-wine stains. The presence of melanin in the epidermal layer can represent a limitation to the selectivity. Melanin absorption drops off significantly with increasing wavelength, but is significant in the entire wavelength region where the blood absorption is high. Treatment of port-wine stain in patients with high skin pigmentation may therefore give overheating of the epidermis, resulting in epidermal necrosis. Melanosomal heating is dependent on the energy and duration of the laser pulse. The heating mechanism for time scales less than typically 1 microsecond(s) corresponds to a transient local heating of the individual melanosomes. For larger time scales, heat diffusion out of the melanosomes become of increased importance, and the temperature distribution will reach a local steady state condition after typically 10 microsecond(s) . For even longer pulse duration, heat diffusing from neighboring melanosomes becomes important, and the temperature rise in a time scale from 100 - 500 microsecond(s) is dominated by this mechanism. The epidermal heating during the typical 450 microsecond(s) pulse used for therapy is thus dependent on the average epidermal melanin content rather than on the absorption coefficient of the individual melanosomes. This study will present in vivo measurements of the epidermal melanin absorption of human skin when exposed to short laser pulses (< 0.1 microsecond(s) ) from a Q-switched ruby laser and with long laser pulses (approximately 500 microsecond(s) ) from a free-running ruby laser or a long pulse length flashlamp pumped dye laser. The epidermal melanin

  19. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  20. Interaction of the carbon monoxide-releasing molecule Ru(CO)3Cl(glycinate) (CORM-3) with Salmonella enterica serovar Typhimurium: in situ measurements of carbon monoxide binding by integrating cavity dual-beam spectrophotometry.

    PubMed

    Rana, Namrata; McLean, Samantha; Mann, Brian E; Poole, Robert K

    2014-12-01

    Carbon monoxide (CO) is a toxic gas that binds to haems, but also plays critical signalling and cytoprotective roles in mammalian systems; despite problems associated with systemic delivery by inhalation of the gas, it may be employed therapeutically. CO delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas; CO-RMs are also attractive candidates as novel antimicrobial agents. Salmonella enterica serovar Typhimurium is an enteropathogen causing gastroenteritis in humans. Recent studies have implicated haem oxygenase-1 (HO-1), the protein that catalyses the degradation of haem into biliverdin, free iron and CO, in the host immune response to Salmonella infection. In several studies, CO administration via CO-RMs elicited many of the protective roles of HO-1 induction and so we investigated the effects of a well-characterized water-soluble CO-RM, Ru(CO)3Cl(glycinate) (CORM-3), on Salmonella. CORM-3 exhibits toxic effects at concentrations significantly lower than those reported to cause toxicity to RAW 264.7 macrophages. We demonstrated here, through oxyhaemoglobin assays, that CORM-3 did not release CO spontaneously in phosphate buffer, buffered minimal medium or very rich medium. CORM-3 was, however, accumulated to high levels intracellularly (as shown by inductively coupled plasma MS) and released CO inside cells. Using growing Salmonella cultures without prior concentration, we showed for the first time that sensitive dual-beam integrating cavity absorption spectrophotometry can detect directly the CO released from CORM-3 binding in real-time to haems of the bacterial electron transport chain. The toxic effects of CO-RMs suggested potential applications as adjuvants to antibiotics in antimicrobial therapy. PMID:25085864

  1. An aerosol absorption remote sensing algorithm

    NASA Astrophysics Data System (ADS)

    Zhai, P.; Winker, D. M.; Hu, Y.; Trepte, C. R.; Lucker, P. L.

    2013-12-01

    Aerosol absorption plays an important role in the climate by modulating atmospheric radiative forcing processes. Unfortunately aerosol absorption is very difficult to obtain via satellite remote sensing techniques. In this work we have built an algorithm to obtain aerosol absorption optical depth using both measurements from a passive O2 A-band spectrometer and an active lidar. The instrument protocols for these two satellite instruments are the O2 A-band spectrometer onboard the Orbiting Carbon Observatory (OCO-2) and the CALIOP onboard CALIPSO. The aerosol height and typing information is obtained from the CALIOP measurement. The aerosol extinction and absorption optical depths are then retrieved by fitting the forward model simulations to the O2 A-band spectrometer measurements. The forward model simulates the scattering and absorption of solar light at high spectral resolution in the O2 A-band region. The O2 and other gas absorption coefficients near 0.76 micron are calculated by either the line-by-line code (for instance, the Atmospheric Radiative Transfer Simulator) or the OCO2 ABSCO Look-Up-Table. The line parameters used are from the HITRAN 2008 database (http://www.cfa.harvard.edu/hitran/). The multiple light scattering by molecules, aerosols, and clouds is handled by the radiative transfer model based on the successive order of scattering method (Zhai et al, JQSRT, Vol. 111, pp. 1025-1040, 2010). The code is parallelized with Message Passing Interface (MPI) for better efficiency. The aerosol model is based on Shettle and Fenn (AFGL-TR 790214, 1979) with variant relative humidity. The vertical distribution of the aerosols and clouds will be read in from the CALIPSO product (http://www-calipso.larc.nasa.gov). The surface albedo is estimated by the continuum of the three bands of OCO2 payloads. Sensitivity study shows that the Gaussian quadrature (stream) number should be at least 12 to ensure the reflectance error is within 0.5% at the top of the atmosphere

  2. Intestinal folate absorption

    PubMed Central

    Strum, Williamson; Nixon, Peter F.; Bertino, Joseph B.; Binder, Henry J.

    1971-01-01

    Intestinal absorption of the monoglutamate form of the principal dietary and circulating folate compound, 5-methyltetrahydrofolic acid (5-MTHF), was studied in the rat utilizing a synthetic highly purified radiolabeled diastereoisomer. Chromatography confirmed that the compound was not altered after transfer from the mucosa to the serosa. Accumulation against a concentration gradient was not observed in duodenal, jejunal, or ileal segments at 5-MTHF concentration from 0.5 to 500 nmoles/liter. Unidirectional transmural flux determination also did not indicate a significant net flux. Mucosal to serosal transfer of 5-MTHF was similar in all segments of the intestine and increased in a linear fashion with increased initial mucosal concentrations. Further, no alteration in 5-MTHF transfer was found when studied in the presence of metabolic inhibitors or folate compounds. These results indicate that 5-MTHF is not absorbed by the rat small intestine by a carrier-mediated system and suggest that 5-MTHF transfer most likely represents diffusion. Images PMID:5564397

  3. Simultaneous determination of moxifloxacin and cefixime by first and ratio first derivative ultraviolet spectrophotometry

    PubMed Central

    2012-01-01

    Background The new combination of moxifloxacin HCl and cefixime trihydrate is approved for the treatment of lower respiratory tract infections in adults. At initial formulation development and screening stage a fast and reliable method for the dissolution and release testing of moxifloxacin and cefixime were highly desirable. The zero order overlaid UV spectra of moxifloxacin and cefixime showed >90% overlapping. Hence, simple, accurate precise and validated two derivative spectrophotometric methods have been developed for the determination of moxifloxacin and cefixime. Methods In the first derivative spectrophotometric method varying concentration of moxifloxacin and cefixime were prepared and scanned in the range of 200 to 400 nm and first derivative spectra were calculated (n = 1). The zero crossing wavelengths 287 nm and 317.9 nm were selected for determination of moxifloxacin and cefixime, respectively. In the second method the first derivative of ratio spectra was calculated and used for the determination of moxifloxacin and cefixime by measuring the peak intensity at 359.3 nm and 269.6 nm respectively. Results Calibration graphs were established in the range of 1–16 μg /mL and 1–15 μg /mL for both the drugs by first and ratio first derivative spectroscopic methods respectively with good correlation coefficients. Average accuracy of assay of moxifloxacin and cefixime were found to be 100.68% and 98 93%, respectively. Relative standard deviations of both inter and intraday assays were less than 1.8%. Moreover, recovery of moxifloxacin and cefixime was more than 98.7% and 99.1%, respectively. Conclusions The described derivative spectrophotometric methods are simple, rapid, accurate, precise and excellent alternative to sophisticated chromatographic techniques. Hence, the proposed methods can be used for the quality control of the cited drugs and can be extended for routine analysis of the drugs in formulations. PMID:22995678

  4. Solar Absorption in Cloudy Atmospheres

    NASA Technical Reports Server (NTRS)

    Harshvardhan; Ridgway, William; Ramaswamy, V.; Freidenreich, S. M.; Batey, Michael

    1996-01-01

    The theoretical computations used to compute spectral absorption of solar radiation are discussed. Radiative properties relevant to the cloud absorption problem are presented and placed in the context of radiative forcing. Implications for future measuring programs and the effect of horizontal inhomogeneities are discussed.

  5. Atlas of Infrared Absorption Lines

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1977-01-01

    This atlas of infrared absorption line contains absorption line parameters (line strength vs. wavenumber) from 500 to 7000 cm(exp-1) for 15 gases: H2O, CO2, O3, N2O, CO, CH4, O2, SO2, NO, NO2, NH3, HCl, HF, HNO3 and CH3Cl.

  6. Hot tube atomic absorption spectrochemistry.

    PubMed

    Woodriff, R; Stone, R W

    1968-07-01

    A small, commercially available atomic absorption instrument is used with a heated graphite tube for the atomic absorption analysis of liquid and solid silver samples. Operating conditions of the furnace are described and a sensitivity of about 5 ng of silver is reported. PMID:20068797

  7. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  8. Atmospheric absorption of sound - Update

    NASA Technical Reports Server (NTRS)

    Bass, H. E.; Sutherland, L. C.; Zuckerwar, A. J.

    1990-01-01

    Best current expressions for the vibrational relaxation times of oxygen and nitrogen in the atmosphere are used to compute total absorption. The resulting graphs of total absorption as a function of frequency for different humidities should be used in lieu of the graph published earlier by Evans et al (1972).

  9. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  10. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  11. In Vitro Spectrophotometry of Tooth Discoloration Induced by Tooth-Colored Mineral Trioxide Aggregate and Calcium-Enriched Mixture Cement

    PubMed Central

    Arman, Marjan; Khalilak, Zohreh; Rajabi, Moones; Esnaashari, Ehsan; Saati, Keyvan

    2015-01-01

    Introduction: There are numerous factors that can lead to tooth discoloration after endodontic treatment, such as penetration of endodontic materials into the dentinal tubules during root canal treatment. The aim of this in vitro study was to compare discoloration induced by tooth colored mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) cement in extracted human teeth. Methods and Materials: Thirty two dentin-enamel cuboid blocks (7×7×2 mm) were prepared from extracted maxillary central incisors. Standardized cavities were prepared in the middle of each cube, leaving 1 mm of enamel and dentin on the labial surface. The specimens were randomly divided into two study groups (n=12) and two positive and negative control groups (n=4). In either study groups the cavities were filled with MTA or CEM cement. The positive and negative control groups were filled with blood or left empty, respectively. The cavities were sealed with composite resin and stored in normal saline. Color measurement was carried out by spectrophotometry at different time intervals including before (T0), and 1 week (T1), 1 month (T2) and 6 months (T3) after placement of materials. Repeated-measures ANOVA was used to compare the discoloration between the groups; the material type was considered as the inter-subject factor. The level of significance was set at 0.05. Results: No significant differences were detected between the groups in all time intervals (P>0.05). Conclusion: Tooth discoloration was similarly detectable with both of the two experimental materials. PMID:26576163

  12. Intercomparison and coupling of magnesium-induced co-precipitation and long-path liquid-waveguide capillary cell techniques for trace analysis of phosphate in seawater.

    PubMed

    Li, Qian P; Hansell, Dennis A

    2008-03-17

    Currently, two common techniques for nanomolar-level phosphate measurements in seawater are magnesium-induced co-precipitation (MAGIC) and long-path liquid-waveguide capillary cell (LWCC) spectrophotometry. These techniques have been applied in the open ocean, and our understanding of phosphate distributions in oligotrophic subtropical gyres is based on those data. However, intercomparison of these methods has not previously been performed at nanomolar levels. Here, we report experimental results directly comparing the MAGIC and LWCC techniques. We also evaluated the impact of various commonly employed filters on phosphate determinations, as well as interferences from dissolved organic phosphorus (DOP) and arsenate. Our results find agreement between these methods at phosphate concentrations <100nM. We found that filter selection is important for accurate determinations of phosphate, and that DOP hydrolysis affects both techniques similarly. Finally, we demonstrate the advantage of combining MAGIC preconcentration and LWCC spectrophotometry for analysis of very low nanomolar concentrations. PMID:18298969

  13. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Henninger, J. H.

    1984-01-01

    Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.

  14. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices. PMID:26555184

  15. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  16. KINEMATIC DISTANCE ASSIGNMENTS WITH H I ABSORPTION

    SciTech Connect

    Jones, Courtney; Dickey, John M.

    2012-07-01

    Using H I absorption spectra from the International Galactic Plane Survey, a new method is implemented to resolve the kinematic distance ambiguity for 75 H II regions with known systemic velocities from radio recombination lines. A further 40 kinematic distance determinations are made for H II region candidates without known systemic velocities through an investigation of the presence of H I absorption around the terminal velocity. New kinematic distance determinations can be used to further constrain spiral arm parameters and the location and extent of other structures in the Milky Way disk. H I absorption toward continuum sources beyond the solar circle is also investigated. Follow-up studies of H I at higher resolution than the 1' to 2' of existing Galactic Plane Surveys will provide kinematic distances to many more H II regions on the far side of the Galactic center. On the basis of the velocity channel summation technique developed in this paper, a much larger sample of H II regions will be analyzed in a future paper to remove the near-far distance ambiguity.

  17. Percutaneous absorption of Octopirox.

    PubMed

    Black, J G; Kamat, V B

    1988-01-01

    containing 1% Octopirox is 29,400, so that the possibility of systemic effects due to absorption through the skin is remote. PMID:3345970

  18. Resonant Absorption of Bessel Beams

    NASA Astrophysics Data System (ADS)

    Fan, J.; Parra, E.; Milchberg, H. M.

    1999-11-01

    We report the first observation of enhanced laser-plasma optical absorption in a subcritical density plasma resulting from spatial resonances, here in the laser breakdown of a gas with a Bessel beam. The enhancement in absorption is directly correlated to enhancements both in confinement of laser radiation to the plasma and in its heating. Under certain conditions, azimuthal asymmetry in the laser beam is essential for efficient gas breakdown. Simulations of this absorption consistently explain the experimental observations. This work is supported by the National Science Foundation (PHY-9515509) and the US Department of Energy (DEF G0297 ER 41039).

  19. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  20. Diode laser absorption sensors for combustion control

    NASA Astrophysics Data System (ADS)

    Xin, Zhou

    Combustion is the most widely used energy conversion technique in the world. Diode-laser absorption sensors offer significant opportunities and advantages for in situ measurements of multiple combustion parameters such as temperature and species concentration due to their high sensitivity, high spectral resolution, fast time response, robustness and non-intrusive character. The overall objective of this thesis is to design and develop time-resolved and real-time tunable diode laser sensors with the potential for combustion control. A crucial element in the design of a tunable-diode-laser optical-absorption-based sensor is the selection of optimum transitions. The strategy and spectroscopic criteria for selecting optimum wavelength regions and absorption line combinations are developed. The development of this design-rule approach establishes a new paradigm to optimize tunable diode laser sensors for target applications. The water vapor spectrum in the 1-2 mum near-infrared region is systematically analyzed to find the best absorption transition pairs for sensitive measurement of temperature in the target combustion environment using a single tunable diode laser. Two sensors are developed in this work. The first sensor is a 1.8 mum, single-laser temperature sensor based on direct absorption scans. Successful time-resolved measurements in a variety of laboratory and practical devices are presented and used to identify potential improvements, and design rules for a second-generation sensor are developed based on the lessons learned. The second generation sensor is a 1.4 mum, single-laser temperature sensor using water vapor absorption detected by wavelength-modulation spectroscopy (WMS), which facilitates rapid data analysis and a 2 kHz real-time data rate in the combustion experiments reported here. Demonstration experiments in a heated cell and a forced Hencken burner confirm the sensitivity and accuracy of the sensors. The first application of TDL thermometry to a

  1. Measurements of scattering and absorption in mammalian cell suspensions

    SciTech Connect

    Mourant, J.R.; Johnson, T.M.; Freyer, J.P.

    1996-03-01

    During the past several years a range of spectroscopies, including fluorescence and elastic-scatter spectroscopy, have been investigated for optically based detection of cancer and other tissue pathologies. Both elastic-scatter and fluorescence signals depend, in part, on scattering and absorption properties of the cells in the tissue. Therefore an understanding of the scattering and absorption properties of cells is a necessary prerequisite for understanding and developing these techniques. Cell suspensions provide a simple model with which to begin studying the absorption and scattering properties of cells. In this study we have made preliminary measurements of the scattering and absorption properties of suspensions of mouse mammary carcinoma cells (EMT6) over a broad wavelength range (380 nm to 800 nm).

  2. Identification and characterization of in vivo metabolites of asulacrine using advanced mass spectrophotometry technique in combination with improved data mining strategy.

    PubMed

    Afzal, Attia; Zhong, Yunxi; Sarfraz, Muhammad; Peng, Ying; Sheng, Longsheng; Wu, Zimei; Sun, Jianguo; Wang, Guangji

    2016-04-29

    Asulacrine (ASL) is a broad-spectrum, antitumor drug whose data are promising for the treatment of breast and lung cancers; however, a high incidence of phlebitis hampered its further development. Phlebitis is associated with generation of reactive species. Asulacrine donates electrons and produces oxidative stress in chemical reactions. It was expected that ASL would actively metabolize to oxidized products through reactive intermediates and produce more products in vivo than reported and thus cause phlebitis. A comprehensive study was planned to investigate in vivo metabolism of ASL, using high-resolution mass spectrometry LC/IT-TOF MS in positive mode. Metabolites were detected by different software by applying annotated detection strategy. The possible metabolites and their product ions were simultaneously detected by segmented data acquisition to get accurate mass values. Segmented data acquisition improved signal-to-noise (S/N) ratio, which was helpful to detect metabolites and their fragments even when present in trace amounts. A total of 21 metabolites were detected in gender-based biological fluids and characterized by comparing their accurate mass values, fragmentation patterns, and relative retention times with that of ASL. Among previously reported glucuronosylation metabolites, some oxidation, hydroxylation, carboxylation, demethylation, hydrogenation, glutamination, and acetylcysteine conjugation were detected for the first time. Twenty metabolites were tentatively identified by using the annotated strategy for data acquisition and post-data mining. PMID:27040513

  3. Complexation of Lactate with Nd(III) and Eu(III) at Variable Temperatures: Studies by Potentiometry, Microcalorimetry, Optical Absorption and Luminescence Spectroscopy

    SciTech Connect

    Tian, Guoxin; Martin, Leigh R.; Rao, Linfeng

    2010-10-01

    Complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy and microcalorimetry. Stability constants of three successive lactate complexes (ML{sup 2+}, ML{sup 2+} and ML{sub 3}(aq), where M stands for Nd and Eu, and L stands for lactate) at 10, 25, 40, 55 and 70 C were determined. The enthalpies of complexation at 25 C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd{sup 3+} and Eu{sup 3+}) with lactate is exothermic, and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated {alpha}-hydroxyl group of lactate participates in the complexation.

  4. Evaluation of intensity and energy interaction parameters for the complexation of Pr(III) with selected nucleoside and nucleotide through absorption spectral studies.

    PubMed

    Bendangsenla, N; Moaienla, T; David Singh, Th; Sumitra, Ch; Rajmuhon Singh, N; Indira Devi, M

    2013-02-15

    The interactions of Pr(III) with nucleosides and nucleotides have been studied in different organic solvents employing absorption difference and comparative absorption spectrophotometry. The magnitudes of the variations in both energy and intensity interaction parameters were used to explore the degree of outer and inner sphere co-ordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Various electronic spectral parameters like Slater-Condon (F(k)), Racah (E(k)), Lande parameter (ξ(4f)), Nephelauxatic ratio (β), bonding (b(1/2)), percentage covalency (δ) and intensity parameters like oscillator strength (P) and Judd Ofelt electronic dipole intensity parameter (T(λ), λ=2,4,6) have been evaluated. The variation of these evaluated parameters were employed to interpret the nature of binding of Pr(III) with different ligands i.e. Adenosine/ATP in presence and absence of Ca(2+). PMID:23257345

  5. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    PubMed

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  6. Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction

    USGS Publications Warehouse

    Hubert, A.E.; Chao, T.T.

    1985-01-01

    A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials. ?? 1985.

  7. The rediscovery of absorption chillers

    SciTech Connect

    Katzel, J.

    1992-04-23

    Absorption chillers are back - and for two very good reasons: they are environmentally sound and, in many cases, economically attractive. One factor fueling this resurgence is the outlook for natural gas, the energy source of most absorption systems. Deregulation has spurred exploration, and forecasts indicate an abundant supply and relatively low prices through 2050. Threats of global warming and depletion of the ozone layer also are forces driving the absorption chiller market. Being a good corporate citizen today means minimizing or eliminating the use of chlorofluorocarbons (CFCs), the basis of many refrigerants used in mechanical chillers. Even as chemical and chiller manufacturers alike work to develop substitute refrigerants, the perfect alternative has yet to be found. Absorption units are free of these problems, a benefit that appeals to many people.

  8. PROMINENCE PLASMA DIAGNOSTICS THROUGH EXTREME-ULTRAVIOLET ABSORPTION

    SciTech Connect

    Landi, E.; Reale, F.

    2013-07-20

    In this paper, we introduce a new diagnostic technique that uses EUV and UV absorption to determine the electron temperature and column emission measure, as well as the He/H relative abundance of the absorbing plasma. If a realistic assumption on the geometry of the latter can be made and a spectral code such as CHIANTI is used, then this technique can also yield the absorbing plasma hydrogen and electron density. This technique capitalizes on the absorption properties of hydrogen and helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when the absorbing plasma is hotter than 15,000 K. We demonstrate this technique on AIA observations of plasma absorption during a coronal mass ejection eruption. This technique can be easily applied to existing observations of prominences and cold plasmas in the Sun from almost all space missions devoted to the study of the solar atmosphere, which we list.

  9. Cavity Enhanced Ultrafast Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K.; Reber, Melanie Roberts; Chen, Yuning

    2015-06-01

    Ultrafast spectroscopy on gas phase systems is typically restricted to techniques involving photoionization, whereas solution phase experiments utilize the detection of light. At Stony Brook, we are developing new techniques for performing femtosecond time-resolved spectroscopy using frequency combs and high-finesse optical resonators. A large detection sensitivity enhancement over traditional methods enables the extension of all-optical ultrafast spectroscopies, such as broad-band transient absorption spectroscopy (TAS) and 2D spectroscopy, to dilute gas phase samples produced in molecular beams. Here, gas phase data can be directly compared to solution phase data. Initial demonstration experiments are focusing on the photodissociation of iodine in small neutral argon clusters, where cluster size strongly influences the effects solvent-caging and geminate recombination. I will discuss these initial results, our high power home-built Yb:fiber laser systems, and also extensions of the methods to the mid-IR to study the vibrational dynamics of hydrogen bonded clusters.

  10. Differential absorption lidar sensing of ozone

    SciTech Connect

    Browell, E.V.

    1989-03-01

    The Differential Absorption Lidar (DIAL) technique has been used since the early 1970s for remote measurements of ozone (O/sub 3/) in the lower atmosphere. To investigate large-scale variations of O/sub 3/ and aerosols in the troposphere and lower stratosphere, a versatile airborne DIAL system was developed in 1980 at the NASA Langley Research Center. This DIAL system currently has the capability to measure O/sub 3/ and multiple-wavelength aerosol profiles to a range of over 8 km above and below the aircraft simultaneously. Eleven major field experiments have been conducted with the NASA air-borne DIAL system since 1980 to study the transport and chemistry related to O/sub 3/ and aerosols. This paper discusses the DIAL technique for deriving O/sub 3/ profiles from lidar measurements. The NASA airborne DIAL system is described, and examples of a broad range of O/sub 3/ and aerosol measurements are presented.

  11. HPLC-DAD and UV-spectrophotometry for the determination of lychnopholide in nanocapsule dosage form: validation and application to release kinetic study.

    PubMed

    Branquinho, Renata Tupinambá; Mosqueira, Vanessa Carla Furtado; Kano, Eunice Kazue; de Souza, Jacqueline; Dorim, Diego Dias Ramos; Saúde-Guimarães, Dênia Antunes; de Lana, Marta

    2014-01-01

    Simple and sensitive methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and ultraviolet (UV)-spectrophotometry were developed and compared to quantify lychnopholide (LYC) in poly-ε-caprolactone nanocapsules and to study its release kinetics. Both methods were validated concerning their specificity, linearity, limits of detection and quantification, precision, accuracy and stability. HPLC-DAD analyses were conducted using an RP C18 column, isocratic elution with a methanol-water (60:40 v/v) mobile phase at 0.8 mL/min flow rate and detection at 265 nm. The linear response (r(2) > 0.999) was obtained within a concentration range of 2-25 µg/mL using HPLC-DAD and 5-40 µg/mL using spectrophotometry. Intra-day and inter-day precision were obtained with low relative standard deviation values. The accuracy of the methods was within the range 98-101% for HPLC-DAD and from 96-100% for UV-spectrophotometry. Both methods were suitable to be applied for the determination of drug loading percentage (>96%) and encapsulation efficiency (>90%). Furthermore, the sensitivity of HPLC-DAD method allows studies of LYC release/dissolution in sink conditions. LYC presented 100% dissolution after 24 h, whereas only 60% of LYC was released from the nanocapsule dosage form, with no burst effect. The methods fulfilled all validation parameters evaluated for LYC quantification in the polymeric nanocapsules and have proven to be accurate, selective and sensitive in the previously mentioned applications. PMID:23247030

  12. Scramjet Performance Assessment Using Water Absorption Diagnostics (U)

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George

    1995-01-01

    Simultaneous multiple path measurements of temperature and H2O concentration will be presented for the AIMHYE test entries in the NASA Ames 16-Inch Shock Tunnel. Monitoring the progress of high temperature chemical reactions that define scramjet combustor efficiencies is a task uniquely suited to nonintrusive optical diagnostics. One application strategy to overcome the many challenges and limitations of nonintrusive measurements is to use laser absorption spectroscopy coupled with optical fibers. Absorption spectroscopic techniques with rapidly tunable lasers are capable of making simultaneous measurements of mole fraction, temperature, pressure, and velocity. The scramjet water absorption diagnostic was used to measure combustor efficiency and was compared to thrust measurements using a nozzle force balance and integrated nozzle pressures to develop a direct technique for evaluating integrated scramjet performance. Tests were initially performed with a diode laser tuning over a water absorption feature at 1391.7 nm. A second diode laser later became available at a wavelength near 1343.3 nm covering an additional water absorption feature and was incorporated in the system for a two-wavelength technique. Both temperature and mole fraction can be inferred from the lineshape analysis using this approach. Additional high temperature spectroscopy research was conducted to reduce uncertainties in the scramjet application. The lasers are optical fiber coupled to ports at the combustor exit and in the nozzle region. The output from the two diode lasers were combined in a single fiber, and the resultant two-wavelength beam was subsequently split into four legs. Each leg was directed through 60 meters of optical fiber to four combustor exit locations for measurement of beam intensity after absorption by the water within the flow. Absorption results will be compared to 1D combustor analysis using RJPA and nozzle CFD computations as well as to data from a nozzle metric

  13. Modeling optical absorption for thermoreflectance measurements

    NASA Astrophysics Data System (ADS)

    Yang, Jia; Ziade, Elbara; Schmidt, Aaron J.

    2016-03-01

    Optical pump-probe techniques based on thermoreflectance, such as time domain thermoreflectance and frequency domain thermoreflectance (FDTR), have been widely used to characterize the thermal conductivity of thin films and the thermal conductance across interfaces. These techniques typically use a transducer layer to absorb the pump light and improve the thermoreflectance signal. The transducer, however, complicates the interpretation of the measured signal because the approximation that all the energy from the pump beam is deposited at the transducer surface is not always accurate. In this paper, we consider the effect of laser absorption in the top layer of a multilayer sample, and derive an analytical solution for the thermoreflectance signal in the diffusion regime based on volumetric heating. We analyze the measurement sensitivity to the pump absorption depth for transducers with different thermal conductivities, and investigate the additional effect of probe laser penetration depth on the measured signal. We validate our model using FDTR measurements on 490 nm thick amorphous silicon films deposited on fused silica and silicon substrates.

  14. Determination of phytoplankton composition using absorption spectra.

    PubMed

    Martínez-Guijarro, R; Romero, I; Pachés, M; Del Río, J G; Martí, C M; Gil, G; Ferrer-Riquelme, A; Ferrer, J

    2009-05-15

    Characterisation of phytoplankton communities in aquatic ecosystems is a costly task in terms of time, material and human resources. The general objective of this paper is not to replace microscopic counts but to complement them, by fine-tuning a technique using absorption spectra measurements that reduces the above-mentioned costs. Therefore, the objective proposed in this paper is to assess the possibility of achieving a qualitative determination of phytoplankton communities by classes, and also a quantitative estimation of the number of phytoplankton cells within each of these classes, using spectrophotometric determination. Samples were taken in three areas of the Spanish Mediterranean coast. These areas correspond to estuary systems that are influenced by both continental waters and Mediterranean Sea waters. 139 Samples were taken in 7-8 stations per area, at different depths in each station. In each sample, the absorption spectrum and the phytoplankton classes (Bacyllariophyceae (diatoms), Cryptophyceae, Clorophyceae, Chrysophyceae, Prasynophyceae, Prymnesophyceae, Euglenophyceae, Cyanophyceae, Dynophyceae and the Synechococcus sp.) were determined. Data were analysed by means of the Partial Least Squares (PLS) multivariate statistical technique. The absorbances obtained between 400 and 750 nm were used as the independent variable and the cell/l of each phytoplankton class was used as the dependent variable, thereby obtaining models which relate the absorbance of the sample extract to the phytoplankton present in it. Good results were obtained for diatoms (Bacillarophyceae), Chlorophyceae and Cryptophyceae. PMID:19269434

  15. Studies on the oxidation reaction of tyrosine (Tyr) with H 2O 2 catalyzed by horseradish peroxidase (HRP) in alcohol-water medium by spectrofluorimetry and differential spectrophotometry

    NASA Astrophysics Data System (ADS)

    Tang, Bo; Wang, Yan; Liang, Huiling; Chen, Zhenzhen; He, Xiwen; Shen, Hanxi

    2006-03-01

    An oxidation reaction of tyrosine (Tyr) with H 2O 2 catalyzed by horseradish peroxidase (HRP) was studied by spectrofluorimetry and differential spectrophotometry in the alcohol(methanol, ethanol, 1-propanol and isopropanol)-water mutual solubility system. Compared with the enzymatic-catalyzed reaction in the water medium, the fluorescence intensities of the product weakened, even extinguished. Because the addition of alcohols made the conformation of HRP change, the catalytic reaction shifted to the side of polymerization and the polymer (A nH 2, n ≥ 3) exhibited no fluorescence. The four alcohols cannot deactivate HRP. Moreover isopropanol activated HRP remarkably.

  16. Ultraviolet cometary spectrophotometry

    NASA Technical Reports Server (NTRS)

    Ahearn, M. F.

    1983-01-01

    During the 13 shifts dedicated to observations of Comet Bradfield (including the two European shifts), five high dispersion exposures were obtained with the LWR camera, 27 low dispersion images with the LWR camera, and 36 low dispersion images with the SWP camera of which 5 were observations of the geocoronal background and 4 were taken in a serendipity mode while the nucleus of the comet was centered on the large aperture of the LWR camera.

  17. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    PubMed

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration. PMID:24840486

  18. Aprotic solvents effect on the UV-visible absorption spectra of bixin

    NASA Astrophysics Data System (ADS)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-01

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0 → S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  19. 10 CFR 26.161 - Cutoff levels for validity testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the first aliquot and a different confirmatory test (e.g., multi-wavelength spectrophotometry, ion...., multi-wavelength spectrophotometry, ion chromatography, atomic absorption spectrophotometry, capillary...-wavelength spectrophotometry, ion chromatography, inductively coupled plasma-mass spectrometry) with...

  20. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)