Science.gov

Sample records for absorption spectrophotometry technique

  1. Computer programs for absorption spectrophotometry.

    PubMed

    Jones, R N

    1969-03-01

    Brief descriptions are given of twenty-two modular computer programs for performing the basic numerical computations of absorption spectrophotometry. The programs, written in Fortran IV for card input and output, are available from the National Research Council of Canada. The input and output formats are standardized to permit easy interfacing to yield more complex data processing systems. Though these programs were developed for ir spectrophotometry, they are readily modified for use with digitized visual and uv spectrophotometers. The operations covered include ordinate and abscissal unit and scale interconversions, ordinate addition and subtraction, location of band maxima and minima, smoothing and differentiation, slit function convolution and deconvolution, band profile analysis and asymmetry quantification, Fourier transformation to time correlation curves, multiple overlapping band separation in terms of Cauchy (Lorentz), Gauss, Cauchy-Gauss product, and Cauchy-Gauss sum functions and cell path length determination from fringe spacing analysis.

  2. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  3. Electrothermal atomic absorption spectrophotometry of nickel in tissue homogenates

    SciTech Connect

    Sunderman, F.W. Jr.; Marzouk, A.; Crisostomo, M.C.; Weatherby, D.R.

    1985-01-01

    A method for analysis of Ni concentrations in tissues is described, which involves (a) tissue dissection with metal-free obsidian knives, (b) tissue homogenization in polyethylene bags by use by a Stomacher blender, (c) oxidative digestion with mixed nitric, sulfuric, and perchloric acids, and (d) quantitation of Ni by electrothermal atomic absorption spectrophotometry with Zeeman background correction. The detection limit for Ni in tissues is 10 ng per g, dry weight; the coefficient of variation ranges from 7 to 15%, depending on the tissue Ni concentration; the recovery of Ni added in concentration of 20 ng per g, dry weight, to kidney homogenates averages 101 +/- 8% (mean +/-SD). In control rats, Ni concentrations are highest in lung (102 +/- 39 ng per g, dry weight) and lowest in spleen (35 +/- 16 ng per g, dry wt.). In descending order of Ni concentrations, the tissues of control rats rank as follows: lung > heart > bone > kidney > brain > testis > fat > liver > spleen. In rats killed 24 h after sc injection of NiCl/sub 2/ (0.125 mmol per kg, body weight) Ni concentrations are highest in kidney (17.7 +/- 2.5 ..mu..g per g, dry weight) and lowest in brain (0.38 +/- 0.14 ..mu..g per g, dry weight). In descending order of Ni concentrations, the tissues of NiCl/sub 2/-treated rats rank as follows: kidney >> lung > spleen > testis > heart > fat > liver > bone > brain. The present method fills the need for an accurate, sensitive, and practical technique to determine tissue Ni concentrations, with stringent precautions to minimize Ni contamination during tissue sampling and processing. 35 references, 5 figures, 1 table.

  4. Analysis of cement by atomic absorption spectrophotometry and volumetric method.

    PubMed

    Choi, K K; Lam, L; Luk, S F

    1994-01-01

    A new method to determine the composition of cement raw mix and cement is devised. The sample was fused with a mixture of sodium carbonate and lithium tetraborate (3:1) at 925 degrees C for 10 min. The fusion cake was dissolved in hydrochloric acid. The concentration of analyte in solution was either determined by atomic absorption spectrophotometry or titrimetry. The proposed method is quick and the analysis for interested oxides (SiO(2), Al(2)O(3), Fe(2)O(3), and CaO) can be completed within 1 hr. The accuracy and precision are comparable to that of X-ray fluorescence spectrometry.

  5. Studies of selected transuranium and lanthanide triiodides under pressure using absorption spectrophotometry

    SciTech Connect

    Haire, R.G.; Young, J.P.; Peterson, J.R.; Benedict, U.

    1986-01-01

    The anhydrous triiodides of plutonium, americium, and curium under pressure have been investigated using absorption spectrophotometry. These initial studies on plutonium and curium triiodides together with the published data for americium triiodide show that the rhombohedral (BiI/sub 3/-type structure) form of these compounds can be converted to the same orthorhombic (PuBr/sub 3/-type structure) form by applying pressure at room temperature. Absorption spectrophotometry can often differentiate between two crystallographic forms of materials and has been used in the present high pressure studies to monitor the effects of pressure on the triiodides. A complication in these studies of the triiodides is a significant shift of their absorption edges from the near uv to the visible spectral region with pressure. With curium triiodide this shift causes interference with the major f-f absorption peaks and precludes identification by absorption spectrophotometry of the high pressure phase of CmI/sub 3/. 21 refs., 2 figs.

  6. Teaching Beer's Law and Absorption Spectrophotometry with a Smart Phone: A Substantially Simplified Protocol

    ERIC Educational Resources Information Center

    Kuntzleman, Thomas S.; Jacobson, Erik C.

    2016-01-01

    A very simple protocol for teaching Beer's Law and absorption spectrophotometry using a smart phone is described. Materials commonly found in high school chemistry laboratories or even around the house may be used. Data collection and analysis is quick and easy. Despite the simple nature of the experiment, excellent results can be achieved.

  7. Uranium isotopes quantitatively determined by modified method of atomic absorption spectrophotometry

    NASA Technical Reports Server (NTRS)

    Lee, G. H.

    1967-01-01

    Hollow-cathode discharge tubes determine the quantities of uranium isotopes in a sample by using atomic absorption spectrophotometry. Dissociation of the uranium atoms allows a large number of ground state atoms to be produced, absorbing the incident radiation that is different for the two major isotopes.

  8. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    PubMed

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC.

  9. Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Crisp, D.

    1993-01-01

    Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.

  10. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  11. [Determination of trace Rh in organic residue by flame atomic absorption spectrophotometry].

    PubMed

    Han, Mei; Cheng, Fang; Gu, Shi-fang; Cui, Li-jun; Xiao, Guang; Xu, Song-yun

    2003-02-01

    The catalytic organic residue contained Rh was digested with HNO3 at 130 degrees C for 12 h. Trace noble metal Rh in catalytic organic residue was determined by flame atomic absorption spectrophotometry. Rh was atomized by air-acetylene flame at lamp Current of 7 mA. The methods of sample pretreatment for Rh in residue were compared in this paper. The recovery rates of this method were 95.3%-105.5% and the relative standard derivation was 0.9%. The method was applied to the analysis of some practical samples and the results obtained were satisfactory.

  12. Determination of beryllium in urine by graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Thorat, D.D.; Bhat, P.N.; Mahadevan, T.N.

    1995-08-01

    A method for the determination of beryllium in urine samples by Graphite Furnace Atomic Absorption Spectrophotometry (GFAAS) has been developed. The background correction problem due to the sample matrix was overcome by solvent extraction step. Urine samples were digested with a mixture of concentrated nitric and sulphuric acids. Beryllium in solution was complexed with acetylacetone, extracted in chloroform at pH 8.5 and back extracted in 2%(v/v) nitric acid for final analysis by AAS. The range of concentrations of beryllium observed in urine samples covering both occupational and control subject was 0.03 - 0.37 ng Be/ml.

  13. Analysis of lithium in deep basalt groundwaters using graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Dill, J.A.; Marcy, A.D.

    1986-05-01

    Lithium is under consideration for use as a reactive (sorptive) tracer in experiments designed to provide information regarding natural attenuation processes in a basalt-groundwater environment. In support of these activities, background lithium concentrations in samples obtained from a variety of test horizons have been determined using graphite furnace atomic absorption spectrophotometry. Significant interference was observed in these determinations and was found to be due to the presence of silicate in the samples. It was found that these problems could be circumvented through the use of alkaline silicate or synthetic groundwater matrix modifiers. This matrix effect was examined in some detail. Results obtained using the graphite furnace were compared to results obtained using inductively coupled plasma atomic emission spectroscopy.

  14. Removal of iron interferences by solvent extraction for geochemical analysis by atomic-absorption spectrophotometry

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.

  15. Determination of nickel by flame atomic-absorption spectrophotometry after separation by adsorption of its nioxime complex on microcrystalline naphthalene.

    PubMed

    Nagahiro, T; Puri, B K; Katyal, M; Satake, M

    1984-11-01

    A method has been developed for the determination of nickel in alloys by flame atomic-absorption spectrophotometry after formation of a water-insoluble complex, its adsorption on microcrystalline naphthalene, and dissolution of the complex and naphthalene in nitric acid and xylene.

  16. Stability of low concentration calibration standards for graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Bass, D A; TenKate, L B

    1993-11-01

    Graphite furnace atomic absorption spectrophotometry (GFAAS) is used for determination of ultra-trace metals in environmentally important samples. In the generation of GFAAS calibration curves for many environmental applications, low concentration calibration standards must be prepared dally, as required by the Statement of Work (SOW) for the US Environmental Protection Agency (EPA) Contract Laboratory Program (CLP). This results in significant time and work for the analyst and significant cost to the Analytical Chemistry Laboratory (ACL) for chemicals and waste management. While EPA SW 846 is less prescriptive than the CLP SOW, ACL has been following the CLP guidelines because in-house criteria regarding the stability of GFAAS standards have not been established. A study was conducted to determine the stability of GFAAS standards for analytes commonly used in the ACL (single and mixed) as a function of time. Data were collected over nine months. The results show that GFAAS standards for Sb, Pb, Se, Ag, and TI are stable for a longer period of time than currently assumed by the CLP SOW. Reducing the frequency of preparing these standards will increase efficiency, decrease the handling of hazardous the quantity of hazardous waste generated, and decrease the quantity of hazardous substances to be ordered and stocked by the laboratory. These benefits will improve GFAAS analysis quality, reduce costs, enhance safety, and lower environmental concerns.

  17. [Determination of trace elements in new food sources by flame atomic absorption spectrophotometry].

    PubMed

    Liu, Li E; Ding, Li; Qi, Min; Han, Xiu Li; Zhang, Hong-Quan

    2007-07-01

    Samples were digested by HNO3 + HClO4. Flame atomic absorption spectrophotometry (FAAS) was successfully used to determine copper, zinc and iron in new resource food. Under our experimental conditions, the recovery ratio was 94.66%-108.80%; the precision was 0.71%-4.78%. This method of measuring elements is convenient, rapid and accurate. The results showed that there are profitable elements, such as copper, zinc and iron in new resourse food in Henan province. By F test and SNK test, the content sequence of metal elements was found as follows: copper, Chrysanthemum morifolium Ramat = Silkworm pupa > flowers of Pueraria lobata Ohwin = Wheat germ = Codonopsis lanceolata = roots of Pueraria lobata Ohwi > Opuntia dillenii Haw. Zinc, Opuntia dillenii Haw > Silkworm pupa = flowers of Pueraria lobata Ohwi = roots of Pueraria lobata Ohwi = Wheat germ = Codonopsis lanceolata = Chrysanthemum morifolium Ramat. Iron, Silkworm pupa = C hrysanthemum morifolium Ramat = roots of Pueraria lobata Ohwi > flowers of Pueraria lobata Ohwi = Wheat germ = Codonopis lanceolata = Opuntia dillenii Haw.

  18. Quantification of minerals and trace elements in raw caprine milk using flame atomic absorption spectrophotometry and flame photometry.

    PubMed

    Singh, Mahavir; Yadav, Poonam; Garg, V K; Sharma, Anshu; Singh, Balvinder; Sharma, Himanshu

    2015-08-01

    This study reports minerals and trace elements quantification in raw caprine milk of Beetal breed, reared in Northern India and their feed, fodder & water using flame atomic absorption spectrophotometry and flame photometry. The mineral and trace elements' concentration in the milk was in the order: K > Ca > Na > Fe > Zn > Cu. The results showed that minerals concentration in caprine milk was lesser than reference values. But trace elements concentration (Fe and Zn) was higher than reference values. Multivariate statistical techniques, viz., Pearsons' correlation, Cluster analysis (CA) and Principal component analysis (PCA) were applied to analyze the interdependences within studied variables in caprine milk. Significantly positive correlations were observed between Fe - Zn, Zn - K, Ca - Na and Ca - pH. The results of correlation matrix were further supported by Cluster analysis and Principal component analysis as primary cluster pairs were found for Ca - pH, Ca - Na and Fe - Zn in the raw milk. No correlation was found between mineral & trace elements content of the milk and feed.

  19. Separation and quantitation of metallothioneins by high-performance liquid chromatography coupled with atomic absorption spectrophotometry

    SciTech Connect

    Lehman, L.D.; Klaassen, C.D.

    1986-03-01

    A rapid, reproducible, and sensitive high-performance liquid chromatography (HPLC) method for the determination of the concentrations of metallothionein-I (MT-I) and metallothionein-II (MT-II) in rat liver has been developed. Metallothioneins (MTs) were separated and quantitated by anion-exchange high-performance liquid chromatography coupled with atomic absorption spectrophotometry (AAS). Purified rat liver MT-I and MT-II, used as standards for developing the method, were easily resolved, eluting at 7.5 and 10.4 min, respectively. To establish standard curves, protein concentrations of solutions of the purified MTs were determined by the Kjeldahl method for the determination of nitrogen, after which the standards were saturated with Cd (final concentration of 50 ppm Cd). Rat liver cytosols obtained from untreated and Cd- or Zn-treated rats were prepared for HPLC-AAS analysis by saturation with Cd (50 ppm Cd) followed by heat denaturation (placing in a boiling water bath for 1 min). Based on the method of standard additions, recovery of MTs exceeded 95% and repeated injection of a sample yielded a coefficient of variance of approximately 2%. A detection limit of 5 ..mu..g MT/g liver was established for the method. Only MT-II was detected in untreated rats, whereas following exposure to Cd or Zn, both forms of MTs were detected. Concentrations of total MTs in liver of untreated and Cd- or Zn-treated rats were also determined by the Cd/hemoglobin radioassay (which fails to distinguish MT-I from MT-II) and indicated that results obtained with the HPLC-AAS method compared favorably to the Cd/hemoglobin radioassay.

  20. Determination of trace chromium in water by graphite furnace atomic absorption spectrophotometry after preconcentration on a soluble membrane filter

    SciTech Connect

    Gao Piying; Feng Ruolan; Zhang Huaizhu; Li Zhiqiang

    1998-04-01

    A new concentration and determination method has been described for the determination of lower than 0.1 {micro}g L{sup {minus}1} levels of chromium (VI) in water, based on the reaction between chromium (VI) and phenylfluorone (PF) to form an anionic chelate and the collection of the ternary ion-associate of the chelate with cetyltrimethylammonium bromide (CTMAB) (a cationic surfactant) on an organic solvent-soluble membrane filter. Determination of the solution obtained after dissolving the membrane and analyte in a suitable solvent is achieved using graphite furnace atomic absorption spectrophotometry. The ternary complex (Cr(VI)-PF-CTMAB = 1:2:2) is collected on a 0.45 {micro}m nitrocellulose filter and the filter and analyte are dissolved in a small volume of 2-methoxyethanol acidified with dilute sulfuric acid. The chromium is determined by graphite furnace atomic absorption spectrophotometry under optimum experimental conditions. A good linear relationship exists in the range 0.05--0.30 {micro}g chromium in 5.0 ml, with satisfactory reproducibility. The detection limit, defined as three times the standard deviation of the blank, is 0.06 {micro}g L{sup {minus}1} with 20 fold preconcentration. The ions normally present in water do not interfere under the experimental conditions used. The proposed method has been applied to the concentration and determination of chromium (VI) in water samples from several sources by means of direct graphic furnace atomic absorption spectrophotometry; the recoveries of chromium (VI) added to the samples are quantitative, and results found are satisfactory.

  1. Determination of silver in soils, sediments, and rocks by organic-chelate extraction and atomic absorption spectrophotometry

    USGS Publications Warehouse

    Chao, T.T.; Ball, J.W.; Nakagawa, H.M.

    1971-01-01

    A useful method for the determination of silver in soil, sediment, and rock samples in geochemical exploration has been developed. The sample is digested with concentrated nitric acid, and the silver extracted with triisooctyl thiophosphate (TOTP) in methyl isobutyl ketone (MIBK) after dilution of the acid digest to approximately 6 M. The extraction of silver into the organic extractant is quantitative and not affected by the nitric acid concentration from 4 M to 8 M, or by different volumes of TOTP-MIBK. The extracted silver is stable and remains in the organic phase up to several days. The silver concentration is determined by atomic absorption spectrophotometry. ?? 1971.

  2. [Study on determination of trace nitrite and reaction mechanism by two-wavelength negative absorption-catalytic spectrophotometry].

    PubMed

    Zi, Yan-qin; Lu, Hao-miao

    2006-01-01

    A new method was proposed for the determination of trace nitrite by two wavelength negative absorption catalytic spectrophotometry based on the catalysis of nitrite on the oxidation fading reaction of acridine orange by potassium bromate in phosphoricacid medium. The additive value of negative absorbances at two wavelengths was linear to the nitrite concentration in the range of 1.0 x 10(-5)-5.0 x 10(-7) mol x L(1). The method has been used to the determination of nitrite in environment water sample with satisfactory

  3. Determination of Pb in Biological Samples by Graphite Furnace Atomic Absorption Spectrophotometry: An Exercise in Common Interferences and Fundamental Practices in Trace Element Determination

    ERIC Educational Resources Information Center

    Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.

    2004-01-01

    An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…

  4. Measurement of aluminum in neuronal tissues using electrothermal atomization atomic absorption spectrophotometry

    SciTech Connect

    Pierson, K.B.; Evenson, M.A.

    1986-07-01

    Studies characterizing aluminum complexes isolated from neuronal tissues require accurate and precise techniques for aluminum measurement. A solution of 0.01 M nitric acid containing 0.2% Triton X-100 was the optimal diluent for aluminum measurement under the experimental conditions used. Three National Bureau of Standards Standard Reference Materials (SRM) were digested, and the aluminum concentration of each was measured with a Perkin-Elmer 503 atomic absorption spectrophotometer equipped with a Perkin-Elmer HGA 2100 controller. The calculated detection limit of aluminum was 120 pg using 15-..mu..L sample injections (8 ..mu..g/L). Aluminum concentrations present in citrus leaves (SRM 1572), pine needles (SRM 1575), and tomato leaves (SRM 1573) were 100 +- 12 (certified value, 92 +- 15), 522 +- 45 (certified value, 454 +- 30), and 1273 +- 112 (provisional value, 1200) ..mu..g/g, respectively. The within- and between-day precision had coefficients of variation for citrus leaves, pine needles, and tomato leaves of 18 and 12%, 6.3 and 8.6%, and 3.7 and 8.7%, respectively. Aluminum absorbance was enhanced at high pH values and by zinc.

  5. An international evaluation of holmium oxide solution reference materials for wavelength calibration in molecular absorption spectrophotometry.

    PubMed

    Travis, John C; Zwinkels, Joanne C; Mercader, Flora; Ruíz, Arquímedes; Early, Edward A; Smith, Melody V; Noël, Mario; Maley, Marissa; Kramer, Gary W; Eckerle, Kenneth L; Duewer, David L

    2002-07-15

    Commercial spectrophotometers typically use absorption-based wavelength calibration reference materials to provide wavelength accuracy for their applications. Low-mass fractions of holmium oxide (Ho2O3) in dilute acidic aqueous solution and in glass matrixes have been favored for use as wavelength calibration materials on the basis of spectral coverage and absorption band shape. Both aqueous and glass Ho2O3 reference materials are available commercially and through various National Metrology Institutes (NMIs). Three NMIs of the North American Cooperation in Metrology (NORAMET) have evaluated the performance of Ho3-(aq)-based Certified Reference Materials (CRMs) under "routine" operating conditions using commercial instrumentation. The study was not intended to intercompare national wavelength scales but to demonstrate comparability of wavelength measurements among the participants and between two versions of the CRMs. It was also designed to acquire data from a variety of spectrophotometers for use in a NIST study of wavelength assignment algorithms and to provide a basis for a possible reassessment of NIST-certified Ho3+(aq) band locations. The resulting data show a substantial level of agreement among laboratories, instruments, CRM preparations, and peak-location algorithms. At the same time, it is demonstrated that the wavelength comparability of the five participating instruments can actually be improved by calibrating all of the instruments to the consensus Ho3+(aq) band locations. This finding supports the value of absorption-based wavelength standards for calibrating absorption spectrophotometers. Coupled with the demonstrated robustness of the band position values with respect to preparation and measurement conditions, it also supports the concept of extending the present approach to additional NMIs in order to certify properly prepared dilute acidic Ho2O3 solution as an intrinsic wavelength standard.

  6. [Simultaneous determination of cobalt and nickel in catalyst by microwave digestion-dual wavelength equal absorption spectrophotometry].

    PubMed

    Li, L; Zhang, J; Gao, C

    2001-08-01

    Catalyst samples are digested in a microwave digestion system. The optimum parameters for microwave digestion are selected. Cobalt and nickel in the mixture of Co2+ and Ni2+ with 4-(2-pyridylazo) resorcinol (PAR) can be determined simultaneously by dual-wavelength equal absorption spectrophotometry. By means of the combination of two methods, Co2+ and Ni2+ in catalyst can be determined rapidly, accurately, and contamination problems avoided. The linear ranges are 0-30 micrograms.25 mL-1 for Co2+ and 0-25 micrograms.25 mL-1 for Ni2+. The recoveries of Co2+ and Ni2+ in synthetic samples are between 98.2%-103.6% and between 97.9%-103.7%, respectively. The relative standard deviations of analytical results in catalyst samples are less than 2.2% for Co2+ and less than 1.8% for Ni2+, and relative errors are less than +/- 2.5% for Co2+ and Ni2+.

  7. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of antimony by automated-hydride atomic absorption spectrophotometry

    USGS Publications Warehouse

    Brown, G.E.; McLain, B.J.

    1994-01-01

    The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.

  8. Simultaneous Determination of Ofloxacin and Flavoxate Hydrochloride by Absorption Ratio and Second Derivative UV Spectrophotometry

    PubMed Central

    Attimarad, Mahesh

    2010-01-01

    The objective of this study was to develop simple, precise, accurate and sensitive UV spectrophotometric methods for the simultaneous determination of ofloxacin (OFX) and flavoxate HCl (FLX) in pharmaceutical formulations. The first method is based on absorption ratio method, by formation of Q absorbance equation at 289 nm (λmax of OFX) and 322.4 nm (isoabsorptive point). The linearity range was found to be 1 to 30 μg/ml for FLX and OFX. In the method-II second derivative absorption at 311.4 nm for OFX (zero crossing for FLX) and at 246.2 nm for FLX (zero crossing for OFX) was used for the determination of the drugs and the linearity range was found to be 2 to 30 μg/ml for OFX and 2-75 μg /ml for FLX. The accuracy and precision of the methods were determined and validated statistically. Both the methods showed good reproducibility and recovery with % RSD less than 1.5%. Both the methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of OFX and FLX in combined dosage form PMID:24826003

  9. [Microanalysis of serum iron by atomatic absorption spectrophotometry in a graphite oven: improvement and evaluation of this method].

    PubMed

    Favier, A; Maljournal, B; Decoux, G; Ruffieux, D

    1983-01-01

    We describe a method of micro-assay of serum iron by atomic absorption without flame, after deproteinisation of the serum by molar hydrochloric acid. In this way, we can assay the serum iron in 10 microliters of serum by injection of the supernatant into a graphite oven. The results show a good correlation with those obtained by conventional techniques of atomic absorption and colorimetric assays using ferrozine and bathophenanthroline. However, great care must be taken in the cleaning of plastic test tubes.

  10. Development of mixed-waste analysis capability for graphite furnace atomic absorption spectrophotometry

    SciTech Connect

    Bass, D.A.; TenKate, L.B.; Wroblewski, A.

    1995-03-01

    Graphite furnace atomic absorption spectrophotometer (GFAAS) are typically configured with ventilation to capture potentially toxic and corrosive gases emitted from the vaporization of sample aliquots. When radioactive elements are present, additional concerns (such as meeting safety guidelines and ALARA principles) must be addressed. This report describes a modification to a GFAAS that provides additional containment of vaporized sample aliquots. The modification was found to increase containment by a factor of 80, given expected operating conditions. The use of the modification allows more mixed-waste samples to be analyzed, permits higher levels of radioactive samples to be analyzed, or exposes the analyst to less airborne radioactivity. The containment apparatus was attached to a Perkin-Elmer Zeeman 5000 spectrophotometer for analysis of mixed-waste samples; however, it could also be used on other systems and in other applications where greater containment of vaporized material is desired.

  11. Determination of soluble aluminium concentration in alkaline humic water using atomic absorption spectrophotometry.

    PubMed

    Nguyen, K L; Lewis, D M; Jolly, M; Robinson, J

    2004-11-01

    The steps of the standard method to determine soluble aluminium concentration are filtering, followed by acidifying, then analysing with the atomic absorption spectrophotometer (AAS). When applied to alkaline humic water, acidification gives rise to the formation of humic acid as a brown particulate matter. Of the total soluble aluminium in the original water, 49-61% forms complexes with the particulate humic acid upon acidification. Although the AAS is capable of detecting the binding aluminium, the particulate nature of humic acid easily induces inaccurate readings as a result of the non-uniform distribution of the particulate matter. A more precise analysis of soluble aluminium concentration of alkaline humic water is shown to be achievable in basicified solutions instead. Basicified solutions keep humic acid in the soluble form; hence maintain the homogeneity of the sample.

  12. Optimisation of Direct Copper Determination in Human Breast Milk Without Digestion by Zeeman Graphite Furnace Atomic Absorption Spectrophotometry with Two Chemical Modifiers.

    PubMed

    Pineau, Alain; Fauconneau, Bernard; Marrauld, Annie; Lebeau, Alexandra; Hankard, Regis; Guillard, Olivier

    2015-08-01

    Milk is an important food in the human diet, and copper (Cu) in human milk is indispensable to children's normal growth and development. It is consequently important that Cu deficiency, occurring in malnourished women or in malabsorption following bariatric surgery, be prevented. The objective of this work is to provide hospital-based paediatricians with a tool enabling rapid measurement of Cu in human breast milk through a technique that biology laboratories can easily apply. Using electrothermal atomic absorption spectrophotometry with Zeeman correction, we have optimized this method with two chemical modifiers and without digestion for analytical procedure. Detection limits and quantification limits for Cu in human milk were found to be 0.077 and 0.26 μmol/L, respectively. Within-run (n = 30) and between-run (n = 15) variations in a pool of human milk samples were 1.50 and 3.62%, respectively. Average recoveries ranged from 98.67 to 100.61%. The reliability of this method was also confirmed by analysing certified reference material (10%). In breast milk samples collected from 100 lactating mothers, Cu mean (±1 SD) was 7.09 ± 1.60 μmol/L. In conclusion, with minimal preparation and quick determination, the method proposed is suitable for measurement of Cu in human breast milk.

  13. Determination of selenium in human spermatozoa and prostasomes using base digestion and electrothermal atomic absorption spectrophotometry.

    PubMed

    Suistomaa, U; Saaranen, M; Vanha-Perttula, T

    1987-10-15

    A method for the determination of selenium in human spermatozoa and prostasomes is described. The samples were digested with 25% (w/v) tetramethylammonium hydroxide (TMAH) in methanol and analyzed by atomic absorption spectrometry with electrothermal atomization and Zeeman background correction (ET-AAS). Nickel was used as a matrix modifier. Calibration was performed using the matrix-based calibration curve. The TMAH-digestion method agreed well with a conventional digestion procedure using concentrated nitric acid. The TMAH-digestion does not require heating or strong acids and it was suitable for small biological samples. The average recovery of added selenium in spermatozoan digests was 95.1 +/- 5.2% (n = 5). The coefficient of variation was 9.1% (n = 21). The accuracy of the method tested with the NBS standard 1577 (bovine liver, certified at 1.1 +/- 0.1 micrograms Se/g) resulted in a value of 0.98 +/- 0.10 micrograms Se/g (n = 16). The method was further tested in an interlaboratory comparison study.

  14. Determination of Copper by Graphite Furnace Atomic Absorption Spectrophotometry: A Student Exercise in Instrumental Methods of Analysis.

    ERIC Educational Resources Information Center

    Williamson, Mark A.

    1989-01-01

    Discusses a student exercise which requires the optimizing of the charring and atomization temperatures by producing a plot of absorbance versus temperature for each temperature parameter. Notes that although the graphite furnace atomic absorption spectroscopy technique has widespread industrial use, there are no published, structured experiments…

  15. A comparison of photon counting and current measuring techniques in spectrophotometry of faint sources.

    PubMed

    Tull, R G

    1968-10-01

    The component of dark noise produced by Cerenkov pulses in photomultipliers due to cosmic ray mu mesons is discussed. It is shown by integration of pulse height spectra that this source of noise can be the limiting factor in de measuring spectrophotometry of faint astronomical sources. Direct current methods of photometry are compared with photon counting, and the advantage of photon counting is demonstrated under various operating conditions.

  16. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of chromium in water by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    McLain, B.J.

    1993-01-01

    Graphite furnace atomic absorption spectrophotometry is a sensitive, precise, and accurate method for the determination of chromium in natural water samples. The detection limit for this analytical method is 0.4 microg/L with a working linear limit of 25.0 microg/L. The precision at the detection limit ranges from 20 to 57 percent relative standard deviation (RSD) with an improvement to 4.6 percent RSD for concentrations more than 3 microg/L. Accuracy of this method was determined for a variety of reference standards that was representative of the analytical range. The results were within the established standard deviations. Samples were spiked with known concentrations of chromium with recoveries ranging from 84 to 122 percent. In addition, a comparison of data between graphite furnace atomic absorption spectrophotometry and direct-current plasma atomic emission spectrometry resulted in suitable agreement between the two methods, with an average deviation of +/- 2.0 microg/L throughout the analytical range.

  17. Optothermistor as a breakthrough in the quantification of lycopene content of thermally processed tomato-based foods: verification versus absorption spectrophotometry and high-performance liquid chromatography.

    PubMed

    Bicanic, Dane; Swarts, Jan; Luterotti, Svjetlana; Helander, Per; Fogliano, Vincenzo; Anese, Monica

    2005-05-04

    This study reports on the first use of the "optothermistor" as a novel, precise, fast, and low-cost detector of lycopene in a wide range of commercially available processed-tomato products. The quantitative performance of the new device was evaluated by comparing data obtained to that acquired by conventional methods, namely, absorption spectrophotometry and high-performance liquid chromatography (HPLC); the linear correlation was high (R = 0.98). The variation of data obtained with the optothermistor in a series of consecutive measurements performed with the same loading of the sample was better than 1%. However, the repeatability (RSD 0.5-9.0%, n = 3-5) achieved with the optothermistor by independent analyses (multiple loading) is comparable to that of HPLC and spectrophotometry. Results of the studies performed on the 19 products derived from tomatoes demonstrated that the optothermistor is suitable for selective, accurate, precise, and simple determination of lycopene (range = 7-75 mg/100 g of product weight) without the need for a sample pretreatment step. The estimated sensitivity of the present optothermistor is 2 mg of lycopene/100 g of product.

  18. Extraction and preconcentration of selenium from aqueous solutions and its determination in water and hair samples by atomic-absorption spectrophotometry.

    PubMed

    Ejaz, M; Qureshi, M A

    1987-03-01

    Several organic solvents, including benzene, xylene, toluene, nitrobenzene, chloroform, carbon tetrachloride, chlorobenzene and high molecular-weight pyridines such as 4-(5-nonyl)pyridine, 2-hexyl-pyridine and benzylpyridine have been investigated as components of systems for the extraction and preconcentration of selenium from nitric acid solutions containing iodide. The results are discussed in terms of choice of reagents and the acid and iodide concentrations, and of several other parameters affecting the extraction. The utility of the method for separation of selenium from aqueous solution has been evaluated. The method has been used for preconcentration of trace levels of selenium from water and hair samples for determination by atomic-absorption spectrophotometry.

  19. Determination of molybdenum in ores, iron and steel by atomic-absorption spectrophotometry after separation by alpha-benzoinoxime extraction or further xanthate extraction.

    PubMed

    Donaldson, E M

    1980-02-01

    A simple and moderately rapid method for determining 0.001% or more of molybdenum in ores, iron and steel is described. After sample decomposition, molybdenum is separated from the matrix elements, except tungsten, by chloroform extraction of its alpha-benzoinoxime complex from a 1.75 M hydrochloric-0.13 M tartaric acid medium. Depending on the amount of tungsten present, molybdenum, if necessary, is back-extracted into concentrated ammonia solution and subsequently separated from coextracted tungsten by chloroform extraction of its xanthate complex from a 1.5M hydrochloric-0.13M tartaric acid medium. It is ultimately determined by atomic-absorption spectrophotometry, at 313.3 nm, in a 15% v/v hydrochloric acid medium containing 1,000 microg/ml of aluminium as the chloride, after evaporation of either extract to dryness with nitric, perchloric and sulphuric acids and dissolution of the salts in dilute ammonia solution.

  20. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Yongjun

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  1. Matrix effects on the determination of manganese in geological materials by atomic-absorption spectrophotometry under different flame conditions

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1978-01-01

    Suppression caused by five of the seven matrix elements studied (Si, Al, Fe, Ca and Mg) was observed in the atomic-absorption determination of manganese in geological materials, when synthetic solutions and the recommended oxidizing air-acetylene flame were used. The magnitude of the suppression effects depends on (1) the kind and concentration of the interfering elements, (2) the type of acid medium, and (3) the concentration of manganese to be determined. All interferences noted are removed or alleviated by using a reducing nitrous oxide-acetylene flame. The atomic-absorption method using this flame can be applied to the determination of total and extractable manganese in a wide range of geological materials without interferences. Analyses of six U.S. Geological Survey rock standards for manganese gave results in agreement with the reported values. ?? 1978.

  2. Determination of tin in ores, iron, steel and non-ferrous alloys by atomic-absorption spectrophotometry after separation by extraction as the iodide.

    PubMed

    Donaldson, E M

    1980-06-01

    A simple and moderately rapid method for determining 0.001% or more of tin in ores, concentrates and tailings, iron, steel and copper-, zinc-, aluminium-, titanium- and zirconium-base alloys is described. After sample decomposition, tin is separated from the matrix elements, except arsenic, by toluene extraction of its iodide from a 3M sulphuric acid-1.5M potassium iodide medium containing tartaric and ascorbic acids. It is finally back-extracted into a nitric-sulphuric acid solution containing hydrochloric acid to prevent the formation of an insoluble tin-arsenic compound and the resultant solution is evaporated to dryness. Tin is subsequently determined by atomic-absorption spectrophotometry in a nitrous oxide-acetylene flame, at 235.4 nm in a 10% hydrochloric-0.5% tartaric acid medium containing 250 mug of potassium per ml. Co-extracted arsenic does not interfere. Results obtained by this method are compared with those obtained spectrophotometrically with gallein after the separation of tin by iodide extraction.

  3. Does the prior application of the field kit bullet hole testing kit 3 on a suspected bullet hole bias the analysis of atomic absorption spectrophotometry?

    PubMed

    Seltenhammer, Monika H; Fitzl, Christine; Wieser, Ingo; Binder, Reinhard; Paula, Pia; Risser, Daniele U

    2014-09-01

    Forensic ballistics is the study of bullet trajectory and consists of determining gunshot residue (GSR) to identify bullet holes. Among several highly sensitive methods, atomic absorption spectrophotometry (AAS) is employed to analyze GSR in the laboratory. However, it is sometimes necessary to identify bullet holes immediately at a crime scene. The purpose of this examination was to determine whether the use of the field test Bullet Hole Testing Kit 3 (BTK3) on a suspected bullet hole would influence the outcome of AAS-analysis: Three commonly encountered firearms (Glock17, Tokarev, and Colt) were fired at skin, wood, and cloth. AAS-analysis was performed with and without previous BTK3 application. The results clearly indicate that there is no significant interaction on the grounds of BTK3 use (BTK3 vs. no-BTK3 [kit_nokit] [Pb: p = 0.1309; Sb: p = 0.9111], material*kit_nokit [Pb: p = 0.5960; Sb: p = 0.9930], distance*kit_nokit [Pb: p = 0.4014; Sb: p = 0.9184], and firearm type*kit_nokit [Pb: p = 0.9662; Sb: p = 0.9885]); hence, applying this field kit does not falsify later AAS outcomes.

  4. Rapid determination of zinc and iron in foods by flow-injection analysis with flame atomic-absorption spectrophotometry and slurry nebulization.

    PubMed

    de Andrade, J C; Strong, F C; Martin, N J

    1990-07-01

    A rapid method of determining zinc and iron in food by flame atomic-absorption spectrophotometry with slurry nebulization into an air-acetylene flame has been developed. A V-groove, clog-free Babington-type nebulizer, coupled to a single-line flow-injection analysis (FIA) system, was employed to introduce the slurry into the spray chamber. Under the FIA conditions described, an injection frequency of 120/hr is possible, with negligible carry-over and memory effects. The calibration graphs were obtained by using various concentrations (up to 0.1 g/ml) of white bean homogenate as standards, rather than solutions. The method has been applied to various kinds of foods, including grains, vegetables, fruits and sausage. Homogenization of semi-prepared samples to form slurries took only 4 min. Relative deviations between results by the slurry and solution methods for both elements averaged 2-3%. Detection limits by the slurry method were 0.3 mug/ml Zn and 0.6 mug/ml Fe.

  5. Determination of chromium in ores, rocks and related materials, iron, steel and non-ferrous alloys by atomic-absorption spectrophotometry after separation by tribenzylamine-chloroform extraction.

    PubMed

    Donaldson, E M

    1980-10-01

    A method for determining trace and moderate amounts of chromium in ores, concentrates, rocks, soils and clays is described. After fusion of the sample with sodium peroxide, the melt is dissolved in dilute sulphuric acid. The chromium(III) produced by the hydrogen peroxide formed is co-precipitated with hydrous ferric oxide. The precipitate is dissolved in 0.7M sulphuric acid and chromium oxidized to chromium(VI) with ceric ammonium sulphate. The chromium(VI) is extracted as an ion-association complex into chloroform containing tribenzylamine and stripped with ammoniacal hydrogen peroxide. This solution is acidified with perchloric acid and chromium determined by atomic-absorption spectrophotometry in an air-acetylene flame, at 357.9 nm. Barium and strontium do not interfere. The procedure is also applicable to iron and steel, and nickel-copper, aluminium and zirconium alloys. Up to 5 mg of manganese and 10 mg each of molybdenum and vanadium will not interfere. In the absence of vanadium, up to 10 mg of tungsten will not interfere. In the presence of 1 mg of vanadium, up to 1 mg of tungsten will not interfere.

  6. Graphite furnace atomic absorption spectrophotometry--a novel method to quantify blood volume in experimental models of intracerebral hemorrhage.

    PubMed

    Kashefiolasl, Sepide; Foerch, Christian; Pfeilschifter, Waltraud

    2013-02-15

    Intracerebral hemorrhage (ICH) accounts for 10% of all strokes and has a significantly higher mortality than cerebral ischemia. For decades, ICH has been neglected by experimental stroke researchers. Recently, however, clinical trials on acute blood pressure lowering or hyperacute supplementation of coagulation factors in ICH have spurred an interest to also design and improve translational animal models of spontaneous and anticoagulant-associated ICH. Hematoma volume is a substantial outcome parameter of most experimental ICH studies. We present graphite furnace atomic absorption spectrophotometric analysis (AAS) as a suitable method to precisely quantify hematoma volumes in rodent models of ICH.

  7. Comparison of Adsorbed Mercury Screening Method With Cold-Vapor Atomic Absorption Spectrophotometry for Determination of Mercury in Soil

    NASA Technical Reports Server (NTRS)

    Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.

    2000-01-01

    A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.

  8. Determination of boron in silicon-doped gallium arsenide by electrothermal atomic absorption spectrometry and ultraviolet-visible spectrophotometry.

    PubMed

    Taddia, Marco; Cerroni, Maria Grazia; Morelli, Elio; Musiani, Andrea

    2002-01-01

    Two methods have been developed for the determination of boron impurities in silicon-doped gallium arsenide (GaAs) for electronics. The first method employs the electrothermal atomic absorption spectrometry (ETAAS), the second, the UV-Vis molecular absorption spectrophotomety. In both cases the GaAs sample is decomposed with aqua regia (1+1). To prevent Ga(III) interference on the ETAAS determination of boron, a double extraction of the chlorogallic acid (HGaCl4) in diethyl ether is performed. To improve the overall ETAAS performance, the graphite tubes were pre-treated with iridium(III) and tungsten(IV). A mixed chemical modifier containing Ni(II), Sr(II) and citric acid was also used. The characteristic mass (m0) is 301 +/- 47 pg and the detection limit (3sB) is 2.4 microg g(-1). The classic UV-Vis spectrophotometric procedure using curcumin was also extended to the determination of boron in GaAs. By masking Ga(III) with EDTA and a preliminary extraction of boron with 2-ethyl-hexane 1,3-diol, performed on a semi-micro scale, a detection limit of 0.6 microg g(-1) was achieved. Both methods were applied to the analysis of two Si-doped GaAs samples which were suspected of being boron-contaminated. Results are compared with those obtained by direct analysis of the decomposed sample solution using the inductively coupled plasma atomic emission spectrometry (ICP-AES).

  9. Solubility of Lead Sulfate in Water and in Sodium Sulfate Solutions: An Experiment in Atomic Absorption Spectrophotometry.

    ERIC Educational Resources Information Center

    Lehman, Thomas A.; Everett, Wayne W.

    1982-01-01

    Describes a set of undergraduate laboratory experiments which provide experience in deuteration and derivatization procedures applied to infrared spectroscopy. Basic skills in vacuum-line technique are also taught while measuring infrared spectra of deuterated solid samples and demonstrating the value of derivatization as an aid to interpreting…

  10. Determination of total tin in geological materials by electrothermal atomic-absorption spectrophotometry using a tungsten-impregnated graphite furnace

    USGS Publications Warehouse

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    An electrothermal atomic-absorption spectrophotometric method is described for the determination of total tin in geological materials, with use of a tungsten-impregnated graphite furnace. The sample is decomposed by fusion with lithium metaborate and the melt is dissolved in 10% hydrochloric acid. Tin is then extracted into trioctylphosphine oxide-methyl isobutyl ketone prior to atomization. Impregnation of the furnace with a sodium tungstate solution increases the sensitivity of the determination and improves the precision of the results. The limits of determination are 0.5-20 ppm of tin in the sample. Higher tin values can be determined by dilution of the extract. Replicate analyses of eighteen geological reference samples with diverse matrices gave relative standard deviations ranging from 2.0 to 10.8% with an average of 4.6%. Average tin values for reference samples were in general agreement with, but more precise than, those reported by others. Apparent recoveries of tin added to various samples ranged from 95 to 111% with an average of 102%. ?? 1984.

  11. Ultrasound-assisted pseudodigestion for toxic metals determination in fish muscles followed by electrothermal atomic absorption spectrophotometry: multivariate strategy.

    PubMed

    Arain, Mohammad B; Kazi, Tasneem G; Jamali, Mohammad K; Afridi, Hassan I; Jalbani, Nusrat; Memon, Attique R

    2007-01-01

    A simple and efficient procedure for the determination of arsenic (As), cadmium (Cd), and lead (Pb) in the edible parts of freshwater fish by ultrasonic-assisted acid pseudodigestion (USD) was developed. A Plackett-Burman experimental design was used as a multivariate strategy for the evaluation of the effects of several variables at once. Five variables--sonication time, sample mass of muscle tissue, temperature of the ultrasonic bath, mL of nitric acid, and mL of a mixture of acid and oxidant--were regarded as factors. From these studies, certain variables showed up as significant, and they were optimized by a 23+star central composite design, which involved 16 experiments. Optimum values of the variables were selected for the development of USD to determine the contents of As, Cd, and Pb in fish muscles used as pollution bioindicators from Lake Manchar (Sindh, Pakistan). The determination of the 3 toxic metals under study was performed by electrothermal atomic absorption spectrometry. The accuracy of the optimized procedure was evaluated by analysis of certified reference materials BCR 185R bovine liver and by comparison with conventional wet acid digestion methodology. The result obtained by the optimized method showed good agreement with the certified values and sufficiently high recovery. No significant differences were observed for P = 0.05. Relative standard deviation values (average of 10 separate determinations) were 1.21, 5.52, and 5.32% for As, Cd, and Pb, respectively.

  12. Tone-burst technique measures high-intensity sound absorption

    NASA Technical Reports Server (NTRS)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  13. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of low-level silver by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    Damrau, D.L.

    1993-01-01

    Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.

  14. Deconvolution of CPM absorption spectra: A new technique

    NASA Astrophysics Data System (ADS)

    Jensen, Pablo

    1990-12-01

    We have found a new technique for deconvoluting absorption spectra obtained with the constant photocurrent method on hydrogenated amorphous silicon samples. We have shown that our method is simpler and more accurate than those used until now. Finally, examples of spectra deconvolution for one sample after various thermal treatments are provided.

  15. Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays

    PubMed Central

    Dürr, Katharina L.; Tavraz, Neslihan N.; Spiller, Susan; Friedrich, Thomas

    2013-01-01

    Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K

  16. Recent improvements in PDS technique for low-absorption measurements

    NASA Astrophysics Data System (ADS)

    Montecchi, Marco; Masetti, Enrico; Emiliani, Gabriele

    1990-08-01

    Photothermal Deflection Spectroscopy (PDS) is a recently developed technique that is finding a useful application in the measurement of low optical absorptance of thin films. Among the noise sources affecting the PDS measurement, probe beam pointing instability and mechanical vibration play a considerable role. In this work an optoelectronic system for the reduction of their influence is described. Moreover, PDS measurements are typically performed keeping the sample immersed in a deflecting liquid; thus measured values of absorptance must be corrected when other surrounding media, as air, are considered. This correction is an easy task for single film coatings. Here the general case of an unknown multiplayer coating is analysed; a range of values containing the true absorptance in air is obtained by theoretical analysis and a practical method to evaluate the absorptance in air is discussed. Finally, deflecting liquids alternative to the commonly used CCI4 have been examined. Useful optical range, thermal diffusivity and "relative deflecting power" of CCI4, CS2, Iso-octane and Aceton are reported.

  17. PRECISION SPECTROPHOTOMETRY AT THE LEVEL OF 0.1%

    SciTech Connect

    Yan Renbin

    2011-11-15

    Accurate relative spectrophotometry is critical for many science applications. Small wavelength-scale residuals in the flux calibration can significantly impact the measurements of weak emission and absorption features in the spectra. Using Sloan Digital Sky Survey data, we demonstrate that the average spectra of carefully selected red-sequence galaxies can be used as a spectroscopic standard to improve the relative spectrophotometry precision to 0.1% on small wavelength scales (from a few to hundreds of Angstroms). We achieve this precision by comparing stacked spectra across tiny redshift intervals. The redshift intervals must be small enough that any systematic stellar population evolution is minimized and is less than the spectrophotometric uncertainty. This purely empirical technique does not require any theoretical knowledge of true galaxy spectra. It can be applied to all large spectroscopic galaxy redshift surveys that sample a large number of galaxies in a uniform population.

  18. New analytical technique for carbon dioxide absorption solvents

    SciTech Connect

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive index models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.

  19. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry.

    PubMed

    Kaykhaii, Massoud; Sargazi, Mona

    2014-01-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples.

  20. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry

    NASA Astrophysics Data System (ADS)

    Kaykhaii, Massoud; Sargazi, Mona

    2014-03-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2- at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron(II) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples.

  1. Multi-filter spectrophotometry simulations

    NASA Technical Reports Server (NTRS)

    Callaghan, Kim A. S.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    To complement both the multi-filter observations of quasar environments described in these proceedings, as well as the proposed UBC 2.7 m Liquid Mirror Telescope (LMT) redshift survey, we have initiated a program of simulated multi-filter spectrophotometry. The goal of this work, still very much in progress, is a better quantitative assessment of the multiband technique as a viable mechanism for obtaining useful redshift and morphological class information from large scale multi-filter surveys.

  2. Laser induced deflection technique for absolute thin film absorption measurement: optimized concepts and experimental results

    SciTech Connect

    Muehlig, Christian; Kufert, Siegfried; Bublitz, Simon; Speck, Uwe

    2011-03-20

    Using experimental results and numerical simulations, two measuring concepts of the laser induced deflection (LID) technique are introduced and optimized for absolute thin film absorption measurements from deep ultraviolet to IR wavelengths. For transparent optical coatings, a particular probe beam deflection direction allows the absorption measurement with virtually no influence of the substrate absorption, yielding improved accuracy compared to the common techniques of separating bulk and coating absorption. For high-reflection coatings, where substrate absorption contributions are negligible, a different probe beam deflection is chosen to achieve a better signal-to-noise ratio. Various experimental results for the two different measurement concepts are presented.

  3. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  4. Determination of aluminium in iron, steel and ferrous and non-ferrous alloys by atomic-absorption spectrophotometry after a mercury-cathode separation and extraction of the aluminium-acetylacetone complex.

    PubMed

    Donaldson, E M

    1981-07-01

    A method for determining 0.0005% or more of total aluminium in high- and low-alloy steels, iron and ferrovanadium is described. Iron, chromium and other matrix elements are separated from aluminium by electrolysis with a mercury cathode and aluminium is separated from tungsten, titanium, vanadium and phosphate by chloroform extraction of its acetylacetone complex at pH 6.5 from an ammonium acetate-hydrogen peroxide medium. The extract is evaporated to dryness and organic material is destroyed with nitric and perchloric acids. Aluminium is determined by atomic-absorption spectrophotometry in a nitrous oxide-acetylene flame, at 309.3 nm, in a 5% v/v perchloric acid medium containing 1000 mug of sodium per ml. Acid-soluble and acid-insoluble aluminium can also be determined. The method is also applicable to copper- and nickel-base alloys. Results obtained by this method are compared with those obtained spectrophotometrically with Pyrocatechol Violet, after the separations described above followed by the separation of the residual co-extracted iron and copper by a combined ammonium pyrrolidinedithiocarbamate-cupferron-chloroform extraction from 10% v/v hydrochloric acid medium.

  5. Differential determination of arsenic(III) and arsenic(V), and antimony(III) and antimony-(V) by hydride generation-atomic absorption spectrophotometry, and its application to the determination of these species in sea water

    NASA Astrophysics Data System (ADS)

    Yamamoto, Manabu; Urata, Keiji; Murashige, Kiyoto; Yamamoto, Yuroku

    A method is described for the differential determination of As(III) and As(V). and Sb(III) and Sb(V) by hydride generation-atomic absorption spectrophotometry with hydrogen-nitrogen flame using sodium borohydride solution as a reductant. For the determination of As(III) and Sb(III), most of the elements, other than Ag +, Cu 2+, Sn 2+, Se 4+ and Te 4+, do not interfere in an at least 30,000 fold excess with respect to As(III) or Sb(III). This method was applied to the determination of these species in sea water and it was found that a sample size of only 100 ml is enough to determine them with a precision of 1.5-2.5%. Analytical results for surface sea water of Hiroshima Bay were 0.72 μgl -1, 0.27 μgl -1 and 0.22 μgl -1 for As(total), As(III) and Sb(total), respectively, but Sb(III) was not detected in the present sample. The effect of acidification on storage was also examined.

  6. Diode laser absorption tomography using data compression techniques

    NASA Astrophysics Data System (ADS)

    Lindstrom, Chad; Tam, Chung-Jen; Givens, Ryan; Davis, Doug; Williams, Skip

    2008-02-01

    Tunable diode laser absorption spectroscopy (TDLAS) shows promise for in situ monitoring in high-speed flows. However, the dynamic nature of typical flows of supersonic combustors, gas turbine engines and augmenters can also lead to inhomogenities that cannot be captured by a single line-of-sight TDLAS measurement. Instead, multiple measurements varied over several spatial locations need to be made. In the current study, shock train structure in the isolator section of the Research Cell 18 supersonic combustion facility at Wright-Patterson AFB is measured. Although only two view angles are available for measurement, multiple absorption features along with a priori computational fluid dynamics (CFD) simulations enable estimates of two dimensional flow features to be formed. Vector quantization/kmeans data clustering is used to identify key flow features from the temporal history of the raw sinograms. Through the use of multiple absorption features that are measured nearly simultaneously, an approximate two-dimensional image can be formed. This image can be further refined through the use of an optimal set of basis functions that can be derived from a set of CFD simulations that describes the flow shapes.

  7. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  8. Measurement of initial absorption of fused silica at 193nm using laser induced deflection technique (LID)

    NASA Astrophysics Data System (ADS)

    Schönfeld, Dörte; Klett, Ursula; Mühlig, Christian; Thomas, Stephan

    2008-01-01

    The ongoing development in microlithography towards further miniaturization of structures creates a strong demand for lens material with nearly ideal optical properties. Beside the highly demanding requirements on homogeneity and stress induced birefringence (SIB), low absorption is a key factor. Even a small absorption is associated with a temperature increase and results in thermally induced local variations of refractive index and SIB. This could affect the achievable resolution of the lithographic process. The total absorption of the material is composed of initial absorption and of absorption induced during irradiation. Thus, the optimization of both improves the lifetime of the material. In principal, it is possible to measure transmission and scattering with a suitable spectrometer assembly and calculate absorption from them. However, owing to the influence of sample surfaces and errors of measurement, these methods usually do not provide satisfactory results for highly light-transmissive fused silica. Therefore, it is most desirable to find a technique that is capable of directly measuring absorption coefficients in the range of (1...10)•10 -4 cm -1 (base 10) directly. We report our first results for fused silica achieved with the LID technique. Besides a fused silica grade designed for 193 nm applications, grades with higher absorption at 193 nm were measured to test the LID technique. A special focus was set on the possibility of measuring initial absorption without the influence of degradation effects.

  9. Determination of the reduced sulfur species in the anoxic zone of the Black Sea: A comparison of the spectrophotometry and iodometry techniques

    NASA Astrophysics Data System (ADS)

    Dubinin, A. V.; Demidova, T. P.; Kremenetskii, V. V.; Kokryatskaya, N. M.; Rimskaya-Korsakova, M. N.; Yakushev, E. V.

    2012-04-01

    The report presents the results of the studies of the reduced sulfur species in the water of the anoxic zone of the Black Sea. The content of hydrogen sulfide was determined by means of spectrophotometry using dilution with oxygen-free distilled water. The detection limit of the H2S amounted to 0.3 μM with the method's precision below 3%. The accuracy of the spectrophotometric determination was verified by iodometry after the fixation of the hydrogen sulfide in zinc acetate under the distillation with argon from the acidified seawater sample.

  10. Absorption measurement of thin films by using photothermal techniques: The influence of thermal properties

    SciTech Connect

    Wu, Z.L.; Kuo, P.K.; Thomas, R.L.; Fan, Z.X.

    1995-12-31

    Photothermal techniques are widely used for measuring optical absorption of thin film coatings. In these applications the calibration of photothermal signal is typically based on the assumption that the thermal properties of the thin film make very little contribution. In this paper we take mirage technique as an example and present a detailed analysis of the influence of thin film thermal properties on absorption measurements. The results show that the traditional calibration method is not valid on surprisingly many situations.

  11. Sensitive and absolute absorption measurements in optical materials and coatings by laser-induced deflection technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon

    2012-12-01

    The laser-induced deflection (LID) technique, a photo-thermal deflection setup with transversal pump-probe-beam arrangement, is applied for sensitive and absolute absorption measurements of optical materials and coatings. Different LID concepts for bulk and transparent coating absorption measurements, respectively, are explained, focusing on providing accurate absorption data with only one measurement and one sample. Furthermore, a new sandwich concept is introduced that allows transferring the LID technique to very small sample geometries and to significantly increase the sensitivity for materials with weak photo-thermal responses. For each of the different concepts, a representative application example is given. Particular emphasis is placed on the importance of the calibration procedure for providing absolute absorption data. The validity of an electrical calibration procedure for the LID setup is proven using specially engineered surface absorbing samples. The electrical calibration procedure is then applied to evaluate two other approaches that use either doped samples or highly absorptive reference samples.

  12. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    PubMed Central

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2015-01-01

    This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539

  13. A quality control technique based on UV-VIS absorption spectroscopy for tequila distillery factories

    NASA Astrophysics Data System (ADS)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Maldonado, J. L.; Pichardo Molina, J.; Meneses Nava, M. A.; Landgrave, Enrique; Cervantes, M. J.

    2006-02-01

    A low cost technique based on the UV-VIS absorption spectroscopy is presented for the quality control of the spirit drink known as tequila. It is shown that such spectra offer enough information to discriminate a given spirit drink from a group of bottled commercial tequilas. The technique was applied to white tequilas. Contrary to the reference analytic methods, such as chromatography, for this technique neither special personal training nor sophisticated instrumentations is required. By using hand-held instrumentation this technique can be applied in situ during the production process.

  14. Combined laser calorimetry and photothermal technique for absorption measurement of optical coatings

    SciTech Connect

    Li Bincheng; Blaschke, Holger; Ristau, Detlev

    2006-08-10

    To the best of our knowledge, a combined sensitive technique employing both laser calorimetry and a surface thermal lens scheme for measuring absorption values of optical coatings is presented for the first time. Laser calorimetric and pulsed surface thermal lens signals are simultaneously obtained with a highly reflecting UV coating sample irradiated at 193 nm. The advantages and potential applications of the combined technique and the experimental factors limiting the measurement sensitivity are discussed.

  15. Combined laser calorimetry and photothermal technique for absorption measurement of optical coatings.

    PubMed

    Li, Bincheng; Blaschke, Holger; Ristau, Detlev

    2006-08-10

    To the best of our knowledge, a combined sensitive technique employing both laser calorimetry and a surface thermal lens scheme for measuring absorption values of optical coatings is presented for the first time. Laser calorimetric and pulsed surface thermal lens signals are simultaneously obtained with a highly reflecting UV coating sample irradiated at 193 nm. The advantages and potential applications of the combined technique and the experimental factors limiting the measurement sensitivity are discussed.

  16. Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings.

    PubMed

    Steinlechner, Jessica; Jensen, Lars; Krüger, Christoph; Lastzka, Nico; Steinlechner, Sebastian; Schnabel, Roman

    2012-03-10

    We propose and demonstrate a new measurement technique for the optical absorption of high-reflection coatings. Our technique is based on photothermal self-phase modulation and exploits the deformation of cavity Airy peaks that occurs due to coating absorption of intracavity light. The mirror whose coating is under investigation needs to be the input mirror of a high-finesse cavity. Our example measurements were performed on a high-reflection SiO2-Ta2O5 coating in a three-mirror ring-cavity setup at a wavelength of 1064 nm. The optical absorption of the coating was determined to be α=(23.9±2.0)·10(-6) per coating. Our result is in excellent agreement with an independently performed laser calorimetry measurement that gave a value of α=(24.4±3.2)·10(-6) per coating. Since the self-phase modulation in our coating-absorption measurement affects mainly the propagation through the cavity input mirror, our measurement result is practically uninfluenced by the optical absorption of the other cavity mirrors.

  17. Sandwich concept: enhancement for direct absorption measurements by laser-induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Bublitz, S.; Paa, W.

    2012-11-01

    The new sandwich concept for absolute photo-thermal absorption measurements using the laser induced deflection (LID) technique is introduced and tested in comparison to the standard LID concept. The sandwich concept's idea is the decoupling of the optical materials for the pump and probe beams by placing a sample of investigation in between two optical (sandwich) plates. The pump beam is guided through the sample whereas the probe beams are deflected within the sandwich plates by the thermal lens that is generated by heat transfer from the irradiated sample. Electrical simulation and laser experiments reveal that using appropriate optical materials for the sandwich plates, the absorption detection limit for photo-thermally insensitive materials can be lowered by up to two orders of magnitude. Another advantage of the sandwich concept, the shrinking of the currently required minimum sample size, was used to investigate the laser induced absorption change in a Nd:YVO4 crystal at 1030nm. It was found that the absorption in Nd:YVO4 lowers due to the laser irradiation but partially recovers during irradiation breaks. Furthermore, absorption spectroscopy has been performed at two LBO crystals in the wavelength range 410...600nm to study the absorption structure around the SHG wavelengths of common high power lasers based on Neodymium doped laser crystals.

  18. Development of surface thermal lensing technique in absorption and defect analyses of optical coatings

    NASA Astrophysics Data System (ADS)

    He, Hongbo; Li, Xia; Fan, Shuhai; Shao, Jianda; Zhao, Yuanan; Fan, Zhengxiu

    2005-12-01

    Absorption is one of the main factors which cause damage to optical coatings, under the radiation of high power lasers. Surface thermal lensing (STL) technique was developed into a practical high-sensitivity apparatus for the weak absorption analysis of optical coatings. A 20 W continuous-wave 1064 nm Nd:YAG laser and a 30 mW He-Ne laser were employed as pump source and probe source, respectively. Low noise photoelectrical components and an SR830 DSP lock-in amplifier were used for photo-thermal deformation signal detection. In order to improve sensitivity, the configuration of the apparatus was optimized through choosing appropriate parameters, that including pump beam spot size, chopper frequency, detection distance, waist radius and position of probe beam. Coating samples were mounted on an x-y stage which was driven by high precision stepper motors. Different processes of absorption measurements, including single spot, linear scan and 2-dimension area scan, could be performed manually or automatically under the control of PC program. Various optical coatings were prepared by both electron beam evaporation and ion beam sputtering deposition. High sensitivity was obtained and low to 10 ppb absorption could be measured by surface thermal lensing technique. And a spatial resolution of 25 micron was proved according to the area scanning which traced out the profile of photo-thermal defects inside optical coatings. The system was employed in the analyses of optical absorption, absorption uniformity and defect distribution, and revealed the relationship between laser-induced damage and absorption of optical coatings.

  19. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  20. Clinical applications of lightguide diffuse reflectance spectrophotometry in vascular disease

    NASA Astrophysics Data System (ADS)

    Harrison, David K.; Delaney, Colin; Brown, Linda; Newton, David J.; McCollum, Peter T.

    1994-02-01

    There is enormous potential for application of lightguide tissue reflectance spectrophotometry in the diagnosis and treatment of peripheral vascular disease. In the present study, measurements were carried out in 10 such pre-amputation patients to compare the use of micro-lightguide spectrophotometry with the macro-lightguide technique. These preliminary results show excellent agreement between the new, non-invasive micro-lightguide technique and the `gold standard' skin blood flow measurements. This technique could thus provide a more functional, non-invasive assessment of healing potential than skin blood flow measurement.

  1. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  2. Broadband absorption spectroscopy by combining frequency-domain and steady-state techniques

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Bevilacqua, Frederic; Jakubowski, Dorota B.; Cerussi, Albert E.; Butler, John A.; Hsiang, D.; Tromberg, Bruce J.

    2001-06-01

    A technique for measuring broadband near-infrared absorption spectra of turbid media is presented using a combination of frequency-domain (FD) and steady-state (SS) reflectance methods. Most of the wavelength coverage is provided by a white-light SS measurement, while the FD data are acquired at a few selected wavelengths. Coefficients of absorption ((mu) a) and reduced scattering ((mu) s') derived from the FD data are used to intensity-calibrate the SS measurements and to estimate (mu) s' at all wavelengths in the spectral window of interest. After these steps are performed, (mu) a can be determined by comparing the SS reflectance values to the predictions of diffusion theory, wavelength by wavelength. We present an application of this method to breast tumor characterization. A case study of a fibroadenoma is shown, where different absorption spectra were found between the normal and the tumor sides.

  3. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    NASA Technical Reports Server (NTRS)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  4. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    DTIC Science & Technology

    2014-01-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) Jan 2014 2. REPORT TYPE Technical...Paper 3. DATES COVERED (From - To) Jan 2014- June 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House A Method for Eliminating Beam...14194 14. ABSTRACT Modulated absorption-emission thermometry (MAET) is a non-intrusive, radiometric technique for measuring line-of-sight average

  5. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    DTIC Science & Technology

    2015-01-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) December 2014 2. REPORT TYPE...Briefing Charts 3. DATES COVERED (From - To) December 2014- January 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER N/A A Method for Eliminating...Jan 2015. PA#14562. 14. ABSTRACT Modulated absorption-emission thermometry (MAET) is a non-intrusive, radiometric technique for measuring line-of

  6. Coal thickness gauge using RRAS techniques, part 1. [radiofrequency resonance absorption

    NASA Technical Reports Server (NTRS)

    Rollwitz, W. L.; King, J. D.

    1978-01-01

    A noncontacting sensor having a measurement range of 0 to 6 in or more, and with an accuracy of 0.5 in or better is needed to control the machinery used in modern coal mining so that the thickness of the coal layer remaining over the rock is maintained within selected bounds. The feasibility of using the radiofrequency resonance absorption (RRAS) techniques of electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) as the basis of a coal thickness gauge is discussed. The EMR technique was found, by analysis and experiments, to be well suited for this application.

  7. High-Sensitivity Spectrophotometry.

    ERIC Educational Resources Information Center

    Harris, T. D.

    1982-01-01

    Selected high-sensitivity spectrophotometric methods are examined, and comparisons are made of their relative strengths and weaknesses and the circumstances for which each can best be applied. Methods include long path cells, noise reduction, laser intracavity absorption, thermocouple calorimetry, photoacoustic methods, and thermo-optical methods.…

  8. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  9. A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient

    NASA Astrophysics Data System (ADS)

    Gaudette, Richard J.; Brooks, Dana H.; Di Marzio, Charles A.; Kilmer, Misha E.; Miller, Eric L.; Gaudette, Thomas; Boas, David A.

    2000-04-01

    We compare, through simulations, the performance of four linear algorithms for diffuse optical tomographic reconstruction of the three-dimensional distribution of absorption coefficient within a highly scattering medium using the diffuse photon density wave approximation. The simulation geometry consisted of a coplanar array of sources and detectors at the boundary of a half-space medium. The forward solution matrix is both underdetermined, because we estimate many more absorption coefficient voxels than we have measurements, and ill-conditioned, due to the ill-posedness of the inverse problem. We compare two algebraic techniques, ART and SIRT, and two subspace techniques, the truncated SVD and CG algorithms. We compare three-dimensional reconstructions with two-dimensional reconstructions which assume all inhomogeneities are confined to a known horizontal slab, and we consider two `object-based' error metrics in addition to mean square reconstruction error. We include a comparison using simulated data generated using a different FDFD method with the same inversion algorithms to indicate how our conclusions are affected in a somewhat more realistic scenario. Our results show that the subspace techniques are superior to the algebraic techniques in localization of inhomogeneities and estimation of their amplitude, that two-dimensional reconstructions are sensitive to underestimation of the object depth, and that an error measure based on a location parameter can be a useful complement to mean squared error.

  10. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    SciTech Connect

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  11. The absorption of ultraviolet light by cell nuclei. A technique for identifying neoplastic change

    SciTech Connect

    Baisden, C.R.; Booker, D.; Wright, R.D. )

    1989-11-01

    A technique for measuring the absorption of 260-nm ultraviolet light by cell nuclei is described. The results of such measurements of normal thyroid epithelial cells and benign and malignant thyroid neoplastic cells demonstrate a progressive increase in absorbance that correlates with the histologic appearance of neoplasia. The possible theoretic basis for this phenomenon is explored. The increased nuclear absorbance observed in neoplastic cells is hypothesized to result from the disruption of hydrogen bonds between the DNA base pairs, which allows unwinding of the double helix and loss of the normal control of mitosis.

  12. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  13. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy.

    PubMed

    Carriles, Ramón; Schafer, Dawn N; Sheetz, Kraig E; Field, Jeffrey J; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W; Squier, Jeffrey A

    2009-08-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences.

  14. Development of the laser absorption radiation thermometry technique to measure thermal diffusivity in addition to temperature

    NASA Astrophysics Data System (ADS)

    Levick, Andrew; Lobato, Killian; Edwards, Gordon

    2003-01-01

    A comparative technique based on photothermal radiometry has been developed to measure thermal diffusivity of semi-infinite targets with arbitrary geometry. The technique exploits the principle that the frequency response of the temperature modulation induced by a periodic modulated heating source (in this case a laser spot) scales with thermal diffusivity. To demonstrate this technique, a photothermal radiometer has been developed, which detects modulated thermal radiance at a wavelength of 2 μm due to a small temperature modulation induced on the target surface by a modulated erbium fiber laser of power 1 W. Two frequency responses were measured for platinum and oxidized Inconel 600 targets (the frequency response is a scan of the amplitude of the modulated thermal radiance over laser modulation frequency). Scaling the two responses with respect to frequency gives a ratio of thermal diffusivities Dplatinum/DInconel of 4.45(33) which compares with a literature value of 4.46(50). The aim is to combine this technique with laser absorption radiation thermometry to produce multithermal property instrument for measuring "industrial" targets.

  15. Probing local structure of pyrochlore lead zinc niobate with synchrotron x-ray absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Kanchiang, Kanokwan; Pramchu, Sittichain; Yimnirun, Rattikorn; Pakawanit, Phakkhananan; Ananta, Supon; Laosiritaworn, Yongyut

    2013-08-01

    Local structure of lead zinc niobate (PZN) ceramic, synthesized via B-site oxide precursor route in atmospheric pressure, was investigated using synchrotron x-ray absorption spectroscopy (XAS) technique. The x-ray absorption near-edge structure (XANES) simulation was first carried out. The XANES simulation results indicate that the PZN ceramic is in pyrochlore phase having Zn2+ substituted on Nb5+ site. Afterwards, the extended x-ray absorption fine structure (EXAFS) analysis was performed to extract the bond length information between Zn2+ and its neighboring atoms. From the EXAFS fitting, the bond length between Zn2+ and Pb2+ in the pyrochlore phase was found to be longer than the previously reported bond length in the perovskite phase. Further, with the radial distribution information of Zn2+'s neighboring atoms, the formation energies along the precursor-to-pyrochlore and precursor-to-perovskite reaction paths were calculated using the density functional theory (DFT). The calculated results show that the formation energy of the perovskite phase is noticeably higher than that of the pyrochlore phase, which is influenced by the presence of energetic Pb2+ lone pair, as the perovskite phase has shorter Zn2+ to Pb2+ bonding. This therefore suggests the steric hindrance of Pb2+ lone pair and the mutual interactions between Pb2+ lone pair and Zn2+ are main causes of the instability of lead zinc niobate in the perovskite structure and confirm the efficacy of XAS and DFT analysis in revealing local structural details of complex pyrochlore materials.

  16. Evaluation of iron-containing carbon nanotubes by near edge X-ray absorption technique

    NASA Astrophysics Data System (ADS)

    Osorio, A. G.; Bergmann, C. P.

    2015-10-01

    The synthesis of carbon nanotubes (CNTs) via Chemical Vapor Deposition method with ferrocene results in CNTs filled with Fe-containing nanoparticles. The present work proposes a novel route to characterize the Fe phases in CNTs inherent to the synthesis process. CNTs were synthesized and, afterwards, the CNTs were heat treated at 1000 °C for 20 min in an inert atmosphere during a thermogravimetric experiment. X-Ray Absorption Spectroscopy (XAS) experiments were performed on the CNTs before and after the heat treatment and, also, during the heat treatment, e.g., in situ tests were performed while several Near-Edge X-Ray Absorption (XANES) spectra were collected during the heating of the samples. The XAS technique was successfully applied to evaluate the phases encapsulated by CNTs. Phase transformations of the Fe-based nanoparticles were also observed from iron carbide to metallic iron when the in situ experiments were performed. Results also indicated that the applied synthesis method guarantees that Fe phases are not oxidize. In addition, the results show that heat treatment under inert atmosphere can control which phase remains encapsulated by the CNTs.

  17. Understanding refraction contrast using a comparison of absorption and refraction computed tomographic techniques

    NASA Astrophysics Data System (ADS)

    Wiebe, S.; Rhoades, G.; Wei, Z.; Rosenberg, A.; Belev, G.; Chapman, D.

    2013-05-01

    Refraction x-ray contrast is an imaging modality used primarily in a research setting at synchrotron facilities, which have a biomedical imaging research program. The most common method for exploiting refraction contrast is by using a technique called Diffraction Enhanced Imaging (DEI). The DEI apparatus allows the detection of refraction between two materials and produces a unique ''edge enhanced'' contrast appearance, very different from the traditional absorption x-ray imaging used in clinical radiology. In this paper we aim to explain the features of x-ray refraction contrast as a typical clinical radiologist would understand. Then a discussion regarding what needs to be considered in the interpretation of the refraction image takes place. Finally we present a discussion about the limitations of planar refraction imaging and the potential of DEI Computed Tomography. This is an original work that has not been submitted to any other source for publication. The authors have no commercial interests or conflicts of interest to disclose.

  18. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  19. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  20. Spectrophotometry-based detection of carbapenemase producers among Enterobacteriaceae.

    PubMed

    Bernabeu, Sandrine; Poirel, Laurent; Nordmann, Patrice

    2012-09-01

    Carbapenem-hydrolyzing ß-lactamases are the most powerful ß-lactamases being able to hydrolyse almost all ß-lactams. They are mostly of the KPC, VIM, IMP, NDM, and OXA-48 type. A spectrophotometry technique based on analysis of the imipenem hydrolysis has been developed that differentiated carbapenemase- from noncarbapenemase producers. This inexpensive technique adapted to screening of carbapenemase producers may be implemented in any reference laboratory worldwide.

  1. Formation and microwave absorption of barium and strontium ferrite prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Sürig, C.; Hempel, K. A.; Bonnenberg, D.

    1993-11-01

    Ba and Sr ferrites are prepared by sol-gel technique with different Fe/Ba(Sr) ratios in the starting materials. Magnetization, coercive, and anisotropy field strength are determined depending on the heat treatment of the gel and the iron/barium(strontium) ratio in the starting material. A two-step heat treatment is used to prepare single-domain powders with high magnetization. These powders prepared by sol-gel technique show single-domain behavior with specific magnetization σS=649 A cm2/g and coercive field strength HcM=402 kA/m in the case of Ba ferrite and σS=695 A cm2/g and HcM=416 kA/m for Sr the ferrite. Al-substituted ferrites with high anisotropy field strengths are prepared additionally. Ferromagnetic resonance absorption is used to determine the anisotropy field strength and to investigate the formation process of the hexaferrite phase during the heat treatment. The beginning of hexaferrite formation occurs at annealing temperatures below 700 °C.

  2. Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy

    SciTech Connect

    O'Neill, D.M.; Lewis, C.L.S.; Neely, D.; Davidson, S.J. ); Rose, S.J. ); Lee, R.W. )

    1991-08-15

    The technique of point-projection spectroscopy has been shown to be applicable to the study of expanding aluminum plasmas generated by {similar to}80 ps laser pulses incident on massive, aluminum stripe targets of {similar to}125 {mu}m width. Targets were irradiated at an intensity of 2.5{plus minus}0.5{times}10{sup 13} W/cm{sup 2} in a line focus geometry and under conditions similar to those of interest in x-ray laser schemes. Hydrogenic and heliumlike aluminum resonance lines were observed in absorption using a quasicontinuous uranium backlighter plasma. Using a pentaerythrital Bragg crystal as the dispersive element, a resolving power of {similar to}3500 was achieved with spatial resolution at the 5-{mu}m level in frame times of the order of 100 ps. Reduction of the data for times up to 150 ps after the peak of the incident laser pulse produced estimates of the temperature and ion densities present, as a function of space and time. The one-dimensional Lagrangian hydrodynamic code MEDUSA coupled to the atomic physics non-local-thermodynamic-equilibrium ionized material package was used to simulate the experiment in planar geometry and has been shown to be consistent with the measurements.

  3. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    SciTech Connect

    Rejeena, I.; Lillibai,; Nampoori, V. P. N.; Radhakrishnan, P.; Rahimkutty, M. H.

    2014-10-15

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl{sub 2} solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  4. Absolute spectrophotometry of Neptune - 3390 to 7800 A

    NASA Astrophysics Data System (ADS)

    Bergstralh, J. T.; Neff, J. S.

    1983-07-01

    Absolute spectrophotometry of Neptune from 3390 to 7800 Å, with spectral resolution of 10 Å in the interval 3390 - 6055 and 20 Å in the interval 6055 - 7800 Å, is reported. The results are compared with filter photometry (Appleby, 1973; Wamsteker, 1973; Savage et al., 1980) and with synthetic spectra computed on the basis of a parameterization proposed by Podolak and Danielson (1977) for aerosol scattering and absorption. A CH4/H2 ratio is derived for the convectively mixed part of Neptune's atmosphere, and constrains optical properties of hypothetical aerosol layers.

  5. Photoacoustic technique for simultaneous measurements of thermal effusivity and absorptivity of pigments in liquid solution.

    PubMed

    Balderas-López, J A; Díaz-Reyes, J; Zelaya-Angel, O

    2011-12-01

    A photoacoustic (PA) methodology, in the transmission configuration, for simultaneous measurements of thermal effusivity and molar absorption coefficient (absorptivity) for pigments in liquid solution is introduced. The analytical treatment involves a self-normalization procedure for the PA signal, as a function of the modulation frequency, for a strong absorbing material in the thermally thin regime, when the light travels across the sample under study. Two fitted parameters are obtained from the analysis of the self-normalized PA amplitude and phase, one of them proportional to the sample's optical absorption coefficient and from which, taking it for a series of samples at different concentrations, the pigment's absorptivity in liquid solution can be measured, the other one yields the sample's thermal effusivity. Methylene blue's absorptivity in distilled water was measured with this methodology at 658 nm, finding good agreement with the corresponding one reported in the literature.

  6. [Quantitative determination of total flavonoids in sea-buckthorn fruit juice by three wavelength spectrophotometry].

    PubMed

    Hui, Rui-hua; Hou, Dong-yan; Guan, Chong-xin; Liu, Xiao-yuan

    2005-02-01

    Numerous studies dealing with the quantitative determination of total flavonoids in sea-buckthorn fruit juice by spectrophotometry are presented. The flavonoids in sea-buckthorn fruit juice and aluminate produce stable complex whose absorption occurred at longer wavelength. To determine the total flavonoids in sea-buckthorn fruit juice by traditional spectrophotometry method, baseline shift and asymmetric absorption peak occurred on the absorption curve. Quantitative determination of flavonoids in sea-buckthorn fruit juice by three wavelength spectrophotometry method can eliminate the absorbance error caused interfering components in turbid solution and the scattering effect. Background changing with the concentration change and asymmetric absorption peak problems can also be solved. The regression equation of concentration vs deltaA was obtained: deltaA = - 0.00703 + 0.00048c with a relation coefficient gamma = 0.9991. The experimental results demostrate the total flavonoids concentrations in 0-800 microg x mL(-1) with deltaA obeying linear relation when the absorbance was measured at wavelength lambda1 = 495 nm, lambda2 = 415 nm and lambda3 = 368 nm. The recovery is 97.0%-101.0% and the coefficient of variation is 0.058% (n = 9). The method is more advantageous than tranditional spectrophotometry method.

  7. Prediction of Human intestinal absorption of compounds using artificial intelligence techniques.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-04-04

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. In current work, we are presenting a comprehensive study of prediction of absorption. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds with prediction accuracy of 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development.

  8. Imaging of droplets and vapor distributions in a diesel fuel spray by means of a laser absorption-scattering technique.

    PubMed

    Zhang, Y Y; Yoshizaki, T; Nishida, K

    2000-11-20

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption-scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  9. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    NASA Technical Reports Server (NTRS)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  10. Study of Biological Pigments by Single Specimen Derivative Spectrophotometry

    PubMed Central

    Goldstein, Jack M.

    1970-01-01

    The single specimen derivative (SSD) method provides an absolute absorption spectrum of a substance in the absence of a suitable reference. Both a reference and a measuring monochromatic beam pass through a single sample, and the specimen itself acts as its own reference. The two monochromatic beams maintain a fixed wavelength difference upon scanning, and the difference in absorbance of the two beams is determined. Thus, the resulting spectrum represents the first derivative of the conventional type absorption spectrum. Tissues and cell fractions have been examined at room and liquid N2 temperature and chromophoric molecules such as the mitochondrial cytochromes and blood pigments have been detectable in low concentrations. In the case of isolated cellular components, the observed effects of substrates and inhibitors confirm similar studies by conventional spectrophotometry. The extension of the SSD concept to the microscopic level has permitted the study of the tissue compartmentalization and function of cytochromes and other pigments within layered tissue. PMID:4392452

  11. Stark effect spectrophone for continuous absorption spectra monitoring. [a technique for gas analysis

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1981-01-01

    A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.

  12. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.

  13. Continuous wave laser absorption techniques for gasdynamic measurements in supersonic flows

    NASA Technical Reports Server (NTRS)

    Davidson, David F.; Chang, Albert Y.; Dirosa, Michael D.; Hanson, Ronald K.

    1991-01-01

    Line-of-sight measurements of velocity, temperature, pressure, density, and mass flux were performed in a transient shock tube flow using three laser absorption schemes. All methods employed an intracavity-doubled ring dye laser tuned to an OH transition at 306 nm. In the first scheme, the gas was labeled by 193.3-nm excimer photolysis of H2O, and the passage of the generated OH was detected downstream. In the second method, the laser was tuned at a rate of 3 kHz over the R1(7) and R1(11) line pair, and absorption was simultaneously monitored at 90 and 60 deg with respect to the flow. Velocity was determined from the Doppler shift of the profiles and the temperature from the intensity ratio of the lines. Pressure was determined from both the magnitude of absorption and the collisional broadening. In the third method, the laser wavelength was fixed at a single frequency, and a continuous measurement of velocity and pressure was obtained using the signals from the two beam paths. All methods gave results which compare favorably to calculated values.

  14. Evaluation of laser absorption spectroscopic techniques for eddy covariance flux measurements of ammonia.

    PubMed

    Whitehead, James D; Twigg, Marsailidh; Famulari, Daniela; Nemitz, Eiko; Sutton, Mark A; Gallagher, Martin W; Fowler, David

    2008-03-15

    An intercomparison was made between eddy covariance flux measurements of ammonia by a quantum cascade laser absorption spectrometer (QCLAS) and a lead-salt tunable diode laser absorption spectrometer (TDLAS). The measurements took place in September 2004 and again in April 2005 over a managed grassland site in Southern Scotland, U.K. These were also compared with a flux estimate derived from an "Ammonia Measurement by ANnular Denuder with online Analysis" (AMANDA), using the aerodynamic gradient method (AGM). The concentration and flux measurements from the QCLAS correlated well with those of the TDLAS and the AGM systems when emissions were high, following slurry application to the field. Both the QCLAS and TDLAS, however, underestimated the flux when compared with the AMANDA system, by 64%. A flux loss of 41% due to chemical reaction of ammonia in the QCLAS (and 37% in the TDLAS) sample tube walls was identified and characterized using laboratory tests but did not fully accountforthis difference. Recognizing these uncertainties, the agreement between the systems was nevertheless very close (R2 = 0.95 between the QCLAS and the TDLAS; R2 = 0.84 between the QCLAS and the AMANDA) demonstrating the suitability of the laser absorption methods for quantifying the temporal dynamics of ammonia fluxes.

  15. X-ray absorption spectroscopy of Mn doped ZnO thin films prepared by rf sputtering technique

    SciTech Connect

    Yadav, Ashok Kumar; Jha, S. N.; Bhattacharyya, D.; Haque, Sk Maidul; Shukla, Dinesh; Choudhary, Ram Janay

    2015-11-15

    A set of r.f. sputter deposited ZnO thin films prepared with different Mn doping concentrations have been characterised by Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Spectroscopy (XANES) measurements at Zn, Mn and O K edges and at Mn L{sub 2,3} edges apart from long range structural characterisation by Grazing Incident X-ray Diffraction (GIXRD) technique. Magnetic measurements show room temperature ferromagnetism in samples with lower Mn doping which is however, gets destroyed at higher Mn doping concentration. The results of the magnetic measurements have been explained using the local structure information obtained from EXAFS and XANES measurements.

  16. Magnetic resonance cell-tracking studies: spectrophotometry-based method for the quantification of cellular iron content after loading with superparamagnetic iron oxide nanoparticles.

    PubMed

    Böhm, Ingrid

    2011-08-01

    The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r  =  .9958; p  =  2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).

  17. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  18. Investigation of potential of differential absorption Lidar techniques for remote sensing of atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Butler, C. F.; Shipley, S. T.; Allen, R. J.

    1981-01-01

    The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed.

  19. Measurement of Hydrogen Absorption in Ternary Alloys with Volumetric (Sieverts Loop) Techniques

    SciTech Connect

    Aceves, S.

    2015-10-26

    The Sieverts loop is an inexpensive, robust and reliable methodology for calculating hydrogen absorption in materials [1]. In this approach, we start by storing a sample of the material being tested in the volume Vcell (Figure 1) and initiate the process by producing a high vacuum in the system while the material sample is heated to eliminate (most of) the hydrogen and other impurities previously absorbed. The system typically operates isothermally, with the volume Vref at ambient temperature and the sample at a temperature of interest – high enough to liquefy the alloy for the current application to nuclear fusion.

  20. Vitamin A equivalency and apparent absorption of beta-carotene in ileostomy subjects using a dual-isotope dilution technique.

    PubMed

    Van Loo-Bouwman, Carolien A; Naber, Ton H J; van Breemen, Richard B; Zhu, Dongwei; Dicke, Heleen; Siebelink, Els; Hulshof, Paul J M; Russel, Frans G M; Schaafsma, Gertjan; West, Clive E

    2010-06-01

    The objective was to quantify the vitamin A equivalency of beta-carotene in two diets using a dual-isotope dilution technique and the apparent beta-carotene absorption as measured by the oral-faecal balance technique. Seventeen healthy adults with an ileostomy completed the 4-week diet-controlled, cross-over intervention study. Each subject followed both diets for 2 weeks: a diet containing vegetables low in beta-carotene content with supplemental beta-carotene in salad dressing oil ('oil diet'; mean beta-carotene intake 3.1 mg/d) and a diet containing vegetables and fruits high in beta-carotene content ('mixed diet'; mean beta-carotene intake 7.6 mg/d). Daily each subject consumed a mean of 190 microg [13C10]beta-carotene and 195 microg [13C10]retinyl palmitate in oil capsules. The vitamin A equivalency of beta-carotene was calculated as the dose-corrected ratio of [13C5]retinol to [13C10]retinol in serum. Apparent absorption of beta-carotene was determined with oral-faecal balance. Isotopic data quantified a vitamin A equivalency of [13C10]beta-carotene in oil of 3.6:1 (95 % CI 2.8, 4.6) regardless of dietary matrices differences. The apparent absorption of (labelled and dietary) beta-carotene from the 'oil diet' (30 %) was 1.9-fold higher than from the 'mixed diet' (16 %). This extrinsic labelling technique can measure precisely the vitamin A equivalency of beta-carotene in oil capsules, but it does not represent the effect of different dietary matrices.

  1. Low-level optical absorption phenomena in organic thin films for solar cell applications investigated by highly sensitive photocurrent and photothermal techniques

    NASA Astrophysics Data System (ADS)

    Goris, Ludwig J.; Haenen, Ken; Nesladek, Milos; Poruba, A.; Vanecek, M.; Wagner, P.; Lutsen, Laurence J.; Manca, Jean; Vanderzande, Dirk; De Schepper, Luc

    2004-09-01

    Optical absorption phenomena and in particular sub band gap absorption features are of great importance in the understanding of processes of charge generation and transport in organic pure and composite semiconductor films. To come towards this objective, an alternative and high sensitive spectroscopic approach is introduced to examine the absorption of light in pure and compound organic semiconductors. Because sub band gap absorption features are typically characterized by very low absorption coefficients, it is not possible to resolve them using common transmission and reflection measurements and high sensitive alternatives are needed. Therefore, a combination of photocurrent (Constant Photocurrent Method CPM/Fourier Transform Photocurrent Spectroscopy FT-PS) and photothermal techniques (Photothermal Deflection Spectroscopy PDS) has been used, increasing sensitivity by a factor of thousand, reaching detectable absorption coefficients ((E) down to 0.1 cm-1. In this way, the dynamic range of measurable absorption coefficients is increased by several orders of magnitude compared to transmission/reflection measurements. These techniques have been used here to characterize ground state absorption of thin films of MDMO-PPV, PCBM and a mixture of both materials in a 1:4 ratio, as typically used in a standard active layer in a fully organic solar cell. The spectra reveal defect related absorption phenomena and significant indication of existing interaction in the ground state between both materials, contrary to the widely spread conviction that this is not the case. Experimental details of the techniques and measurement procedures are explained.

  2. Remote-Sensing Technique for Determination of the Volume Absorption Coefficient of Turbid Water

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Arnone, Robert A.; Gould, Richard W., Jr.; Terrie, Gregory E.; Ladner, Sherwin D.; Wood, Christoper G.

    1998-07-01

    We use remote-sensing reflectance from particulate R rs to determine the volume absorption coefficient a of turbid water in the 400 700-nm spectral region. The calculated and measured values of a ( ) show good agreement for 0 . 5 a 10 (m 1 ). To determine R rs from a particulate, we needed to make corrections for remote-sensing reflectance owing to surface roughness S rs . We determined the average spectral distribution of S rs from the difference in total remote-sensing reflectance measured with and without polarization. The spectral shape of S rs showed an excellent fit to theoretical formulas for glare based on Rayleigh and aerosol scattering from the atmosphere.

  3. Multilayer thin film design for far ultraviolet polarizers using an induced transmission and absorption technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    An explanation of induced transmission for spectral regions excluding the far ultraviolet (FUV) is given to better understand how induced transmission and absorption can be used to design effective polarizers in the FUV spectral region. We achieve high s-polarization reflectance and a high degree of polarization (P equals (Rs-Rp)/(Rs+Rp)) by means of a MgF2/Al/MgF2 three layer structure on an opaque thick film of Al as the substrate. For example, our polarizer designed for the Lyman-alpha line (lambda equals 121.6 nm) has 87.95 percent reflectance for the s-polarization case and 0.43 percent for the p-polarization case, with a degree of polarization of 99.03 percent. If a double reflection polarizer is made with this design, it will have a degree of polarization of 99.99 percent and s-polarization throughput of 77.35 percent.

  4. A Low-Cost Quantitative Absorption Spectrophotometer

    ERIC Educational Resources Information Center

    Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd

    2012-01-01

    In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…

  5. Infrared Spectrophotometry of NEAR Target Asteroids

    NASA Astrophysics Data System (ADS)

    Rivkin, A. S.; Clark, B. E.; Lebofsky, L. A.

    1996-09-01

    Water and the OH radical, both in free and bound forms, have strong absorption features near 3 mu m, observed on many asteroids since the late 1970's (Lebofsky 1978, Feierberg et al. 1985). A knowledge of which asteroids have hydration and where hydrated asteroids are located gives important insights into the conditions prevailing near the beginning of solar system history. We have performed spectrophotometry of the NEAR target asteroids 253 Mathilde and 433 Eros using 5 filters from 1.25--3.35 mu m. Our observations were made at the Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii in December 1995 and May 1996. We find 253 Mathilde to have a spectrum consistent with C-class asteroids in the near-IR, although without the 3-mu m water-of-hydration feature commonly seen on asteroids of this class ( ~ 60% of Cs are hydrated). The upper limit on a feature for Mathilde is 10%. Our JHK colors of 433 Eros are consistent with previous observations (Chapman and Morrison 1976, Icarus 28), and our 3-mu m data indicate no water of hydration, as expected for an S-class asteroid. No variability in colors was seen on these bodies within our uncertainty, although it is worth noting that 433 Eros was close to pole-on when observed, and that our observing run was short compared to the long rotation period (17.4 days) of 253 Mathilde (Mottola et al. 1995, Planet. Space Sci. 43). Binzel et al. (1996) compared 253 Mathilde to plausible meteorite analogs and found the best spectral matches to be unusual thermally metamorphosed carbonaceous chondrites or the shocked ``black'' ordinary chondrites (Hiroi et al. 1993, Science 261, Britt and Pieters 1989, LPSC 20). We too find the black chondrites to be acceptable spectral analogs, as well as samples of Murchison heated by Hiroi et al. (1993). This suggests that the surface of 253 Mathilde may be composed of either thermally metamorphosed carbonaceous chondrite or shock-darkened ordinary chondrite. Combining our data with the data of

  6. Pseudorandom Noise Code-Based Technique for Thin Cloud Discrimination with CO2 and O2 Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  7. Fabrication of controllable form submicrometer structures on positive photoresist by one-photon absorption direct laser writing technique

    NASA Astrophysics Data System (ADS)

    Tong, Quang Cong; Do, Minh Thanh; Journet, Bernard; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-04-01

    We demonstrate a very simple and low-cost method based on one-photon absorption direct laser writing technique to fabricate arbitrary two-dimensional (2D) polymeric submicrometer structures with controllable form. In this technique, a continuous-wave green laser beam (532 nm) with very weak power is tightly focused into a positive photoresist (S1805) by a high numerical aperture (NA) objective lens (OL), depolymerizing the polymer in a local submicrometer region. The focusing spot is then moved in a controllable trajectory by a 3D piezo translation stage, resulting in desired structures. The low absorption effect of the photoresist at the excitation wavelength allows obtaining structures with submicrometer size and great depth. In particular, by controlling the exposure dose, e.g. the scanning speed, and the scanning configuration, the structures have been created in positive (cylindrical material in air) or negative (air holes) form. The 2D square structures with periods in between 0.6 μm and 1 μm and with a feature size of about 150 nm have been demonstrated with an OL of NA = 0.9 (air-immersion). The fabricated results are well consistent with those obtained numerically by using a vectorial diffraction theory for high NA OLs. This investigation should be very useful for fabrication of photonic and plasmonic templates.

  8. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    SciTech Connect

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-01-07

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which is usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.

  9. Determination of Iron in Milk Powdermicrowave Digestion and Flame Atomicabsorption Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyuan; Li, Bo

    To investigate the conditions of microwave digestion for determining Iron in milk powder by flame atomic absorption spectrophotometry(FAAS), the content of iron in milk powder was determined by flame atomic absorption spectrophotometry after the samples were microwavely digested under different conditions. The optimum parameters for microwave digestion were obtained by the orthogonal test at last. The best optimum parameters for microwave digestion was that, the volume of digestion solution was 8mL, the reagent proportion for HNO3 and H2O2 was 4:1, the digestion time was 8min, the digestion pressure was 2.6 Mpa and the digestion power was 1000 W. The content of Iron in assayed milk powder was 0.0560mg/g. Microwave digestion was a time-saving and practical pretreatment of samples.

  10. 4-8 micron spectrophotometry of OH 0739-14

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Willner, S. P.; Rudy, R. J.; Capps, R. W.

    1981-01-01

    Spectrophotometry of the dust-embedded late-type star OH 0739-14 shows an absorption feature at 6.0 microns characteristic of H2O ice at temperatures significantly lower than 150 K, confirming the identification of H2O ice in the circumstellar shell in this source. The differences in the infrared spectra of HO 0739-14 and embedded molecular cloud sources are attributed to the different cloud lifetimes and temperature regimes in which the molecules are formed. A lower limit to the mass loss rate of 0.0001 solar mass per year is derived, based on the column density of ice and the size and the expansion velocity of the circumstellar cloud.

  11. Screening Technique for Lead and Cadmium in Toys and Other Materials Using Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Brouwer, Henry

    2005-01-01

    A simple procedure to quickly screen different consumer products for the presence of lead, cadmium, and other metals is described. This screening technique avoids expending a lot of preparation time on samples known to contain low levels of hazardous metals where only samples testing positive for the desired elements need to be analyzed…

  12. Limitation of fluorescence spectrophotometry in the measurement of naphthenic acids in oil sands process water.

    PubMed

    Lu, Weibing; Ewanchuk, Andrea; Perez-Estrada, Leonidas; Sego, Dave; Ulrich, Ania

    2013-01-01

    Fluorescence spectrophotometry has been proposed as a quick screening technique for the measurement of naphthenic acids (NAs). To evaluate the feasibility of this application, the fluorescence emission spectra of NAs extracted from three oil sands process water sources were compared with that of commercial NAs. The NAs resulting from the bitumen extraction process cannot be differentiated because of the similarity of the fluorescence spectra. Separation of the fluorescent species in NAs using high performance liquid chromatography with fluorescence detector proved unsuccessful. The acidic fraction of NAs is fluorescent but the basic fraction of NAs is not fluorescent, implying that aromatic acids in NAs give rise to the fluorescent signals. The concentrations of NAs in oil sands process water were measured by Fourier transform infrared spectroscopy (FTIR), fluorescence spectrophotometry and ultra high performance liquid chromatography-time of flight/mass spectrometry (UPLC-TOF/MS). Commercial Merichem and Kodak NAs are the best standards to use when measuring NAs concentration with FTIR and fluorescence spectrophotometry. In addition, the NAs concentrations measured by fluorescence spectrophotometry are about 30 times higher than those measured by FTIR and UPLC-TOF/MS. The findings in this study underscore the limitation of fluorescence spectrophotometry in the measurement of NAs.

  13. Multilayer Thin Film Polarizer Design for Far Ultraviolet using Induced Transmission and Absorption Technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Park, Jung Ho; Torr, Douglas G.

    1994-01-01

    Good theoretical designs of far ultraviolet polarizers have been reported using a MgF2/Al/MgF2 three layer structure on a thick Al layer as a substrate. The thicknesses were determined to induce transmission and absorption of p-polarized light. In these designs Al optical constants were used from films produced in ultrahigh vacuum (UHV: 10(exp -10) torr). Reflectance values for polarizers fabricated in a conventional high vacuum (p approx. 10(exp -6 torr)) using the UHV design parameters differed dramatically from the design predictions. Al is a highly reactive material and is oxidized even in a high vacuum chamber. In order to solve the problem other metals have been studied. It is found that a larger reflectance difference is closely related to higher amplitude and larger phase difference of Fresnel reflection coefficients between two polarizations at the boundary of MgF2/metal. It is also found that for one material a larger angle of incidence from the surface normal brings larger amplitude and phase difference. Be and Mo are found good materials to replace Al. Polarizers designed for 121.6 nm with Be at 60 deg and with Mo at 70 deg are shown as examples.

  14. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  15. A differential absorption technique to estimate atmospheric total water vapor amounts

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Middleton, Elizabeth

    1990-01-01

    Vertically integrated water-vapor amounts can be remotely determined by measuring the solar radiance reflected by the earth's surface with satellites or aircraft-based instruments. The technique is based on the method by Fowle (1912, 1913) and utilizes the 0.940-micron water-vapor band to retrieve total-water-vapor data that is independent of surface reflectance properties and other atmospheric constituents. A channel combination is proposed to provide more accurate results, the SE-590 spectrometer is used to verify the data, and the effects of atmospheric photon backscattering is examined. The spectrometer and radiosonde data confirm the accuracy of using a narrow and a wide channel centered on the same wavelength to determine water vapor amounts. The technique is suitable for cloudless conditions and can contribute to atmospheric corrections of land-surface parameters.

  16. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  17. Folic acid absorption determined by a single stool sample test--a double-isotope technique. The folic acid absorption capacity in children

    SciTech Connect

    Hjelt, K. )

    1989-10-01

    The fractional folic acid absorption (FAFol) was determined in 66 patients with various gastrointestinal diseases by a double-isotope technique, employing a single stool sample test (SSST) as well as a complete stool collection. The age of the patients ranged from 2.5 months to 16.8 years (mean 6.3 years). The test dose was administered orally and consisted of 50 micrograms of (3H)folic acid (monoglutamate) (approximately 20 muCi), carmine powder, and 2 mg 51CrCl3 (approximately 1.25 muCi) as the unabsorbable tracer. The whole-body radiation given to a 1-year-old child averaged 4.8 mrad only. The stool and napkin contents were collected and homogenized by the addition of 300 ml chromium sulfuric acid. A 300-ml sample of the homogenized stool and napkin contents, as well as 300 ml chromium sulfuric acid (75% vol/vol) containing the standards, were counted for the content of 51Cr in a broad-based well counter. The quantity of (3H)folic acid was determined by liquid scintillation, after duplicate distillation. Estimated by SSST, the FAFol, which employs the stool with the highest content of 51Cr corresponding to the most carmine-colored stool, correlated closely with the FAFol based on complete stool collection (r = 0.96, n = 39, p less than 0.0001). The reproducibility of FAFol determined by SSST was assessed from repeated tests in 18 patients. For a mean of 81%, the SD was 4.6%, which corresponded to a coefficient of variation of 5.7%.

  18. Identification of Organic Colorants in Art Objects by Solution Spectrophotometry: Pigments.

    ERIC Educational Resources Information Center

    Billmeyer, Fred W., Jr.; And Others

    1981-01-01

    Describes solution spectrophotometry as a simple, rapid identification technique for organic paint pigments. Reports research which includes analytical schemes for the extraction and separation of organic pigments based on their solubilities, and the preparation of an extensive reference collection of spectral curves allowing their identification.…

  19. An indoor test campaign of the tomography long path differential optical absorption spectroscopy technique.

    PubMed

    Mettendorf, K U; Hartl, A; Pundt, I

    2006-02-01

    In this study we validate the two-dimensional long path DOAS tomography measurement technique by means of an indoor experiment with well-known concentration distributions. The experiment was conducted over an area of 10 m x 15 m using one and two cylindrical polycarbonate containers of diameter 2 m, respectively, filled with NO2. The setup was realized with three of the multibeam instruments recently developed by Pundt and Mettendorf (Appl. Opt., 2005, in press), which allow the simultaneous measurement along at least four light paths each. The configuration consisted of twelve simultaneous light beams, 39 horizontal light paths in total, and 18 different cylinder positions inside the field. It was found that for the discretization and inversion technique shown here reconstructions of the concentration distributions from experimental data agree well with simulated reconstructions. In order to draw conclusions for atmospheric applications, numerical studies including instrumental errors were carried out. It was found that with the presented measurement setup it is possible to measure and reconstruct one or two NO2 plumes of 600 m diameter and average concentrations above 4.2 ppbv each, on a scale of 13.5 km2. Theoretical investigations show that it should be possible to localize and quantify 600 m diameter plumes of SO2 > 1.5 ppbv, H2CO > 6.3 ppbv, HONO > 3.2 ppbv, and ozone > 46.2 ppbv. Larger plumes can be measured with higher precision.

  20. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  1. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    PubMed

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  2. Determination of Mercury in an Assortment of Dietary Supplements Using an Inexpensive Combustion Atomic Absorption Spectrometry Technique

    PubMed Central

    Levine, Michael A.; Weber, Frank X.; Hu, Ye; Perlmutter, Jason; Grohse, Peter M.

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 μg per week. PMID:18924735

  3. DEMONSTRATION OF TUMOR-SPECIFIC ANTIGENS IN HUMAN COLONIC CARCINOMATA BY IMMUNOLOGICAL TOLERANCE AND ABSORPTION TECHNIQUES

    PubMed Central

    Gold, Phil; Freedman, Samuel O.

    1965-01-01

    Two methods were used to demonstrate the presence of tumor-specific antigens in adenocarcinomata of the human colon: (a) rabbits were immunized with extracts of pooled colonic carcinomata, and the antitumor antisera thus produced were absorbed with a pooled extract of normal human colon and with human blood components; (b) newborn rabbits were made immunologically tolerant to normal colonic tissue at birth, and were then immunized with pooled tumor material in adult life. Normal and tumor tissues were obtained from the same human donors in order to avoid misinterpretation of results due to individual-specific antigenic differences. The antisera prepared by both methods were tested against normal and tumor antigens by the techniques of agar gel diffusion, immunoelectrophoresis, hemagglutination, PCA, and immunofluorescence. Distinct antibody activity directed against at least two qualitatively tumor-specific antigens, or antigenic determinants, was detected in the antisera prepared by both methods and at least two additional tumor antigens were detected exclusively in antisera prepared by the tolerance technique. Whether these additional antigens were qualitatively different from normal tissue antigens, or merely present in tumor tissue in higher concentrations than in normal tissue has not as yet been determined. Furthermore, it was shown that the tumor-specific antibodies were not directed against bacterial contaminants or against the unusually high concentrations of fibrin found in many neoplastic tissues. It was concluded from these results that the pooled tumor extracts contained tumor-specific antigens not present in normal colonic tissue. Identical tumor-specific antigens were also demonstrated in a number of individual colonic carcinomata obtained from different human donors. PMID:14270243

  4. The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Suzuki, K.; Millan, L. F.; Kalmus, P. M.

    2015-06-01

    The feasibility of Differential Absorption Radar (DAR) for the spaceborne remote profiling of water vapor within the cloudy boundary layer is assessed by applying a radar instrument simulator to Large Eddy Simulations (LES). Frequencies near the 183 GHz water vapor absorption line attenuate too strongly to penetrate the large vapor concentrations that are ubiquitous in the boundary layer. However it is shown that lower frequencies between 140 and 170 GHz in the water vapor absorption continuum and on the wings of the absorption line, which are attenuated less efficiently than those near the line center, still have sufficient spectral variation of gaseous attenuation to perform sounding. The high resolution LES allow for assessment of the potential uncertainty in the method due to natural variability in thermodynamic and dynamic variables on scales smaller than the instrument field of view. The (160, 170) GHz frequency pair is suggested to best maximize signal for vapor profiling while minimizing noise due to undesired spectral variation in the target extinction properties. Precision in the derived water vapor is quantified as a function of the range resolution and the instrument precision. Assuming an observational spatial scale of 500 m vertical and 750 m Full Width at Half Maximum (FWHM) horizontal, measurement precision better that 1 g m-3 is achievable for stratocumulus scenes and 3 g m-3 for cumulus scenes given precision in radar reflectivity of 0.16 dBZ. Expected precision in the Column Water Vapor (CWV) is achievable between 0.5 and 2 kg m-2 on these same spatial scales. Sampling efficiency is quantified as a function of radar sensitivity. Mean biases in CWV due to natural variability in the target extinction properties do not exceed 0.25 kg m-2. Potential biases due to uncertainty in the temperature and pressure profile are negligible relative to those resulting from natural variability. Assuming a -35 dBZ minimum detectable signal, 40 % (21.9 %) of

  5. The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Suzuki, K.; Millán, L. F.; Kalmus, P. M.

    2015-09-01

    The feasibility of differential absorption radar (DAR) for the spaceborne remote profiling of water vapor within the cloudy boundary layer is assessed by applying a radar instrument simulator to large eddy simulations (LES). Frequencies near the 183 GHz water vapor absorption line attenuate too strongly to penetrate the large vapor concentrations that are ubiquitous in the boundary layer. However it is shown that lower frequencies between 140 and 170 GHz in the water vapor absorption continuum and on the wings of the absorption line, which are attenuated less efficiently than those near the line center, still have sufficient spectral variation of gaseous attenuation to perform sounding. The high resolution LES allow for assessment of the potential uncertainty in the method due to natural variability in thermodynamic and dynamic variables on scales smaller than the instrument field of view. The (160, 170) GHz frequency pair is suggested to best maximize signal for vapor profiling while minimizing noise due to undesired spectral variation in the target extinction properties. Precision in the derived water vapor is quantified as a function of the range resolution and the instrument precision. Assuming an observational spatial scale of 500 m vertical and 750 m full width at half maximum (FWHM) horizontal, measurement precision better that 1 g m-3 is achievable for stratocumulus scenes and 3 g m-3 for cumulus scenes given precision in radar reflectivity of 0.16 dBZ. Expected precision in the column water vapor (CWV) is achievable between 0.5 and 2 kg m-2 on these same spatial scales. Sampling efficiency is quantified as a function of radar sensitivity. Mean biases in CWV due to natural variability in the target extinction properties do not exceed 0.25 kg m-2. Potential biases due to uncertainty in the temperature and pressure profile are negligible relative to those resulting from natural variability. Assuming a -35 dBZ minimum detectable signal, 40 %(21.9 %) of

  6. Infrared spectrophotometry of OH 231.8 + 4.2 identified with OH 0739-14

    NASA Technical Reports Server (NTRS)

    Gillett, F. C.; Soifer, B. T.

    1976-01-01

    Infrared spectrophotometry from 2.1 to 4.1 microns and from 7.7 to 13.3 microns of the peculiar OH maser source OH 231.8 + 4.2 identified with OH 0739-14 is reported. Deep absorption features are found at 3.1 microns and from 8 to 13 microns, and are identified with absorption by cold ices and silicates in the line of sight to the infrared source. The infrared flux is also found to vary. These infrared observations present new difficulties in understanding the nature of the object. Several possibly useful observations of OH 231.8 + 4.2 are suggested.

  7. Analysis of diffential absorption lidar technique for measurements of anhydrous hydrogen chloride from solid rocket motors using a deuterium fluoride laser

    NASA Technical Reports Server (NTRS)

    Bair, C. H.; Allario, F.

    1977-01-01

    An active optical technique (differential absorption lidar (DIAL)) for detecting, ranging, and quantifying the concentration of anhydrous HCl contained in the ground cloud emitted by solid rocket motors (SRM) is evaluated. Results are presented of an experiment in which absorption coefficients of HCl were measured for several deuterium fluoride (DF) laser transitions demonstrating for the first time that a close overlap exists between the 2-1 P(3) vibrational transition of the DF laser and the 1-0 P(6) absorption line of HCl, with an absorption coefficient of 5.64 (atm-cm) to the -1 power. These measurements show that the DF laser can be an appropriate radiation source for detecting HCl in a DIAL technique. Development of a mathematical computer model to predict the sensitivity of DIAL for detecting anhydrous HCl in the ground cloud is outlined, and results that assume a commercially available DF laser as the radiation source are presented.

  8. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  9. Surface composition of Mercury from reflectance spectrophotometry

    NASA Technical Reports Server (NTRS)

    Vilas, Faith

    1988-01-01

    The controversies surrounding the existing spectra of Mercury are discussed together with the various implications for interpretations of Mercury's surface composition. Special attention is given to the basic procedure used for reducing reflectance spectrophotometry data, the factors that must be accounted for in the reduction of these data, and the methodology for defining the portion of the surface contributing the greatest amount of light to an individual spectrum. The application of these methodologies to Mercury's spectra is presented.

  10. Combined spectrophotometry and tensile measurements of human connective tissues: potentials and limitations.

    PubMed

    Ernstberger, Markus; Sichting, Freddy; Baselt, Tobias; Hartmann, Peter; Aust, Gabriela; Hammer, Niels

    2013-06-01

    Strain-dependent transmission data of nine iliotibial tract specimens are determined using a custom-built optical setup with a halogen light source and an industrial norm material testing machine. Polarized light microscopy and hematoxylin-eosin staining indicated that lateral contraction of collagen structures is responsible for total intensity variations during a 20-cycle preconditioning and a 5-cycle tensile test. Tensile force progress is opposite to total transmission progress. Due to dehydration, wavelength-specific radiation intensity shifting is determined during the test, primarily noticeable in a water absorption band between 1400 and 1500 nm. The results show the capability of integrating spectrophotometry technology into biomechanics for determining structural alterations of human collagen due to applied strain. Being more sensitive to drying, spectrophotometry may likely serve as a quality control in stress-strain testing of biological structures.

  11. An efficient and accurate technique to compute the absorption, emission, and transmission of radiation by the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.

    1990-01-01

    CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.

  12. Applications of the direct photon absorption technique for measuring bone mineral content in vivo. Determination of body composition in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.

    1972-01-01

    The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.

  13. Standardization and validation of a new atomic absorption spectroscopy technique for determination and quantitation of aluminium adjuvant in immunobiologicals.

    PubMed

    Mishra, Arti; Bhalla, Sumir Rai; Rawat, Sameera; Bansal, Vivek; Sehgal, Rakesh; Kumar, Sunil

    2007-10-01

    In the present study, Aluminium quantification in immunobiologicals has been described using atomic absorption spectroscopy (AAS) technique. The assay was found to be linear in 25-125 microg/ml Aluminium range. The procedure was found to be accurate for different vaccines with recoveries of external additions ranging between 93.26 and 103.41%. The mean Limit of Variation (L.V.) for both intra- and inter-assay precision was calculated to be 1.62 and 2.22%, respectively. Further the procedure was found to be robust in relation to digestion temperature, alteration in acid (HNO(3) and H(2)SO(4)) ratio used for sample digestion and storage of digested vaccine samples up to a period of 15 days. After validation, AAS method was compared for its equivalency with routinely used complexometric titration method. On simultaneously applying on seven different groups of both bacterial and viral vaccines, viz., DPT, DT, TT, Hepatitis-A and B, Antirabies vaccine (cell culture) and tetravalent DPT-Hib, a high degree of positive correlation (+0.85-0.998) among AAS and titration methods was observed. Further AAS method was found to have an edge over complexometric titration method that a group of vaccines, viz., ARV (cell culture, adsorbed) and Hepatitis-A, in which Aluminium estimation is not feasible by pharmacopoeial approved complexometric titration method (possibly due to some interference in the sample matrix), this newly described and validated AAS assay procedure delivered accurate and reproducible results.

  14. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range.

    PubMed

    Leidinger, M; Fieberg, S; Waasem, N; Kühnemann, F; Buse, K; Breunig, I

    2015-08-24

    We employ three highly sensitive spectrometers: a photoacoustic spectrometer, a photothermal common-path interferometer and a whispering-gallery-resonator-based absorption spectrometer, for a comparative study of measuring the absorption coefficient of nominally transparent undoped, congruently grown lithium niobate for ordinarily and extraordinarily polarized light in the wavelength range from 390 to 3800 nm. The absorption coefficient ranges from below 10(-4) cm(-1) up to 2 cm(-1). Furthermore, we measure the absorption at the Urbach tail as well as the multiphonon edge of the material by a standard grating spectrometer and a Fourier-transform infrared spectrometer, providing for the first time an absorption spectrum of the whole transparency window of lithium niobate. The absorption coefficients obtained by the three highly sensitive and independent methods show good agreement.

  15. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  16. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    NASA Technical Reports Server (NTRS)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  17. Reliability of a new technique for the determination of vitamin B12 absorption in children: single stool sample test--a double isotope technique

    SciTech Connect

    Hjelt, K.

    1986-03-01

    The fractional vitamin B12 absorption (FAB12) was determined in 39 patients with various gastrointestinal diseases by a double-isotope technique, employing a single stool sample test (SSST), as well as a complete stool collection. The age of the patients ranged from 2.5 months to 16.2 years (mean 5.0 years). The test dose was administered orally and consisted of 0.5-4.5 micrograms of /sup 57/CoB12 (approximately 0.05 microCi), carmine powder, and 2 mg /sup 51/CrCl/sub 3/ (approximately 1.25 microCi) as the inabsorbable tracer. The wholebody radiation to a 1-year-old child averaged only 20 mrad. The stool and napkin was collected and homogenized by addition of 300 ml chromium sulfuric acid. A 300-ml sample of the homogenized stool and napkin, as well as 300 ml chromium sulfuric acid (75% v/v) containing the standards, were counted in a broad-based well counter. The FAB12 determined by SSST employing the stool with the highest content of /sup 51/Cr (which corresponded to the most carmine-colored stool) correlated closely to the FAB12 based on complete stool collection (r = 0.98, n = 39, p less than 0.001). The reproducibility of FAB12 determined by SSST was assessed from double assays in 19 patients. For a mean value of 12%, the SD was 3%, which corresponded to a coefficient of variation (CV) of 25%. The excretion of /sup 57/Co and /sup 51/Cr in the urine was examined in six patients with moderate to severe mucosal damage and was found to be low.

  18. [Light absorption by suspended particulate matter in Chagan Lake, Jilin].

    PubMed

    Wang, Yuan-Dong; Liu, Dian-Wei; Song, Kai-Shan; Zhang, Bai; Wang, Zong-Ming; Jiang, Guang-Ji; Tang, Xu-Guang; Lei, Xiao-Chun; Wu, Yan-Qing

    2011-01-01

    Spectral characteristics and the magnitudes of light absorption by suspended particulate matter were determined by spectrophotometry in this optically complex Lake Chagan waters for the purpose of surveying the natural variability of the absorption coefficients to parameterize the bio-optical models for converting satellite or in-situ water reflectance signatures into water quality information. Experiments were carried out on seasonal frozen Lake Chagan, one representative inland case-2 water body in Northeast of China. Particulate absorption properties analyzed using the field data on July 15th and October 12th 2009 were measured using the quantitative filter technique to produce absorption spectra containing several fractions that could be attributed to two main optical active constituents (OACs) phytoplankton pigments and non-algal particulates (mineral sediments, and organic detritus). Results suggested that the suspended particulate matter (SPM) concentration was higher while phytoplankton biomass (chlorophyll-a concentration) was lower in July and that in October. The spectral shape of total suspended particulate matter resembled that of non-algal particulates which contributed greater than phytoplankton in total particulate absorption during both periods. An obvious absorption peak occurring at around 440 nm exhibited an increase in phytoplankton contribution in October. Non-algal particulate absorption at 440 nm (a(NAP) (440)) had better correlation with total suspended particulate matter concentration than that with chlorophyll-a over the two periods. Light absorption by phytoplankton pigments in the Chagan lake region was generally lower than that of non-algal components. Chl. a dominating phytoplankton pigment composition functioned exponentially with its absorption coefficients at 440 and 675 nm specifically, the average values of which in July were 0.146 8 m2 x mg(-1) and 0.050 3 respectively while in October they were 0.153 3 and 0.013 2 m2 x mg(-1

  19. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  20. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-06-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2- (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2- species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2-, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.

  1. Excitonic emission and absorption resonances in V0.25W0.75Se2 single crystals grown by direct vapour transport technique

    NASA Astrophysics Data System (ADS)

    Solanki, G. K.; Pataniya, Pratik; Sumesh, C. K.; Patel, K. D.; Pathak, V. M.

    2016-05-01

    A systematic study on emission and absorption spectra of vanadium mixed tungsten diselenide single crystals grown by direct vapour transport (DVT) technique is reported. The grown crystals were characterized by energy dispersive analysis of X-ray (EDAX), which gives the confirmation about the stoichiometry. The structural characterizations were accomplished by X-ray diffraction (XRD), surface morphology and transmission electron microscopy (TEM). These characterizations were indicating the growth of V0.25W0.75Se2 single crystal from vapour phase. The optical response of this material has been observed by combination of UV-vis-NIR spectroscopy and photo luminescence (PL) spectroscopy. A detailed study of excitonic emission and absorption resonances was carried out on grown crystals. The energy band gap was calculated for indirect allowed transition with absorbed and emitted phonon. Additionally, absorption tail for grown crystal is found to obey the Urbach's rule.

  2. CVF spectrophotometry of Pluto - Correlation of composition with albedo. [circularly variable filter

    NASA Technical Reports Server (NTRS)

    Marcialis, Robert L.; Lebofsky, Larry A.

    1991-01-01

    The present time-resolved, 0.96-2.65-micron spectrophotometry for the Pluto-Charon system indicates night-to-night variations in the depths of the methane absorptions such that the bands' equivalent width is near minimum light. The interpretation of these data in terms of a depletion of methane in dark regions of the planet, relative to bright ones, is consistent with the Buie and Fink (1987) observations. The near-IR spectrum of Pluto seems to be dominated by surface frost. It is suggested that the dark equatorial regions of Pluto are redder than those of moderate albedo.

  3. CVF spectrophotometry of Pluto - Correlation of composition with albedo. [Circularly variable filter

    SciTech Connect

    Marcialis, R.L.; Lebofsky, L.A. Arizona Univ., Tucson )

    1991-02-01

    The present time-resolved, 0.96-2.65-micron spectrophotometry for the Pluto-Charon system indicates night-to-night variations in the depths of the methane absorptions such that the bands' equivalent width is near minimum light. The interpretation of these data in terms of a depletion of methane in dark regions of the planet, relative to bright ones, is consistent with the Buie and Fink (1987) observations. The near-IR spectrum of Pluto seems to be dominated by surface frost. It is suggested that the dark equatorial regions of Pluto are redder than those of moderate albedo. 28 refs.

  4. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  5. Influence of Ga doping ratio on the saturable absorption mechanism in Ga doped ZnO thin solid films processed by sol–gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.; Byrappa, K.

    2017-03-01

    In the present study, the nonlinear optical properties of sol–gel spin coated gallium doped zinc oxide (GZO) thin solid films are explored with nanosecond laser pulses using the z-scan technique. The higher doping ratios of Ga result in a large redshift of the energy gap (0.38 eV) due to the existence of enhanced grain boundary defects in GZO films. A positive nonlinear absorption coefficient is observed in undoped 1 at.wt.% GZO and 2 at.wt.% GZO films, and a negative nonlinear absorption coefficient in 3 at.wt.% GZO film. Fewer defects in undoped 1% GZO and 2% GZO films resulted in reverse saturable absorption (RSA), whereas a saturable absorption (SA) mechanism is observed in 3% GZO films and is attributed to the enhanced defect concentration in the band structure of GZO. However, all the films showed a self-defocusing mechanism, derived by a closed aperture z-scan technique. The present work sheds light on the defect mechanism involved in the observed nonlinear properties of GZO films.

  6. Optical imagery and spectrophotometry of CTB 80

    NASA Technical Reports Server (NTRS)

    Hester, J. Jeff; Kulkarni, Shrinivas R.

    1989-01-01

    Narrow-band imagery and spectrophotometry of the central region of CTB 80 are presented. The images show weak forbidden O III and ubiquitous filamentary forbidden S II and H-alpha emission from the extended radio lobes in which the core is embedded. The data indicate that the extended component is shock heated. Balmer line-dominated emission is observed around the perimeter of the core. Assuming that the volume of the radio shell is similar to the volume of the thermal shell, it is found that a magnetic field of about 600 microG and a cosmic-ray proton-to-electron ratio of about 200 are required to explain the pressure and synchrotron volume emissivity in the radio shell. It is suggested that the optical emission form the core of CTB 80 arises behind shocks which are being driven into a magnetized thermal plasma by the confined relativistic wind from PSR 1951+32.

  7. Spectrophotometry of the shell around AG Carinae

    NASA Technical Reports Server (NTRS)

    Mitra, P. Mila; Dufour, Reginald J.

    1990-01-01

    Spatially-resolved long-slit spectrophotometry are presented for two regions of the shell nebula around the P-Cygni variable star AG Carinae. The spectra cover the 3700-6800 A wavelength range. Emission-line diagnostics are used to derive extinction, electron temperatures, and densities for various positions in the nebula. The chemical abundances and ionization structure are calculated and compared with other types of planetary nebulae and shells around other luminous stars. It is found that the N/O and N/S ratios of Ag Car are high compared to solar neighborhood ISM values. The O/H depletion found for the AG Car shell approaches that found in the condensations of the Eta Car system.

  8. An overview of liquid phase microextraction approaches combined with UV-Vis spectrophotometry.

    PubMed

    Dehghani Mohammad Abadi, Malihe; Ashraf, Narges; Chamsaz, Mahmoud; Shemirani, Farzaneh

    2012-09-15

    Ultraviolet and visible spectrophotometer has become a popular analytical instrument in the modern day laboratories. However, the low concentrations of many analytes in samples make it difficult to directly measure them by UV-Vis spectrophotometry. This overview focuses on the combinations of microvolume UV-Vis spectrophotometry with miniaturized approaches to sample preparation, namely, single drop microextraction (SDME), dispersive liquid-liquid microextraction (DLLME), cold induced aggregation microextraction (CIAME), in situ solvent formation microextraction (ISSFME), ultrasound assisted emulsification microextraction (USAEME), solidified floating organic drop microextraction (SFODME), and hollow fiber based liquid phase microextraction (HF-LPME) to improve both the selectivity and sensitivity. Integration of these techniques provides unique advantages which include availability, simplicity of operation, low cost, speed, precision and accuracy; hence making them a powerful tool in chemical analysis.

  9. [Noninvasive total hemoglobin monitoring based on multiwave spectrophotometry in obstetrics and gynecology].

    PubMed

    Pyregov, A V; Ovechkin, A Iu; Petrov, S V

    2012-01-01

    Results of prospective randomized comparative research of 2 total hemoglobin estimation methods are presented. There were laboratory tests and continuous noninvasive technique with multiwave spectrophotometry on the Masimo Rainbow SET. Research was carried out in two stages. At the 1st stage (gynecology)--67 patients were included and in second stage (obstetrics)--44 patients during and after Cesarean section. The standard deviation of noninvasive total hemoglobin estimation from absolute values (invasive) was 7.2 and 4.1%, an standard deviation in a sample--5.2 and 2.7 % in gynecologic operations and surgical delivery respectively, that confirms lack of reliable indicators differences. The method of continuous noninvasive total hemoglobin estimation with multiwave spectrophotometry on the Masimo Rainbow SET technology can be recommended for use in obstetrics and gynecology.

  10. Resonance lamp absorption technique for simultaneous determination of the OH concentration and temperature at 10 spatial positions in combustion environments

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Gregory, Ray W.

    1994-01-01

    A rugged, easy to implement, line-of-sight absorption instrument which utilizes a low pressure water vapor microwave discharge cell as the light source, has been developed to make simultaneous measurements of the OH concentration and temperature at 10 spatial positions. The design, theory, and capability of the instrument are discussed. Results of the measurements obtained on a methane/air flat flame burner are compared with those obtained using a single-frequency, tunable dye laser system.

  11. Near-infrared spectrophotometry of Titan

    NASA Technical Reports Server (NTRS)

    Trafton, L. M.

    1975-01-01

    Several unusual features in the near-IR spectrum of Titan are examined. Observations during four apparitions establish the reality of the S(1) absorption at 8150.7 A, but the existence of the S(O) absorption at 8272.7 A will require further sightings to become definitively established. These two features are particularly important, as they bear on the abundance of H2 in Titan's atmosphere.

  12. Optical systems modeling and experimental realization of pump and probe technique: investigation of nonlinear absorption in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Golinskaya, A.; Ezhova, K.; Kozlova, M.; Dneprovskii, V.

    2016-04-01

    Two optical systems modeling of laser and broadband radiation focusing, that is necessary for realization of the pump and probe method, was carried out in this work. Modeling was utilized to construct experimental setup for transmission spectra measuring of studied sample by probe nanosecond broadband radiation (coumarin photoluminescence) depending on the intensity of the nanosecond laser pump pulses. The saturation effect of absorption and the induced charge Stark-effect coexistence and predominate issue of these effects are determined by power of optical excitation. In dependence of tuning of excitation radiation frequency from basic exciton transition frequency nonlinear effects in colloidal CdSe/ZnS quantum dots has been investigated.

  13. Evanescent wave absorption based fiber optic pH sensor prepared by dye doped sol-gel immobilization technique

    NASA Astrophysics Data System (ADS)

    Gupta, B. D.; Sharma, D. K.

    1997-02-01

    A fiber optic pH sensor based on evanescent wave absorption is presented. To prepare the probe a small length of the cladding is removed from the middle portion of the fiber. A thin porous film of glass with pH-sensitive dye entrapped in it is deposited on the surface of the unclad portion of the fiber using sol-gel technology. The sensor response and its dynamic range are reported for phenol red, cresol red and bromophenol blue dyes. The sol-gel process has been found to increase the dynamic range of the pH sensor.

  14. Determination of cadmium and lead in urine by derivative flame atomic absorption spectrometry using the atom trapping technique

    NASA Astrophysics Data System (ADS)

    Han-wen, Sun; De-qiang, Zhang; Li-li, Yang; Jian-min, Sun

    1997-06-01

    A method is described for the determinations of cadmium and lead in urine by derivative flame atomic absorption spectrometry with a modified water-cooled stainless steel atom trapping tube. The effects of the trap position, the flame conditions, the coolant flow rates, and the collection time were studied. With a 1 min collection time, the characteristic concentrations (derivative absorbance of 0.0044) for cadmium and lead were 0.028 and 1.4 μg L -1, the detection limits (3σ) were 0.02 and 0.27 μg L -1, respectively. The detection limits and sensitivities of the proposed method were 2 and 3 orders of magnitude higher for 1-3 min collection time than those of conventional flame atomic absorption spectrometry for cadmium and lead, respectively. Urine samples from a small population of normal individuals have been analyzed for cadmium and lead by the proposed method. Satisfactory recoveries of 91-110% and 91-106%, for Cd and Pb were obtained with these urine samples.

  15. Wavelength calibration techniques and subtle surface and atmospheric absorption features in the Mariner 6, 7 IRS reflectance data

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Roush, T. L.; Martin, T. Z.; Pollack, James B.; Freedman, R.

    1994-01-01

    1994 marks the 25th anniversary of the Mariner 6 and 7 flyby missions to Mars. Despite its age, the Mariner 6,7 Infrared Spectrometer (IRS) data are a unique set of measurements that can provide important information about the Martian surface, atmospheric, and atmospheric aerosol composition. For certain mid-IR wavelengths, the IRS spectra are the only such spacecraft data obtained for Mars. At other wavelengths, IRS measured surface regions different from those measured by Mariner 9 or Phobos 2 and under different dust opacity conditions. We are interested in examining the IRS reflectance data in the 1.8 to 3.0 micron region because there are numerous diagnostic absorption features at these wavelengths that could be indicative of hydrated silicate minerals or of carbonate- or sulfate-bearing minerals. Groundbased telescopic data and recent Phobos ISM measurements have provided controversial and somewhat contradictory evidence for the existence of mineralogic absorption features at these wavelengths. Our goal is to determine whether any such features can be seen in the IRS data and to use their presence or absence to re-assess the quality and interpretations of previous telescopic and spacecraft measurements.

  16. An Improved Computational Technique for Calculating Electromagnetic Forces and Power Absorptions Generated in Spherical and Deformed Body in Levitation Melting Devices

    NASA Technical Reports Server (NTRS)

    Zong, Jin-Ho; Szekely, Julian; Schwartz, Elliot

    1992-01-01

    An improved computational technique for calculating the electromagnetic force field, the power absorption and the deformation of an electromagnetically levitated metal sample is described. The technique is based on the volume integral method, but represents a substantial refinement; the coordinate transformation employed allows the efficient treatment of a broad class of rotationally symmetrical bodies. Computed results are presented to represent the behavior of levitation melted metal samples in a multi-coil, multi-frequency levitation unit to be used in microgravity experiments. The theoretical predictions are compared with both analytical solutions and with the results or previous computational efforts for the spherical samples and the agreement has been very good. The treatment of problems involving deformed surfaces and actually predicting the deformed shape of the specimens breaks new ground and should be the major usefulness of the proposed method.

  17. Airborne infrared spectrophotometry of Mira variables

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.; Erickson, E. F.; Witteborn, F. C.

    1978-01-01

    Airborne spectrophotometric observations of R Cas near minimum and maximum light, R Leo near minimum, and NML Tau near maximum are reported which were obtained over the wavelength range from 1.2 to 4 microns with 1.5% resolution. The spectral energy distributions of the three stars at the indicated times are presented, and it is shown that the H2O bands at 1.4, 1.9, and 2.7 microns are clearly evident in all the spectra, while the absorption bands of CO at about 1.6 and 2.3 microns are probably present although they are masked by the strong water vapor features. The results indicate that water vapor is the dominant opacity source in the atmospheres of Mira variables, that R Leo and NML Tau may be fitted well over the entire spectrum by respective single temperatures of 2250 and 1800 K, and that R Cas near both minimum and maximum cannot be adequately described by one temperature over the entire wavelength range investigated. The shapes and depths of the absorption bands are determined together with the apparent angular diameter of each star and the equivalent widths of the H2O + CO absorption bands. It is concluded that water vapor absorption is more strongly correlated with color temperature than with spectral type for R Cas and R Leo.

  18. Spectrophotometry of Kuiper Belt Objects and Centaurs

    NASA Astrophysics Data System (ADS)

    Lederer, S. M.; Vilas, F.

    2002-09-01

    We present an ongoing study of Kuiper Belt Objects (KBOs) and Centaurs. We acquired broadband (UBVRI) and medium band photometry with the 4m Mayall telescope at Kitt Peak and the 1.8m Perkins telescope at Lowell Observatory. We present broadband colors of these objects and discuss the results of our search for absorption bands in the visible spectral region. Vilas (Icarus, 111) demonstrated that the existence of the 0.7um absorption feature in asteroids with solar-like colors was strongly correlated with the presence of the 3.0um water of hydration feature. The broad 0.7um absorption band is attributed to a charge-transfer in Fe-bearing hydrated silicates (phyllosilicates), which are a product of aqueous alteration. For aqueous alteration to take place, one must have water ice present in an object, and an energy source to heat the water ice to a liquid water phase. Water ice has already been discovered in some Centaurs (Luu et al. ApJ, 531; Brown AJ, 119), and Durda and Stern (Icarus, 145) estimate that KBOs experience collisional processing regularly throughout their lifetimes. The estimated impact energies are high enough to induce aqueous alteration. We undertook this study to search for evidence of the 0.7um feature in KBOs and Centaurs. We employed medium band Windhorst filters, located at 0.527, 0.666, 0.705, 0.755 and 0.848 um in conjunction with the Mosaic CCD to search for this absorption band, which extends from 0.57-0.83um. Initial analysis suggests that an absorption feature exists near 0.7um in the greyer objects but not the redder objects, following the correlations observed in asteroids. These data are consistent with the absorption band detected near 0.7um by de Bergh et al. (ACM 2002, Berlin) in visible spectra of 2000 EB173 and 2000 GN171. However, further analysis is required to confirm whether the absorption we see is due to phyllosilicates or another source. We will present the results from this analysis. This research was supported through the

  19. Determination of Two-Photon Absorption Cross-Section of Noble Gases for Calibration of Laser Spectroscopic Techniques

    SciTech Connect

    Rosa, M. I. de la; Perez, C.; Gruetzmacher, K.; Fuentes, L. M.

    2008-10-22

    The objective of our work is to apply two-photon polarization spectroscopy as a new calibration method for the determination of two-photon excitation cross-sections of noble gases, like Xe and Kr, which are commonly used for calibrations of MP-LIF techniques in other laboratories.

  20. Review of uranium bioassay techniques

    SciTech Connect

    Bogard, J.S.

    1996-04-01

    A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

  1. Determination of tributyltin in tissues and sediments by graphite furnace atomic absorption spectrometry

    SciTech Connect

    Stephenson, M.D.; Smith, D.R.

    1988-04-01

    A method for the determination of tributyltin (TBT) in tissue and sediments has been developed for environmental samples. The technique involves extraction with methylene chloride and isolation of TBT from mono- and dibutyltin with a sodium hydroxide wash. The TBT is then back extracted and converted to elemental Sn with nitric acid. Analysis is by Zeeman graphite furnace atomic absorption spectrophotometry. Recoveries of spiked samples were between 99% and 111% for mussel and fish tissues and 72% and 99% for various sediments. The limit of quantification was 0.0025 ..mu..g/g for tissue (on a wet weight basis). This technique was developed in response to their need to process large numbers of environmental samples with a minimum time investment.

  2. Detection of silver nanoparticles in seawater at ppb levels using UV-visible spectrophotometry with long path cells.

    PubMed

    Lodeiro, Pablo; Achterberg, Eric P; El-Shahawi, Mohammad S

    2017-03-01

    Silver nanoparticles (AgNPs) are emerging contaminants that are difficult to detect in natural waters. UV-visible spectrophotometry is a simple technique that allows detection of AgNPs through analysis of their characteristic surface plasmon resonance band. The detection limit for nanoparticles using up to 10cm path length cuvettes with UV-visible spectrophotometry is in the 0.1-10ppm range. This detection limit is insufficiently low to observe AgNPs in natural environments. Here we show how the use of capillary cells with an optical path length up to 200cm, forms an excellent technique for rapid detection and quantification of non-aggregated AgNPs at ppb concentrations in complex natural matrices such as seawater.

  3. [Comparison of two methods for determining G, A, M immunoglobulins (spectrophotometry and radial immunodiffusion)].

    PubMed

    Gamaleia, N B; Mondrus, K A

    1994-01-01

    Blood serum levels of immunoglobulins A, G, and M were measured by two methods, spectrophotometry and radial immunodiffusion. The results were in good correlation, this permitting the authors recommend spectrophotometry as a simpler and more objective method for such measurements.

  4. Development of a 2-micron Pulsed Differential Absorption Lidar for Atmospheric CO2 Concentration Measurement by Direct Detection Technique

    NASA Astrophysics Data System (ADS)

    Yu, J.; Singh, U. N.; Petros, M.; Bai, Y.

    2011-12-01

    Researchers at NASA Langley Research Center are developing a 2-micron Pulsed Differential Absorption Lidar instrument for ground and airborne measurements via direct detection method. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capbility by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. A key component of the CO2 DIAL system, transceiver, is an existing, airborne ready, robust hardware which can provide 250mJ at 10Hz with double pulse format specifically designed for DIAL instrument. The exact wavelengths of the transceiver are controlled by well defined CW seed laser source to provide the required injection source for generating on-and-off line wavelength pulses sequentially. The compact, rugged, highly reliable transceiver is based on the unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. They are designed to be adjustable and lockable and hardened to withstand vibrations that can occur in airborne operation. For the direct detection lidar application, a large primary mirror size is preferred. A 14 inch diameter telescope will be developed for this program. The CO2 DIAL/IPDA system requires many electronic functions to operate. These include diode, RF, seed laser, and PZT drivers; injection seeding detection and control; detector power supplies; and analog inputs to sample various sensors. Under NASA Laser Risk Reduction Program (LRRP), a control unit Compact Laser Electronics (CLE), is developed for the controlling the coherent wind lidar transceiver. Significant modifications and additions are needed to update it for CO2 lidar controls. The data acquisition system was built for ground CO2 measurement demonstration. The software will be updated for

  5. [Studies on the interaction between RNA with neutral red and determination of RNA by spectrophotometry].

    PubMed

    Si, Wen-Hui

    2007-06-01

    An analytical method for the determination of ribonucleic acid by spectrophotometry was established. At the maximum absorption wavelength for neutral red in B-R buffer solution, and under the best conditions, the decrease in the absorbance was linear with the amount of ribonucleic acid. The linearity range was 0.0-9.0 microg x mL(-1), the detection limit was 0.52 microg x mL(-1), and the correlation coeffient was 0.999 8. This method was simple, rapid, and selective. So its application to the determination of ribonucleic acid was satisfactory. The reaction mechanism was that the electrostatic interaction leads to molecular association of RNA with neutral red, resulting in anti-ion permutation and bonding reaction.

  6. Light Absorption Spectroscopy as a Paleoclimate and Correlation Technique for the CRP and CIROS-1 Drill Cores, McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Vanden Berg, M. D.; Jarrard, R. D.

    2001-12-01

    Coring at CIROS-1 and at the three drillsites of the Cape Roberts Project (CRP) provided a record of glacial influence in McMurdo Sound, Antarctica, during the Late Eocene and Oligocene. All four sites have well established sequence stratigraphies. Prior analyses of one CRP site, CRP-2, suggested a correlation between sequence stratigraphy and provenance, attributed to a link between local sea level and climate. However, sampling density was low. We have used light absorption spectroscopy (LAS) for high-resolution (0.5-1.0 m spacing) determination of downcore mineralogic variations at the four sites. LAS is a rapid, nondestructive mineral identification technique that measures the absorption spectrum, in visible and near-infrared bands (350-2500 nm), of light reflected from any surface. At these drillsites, relative abundance of smectite and illite is thought to reflect warm/humid (smectite-rich) versus cold/dry (illite-rich) paleoclimates. The 3300 LAS-based measurements of smectite/illite variations, confirmed by widely spaced XRD determinations, exhibit a pattern of generally higher smectite contents within highstand system tracts, suggesting that warmer climates correspond to higher local sea levels. Conversion of these high-resolution records from core depth to age is hampered by correlation uncertainties between the CIROS-1 and CRP cores. The smectite/illite curves, as well as other spectral characteristics, are very useful in correlating these Antarctic drill cores.

  7. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    PubMed

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  8. Controlled coupling of a single nanoparticle in polymeric microstructure by low one-photon absorption-based direct laser writing technique.

    PubMed

    Do, M T; Nguyen, D T T; Ngo, H M; Ledoux-Rak, I; Lai, N D

    2015-03-13

    We investigated the coupling of a single nanoparticle (NP) into a polymer-based photonic structure (PS). The low one-photon absorption microscopy with a two-step technique allowed us first to accurately determine the location of a NP and then to embed it as desired into an arbitrary PS. The coupling of a gold NP and a polymer-based PS was experimentally investigated showing a six-fold photon collection enhancement as compared to that of a NP in unpatterned film. The simulation results based on finite-difference time-domain calculation method confirmed this observation and showed a 2.86-fold enhancement in extraction efficiency thanks to the NP/PS coupling.

  9. Multi-filter spectrophotometry of quasar environments

    NASA Technical Reports Server (NTRS)

    Craven, Sally E.; Hickson, Paul; Yee, Howard K. C.

    1993-01-01

    A many-filter photometric technique for determining redshifts and morphological types, by fitting spectral templates to spectral energy distributions, has good potential for application in surveys. Despite success in studies performed on simulated data, the results have not been fully reliable when applied to real, low signal-to-noise data. We are investigating techniques to improve the fitting process.

  10. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  11. A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry for analysis of samples with high NaCl contents

    NASA Astrophysics Data System (ADS)

    Čánský, Zdeněk; Rychlovský, Petr; Petrová, Zuzana; Matousek, J. P.

    2007-03-01

    A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry has been developed for determination of lead and cadmium in samples with high salt contents. To separate the analyte from the sample matrix, the analyte was in-situ quantitatively electrodeposited on a platinum sampling capillary serving as the cathode (sample volume, 20 μL). The spent electrolyte containing the sample matrix was then withdrawn, the capillary with the analyte deposited was washed with deionized water and the analyte was stripped into a chemically simple electrolyte (5 g/L NH 4H 2PO 4) by reversing the polarity of the electrodeposition circuit. Electrothermal atomization using a suitable optimized temperature program followed. A fully automated manifold was designed for this coupled technique and the appropriate control software was developed. The operating conditions for determination of Pb and Cd in samples with high contents of inorganic salts were optimized, the determination was characterized by principal analytical parameters and its applicability was verified on analyses of urine reference samples. The absolute limits of detection for lead and cadmium (3 σ criterion) in a sample containing 30 g/L NaCl were 8.5 pg and 2.3 pg, respectively (peak absorbance) and the RSD values amounted to 1.6% and 1.9% for lead (at the 40 ng mL - 1 level) and cadmium (at the 4.0 ng mL - 1 level), respectively. These values (and also the measuring sensitivity) are superior to the results attained in conventional electrothermal atomic absorption spectrometric determination of Pb and Cd in pure solutions (5 g/L NH 4H 2PO 4). The sensitivity of the Pb and Cd determination is not affected by the NaCl concentration up to a value of 100 g/L, demonstrating an efficient matrix removal during the electrodeposition step.

  12. A Computer-aided Learning Exercise in Spectrophotometry.

    ERIC Educational Resources Information Center

    Pamula, Frederick

    1994-01-01

    Discusses the use of a computer simulation program in teaching the concepts of spectrophotometry. Introduces several parts of the program and program usage. Presents an assessment activity to evaluate students' mastery of material. Concludes with the advantages of this approach to the student and to the assessor. (ASK)

  13. Evolution of Instrumentation for UV-Visible Spectrophotometry. Part I.

    ERIC Educational Resources Information Center

    Altemose, Ines R.

    1986-01-01

    Traces the development of instruments used in spectrophotometry. Discusses how spectrophotometric measurements are made. Describes the color comparator, the filter photometer, and the spectrophotometer. Outlines the evolution of optical systems, including light sources, the monochromator, the photodetector, double-beam optics, and split-beam…

  14. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  15. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.

    2000-01-01

    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  16. Wavelength Anomalies in UV-Vis Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Tellinghuisen, J.

    2012-06-01

    Commercial spectrophotometers are great tools for recording absorption spectra of low-to-moderate resolution and high photometic quality. However, in the case of at least one such instrument, the Shimadzu UV-2101PC (and by assumption, similar Shimadzu models), the wavelength accuracy may not match the photometric accuracy. In fact the wavelength varies with slit width, spectral sampling interval, and even the specified range, with a smoothing algorithm invoked any time the spectrum includes more than 65 sampled wavelengths. This behavior appears not to be documented anywhere, but it has been present for at least 20 years and persists even in the latest software available to run the instrument. The wavelength shifts can be as large as 1 nm, so for applications where wavelength accuracy better than this is important, wavelength calibration must be done with care to ensure that the results are valid for the parameters used to record the target spectra.

  17. Spectrophotometry of 237 Stars in 7 Open Clusters

    NASA Astrophysics Data System (ADS)

    Clampitt, Lori; Burstein, David

    1997-08-01

    Spectrophotometry is presented for 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M39. The observations were taken by Lee McDonald and David Burstein using the Wampler single-channel scanner on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. Sixteen bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwidths 32Angstroms, 48 Angstroms or 64 Angstroms. Data are standardized to the Hayes-Latham system to mutual accuracy of 0.016 mag per passband. The accuracy of the spectrophotometry is assessed in three ways on a star-by-star basis. First, comparisons are made with previously published spectrophotometry for 19 stars observed in common. Second, (B-V) colors and uvby colors are compared for 236 stars and 221 stars, respectively. Finally, comparsions are made for 200 main sequence stars to the spectral synthesis models of Kurucz, fixing log g = 4.0 and [Fe/H] = 0.0, and only varying effective temperature. The accuracy of tests using uvby colors and the Kurucz models are shown to track each other closely, yielding an accuracy estimate (1 sigma ) of 0.01 mag for the 13 colors formed from bandpasses longward of the Balmer jump, and 0.02 mag for the 3 colors formed from the three bandpasses below the Balmer jump. In contrast, larger scatter is found relative to the previously published spectrophotometry of Bohm-Vitense & Johnson (16 stars in common) and Gunn & Stryker (3 stars). We also show that the scatter in the fits of the spectrophotometric colors and the uvby filter colors is a reasonable way to identify the observations of which specific stars are accurate to 1 sigma , 2 sigma , .... As such, the residuals from both the filter color fits and the Kurucz model fits are tabulated for each star where it was possible to make a comparison, so users of these data can choose stars according to the accuracy of the data

  18. Mathematical calculations of iron complex stoichiometry by direct UV-Vis spectrophotometry.

    PubMed

    Filipský, Tomáš; Říha, Michal; Hrdina, Radomír; Vávrová, Kateřina; Mladěnka, Přemysl

    2013-08-01

    The effects of iron-chelating agents on miscellaneous pathologies are currently largely tested. Due to various indications, different properties for chelators are required. A stoichiometry of the complex in relation to pH is one of the crucial factors. Moreover, the published data on the stoichiometry, especially concerning flavonoids, are equivocal. In this study, a new complementary approach was employed for the determination of stoichiometry in 10 iron-chelating agents, including clinically used drugs, by UV-Vis spectrophotometry at relevant pH conditions and compared with the standard Job's method. This study showed that the simple approach based on absorbance at the wavelength of complex absorption maximum was sufficient when the difference between absorption maximum of substance and complex was high. However, in majority of substances this difference was much lower (9-73 nm). The novel complementary approach was able to determine the stoichiometry in all tested cases. The major benefit of this method compared to the standard Job's approach seems to be its capability to reveal a reaction stoichiometry in chelators with moderate affinity to iron. In conclusion, using this complementary method may explain several previous contradictory data and lead to a better understanding of the underlying mechanisms of chelator's action.

  19. Airborne stellar spectrophotometry from 1.2 to 5.5 microns - Absolute calibration and spectra of stars earlier than M3

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.; Erickson, E. F.; Witteborn, F. C.

    1979-01-01

    Airborne infrared spectrophotometry (1.2-5.5 microns, 1.5% resolution) is presented for 13 stars which have been extensively used as infrared calibration objects: alpha Lyr, alpha CMA, alpha UMi, beta Dra, and mu Her; the K giants beta Gem, alpha UMa, alpha Boo, gamma-1 And, and alpha Tau; and the M giants beta And, beta Peg, and alpha Cet. These spectra, obtained using NASA's Kuiper Airborne Observatory and Lear Jet Observatory, are virtually free of the interfering effects of terrestrial absorptions. Absolute calibration of the spectrophotometry was based on the theoretical model of alpha Lyr by Schild, Peterson, and Oke (1971), which fits photometric measurements at shorter wavelengths. The resulting flux densities are compared with previous ground-based photometry.

  20. Tissue spectrophotometry and thermographic imaging applied to routine clinical prediction of amputation level viability

    NASA Astrophysics Data System (ADS)

    Hanson, Jon M.; Harrison, David K.; Hawthorn, Ian E.

    2002-06-01

    About 5% of British males over 50 years develop peripheral arterial occlusive disease. Of these about 2% ultimately require lower limb amputation. In 1995 we proposed a new technique using lightguide spectrophotometry to measure the oxygen saturation level of haemoglobin (SO2) in the skin as a method for predicting tissue viability. This technique, in combination with thermographic imaging, was compared with skin blood flow measurements using the I125)4- Iodoantipyrine (IAP) clearance technique. The optical techniques gave a sensitivity and selectivity of 1.0 for the prediction of successful outcome of a below knee amputation compared with a specificity of 93% using the traditional IAP technique at a below knee to above knee amputation ratio (BKA:AKA) of 75%. The present study assesses the routine clinical application of these optical techniques. The study is ongoing, but the data to date comprises 22 patients. 4 patients were recommended for above knee amputation (AKA) and 18 patients for below knee amputation on the basis of thermographic and tissue SO2 measurements. All but one of the predicted BKA amputations healed. The study to date produces evidence of 94% healing rate (specificity) for a BKA:AKA ratio of 82%. This compares favorably with the previous figures given above.

  1. Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method.

    PubMed

    Ravichandran, R; Rajendran, M; Devapiriam, D

    2014-03-01

    Quercetin found chelate cadmium ions, scavenge free radicals produced by cadmium. Hence new complex, quercetin with cadmium was synthesised, and the synthesised complex structures were determined by UV-vis spectrophotometry, infrared spectroscopy, thermogravimetry and differential thermal analysis techniques (UV-vis, IR, TGA and DTA). The equilibrium stability constants of quercetin-cadmium complex were determined by Job's method. The determined stability constant value of quercetin-cadminum complex at pH 4.4 is 2.27×10(6) and at pH 7.4 is 7.80×10(6). It was found that the quercetin and cadmium ion form 1:1 complex in both pH 4.4 and pH 7.4. The structure of the compounds was elucidated on the basis of obtained results. Furthermore, the antioxidant activity of the free quercetin and quercetin-cadmium complexes were determined by DPPH and ABTS assays.

  2. Suspended nanoparticles in surfactant media as a microextraction technique for simultaneous separation and preconcentration of cobalt, nickel and copper ions for electrothermal atomic absorption spectrometry determination.

    PubMed

    Dadfarnia, Shayessteh; Shakerian, Farid; Shabani, Ali Mohammad Haji

    2013-03-15

    The aim of this study was to describe a new method of microextraction based on the suspension of alumina nanoparticles in the surfactant media for simultaneous separation and preconcentration of the ultra-traces of cobalt, nickel and copper ions. In this technique, the alumina nanoparticles were suspended in the non-ionic surfactant solution of Triton X-114. The analytes in the sample solution were adsorbed onto the nanoparticles. After the phase separation based on the cloud point of the mixture at 40 °C, the nanoparticles settled down in the surfactant rich phase. Then 120 μL of nitric acid (3.0 mol L(-1)) was added to the surfactant rich phase which caused desorption of the analytes. Finally, the liquid phase was separated by centrifugation from the nanoparticles and was used for the quantification of the analytes by the electrothermal atomic absorption spectrometry (ETAAS). The parameters affecting the extraction and detection processes were optimized. Under the optimized experimental conditions (i.e. pH∼8, Triton X-114, 0.05% (v/v); temperature 40 °C), a sample volume of 25 mL resulted in the enhancement factors of 198, 205 and 206 and detection limits (defined as 3Sb/m) of 2.5, 2.8 and 2.6 ng L(-1) for Co(II), Ni(II) and Cu(II) respectively. The sorbent showed high capacity for these metal ions (30-40 mg g(-1) sorbent). The method was successfully applied to the determination of the analytes in natural water samples.

  3. Infrared Absorption of Methanol-Water Clusters Mn(H2O), n = 1-4, Recorded with the Vuv-Ionization Techniques

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fang; Lee, Yuan-Pern

    2016-06-01

    We investigated IR spectra in the CH- and OH-stretching regions of size-selected methanol-water clusters, Mn(H_2O) with M representing CH_3OH and n = 1-4, in a pulsed supersonic jet by using the VUV (vacuum-ultraviolet)-ionization/IR-depletion technique. The VUV light at 118 nm served as the source of ionization in a time-of-flight mass spectrometer. The tunable IR laser served as a source of dissociation for clusters before ionization. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increase, whereas spectra in the CH region are similar. For M(H_2O), absorption of a structure with H_2O as a proton donor was observed at 3570, 3682, and 3722 wn, whereas that of methanol as a proton donor was observed at 3611 and 3753 wn. For M2(H_2O), the OH-stretching band of the dangling OH of H_2O was observed at 3721 wn, whereas overlapped bands near 3425, 3472, and 3536 wn correspond to the OH-stretching modes of three hydrogen-bonded OH in a cyclic structure. For M3(H_2O), the dangling OH shifts to 3715 wn, and the hydrogen-bonded OH-stretching bands become much broader, with a band near 3179 wn having the smallest wavenumber. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted for the methanol-water clusters with the M06-2X/aug-cc-pVTZ method are consistent with our experimental results. For M4(H_2O), observed spectrum agree less with theoretical predictions, indicating the presence of isomers other than the most stable cyclic one. Spectra of Mn(H_2O) and Mn+1 are compared and the cooperative hydrogen-bonding is discussed.

  4. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  5. A time-resolved single-pass technique for measuring optical absorption coefficients of window materials under 100 GPa shock pressures.

    PubMed

    Li, Jun; Zhou, Xianming; Li, Jiabo

    2008-12-01

    An experimental method was developed to perform time-resolved, single-pass optical absorption measurements and to determine absorption coefficients of window materials under strong shock compression up to approximately 200 GPa. Experimental details are described of (i) a configuration to generate an in situ dynamic, bright, optical source and (ii) a sample assembly with a lithium fluoride plate to essentially eliminate heat transfer from the hot radiator into the specimen and to maintain a constant optical source within the duration of the experiment. Examples of measurements of optical absorption coefficients of several initially transparent single crystal materials at high shock pressures are presented.

  6. Determination of niobium in rocks, ores and alloys by atomic-absorption spectrophotometry.

    PubMed

    Husler, J

    1972-07-01

    Niobium, in concentrations as low as 0.02% Nb(2)O(5), is determined in a variety of materials without separation or enrichment. Chemical and ionization interferences are controlled, and sensitivity is increased, by maintaining the iron, aluminium, hydrofluoric acid and potassium content within certain broad concentration limits. There is close agreement with the results of analyses by emission spectrographic, electron microprobe and X-ray fluorescence methods.

  7. Determination of Trace Elements in Nickel Base Alloys by Atomic Absorption Spectrophotometry.

    DTIC Science & Technology

    elements such as silver (Ag), bismuth (Bi), cadmium (Cd), lead ( Pb ), phosphorus (P), and arsenic (As) in nickel alloys such as Udimet 500 without interference of other constituent elements. (Author)

  8. Sample preparation in determination of lead in garden vegetables by flame atomic absorption spectrophotometry.

    PubMed

    Preer, J R; Stephens, B R; Bland, C W

    1982-07-01

    Dry and wet ashing methods have been used in the analysis of garden vegetables for Pb. The reliability of wet ashing has been verified by the method of standard additions. Comparison of dry and wet ashing showed good agreement for a variety of garden vegetables. Sample size was more strictly limited for the wet-ashed samples, which led to lower sensitivity. Vegetable samples are commonly analyzed for a number of trace elements, which introduces additional constraints on sample preparation, notably because of Cd loss on dry ashing. Pretreatment with HNO3/H2SO4 ash aid eliminated Cd loss. Reliability of dry ashing with pretreatment was shown with NBS SRM Orchard Leaves, Pine Needles, Spinach, and Tomato Leaves. The analysis was insensitive to ashing temperature in the range 480-625 degrees C. A practical detection limit for the method is about 2 ppm Pb, dry weight basis (DWB). Care must be exercised to avoid contamination of the sample with lead at this level by improper handling. Segregation and acid washing of glassware and protection of the sample from contact with any object not demonstrably clean was necessary. No evidence was found of Pb contamination at this level from tap water washing of fresh vegetables, forced-air oven drying, or grinding with mortar and pestle. No special clean room facilities or laboratory air purification measures were used. Sensitivity was increased 3-fold by extraction with dithizone in CHCl3 followed by back-extraction into dilute HCl. Detection limits were not improved, however, because of variation in the extraction results. The instrumental method for assessing effective correction for back-ground absorbance showed adequate compensation, although comparison of direct and extractive determinations showed a small but significant difference between the methods of about 1 ppm Pb (DWB).

  9. Determination of Trace Elements in Nickel Base Gas Turbine Parts by Atomic Absorption Spectrophotometry.

    DTIC Science & Technology

    elements such as silver (Ag), bismuth (Bi), cadmium (Cd), and lead (Pb) in nickel base alloys such as IN100, B1900 and 713C , without interference from...the constituent elements. Failed and nonfailed gas turbine parts made of the above alloys were tested to ascertain whether trace amounts of these

  10. Soliton absorption spectroscopy

    PubMed Central

    Kalashnikov, V. L.; Sorokin, E.

    2010-01-01

    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique. PMID:21151755

  11. The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica

    NASA Astrophysics Data System (ADS)

    Cosentino, Salvatore; Mirabella, Salvatore; Miritello, Maria; Nicotra, Giuseppe; Lo Savio, Roberto; Simone, Francesca; Spinella, Corrado; Terrasi, Antonio

    2011-12-01

    The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are good candidate for third-generation solar cells. In this work, Ge QDs embedded in silica matrix have been synthesized through magnetron sputtering deposition and annealing up to 800°C. The thermal evolution of the QD size (2 to 10 nm) has been followed by transmission electron microscopy and X-ray diffraction techniques, evidencing an Ostwald ripening mechanism with a concomitant amorphous-crystalline transition. The optical absorption of Ge nanoclusters has been measured by spectrophotometry analyses, evidencing an optical bandgap of 1.6 eV, unexpectedly independent of the QDs size or of the solid phase (amorphous or crystalline). A simple modeling, based on the Tauc law, shows that the photon absorption has a much larger extent in smaller Ge QDs, being related to the surface extent rather than to the volume. These data are presented and discussed also considering the outcomes for application of Ge nanostructures in photovoltaics. PACS: 81.07.Ta; 78.67.Hc; 68.65.-k

  12. Ultraviolet spectrophotometry from Gemini 11 of stars in Orion

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Spear, G. G.; Kondo, Y.; Henize, K. G.

    1975-01-01

    Ultraviolet spectrophotometry in the wavelength region 2600-3600 A is reported for the bright early-type stars beta, eta, gamma, delta, iota, epsilon, sigma, zeta, and kappa Ori. The results are in good agreement with other observations, and, with the possible exception of the supergiants, are in good agreement with recent line-blanketed model atmospheres. There is evidence that the supergiants possess a small ultraviolet deficiency shortward of 3000 A relative to main-sequence stars of similar spectral type. The most extreme example of this phenomenon is the star kappa Ori.

  13. Spectrophotometry of 2 complete samples of flat radio spectrum quasars

    NASA Technical Reports Server (NTRS)

    Wampler, E. J.; Gaskell, C. M.; Burke, W. L.; Baldwin, J. A.

    1983-01-01

    Spectrophotometry of two complete samples of flat-spectrum radio quasars show that for these objects there is a strong correlation between the equivalent width of the CIV wavelength 1550 emission line and the luminosity of the underlying continuum. Assuming Friedmann cosmologies, the scatter in this correlation is a minimum for q (sub o) is approximately 1. Alternatively, luminosity evolution can be invoked to give compact distributions for q (sub o) is approximately 0 models. A sample of Seyfert galaxies observed with IUE shows that despite some dispersion the average equivalent width of CIV wavelength 1550 in Seyfert galaxies is independent of the underlying continuum luminosity. New redshifts for 4 quasars are given.

  14. The Use of Erythrosin B in Undergraduate Spectrophotometry Experiments

    NASA Astrophysics Data System (ADS)

    Stock, L. James, III

    1995-10-01

    The CMU chemistry department has met regulatory and waste disposal concerns by using a non-toxic food color in a general chemistry experiment. Erythrosin B was found to be a suitable alternative to Sodium Dichromate when teaching solution preparation and the principles of spectrophotometry. Students weigh a small mass of Erythrosin B and prepare several solutions that are measured in a spectrophotometer. From these a Beer's Law plot is constructed. Finally, concentrations of unknown solutions are determined using the spectrophotometer and the Beer's Law plot.

  15. Quantitation of heparosan with heparin lyase III and spectrophotometry.

    PubMed

    Huang, Haichan; Zhao, Yingying; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2014-02-15

    Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectrophotometer at 232 nm. We report a new method for the quantitative detection of heparosan with heparin lyase III and spectrophotometry that is safer and more specific than the traditional carbazole assay. In an optimized detection system, heparosan at a minimum concentration of 0.60 g/L in fermentation broth can be detected.

  16. A sensitive, spatially uniform photodetector for broadband infrared spectrophotometry

    SciTech Connect

    Iglesias, Enrique J.; Smith, Allan W.; Kaplan, Simon G

    2008-05-01

    We describe the design and performance of a liquid helium-cooled As:Si blocked-impurity-band photodetector system intended for spectrophotometry in the thermal infrared (2 to 30 {mu}m) spectral region. The system has been characterized for spectral sensitivity, noise, thermal stability, and spatial uniformity, and optimized for use with a Fourier-transform infrared spectrophotometer source for absolute goniometric reflectance measurements. Its performance is evaluated and compared to more common detector systems used in this spectral region, including room-temperature pyroelectric and liquid-N2-cooled photoconductive devices.

  17. Method for rapidly determining a pulp kappa number using spectrophotometry

    DOEpatents

    Chai, Xin-Sheng; Zhu, Jun Yong

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  18. Low resolution ultraviolet and optical spectrophotometry of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Slovak, M. H.

    1982-01-01

    Low resolution International Ultraviolet Explorer spectra combined with optical spectrophotometry provide absolute flux distributions for seven symbiotic variables from 1200 to 6450 A. For five stars (EG And, BF Cyg, CI Cyg, AG Peg, and Z And) the data are representative of the quiescent/out-of-eclipse energy distributions; for CH Cyg and AX Per, the observations were obtained following their atest outburst in 1977 and 1978, respectively. The de-reddened distributions reveal a remarkable diversity of both line spectra and continua. While the optical and near infrared regions lambda = 5500 A) are well represented by single component stellar models, multicomponent flux distributions are required to reproduce the ultraviolet continua.

  19. Quantitation of carboxyhaemoglobin in blood: external quality assessment of techniques.

    PubMed

    Barnett, K; Wilson, J F

    1998-06-01

    The performance of four dedicated carbon monoxide (CO)-oximeters (AVL, Chiron, IL, Radiometer), spectrophotometry with and without dithionite, spectrophotometry by second derivative, and the Whitehead and Worthington precipitation technique for the measurement of carboxyhaemoglobin in blood was compared by a mean of 136 participants in the United Kingdom National External Quality Assessment Scheme in 21 samples formulated to contain from 4% to 48% carboxyhaemoglobin. The dedicated instruments and spectrophotometry by second derivative were of significantly higher precision than the other techniques, producing fewer measurements rejected as being > 3 standard deviations from the sample mean and having a lower standard deviation for non-rejected measurements. The AVL instrument and spectrophotometry by second derivative had a significant positive bias compared to the other techniques. The Whitehead and Worthington method was of an unacceptably low precision.

  20. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-15

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM>FT>PFF>PCF>IFP>CFVP>FNT⩾DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R(2)=0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.

  1. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry

    NASA Astrophysics Data System (ADS)

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-01

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM > FT > PFF > PCF > IFP > CFVP > FNT ⩾ DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R2 = 0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.

  2. Determination of thiamazole in pharmaceutical samples by phosphorus molybdenum blue spectrophotometry.

    PubMed

    Huo, Jing'e; Li, Quanmin

    2012-02-15

    A novel method is established to determine thiamazole by phosphorus molybdenum blue spectrophotometry. The experiment indicates that PO(4)(3-) reacts with Mo(7)O(24)(6-) in 0.30mol/L H(2)SO(4) solution to form a product with phosphorus-molybdenum heteropoly acid ([H(2)PMo(12)O(40)](-)). Then [H(2)PMo(12)O(40)](-) is deoxidized to form phosphorus molybdenum blue (H(3)PO(4)·10MoO(3)·Mo(2)O(5)) by thiamazole. The amount of thiamazole can be determined based on the absorbance of phosphorus molybdenum blue (λ(max)=710nm). A good linear relationship is obtained between the absorbance and the concentration of thiamazole in the range of 0.035-70μg/mL. The equation of the linear regression is A=0.03384+0.00834c (μg/mL), with a linear correlation coefficient of 0.9990. The apparent molar absorption coefficient is 1.0×10(3)L/(molcm). The method has been successfully applied to the determination of thiamazole in pharmaceutical samples with satisfactory results, and recoveries are in the range of 99.6-100.6%.

  3. Optical and infrared spectrophotometry of the symbiotic system V1016 Cygni

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Rossano, George S.; Cohen, Ross D.; Puetter, R. C.

    1990-01-01

    Spectrophotometry from 0.46 to 1.3 micron of the peculiar emission-line object V1016 Cyg is presented. The optical region displays a weak continuum underlying the rich emission-line spectrum detailed in past studies. The infrared spectrum consists of prominent emission lines of H I, He I, He II, forbidden Ni, O I, and forbidden S III overlying a strong stellar continuum. The latter displays bands at 0.94 micron and 1.13 micron characteristic of a late-type, oxygen-rich giant as well as an absorption at 1.05 micron which is due to VO. The presence of these molecular features indicates a spectral class of M6 or later for the cool secondary. The reddening of the secondary does not appear to be much different from that of the emission lines. Among the infrared emission features is the rarely seen permitted transition of neutral oxygen at 1.1287 micron. Its presence at a strength comparable to O I 8446 A, together with the absence of O I 13164 A, confirms the result of Strafella that the strong O I lines arise primarily from fluorescent excitation by Ly-beta.

  4. Determination of boron in uranium aluminum silicon alloy by spectrophotometry and estimation of expanded uncertainty in measurement

    NASA Astrophysics Data System (ADS)

    Ramanjaneyulu, P. S.; Sayi, Y. S.; Ramakumar, K. L.

    2008-08-01

    Quantification of boron in diverse materials of relevance in nuclear technology is essential in view of its high thermal neutron absorption cross section. A simple and sensitive method has been developed for the determination of boron in uranium-aluminum-silicon alloy, based on leaching of boron with 6 M HCl and H 2O 2, its selective separation by solvent extraction with 2-ethyl hexane 1,3-diol and quantification by spectrophotometry using curcumin. The method has been evaluated by standard addition method and validated by inductively coupled plasma-atomic emission spectroscopy. Relative standard deviation and absolute detection limit of the method are 3.0% (at 1 σ level) and 12 ng, respectively. All possible sources of uncertainties in the methodology have been individually assessed, following the International Organization for Standardization guidelines. The combined uncertainty is calculated employing uncertainty propagation formulae. The expanded uncertainty in the measurement at 95% confidence level (coverage factor 2) is 8.840%.

  5. Spectrophotometry of comets Giacobini-Zinner and Halley

    NASA Technical Reports Server (NTRS)

    Tegler, Stephen C.; O'Dell, C. R.

    1987-01-01

    Optical window spectrophotometry was performed on comets Giacobini-Zinner and Halley over the interval 300-1000 nm. Band and band-sequence fluxes were obtained for the brightest features of OH, CN, NH, and C2, special care having been given to determinations of extinction, instrumental sensitivities, and corrections for Fraunhofer lines. C2 Swan band-sequence flux ratios were determined with unprecedented accuracy and compared with the predictions of the detailed equilibrium models of Krishna Swamy et al. (1977, 1979, 1981, and 1987). It is found that these band sequences do not agree with the predictions, which calls into question the assumptions made in deriving the model, namely resonance fluorescence statistical equilibrium. Suggestions are made as to how to resolve this discrepancy.

  6. Airborne spectrophotometry of Comet Halley from 5 to 9 microns

    NASA Technical Reports Server (NTRS)

    Campins, H.; Bregman, J. D.; Witteborn, F. C.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Allamandola, Louis J.; Tielens, Alexander G. G. M.

    1986-01-01

    Spectrophotometry from 5 to 9 microns (resolution = 0.02) of comet Halley was obtained from the Kuiper Airborne Observatory on 1985 Dec. 12.1 and 1986 April 8.6 and 10.5 UT. Two spectral features are apparent in all the observations, one from 5.24 to 5.6 microns, and the silicate emission feature which has an onset between 7 and 8 microns. There is no evidence for the 7.5 microns feature observed by the Vega 1 spacecraft; the large difference between the areal coverage viewed from the spacecraft and the airplane may explain the discrepancy. Color temperatures significantly higher than a blackbody indicate that small particles are abundant in the coma. Significant spatial and temporal variations in the spectrum show trends similar to those observed from the ground.

  7. Non-Heme Iron Absorption and Utilization from Typical Whole Chinese Diets in Young Chinese Urban Men Measured by a Double-Labeled Stable Isotope Technique

    PubMed Central

    Yang, Lichen; Zhang, Yuhui; Wang, Jun; Huang, Zhengwu; Gou, Lingyan; Wang, Zhilin; Ren, Tongxiang; Piao, Jianhua; Yang, Xiaoguang

    2016-01-01

    Background This study was to observe the non-heme iron absorption and biological utilization from typical whole Chinese diets in young Chinese healthy urban men, and to observe if the iron absorption and utilization could be affected by the staple food patterns of Southern and Northern China. Materials and Methods Twenty-two young urban men aged 18–24 years were recruited and randomly assigned to two groups in which the staple food was rice and steamed buns, respectively. Each subject received 3 meals containing approximately 3.25 mg stable 57FeSO4 (the ratio of 57Fe content in breakfast, lunch and dinner was 1:2:2) daily for 2 consecutive days. In addition, approximately 2.4 mg 58FeSO4 was administered intravenously to each subject at 30–60 min after dinner each day. Blood samples were collected from each subject to measure the enrichment of the 57Fe and 58Fe. Fourteen days after the experimental diet, non-heme iron absorption was assessed by measuring 57Fe incorporation into red blood cells, and absorbed iron utilization was determined according to the red blood cell incorporation of intravenously infused 58Fe SO4. Results Non-heme iron intake values overall, and in the rice and steamed buns groups were 12.8 ±2.1, 11.3±1.3 and 14.3±1.5 mg, respectively; the mean 57Fe absorption rates were 11±7%, 13±7%, and 8±4%, respectively; and the mean infused 58Fe utilization rates were 85±8%, 84±6%, and 85±10%, respectively. There was no significantly difference in the iron intakes, and 57Fe absorption and infused 58Fe utilization rates between rice and steamed buns groups (all P>0.05). Conclusion We present the non-heme iron absorption and utilization rates from typical whole Chinese diets among young Chinese healthy urban men, which was not affected by the representative staple food patterns of Southern and Northern China. This study will provide a basis for the setting of Chinese iron DRIs. PMID:27099954

  8. Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: study of preconcentration technique performance.

    PubMed

    Tsogas, George Z; Giokas, Dimosthenis L; Vlessidis, Athanasios G

    2009-04-30

    In this study three major types of preconcentration methods based upon different principles (cation exchange, physical absorption and hydrophobic extraction) were evaluated and optimized for the extraction and determination of three highly toxic heavy metals namely Cd, Pb and Sn by graphite furnace and hybrid generation atomic absorption spectrometry in real samples. The optimum analytical conditions were examined and the analytical features of each method were revealed and compared. Detection limits as low as 0.003-0.025 microg L(-1) for Cd(2+), 0.05-0.10 microg L(-1) for Pb(2+) and 0.1-0.25 microg L(-1) for Sn(4+) depending on the extraction method were obtained with RSD values between 3.08% and 6.11%. A preliminary assessment of the pollution status of three important natural ecosystems in Epirus region (NW Greece) was performed and some early conclusions were drawn and discussed.

  9. Extraction of full absorption peaks in airborne gamma-spectrometry by filtering techniques coupled with a study of the derivatives. Comparison with the window method.

    PubMed

    Guillot, L

    2001-01-01

    In this paper, an adaptation of a spectral profile analysis method, currently used in high-resolution spectrometry, to airborne gamma measurements is presented. A new algorithm has been developed for extraction of full absorption peaks by studying the variations in the spectral profile of data recorded with large-volume NaI detectors (16 l) with a short sampling time (2 s). The use of digital filters, taking into consideration the characteristics of the absorption peaks, significantly reduced the counting fluctuations, making detection possible based on study of the first and second derivatives. The absorption peaks are then obtained by modelling, followed by subtraction of the Compton continuum in the detection window. Compared to the conventional stripping ratio method, spectral profile analysis offers similar performance for the natural radioelements. The 137Cs 1SD detection limit is approximately 1200 Bq/m2 in a natural background of 200 Bq/kg 40K, 33 Bq/kg 238U and 33 Bq/kg 232Th. At low energy the very high continuum leads to detection limits similar to those obtained by the windows method, but the results obtained are more reliable. In the presence of peak overlaps, however, analysis of the spectral profile alone is not sufficient to separate the peaks, and further processing is necessary. Within the framework of environmental monitoring studies, spectral profile analysis is of great interest because it does not require any assumptions about the nature of the nuclides. The calculation of the concentrations from the results obtained is simple and reliable, since only the full absorption contributions are taken into consideration. A quantitative estimate of radioactive anomalies can thus be obtained rapidly.

  10. Broadband optical absorption enhancement of N719 dye in ethanol by gold-silver alloy nanoparticles fabricated under laser ablation technique

    NASA Astrophysics Data System (ADS)

    Al-Azawi, Mohammed A.; Bidin, Noriah; Abbas, Khaldoon N.; Bououdina, Mohamed; Azzez, Shrook A.

    2016-04-01

    The formation of gold-silver alloy nanoparticles (Au-Ag alloy NPs) by a two-step process with a pulsed Nd:YAG laser without any additives is presented. Mixtures of Au and Ag colloidal suspensions were separately obtained by 1064-nm laser ablation of metallic targets immersed in ethanol. Subsequently, the as-mixed colloidal suspensions were reirradiated by laser-induced heating at the second-harmonic generation (532 nm) for different irradiation periods of time. The absorption spectra and morphology of the colloidal alloys were studied as a function of exposure time to laser irradiation. Transmission electron microscopy revealed the formation of monodispersed spherical nanoparticles with a homogeneous size distribution in all the synthesized samples. UV-vis and photoluminescence spectroscopy measurements were also employed to characterize the changes in the light absorption and emission of N719 dye solution with different concentrations of Au-Ag colloidal alloys, respectively. The localized surface plasmon resonance (LSPR) of Au-Ag alloy NPs enhanced the absorption and fluorescence peak of the dye solution. The mixture of dye molecules with a higher concentration of alloy NPs exhibited an additional coupling of dipole moments with the LSPR, thereby contributing to the improvement of the optical properties of the mixture.

  11. Comparison of direct (X-ray diffraction and infrared spectrophotometry) and indirect (infrared spectrophotometry) methods for the analysis of alpha-quartz in airborne dusts.

    PubMed

    Kauffer, E; Masson, A; Moulut, J C; Lecaque, T; Protois, J C

    2005-11-01

    In this study, the alpha-quartz contents measured by different analytical techniques (X-ray diffraction, direct method; and infrared spectrophotometry, direct and indirect methods) were compared. The analyses were carried out on filters sampled in an industrial setting by means of a Dorr-Oliver cyclone. To verify the methodology used, filters loaded with pure alpha-quartz were also analysed. By and large, the agreement between the two direct methods was close on average, but on the basis of a comparison of the individual results, considerable differences exist. In absolute value, the mean relative deviation between the two techniques was <25% in only 47.8% of the cases. The results obtained by the indirect method (infrared) were on average 13% lower than the results obtained by the two direct methods with a more important difference (23%) for samples where calcite was identified by X-ray diffraction in comparison with those where it was not (8%). This underestimation, which was not owing to dust losses during preparation, is probably explained by the elimination of organic compounds during dust calcinations or by the transformation of mineral compounds. The indirect method introduces additional sample handling operations with more risk of material loss. When the quantity of calcined material was <0.4 mg, the weighing operations necessary to correct any losses of material resulted in considerable variability. In terms of overall uncertainty, it would be better in this case not to carry out correction and to employ an operating mode favouring the recovery of a maximum of material while accepting a bias of about 5-7%.

  12. Fourier transform infrared spectrophotometry for thin film monitors: computer and equipment integration for enhanced capabilities

    NASA Astrophysics Data System (ADS)

    Cox, J. Neal; Sedayao, J.; Shergill, Gurmeet S.; Villasol, R.; Haaland, David M.

    1991-03-01

    Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG) phosphosilicate (PSG) silicon oxynitride (SiON:H and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool FTIR instruments can rapidly generate large amounts of data. Also the drive for greater accuracy and tighter precision is leading to the development of increasingly sophisticated data processing software that tax the computing abilities of most instrument local data stations. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three classes of enhancement. First the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it instructing it to perform sophisticated processing and returning the results to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third processing of calibration spectra is performed

  13. Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 μm: new sensitivity limits for absorption measurements in passive optical cavities

    NASA Astrophysics Data System (ADS)

    Engel, Gregory S.; Drisdell, Walter S.; Keutsch, Frank N.; Moyer, Elisabeth J.; Anderson, James G.

    2006-12-01

    A robust absorption spectrometer using the off-axis integrated cavity output spectroscopy (ICOS) technique in a passive cavity is presented. The observed sensitivity, conceptually the detection threshold for the absorption cross section (cm2) multiplied by the concentration (cm-3) and normalized by the averaging time, is measured to be 1.9×10-12 (1/cm√Hz). This high sensitivity arises from using the optical cavity to amplify the observed path length in the spectrometer while avoiding cavity resonances by careful design of the spot pattern within the cavity. The instrument is ideally suited for routine monitoring of trace gases in the near-infrared region. A spectrum showing ambient carbon monoxide at 1.57 μm is presented.

  14. Comparison of thermal and optical techniques for describing light interaction with vascular grafts, sutures, and thrombus

    NASA Astrophysics Data System (ADS)

    Obremski, Susan M.; LaMuraglia, Glenn M.; Bruggemann, Ulrich H.; Anderson, R. Rox

    1991-06-01

    Pulsed photothermal radiometry (PPTR) and integrating sphere spectrophotometry analyzed by the theory of Kubelka and Munk (KM) were used to determine optical absorption coefficients of prosthetic grafts and sutures and arterial thrombus. The KM method, a purely optical theory and technique, resulted in higher absorption coefficients than those found using PPTR, a primarily thermal technique. This difference was statistically significant (t.025) for the prosthetic materials. With the KM method, other properties such as scattering can also be quantified and the experiment can be performed over a range of wavelengths at one time. The PPTR technique is limited to a single wavelength but it has the advantage that most materials can be tested without any special preparation. In addition, with PPTR the measured quantity is the temporal temperature response of an object to a laser pulse, which is itself of interest. Clinically, the high absorption coefficient of thrombus as compared to that of the graft and sutures (t.025 for the PPTR measurements) suggests that laser thrombectomy may be safe in polyethylene terephthalate (Dacron) grafts.

  15. Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques

    NASA Astrophysics Data System (ADS)

    Reyher, H.-J.; Schulz, R.; Thiemann, O.

    1994-08-01

    The magnetic circular dichroism (MCD) of the absorption of Nb4+Li and Ti3+Li centers in LiNbO3 has been selectively measured by applying optically detected magnetic resonance. The attribution of a well-known broad and unstructured absorption band peaking at 1.6 eV to the Nb4+Li bound small polaron is now unambiguously confirmed. In the MCD spectrum of the isoelectronic Ti3+Li center, bands show up, which closely resemble the MCD bands at 1.6 eV of this bound small polaron. This striking similarity is explained by a cluster model, representing both defects. Either TiLi or NbLi is at the center of this cluster. In both cases, the small polaron is bound to the cluster, and its MCD bands correspond to intervalence transfer transitions within the constituents of the cluster. A study of the spin-orbit coupling of the molecular orbitals of the cluster allows one to analyze the structure of the MCD bands at 2.9 eV of Ti3+Li have no counterpart in the Nb4+Li spectrum. These bands are assigned to transitions to excited states, which are specific to the impurity and are related to the 10Dq transitions known for the crystal field states of a d1 ion.

  16. View from My Classroom: A Spectrophotometry Unit for Advanced Chemistry Students.

    ERIC Educational Resources Information Center

    Diehl-Jones, Susan M.

    1983-01-01

    Rationale, objectives, and instructional strategies for a directed study course on spectrophotometry are provided. Descriptions of three experiments and four student research projects are also provided. Objectives, laboratory procedures, advantages, and disadvantages for the experiments and projects are included. (JN)

  17. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    NASA Astrophysics Data System (ADS)

    García, Marcos Fernández; Sánchez, Javier González; Echeverría, Richard Jaramillo; Moll, Michael; Santos, Raúl Montero; Moya, David; Pinto, Rogelio Palomo; Vila, Iván

    2017-02-01

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  18. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  19. Nutrient absorption.

    PubMed

    Rubin, Deborah C

    2004-03-01

    Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.

  20. Evaluation of indomethacin percutaneous absorption from nanostructured lipid carriers (NLC): in vitro and in vivo studies.

    PubMed

    Ricci, Maurizio; Puglia, Carmelo; Bonina, Francesco; Di Giovanni, Caterina; Giovagnoli, Stefano; Rossi, Carlo

    2005-05-01

    The aim of this study was the evaluation, in vitro and in vivo, of indomethacin (IND) release through the skin from nanostructured lipid carriers (NLC). NLC were prepared by ultrasonication, and were characterized in order to determine drug content, and particle size; finally the NLC were processed to hydrogels (A and B). The IND release pattern from NLC hydrogels was evaluated in vitro, to determine its percutaneous absorption through excised human skin (stratum corneum and epidermis, SCE), and in vivo. To evaluate the in vivo IND release, two methods were employed: (1) the IND topical anti-inflammatory activity was determined at different time-points after its cutaneous application; in this case, the UVB-induced erythema on healthy human volunteers, chosen as inflammatory model, was monitored by reflectance visible spectrophotometry; (2) the extent of IND absorption into human skin was performed by the tape-stripping technique. The in vitro percutaneous absorption studies showed lower fluxes of IND through SCE membranes from NLC hydrogels (A and B) in comparison to an aqueous dispersion (C) and a hydro-alcoholic gel (D) both containing free IND. The findings from the former in vivo method showed that the anti-inflammatory effect, following IND topical application, was more prolonged with IND-loaded NLC gel formulation (A) if compared to formulation C and D. The results from tape stripping technique confirmed the trend obtained by the former in vivo method and indicated that IND topical bioavailability in the stratum corneum varied substantially depending upon the formulations (A-D).

  1. Simultaneous determination of titanium and molybdenum in steel samples using derivative spectrophotometry in neutral micellar medium

    NASA Astrophysics Data System (ADS)

    Varghese, Anitha; Khadar, A. M. A.; Kalluraya, Balakrishna

    2006-05-01

    A simple, selective and sensitive spectrophotometric method has been developed for the individual and simultaneous determination of Ti(IV) and Mo(VI) using resacetophenone p-hydroxybenzoylhydrazone (RAPHBH) in presence of Triton X-100, without any prior separation. Beer's law is obeyed between 0.13-1.2 μg mL -1 and 0.18-1.90 μg mL -1 concentration of Ti(IV) and Mo(VI) at 455 nm and 405 nm, respectively. The molar absorptivity and Sandell's sensitivity of the coloured complexes at pH 3.0 are 3.1 × 10 4 L mol -1 cm -1, 4.2 × 10 4 L mol -1 cm -1, and 1.6 ng cm -2, 2.3 ng cm -2 for Ti(IV) and Mo(VI), respectively. The stoichiometry of the complexes were found to be 1:2 and 1:1 (metal:ligand) for Ti(IV) and Mo(VI), respectively. These metal ions interfere with the determination of each other in zero-order spectrophotometry. The first derivative spectra of these complexes permitted a simultaneous determination of Ti(IV) and Mo(VI) at zero crossing wavelengths of 500.0 nm and 455.0 nm, respectively. The effect of foreign ions in the determination of Ti(IV) and Mo(VI) were investigated. The proposed method has been successfully applied for the determination of titanium and molybdenum in standard alloy steel, mineral and soil samples.

  2. Simultaneous determination of titanium and molybdenum in steel samples using derivative spectrophotometry in neutral micellar medium.

    PubMed

    Varghese, Anitha; Khadar, A M A; Kalluraya, Balakrishna

    2006-05-15

    A simple, selective and sensitive spectrophotometric method has been developed for the individual and simultaneous determination of Ti(IV) and Mo(VI) using resacetophenone p-hydroxybenzoylhydrazone (RAPHBH) in presence of Triton X-100, without any prior separation. Beer's law is obeyed between 0.13-1.2 microg mL-1 and 0.18-1.90 microg mL-1 concentration of Ti(IV) and Mo(VI) at 455 nm and 405 nm, respectively. The molar absorptivity and Sandell's sensitivity of the coloured complexes at pH 3.0 are 3.1x10(4) L mol-1 cm-1, 4.2x10(4) L mol-1 cm-1, and 1.6 ng cm-2, 2.3 ng cm-2 for Ti(IV) and Mo(VI), respectively. The stoichiometry of the complexes were found to be 1:2 and 1:1 (metal:ligand) for Ti(IV) and Mo(VI), respectively. These metal ions interfere with the determination of each other in zero-order spectrophotometry. The first derivative spectra of these complexes permitted a simultaneous determination of Ti(IV) and Mo(VI) at zero crossing wavelengths of 500.0 nm and 455.0 nm, respectively. The effect of foreign ions in the determination of Ti(IV) and Mo(VI) were investigated. The proposed method has been successfully applied for the determination of titanium and molybdenum in standard alloy steel, mineral and soil samples.

  3. Direct DOC and nitrate determination in water using dual pathlength and second derivative UV spectrophotometry.

    PubMed

    Causse, Jean; Thomas, Olivier; Jung, Aude-Valérie; Thomas, Marie-Florence

    2017-01-01

    UV spectrophotometry is largely used for water and wastewater quality monitoring. The measurement/estimation of specific and aggregate parameters such as nitrate and dissolved organic carbon (DOC) is possible with UV spectra exploitation, from 2 to multi wavelengths calibration. However, if nitrate determination from UV absorbance is known, major optical interferences linked to the presence of suspended solids, colloids or dissolved organic matter limit the relevance of UV measurement for DOC assessment. A new method based on UV spectrophotometric measurement of raw samples (without filtration) coupling a dual pathlength for spectra acquisition and the second derivative exploitation of the signal is proposed in this work. The determination of nitrate concentration is carried out from the second derivative of the absorbance at 226 nm corresponding at the inflexion point of nitrate signal decrease. A short optical pathlength can be used considering the strong absorption of nitrate ion around 210 nm. For DOC concentration determination the second derivative absorbance at 295 nm is proposed after nitrate correction. Organic matter absorbing slightly in the 270-330 nm window, a long optical pathlength must be selected in order to increase the sensitivity. The method was tested on several hundred of samples from small rivers of two agricultural watersheds located in Brittany, France, taken during dry and wet periods. The comparison between the proposed method and the standardised procedures for nitrate and DOC measurement gave a good adjustment for both parameters for ranges of 2-100 mg/L NO3 and 1-30 mg/L DOC.

  4. Optimization of the steady neutron source technique for absorption cross section measurement by using an 124Sb-Be neutron source

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Gardner, Robin P.

    2004-01-01

    An improved experimental approach has been developed to determine thermal neutron absorption cross sections. It uses an 124Sb-Be neutron source which has an average neutron energy of only about 12 keV. It can be moderated in either a water tank or a paraffin filled box and can be used for aqueous or powder samples. This new design is first optimized by MCNP simulation and then benchmarked and calibrated with experiments to verify the simulations and realize the predicted improved measurement sensitivity and reproducibility. The 124Sb-Be source device is from 1.35 to 1.71 times more sensitive than the previous method based on the use of a 252Cf source.

  5. Absorption, transport and insulin-mimetic properties of bis(maltolato)oxovanadium (IV) in streptozotocin-induced hyperglycemic rats by integrated mass spectrometric techniques.

    PubMed

    Iglesias-González, T; Sánchez-González, C; Montes-Bayón, M; Llopis-González, J; Sanz-Medel, A

    2012-01-01

    The use of V(IV) complexes as insulin-enhancing agents has been increasing during the last decade. Among them, 3-hydroxy-2-methyl-4-pyrone and 2-ethyl-3-hydroxy-4-pyrone (maltol and ethyl maltol, respectively) have proven to be especially suitable as ligands for vanadyl ions. In fact, they have passed phase I and phase II clinical trials, respectively. However, the mechanism through which those drugs exert their insulin-mimetic properties is still not fully understood. Thus, the aim of this study is to obtain an integrated picture of the absorption, biodistribution and insulin-mimetic properties of the bis(maltolato)oxovanadium (IV) (BMOV) in streptozotocin-induced hyperglycaemic rats. For this purpose, BMOV hypoglycaemic properties were evaluated by monitoring both the circulating glucose and the glycohemoglobin, biomarkers of diabetes mellitus. In both cases, the results were drug concentration dependent. Using doses of vanadium at 3 mg/day, it was possible to reduce the glycaemia of the diabetic rats to almost control levels. BMOV absorption experiments have been conducted by intestinal perfusion revealing that approximately 35% of V is absorbed by the intestinal cells. Additionally, the transport of the absorbed vanadium (IV) by serum proteins was studied. For this purpose, a speciation strategy using high-performance liquid chromatography (HPLC) for separation and inductively coupled serum mass spectrometry, ICP-MS, for detection has been employed. The obtained HPLC-ICP-MS results, confirmed by MALDI-MS data, showed evidence that V, administered orally, is uniquely bound to transferrin in rat serum.

  6. Measurement of carboxyhaemoglobin by spectrophotometry and gas chromatography.

    PubMed

    Johansson, M B; Wollmer, P

    1989-12-01

    The purpose of this study was to evaluate state-of-the-art spectrophotometry for measurement of carboxyhaemoglobin (COHb). We measured the fractional concentration of COHb in 109 blood samples from patients under investigation of anaemia or with exposure to carbon monoxide (smokers) with the OSM3 Hemoximeter and by gas chromatography. Duplicate measurements were made with both methods in 42 samples. We found only a trivial systematic difference between the two methods. There was, however, a considerable scatter of the measurements, the limits of agreement (95% confidence limits for the difference between the two methods) being -0.98 and 0.86% COHb. The poor agreement between the methods was largely explained by a large random scatter in duplicate spectrophotometric measurements, whereas the method based on gas chromatography was highly reproducible. We conclude that the low accuracy of spectrophotometric measurements of COHb precludes its use for assessment of the endogenous production of CO, but that it may be useful for assessment of exposure to exogenous CO.

  7. Liquid standards utilization for metrological ensuring of spectrophotometry

    NASA Astrophysics Data System (ADS)

    Mogilnaya, L. G.; Sayapin, A. I.; Solov'ev, Victor A.

    1993-12-01

    At the present time the testing of spectrophotometrical measuring means (spectrophotometers) in the ultraviolet and visible spectrum in accordance with the existing USSR verification scheme carried out by means of glass light filters, types KS-100, KS-102 certified with standard instruments. The main shortage of these light filters when using them as the standard measures is the necessity to certify them for transmission coefficient. To solve the problem, it seems reasonable to develop and use the liquid standard samples of optical density (LS) as highly efficient and economical means ensuring the unity of measurements in the spectrophotometry. In this report the possibility of utilization of the set of LS of optical density is considered. The set of LS represents acid and water solutions of organic compounds of five types (LS 04-1, LS 04-2, LS 04-3, LS 04-4, LS 04-5) having two levels of optical density in the wave band of 220 - 720 nm.

  8. HUBBLE SPACE TELESCOPE SPECTROPHOTOMETRY AND MODELS FOR SOLAR ANALOGS

    SciTech Connect

    Bohlin, R. C.

    2010-04-15

    Absolute flux distributions for seven solar analog stars are measured from 0.3 to 2.5 {mu}m by Hubble Space Telescope (HST) spectrophotometry. In order to predict the longer wavelength mid-IR fluxes that are required for James Webb Space Telescope calibration, the HST spectral energy distributions are fit with Castelli and Kurucz model atmospheres; and the results are compared with fits from the MARCS model grid. The rms residuals in 10 broadband bins are all <0.5% for the best fits from both model grids. However, the fits differ systematically: the MARCS fits are 40-100 K hotter in T {sub eff}, 0.25-0.80 higher in log g, 0.01-0.10 higher in log z, and 0.008-0.021 higher in the reddening E(B - V), probably because their specifications include different metal abundances. Despite these differences in the parameters of the fits, the predicted mid-IR fluxes differ by only {approx}1%; and the modeled flux distributions of these G stars have an estimated ensemble accuracy of 2% out to 30 {mu}m.

  9. Automated measurement of urinary creatinine by multichannel kinetic spectrophotometry.

    PubMed

    Ohira, Shin-Ichi; Kirk, Andrea B; Dasgupta, Purnendu K

    2009-01-15

    Urinary creatinine analysis is required for clinical diagnosis, especially for evaluation of renal function. Creatinine adjustment is also widely used to estimate 24-h excretion from spot samples. Few convenient validated approaches are available for in-house creatinine measurement for small- to medium-scale studies. Here we apply the Jáffe reaction to creatinine determination with zone fluidic multichannel kinetic spectrophotometry. Diluted urine sample and reagent, alkaline picric acid, were mixed by a computer-programmed dispenser and rapidly delivered to a four-channel detection cell. The absorbance change was monitored by a flow-through light-emitting diode-photodiode-based detector. Validation results against high-performance liquid chromatography-ultraviolet (HPLC-UV)/mass spectrometry (MS) are presented. Responses for 10-fold diluted samples were linear within clinically relevant ranges (0-250 mg/L after dilution). The system can analyze 70 samples per hour with a limit of detection of 0.76 mg/L. The relative standard deviation was 1.29% at 100 mg/L creatinine (n=225). Correlation with the HPLC (UV quantitation/MS confirmation) system was excellent (linear, r2=0.9906). The developed system allows rapid, simple, cost-effective, and robust creatinine analysis and is suitable for the analysis of large numbers of urine samples.

  10. Noninvasive detection of plant nutrient stress using fiber optic spectrophotometry

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Wei; Asundi, Anand K.; Liew, Oi Wah; Boey, William S. L.

    2001-05-01

    In a previous paper, we described the use of fiber optic spectrophotometry as a non-destructive and sensitive method to detect early symptoms of plant nutrient deficiency. We report further developments of our work on Brassica chinensis var parachinensis (Bailey) showing reproducibility of our data collected at a different seasonal period. Plants at the mid-log growth phase were subjected to nutrient stress by transferring them to nitrate- and calcium- deficient nutrient solution in a standing aerated hydroponic system. After tracking changes in leaf reflectance by FOSpectr for nine days, the plants were returned to complete nutrient solution and their recovery was monitored for a further nine days. The responses of nutrient stressed plants were compared with those grown under complete nutrient solution over the 18-day trial period. We also compared the sensitivity of FOSpectr detection against plant growth measurements vis-a-vis average leaf number and leaf width and show that the former method gave an indication of nutrient stress much earlier than the latter. In addition, this work indicated that while normal and nutrient-stressed plants could not be distinguished within the first 7 days by tracking plant growth indicators, stressed plants did show a clear decline in average leaf number and leaf width in later stages of growth even after the plants were returned to complete nutrient solution. The results further reinforce the need for early detection of nutrient stress, as late remedial action could not reverse the loss in plant growth in later stages of plant development.

  11. Infrared spectrophotometry of three Seyfert galaxies and 3C 273

    NASA Technical Reports Server (NTRS)

    Cutri, R. M.; Puetter, R. C.; Rudy, R. J.; Willner, S. P.; Aitken, D. K.; Jones, B.; Merrill, K. M.; Roche, P. F.; Russell, R. W.; Soifer, B. T.

    1981-01-01

    Spectrophotometry in the range 2.1-4.0 microns is presented for the Seyfert galaxies NGC 1068, NGC 4151 and Mrk 231 and the quasar 3C 273, together with broadband and narrowband observations of the Seyfert galaxies in the range 8-13 microns. The spectra of NGC 1068 and NGC 4151 are found to contain a significant component due to starlight, especially at shorter wavelengths. The nonstellar component in NGC 1068 is observed to fall off rapidly at wavelengths shorter than 4 microns, consistent with the interpretation of the excess beyond 5 microns as thermal reradiation by dust. Observations confirm the variability of NGC 4151, and indicate the presence of two components of the flux other than starlight: a nonthermal variable component predominant at shorter wavelengths and a constant, probably thermal component at wavelengths greater than 3 microns. Mrk 231 and 3C 273 exhibit no discernable stellar component and were not observed to vary by more than 10%. Evidence is obtained for a broad minimum in the 8 to 13 micron spectrum of Mrk 231, as well as possible structure between rest wavelengths of 2.8 and 2.9 microns, and the spectrum is not a power law. The spectrum of 3C 273 is consistent with a power law from 1.2 to 10 microns, with small but significant deviations.

  12. Aluminum complexation by catechol as determined by ultraviolet spectrophotometry

    SciTech Connect

    Sikora, F.J.; McBride, M.B.

    1989-03-01

    Methods of ultraviolet (UV) spectrophotometry were used to determine the stoichiometry and association constant for the Al-catechol complex from pH 3.8 to 4.6. Job's method of continuous variation indicated the Al-catechol complex had a 1:1 stoichiometry in the pH range studied. Aluminum titrations of catechol and pH titrations of catechol plus Al resulted in a shift in the UV spectra due to the formation of an Al-catechol complex absorbing UV radiation uniquely different than that of free catechol. General equations were developed for the determination of association constants assuming an organic and Al-organic complex absorb UV radiation. Aluminum titrations with constant catechol concentration yielded a log k/sub 0.1//sup c/ of 16.22 for a 1:1 Al-catechol complex. Calculated absorbance as a function of pH agree dwell with experimental pH titrations of solutions containing catechol plus Al. The fact that Al can be complexed by catechol at low pH indicates the o-hydroxy group provides a potential source for Al complexation in soil and surface waters.

  13. Band gap states in nanocrystalline WO3 thin films studied by soft x-ray spectroscopy and optical spectrophotometry

    NASA Astrophysics Data System (ADS)

    Johansson, M. B.; Kristiansen, P. T.; Duda, L.; Niklasson, G. A.; Österlund, L.

    2016-11-01

    Nanocrystalline tungsten trioxide (WO3) thin films prepared by DC magnetron sputtering have been studied using soft x-ray spectroscopy and optical spectrophotometry. Resonant inelastic x-ray scattering (RIXS) measurements reveal band gap states in sub-stoichiometric γ-WO3-x with x  =  0.001-0.005. The energy positions of these states are in good agreement with recently reported density functional calculations. The results were compared with optical absorption measurements in the near infrared spectral region. An optical absorption peak at 0.74 eV is assigned to intervalence transfer of polarons between W sites. A less prominent peak at energies between 0.96 and 1.16 eV is assigned to electron excitation of oxygen vacancies. The latter results are supported by RIXS measurements, where an energy loss in this energy range was observed, and this suggests that electron transfer processes involving transitions from oxygen vacancy states can be observed in RIXS. Our results have implications for the interpretation of optical properties of WO3, and the optical transitions close to the band gap, which are important in photocatalytic and photoelectrochemical applications.

  14. Hydrogen Absorption by Niobium.

    DTIC Science & Technology

    1982-04-13

    incorporate an independent means for ascertaining surface cleanliness (e.g. AES). The form of the absorption curve in Fig. 7 appears to agree with that...very interesting study and is well within the capabilities of the systen designed, if the surface cleanliness can be assured. Wire specimens have a...assessing surface cleanliness would be an important supporting technique for understanding the results of these measurements. The simple kinetic

  15. [Direct determination of lead and cadmium in soil by slurry-sampling graphite furnace atomic absorption spectrometry using matrix modification technique].

    PubMed

    Sun, Han-Wen; Wen, Xiao-Hua; Liang, Shu-Xuan

    2006-05-01

    A method for the direct determination of lead and cadmium in soil by slurry-sampling graphite furnace-atomic absorption spectrometry using NH4 H2 PO4 as matrix modifier was developed. The effects of slurry stability, particle size of sample, matrix modifiers, ashing temperature, atomization temperature and common coexistent components on the signal intensities of lead and cadmium were investigated. The apparent activation energies of lead and cadmium were measured based on the linear relationship between the logarithm value of atomization peak time and atomization temperature. The mechanism of matrix modification was discussed. Under optimized conditions, the detection limit was 9.05 x 10(-10) g x mL(-1) for Pb and 1.76 x 10(-11) g x mL(-1) for Cd. The recoveries were in the range of 91%-97% for Pb and 93%-109% for Cd. The relative standard deviations were in the range of 4.2%-7.8%.

  16. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique

    PubMed Central

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-01-01

    Purpose: To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Methods: Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. Results: The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. Conclusion: The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases. PMID:27478794

  17. FTIR (Fourier Transform Infrared) spectrophotometry for thin film monitors: Computer and equipment integration for enhanced capabilities

    NASA Astrophysics Data System (ADS)

    Cox, J. N.; Sedayao, J.; Shergill, G.; Villasol, R.; Haaland, D. M.

    Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG), phosphosilicate (PSG), silicon oxynitride (SiON:H,OH), and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique, FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool, FTIR instruments can rapidly generate large amounts of data. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three caused of enhancement. First, the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it, instructing it to perform sophisticated processing, and returning the result to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second, the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third, processing of calibration spectra is performed on the minicomputer to optimize the accuracy and precision of a Partial Least Squares analysis mode. This model is then transferred to the data station in the fab. The analysis of BPSG thin films is discussed in this regard. The prospects for fully automated at-line monitoring and for real-time, in-situ monitoring will be discussed.

  18. FTIR (Fourier transform infrared) spectrophotometry for thin film monitors: Computer and equipment integration for enhanced capabilities

    SciTech Connect

    Cox, J.N.; Sedayao, J.; Shergill, G.; Villasol, R. ); Haaland, D.M. )

    1990-01-01

    Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG), phosphosilicate (PSG), silicon oxynitride (SiON:H,OH), and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique, FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool, FTIR instruments can rapidly generate large amounts of data. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three caused of enhancement. First, the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it, instructing it to perform sophisticated processing, and returning the result to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second, the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third, processing of calibration spectra is performed on the minicomputer to optimize the accuracy and precision of a Partial Least Squares'' analysis mode. This model is then transferred to the data station in the fab. The analysis of BPSG thin films is discussed in this regard. The prospects for fully automated at-line monitoring and for real-time, in-situ monitoring will be discussed. 10 refs., 4 figs.

  19. On the determination of the substrate effective doping concentration of irradiated HV-CMOS sensors using an edge-TCT technique based on the Two-Photon-Absorption process

    NASA Astrophysics Data System (ADS)

    Fernández García, M.; González Sánchez, J.; Jaramillo Echeverría, R.; Moll, M.; Montero, R.; Moya, D.; Palomo Pinto, R.; Vila, I.

    2017-01-01

    We introduce a new method based on the transient-current technique (TCT) for the radiation tolerance assessment of an n-in-p junction with a deep n-well on a relatively low-resistivity p-type substrate commonly used for HV-CMOS pixel sensors. The transient-current method here employed uses a femtosecond laser to generate excess carriers via a two-photon-absorption (TPA) process. Special attention has been paid to overcome the limitations of the conventional transient-current method based on single-photon-absorption carrier generation when applied to the HV-CMOS sensors. Specifically, we tackle the precise determination of the depletion region boundaries, including the deep-n-well spatial location, needed to calculate the effective doping concentration of the substrate. As illustration, we have applied this new TPA-based method to both a fresh and a neutron irradiated single-pixel deep-n-well diode manufactured in a 180 nm high-voltage CMOS process. In the irradiated device, concurrent with the expected effective acceptor removal in the p-type substrate, an indication of an effective donor removal in the DNW implant was also observed.

  20. Methane absorption variations in the spectrum of Pluto

    SciTech Connect

    Buie, M.W.; Fink, U.

    1987-06-01

    The lightcurve phases of 0.18, 0.35, 0.49, and 0.98 covered by 5600-10,500 A absolute spectrophotometry of Pluto during four nights include minimum (0.98) light and one near-maximum (0.49) light. The spectra are noted to exhibit significant methane band absorption depth variations at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 A, with the minimum absorption occurring at minimum light and thereby indicating a 30-percent change in the methane column abundance in the course of three days. An attempt is made to model this absorption strength variation with rotational phase terms of an isotropic surface distribution of methane frost and a clear layer of CH4 gas. 34 references.

  1. White LEDs as broad spectrum light sources for spectrophotometry: demonstration in the visible spectrum range in a diode-array spectrophotometric detector.

    PubMed

    Piasecki, Tomasz; Breadmore, Michael C; Macka, Mirek

    2010-11-01

    Although traditional lamps, such as deuterium lamps, are suitable for bench-top instrumentation, their compatibility with the requirements of modern miniaturized instrumentation is limited. This study investigates the option of utilizing solid-state light source technology, namely white LEDs, as a broad band spectrum source for spectrophotometry. Several white light LEDs of both RGB and white phosphorus have been characterized in terms of their emission spectra and energy output and a white phosphorus Luxeon LED was then chosen for demonstration as a light source for visible-spectrum spectrophotometry conducted in CE. The Luxeon LED was fixed onto the base of a dismounted deuterium (D(2) ) lamp so that the light-emitting spot was geometrically positioned exactly where the light-emitting spot of the original D(2) lamp is placed. In this manner, the detector of a commercial CE instrument equipped with a DAD was not modified in any way. As the detector hardware and electronics remained the same, the change of the deuterium lamp for the Luxeon white LED allowed a direct comparison of their performances. Several anionic dyes as model analytes with absorption maxima between 450 and 600 nm were separated by CE in an electrolyte of 0.01 mol/L sodium tetraborate. The absorbance baseline noise as the key parameter was 5 × lower for the white LED lamp, showing clearly superior performance to the deuterium lamp in the available, i.e. visible part of the spectrum.

  2. PHASES: A Project to Perform Absolute Spectrophotometry from Space

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Vather, D.; Allende Prieto, C.; Murphy, N.

    2013-04-01

    This paper presents the current status of the opto-mechanical design of PHASES (Planet Hunting and AsteroSeismology Explorer Spectrophotometer), which is a project to develop a space-borne telescope to obtain absolute flux calibrated spectra of bright stars. The science payload is intended to be housed in a micro-satellite launched into a low-earth Sun-synchronous orbit with an inclination to the equator of 98.7° and a local time ascending node LTAN of 6:00 AM. PHASES will be able to measure micromagnitude photometric variations due to stellar oscillations/activity and planet/moon transits. It consists of a 20 cm aperture modified Baker telescope feeding two detectors: the tracking detector provides the fine telescope guidance system with a required pointing stability of 0.2″, and the science detector performs spectrophotometry in the wavelength range 370-960 nm with a resolving power between 200 and 900. The spectrograph is designed to provide 1% RMS flux calibrated spectra with signal-to-noise ratios > 100 for stars with V < 10 in short integration times. Our strategy to calibrate the system using A type stars is explained. From comparison with model atmospheres it would be possible to determine the stellar angular diameters with an uncertainty of approximately 0.5%. In the case of a star hosting a transiting planet it would be possible to derive its light curve, and then the planet to stellar radius ratio. Bright stars have high precision Hipparcos parallaxes and the expected level of accuracy for their fluxes will be propagated to the stellar radii, and more significantly to the planetary radii. The scientific drivers for PHASES give rise to some design challenges, which are particularly related to the opto-mechanics for extreme environmental conditions. The optical design has been developed with the primary goal of avoiding stray light reaching the science detector. Three different proposals for the opto-mechanical design are under investigation.

  3. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  4. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption.

    PubMed

    Ghosh, Indrajit; Schenck, Daniel; Bose, Sonali; Ruegger, Colleen

    2012-11-20

    The purpose of this study was to develop nanosuspension formulations of a poorly soluble drug using a wet media milling technique. The milling process was optimized by studying the effects of critical process parameters on the size of nanoparticles using a factorial design approach. During the design of experiments (DOEs) study, different concentrations of Vitamin E TPGS in the suspensions were used to evaluate its influence on the stabilization of a nanosuspension. Once the final formulation was optimized, a pharmacokinetic study was performed in beagle dogs to investigate the effect of different ranges of particle size of nanocrystals on the plasma profile. A significant increase in AUC and C(max) was observed when the drug substance was converted into nanocrystals, likely due to the increase in dissolution rate. Results also revealed that the nanosuspension formulation (consists of nanocrystals with narrow size distribution, having a mean particle size<300 nm) produced less variability with regards to the individual plasma concentrations in the dogs when compared an alternate nanocrystal formulation (consists of nanocrystals with broad size distribution having a mean particle size<750 nm). This type of observation can be explained due to the Ostwald ripening phenomena between the nanocrystals when the particle size distribution was very broad (higher poly dispersity index). Surprisingly, the un-micronized suspension containing Vitamin E TPGS did not show any significant impact on pharmacokinetic parameters.

  5. C3 and infrared spectrophotometry of Y Canum Venaticorum

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Bregman, J. D.; Strecker, D. W.; Witteborn, F. C.; Erickson, E. F.

    1978-01-01

    The 1.2- to 5.6-micron spectrum of the carbon star Y CVn is presented and discussed. The observations were made from the Kuiper Airborne Observatory at an altitude of 12.5 km, thereby avoiding most of the absorption due to terrestrial water vapor. Comparison of Y CVn near 5 microns with laboratory spectra provides possible evidence for the presence of the linear triatomic molecule C3. For the first time in a carbon star the clearly formed band heads of the CN red system between 1.2 and 2.3 microns are observed. Corroborative evidence for the presence of the molecules HCN and C2H2 is presented, and the relative contributions of C3, HCN, and C2H2 to the 3.1-micron absorption band are discussed. Spectra of two other carbon stars, TX Psc and S Cep, are presented for comparison.

  6. UV spectrophotometry for monitoring the performance of a yeast-based deoxygenation process to treat ships' ballast water.

    PubMed

    Veilleux, Éloïse; de Lafontaine, Yves; Thomas, Olivier

    2016-04-01

    This study assessed the usefulness of UV spectrophotometry for the monitoring of a yeast-based deoxygenation process proposed for ships' ballast water treatment to prevent the transfer of aquatic invasive species. Ten-day laboratory experiments using three treatment concentrations and different water types were conducted and resulted in complete oxygen depletion of treated waters. The treatment performance and quality of treated waters were determined by measuring the UV-visible absorbance spectra of water samples taken over time. Samples were also used for laboratory analysis of water quality properties. The UV absorbance spectra values were strongly correlated (r = 0.96) to yeast cell density in treated waters. The second-order derivative (D (2)) of the spectra varied greatly over time, and the spectrum profiles could be divided into two groups corresponding to the oxygenated and anoxic phases of the treatment. The D (2) value at 215 nm was strongly correlated (r = 0.94) to ammonia levels, which increased over time. The D (2) value at 225 nm was strongly correlated (r > 0.97) to DO concentration. Our results showed that UV spectrophotometry may provide a rapid assessment of the behavior and performance of the yeast bioreactor over time by quantifying (1) the density of yeast cells, (2) the time at which anoxic conditions were reached, and (3) a water quality index of the treated water related to the production of ammonia. We conclude that the rapidity of the technique confers a solid advantage over standard methods used for water quality analysis in laboratory and would permit the direct monitoring of the treatment performance on-board ships.

  7. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  8. Lead Quantification in Urine Samples of Athletes by Coupling DLLME with UV-Vis Spectrophotometry.

    PubMed

    Faraji, Hakim; Helalizadeh, Masoumeh

    2017-04-01

    Urine lead level is one of the most employed measures of lead exposure and risk. The urine samples used in this study were obtained from ten healthy male cyclists. Dispersive liquid-liquid microextraction combined with ultraviolet and visible spectrophotometry was utilized for preconcentration, extraction, and determination of lead in urine samples. Optimization of the independent variables was carried out based on chemometric methods in three steps. According to the screening and optimization study, 133 μL of CCl4 (extracting solvent), 1.34 mL ethanol (dispersing solvent), pH 2.0, 0.00 % of salt, and 0.1 % O,O-diethyl dithiophosphoric (chelating agent) were used as the optimum independent variables for microextraction and determination of lead. Under the optimized conditions, R (2) was 0.9991, and linearity range was 0.01-100 μg L(-1). Precision was evaluated in terms of repeatability and intermediate precision, with relative standard deviations being <9.1 and <15.3 %, respectively. The accuracy was estimated using urine samples of cyclists as real samples and it was confirmed. The relative error of ≤5 % was considered significant in the method specificity study. The lead concentration mean for the cyclists was 3.79 μg L(-1) in urine samples. As a result, the proposed method is a robust technique to quantify lead concentrations higher than 11.6 ng L(-1) in urine samples.

  9. Determination of crystal violet in water by direct solid phase spectrophotometry after rotating disk sorptive extraction.

    PubMed

    Manzo, Valentina; Navarro, Orielle; Honda, Luis; Sánchez, Karen; Inés Toral, M; Richter, Pablo

    2013-03-15

    The microextraction of crystal violet (CV) from water samples into polydimethylsiloxane (PDMS) using the rotating disk sorptive extraction (RDSE) technique was performed. The extracting device was a small Teflon disk that had an embedded miniature magnetic stirring bar and a PDMS (560 μL) film attached to one side of the disk using double-sided tape. The extraction involves a preconcentration of CV into the PDMS, where the analyte is then directly quantified using solid phase spectrophotometry at 600 nm. Different chemical and extraction device-related variables were studied to achieve the best sensitivity for the determination. The optimum extraction was performed at pH 14 because under this condition, CV is transformed to the neutral and colorless species carbinol, which can be quantitatively transferred to the PDMS phase. Although the colorless species is the chemical form extracted in the PDMS, an intense violet coloration appeared in the phase because the -OH bond in the carbinol molecule is weakened through the formation of hydrogen bonds with the oxygen atoms of the PDMS, allowing the resonance between the three benzene rings to compensate for the charge deficit on the central carbon atom of the molecule. The accuracy and precision of the method were evaluated in river water samples spiked with 10 and 30 μg L(-1) of CV, yielding a relative standard deviation of 6.2% and 8.4% and a recovery of 98.4% and 99.4%, respectively. The method detection limit was 1.8 μg L(-1) and the limit of quantification was 5.4 μg L(-1), which can be decreased if the sample volume is increased.

  10. Use of β-correction spectrophotometry to improve the determination of copper solution with eriochrome black T

    NASA Astrophysics Data System (ADS)

    Gao, Hong-Wen

    1995-07-01

    Copper has been determined by β-correction spectrophotometry with eriochrome black T (EBT). This reaction is selective in the presence of EDTA to mask other metal ions. A non-ionic surfactant, polyethyleneglycol n-octanoic phenylether (emulsifying agent, OP), was found to increase the sensitivity. The β-correction method can completely eliminate the effect of excess EBT in its Cu 11 colored solution to give out the real absorpance of chelate produced. The sensitivity, precision and accuracy are increased. By means of the β-correction principle, the complex ratio of Cu 11 to EBT can be calculated as 1/2. Beer's law is obeyed over the range 0-2.0 mg l -1 copper at 550 nm and the true molar absorptivity of Cu-EBT chelate equals 2.61 × 10 4 l mol -1 cm -1. The detection limit of copper is 0.03 mg l -1 and the results show that the relative standard deviation was less than 4.5% with the recovery between 92.0 and 109%.

  11. Determination of thallium at ultra-trace levels in water and biological samples using solid phase spectrophotometry.

    PubMed

    Amin, Alaa S; El-Sharjawy, Abdel-Azeem M; Kassem, Mohammed A

    2013-06-01

    A new simple, very sensitive, selective and accurate procedure for the determination of trace amounts of thallium(III) by solid-phase spectrophotometry (SPS) has been developed. The procedure is based on fixation of Tl(III) as quinalizarin ion associate on a styrene-divinylbenzene anion-exchange resin. The absorbance of resin sorbed Tl(III) ion associate is measured directly at 636 and 830 nm. Thallium(I) was determined by difference measurements after oxidation of Tl(I) to Tl(III) with bromine. Calibration is linear over the range 0.5-12.0 μg L(-1) of Tl(III) with relative standard deviation (RSD) of 1.40% (n=10). The detection and quantification limits are 150 and 495 ng L(-1) using 0.6 g of the exchanger. The molar absorptivity and Sandell sensitivity are also calculated and found to be 1.31×10(7) L mol(-1)cm(-1) and 0.00156 ng cm(-2), respectively. The proposed procedure has been successfully applied to determine thallium in water, urine and serum samples.

  12. Spectrophotometry of peculiar B and A stars. XVIII - The helium rich variable stars HR 1890, Sigma Orionis E, and HD 37776

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Pyper, D. M.

    1985-01-01

    Optical region spectrophotometry at 3300-7850 A has been obtained for three helium rich stars, HR 1890, Sigma Ori E, and HD 37776, of the Orion OB1 Association. New uvby-beta photometry of HR 1890 and HD 37776 as well as published data are also used to investigate the variability of these stars. A new period of 1.53862 days was determined for HD 37776. For all three stars H-beta varies in antiphase with strong He I lines. The spectrophotometric bandpass containing the strong He I line at 4471 A varies in phase with the R index of Pedersen and Thomsen (1977). Evidence is found for weak absorption features which appear to be an extension of the 5200 A feature seen in cooler CP stars.

  13. Intestinal absorption of berberine and 8-hydroxy dihydroberberine and their effects on sugar absorption in rat small intestine.

    PubMed

    Wei, Shi-chao; Dong, Su; Xu, Li-jun; Zhang, Chen-yu

    2014-04-01

    The intestinal absorption of berberine (Ber) and its structural modified compound 8-hydroxy dihydroberberine (Hdber) was compared, and their effects on the intestinal absorption of sugar by perfusion experiment were investigated in order to reveal the mechanism of low dose and high activity of Hdber in the treatment of hyperglycemia. The absorption of Hdber and Ber in rat small intestine was measured by in situ perfusion. High performance liquid chromatography (HPLC) was used to determine the concentrations of Hdber and Ber. In situ perfusion method was also used to study the effects of Hdber and Ber on sugar intestinal absorption. Glucose oxidase method and UV spectrophotometry were applied to examine the concentrations of glucose and sucrose in the perfusion fluid. The results showed that the absorption rate of Ber in the small intestine was lower than 10%, but that of Hdber was larger than 70%. Both Hdber and Ber inhibited the absorption of glucose and sucrose at the doses of 10 and 20 μg/mL. However, Hdber presented stronger activity than Ber (P<0.01). It is suggested that Hdber is absorbed easily in rat small intestine and that its inhibitory effect on the absorption of sugar is better than Ber.

  14. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  15. Determination of astaxanthin in Haematococcus pluvialis by first-order derivative spectrophotometry.

    PubMed

    Liu, Xiao Juan; Juan, Liu Xiao; Wu, Ying Hua; Hua, Wu Ying; Zhao, Li Chao; Chao, Zhao Li; Xiao, Su Yao; Yao, Xiao Su; Zhou, Ai Mei; Mei, Zhou Ai; Liu, Xin; Xin, Liu

    2011-01-01

    A highly selective, convenient, and precise method, first-order derivative spectrophotometry, was applied for the determination of astaxanthin in Haematococcus pluvialis. Ethyl acetate and ethanol (1:1, v/v) were found to be the best extraction solvent tested due to their high efficiency and low toxicity compared with nine other organic solvents. Astaxanthin coexisting with chlorophyll and beta-carotene was analyzed by first-order derivative spectrophotometry in order to optimize the conditions for the determination of astaxanthin. The results show that when detected at 432 nm, the interfering substances could be eliminated. The dynamic linear range was 2.0-8.0 microg/mL, with a correlation coefficient of 0.9916. The detection threshold was 0.41 microg/mL. The RSD for the determination of astaxanthin was in the range of 0.01-0.06%; the results of recovery test were 98.1-108.0%. The statistical analysis between first-order derivative spectrophotometry and HPLC by T-testing did not exceed their critical values, revealing no significant differences between these two methods. It was proved that first-order derivative spectrophotometry is a rapid and convenient method for the determination of astaxanthin in H. pluvialis that can eliminate the negative effect resulting from the coexistence of astaxanthin with chlorophyll and beta-carotene.

  16. Near-Infrared Spectrophotometry of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Rivkin, A. S.; Brown, R. H.; Trilling, D. E.; Bell, J. F., III; Plassmann, J. H.

    2002-01-01

    We have observed the leading and trailing hemispheres of Phobos from 1.65 to 3.5 microns and Deimos from 1.65 to 3.12 microns near opposition. We find the trailing hemisphere of Phobos to be brighter than its leading hemisphere by 0.24 +/- 0.06 magnitude at 1.65 microns and brighter than Deimos by 0.98 +/- 0.07 magnitude at 1.65 microns. We see no difference larger than observational uncertainties in spectral slope between the leading and trailing hemispheres when the spectra are normalized to 1.65 microns. We find no 3-micron absorption feature due to hydrated minerals on either hemisphere to a level of approx. 5-10% on Phobos and approx. 20% on Deimos. When the infrared data are joined to visible and near-IR data obtained by previous workers, our data suggest the leading (Stickney-dominated) side of Phobos is best matched by T-class asteroids. The spectral slope of the trailing side of Phobos and leading side of Deimos are bracketed by the D-class asteroids. The best laboratory spectral matches to these parts of Phobos are mature lunar soils and heated carbonaceous chondrites. The lack of 3-micron absorption features on either side of Phobos argues against the presence of a large interior reservoir of water ice according to current models of Phobos' interior.

  17. Near-Infrared Spectrophotometry of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Rivkin, A. S.; Brown, R. H.; Trilling, D. E.; Bell, J. F., III; Plassmann, J. H.

    2002-01-01

    We have observed the leading and trailing hemispheres of Phobos from 1.65 to 3.5 micrometers and Deimos from 1.65 to 3.12 micrometers near opposition. We find the trailing hemisphere of Phobos to be brighter than its leading hemisphere by 0.24 plus or minus 0.06 magnitude at 1.65 micrometers and brighter than Deimos by 0.98 plus or minus 0.07 magnitude at 1.65 micrometers. We see no difference larger than observational uncertainties in spectral slope between the leading and trailing hemispheres when the spectra are normalized to 1.65 micrometers. We find no 3-micrometer absorption feature due to hydrated minerals on either hemisphere to a level of approximately 5-10% on Phobos and approximately 20% on Deimos. When the infrared data are joined to visible and nearby data obtained by previous workers, our data suggest the leading (Stickney-dominated) side of Phobos is best matched by T-class asteroids. The spectral slope of the trailing side of Phobos and leading side of Deimos are bracketed by the D-class asteroids. The best laboratory spectral matches to these parts of Phobos are mature lunar soils and heated carbonaceous chondrites. The lack of 3-micrometer absorption features on either side of Phobos argues against the presence of a large interior reservoir of water ice according to current models of Phobos' interior.

  18. Near-Infrared Spectrophotometry of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Rivkin, A. S.; Brown, R. H.; Trilling, D. E.; Bell, J. F., III; Plassmann, J. H.

    2002-01-01

    We have observed the leading and trailing hemispheres of Phobos from 1.65 to 3.5 microns and Deimos from 1.65 to 3.12 microns near opposition. We find the trailing hemisphere of Phobos to be brighter than its leading hemisphere by 0.24 +/- 0.06 magnitude at 1.65 microns and brighter than Deimos by 0.98 +/- 0.07 magnitude at 1.65 microns. We see no difference larger than observational uncertainties in spectral slope between the leading and trailing hemispheres when the spectra are normalized to 1.65 microns. We find no 3-microns absorption feature due to hydrated minerals on either hemisphere to a level of approx. 5 - 10% on Phobos and approx. 20% on Deimos. When the infrared data are joined to visible and near-IR data obtained by previous workers, our data suggest the leading (Stickney-dominated) side of Phobos is best matched by T-class asteroids. The spectral slope of the trailing side of Phobos and leading side of Deimos are bracketed by the D-class asteroids. The best laboratory spectral matches to these parts of Phobos are mature lunar soils and heated carbonaceous chondrites. The lack of 3-microns absorption features on either side of Phobos argues against the presence of a large interior reservoir of water ice according to current models of Phobos' interior.

  19. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  20. Selective determination of the holmium in rare earth mixtures by second derivative spectrophotometry with 2-isobutylformyl-1,3-dione-indan and octylphenol poly-(ethyleneglycol)ether

    SciTech Connect

    Wang Naixing; Si Zhikun; Jiang Wei

    1996-09-01

    In this paper the absorption spectra of 4f electron transitions of the system of holmium with 2-isobutylformyl-1,3-dione-indan and TX-100 have been studied by normal and derivative spectrophotometry. The molar absorptivities are 98 (at 450 nm) and 21 (at 460 nm) 1 {center_dot} mol{sup -1} {center_dot} cm{sup -1}, respectively. The use of the second derivative spectra, eliminates the interference by other lanthanides and improves the sensitivity for holmium determination. The derivative molar absorptivity is 558 1 {center_dot} mol{sup -1} {center_dot} cm{sup -1}. The calibration graph was linear up to 25{mu}g/ml of holmium. The relative standard deviation evaluated from ten independent determinations of 8.0 {mu}g/ml holmium is 1.0%. The detection limit, obtained from the sensitivity of the calibration graph and for 3 S{sub b} (S{sub b} = standard deviation of a blank without holmium, n = 11), was found to be 0.31 {mu}g/ml of holmium. The quantification limit, obtained for 10 S{sub b}, was 1.0 {mu}g/ml of holmium. A method has been developed for determining holmium in a mixture of lanthanides by means of the second derivative spectra and the analytical results obtained are satisfactory.

  1. Spectrophotometry of Thin Films of Light-Absorbing Particles.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2017-04-06

    Thin films of dispersions of light-absorbing solid particles or emulsions containing a light-absorbing solute all have a nonuniform distribution of light-absorbing species throughout the sample volume. This results in nonuniform light absorption over the illuminated area, which causes the optical absorbance, as measured using a conventional specular UV-vis spectrophotometer, to deviate from the Beer-Lambert relationship. We have developed a theoretical model to account for the absorbance properties of such films, which are shown to depend on the size and volume fraction of the light-absorbing particles plus other sample variables. We have compared model predictions with measured spectra for samples consisting of emulsions containing a dissolved light-absorbing solute. Using no adjustable parameters, the model successfully predicts the behavior of nonuniform, light-absorbing emulsion films with varying values of droplet size, volume fraction, and other parameters.

  2. Spectrophotometry of emission-line stars in the magellanic clouds

    NASA Technical Reports Server (NTRS)

    Bohannan, Bruce

    1990-01-01

    The strong emission lines in the most luminous stars in the Magellanic Clouds indicate that these stars have such strong stellar winds that their photospheres are so masked that optical absorption lines do not provide an accurate measure of photospheric conditions. In the research funded by this grant, temperatures and gravities of emission-line stars both in the Large (LMC) and Small Magellanic Clouds (SMC) have been measured by fitting of continuum ultraviolet-optical fluxes observed with IUE with theoretical model atmospheres. Preliminary results from this work formed a major part of an invited review 'The Distribution of Types of Luminous Blue Variables'. Interpretation of the IUE observations obtained in this grant and archive data were also included in a talk at the First Boulder-Munich Hot Stars Workshop. Final results of these studies are now being completed for publication in refereed journals.

  3. Atomic absorption spectrophotometric method for determination of polydimethylsiloxane residues in pineapple juice: collaborative study.

    PubMed

    Parker, R D

    1990-01-01

    An atomic absorption spectrophotometric method for determination of polydimethylsiloxane (PDMS) residues in pineapple juice was collaboratively studied by 9 laboratories. PDMS residues are extracted from pineapple juice with 4-methyl-2-pentanone and the extracted silicone is measured by atomic absorption spectrophotometry using a nitrous oxide/acetylene flame. Collaborators analyzed 5 samples including 1 blind duplicate. Reproducibility relative standard deviations (RSDR) were 13.1% at 31 ppm, 6.9% at 18 ppm, 14.8% at 7.9 ppm, and 16.1% at 4.9 ppm PDMS. The method has been approved interim official first action by AOAC.

  4. Optical and local structural study of Gd doped ZrO{sub 2} thin films deposited by RF magnetron sputtering technique

    SciTech Connect

    Haque, S. Maidul Shinde, D. D.; Misal, J. S.; Jha, S. N.; Bhattacharyya, D.; Sahoo, N. K.

    2015-06-24

    ZrO{sub 2} samples with 0, 7, 9, 11, 13 % Gd doping have been prepared by RF magnetron sputtering deposition technique for solid oxide fuel cell application. The optical properties of the samples have been studied by transmission spectrophotometry and spectroscopic ellipsometry while the local structure surrounding Zr sites has been characterized by extended x-ray absorption fine structure (EXAFS) measurement at Zr K edge with synchrotron radiation. It has been observed that beyond 11% Gd doping, band gap decreases and refractive index increases significantly and also oxygen and Zr coordinations surrounding Zr sites increase which indicates the formation of Gd clustering in ZrO{sub 2} matrix beyond this doping concentration.

  5. Absorption Coefficient of Alkaline Earth Halides.

    DTIC Science & Technology

    1980-04-01

    levels . As a natural consequence, the magnitude of the absorption coefficient is the key parameter in selecting laser window materials. Over the past...of as can be achieved through improved crystal growing techniques and surface polishing. 2.5. Urbach’s Rule A central question for the development of...high absorption levels , inaccuracies progressively increasing with decreasing absorption level , a natural consequence of decreasing in instrumental

  6. Nickel absorption and kinetics in human volunteers

    SciTech Connect

    Sunderman, F.W. Jr.; Hopfer, S.M. ); Sweeney, K.R. ); Marcus, A.H.; Creason, J. ); Most, B.M. )

    1989-05-01

    Mathematical modeling of the kinetics of nickel absorption, distribution, and elimination was performed in healthy human volunteers who ingested NiSO{sub 4} drinking water (Experiment 1) or added to food (Experiment 2). Nickel was analyzed by electrothermal atomic absorption spectrophotometry in serum, urine, and feces collected during 2 days before and 4 days after a specified NiSO{sub 4} dose (12 {mu}g of nickel/kg, n = 4; 18 {mu}g of nickel/kg, n = 4; or 50 {mu}g of nickel/kg, n = 1). Absorbed nickel averaged 27 {plus minus} 17% (mean {plus minus} SD) of the dose ingested in water vs. 0.7 {plus minus} 0.4% of the same dose ingested in food (a 40-fold difference); rate constants for nickel absorption, transfer, and elimination were not significantly influenced by the oral vehicle. The elimination half-time for absorbed nickel averaged 28 {plus minus} 9 hr. Renal clearance of nickel averaged 8.3 {plus minus} 2.0 ml/min/1.73 m{sup 2} in Experiment 1 and 5.8 {plus minus} 4.3 ml/min/1.73 m{sub 2} in Experiment 2. This study confirms that dietary constituents profoundly reduce the bioavailability of Ni{sup 2+} for alimentary absorption; approximately one-quarter of nickel ingested in drinking water after an over-night fast is absorbed from the human intestine and excreted in urine, compared with only 1% of nickel ingested in food. The compartmental model and kinetic parameters provided by this study will reduce the uncertainty of toxicologic risk assessments of human exposures to nickel in drinking water and food.

  7. Delta bilirubin: absorption spectra, molar absorptivity, and reactivity in the diazo reaction.

    PubMed

    Doumas, B T; Wu, T W; Jendrzejczak, B

    1987-06-01

    Delta bilirubin (B delta), isolated from serum, has an absorption maximum near 440 nm and a molar absorptivity of 72,000 L mol-1cm-1 in either Tris HCl (0.1 mol/L, pH 8.5) or phosphate (0.13 mol/L, pH 7.4) buffer. This absorptivity exceeds by approximately 50% and 59%, respectively, that of unconjugated bilirubin in the same buffers. This finding suggests that substantial errors can be incurred in direct spectrophotometry of bilirubins in serum. In the total diazo (TBIL) assay (Clin Chem 1985;31:1779-89), the color yield from B delta increases by 10% as the final diazo concentration is increased from 0.27 to 0.81 mmol/L. In the direct (DBIL) assay, if done in HCl (50 mmol/L), B delta yields approximately 15% more color as the diazo concentration is increased from 0.51 to 1.53 mmol/L, whereas in acetate buffer (0.4 mol/L, pH 4.7) the corresponding color yield is 25% greater. However, the absolute color yield for the reaction in HCl exceeds that in acetate buffer. In both the TBIL and the DBIL assay, B delta reacts slowly, nearly complete reaction requiring 10 min. Thus, B delta may be seriously underestimated in diazo (especially DBIL) methods in which short reaction times (20 s to 1 min) are used.

  8. Microwave absorption measurements of melting spherical and nonspherical hydrometeors

    NASA Technical Reports Server (NTRS)

    Hansman, R. J., Jr.

    1986-01-01

    Measurements were made of the absorption behavior of melting and freezing hydrometeors using resonant cavity perturbation techniques at a wavelength of 2.82 cm. Melting ice spheres with equivalent melted diameters between 1.15 and 2.00 mm exhibit a period of strong absorption during melting as predicted by prior theoretical calculations. However, the measured magnitude of the absorption peak exceeds the predicted value. Absorption measuremets of melting oblate and prolate ice ellipsoids also exhibit enhanced absorption during melting.

  9. Airborne 20-65 micron spectrophotometry of Comet Halley

    NASA Technical Reports Server (NTRS)

    Glaccum, William; Moseley, S. H.; Campins, Humberto C.; Loewenstein, R. F.

    1988-01-01

    Observations of Comet Halley with a grating spectrometer on board the Kuiper Airborne Observatory on four nights in Dec. 1985 to Apr. 1986 are reported. Low resolution 20 to 65 micrometer spectra of the nucleus with a 40 arcsec FWHM beam was obtained on 17 Dec. 1985, and on 15 and 17 Apr. 1986. On 20 Dec. 1985, only a 20 to 35 micrometer spectrum was obtained. Most of the data have been discussed in a paper where the continuum was dealt with. In that paper, models were fit to the continuum that showed that more micron sized particles of grain similar to amorphous carbon were needed to fit the spectrum than were allowed by the Vega SP-2 mass distribution, or that a fraction of the grains had to be made out of a material whose absorption efficiency fell steeper than lambda sup -1 for lambda greater than 20 micrometers. Spectra was also presented taken at several points on the coma on 15 Apr. which showed that the overall shape to the spectrum is the same in the coma. Tabulated values of the data and calibration curves are available. The spectral features are discussed.

  10. Spectrophotometry of Pluto from 3500 to 7350 A

    SciTech Connect

    Barker, E.S.; Cochran, W.D.; Cochran, A.L.

    1980-01-01

    Spectra of Pluto have been obtained on six nights during February 1979 by the use of the Cassegrain Digicon spectrograph on the 2.1-m Struve reflector and the IDS spectrograph on the 2.7-m reflector of McDonald Observatory. These spectra, with nominal resolution of 6-7 A, have been reduced to relative fluxes. Relative albedos were then calculated using the solar irradiances of Arvesen et al. (1969). The spectra taken in the blue show no indication of the upturn in albedo at wavelengths less than 3800 A previously reported by Fix, et al. (1970). The lack of a UV upturn cannot be interpreted in terms of a Rayleigh scattering atmosphere unless the albedo of the underlying surface is known. From the lack of methane absorption at the wavelength of the 6190- or 7270-A methane bands, an upper limit of 1-3 m-am of gaseous CH4 is derived. The albedo curve has a constant slope between 3500 and 7300 A. The only other solar system body which has this feature is an S-type asteroid.

  11. Spectrophotometry of Wolf-Rayet stars. I - Continuum energy distributions

    NASA Technical Reports Server (NTRS)

    Morris, Patrick W.; Brownsberger, Kenneth R.; Conti, Peter S.; Massey, Philip; Vacca, William D.

    1993-01-01

    All available low-resolution IUE spectra are assembled for Galactic, LMC, and SMC W-R stars and are merged with ground-based optical and NIR spectra in order to collate in a systematic fashion the shapes of these energy distributions over the wavelength range 0.1-1 micron. They can be consistently fitted by a power law of the form F(lambda) is approximately equal to lambda exp -alpha over the range 1500-9000 A to derive color excesses E(B-V) and spectral indices by removing the 2175-A interstellar absorption feature. The WN star color excesses derived are found to be in good agreement with those of Schmutz and Vacca (1991) and Koesterke et al. (1991). Significant heterogeneity in spectral index values was generally seen with any given subtype, but the groups consisting of the combined set of Galactic and LMC W-R stars, the separate WN and WC sequences, and the Galactic and LMC W-R stars all showed a striking and consistent Gaussian-like frequency distribution of values.

  12. New methods for determination of cinnarizine in mixture with piracetam by spectrodensitometry, spectrophotometry, and liquid chromatography.

    PubMed

    Metwally, Fadia H; Elzeany, B A; Darwish, H W

    2005-01-01

    Four new methods were developed and validated for the determination of cinnarizine HCl in its binary mixture with piracetam in pure and pharmaceutical preparations. The first one was a densitometric analysis that provides a simple and rapid method for the separation and quantification of cinnarizine HCI. The method depends on the quantitative densitometric evaluation of thin-layer chromatograms of cinnarizine HCI at 252 nm over concentration range of 1-6 microg/spot, with a mean accuracy of 100.05 +/- 0.91%. The second method was determination of the drug using a colorimetric method that utilizes the reaction of 3-methyl-benzothiazolin-2-one in the presence of FeCl3 as an oxidant. The green color of the resulting product was measured at 630 nm over concentration range 10-40 microg/mL, with a mean accuracy of 100.10 +/- 1.13%. The third method was a direct spectrophotometric determination of cinnarizine HCI at 252 nm over the concentration range 7-20 microg/mL, while piracetam was determined by derivative ratio spectrophotometry at 221.6 nm over concentration range 5-30 microg/mL, with a mean accuracy of 100.14 +/- 0.79 and 100.26 +/- 1.24% for cinnarizine HCI and piracetam, respectively. The last method was a liquid chromatography analysis of both cinnarizine HCI and piracetam, depending on quantitative evaluation of chromatograms of cinnarizine HCI and piracetam at 252 and 212 nm, respectively, over the concentration range 10-200 microg/mL for cinnarizine HCI and 20-500 microg/mL for piracetam, with a mean accuracy of 100.03 +/- 0.89 and 100.40 +/- 0.94% for cinnarizine HCI and piracetam, respectively. The proposed procedures were checked using laboratory-prepared mixtures and successfully applied for the analysis of their pharmaceutical preparations. The validity of the proposed procedures was further assessed by applying the standard addition technique. Recoveries were quantitative, and the results obtained agreed with those obtained by other reported methods.

  13. Noise analysis for CCD-based ultraviolet and visible spectrophotometry.

    PubMed

    Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P

    2015-09-20

    We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4)  AU for the AvaSpec-3648 and 5.6×10(-4)  AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.

  14. Two-phase ultraviolet spectrophotometry of the pulsating white dwarf ZZ Piscium

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Kemper, E.; Grauer, A. D.; Holm, A. V.; Panek, R. J.; Schiffer, F. H., III

    1985-01-01

    Spectra of the pulsating white dwarf ZZ Psc (= G29-38) were obtained using the International Ultraviolet Explorer. By using a multiple-exposure technique in conjunction with simultaneous ground-based exposure-metering photometry, it was possible to obtain mean on-pulse and off-pulse spectra in the 1950-1310 A wavelength range. The ratio of the time-averaged on-pulse to off-pulse spectra is best fitted by a temperature variation that is in phase with the optical light variation. This result is consistent with the hypothesis that the observed variation is due to a high-order nonradial pulsation. Conventional ultraviolet spectra of ZZ Psc showed broad absorption features at 1390 and 1600 A. These features are also found in the spectra of the cool DA-type white dwarfs G226-29 and G67-23, and appear to increase in strength with decreasing temperature. A possible explanation for the 1600 A feature is absorption by the satellite band of resonance-broadened hydrogen Ly-alpha. Such absorption would also help explain a discrepancy between the observed pulsation amplitude shortward of 1650 A and the predicted amplitudes based on model atmospheres.

  15. The Uranian satellites and Hyperion - New spectrophotometry and compositional implications

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1983-01-01

    New reflectance spectra at 3.5 percent resolution have been obtained for Ariel, Titania, Oberon, and Hyperion in the 0.8 to 1.6-micron spectrum region. The new spectra show no absorptions other than the 1.5 micron water-ice feature (within the precision of the data), and demonstrate extension into the 0.8- to 1.6 micron region of the 1.5- to 2.5 micron spectral similarity ofo Ariel to Hyperion (Brown and Cruikshank, 1983). The new data confirm the presence of a dark, spectrally bland component on/in the water-ice surfaces of the Uranian satellites, which, with some reservations, has spectral similarities to the dark substance on the leading side of lapetus and the dark material on/in the surface of Hyperion, as well as other dark, spectrally neutral substances such as charcoal. Attempts were made to match the spectra of Ariel, Titania, and Oberon with additive reflectance mixes (aeral coverage) of fine-grained water frost and various dark components such as charcoal, lampblack, and charcoal-water-ice mixtures. The results were broad limits on the amounts of possible areal coverage of a charcoal-like spectral component on the surfaces of the Uranian satellites, but the data are not of sufficient precision to conclusively determine whether the dominant mode of contaminant dispersal is areal or voluminal. The effect of highly variegated albedos on the diameters derived by Brown, Cruikshank, and Morrison (1982) is found to be small.

  16. Monitoring of monosaccharides, oligosaccharides, ethanol and glycerol during wort fermentation by biosensors, HPLC and spectrophotometry.

    PubMed

    Monošík, Rastislav; Magdolen, Peter; Stredanský, Miroslav; Šturdík, Ernest

    2013-05-01

    The aim of the present study was to analyze sugar levels (namely maltose, maltotriose, glucose and fructose) and alcohols (ethanol and glycerol) during the fermentation process in wort samples by amperometric enzymatic biosensors developed by our research group for industrial application, HPLC and spectrophotometry, and to compare the suitability of the presented methods for determination of individual analytes. We can conclude that for the specific monitoring of maltose or maltotriose only the HPLC method was suitable. On the other hand, biosensors and spectrophotometry reflected a decrease in total sugar concentration better and were able to detect both glucose and fructose in the later stages of fermentation, while HPLC was not. This can be attributed to the low detection limits and good sensitivity of the proposed methods. For the ethanol and glycerol analysis all methods proved to be suitable. However, concerning the cost expenses and time analysis, biosensors represented the best option.

  17. APM Z >=4 QSO Survey: Spectra and Intervening Absorption Systems

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, L. J.; McMahon, R. G.; Irwin, M. J.; Hazard, C.

    1996-09-01

    The APM multicolor survey for bright z > 4 objects, covering 2500 deg^2^ of sky to m_r_ ~ 19, resulted in the discovery of 31 quasars with z ~> 4. High signal-to-noise optical spectrophotometry at 5 A resolution has been obtained for the 28 quasars easily accessible from the northern hemisphere. These spectra have been surveyed to create new samples of high-redshift Lyman-limit systems, damped Lyα absorbers, and metal absorption systems (e.g., C IV and Mg II). In this paper we present the spectra, together with line lists of the detected absorption systems. The QSOs display a wide variety of emission- and absorption-line characteristics, with five exhibiting broad absorption lines and one with extremely strong emission lines (BR 2248 - 1242). Eleven candidate damped Lyα absorption systems have been identified covering the redshift range 2.8 <= z <= 4.4 (eight with z > 3.5). An analysis of the measured redshifts of the high-ionization emission lines with the low-ionization lines shows them to be blueshifted by 430 +/- 60 km s^-1^. In a previous paper (by Storrie-Lombardi et al.) we discussed the redshift evolution of the Lyman limit systems cataloged here. In subsequent papers we will discuss the properties of the Lyα forest absorbers and the redshift and column density evolution of the damped Lyα absorbers.

  18. Spectrophotometry of planetary atmosphere from the X-15 rocket airplane

    NASA Technical Reports Server (NTRS)

    Murcray, W. B.

    1973-01-01

    Nike-Apache and Nike-Tomahawk rocket flights using spectrophotometric techniques to investigate auroral activity are reported. The specific objectives were to obtain data relative to typical auroral situations, including quiet pre-breakup auroras, westward traveling surges, breakup auroras, and post-breakup auroras. It was found that excited atoms move considerable distances between excitation and emission owing to the high velocity wind conditions prevailing above 200 km. Based on the results of these observations, recommendations are made for future studies of ionized atmospheric activity at higher altitudes.

  19. Determination of acidity constants of acid-base indicators by second-derivative spectrophotometry

    NASA Astrophysics Data System (ADS)

    Kara, Derya; Alkan, Mahir

    2000-12-01

    A method for calculation of acid-base dissociation constants of monoprotic weak organic acids whose acid and base species have overlapping spectra from absorptiometric and pH measurements is described. It has been shown that the second-derivative spectrophotometry can effectively be used for determining the dissociation constants, when dissociation constants obtained for methyl orange and bromothymol blue were compared with the values given in the literature.

  20. A comparison of hair colour measurement by digital image analysis with reflective spectrophotometry.

    PubMed

    Vaughn, Michelle R; van Oorschot, Roland A H; Baindur-Hudson, Swati

    2009-01-10

    While reflective spectrophotometry is an established method for measuring macroscopic hair colour, it can be cumbersome to use on a large number of individuals and not all reflective spectrophotometry instruments are easily portable. This study investigates the use of digital photographs to measure hair colour and compares its use to reflective spectrophotometry. An understanding of the accuracy of colour determination by these methods is of relevance when undertaking specific investigations, such as those on the genetics of hair colour. Measurements of hair colour may also be of assistance in cases where a photograph is the only evidence of hair colour available (e.g. surveillance). Using the CIE L(*)a(*)b(*) colour space, the hair colour of 134 individuals of European ancestry was measured by both reflective spectrophotometry and by digital image analysis (in V++). A moderate correlation was found along all three colour axes, with Pearson correlation coefficients of 0.625, 0.593 and 0.513 for L(*), a(*) and b(*) respectively (p-values=0.000), with means being significantly overestimated by digital image analysis for all three colour components (by an average of 33.42, 3.38 and 8.00 for L(*), a(*) and b(*) respectively). When using digital image data to group individuals into clusters previously determined by reflective spectrophotometric analysis using a discriminant analysis, individuals were classified into the correct clusters 85.8% of the time when there were two clusters. The percentage of cases correctly classified decreases as the number of clusters increases. It is concluded that, although more convenient, hair colour measurement from digital images has limited use in situations requiring accurate and consistent measurements.

  1. Techniques of microchemistry and their applications to some transcurium elements at Berkeley and Oak Ridge. [Micro- to milligram scale

    SciTech Connect

    Peterson, J.R.

    1980-01-01

    This paper gives an account of the microchemical methods that were developed for preparing and studying submilligram amounts of berkelium-249, californium-249, and einsteinium-253 and their compounds. The studies involved absorption spectrophotometry primarily, and also x-ray and electron diffraction. (DLC)

  2. Process stability assessed by selecting Shewhart's psi statistical analysis technique of the influence of matrix modifier and furnace program in the optimization and precision of zinc determinations by graphite furnace atomic absorption spectroscopy.

    PubMed

    Al-Tufail, M; Akram, M; Haq, A

    1999-03-01

    The method previously used in the Toxicology Laboratories of King Faisal Specialist Hospital and Research Center for determining the zinc concentration in serum by Zeeman atomic absorption spectrometer was improved by modifying the matrix modifier and by changing the heated graphite furnace atomization (HGA) program. After trying several methods we failed to achieve the required precision and the accuracy of methods for serum zinc determination. We changed the matrix modifier to a fifty percent mixture (v/v) of 3.90 grams per liter of ammonium phosphate in Type 1 water with 0.2% nitric acid and 1.0 gram per liter of magnesium nitrate in acidic water (0.2% HNO3) with 0.1% triton X-100 was used as matrix modifier. A twenty-five fold dilution of the sample in matrix modifier was injected on the L'vov's platform of the furnace. In order to reduce the high sensitivity of Zn the furnace program was modified. The method is found very robust. The average reproducibility between inter-runs and intra-run is less than 1.59% with a high degree of accuracy. We used two levels of controls i.e. normal or low level and abnormal or high level. The linearity and the detection limit of the assay were 0.9992 and 0.010 micromol/L respectively. Average recovery of the analyte was 98.65%. The X-Bar and R charts were constructed by using Shewhart's statistical analysis technique to assess the test methodology. It was found that the assay is capable and stable for routine clinical and research analysis. The capability index (C(P)) of the assay, an indicator of the precision, was calculated.

  3. Simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ by using second-derivative spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Han, Yanyan; Li, Yan; Si, Wei; Wei, Dong; Yao, Zhenxing; Zheng, Xianpeng; Du, Bin; Wei, Qin

    2011-09-01

    A new method of simultaneous determination of Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ is proposed here by using the second-derivative spectrophotometry method. In pH = 10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL -1 for Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+, respectively. The molar absorptivity of these color systems were 1.38 × 10 5, 1.01 × 10 5, 3.24 × 10 5, 1.07 × 10 5 and 1.29 × 10 5 L mol -1 cm -1. The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results.

  4. Structural characterization of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    SciTech Connect

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-28

    The structure of Bi{sub 2}Te{sub 3} (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb{sub 2}Te{sub 3} have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20 K to 300 K for Bi{sub 2}Te{sub 3} and from 10 K to 298 K for Sb{sub 2}Te{sub 3}. The EXAFS technique for studying the local structure of the two compounds was conducted from 19 K to 298 K. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} are isostructural, with a space group of R3{sup ¯}m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M = Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi{sub 2}Te{sub 3} are similar to those of Sb{sub 2}Te{sub 3} within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi{sub 2}Te{sub 3} relative to Sb{sub 2}Te{sub 3}.

  5. Qualitative and quantitative evaluation of chrysotile and crocidolite fibres with infrared spectrophotometry: application to asbestos-cement products.

    PubMed

    Valerio, F; Balducci, D

    1989-01-01

    Infrared (IR) spectrophotometry allows simple and rapid qualitative and quantitative evaluations of different types of asbestos, as well as of other inorganic particles. In particular, chrysotile and crocidolite have characteristic IR spectra, and optical density measurements in the 2710 nm band for chrysotile and the 12820 nm band for crocidolite permit the quantitative evaluation of each fibre either alone or in mixtures. IR spectra also provide information on changes in fibre structure and in chemical composition as the result, for example, of thermal treatment or acid leaching. The analytical method that we have developed can detect amounts as small as 0.1 mg of fibre in a 300-mg disk of potassium bromide using a low-cost IR spectrophotometer. The use of a Fourier transform IR spectrophotometer dramatically improves the sensitivity and selectivity. Computer-assisted analysis of spectra offers the possibility of reducing matrix interference and of comparing different spectra. The application of the IR technique to asbestos-cement products and insulating materials is described.

  6. Assessing the absorption of new pharmaceuticals.

    PubMed

    Hidalgo, I J

    2001-11-01

    The advent of more efficient methods to synthesize and screen new chemical compounds is increasing the number of chemical leads identified in the drug discovery phase. Compounds with good biological activity may fail to become drugs due to insufficient oral absorption. Selection of drug development candidates with adequate absorption characteristics should increase the probability of success in the development phase. To assess the absorption potential of new chemical entities numerous in vitro and in vivo model systems have been used. Many laboratories rely on cell culture models of intestinal permeability such as, Caco-2, HT-29 and MDCK. To attempt to increase the throughput of permeability measurements, several physicochemical methods such as, immobilized artificial membrane (IAM) columns and parallel artificial membrane permeation assay (PAMPA) have been used. More recently, much attention has been given to the development of computational methods to predict drug absorption. However, it is clear that no single method will sufficient for studying drug absorption, but most likely a combination of systems will be needed. Higher throughput, less reliable methods could be used to discover 'loser' compounds, whereas lower throughput, more accurate methods could be used to optimize the absorption properties of lead compounds. Finally, accurate methods are needed to understand absorption mechanisms (efflux-limited absorption, carrier-mediated, intestinal metabolism) that may limit intestinal drug absorption. This information could be extremely valuable to medicinal chemists in the selection of favorable chemo-types. This review describes different techniques used for evaluating drug absorption and indicates their advantages and disadvantages.

  7. Spectrophotometry of Dust in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  8. Iodine Absorption Cells Purity Testing.

    PubMed

    Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej

    2017-01-06

    This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).

  9. An Investigation of the Techniques of Ellipsometry, Internal Reflection Spectroscopy, and Moment Analysis to the Study of Films and Substrates

    DTIC Science & Technology

    1981-01-01

    defined from the relation ~12]2 - l_ad e (119) where a = 4~-kv is the Lambert absorption coefficient in the Lambert -de Beers law of intensity... basically modified spectrometers (Ref. 13) with vertical substrate mounts which can be translated as well as rotated. An optional support for the entire... Spectrophotometers ." Pure and Applied Chemistry, Vol. 18, 1969, pp. 303-321. 70. Jones, R. N. "Computer Programs for Absorption Spectrophotometry

  10. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively.

  11. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide.

    PubMed

    Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively.

  12. Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV-vis spectrophotometry.

    PubMed

    Pourreza, Nahid; Rastegarzadeh, Saadat; Larki, Arash

    2015-03-01

    This article presents a new and sensitive method for the determination of trace amounts of fungicide carbendazim by dispersive liquid-liquid microextraction (DLLME) combined with UV-vis spectrophotometry. The method is based on the reduction of Fe(III) to Fe(II) by carbendazim, its reaction with potassium ferricynide to form a blue product and extraction into CCL4 by DLLME technique using methyltrioctylammonium chloride (Aliquat 336) as a disperser agent. Under the established optimum conditions, the calibration graph was linear in the range of 5-600 ng mL(-1) of carbendazim with a limit of detection of 2.1 ng mL(-1). The relative standard deviations for eight replicate determinations of 50 and 300 ng mL(-1) of carbendazim were 3.9% and 1.0%, respectively. The proposed method was successfully applied to determination of carbendazim in soil and water samples.

  13. The HI absorption "Zoo"

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1absorption (FW20) lies in the range 63 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1

  14. Study of the Local Structure of GALLIUM(X)INDIUM(1 -X)ARSENIDE(Y)ANTIMONY(1-Y), a Quaternary Iii-V Semiconductor Alloy, Using the Extended X-Ray Absorption Fine Structure (exafs) Technique.

    NASA Astrophysics Data System (ADS)

    Islam, Shaheen Momtaz

    The technological importance of quaternary semiconductor alloys has stimulated considerable interest in the basic physics of these materials. Understanding of the local structure of these alloys is of fundamental importance. In this work, the extended x-ray absorption fine structure (EXAFS) technique has been used to investigate the atomic-scale structure of the III-V quaternary alloy series Ga_{rm x}In _{rm 1-x}As _{rm y}Sb_ {rm 1-y}, where Ga and In atoms occupy one sublattice and As and Sb atoms are distributed over the other sublattice. Two series of these alloys were studied with varying x (from 0.05 to 0.95) and keeping y constant (y = 0.05 or y = 0.10). The samples were polycrystalline powders of various compositions. EXAFS data were obtained at the As K-edge at room temperature for all these alloys. Our measurements reveal the number and types of atoms and the nearest neighbor distances about the average As atom. Our results show a consistent deviation from random site occupation in all these alloys, with Ga-As (and therefore In-Sb) pairs being clearly preferred over In-As and Ga -Sb pairs. This result is consistent with a theoretical model based on the pair approximation. From EXAFS measurements we also observe that the variation of Ga-As and In-As near-neighbor distances with composition is linear and that the bond-lengths remain nearly constant, closer to those in the pure binary compounds and varying only by 0.03 to 0.05A. On the other hand, the x-ray diffraction results show that the average cation -anion distance in the alloys changes by as much as 0.165A in accordance with Vegard's law. This linear variation of lattice constant with composition between the end members suggests that the atomic volume is conserved regardless of the details of the local distortions of lattice.

  15. Atmospheric absorption cell characterization

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The measurement capability of the Avionics Laboratory IR Facility was used to evaluate an absorption cell that will be used to simulate atmospheric absorption over horizontal paths of 1 - 10 km in length. Band models were used to characterize the transmittance of carbon dioxide (CO2), nitrogen (N2), and nitrous oxide (N2O) in the cell. The measured transmittance was compared to the calculated values. Nitrous oxide is important in the 4 - 4.5 micron range in shaping the weak line absorption of carbon dioxide. The absorption cell is adequate for simulating atmospheric absorption over these paths.

  16. Determination of total arsenic content in water by atomic absorption spectroscopy (AAS) using vapour generation assembly (VGA).

    PubMed

    Behari, Jai Raj; Prakash, Rajiv

    2006-03-01

    Analysis of arsenic in water is important in view of contamination of ground water with arsenic in some parts of the world including West Bengal in India and neighboring country Bangladesh. WHO has fixed the threshold for arsenic in drinking water to 10ppb (microg/l) level, hence the methodology for determination of arsenic is required to be sensitive at ppb level. Atomic absorption spectrophotometry with vapour generation assembly (AAS-VGA) is well known technique for the trace analysis of arsenic. However, total arsenic analysis [As(III)+As(V)] is very crucial and it requires reduction of As(V) to As(III) for correct analysis. As(III) is reduced to AsH3 vapours and finally to free As atoms, which are responsible for absorption signal in AAS. To accomplish this the vapour generation assembly attached to AAS has acid channel filled with 10 M HCl and the reduction channel with sodium borohydride. Further sample can be reduced either before aspiration for analysis, using potassium iodide (KI) or the sample can be introduced in the instrument directly and KI can be added in the reduction channel along with the sodium borohydride. The present work shows that samples prepared in 3 M HCl can be reduced with KI for 30 min before introduction in the instrument. Alternatively samples can be prepared in 6 M HCl and directly aspirated in AAS using KI in VGA reduction channel. The latter methodology is more useful when the sample size is large and time cycle is difficult to maintain. It is observed that the acid concentration of the sample in both the situations plays an important role. Further reduction in acid concentration and analysis time is achieved for the arsenic analysis by using modified method. Analysis in both the methods is sensitive at ppb level.

  17. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    PubMed

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity.

  18. Highly sensitive detection using Herriott cell for laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Chongyi; Song, Guangming; Du, Yang; Zhao, Xiaojun; Wang, Wenju; Zhong, Liujun; Hu, Mai

    2016-11-01

    The tunable diode laser absorption spectroscopy combined with the long absorption path technique is a significant method to detect harmful gas. The long optical path could come true by Herriott cell reducing the size of the spectrometers. A 15 cm long Herriott cell with 28.8 m optical absorption path after 96 times reflection was designed that enhanced detection sensitivity of absorption spectroscopy. According to the theory data of calculation, Herriott cell is analyzed and simulated by softwares Matlab and Lighttools.

  19. Self-scanned photodiode array - High performance operation in high dispersion astronomical spectrophotometry

    NASA Technical Reports Server (NTRS)

    Vogt, S. S.; Tull, R. G.; Kelton, P.

    1978-01-01

    A multichannel spectrophotometric detector system has been developed using a 1024 element self-scanned silicon photodiode array, which is now in routine operation with the high-dispersion coude spectrograph of the University of Texas McDonald Observatory 2.7-m telescope. Operational considerations in the use of such arrays for high precision and low light level spectrophotometry are discussed. A detailed description of the system is presented. Performance of the detector as measured in the laboratory and on astronomical program objects is described, and it is shown that these arrays are highly effective detectors for high dispersion astronomical spectroscopy.

  20. The spectrophotometry and chemical composition of the oxygen-poor bipolar nebula NGC 6164-5

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.; Parker, Robert A. R.; Henize, Karl G.

    1988-01-01

    The paper presents new ground-based and IUE spectrophotometry of several positions in NGC 6164-5 surrounding the Population I Of star HD 148937. Electron temperatures, densities, and abundances are derived for the various positions in the nebula using spectral line information. For all of the regions observed, Ne/H is depleted by an amount comparable to O/H, while S/H and Ar/H have normal values. The results suggest that the nebula consists partly of material ejected from inner shell-burning regions of the Of star. In effect, HD 148937 is older and more advanced than what was previously thought.

  1. A straightforward ninhydrin-based method for collagenase activity and inhibitor screening of collagenase using spectrophotometry.

    PubMed

    Zhang, Yanfang; Fu, Yun; Zhou, Sufeng; Kang, Lixia; Li, Changzheng

    2013-06-01

    Currently protease assay kits, requiring substrate that is either radiolabeled or fluorescence labeled and specialized instruments, are all expensive. A simple, reliable assay of protease activity and its inhibitor screening for general laboratory is rare. Here we demonstrated a straightforward ninhydrin-based method for assay of collagenase activity and its inhibitor screening using spectrophotometry. In the method, without multistep sample treatments and substrate labeling, the hydrolytic products were directly traced by ninhydrin. The method is expected to be suitable for not only the assay of collagenase activity but also the others matrix metalloproteinases activities, and can be used for kinetic study.

  2. Study of the impact of mechanical treatments on wastewater solids by UV spectrophotometry.

    PubMed

    Berho, C; Pouet, M F; Thomas, O

    2003-12-01

    The aim of this paper is, from the perspective of improvement of Total Suspended Solids (TSS) measurement by UV spectrophotometry, to study the influence of two pretreatments on the UV responses of urban wastewater (sonication and mechanical grinding). The study of optical properties evolution the different phenomena involved and show mechanical grinding as a potential pre-treatment is prosed. Mechanical grinding is applied to samples characterised by different TSS concentration and particle size distributions in order to test its feasability. Results show the limit of the pretreatment and the difficulty of exploiting the UV response of urban wastewater for TSS characterization and estimation.

  3. Near-infrared and ultraviolet spectrophotometry of the young planetary nebula Hubble 12

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Rossano, George S.; Erwin, Peter; Puetter, R. C.; Feibelman, Walter A.

    1993-01-01

    The young planetary nebula Hubble 12 is observed using near-IR and UV spectrophotometry. The brightness of the O I lines, which is greater than in any other planetary nebula yet measured, indicates that fluorescent excitation by stellar continuum is the principal mechanism generating these lines. Extinction, electron density, and electron temperature are determined using infrared measurements combined with UV data and published optical observations. The range in extinction, density, and temperature implies that, within the ionized region, pockets of emission with distinctly different conditions exist. Logarithmic abundances for helium, oxygen, and sulfur are presented.

  4. 8- to 13-micron spectrophotometry of Comet IRAS-Araki-Alcock

    NASA Technical Reports Server (NTRS)

    Feierberg, M. A.; Witteborn, F. C.; Johnson, J. R.; Campins, H.

    1984-01-01

    Spectrophotometry between 8.0 and 13.0 microns at 2 percent spectral resolution is presented for areas in and near the nuclear condensation of Comet IRAS-Araki-Alcock (1983d) on May 11 and 12, 1983. All the spectra can be fit very well by blackbody curves, and no 10-micron silicate emissions are seen. The temperature structure of the coma suggests the presence of small (radii less than 5 microns) dust particles within 150 km of the nucleus and larger ones further out. The change in the spatial distribution of the infrared flux between the two nights suggests that an outburst may have occurred sometime on May 11.

  5. Documentation for the machine-readable version of the Absolute Calibration of Stellar Spectrophotometry

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    The machine-readable data file of The Absolute Calibration of Stellar Spectrophotometry as distributed by the Astronomical Data Center is described. The data file contains the absolute fluxes for 16 stars published in Tables 1 and 2 of Johnson (1980). The absolute calibrations were accomplished by combining the 13-color photometry calibrations of Johnson and Mitchell (1975) with spectra obtained with a Michelson spectrophotometer and covering the wavelength range 4000 to 10300 A (Johnson 1977). The agreement between this absolute calibration and another recent one based upon data for a Lyr and 109 Vir by Tug, White and Lockwood (1977) is shown by Johnson (1980) to be quite good.

  6. A comparative study of UV-spectrophotometry and first-order derivative UV-spectrophotometry methods for the estimation of diazepam in presence of Tween-20 and propylene glycol.

    PubMed

    Dastidar, Debabrata Ghosh; Sa, Biswanath

    2009-01-01

    Nonionic surfactants like polysorbates (Tweens) and co-surfactant like propylene glycol are used in pharmaceutical dosage forms, like microemulsion of diazepam. These additives interfere significantly with the estimation of diazepam by UV spectrophotomery method. The aim of this work was to develop a first-order derivative UV-spectrophotometry method that can estimate diazepam in presence of Tween-20 and propylene glycol. The experimental results clearly suggested that, in comparison with the UV-spectrophotometry method, the first-order derivative UV-spectrophotometry is a simple method to estimate diazepam with sufficient accuracy, specificity, and precision even in the presence of 282-times Tween-20 and 2,072-times propylene glycol.

  7. [Effect of altitude on iron absorption].

    PubMed

    Pizarro, F; Zavaleta, N; Hertrampf, E; Berlanga, R; Camborda, L; Olivares, M

    1998-03-01

    Iron bioavailability was evaluated in people living in high altitudes. Absorption was estimated from a reference dose of ferrous ascorbate and from a standard diet of wheat flour, using extrinsic tag radioisotope technique of 55Fe and 59Fe. Twenty four volunteers, healthy women, with ages ranging from 28 to 45 years, participated. Of those, eleven lived at 3450 meters above sea level (m.a.s.l.) in Huancayo city-Peru (study group), and 13 lived in Santiago de Chile at 630 m.a.s.l. (control group). Iron absorption from reference dose of ferrous ascorbate was 32.0% and 31.1% in the study and control groups respectively. The geometric mean of iron absorption from the standard diet, corrected to 40% of absorption of reference dose, was 9.0% and 6.9% in the study and control groups respectively (NS). The results suggest that altitude does not produce a high iron absorption in highlander residents.

  8. Combination of solid phase extraction and dispersive liquid-liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination.

    PubMed

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-12-15

    A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples.

  9. Spatial variability of absorption properties in Lake Balaton, Hungary

    NASA Astrophysics Data System (ADS)

    Riddick, C. A.; Hunter, P. D.; Tyler, A. N.; Vicente, V. M.; Groom, S.; Horváth, H.; Kovacs, A.; Preston, T.; Presing, M.

    2013-12-01

    In order to improve robustness of current remote sensing algorithms for lake monitoring, it is vital to understand the variability of inherent optical properties (IOPs) within a lake. In this study, absorption coefficients were measured in situ at 38 stations in Lake Balaton, Hungary, using a WET Labs AC-S and AC-9 and compared to concurrent absorption measurements by dual beam spectrophotometry in the laboratory. The spatial variability of bulk and chlorophyll-specific absorption coefficients was examined across 5 basins, demonstrating a gradient in total absorption corresponding to the trophic gradient. Our data suggests that sampling conditions had an impact on particulate absorption, affecting the proportion attributed to non-algal particles (aNAP), phytoplankton (aph) or color dissolved organic matter (aCDOM). The specific absorption of phytoplankton (a*ph) spectra showed a distinct peak in the UV portion of the spectra in Basins 3 and 4 (east), which may be due to the presence of phytoplankton photoprotective pigments to compensate for lower CDOM levels in these basins. In contrast to oceans, particulate attenuation (cp) had a weaker relationship to chlorophyll-a (R2=0.15) than to total suspended matter (R2=0.84), particularly the inorganic fraction. Additionally, the relative contribution of particulate scattering (bp) to attenuation was significantly higher in Lake Balaton (up to 85-99%) than that found in previous lacustrine studies. bp also demonstrated a gradient across the lake, where values increased as the water progressed from phytoplankton-dominated to mineral-dominated. These results provide knowledge of the heterogeneity of the IOPs within Lake Balaton, which is to be considered for the future improvement of bio-optical algorithms for constituent retrieval in inland waters.

  10. Atmospheric Absorption Parameters for Laser Propagation

    DTIC Science & Technology

    2007-11-02

    high-resolution, good photometric accuracy data for numerous bands in the 3-5 Am region, using the facility at Kitt Peak National Solar Observatory. The...L49-L52 (2001). 44. A. Castrillo, G. Gagliardi, G. Casa , and L. Gianfrani, "Combined interferometric and absorption-spectroscopic technique for...from FT visible solar absorption spectra and evaluation of spectroscopic databases," JQRST 82, 133-150 (2003). 53. D. Jacquemart, R.R. Gamache, and L.S

  11. Optical Absorption, Stability and Structure of NpO2+ Complexeswith Dicarboxylic Acids

    SciTech Connect

    Guoxin Tian; Linfeng Rao

    2006-01-04

    Complexation of NpO2+ with oxalic acid (OX),2,2'-oxydiacetic acid (ODA), 2,2'-iminodiacetic acid (IDA) and 2,2'-thiodiacetic acid (TDA), has been studied using spectrophotometry in1 M NaClO4. Both the position and the intensity of the absorption band of NpO2+ at 980 nm are affected by the formation of NpO2+/dicarboxylate complexes, providing useful information on the complexation strength, the coordination mode and the structure of the complexes.

  12. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  13. Technical note: comparing von Luschan skin color tiles and modern spectrophotometry for measuring human skin pigmentation.

    PubMed

    Swiatoniowski, Anna K; Quillen, Ellen E; Shriver, Mark D; Jablonski, Nina G

    2013-06-01

    Prior to the introduction of reflectance spectrophotometry into anthropological field research during the 1950s, human skin color was most commonly classified by visual skin color matching using the von Luschan tiles, a set of 36 standardized, opaque glass tiles arranged in a chromatic scale. Our goal was to establish a conversion formula between the tile-based color matching method and modern reflectance spectrophotometry to make historical and contemporary data comparable. Skin pigmentation measurements were taken on the forehead, inner upper arms, and backs of the hands using both the tiles and a spectrophotometer on 246 participants showing a broad range of skin pigmentation. From these data, a second-order polynomial conversion formula was derived by jackknife analysis to estimate melanin index (M-index) based on tile values. This conversion formula provides a means for comparing modern data to von Luschan tile measurements recorded in historical reports. This is particularly important for populations now extinct, extirpated, or admixed for which tile-based measures of skin pigmentation are the only data available.

  14. Use of reflectance spectrophotometry to predict the response of port wine stains to pulsed dye laser.

    PubMed

    Halachmi, Shlomit; Azaria, Ron; Inbar, Roy; Ad-El, Dean; Lapidoth, Moshe

    2014-01-01

    Reflectance spectroscopy can be used to quantitate subtle differences in color. We applied a portable reflectance spectrometer to determine its utility in the evaluation of pulsed dye laser treatment of port wine stains (PWS) and in prediction of clinical outcome, in a prospective study. Forty-eight patients with PWS underwent one to nine pulsed dye laser treatments. Patient age and skin color as well as PWS surface area, anatomic location, and color were recorded. Pretreatment spectrophotometric measurements were performed. The subjective clinical results of treatment and the quantitative spectrophotometry results were evaluated by two independent teams, and the findings were correlated. The impact of the clinical characteristics on the response to treatment was assessed as well. Patients with excellent to good clinical results of laser treatments had pretreatment spectrophotometric measurements which differed by more than 10%, whereas patients with fair to poor results had spectrophotometric measurements with a difference of of less than 10%. The correlation between the spectrophotometric results and the clinical outcome was 73% (p < 0.01). The impact of the other clinical variables on outcome agreed with the findings in the literature. Spectrophotometry has a higher correlation with clinical outcome and a better predictive value than other nonmeasurable, nonquantitative, dependent variables.

  15. Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pulping effluent.

    PubMed

    Chen, Honglei; Chen, Yuancai; Zhan, Huaiyu; Fu, Shiyu

    2011-04-01

    A new method has been developed for the determination of chemical oxygen demand (COD) in pulping effluent using chemometrics-assisted spectrophotometry. Two calibration models were established by inducing UV-visible spectroscopy (model 1) and derivative spectroscopy (model 2), combined with the chemometrics software Smica-P. Correlation coefficients of the two models are 0.9954 (model 1) and 0.9963 (model 2) when COD of samples is in the range of 0 to 405 mg/L. Sensitivities of the two models are 0.0061 (model 1) and 0.0056 (model 2) and method detection limits are 2.02-2.45 mg/L (model 1) and 2.13-2.51 mg/L (model 2). Validation experiment showed that the average standard deviation of model 2 was 1.11 and that of model 1 was 1.54. Similarly, average relative error of model 2 (4.25%) was lower than model 1 (5.00%), which indicated that the predictability of model 2 was better than that of model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents and digestion which were required in the conventional methods, and the testing time of the new method was significantly shorter than the conventional ones. The proposed method can be used to measure COD in pulping effluent as an environmentally friendly approach with satisfactory results.

  16. Light Absorption By Coated Soot

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lee, J.; Onasch, T. B.; Davidovits, P.; Cross, E. S.

    2009-12-01

    The contribution of aerosol absorption on direct radiative forcing is still an active area of research, in part, because aerosol extinction is dominated by light scattering and, in part, because the primary absorbing aerosol of interest, soot, exhibits complex aging behavior that alters its optical properties. The consequences of this can be evidenced by the work of Ramanathan and Carmichael (2008) who suggest that incorporating the atmospheric heating due to brown clouds will increase black carbon (BC) radiative forcing from the IPCC best estimate of 0.34 Wm-2 (±0.25 Wm-2) (IPCC 2007) to 0.9 Wm-2. This noteworthy degree of the uncertainty is due largely to the interdependence of BC optical properties on particle mixing state and aggregate morphology, each of which changes as the particle ages in the atmosphere and becomes encapsulated within a coating of inorganic and/or organic substances. With the advent of techniques that can directly measure aerosol light absorption without influences due to collection substrate or light scattering (e.g., photoacoustic spectroscopy (Arnott et al., 2005; Lack et al., 2006) and photothermal interferometry (Sedlacek and Lee 2007)) the potential exists for quantifying this interdependence. In July 2008, a laboratory-based measurement campaign, led by Boston College and Aerodyne, was initiated to begin addressing this interdependence. To achieve this objective measurements of both the optical and physical properties of flame-generated soot under nascent, coated and denuded conditions were conducted. In this paper, light absorption by dioctyl sebacate (DOS) encapsulated soot and sulfuric acid coated soot using the technique of photothermal interferometry will be presented. In the case of DOS-coated soot, a monotonic increase in light absorption as a function DOS coating thickness to nearly 100% is observed. This observation is consistent with a coating-induced amplification in particle light absorption. (Bond et al. 2006) However

  17. Optical absorptions of polyfluorene transistors

    NASA Astrophysics Data System (ADS)

    Deng, Yvonne Y.; Sirringhaus, Henning

    2005-07-01

    Conjugated polymers are a promising class of materials for organic electronics. While the progress in device performance is impressive, the basics of charge transport still pose many open questions. Specifically, conduction at the comparatively rough polymer-polymer interface in an all-polymer field-effect transistor is expected to be different from a sharp interface with an inorganic dielectric, such as silicon dioxide. In this work, charge modulation spectroscopy (CMS) is used to study the optical absorptions in the presence of charges in situ in the transistor structure. This allows direct observation of the charge carriers in the operational device via their spectroscopic signature; the technique is by design very sensitive to the properties of the semiconductor-dielectric interface. The semiconducting copolymer poly( 9,9' -dioctyl-fluorene-co-bithiophene) (F8T2) is incorporated into a top-gate thin-film transistor structure with a polymer dielectric layer deposited by spin coating and inkjet-printed polymer electrodes. A prominent charge-induced absorption at 1.65eV is observed as well as a shoulder at 1.3eV and a tail extending toward the absorption edge. The bias dependence of the CMS signature confirms that intermixing of the polymer layers is minimal, as expected from the excellent transistor characteristics. Polarization-dependent CMS measurements on aligned transistors show that the main feature at 1.65eV is strongly polarized whereas the shoulder is unpolarized. This observation, as well as further experimental evidence, lead to the conclusion that while the main absorption is attributable to the intrinsic, polaronic absorption in F8T2, the shoulder is likely to originate from a defect state.

  18. Astronomical CCD observing and reduction techniques

    NASA Technical Reports Server (NTRS)

    Howell, Steve B. (Editor)

    1992-01-01

    CCD instrumentation and techniques in observational astronomy are surveyed. The general topics addressed include: history of large array scientific CCD imagers; noise sources and reduction processes; basic photometry techniques; introduction to differential time-series astronomical photometry using CCDs; 2D imagery; point source spectroscopy; extended object spectrophotometry; introduction to CCD astrometry; solar system applications for CCDs; CCD data; observing with infrared arrays; image processing, data analysis software, and computer systems for CCD data reduction and analysis. (No individual items are abstracted in this volume)

  19. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  20. [A specific feature of the procedure for determination of optical properties of turbid biological tissues and media in calculation tasks of medical noninvasive spectrophotometry].

    PubMed

    Rogatkin, D A

    2007-01-01

    The goal of this work is to discuss the problems of accuracy and reliability of the procedure for determination of optical per-unit-length properties of light-scattering biological tissues and media in medical noninvasive spectrophotometry. The determination procedure is based on the two-flux Kubelka-Munk approach. A simple one-dimensional model problem is formulated. The accurate solution of this problem is compared to its solution based on the Kubelka-Munk approach in various approximations. It is shown that in the general case of light-scattering and absorbing medium use of two independent transport coefficients (for scattering and absorption processes), as suggested in the conventional Kubelka-Munk approach, leads to errors of direct calculation of properties of backscattered and transmitted radiation in biological tissues. More valid and accurate expressions for transport coefficients can be obtained on the basis of a particular solution of the problem for a surface element of the model medium with known photometrical properties. This method makes it possible to determine accurately the radiation flux at the external boundary of the medium using the Kubelka-Munk approach. It is expected that solution of the inverse problem would make it possible to reconstruct accurately the optical properties of biological tissues from the experimental data.

  1. Comparative study between univariate spectrophotometry and multivariate calibration as analytical tools for quantitation of Benazepril alone and in combination with Amlodipine.

    PubMed

    Farouk, M; Elaziz, Omar Abd; Tawakkol, Shereen M; Hemdan, A; Shehata, Mostafa A

    2014-04-05

    Four simple, accurate, reproducible, and selective methods have been developed and subsequently validated for the determination of Benazepril (BENZ) alone and in combination with Amlodipine (AML) in pharmaceutical dosage form. The first method is pH induced difference spectrophotometry, where BENZ can be measured in presence of AML as it showed maximum absorption at 237nm and 241nm in 0.1N HCl and 0.1N NaOH, respectively, while AML has no wavelength shift in both solvents. The second method is the new Extended Ratio Subtraction Method (EXRSM) coupled to Ratio Subtraction Method (RSM) for determination of both drugs in commercial dosage form. The third and fourth methods are multivariate calibration which include Principal Component Regression (PCR) and Partial Least Squares (PLSs). A detailed validation of the methods was performed following the ICH guidelines and the standard curves were found to be linear in the range of 2-30μg/mL for BENZ in difference and extended ratio subtraction spectrophotometric method, and 5-30 for AML in EXRSM method, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits.

  2. Simple and fast method for iron determination in white and red wines using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry.

    PubMed

    Maciel, Juliana V; Soares, Bruno M; Mandlate, Jaime S; Picoloto, Rochele S; Bizzi, Cezar A; Flores, Erico M M; Duarte, Fabio A

    2014-08-20

    This work reports the development of a method for Fe extraction in white and red wines using dispersive liquid-liquid microextraction (DLLME) and determination by ultraviolet-visible spectrophotometry. For optimization of the DLLME method, the following parameters were evaluated: type and volume of dispersive (1300 μL of acetonitrile) and extraction (80 μL of C(2)Cl(4)) solvents, pH (3.0), concentration of ammonium pyrrolidinedithiocarbamate (APDC, 500 μL of 1% m/v APDC solution), NaCl concentration (not added), and extraction time. The calibration curve was performed using the analyte addition method, and the limit of detection and relative standard deviation were 0.2 mg L(-1) and below 7%, respectively. The accuracy was evaluated by comparison of results obtained after Fe determination by graphite furnace atomic absorption spectrometry, with agreement ranging from 94 to 105%. The proposed method was applied for Fe determination in white and red wines with concentrations ranging from 1.3 to 4.7 mg L(-1).

  3. Speciation of selenium in environmental samples by solid-phase spectrophotometry using 2,3-dichloro-6-(2,7-dihydroxy-naphthylazo)quinoxaline.

    PubMed

    Amin, Alaa S

    2014-01-01

    Solid-phase spectrophotometry was applied to determination of trace amounts of selenium (Se) in water, soil, plant materials, human hair, and a cosmetic preparation (lipstick). Se(IV) was sorbed in a dextran type lipophilic gel as a complex with 2,3-dichloro-6-(2,7-dihydroxy-naphthylazo)quinoxaline (DCDHNAQ), whereas Se(VI) was determined after boiling in HCI for 10 min to convert Se(VI) to Se(IV). Resin phase absorbances at 588 and 800 nm were measured directly, which allowed the determination of Se in the range of 0.2-3.3 microg/L with an RSD of 1.22%. The influences of analytical parameters including pH of the aqueous solution, amounts of DCDHNAQ, and sample volume were investigated. The molar absorptivities were found to be 1.09 x 10(6), 4.60 x 10(6), and 1.23 x 10(7) L/mol cm for 100, 500, and 1000 mL, respectively. The LOD and LOQ of the 500 mL sample method were 110 and 360 ng/L, respectively, when using 50 mg dextran type lipophilic gel. For a 1000 mL sample, the LOD and LOQ were 60 and 200 ng/L, respectively, using 50 mg of the exchanger. Increasing the sample volume enhanced the sensitivity. No considerable interferences were observed from other investigated anions and cations on the Se determination.

  4. Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry.

    PubMed

    Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe

    2015-01-02

    The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.

  5. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  6. Rectal absorption of propylthiouracil.

    PubMed

    Bartle, W R; Walker, S E; Silverberg, J D

    1988-06-01

    The rectal absorption of propylthiouracil (PTU) was studied and compared to oral absorption in normal volunteers. Plasma levels of PTU after administration of suppositories of PTU base and PTU diethanolamine were significantly lower compared to the oral route. Elevated plasma reverse T3 levels were demonstrated after each treatment, however, suggesting a desirable therapeutic effect at this dosage level for all preparations.

  7. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  8. Studies with nonradioisotopic sodium chromate. I. Development of a technique for measuring red cell volume

    SciTech Connect

    Heaton, W.A.; Hanbury, C.M.; Keegan, T.E.; Pleban, P.; Holme, S. )

    1989-10-01

    A nonradioisotopic method for measuring red cell volume that involves the use of 52Cr-sodium chromate as the red cell label and of graphite furnace atomic absorption analysis of chromium is described. The technique allows the labelling of 20 mL of packed red cells with 40 to 50 micrograms of sodium chromate (Na2CrO4) in 30 minutes at 22 degrees C with 94 +/- 6 percent uptake. Approximately 40 micrograms of Na2CrO4 was injected for in vivo studies. This results in posttransfusion in vivo red cell chromium levels after sample processing in the range of 1 to 7 micrograms per L, which could be quantitated accurately (coefficient of variation = 4.7%) by Zeeman electrothermal atomic absorption spectrophotometry. The labeling concentration of chromium did not cause increased hemolysis, and the labeled cells exhibited an osmotic fragility curve similar to that of unlabeled, fresh ACD red cells. Red cell glutathione peroxidase was unaffected by labeling, although glutathione reductase was reduced by approximately 13 percent (p less than 0.05). The 52Cr red cell volume-measuring method was evaluated by concurrent in vivo studies with the standard 51Cr and 125I-albumin methods for that procedure. Simultaneous measurement of red cell volumes in seven volunteers by the 51Cr, 52Cr, and 125I-albumin techniques correlated highly with each other (r greater than 0.76), with mean values of 2294 +/- 199, 2191 +/- 180, and 2243 +/- 291 mL, respectively. The standard deviations of the differences were small: 134 mL for 52Cr versus 51Cr and 183 mL for 52Cr versus 125I.

  9. Microwave non-destructive testing technique for characterization of HPMC-PEG 3000 films.

    PubMed

    Wong, T W; Deepak, K G; Taib, M N; Anuar, N K

    2007-10-01

    The capacity of microwave non-destructive testing (NDT) technique to characterize the matrix property of binary polymeric films for use as transdermal drug delivery system was investigated. Hydroxypropylmethylcellulose (HPMC) and polyethylene glycol (PEG) 3000 were the choice of polymeric matrix and plasticizer, respectively with loratadine as the model drug. Both blank and drug loaded HPMC-PEG 3000 films were prepared using the solvent-evaporation method. These films were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using the established methods of ultra-violet spectrophotometry, differential scanning calorimetry and Fourier transform infrared spectroscopy methods, as well as, novel microwave NDT technique. Blank films exhibited a greater propensity of polymer-polymer interaction at the O-H domain upon storage at a lower level of relative humidity, whereas drug loaded films exhibited a greater propensity of polymer-polymer, polymer-plasticizer and/or drug-polymer interaction via the O-H, C-H and/or aromatic C=C functional groups when they were stored at a lower or moderate level of relative humidity. The absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer, polymer-plasticizer, and/or drug-polymer interaction of the matrix. The measurements of microwave NDT test at 8 and 12 GHz were sensitive to the polar fraction of film involving functional group such as O-H moiety and the less polar environment of matrix consisting of functional groups such as C-H and aromatic C=C moieties. The state of interaction between polymer, plasticizer and/or drug of a binary polymeric film can be elucidated through its absorption and transmission profiles of microwave.

  10. Absorption-Line Studies of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael

    We propose to undertake a "reverberation analysis" of the variable absorption lines ill two Seyfert Galaxies (NGC 4051 and Mrk 279) to help understand the origin of intrinsic absorption lines in AGNs. Stich an analysis is a powerful tool for elucidating the radial distribution of absorbing gas in the broad-line region (BLR) and narrow-line region (NLR). Only two Seyferts have previously been studied with this technique: NGC 4151 (Bromage el al. 1985; Clavel et al. 1987) and NGC 3516 (Voit, Shull, and Begelman 1987). The absorption features have been interpreted as an outflow of ionized clouds from the nuclear region or from an accretion disk affected by UV/X-ray heating. Neither the source of the absorbing gas in these Seyferts nor the "gene" which distingishes them from other Seyferts is known. Until the 1984 onset of absorption in Mrk 279, broad self-absorbed. lines had been observed only in Seyferts of low intrinsic luminosity, such as NGC 4051. Mrk 279 is intrinsically much brighter, and therefore more quasar-like, than the other three absorptionline Seyfert I's in the CfA sample. Thus, it may show how the absorption phenomenon changes at higher luminosity and could bridge the gap between the low luminosity absorption-line Seyferts and the well-studied broad absorption-line (BAL) QSO's. In addition, Mrk 279's significant redshift will allow us to study, for the first time, the Ly-alpha line in an absorption-line Seyfert. With 3 US-1 shifts for each of these two underobserved Seyferts, we can double the number of objects in which absorption-line variability has been studied and investigate why the absorption-line strengths correlate or anti-correlate with the UV continuum.

  11. Determination of losartan potassium, quinapril hydrochloride and hydrochlorothiazide in pharmaceutical preparations using derivative spectrophotometry and chromatographic-densitometric method.

    PubMed

    Stolarczyk, Mariusz; Maślanka, Anna; Apola, Anna; Krzek, Jan

    2013-01-01

    Two methods, spectrophotometric and chromatographic-densitometric ones, were developed for determination of losartan potassium, quinapril hydrochloride and hydrochlorothiazide in pharmaceutical preparations. Spectrophotometric method involved derivative spectrophotometry and zero order spectrophotometry. The measurements were carried out at lambda = 224.0 nm for quinapril, lambda = 261.0 nm for hydrochlorothiazide and lambda = 270.0 nm for losartan when the derivative spectrophotometry was applied and lambda = 317.0 nm when zero order spectrophotometry was applied for the determination of hydrochlorothiazide. In chromatographic-densitometric studies high performance thin layer chromatography (HPTLC) plates were used as stationary phase and a mixture of solvents n-butanol : acetic acid : water (15 : 5 : 1, v/v/v) as mobile phase. Under the established conditions good resolution of examined constituents was obtained. Retardation factor for quinapril hydrochloride was R(f) - 0.70, for losartan potassium R(f) - 0.85 and for hydrochlorothiazide R(f) - 0.78. The developed methods are characterized by high sensitivity and accuracy. For quantitative analysis, densitometric measurements were carried out at lambda = 218.0 nm for quinapril, lambda = 275.0 nm for hydrochlorothiazide and = 232.0 nm for losartan.

  12. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  13. Beta Absorption Mass Monitoring of Particulates - A Review

    NASA Technical Reports Server (NTRS)

    Lilienfeld, Pedro

    1971-01-01

    The theory and application of beta-radiation absorption for the measurement and monitoring of airborne particulates are discussed. The use of this technique, both for source testing and for ambient air quality monitoring is reviewed. Various particle collection methods used in conjunction with beta absorption sensing configurations are considered. State of the art and current developments of instrumentation approaches for the automated measurement of mass concentration and size distribution of aerosols by beta absorption are discussed. Methods for electronic signal processing and recording are presented. The Beta absorption technique appears as a powerful tool for the unattended measurement of the mass of particulate pollution, compatible with telemetry and central data processing methods.

  14. A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques.

    PubMed

    Gleisner, Heike; Einax, Jürgen W; Morés, Silvane; Welz, Bernhard; Carasek, Eduardo

    2011-04-05

    A fast and reliable method has been developed for the determination of total and soluble fluorine in toothpaste, important quality control parameters in dentifrices. The method is based on the molecular absorption of gallium mono-fluoride, GaF, using a commercially available high-resolution continuum source atomic absorption spectrometer. Transversely heated platform tubes with zirconium as permanent chemical modifier were used throughout. Before each sample injection, a palladium and zirconium modifier solution and a gallium reagent were deposited onto the graphite platform and thermally pretreated to transform them into their active forms. The samples were only diluted and introduced directly into the graphite tube together with additional gallium reagent. Under these conditions the fluoride was stable up to a pyrolysis temperature of 550 °C, and the optimum vaporization (molecule formation) temperature was 1550 °C. The GaF molecular absorption was measured at 211.248 nm, and the limits of detection and quantification were 5.2 pg and 17 pg, respectively, corresponding to a limit of quantification of about 30 μg g(-1) (ppm) F in the original toothpaste. The proposed method was used for the determination of total and soluble fluorine content in toothpaste samples from different manufactures. The samples contained different ionic fluoride species and sodium monofluorophosphate (MFP) with covalently bonded fluorine. The results for total fluorine were compared with those obtained with a modified conventional headspace gas chromatographic procedure. Accuracy and precision of the two procedures were comparable, but the proposed procedure was much less labor-intensive, and about five times faster than the latter one.

  15. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  16. Fiber optic spectrophotometry monitoring of plant nutrient deficiency under hydroponic culture conditions

    NASA Astrophysics Data System (ADS)

    Liew, Oi Wah; Boey, William S. L.; Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min

    1999-05-01

    In this paper, fiber optic spectrophotometry (FOSpectr) was adapted to provide early detection of plant nutrient deficiency by measuring leaf spectral reflectance variation resulting from nutrient stress. Leaf reflectance data were obtained form a local vegetable crop, Brassica chinensis var parachinensis (Bailey), grown in nitrate-nitrogen (N)- and calcium (Ca)- deficient hydroponics nutrient solution. FOSpectr analysis showed significant differences in leaf reflectance within the first four days after subjecting plants to nutrient-deficient media. Recovery of the nutrient-stressed plants could also be detected after transferring them back to complete nutrient solution. In contrast to FOSpectr, plant response to nitrogen and calcium deficiency in terms of reduced growth and tissue elemental levels was slower and less pronounced. Thus, this study demonstrated the feasibility of using FOSpectr methodology as a non-destructive alternative to augment current methods of plant nutrient analysis.

  17. Determination of glucosinolates in 19 Chinese medicinal plants with spectrophotometry and high-pressure liquid chromatography.

    PubMed

    Hu, Ye; Liang, Hao; Yuan, Qipeng; Hong, Yuancheng

    2010-08-01

    Glucosinolates were evaluated in 19 traditional Chinese medicinal plants involved in seven different families: Brassicaceae, Capparaceae, Euphorbiaceae, Phytolaccaceae, Tropaeolaceae, Caricaceae and Rubiaceae. The total glucosinolate contents were determined by spectrophotometry. Results showed that the high contents of total glucosinolates were found in some herbs of Brassicaceae, Capparaceae and Euphorbiaceae families, while low total glucosinolate contents were observed in two Rubiaceae herbs. In addition, eight glucosinolates (glucoraphanin, glucoraphenin, sinalbin, sinigrin, progoitrin, 4-hydroglucobrassicin, glucoiberin and glucoibervirin) in these herbs were measured using HPLC, and the data showed that individual glucosinolates and their contents varied at different degrees among the distinct species. The highest contents of cancer-protective compounds were found in the seeds of Raphanus sativus L. (glucoraphenin), Sinapis alba (sinalbin) and Phyllanthus emblica L. (sinigrin).

  18. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  19. Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Bowyer, S.; Grewing, M.

    1986-01-01

    Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations.

  20. Ultraviolet spectrophotometry of comet Giacobini-Zinner during the ICE encounter. [International Cometary Explorer (ICE)

    NASA Technical Reports Server (NTRS)

    Ahearn, Michael F.; Mcfadden, Lucy A.; Feldman, Paul D.; Boehnhardt, Hermann; Rahe, Juergen; Festou, Michael; Brandt, John C.; Maran, Stephen P.; Niedner, Malcom B.; Smith, Andrew M.

    1986-01-01

    The IUE spectrophotometry of Comet P/Giacobini-Zinner was acquired in support of the International Cometary Explorer (ICE) mission. The abundances (or upper limits) of UV-active species were calculated. During the ICE encounter the H2O production rate was 3 times 10 to the 28th power/sec, + or - 50%, consistent with values derived from the ICE experiments. Comparison of the abundance of CO2(+) ions with the total electron density measured by the plasma electron experiment on ICE indicates a deficiency of ions relative to electrons indicating a population of ions not detected by remote sensing. The absence of detectable Mg(+) rules out this species as a possible ion of M/Q = 24 detected by the Ion Composition Instrument, part of the ICE complement of instruments.

  1. Heterodyne spectrophotometry of ozone in the 9.6-micron band using a tunable diode laser

    NASA Technical Reports Server (NTRS)

    Mcelroy, C. T.; Goldman, A.; Fogal, P. F.; Murcray, D. G.

    1990-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (0.0003/cm) solar spectra in the 9.6-micron ozone band. Observations have shown that a signal-to-noise ratio of 120:1 (about 30 percent of theoretical) for an integration time of 1/8 s can be achieved at a resolution of 0.0013 wave numbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that measured at the nearby NOAA ozone monitoring facility in Boulder, Colorado. Line positions for several ozone lines in the spectral region 996-997/cm are reported. Recent improvements have produced a signal-to-noise ratio of 95:1 (about 40 percent of theoretical) at 0.0003/cm and extended the range of wavelengths which can be observed.

  2. Airborne and groundbased spectrophotometry of comet P/Halley from 5-13 micrometers

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Witteborn, F. C.; Allamandola, L. J.; Campins, H.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Tielens, A. G. G. M.

    1987-01-01

    Spectrophotometry of comet Halley from 5-13 microns was obtained from the Kuiper Airborne Observatory and from the Lick Observatory Nickel Telescope, revealing a strong broad emission band at 10 microns and a weak feature at 6.8 microns. The 10-micron band is identified with silicate materials, and the primary component of the silicate emission is suggested to be due to olivine. The 6.8 micron feature may be due either to carbonates or the C-H deformation mode in organic molecules. The data indicate that small particles are abundant in the coma and that the dust contains at least two physically separate components. Significant spatial and temporal variations are also noted in the spectrum.

  3. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry.

    PubMed

    He, Yu-Cai; Ma, Cui-Luan; Xu, Jian-He; Zhou, Li

    2011-02-01

    Nitrile-hydrolyzing enzymes (nitrilase or nitrile hydratase/amidase) have been widely used in the pharmaceutical industry for the production of carboxylic acids and their derivatives, and it is important to build a method for screening for nitrile-hydrolyzing enzymes. In this paper, a simple, rapid, and high-throughput screening method based on the ferric hydroxamate spectrophotometry has been proposed. To validate the accuracy of this screening strategy, the nitrilases from Rhodococcus erythropolis CGMCC 1.2362 and Alcaligenes sp. ECU0401 were used for evaluating the method. As a result, the accuracy for assaying aliphatic and aromatic carboxylic acids was as high as the HPLC-based method. Therefore, the method may be potentially used in the selection of microorganisms or engineered proteins with nitrile-hydrolyzing enzymes.

  4. Near-infrared spectrophotometry of the satellites and rings of Uranus

    NASA Astrophysics Data System (ADS)

    Soifer, B. T.; Neugebauer, G.; Matthews, K.

    1981-03-01

    New spectrophotometry from 1.5 to 2.5 microns is reported for the Uranian satellites Titania, Oberon, and Umbriel. A spectrum of the rings of Uranus from 2.0 to 2.4 microns is also reported. No evidence is found for frost covering the surface of the ring material, consistent with the low albedo of the rings previously reported by Nicholson and Jones (1980). The surfaces of the satellites are found to be covered by dirty water frost. Assuming albedos of the frost and gray components covering the Uranian satellites to be the same as the light and dark faces of Iapetus, radii are derived that are roughly twice those inferred from the assumption of a visual albedo of 0.5.

  5. (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations

    NASA Astrophysics Data System (ADS)

    Magrin, S.; La Forgia, F.; Pajola, M.; Lazzarin, M.; Massironi, M.; Ferri, F.; da Deppo, V.; Barbieri, C.; Sierks, H.; Osiris Team

    2012-06-01

    Here we present some preliminary results on surface variegation found on (21) Lutetia from ROSETTA-OSIRIS images acquired on 2010-07-10. The spectrophotometry obtained by means of the two cameras NAC and WAC (Narrow and Wide Angle Cameras) is consistent with ground based observations, and does not show surface diversity above the data error bars. The blue and UV images (shortward 500 nm) may, however, indicate a variegation of the optical properties of the asteroid surface on the Baetica region (Sierks et al., 2011). We also speculate on the contribution due to different illumination and to different ground properties (composition or, more probably, grain size diversity). In particular a correlation with geologic units independently defined by Massironi et al. (2012) is evident, suggesting that the variegation of the ground optical properties is likely to be real.

  6. Near-infrared spectrophotometry of the satellites and rings of Uranus

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Matthews, K.

    1981-01-01

    New spectrophotometry from 1.5 to 2.5 microns is reported for the Uranian satellites Titania, Oberon, and Umbriel. A spectrum of the rings of Uranus from 2.0 to 2.4 microns is also reported. No evidence is found for frost covering the surface of the ring material, consistent with the low albedo of the rings previously reported by Nicholson and Jones (1980). The surfaces of the satellites are found to be covered by dirty water frost. Assuming albedos of the frost and gray components covering the Uranian satellites to be the same as the light and dark faces of Iapetus, radii are derived that are roughly twice those inferred from the assumption of a visual albedo of 0.5.

  7. Spectrophotometry of Twenty of the Brightest Stars in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Krisciunas, Kevin; Suntzeff, Nicholas B.; Kelarek, Bethany; Bonar, Kyle; Stenzel, Joshua

    2017-01-01

    We have obtained spectra of 20 bright southern stars (including Sirius, Canopus, Betelgeuse, Rigel, and Procyon) using the CTIO 1.5-m telescope and its grating spectrograph RCSPEC. The brightness of the targets required the use of a 7.5 magnitude neutral density filter. Given a Kurucz model spectrum of Sirius (t = 9850 K, log g = 4.30, [Fe/H] = +0.4) with an appropriate spectral resolution, we can place the spectrophotometry on the system of Sirius, which is much less problematic than basing the ultimate calibration on Vega. The resulting B- and V-band synthetic photometry compares well with that of Cousins, with minimal color terms. Our synthetic R- and I-band photometry indicates non-zero offsets and color-terms with respect to Cousins' data.

  8. Spatially Multiplexed Micro-Spectrophotometry in Bright Field Mode for Thin Film Characterization

    PubMed Central

    Pini, Valerio; Kosaka, Priscila M.; Ruz, Jose J.; Malvar, Oscar; Encinar, Mario; Tamayo, Javier; Calleja, Montserrat

    2016-01-01

    Thickness characterization of thin films is of primary importance in a variety of nanotechnology applications, either in the semiconductor industry, quality control in nanofabrication processes or engineering of nanoelectromechanical systems (NEMS) because small thickness variability can strongly compromise the device performance. Here, we present an alternative optical method in bright field mode called Spatially Multiplexed Micro-Spectrophotometry that allows rapid and non-destructive characterization of thin films over areas of mm2 and with 1 μm of lateral resolution. We demonstrate an accuracy of 0.1% in the thickness characterization through measurements performed on four microcantilevers that expand an area of 1.8 mm2 in one minute of analysis time. The measured thickness variation in the range of few tens of nm translates into a mechanical variability that produces an error of up to 2% in the response of the studied devices when they are used to measure surface stress variations. PMID:27338398

  9. Infrared photometry and spectrophotometry of G75.84+0.4

    NASA Technical Reports Server (NTRS)

    Pipher, J. L.; Soifer, B. T.; Krassner, J.

    1979-01-01

    Photometric mapping of G75.84+0.4 at 12.6 microns is compared with previously published radio maps of the region to deduce the relative dust/gas mass ratio for the dust responsible for the 12.6-micron emission. Spectrophotometry from 2-4 microns and 8-13 microns of the highest-emission-measure region reveals the presence of the fine structure lines of forbidden Ar III at 8.99 microns, forbidden Ne II at 12.78 microns, and forbidden S IV at 10.53 microns. Estimates of the abundance of these ions are made, and the nature of the exciting source is discussed.

  10. Can the Assessment of Spontaneous Oscillations by Near Infrared Spectrophotometry Predict Neurological Outcome of Preterm Infants?

    PubMed

    Stammwitz, André; von Siebenthal, Kurt; Bucher, Hans U; Wolf, Martin

    2016-01-01

    The aim was to assess the correlation between cerebral autoregulation and outcome. Included were 31 preterm infants, gestational age 26 1/7 to 32 2/7 and <24 h life. Coherence between cerebral total haemoglobin (tHb) or oxygenation index (OI) measured by near-infrared spectrophotometry (NIRS) and systemic heart rate (HR) or arterial blood pressure (MAP) was calculated as a measure of autoregulation. In contrast to previous studies, low coherences in the first 24 h were significantly associated with intraventricular haemorrhage, death or abnormal neurodevelopmental outcome at 18 months or later. We suggest that our results can be explained by the concept of a multi-oscillatory-functions-order.

  11. Near-infrared spectrophotometry of four Seyfert 1 galaxies and NGC 1275

    NASA Technical Reports Server (NTRS)

    Rudy, R. J.; Jones, B.; Levan, P. D.; Puetter, R. C.; Smith, H. E.; Willner, S. P.; Tokunaga, A. T.

    1982-01-01

    Low-resolution spectrophotometry from 2 to 4 microns is reported for the four Seyfert 1 galaxies Mrk 335, 3C 120, Mrk 509, NGC 7469, and the peculiar emission-line galaxy NGC 1275. The spectrum of NGC 7469 exhibits a strong 3.3-micron dust feature, indicating a thermal origin for the bulk of its considerable nonstellar infrared emission. NGC 1275 has a large stellar contribution to its infrared flux at wavelengths shortward of 3 microns. The spectrum from 3 to 4 microns fits a power law which fits the 10-micron and 20-micron broad bands, as well. A thermal model which can explain the spectrum of NGC 1275 is discussed. Mrk 335 displays a complex spectrum suggestive of thermal dust emission. 3C 120 and Mrk 509 have nonstellar infrared emission shortward of 2 microns, but the data are ambiguous as to whether this emission is thermal or nonthermal in origin.

  12. A quantitative and qualitative method to control chemotherapeutic preparations by Fourier transform infrared-ultraviolet spectrophotometry.

    PubMed

    Dziopa, Florian; Galy, Guillaume; Bauler, Stephanie; Vincent, Benoit; Crochon, Sarah; Tall, Mamadou Lamine; Pirot, Fabrice; Pivot, Christine

    2013-06-01

    Chemotherapy products in hospitals include a reconstitution step of manufactured drugs providing an adapted dosage to each patient. The administration of highly iatrogenic drugs raises the question of patients' safety and treatment efficiency. In order to reduce administration errors due to faulty preparations, we introduced a new qualitative and quantitative routine control based on Fourier Transform Infrared (FTIR) and UV-Visible spectrophotometry. This automated method enabled fast and specific control for 14 anticancer drugs. A 1.2 mL sample was used to assay and identify each preparation in less than 90 sec. Over a two-year period, 9370 controlled infusion bags showed a 1.49% nonconformity rate, under 15% tolerance from the theoretical concentration and 96% minimum identification matching factor. This study evaluated the reliability of the control process, as well as its accordance to chemotherapy deliverance requirements. Thus, corrective measures were defined to improve the control process.

  13. Direct determination of total serum cholesterol by use of double-wavelength spectrophotometry.

    PubMed

    Sommers, P B; Jatlow, P I; Seligson, D

    1975-05-01

    We describe a simple, accurate method for direct determination of total cholesterol in serum. Systematic investigation of a previously described modified Liebermann-Burchard reagent has indicated the necessity of accounting for both bilirubin interference and decreased specificity owing to exothermia. Double-wavelength spectrophotometry was used to optically null out bilirubin as an interfering factor, whereas adding serum to the cold reagent increases its specificity for the cholesterol color reaction. Comparison of 106 cholesterol values with those obtained by the procedure of Abell et al. [J. Biol. Chem. 195, 357 (1952)] yielded a correlation coefficient greater than 0.99; our inter-run coefficient of variation of polled laboratory serum was 1.7%.

  14. Do GSM 900MHz signals affect cerebral blood circulation? A near-infrared spectrophotometry study

    NASA Astrophysics Data System (ADS)

    Wolf, Martin; Haensse, Daniel; Morren, Geert; Froehlich, Juerg

    2006-06-01

    Effects of GSM 900MHz signals (EMF) typical for a handheld mobile phone on the cerebral blood circulation were investigated using near-infrared spectrophotometry (NIRS) in a three armed (12W/kg, 1.2W/kg, sham), double blind, randomized crossover trial in 16 healthy volunteers. During exposure we observed borderline significant short term responses of oxyhemoglobin and deoxyhemoglobin concentration, which correspond to a decrease of cerebral blood flow and volume and were smaller than regular physiological changes. Due to the relatively high number of statistical tests, these responses may be spurious and require further studies. There was no detectable dose-response relation or long term response within 20min. The detection limit was a fraction of the regular physiological changes elicited by functional activation. Compared to previous studies using PET, NIRS provides a much higher time resolution, which allowed investigating the short term effects efficiently, noninvasively, without the use of radioactive tracers and with high sensitivity.

  15. Microcirculation Under an Elastic Bandage During Rest and Exercise - Preliminary Experience With the Laser-Doppler Spectrophotometry System O2C

    PubMed Central

    Sommer, Björn; Berschin, Gereon; Sommer, Hans-Martin

    2013-01-01

    There is an abundace of studies on the influence of rest and exercise as well as external compression on cutaneous, subcutaneous and muscle tissue blood flow using different measurement techniques. As a novel approach, we simultaneously examined the influence of a custom- made elastic thigh bandage on cutaneous and subcutaneous venous blood oxygenation (SO2), postcapillary venous filling pressures (rHb) and blood flow (flow) using the non-invasive laser- Doppler spectrophotometry system “Oxygen-to-see(O2C)”. Parameters were obtained in 20 healthy volunteers in 2 mm and 8 mm tissue depth during rest, 5 and 10 minutes of moderate bicycle exercise following a 10-minute recovery period. Without the bandage, results matched the known physiological changes indicating higher blood backflow from superficial and deep veins. Underneath the elastic bandage, we observed lower post-capillary filling pressures during exercise. However, after the bandage was removed in the post-exercise period, all obtained parameters of microcirculation remained increased, indicating a higher amount of local venous blood volume in this area. Our observations might be the result of external compression, thermoregulatory and exercise-dependent vascular mechanisms. With the O2C device, a promising new non- invasive technique of measuring local microcirculation in soft tissue exists. This study gives new insights in the field of non-invasive diagnostics with special regard to the influence of elastic bandages on local microcirculation. Key Points It can be demonstrated that a novel non-invasive laser-Doppler spectrophotometry system allows the determination of capillary-venous microcirculation in an in-vivo study during exercise-rest cycles. The results received with this technique indicate that a) without an elastic thigh bandage, turnover rates of capillary and post-capillary microperfusion in skin and subcutaneous fat tissue increase under physical exertion, b) skin blood flow decreases while

  16. Solid methane on Triton and Pluto - 3- to 4-micron spectrophotometry

    NASA Technical Reports Server (NTRS)

    Spencer, John R.; Buie, Marc W.; Bjoraker, Gordon L.

    1990-01-01

    Methane has been identified in the Pluto/Charon system on the basis of absorption features in the reflectance spectrum at 1.5 and 2.3 microns; attention is presently given to observations of a 3.25 micron-centered deep absorption feature in Triton and Pluto/Charon system reflectance spectra. This absorption may indicate the presence of solid methane, constituting either the dominant surface species or a mixture with a highly transparent substance, such as N2 frost.

  17. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  19. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  20. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  1. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  2. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  3. Intranasal absorption of oxymorphone.

    PubMed

    Hussain, M A; Aungst, B J

    1997-08-01

    The nasal bioavailability of oxymorphone HCI was determined. Rats were surgically prepared to isolate the nasal cavity, into which a solution of oxymorphone was administered. A reference group of rats was administered oxymorphone HCl intravenously. Plasma oxymorphone concentrations were determined by HPLC. Nasal absorption was rapid, nasal bioavailability was 43%, and the iv and nasal elimination profiles were similar. Oxymorphone HCI appears to have the solubility, potency, and absorption properties required for efficient nasal delivery, which is an alternative to injections.

  4. Iodine Absorption Cells Purity Testing

    PubMed Central

    Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej

    2017-01-01

    This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions’ spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches). PMID:28067834

  5. Colour analysis of the equine endometrium: comparison of spectrophotometry and computer-assisted analysis of photographs within the L*a*b* colour space system.

    PubMed

    Neuhauser, S; Handler, J

    2013-09-01

    The aims of this study were to compare two different methods of quantifying the colour of the luminal surface of the equine endometrium and to relate the results to histopathological evidence of inflammation and fibrosis. The mucosal surfaces of 17 equine uteri obtained from an abattoir were assessed using a spectrophotometer and by computer-assisted analysis of photographs. Values were converted into L(*)a(*)b(*) colour space. Although there was significant correlation between the two methods of quantification, variations in 'brightness', 'red' and 'yellow' values were noted. Within a given uterus, measurements using the spectrophotometer did not differ significantly. Using photographic analysis, brightness differed between horns, although no differences in chromaticity were found. Histopathological classification of changes within endometria corresponded to measured differences in colour. Extensive fibrosis was associated with increased brightness and decreased chromaticity using both methods. Inflammation correlated with reduced chromaticity, when measured by spectrophotometry, and with reduced brightness and yellow values, when assessed photographically. For this technique to gain wider acceptance as a diagnostic tool, e.g. for the endoscopic evaluation of uterine mucosae in vivo, standardised illumination techniques will be required so that colours can be compared and interpreted accurately.

  6. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  7. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  8. Effective Frequency Technique

    NASA Technical Reports Server (NTRS)

    Kirk, C. Laurence; Weng, Chi Y.

    2002-01-01

    An effective monochromatic frequency technique is described to represent the effects of finite spectral bandwidth for active and passive measurements centered on an absorption line, a trough region, or a slowly varying spectral feature. For Gaussian and rectangular laser line shapes, the effective frequency is shown to have a simple form which depends only on the instrumental line shape and bandwidth and not on the absorption line profile. The technique yields accuracies better than 0.1% for bandwidths less than 0.2 times the atmospheric line width.

  9. [Determination of trace amounts of aluminum by light-absorption ratio variation combined with continuous flow analysis].

    PubMed

    Wang, Hong-yan; Gao, Hong-wen

    2008-12-01

    In a pH 5.66 acetate-acetic acid medium, the complex reaction of Al(II) with chlorophosphonazo-mS (MSCPA) is very sensitive. In order to react with Al(III) completely, MSCPA must be added excessively enough. Without doubt, the excess MSCPA in the reaction solution affected the measurement of light-absorption of the Al-MSCPA complex. Thus, ordinary spectrophotmetry is unfit for the measurement of such a complex. To eliminate such an interference, both A(537 nm), and A(618 nm) were selected as the work wavelengths and the spectral correction technique was applied to the characterization of the above complex. The result showed that the composition ratio of Al(III) to MSCPA is 1:1. Using the complexation, a new dual-wavelength approach named the light-absorption ratio variation approach (LARVA) was applied to the determination of trace amounts of Al(III), which often increases the sensitivity up to 10 times better than ordinary spectrophotometry. From the LARVA, the less the MSCPA added, the higher the sensitivity obtained. However, a too low amount of MSCPA caused an obvious error in the measurement because of the noise of instrument background. In the present work, 2.80 micromol x L(-1) MSCPA was added into the Al(III) solution. The absorbance ratio difference (deltaAr) of the Al-MSCPA solution is proportional to the Al(III) concentration in the range of 0 and 0.150 mg x mL(-1). The LOD of Al(III) is only 2 mg x L(-1). The result indicated that many kinds of metal ions did not affect the direct determination of Al(III). Besides, the addition of thiourea solution may mask Fe(III) and Cr(III) effectively. The complexation between Al(III) and MSCPA was completed in 2 min, and the color absorption of solution remained almost constant for more than 1 h. Therefore, a set of continuous flow analysis (CFA) device was designed for the online rapid analysis of Al(III) and coupled with LARVA to increase greatly the analytical efficiency. The results showed that the LOD of Al

  10. Experimental determination of terahertz atmospheric absorption parameters

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.

    2015-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high-­-resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.

  11. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities.

    PubMed

    Saad, Ahmed S; Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R

    2016-01-05

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39±1.60 and 100.51±1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method.

  12. Derivative spectrophotometry in the determination of phenyl-beta-naphthylamine used as an antioxidant in rubber mixtures.

    PubMed

    Moldovan, Z; Alexandrescu, L

    2002-09-01

    A method for the determination of phenyl-beta-naphthylamine (PBN) in ternary mixtures by second-derivative spectrophotometry is described. The procedure works without any separation step of PBN from the other polymer additives. By applying the second-derivative spectrophotometry, Beer's law was valid over the range 0.25-10 micro g mL(-1). The proposed method has been applied to the determination PBN in synthetic ternary mixtures and rubber samples. A comparative study of the results obtained using the second and the third-derivative spectrophotometric methods is presented and evaluated. The derivative spectrophotometric method indicated that the amount of PBN found after extraction from the rubber samples was 0.97+/-0.02 g/100 g of sample.

  13. Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique.

    PubMed

    Anuar, Nor Khaizan; Wui, Wong Tin; Ghodgaonkar, Deepak K; Taib, Mohd Nasir

    2007-01-17

    The applicability of microwave non-destructive testing (NDT) technique in characterization of matrix property of pharmaceutical films was investigated. Hydroxypropylmethylcellulose and loratadine were selected as model matrix polymer and drug, respectively. Both blank and drug loaded hydroxypropylmethylcellulose films were prepared using the solvent-evaporation method and were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using microwave NDT technique as well as ultraviolet spectrophotometry, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) techniques. The results indicated that blank hydroxypropylmethylcellulose film exhibited a greater propensity of polymer-polymer interaction at the O-H and C-H domains of the polymer chains upon conditioned at a lower level of relative humidity. In the case of loratadine loaded films, a greater propensity of polymer-polymer and/or drug-polymer interaction via the O-H moiety was mediated in samples conditioned at the lower level of relative humidity, and via the C-H moiety when 50% relative humidity was selected as the condition for sample storage. Apparently, the absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer and/or drug-polymer interaction involving the O-H and C-H moieties. The measurement of microwave NDT test at 8GHz was sensitive to the chemical environment involving O-H moiety while it was greatly governed by the C-H moiety in test conducted at a higher frequency band of microwave. Similar observation was obtained with respect to the profiles of microwave NDT measurements against the state of polymer-polymer and/or drug-polymer interaction of hydroxypropylmethylcellulose films containing chlorpheniramine maleate. The microwave NDT measurement is potentially suitable for use as an apparent indicator of the state of polymer-polymer and drug

  14. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  15. Absorption Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Kashiwagi, Takao

    Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.

  16. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  17. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  18. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  19. Spectrophotometry of (32) Pomona, (145) Adeona, (704) Interamnia, (779) Nina, (330825) 2008 XE3, and 2012 QG42 and laboratory study of possible analog samples

    NASA Astrophysics Data System (ADS)

    Busarev, Vladimir V.; Barabanov, Sergey I.; Rusakov, Vyacheslav S.; Puzin, Vasiliy B.; Kravtsov, Valery V.

    2015-12-01

    Six asteroids including two NEAs, one of which is PHA, accessible for observation in September 2012 were investigated using a low-resolution (R ≈ 100) spectrophotometry in the range 0.35-0.90 μm with the aim to study features of their reflectance spectra. A high-altitude position of our Terskol Observatory (3150 m above sea level) favorable for the near-UV and visible-range observations of celestial objects allowed us to probably detect some new spectral features of the asteroids. Two subtle absorption bands centered at 0.53 and 0.74 μm were found in the reflectance spectra of S-type (32) Pomona and interpreted as signs of presence of pyroxenes in the asteroid surface matter and its different oxidation. Very similar absorption bands centered at 0.38, 0.44 and 0.67-0.71 μm have been registered in the reflectance spectra of (145) Adeona, (704) Interamnia, and (779) Nina of primitive types. We performed laboratory investigations of ground samples of known carbonaceous chondrites, Orguel (CI), Mighei (CM2), Murchison (CM2), Boriskino (CM2), and seven samples of low-iron Mg serpentines as possible analogs of the primitive asteroids. In the course of this work, we discovered an intense absorption band (up to ∼25%) centered at 0.44 μm in reflectance spectra of the low-Fe serpentine samples. As it turned out, the equivalent width of the band has a high correlation with content of Fe3+ (octahedral and tetrahedral) in the samples. It may be considered as a confirmation of the previously proposed mechanism of the absorption due to electronic transitions in exchange-coupled pairs (ECP) of Fe3+ neighboring cations. It means that the absorption feature can be used as an indicator of ferric iron in oxidized and hydrated low-Fe compounds on the surface of asteroids and other atmosphereless celestial bodies. Moreover, our measurements showed that the mechanism of light absorption is partially or completely blocked in the case of intermediate to high iron contents. Therefore

  20. Solid methane on Triton and Pluto - 3- to 4-micron spectrophotometry

    SciTech Connect

    Spencer, J.R.; Buie, M.W.; Bjoraker, G.L. Space Telescope Science Institute, Baltimore, MD NASA, Goddard Space Flight Center, Greenbelt, MD )

    1990-12-01

    Methane has been identified in the Pluto/Charon system on the basis of absorption features in the reflectance spectrum at 1.5 and 2.3 microns; attention is presently given to observations of a 3.25 micron-centered deep absorption feature in Triton and Pluto/Charon system reflectance spectra. This absorption may indicate the presence of solid methane, constituting either the dominant surface species or a mixture with a highly transparent substance, such as N2 frost. 35 refs.

  1. Speech therapy changes blood circulation and oxygenation in the brain and muscle: a near-infrared spectrophotometry study.

    PubMed

    Wolf, Martin; von Bonin, Dietrich; Wolf, Ursula

    2011-01-01

    Recently it has been shown that artistic speech therapy (AST) has effects on heart rate variability. The aim of this pilot study was to investigate whether AST also affects hemodynamics and tissue oxygenation in the brain and skeletal muscle measured by near infrared spectrophotometry(NIRS). The results show that ATS has effects on important physiological parameters, i.e., it leads to a decrease in cerebral blood flow during recitation and to brain activation thereafter.

  2. Kinetics of pH-dependent interconversion of tryptophanase spectral forms studied by scanning stopped-flow spectrophotometry.

    PubMed

    June, D S; Suelter, C H; Dye, J L

    1981-05-12

    Morino and Snell [Morino, Y., & Snell, E. E. (1967) J. Biol. Chem. 242, 5591-5601] previously showed that the relative amplitudes of the 337- and 420-nm absorption bands of tryptophanase depended on both pH and the nature of a required monovalent cation activator. An investigation of the kinetics of interconversion of the 337- and 420-nm forms following a rapid incremental increase (jump) or decrease (drop) in pH over the range of enzyme stability in 0.2 M KCl at 24 +/- 0.3 degrees C by scanning stopped-flow spectrophotometry showed three distinct time-dependent phases. They were (1) an abrupt phase which is complete in less than 6.5 ms, (2) a fast first-order interconversion of the 420- and 337-nm absorbances, and (3) a slow first-order process involving growth at 355 nm coupled to two decays centered at 325 and 430 nm in the incremental pH jumps and decay at 355 nm with concomitant growth at 430 and 290 nm in the incremental pH-drop experiments. The results of these experiments were analyzed in terms of a scheme involving enzyme forms E alpha, E beta, E beta H+, E gamma, E gamma H+, and E delta. The E alpha form predominates in the absence of activating monovalent cations and absorbs at 420 nm. Those in the beta manifold, E beta and E beta H+, also absorb at 420 nm while those in the gamma manifold, E gamma and E gamma H+, absorb at 337 nm. The form E delta absorbs at 335 nm. E beta H+ and E gamma H+ represent the protonated form of the enzyme in each manifold. Analysis of the abrupt phase showed no significant systematic changes in absorbance above 330 nm for either the pH-jump or pH-drop experiments. The fast second phase involves the first-order interconversion of the beta and gamma manifolds while the slow third phase describes the buildup or decay of the delta manifold. Presumably conformational changes control the rate of these interconversions. The pH dependence of the fast first-order beta to gamma conversion was described and evaluated in terms of five

  3. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  4. Determination of attapulgite and nifuroxazide in pharmaceutical formulations by sequential digital derivative spectrophotometry.

    PubMed

    Toral, M Inés; Paine, Maximiliano; Leyton, Patricio; Richter, Pablo

    2004-01-01

    A new method for the sequential determination of attapulgite and nifuroxazide in pharmaceutical formulations by first- and second-derivative spectrophotometry, respectively, has been developed. In order to obtain the optimal conditions for nifuroxazide stability, studies of solvent, light, and temperature effects were performed. The results show that a previous hydrolysis of 2 h in 1.0 x 10(-1)M NaOH solution is necessary in order to obtain stable compounds for analytical purposes. Subsequently, the first- and second-derivative spectra were evaluated directly in the same samples. The sequential determination of the drugs can be performed using the zero-crossing method; the attapulgite determination was carried out using the first derivative at 278.0 nm and the nifuroxazide determination, using the second derivative at 282.0 nm. The determination ranges were 5.7 x 10(-6)-1.0 x 10(-4) and 3.7 x 10(-8) -1.2 x 10(-4)M for attapulgite and nifuroxazide, respectively. Repeatability (relative standard deviation) values of 1.2 and 3.0% were observed for attapulgite and nifuroxazide, respectively. The ingredients commonly found in commercial pharmaceutical formulations do not interfere. The proposed method was applied to the determination of these drugs in tablets. Further, infrared spectroscopy and cyclic voltammetry studies were carried out in order to obtain knowledge of the decomposition products of nifuroxazide.

  5. Spectrophotometry of the Deep Impact Ejecta of Comet 9P/Tempel 1

    NASA Astrophysics Data System (ADS)

    Hodapp, K. W.; Aldering, G.; Meech, K. J.; Cochran, A.

    We have obtained optical spectrophotometry of the evolution of comet 9P/Tempel 1 after the impact of the Deep Impact spacecraft [1], using the SNIFS Supernova Integral Field Spectrograph at the UH 2.2 m telescope. From the data-cubes, we extracted both continuum flux distributions as well as emission line fluxes of the violet CN system and of [OI].We found that the continuum brightness of the comet, i.e., scattered sunlight, started rising immediately after the impact, but that the ejecta were slightly bluer in color than the material normally released by the comet.The emission of [OI] at 630 nm, which is a tracer of water, rose similar to the scattered continuum light, but then remained nearly constant for several hours after impact.We found that CN emission at 388 nm centered on the nucleus was delayed compared to the rise of dust-scattered sunlight. This CN emission also expanded faster spatially than the cloud of scattering dust.

  6. Spectrophotometry of the galaxies and nebulosity associated with the quasar III Zw 2

    NASA Technical Reports Server (NTRS)

    Green, R. F.; Williams, T. B.; Morton, D. C.

    1978-01-01

    Results are presented for spectrophotometry of the object III Zw 2, the faint nebulosity to the NW of its nucleus, and two associated galaxies (a normal elliptical and a more luminous late-type spiral). The object III Zw 2 is defined to be a quasar on the basis of its dominant starlike nucleus, redshift, and optical and radio variability. The spectrophotometrically measured redshifts of the two associated galaxies are shown to place III Zw 2 as a member of Zwicky Cluster 0007.7+1056, thus establishing the cosmological origin of the quasar's emission-line redshift of 0.089. It is found that the nebulosity to the NW of the quasar exhibits an emission-line spectrum at the same redshift as the nucleus with an underlying red continuum, that the strength of the forbidden lines relative to the permitted lines is 3 to 4 times greater than in the nucleus, and that the data for the nebulosity are not well fitted by a bremsstrahlung emission spectrum, but are consistent with a spectrum of starlight from an underlying galaxy at the system redshift of 0.089.

  7. Measurement of mucosal capillary hemoglobin oxygen saturation in the colon by reflectance spectrophotometry

    NASA Astrophysics Data System (ADS)

    Friedland, Shai; Benaron, David A.; Parachikov, Ilian H.; Soetikno, Roy

    2003-06-01

    Advances in optical and computer technology have enabled the development of a device that utilizes white-light reflectance spectrophotometry to measure capillary hemoglobin saturation in intestinal mucosa during colonoscopy. Studies were performed using the colon oximeter in anesthetized animals and patients undergoing colonoscopy. Mucosal hemoglobin saturation in the normal colon (mean +/- S.D.) is 72% +/- 3.5%. In an animal model, ischemia via arterial ligation and hypoxemia via hypoxic ventilation each result in a decrease of over 40% in the mucosal saturation. In human patients with colon polyps, ischemia induced by epinephrine injection, stalk ligation using a loop, or clipping of the polyp stalk each result in a decrease of over 40% in the mucosal saturation (p<0.02). In contrast, saline injection does not decrease the mucosal saturation (p=N.S.). A patient who previously underwent partial colectomy with sacrifice of the inferior mesenteric artery had a saturation of 55% in the remaining sigmoid colon, with normal values in the superior mesenteric artery territory (p<0.05). A novel device for measuring capillary hemoglobin saturation in intestinal mucosa during colonoscopy is capable of providing reproducible measurements in normal patients and clearly detects dramatic decreases in saturation with ischemic and hypoxic insults.

  8. Direct UV Spectrophotometry and HPLC Determination of Triton X-100 in Split Virus Influenza Vaccine.

    PubMed

    Pavlović, Bojana; Cvijetić, Nataša; Dragačević, Luka; Ivković, Branka; Vujić, Zorica; Kuntić, Vesna

    2016-01-01

    One of the most commonly used surfactants in the production of split virus influenza vaccine is nonionic surfactant Triton X-100. After splitting of the virus is accomplished, Triton X-100 is removed from the vaccine by subsequent production steps. Because of toxicity of Triton X-100, which remains in the vaccine in residual amounts, a sufficiently sensitive method for its detection and quantification needs to be defined. Two methods for determination of Triton X-100 residuals were developed: the UV-spectrophotometry and HPLC methods. For both methods, preparation of vaccine samples and removal of proteins and virus particles were crucial: samples were treated with methanol (1:1) and then centrifuged at 25 000 × g for 30 min. After such treatment, the majority of vaccine components that interfered in the UV region were removed, and diluted samples could be directly measured. The chromatographic system included C18 column, step methanol gradient, and detection at 225 nm with a single peak of Triton X-100 at 12.6 min. Both methods were validated and gave satisfactory results for accuracy, precision, specificity, linearity, and robustness. LOQ was slightly lower for the HPLC method. Hence, it was shown that both methods are suitable for analysis of residual amounts of Triton X-100, with the advantages of the UV method being its simplicity and availability in most laboratories.

  9. Determination of Oxytetracycline from Salmon Muscle and Skin by Derivative Spectrophotometry.

    PubMed

    Toral, M Inés; Sabay, Tamara; Orellana, Sandra L; Richter, Pablo

    2015-01-01

    A method was developed for the identification and quantification of oxytetracycline residues present in salmon muscle and skin using UV-Vis derivative spectrophotometry. With this method, it was possible to reduce the number of steps in the procedure typically required for instrumental analysis of a sample. The spectral variables, order of the derivative, scale factor, smoothing factor, and analytical wavelength were optimized using standard solutions of oxytetracycline dissolved in 900 mg/L oxalic acid in methanol. The matrix effect was significant; therefore, quantification for oxytetracycline residues was carried out using drug-free salmon muscle and skin samples fortified with oxytetracycline. The LOD and LOQ were found to be 271 and 903 μg/kg, respectively. The precision and accuracy of the method were validated using drug-free salmon muscle and skin tissues fortified at three different concentrations (8, 16, and 32 mg/kg) on 3 different days. The recoveries at all fortified concentrations were between 90 and 105%, and RSDs in all cases were less than 6.5%. This method can be used to screen out compliant samples and thereby reduce the number of suspect positive samples that will require further confirmatory analysis.

  10. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method.

    PubMed

    Khodadoust, Saeid; Ghaedi, Mehrorang

    2014-12-10

    In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME)) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100μL of chloroform, 1.3mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0mgmL(-1) of MR in initial solution with R(2)=0.995 (n=5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015mgmL(-1), respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n=5).

  11. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Khodadoust, Saeid; Ghaedi, Mehrorang

    2014-12-01

    In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100 μL of chloroform, 1.3 mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0 mg mL-1 of MR in initial solution with R2 = 0.995 (n = 5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015 mg mL-1, respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n = 5).

  12. Endoscopic reflectance spectrophotometry and visible light spectroscopy in clinical gastrointestinal studies.

    PubMed

    Leung, Felix W

    2008-06-01

    The use of reflectance spectrophotometry (RS) for mucosal hemodynamic measurement relies on the recognition of changes in indexes of mucosal hemoglobin concentration and oxygen saturation. Endoscopic application in clinical studies has confirmed important observations demonstrated in animal experiments. The vasoconstriction induced by propranolol, vasopressin, glypressin, or somatostatin in the portal hypertensive gastric mucosa and the reduction of gastroduodenal mucosal perfusion by nonsteroidal anti-inflammatory drugs (NSAIDs) or smoking, mesenteric venoconstriction associated with systemic hypoxia, and acid-induced duodenal hyperemia are important examples. Prognostic predictions include the development of stress-induced gastric ulcerations in patients with significant reductions in gastric perfusion after thermal or head injury, or the demonstration of delayed gastric or duodenal ulcer healing when the hyperemia at the ulcer margin fails to materialize. In mechanical-ventilator-dependent patients with sepsis, a significantly reduced gastric mucosal RS measurement portends a grave prognosis (mortality >80%). Recent advances in technology resulted in the construction and validation of instruments for visible light spectroscopy. Measurements focused on tissue oxygen saturation demonstrated epinephrine and vessel-ligation-induced vasoconstriction, the absence of ischemia in radiation-induced rectal telangiectasias, and gut ischemia responsive to revascularization treatment. Endoscopic RS and visible light spectroscopy are suitable for assessing the role of blood flow in conditions with a lesser degree of ischemia and for testing the hypothesis that functional dyspepsia and dysmotility syndromes may be due to gut ischemia.

  13. Determination of myoglobin based on its enzymatic activity by stopped-flow spectrophotometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qi; Liu, Zhihong; Cai, Ruxiu

    2005-04-01

    A new method has been developed for the determination of myoglobin (Mb) based on its enzymatic activity for the oxidation of o-phenylenediamine (OPDA) with hydrogen peroxide. Stopped-flow spectrophotometry was used to study the kinetic behavior of the oxidation reaction. The catalytic activity of Mb was compared to other three kinds of catalyst. The time dependent absorbance of the reaction product, 2,3-diamimophenazine (DAPN), at a wavelength of 426 nm was recorded. The initial reaction rate obtained at 40 °C was found to be proportional to the concentration of Mb in the range of 1.0 × 10 -6 to 4.0 × 10 -9 mol L -1. The detection limit of Mb was found to be 9.93 × 10 -10 mol L -1. The relative standard deviations were within 5% for the determination of different concentrations of Mb. Excess of bovine serum albumin (BSA), Ca(II), Mg(II), Cu(II), glucose, caffeine, lactose and uric acid did not interfere.

  14. [Mutual Effect on Determination of Gibberellins and Glyphosate in Groundwater by Spectrophotometry].

    PubMed

    Zhang, Li; Chen, Liang; Liu, Fei

    2015-04-01

    In the present study, a spectrophotometry method for the simultaneous determination of gibberellins (GA3) and glyphosate in groundwater was established and optimized. In addition, the mutual effect on simultaneous determination of GA3 and glyphosate was studied. Based on the experiment, good linearity (R2 > 0.99) was obtained for GA3 in the range of 0-20 and 0-100 µg and for glyphosate in the range of 0-8 and 5-15 µg. The method's detection limit (MDL) of GA3 and glyphosate was 0.48 and 0.82 µg, respectively; and the recovery rates of 15 to 150 µg GA3 and 3 to 10 µg glyphosate in all samples at a spiked level were 71.3% ± 1.9% and 98.4% ± 8.1%, respectively. No obvious influence of glyphosate (0-100 mg · L(-1)) on the recovery rates of GA3 was observed, but the presence of glyphosate could cause slight determination precision decrease of GA3. Meanwhile, adding 2 mg · L(-1) GA3 can increase the recovery rate of glyphosate.

  15. Spectrophotometric Determination of the Dissociation Constant of an Acid-Base Indicator Using a Mathematical Deconvolution Technique

    ERIC Educational Resources Information Center

    Alter, Krystyn P.; Molloy, John L.; Niemeyer, Emily D.

    2005-01-01

    A laboratory experiment reinforces the concept of acid-base equilibria while introducing a common application of spectrophotometry and can easily be completed within a standard four-hour laboratory period. It provides students with an opportunity to use advanced data analysis techniques like data smoothing and spectral deconvolution to…

  16. Blood oxygen saturation determined by transmission spectrophotometry of hemolyzed blood samples

    NASA Technical Reports Server (NTRS)

    Malik, W. M.

    1967-01-01

    Use of the Lambert-Beer Transmission Law determines blood oxygen saturation of hemolyzed blood samples. This simplified method is based on the difference in optical absorption properties of hemoglobin and oxyhemoglobin.

  17. Application of first-derivative, ratio derivative spectrophotometry, TLC-densitometry and spectrofluorimetry for the simultaneous determination of telmisartan and hydrochlorothiazide in pharmaceutical dosage forms and plasma.

    PubMed

    Bebawy, Lories I; Abbas, Samah S; Fattah, Laila A; Refaat, Heba H

    2005-10-01

    Four sensitive methods are described for the direct determination of telmisartan (TELM) and hydrochlorothiazide (HCT) in combined dosage forms without prior separation. The first method is a first derivative spectophotometry (1D) using a zero- crossing technique of measurement at 241.6 and 227.6 nm for TELM and HCT, respectively. The second method is the first derivative of ratio spectrophotometry (1DD) where the amplitudes were measured at 242.7 nm for TELM and 274.9 nm for HCT. The third method is based on TLC separation of the two drugs followed by the densitometric measurements of their spots at 295 and 225 nm for TELM and HCT, respectively. The separation was carried out on silica gel 60 F254 using butanol: ammonia 25% (8:2 v/v) as mobile phase. The fourth method is spectrofluorimetric determination of TELM, depending on measuring the native fluorescence of the drug in 1 M sodium hydroxide at lambda excitation 230 nm and emission at 365 nm. The proposed methods were applied successfully for the determination of the two drugs in bulk powder and in pharmaceutical formulations. The spectrofluorimetric method was utilized for the analysis of TELM in human plasma.

  18. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  19. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  20. Quantum-enhanced absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-02-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.

  1. Bacteria Adherence Properties of Nitrogen-Doped TiO2 Coatings by Plasma Surface Alloying Technique

    NASA Astrophysics Data System (ADS)

    Wang, Hefeng; Tang, Bin; Li, Xiuyan; Fan, Ailan

    Titanium nitride coatings on 316L stainless steel (S. S) were obtained by plasma surface alloying technique. Nitrogen-doped titanium dioxide (TiO2-xNx) was synthesized by oxidative annealing the resulted TiNx coatings in air. The reference TiO2 samples were also prepared by oxidation of sputtered Ti coatings. The as-prepared coatings were characterized by X-ray diffraction, glow discharge optical emission spectrometer (GDOES), scanning electron microscopy, X-ray hotoelectron spectroscopy and UV-Vis spectrophotometry, respectively. The bacteria adherence property of the TiO2-xNx coatings on stainless steel on the oral bacteria Streptococcus Mutans was investigated and compared with that of stainless steel by fluorescence microscopy. The mechanism of the bacteria adherence was discussed. The results show that the TiO2-xNx coatings are composed of anatase crystalline structure. SEM measurement indicates a rough surface morphology with three-dimensional homogenous protuberances after annealing treatment. Optical properties reveal an extended tailing of the absorption edge toward the visible region due to nitrogen presence. The band gap of the N-doped sample is reduced from 2.29 eV to 1.90 eV compared with the pure TiO2 one. Because of the different roughness and microstructure, the TiO2-xNx coatings inhibit the bacteria adherence.

  2. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  3. The origin of the excess transit absorption in the HD 189733 system: planet or star?

    NASA Astrophysics Data System (ADS)

    Barnes, J. R.; Haswell, C. A.; Staab, D.; Anglada-Escudé, G.

    2016-10-01

    We have detected excess absorption in the emission cores of Ca II H&K during transits of HD 189733b for the first time. Using observations of three transits, we investigate the origin of the absorption, which is also seen in Hα and the Na I D lines. Applying differential spectrophotometry methods to the Ca II H and Ca II K lines combined, using respective passband widths of Δλ = 0.4 and 0.6 Å yields excess absorption of td = 0.0074 ± 0.0044 (1.7σ; Transit 1) and 0.0214 ± 0.0022 (9.8σ; Transit 2). Similarly, we detect excess Hα absorption in a passband of width Δλ = 0.7 Å, with td = 0.0084 ± 0.0016 (5.2σ) and 0.0121 ± 0.0012 (9.9σ). For both lines, Transit 2 is thus significantly deeper. Combining all three transits for the Na I D lines yields excess absorption of td = 0.0041 ± 0.0006 (6.5σ). By considering the time series observations of each line, we find that the excess apparent absorption is best recovered in the stellar reference frame. These findings lead us to postulate that the main contribution to the excess transit absorption in the differential light curves arises because the normalizing continuum bands form in the photosphere, whereas the line cores contain a chromospheric component. We cannot rule out that part of the excess absorption signature arises from the planetary atmosphere, but we present evidence which casts doubt on recent claims to have detected wind motions in the planet's atmosphere in these data.

  4. Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Ye, Juanjuan; Liu, Shuxia; Tian, Miaomiao; Li, Wanjun; Hu, Bin; Zhou, Weihong; Jia, Qiong

    2014-01-01

    A simple and highly selective procedure for on-line determination of trace levels of Au, Pd, and Pt in mine samples has been developed using flow injection-column adsorption preconcentration coupled with graphite furnace atomic absorption spectrophotometry (FI-column-GFAAS). The precious metals were adsorbed on the as-synthesized magnetic nanoparticles functionalized with 4'-aminobenzo-15-crown-5-ether packed into a micro-column and then eluted with 2% thiourea + 0.1 mol L(-1) HCl solution prior to the determination by GFAAS. The properties of the magnetic adsorbents were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Various experimental parameters affecting the preconcentration of Au, Pd, and Pt were investigated and optimized. Under the optimal experimental conditions, the detection limits of the developed technique were 0.16 ng mL(-1) for Au, 0.28 ng mL(-1) for Pd, and 1.01 ng mL(-1) for Pt, with enrichment factors of 24.3, 13.9, and 17.8, respectively. Precisions, evaluated as repeatability of results, were 1.1%, 3.9%, and 4.4% respectively for Au, Pd, and Pt. The developed method was validated by the analysis of Au, Pd, and Pt in certified reference materials and mine samples with satisfactory results.

  5. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.

    PubMed

    Berera, Rudi; van Grondelle, Rienk; Kennis, John T M

    2009-01-01

    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.

  6. Water-related absorption in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Shiryaev, A. A.; Kagi, H.; Navon, O.

    2003-04-01

    Cubic and coated diamonds from several localities (Brasil, Canada, Yakutia) were investigated using spectroscopic techniques. Special emphasis was put on investigation of water-related features of transmission Infra-red and Raman spectra. Presence of molecular water is inferred from broad absorption bands in IR at 3420 and 1640 cm-1. These bands were observed in many of the investigated samples. It is likely that molecular water is present in microinclusions in liquid state, since no clear indications of solid H_2O (ice VI-VII, Kagi et al., 2000) were found. Comparison of absorption by HOH and OH vibrations shows that diamonds can be separated into two principal groups: those containing liquid water (direct proportionality of OH and HOH absorption) and those with stronger absorption by OH group. Fraction of diamonds in every group depends on their provenance. There might be positive correlation between internal pressure in microinclusions (determined using quartz barometer, Navon et al., 1988) and affiliation with diamonds containing liquid water. In many cases absorption by HOH vibration is considerably lower than absorption by hydroxyl (OH) group. This may be explained if OH groups are partially present in mineral and/or melt inclusions. This hypothesis is supported by following fact: in diamonds with strong absorption by silicates and other minerals shape and position of the OH band differs from that in diamonds with low absorption by minerals. Moreover, in Raman spectra of individual inclusions sometimes the broad band at 3100 cm-1 is observed. This band is OH-related. In some samples water distribution is not homogeneous. Central part of the diamond usually contains more water than outer parts, but this is not a general rule for all the samples. Water absorption usually correlated with absorption of other components (carbonates, silicates and others). At that fibrous diamonds with relatively high content of silicates are characterized by molecular water. OH

  7. Methane overtone absorption by intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Obrien, James J.

    1990-01-01

    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres.

  8. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  9. Iodine absorption cells quality evaluation methods

    NASA Astrophysics Data System (ADS)

    Hrabina, Jan; Zucco, Massimo; Holá, Miroslava; Šarbort, Martin; Acef, Ouali; Du-Burck, Frédéric; Lazar, Josef; Číp, Ondřej

    2016-12-01

    The absorption cells represent an unique tool for the laser frequency stabilization. They serve as irreplaceable optical frequency references in realization of high-stable laser standards and laser sources for different brands of optical measurements, including the most precise frequency and dimensional measurement systems. One of the most often used absorption media covering visible and near IR spectral range is molecular iodine. It offers rich atlas of very strong and narrow spectral transitions which allow realization of laser systems with ultimate frequency stabilities in or below 10-14 order level. One of the most often disccussed disadvantage of the iodine cells is iodine's corrosivity and sensitivity to presence of foreign substances. The impurities react with absorption media and cause spectral shifts of absorption spectra, spectral broadening of the transitions and decrease achievable signal-to-noise ratio of the detected spectra. All of these unwanted effects directly influence frequency stability of the realized laser standard and due to this fact, the quality of iodine cells must be precisely controlled. We present a comparison of traditionally used method of laser induced fluorescence (LIF) with novel technique based on hyperfine transitions linewidths measurement. The results summarize advantages and drawbacks of these techniques and give a recommendation for their practical usage.

  10. Quantum absorption refrigerator.

    PubMed

    Levy, Amikam; Kosloff, Ronnie

    2012-02-17

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power J(c) vanishes as J(c) ∝ T(c)(α), when T(c)→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  11. Acoustic absorption by sunspots

    NASA Technical Reports Server (NTRS)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  12. Bioacoustic Absorption Spectroscopy

    DTIC Science & Technology

    2016-06-07

    seas in co-operation with fisheries biologists. The first planned experiment will be in the seas off California in co-operation with the Southwest... Fisheries Science Center of NOAA’s National Marine Fisheries Service. These experiments will be designed to investigate the “signatures” of the two major...formulating environmental adaptation strategies for tactical sonars. Fisheries applications: These results suggest that bioacoustic absorptivity can be used to

  13. Vehicular impact absorption system

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Wilson, A. H. (Inventor)

    1978-01-01

    An improved vehicular impact absorption system characterized by a plurality of aligned crash cushions of substantially cubic configuration is described. Each consists of a plurality of voided aluminum beverage cans arranged in substantial parallelism within a plurality of superimposed tiers and a covering envelope formed of metal hardware cloth. A plurality of cables is extended through the cushions in substantial parallelism with an axis of alignment for the cushions adapted to be anchored at each of the opposite end thereof.

  14. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  15. Use of thermal lensing spectrophotometry (TLS) for the study of mononuclear hydrolysis of uranium(IV)

    SciTech Connect

    Grenthe, I.; Bidoglio, G.; Omenetto, N.

    1989-01-11

    The possibility of using thermal lensing spectrophotometry (TLS) for the quantitative determination of chemical equilibria in very dilute (/approx/ 10/sup /minus/5/ M) aqueous solution has been explored. The hyrolysis of uranium(IV) has been used as a test case. TLS turned out to be a convenient, precise, and rapid method to obtain information about the mononuclear hydrolysis, information that is difficult to obtain with more traditional solution chemical methods. The TLS data were obtained at 25/degree/C in the concentration range of 0 /le/ /minus/log (H/sup +/) /le/ 2.8 by using a 3 M (Na,H)ClO/sub 4/ ionic medium. The data were described with the following chemical model: U/sup 4+/ + H/sub 2/O /r equilibrium/ UOH/sup 3+/ + H/sup +/, log */beta//sub 1/ = -1.65 /plus minus/ 0.05; U/sup 4+/ + 2H/sub 2/O /r equilibrium/ U(OH)/sub 2//sup 2+/ + 2H/sup +/, log */beta//sub 2/ < -4.5. Apart from its higher sensitivity, the TLS method has the same characteristics as ordinary spectrophotometric methods. The experimental results of this study and previous literature information were interpreted by using the specific ion interaction theory to give log */beta//degree//sub 1/ = -0.51 /plus minus/ 0.03 (log */beta//degree//sub 1/ is the equilibrium constant at zero ionic strength) and /Delta//epsilon/ is the ion interaction term /Delta//epsilon/ = /epsilon/(UOH/sup 3+/, ClO/sub 4//sup /minus//) + /epsilon/(H/sup +/, ClO/sub 4//sup /minus//) /minus/ /epsilon/(U/sup 4+/, ClO/sub 4//sup /minus//). 16 refs., 5 figs..

  16. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    PubMed

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies.

  17. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  18. Oxalic acid decreases calcium absorption in rats

    SciTech Connect

    Weaver, C.M.; Martin, B.R.; Ebner, J.S.; Krueger, C.A.

    1987-11-01

    Calcium absorption from salts and foods intrinsically labeled with /sup 45/Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO/sub 3/ and CaCl/sub 2/ than from CaC/sub 2/O/sub 4/ (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach.

  19. Oxalic acid decreases calcium absorption in rats.

    PubMed

    Weaver, C M; Martin, B R; Ebner, J S; Krueger, C A

    1987-11-01

    Calcium absorption from salts and foods intrinsically labeled with 45Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO3 and CaCl2 than from CaC2O4 (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach.

  20. Absorption coefficient instrument for turbid natural waters.

    PubMed

    Friedman, E; Poole, L; Cherdak, A; Houghton, W

    1980-05-15

    An instrument has been developed that directly measures the multispectral absorption coefficient of turbid natural water. The design incorporates methods for compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in background light level. When used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  1. Determination of copper in tap water using solid-phase spectrophotometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Philipp, Warren H.; Tanner, Stephen P.

    1994-01-01

    A new application of ion exchange films is presented. The films are used in a simple analytical method of directly determining low concentrations of Cu(2+) in aqueous solutions, in particular, drinking water. The basis for this new test method is the color and absorption intensity of the ion when adsorbed onto the film. The film takes on the characteristic color of the adsorbed cation, which is concentrated on the film by many orders of magnitude. The linear relationship between absorbance (corrected for variations in film thickness) and solution concentration makes the determinations possible. These determinations agree well with flame atomic absorption determinations.

  2. Spectrophotometry of Pluto-Charon mutual events - Individual spectra of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Sawyer, S. R.; Barker, E. S.; Cochran, A. L.; Cochran, W. D.

    1987-01-01

    Time-resolved spectra of the March 3 and April 4, 1987 mutual events of Pluto and Charon, obtained with spectral coverage from 5500 to 10,000 A with 25-A spectral resolution, are discussed. Charon has a featureless reflectance spectrum, with no evidence of methane absorption. Charon's reflectance appears neutral in color and corresponds to a geometric albedo of about 0.37 at 6000 A. The Pluto reflectance spectrum displays methane absorption bands at 7300, 7900, 8400, 8600, and 8900 A and is red in color, with a geometric albedo of about 0.56 at 6000 A.

  3. HPLC, TLC, and first-derivative spectrophotometry stability-indicating methods for the determination of tropisetron in the presence of its acid degradates.

    PubMed

    Abdel-Fattah, Laila S; El-Sherif, Zeinab A; Kilani, Khadiga M; El-Haddad, Dalia A

    2010-01-01

    Three stability-indicating assay methods were developed for the determination of tropisetron in a pharmaceutical dosage form in the presence of its degradation products. The proposed techniques are HPLC, TLC, and first-derivative spectrophotometry (1D). Acid degradation was carried out, and the degradation products were separated by TLC and identified by IR, NMR, and MS techniques. The HPLC method was based on determination of tropisetron in the presence of its acid-induced degradation product on an RP Nucleosil C18 column using methanol-water-acetonitrile-trimethylamine (65 + 20 + 15 + 0.2, v/v/v/v) mobile phase and UV detection at 285 nm. The TLC method was based on the separation of tropisetron and its acid-induced degradation products, followed by densitometric measurement of the intact spot at 285 nm. The separation was carried out on silica gel 60 F254 aluminum sheets using methanol-glacial acetic acid (22 + 3, v/v) mobile phase. The 1D method was based on the measurement of first-derivative amplitudes of tropisetron in H2O at the zero-crossing point of its acid-induced degradation product at 271.9 nm. Linearity, accuracy, and precision were found to be acceptable over concentration ranges of 40-240 microg/mL, 1-10 microg/spot, and 6-36 micro/mL for the HPLC, TLC, and 1D methods, respectively. The suggested methods were successfully applied for the determination of the drug in bulk powder, laboratory-prepared mixtures, and a commercial sample.

  4. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  5. Optoacoustic spectroscopy and its application to molecular and particle absorption

    NASA Astrophysics Data System (ADS)

    Trees, Charles C.; Voss, Kenneth J.

    1990-09-01

    Light absorption in the ocean has been the least studied optical property because of the difficulties in making accurate measurements. With the previously used techniques, large differences have been reported for the specific absorption coefficient of phytoplankton (cultures and natural assemblages). It is difficult to determine if the diversity in these values are methodological or a function of actual variations in absorption. With the renewed interest and activity in optoacoustic spectroscopy (OAS), which accurately measures absorption, some of these discrepancies should be resolved. In this method, as molecules and particles absorb light from a modulated source, they thermally expand and contract, thereby generating acoustic waves, at the modulation frequency, which are detected by a hydrophone. Optoacoustic spectroscopy is ideally suited for measuring dissolved organic material and particle absorptions because of its high sensitivity (105m1) and the egligible effect of scattered light. In this paper the instrumental design for an optoacoustic spectrophotometer (OAS), which pecifically measures phytoplankton absorption (420-S5Onm), is described. The spectral absorption of dissolved organic material and a phytoplankton culture is presented. OAS holds promise in being able to measure absorption without use of either filtration or concentration techniques.

  6. Intestinal absorption of aluminium in renal failure.

    PubMed

    Drüeke, Tilman B

    2002-01-01

    The proportion of the daily ingested aluminium that is absorbed in the intestinal tract has remained a matter of debate for many years because no reliable method of measurement was available. Studies with earlier analytic techniques reported fractional absorption of aluminium from as little as 0.001% to as much as 27% of an oral dose. Measurement of (26)Al by high-energy accelerator mass spectrometry has permitted more accurate analyses. In normal young rats, 0.05-0.1% of ingested aluminium is absorbed in the intestine, of which roughly half goes to the skeleton within 2 h, whereas the remaining half is excreted in the urine, most of it within 48 h. Deposition in organs other than the skeleton appears to be negligible. In healthy human volunteers, the most recent estimates of fractional intestinal (26)Al absorption were also in the range of 0.06-0.1%. In both rats and humans, intestinal absorption of aluminium is subject to many systemic and local factors. The latter include various compounds with which aluminium is complexed in the gut lumen, and gastric acidity. The influence of food is controversial; however, absorption appears higher in the fasted than the post-prandial state. Luminal phosphate concentration decreases aluminium absorption, whereas citrate increases it. For theoretical reasons, silicates should prevent aluminium absorption, but experimental evidence has not supported this theory. Whether water hardness affects aluminium bioavailability remains a matter of debate. General conditions may also modify aluminium absorption and deposition in bone. Examples of these general factors include the uraemic syndrome, diabetes mellitus, secondary hyperparathyroidism, vitamin D status, Alzheimer's disease and Down's syndrome. Awareness of intestinal absorption of aluminium is particularly important, given that aluminium-based binders continue to be used in uraemic patients, despite the hazards of aluminium accumulation. The lessons we have learned about

  7. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, Michael E.; Bien, Fritz; Bernstein, Lawrence S.

    1986-01-01

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

  8. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  9. Potassium emission absorption system. Topical report 12

    SciTech Connect

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  10. IUE spectrophotometry of the hot helium-rich PG1159 DO degenerates

    NASA Astrophysics Data System (ADS)

    Sion, E. M.; Liebert, J.; Starrfield, S.; Wesemael, F.

    1984-12-01

    The PG1159 degenerates represent the hottest spectroscopic subgroup of DO stars. Their optical spectra are characterized by broad HeII (lambda 4686) absorption and several transitions of CIV, NIII and CIII. High resolution MMT scans reveal central emission reversals. The discovery of complex, non-radial pulsations in four members of the class underscores the need for accurate temperatures, gravities and abundances for these object. Low resolution IUE spectra of four PG1159 stars, PG1151-029, PG1424+535, PG1520+525 were obtained, as well as an additional image of PG1159-035 and an optical ultraviolet spectrum of PG2131+066. IUE (SWP) spectra suggest the presence of numerous metallic absorption features of CIV (lambda 1550), NV (lambda 1240) and a few unidentified features. The metal absorption lines and HEII (lambda 1640) have equivalent widths of a few angstroms. IUE/optical energy distributions are considered. Tentative identifications of CIV absorptions and possibly, weak OVI features in optical ultraviolet reticon spectra suggest a probable link to the subluminous Wolf-Rayet OV5 I planetary nuclei. The PG1159 DO degenerates are the hottest known (Te 100,000K), high gravity (log g 7 ) objects.

  11. Double point contact single molecule absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Howard, John Brooks

    Our primary objective with the presentation of this thesis is to utilize superconducting transport through microscopic objects to both excite and analyze the vibrational degrees of freedom of various molecules of a biological nature. The technique stems from a Josephson junction's ability to generate radiation that falls in the terahertz gap (≈ 10 THz) and consequently can be used to excite vibrational modes of simple and complex molecules. Analysis of the change in IV characteristics coupled with the differential conductance dIdV allows determination of both the absorption spectra and the vibrational modes of biological molecules. Presented here are both the theoretical foundations of superconductivity relevant to our experimental technique and the fabrication process of our samples. Comparisons between our technique and that of other absorption spectroscopy techniques are included as a means of providing a reference upon which to judge the merits of our novel procedure. This technique is meant to improve not only our understanding of the vibrational degrees of freedom of useful biological molecules, but also these molecule's structural, electronic and mechanical properties.

  12. Maps and tables showing data and analyses of semiquantitative emmission spectrometry and atomic-absorption spectrophotometry of rock samples, Ugashik, Bristol Bay, and part of Karluk quadrangles, Alaska

    USGS Publications Warehouse

    Wilson, F.H.; O'Leary, R. M.

    1986-01-01

    The accompanying maps and tables show analytical data and data analyses from rock samples collected in conjunction with geologic mapping in the Ugashik, Bristol Bay and western Karluck quadrangles from 1979 through 1981. This work was conducted under the auspices of the Alaska Mineral Resource Assessment Program (AMRAP). A total of 337 samples were collected for analysis, primarily in areas of surficial alteration. The sample locations are shown on sheet 1: they are concentrated along the Pacific Ocean side of the area because the Bristol Bay lowlands part of the map is predominantly unconsolidated Quaternary deposits. Sample collection was by the following people, with their respective two letter identifying code shown in parentheses: W.H. Allaway (AY), J.E. Case (CE), D.P. Cox (CX), R.L. Detterman, (DT), T.G. Theodore (MK), F.H. Wilson (WS), and M.E. Yount (YB).

  13. Tables showing analyses of semiquantitative spectrometry and atomic-absorption spectrophotometry of rock samples collected in the Ugashik, Bristol Bay, and western part of the Karluk quadrangles, Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; O'Leary, Richard M.

    1987-01-01

    The accompanying tables list chemical analyses of 337 rock samples that were collected in 1979, 1980, and 1981 in conjunction with geologic mapping in the Ugashik, Bristol Bay, and part of Karluk quadrangles. This work was conducted under the auspices of the Alaska Mineral Resource Assessment Program (AMRAP). This report is to accompany Wilson and O'Leary (1986) which inadvertently is missing most of the data tables listed here. Together the two reports contain the complete data from all samples collected for the Ugashik AMRAP.

  14. Extraction and preconcentration of copper from water, soils, lubricating oils and plant materials and its subsequent determination by atomic-absorption spectrophotometry.

    PubMed

    Ejaz, M; Shamus-Zuha; Dil, W; Akhtar, A; Chaudhri, S A

    1981-07-01

    The extraction and preconcentration of the cupric thiocyanate complex with 4-(5-nonyl)pyridine in benzene is possible from neutral or up to 2M HCl, 0.5M HNO(3) or 0.25M H(2)SO(4) solutions. The method has considerable advantages over previously recommended extraction procedures because of selectivity, completeness of extraction in a single operation, short contact period, minimum amount of complexing agents needed and wide tolerance to various solution parameters. The complex formed from as little as 1 mug of copper can be extracted quantitatively into 1 ml of the organic phase from 500 ml of natural water. An extraction method is described which in combination with AAS can be used to determine copper in water, soils, fresh and used lubricating oils and plant-ash solutions down to the ng/ml or ng/g level.

  15. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition-atomic absorption spectrophotometry.

    PubMed

    Chen, Jingjing; Chakravarty, Pragya; Davidson, Gregg R; Wren, Daniel G; Locke, Martin A; Zhou, Ying; Brown, Garry; Cizdziel, James V

    2015-04-29

    The purpose of this work was to study the feasibility of using a direct mercury analyzer (DMA) to simultaneously determine mercury (Hg) and organic matter content in sediment and soils. Organic carbon was estimated by re-weighing the sample boats post analysis to obtain loss-on-ignition (LOI) data. The DMA-LOI results were statistically similar (p<0.05) to the conventional muffle furnace approach. A regression equation was developed to convert DMA-LOI data to total organic carbon (TOC), which varied between 0.2% and 13.0%. Thus, mercury analyzers based on combustion can provide accurate estimates of organic carbon content in non-calcareous sediment and soils; however, weight gain from moisture (post-analysis), measurement uncertainty, and sample representativeness should all be taken into account. Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed. Wetland sediments generally had higher levels of Hg than open water areas owing to a greater fraction of fine particles and higher levels of organic matter. Annual loading of Hg in open water areas was estimated at 4.3, 13.4, 19.2, 20.7, 129, and 135 ng cm(-2) yr(-1) for Beasley, Roundaway, Hampton, Washington, Wolf and Sky Lakes, respectively. Generally, the interval with the highest Hg flux was dated to the 1960s and 1970s.

  16. Use of reflectance spectrophotometry and colorimetry in a general linear model for the determination of the age of bruises.

    PubMed

    Hughes, Vanessa K; Langlois, Neil E I

    2010-12-01

    Bruises can have medicolegal significance such that the age of a bruise may be an important issue. This study sought to determine if colorimetry or reflectance spectrophotometry could be employed to objectively estimate the age of bruises. Based on a previously described method, reflectance spectrophotometric scans were obtained from bruises using a Cary 100 Bio spectrophotometer fitted with a fibre-optic reflectance probe. Measurements were taken from the bruise and a control area. Software was used to calculate the first derivative at 490 and 480 nm; the proportion of oxygenated hemoglobin was calculated using an isobestic point method and a software application converted the scan data into colorimetry data. In addition, data on factors that might be associated with the determination of the age of a bruise: subject age, subject sex, degree of trauma, bruise size, skin color, body build, and depth of bruise were recorded. From 147 subjects, 233 reflectance spectrophotometry scans were obtained for analysis. The age of the bruises ranged from 0.5 to 231.5 h. A General Linear Model analysis method was used. This revealed that colorimetric measurement of the yellowness of a bruise accounted for 13% of the bruise age. By incorporation of the other recorded data (as above), yellowness could predict up to 32% of the age of a bruise-implying that 68% of the variation was dependent on other factors. However, critical appraisal of the model revealed that the colorimetry method of determining the age of a bruise was affected by skin tone and required a measure of the proportion of oxygenated hemoglobin, which is obtained by spectrophotometric methods. Using spectrophotometry, the first derivative at 490 nm alone accounted for 18% of the bruise age estimate. When additional factors (subject sex, bruise depth and oxygenation of hemoglobin) were included in the General Linear Model this increased to 31%-implying that 69% of the variation was dependent on other factors. This

  17. Determination of vitamin B6 by means of differential spectrophotometry in pharmaceutical preparations in the presence of magnesium compounds.

    PubMed

    Muszalska, Izabela; Puchalska, Marta; Sobczak, Agnieszka

    2011-01-01

    The content of pyridoxine hydrochloride in two-component pharmaceutical preparations containing various magnesium compounds was examined. The UV differentiation spectrophotometry was devised and compared with the reference method of high performance liquid chromatography (HPLC). The analysis of the absorbance spectra (A) and its first (D1) and second (D2) derivatives made it possible to establish the appropriate analytical wavelengths (A: 290 nm; D1: 302 nm; D2: 308 nm). It was proved that spectrum differentiation significantly corrects errors resulting from overlapping background especially when the magnesium hydroaspartate, lactate or magnesium lactogluconate is present together with vitamin B6.

  18. [Quantitative determination of the protein content of milk by ultraviolet spectrophotometry. 3. Determination of proteins in preserved milk samples].

    PubMed

    Reichardt, W; Schüler, E; Sieber, L; Schüler, E

    1987-01-01

    It is reported upon the results of the quantitative estimation of protein content from preserved milk by means of ultraviolet spectrophotometry. In addition to the preservation by boric acid, bronopol, copper sulphate, potassium dichromate and ammonium peroxodisulphate storage at temperatures below 0 degrees C and freeze drying were tested. Besides bronopol and copper sulphate especially physical preservation methods proves fit for the protein estimation by measurements of absorbance at 210 nm, 235 and 280 nm or 210 and 220 nm. It is recommended to use solutions and filters of quartz with evaluated absorbance in daily calibrating of the spectrophotometer.

  19. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  20. Effects of xylitol on the absorption of /sup 203/Pb in mice and cockerels

    SciTech Connect

    Mykkaenen, H.M.; Salminen, S.J.

    1986-07-01

    Earlier studies have indicated that xylitol may increase the absorption and urinary excretion of dietary oxalate. It has also been indicated that xylitol increases the absorption of calcium. Intestinal absorption of lead, a divalent contaminant in the diet, is in many respects similar to that of calcium. The purpose of this study was to evaluate the effects of xylitol on the intestinal absorption of lead using two different approaches: the in situ ligated intestinal loop technique in cockerels and gastric gavage in mice.

  1. Detecting estrogenic activity in water samples withestrogen-sensitive yeast cells using spectrophotometry and fluorescencemicroscopy

    SciTech Connect

    Wozei, E.; Holman, H-Y.N.; Hermanowicz, S.W.; Borglin S.

    2006-03-15

    Environmental estrogens are environmental contaminants that can mimic the biological activities of the female hormone estrogen in the endocrine system, i.e. they act as endocrine disrupters. Several substances are reported to have estrogen-like activity or estrogenic activity. These include steroid hormones, synthetic estrogens (xenoestrogens), environmental pollutants and phytoestrogens (plant estrogens). Using the chromogenic substrate ortho-nitrophenyl-{beta}-D-galactopyranoside (ONPG) we show that an estrogen-sensitive yeast strain RMY/ER-ERE, with human estrogen receptor (hER{alpha}) gene and the lacZ gene which encodes the enzyme {beta}-galactosidase, is able to detect estrogenic activity in water samples over a wide range of spiked concentrations of the hormonal estrogen 17{beta}-estradiol (E2). Ortho-nitrophenol (ONP), the yellow product of this assay can be detected using spectrophotometry but requires cell lysis to release the enzyme and allow product formation. We improved this aspect in a fluorogenic assay by using fluorescein di-{beta}-D-galactopyranoside (FDG) as a substrate. The product was visualized using fluorescence microscopy without the need to kill, fix or lyse the cells. We show that in live yeast cells, the uptake of E2 and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximum enzyme-catalyzed fluorescent product formation evident after about 30 minutes of exposure to E2. The fluorogenic assay was applied to a selection of estrogenic compounds and the Synchrotron-based Fourier transform infrared (SR-FTIR) spectra of the cells obtained to better understand the yeast whole cell response to the compounds. The fluorogenic assay is most sensitive to E2, but the SR-FTIR spectra suggest that the cells respond to all the estrogenic compounds tested even when no fluorescent response was detected. These findings are promising and may shorten the duration of environmental water screening and monitoring regimes using

  2. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    PubMed

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  3. An atomic-absorption method for the determination of gold in large samples of geologic materials

    USGS Publications Warehouse

    VanSickle, Gordon H.; Lakin, Hubert William

    1968-01-01

    A laboratory method for the determination of gold in large (100-gram) samples has been developed for use in the study of the gold content of placer deposits and of trace amounts of gold in other geologic materials. In this method the sample is digested with bromine and ethyl ether, the gold is extracted into methyl isobutyl ketone, and the determination is made by atomicabsorption spectrophotometry. The lower limit of detection is 0.005 part per million in the sample. The few data obtained so far by this method agree favorably with those obtained by assay and by other atomic-absorption methods. About 25 determinations can be made per man-day.

  4. Determination of calcium, magnesium and zinc in unused lubricating oils by atomic absorption spectroscopy.

    PubMed

    Udoh, A P

    1995-12-01

    Varying concentrations of lanthanum and strontium were added to solutions of ashed unused lubricating oils for the determination of calcium, magnesium and zinc content using flame atomic absorption spectrophotometry. At least 3000 mug g(-1) of lanthanum or strontium was required to completely overcome the interference of the phosphate ion, PO(3-)(4), and give peak values for calcium. The presence of lanthanum or strontium did not cause an appreciable increase in the amount of magnesium and zinc obtained from the analyses. The method is fast and reproducible, and the coefficients of variation calculated for the elements using one of the samples were 1.6% for calcium, 3.5% for magnesium and 0.2% for zinc. Results obtained by this method were better than those obtained by other methods for the same samples.

  5. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  6. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    SciTech Connect

    Lopez-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernandez-Valle, M.E.; Alvarez de Buergo, M.; Fort, R.

    2010-02-15

    Slaked lime (Ca(OH){sub 2}) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH){sub 2}) into vaterite (CaCO{sub 3}), monohydrocalcite (CaCO{sub 3} . H{sub 2}O) and calcite (CaCO{sub 3}), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  7. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  8. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  9. Two absorption furosemide prodrugs.

    PubMed

    Mombrú, A W; Mariezcurrena, R A; Suescun, L; Pardo, H; Manta, E; Prandi, C

    1999-03-15

    The structures of two absorption furosemide prodrugs, hexanoyloxymethyl 4-chloro-N-furfuryl-5-sulfamoyl-anthranilate (C19H23CIN2O7S), (I), and benzoyloxymethyl 4-chloro-N-furfuryl-5-sulfamoylanthranilate (C20H17CIN2O7S), (II), are described in this paper and compared with furosemide and four other prodrugs. The molecular conformations of both compounds are similar to those of the other prodrugs; the packing and the crystal system are the primary differences. Compound (I) crystallizes in the trigonal space group R3 and compound (II) in the monoclinic space group P2(1)/n. The packing of both structures is stabilized by a three-dimensional hydrogen-bond network.

  10. Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong

    2010-10-01

    Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.

  11. A simple and cost-effective method, as an appropriate alternative for visible spectrophotometry: development of a dopamine biosensor.

    PubMed

    Abbaspour, Abdolkarim; Khajehzadeh, Abdolreza; Ghaffarinejad, Ali

    2009-08-01

    In this study, a new, simple, fast and inexpensive method as an alternative to visible spectrophotometry is developed. In this method the cells containing the sample solution were scanned with a scanner, then the color of each cell was analyzed with software written in visual basic (VB 6) media to red, green and blue values. The cells were built by creating holes in the Plexiglas sheet. The dimensions of identical cells were examined by Cr (III) solution with known concentrations. The validity of this new method was studied by determination of dopamine (DA) without using any other reagent. The parameters which affect the system were optimized. The comparison between the current and traditional UV-Vis spectrophotometry methods was studied and the results revealed similar trends in both methods. The developed method was successfully applied to the determination of dopamine in serum and urine without using any pretreatment. Finally comparing the results obtained in the developed method showed that microwave irradiation of the solution can decrease the experimental time, increase sensitivity and improve the limit of detection.

  12. Derivative spectrophotometry for the determination of faropenem in the presence of degradation products: an application for kinetic studies.

    PubMed

    Cielecka-Piontek, Judyta

    2013-07-01

    A simple and selective derivative spectrophotometric method was developed for the quantitative determination of faropenem in pure form and in pharmaceutical dosage. The method is based on the zero-crossing effect of first-derivative spectrophotometry (λ = 324 nm), which eliminates the overlapping effect caused by the excipients present in the pharmaceutical preparation, as well as degradation products, formed during hydrolysis, oxidation, photolysis, and thermolysis. The method was linear in the concentration range 2.5-300 μg/mL (r = 0.9989) at λ = 341 nm; the limits of detection and quantitation were 0.16 and 0.46 μg/mL, respectively. The method had good precision (relative standard deviation from 0.68 to 2.13%). Recovery of faropenem ranged from 97.9 to 101.3%. The first-order rate constants of the degradation of faropenem in pure form and in pharmaceutical dosage were determined by using first-derivative spectrophotometry. A statistical comparison of the validation results and the observed rate constants for faropenem degradation with these obtained with the high-performance liquid chromatography method demonstrated that both were compatible.

  13. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry.

  14. Absorption of Deuterium Fluoride Laser Radiation by the Atmosphere

    DTIC Science & Technology

    1976-04-01

    spectroscopy technique was used to determine the frequencies of the 3-2 P(7) and 2-1 P(10) lines by measuring their separation from N2O absorption lines...19. KEY WORDS ( Continue on reverse aide il necessary and (den(//y by bloc* number) Absorption DF laser Laser Propagation Molecular... Spectroscopy HDO Water Vapor Methane Nitrous Oxide Spectra Atmosphere ■jr—.„sTRACT rConllnue on reverse side 1/necessary and Identity by block number

  15. Hydride generation coupled to microfunnel-assisted headspace liquid-phase microextraction for the determination of arsenic with UV-Vis spectrophotometry.

    PubMed

    Hashemniaye-Torshizi, Reihaneh; Ashraf, Narges; Arbab-Zavar, Mohammad Hossein

    2014-12-01

    In this research, a microfunnel-assisted headspace liquid-phase microextraction technique has been used in combination with hydride generation to determine arsenic (As) by UV-Vis spectrophotometry. The method is based on the reduction of As to arsine (AsH3) in acidic media by sodium tetrahydroborate (NaBH4) followed by its subsequent reaction with silver diethyldithiocarbamate (AgDDC) to give an absorbing complex at 510 nm. The complexing reagent (AgDDC) has been dissolved in a 1:1 (by the volume ratio) mixture of chloroform/chlorobenzene microdroplet and exposed to the generated gaseous arsine via a reversed microfunnel in the headspace of the sample solution. Several operating parameters affecting the performance of the method have been examined and optimized. Acetonitrile solvent has been added to the working samples as a sensitivity enhancement agent. Under the optimized operating conditions, the detection limit has been measured to be 0.2 ng mL(-1) (based on 3sb/m criterion, n b = 8), and the calibration curve was linear in the range of 0.5-12 ng mL(-1). The relative standard deviation for eight replicate measurements was 1.9 %. Also, the effects of several potential interferences have been studied. The accuracy of the method was validated through the analysis of JR-1 geological standard reference material. The method has been successfully applied for the determination of arsenic in raw and spiked soft drink and water samples with the recoveries that ranged from 91 to 106 %.

  16. The absorption of polymeric composites

    NASA Astrophysics Data System (ADS)

    Řídký, R.; Popovič, M.; Rolc, S.; Drdlová, M.; Krátký, J.

    2016-06-01

    An absorption capacity of soft, viscoelastic materials at high strain rates is important for wide range of practical applications. Nowadays there are many variants of numerical models suitable for this kind of analysis. The main difficulty is in selection of the most realistic numerical model and a correct setup of many unknown material constants. Cooperation between theoretical simulations and real testing is next crucial point in the investigation process. Standard open source material database offer material properties valid for strain rates less than 250 s-1. There are experiments suitable for analysis of material properties with strain rates close to 2000 s-1. The high strain-rate characteristics of a specific porous blast energy absorbing material measured by modified Split Hopkinson Pressure Bar apparatus is presented in this study. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. One of the possible solution leads to complex and frequency depended Young modulus of testing bars material. This testing technique was applied to materials composed of porous glass/ceramic filler and polymeric binder, with density of 125 - 300 kg/m3 and particle size in range of 50 µm - 2 mm. The achieved material model was verified in practical application of sandwich structure includes polymeric composites under a blast test.

  17. Millimeter and submillimeter wave absorption by atmospheric pollutants and constituents

    NASA Astrophysics Data System (ADS)

    Kolbe, W. F.; Leskovar, B.

    1981-10-01

    Calculated absorption coefficients and rotational transition frequencies are given for a number of polar molecules of interest to pollution and energy research. The results, which are presented in graphical form for microwave frequencies up to 1400 GHz, illustrate the increased absorption line intensities occurring in the submillimeter region. For most species these absorption coefficients attain their maximum values in this region. Included in the calculations are the gases SO2, H2CO, O3, H2O, H2S, OCS, CO, NO, OH, SO, NH3, and CS. A discussion of the techniques currently available for the detection in the submillimeter region of these species is also given.

  18. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  19. Spectrophotometry, colors, and photometric properties of the 67P/Churyumov-Gerasimenko nucleus from the OSIRIS instrument onboard the ROSETTA mission

    NASA Astrophysics Data System (ADS)

    Fornasier, Sonia; Hasselmann, Pedro; Feller, Clement; Barucci, Maria Antonietta; Lara, Luisa; Oklay, Nilda; Tubiana, Cecilia; Besse, Sebastien; Scholten, Frank; Sierks, Holger; Leyrat, Cedric; La Forgia, Fiorangela; Lazzarin, Monica; Pajola, Maurizio; Thomas, Nick; Pommerol, Antoine; Massironi, Matteo

    2015-04-01

    between the two lobes of the comet, and is both the most active and brightest surface on the comet. This region has a bluer spectral slope than the darker regions that we interpret being caused by a higher abundance of water ice in the surface composition, although we note that no water ice absorption bands have been detected with the VIRTIS infrared imaging spectrometer during the August-September observations at resolutions of 15-25 m/px (Capaccioni et al. 2015). The absence of large areas of water ice rich mixtures in VIRTIS data may be attributed to their lower spatial resolution than the OSIRIS images, together with the presence of non-volatile materials that may mask the water ice spectral absorptions. We will present the results of the global photometric properties in several filters, derived using the Hapke model, together with the analysis of the local colors spectrophotometry, and albedo variations of the 67P nucleus. This unique data set places further constraints on the origin and distribution of cometary activity on the surface. References: Capaccioni et al, 2015, Science, in press Sierks et al, 2015, Science, in press Thomas et al., 2015, Science, in press

  20. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    PubMed

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror.

  1. [Using Fourier transform to analyse differential optical absorption spectrum].

    PubMed

    Liu, Qian-Lin; Wang, Li-Shi; Huang, Xin-Jian

    2008-05-01

    According to the theory of differential optical absorption spectral technique, the differential optical absorption spectral monitoring equipment was designed. Aiming at two kinds of main pollutants, SO2 and NO2, in the atmosphere, this technique was used to monitor them. The present article puts forward the signal analysis method of Fourier transformation to process the above-mentioned two kinds of absorption spectra. The two approaches contain the removeal of noise and the fitting of the slow variety. On the frequency chart after the spectrum was transformed, the low frequency corresponded to the slow variety part and the high frequency corresponded to the noise part of the original spectrum, so through intercepting a certain frequency segment and using inverse Fourier transformation the slow variety part of the low frequency and the noise part of the high frequency of the absorption spectrum could be subtracted. After farther processing we can get a higher resolution differential absorption spectrum of the gas. According to the strength of the spectrum, we can calculate the concentration of the gas. After analysis and comparison with the conventional method, it is considered a new processing method of differential optical absorption spectral technique, and the method can fit the slow variety much better.

  2. Ultrafast transient absorption measurements of heme proteins

    NASA Astrophysics Data System (ADS)

    Ye, Xiong; Demidov, Andrey; Wang, Wei; Christian, James; Champion, Paul

    1998-03-01

    Transient absorption spectra reveal the dynamics and intermediate states of the heme active site after ligand photodissociation, which helps clarify the physical process of ligand dissociation and geminate recombination. To measure the transient absorption spectra, we apply a femtosecond pump-probe technique with frequency resolved detection using a multichannel diode array. The femtosecond pulse output from a regenerative laser amplifier system is split in two; one beam pumps the optical parametric amplifier to produce a tunable wavelength pump pulse, the other beam generates a white light continuum that is varied in time with respect to pump pulse and probe the transient absorbance of the sample. We make a comparative study of myoglobin with different ligands, mutants and pH conditions.

  3. Absorption lineshapes of molecular aggregates revisited

    SciTech Connect

    Gelzinis, Andrius; Valkunas, Leonas; Abramavicius, Darius

    2015-04-21

    Linear absorption is the most basic optical spectroscopy technique that provides information about the electronic and vibrational degrees of freedom of molecular systems. In simulations of absorption lineshapes, often diagonal fluctuations are included using the cumulant expansion, and the off-diagonal fluctuations are accounted for either perturbatively, or phenomenologically. The accuracy of these methods is limited and their range of validity is still questionable. In this work, a systematic study of several such methods is presented by comparing the lineshapes with exact results. It is demonstrated that a non-Markovian theory for off-diagonal fluctuations, termed complex time dependent Redfield theory, gives good agreement with exact lineshapes over a wide parameter range. This theory is also computationally efficient. On the other hand, accounting for the off-diagonal fluctuations using the modified Redfield lifetimes was found to be inaccurate.

  4. Nearedge Absorption Spectroscopy of Interplanetary Dust Particles

    SciTech Connect

    Brennan, S.; Luening, K.; Pianetta, P.; Bradley, J.; Graham, G.; Westphal, A.; Snead, C.; Dominguez, G.; /SLAC, SSRL

    2006-10-25

    Interplanetary Dust Particles (IDPs) are derived from primitive Solar System bodies like asteroids and comets. Studies of IDPs provide a window onto the origins of the solar system and presolar interstellar environments. We are using Total Reflection X-ray Fluorescence (TXRF) techniques developed for the measurement of the cleanliness of silicon wafer surfaces to analyze these particles with high detection sensitivity. In addition to elemental analysis of the particles, we have collected X-ray Absorption Near-Edge spectra in a grazing incidence geometry at the Fe and Ni absorption edges for particles placed on a silicon wafer substrate. We find that the iron is dominated by Fe{sub 2}O{sub 3}.

  5. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  6. Vitamin A a absorption - nutritional aspects.

    PubMed

    Berger, S

    1975-01-01

    A brief review of the present knowledge of vitamin A (both performed and precursor forms) absorption is outlined with special emphasis on the dietary factors involved in this process. Some details are discussed related to the techniques used for measurement of vitamin A absorption from different sources and under different experimental conditions. Suggestions are also made to standardize appropriate procedure in this respect; this might enable comparisons and wide use of respective results obtained in various laboratories. Nutritional significance, including advantages or disadvantages of the liver test in these studies, is specifically highlighted with special reference to the determination of vitamin A bio-potency in various products. Some selected results and experience in this field are briefly presented.

  7. Iron absorption by small intestine of chickens.

    PubMed

    Sáiz, M P; Martí, M T; Mitjavila, M T; Planas, J

    1993-01-01

    Iron (Fe) absorption by three segments (duodenum, jejunum, and ileum) of the small intestine of chickens was studied by a perfusion technique in vivo in closed circuit using 59Fe Cl3 and was related to the histological characteristics of each segment. The serosal transfers of Fe for the duodenum and jejunum were the same (14%/cm), but significantly different (p < 0.05) from those of the ileum (9%/cm), which may be explained by the morphological and histological properties of the gut of chickens. However, the presence of Fe in blood and in liver was significantly lower after perfusion of the jejunum and ileum than after perfusion of the duodenum. It is concluded that chickens show an early adaptation of small intestine to Fe absorption in response to the considerable loss of Fe suffered during the laying process.

  8. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  9. BASIC STUDIES IN PERCUTANEOUS ABSORPTION.

    DTIC Science & Technology

    FATTY ACIDS, *SKIN(ANATOMY), ABSORPTION, ALKYL RADICALS, AMIDES, DIFFUSION, ELECTRON MICROSCOPY, HUMIDITY, LABORATORY ANIMALS, LIPIDS, ORGANIC SOLVENTS, PENETRATION, PRIVATION, PROTEINS, RATS, TEMPERATURE, WATER

  10. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  11. Simple spectrophotometry method for the determination of sulfur dioxide in an alcohol-thionyl chloride reaction.

    PubMed

    Zheng, Jinjian; Tan, Feng; Hartman, Robert

    2015-09-03

    Thionyl chloride is often used to convert alcohols into more reactive alkyl chloride, which can be easily converted to many compounds that are not possible from alcohols directly. One important reaction of alkyl chloride is nucleophilic substitution, which is typically conducted under basic conditions. Sulfur dioxide, the by-product from alcohol-thionyl chloride reactions, often reacts with alkyl chloride to form a sulfonyl acid impurity, resulting in yield loss. Therefore, the alkyl chloride is typically isolated to remove the by-products including sulfur dioxide. However, in our laboratory, the alkyl chloride formed from alcohol and thionyl chloride was found to be a potential mutagenic impurity, and isolation of this compound would require extensive safety measures. As a result, a flow-through process was developed, and the sulfur dioxide was purged using a combination of vacuum degassing and nitrogen gas sweeping. An analytical method that can quickly and accurately quantitate residual levels of sulfur dioxide in the reaction mixture is desired for in-process monitoring. We report here a simple ultraviolet (UV) spectrophotometry method for this measurement. This method takes advantage of the dramatic change in the UV absorbance of sulfur dioxide with respect to pH, which allows for accurate quantitation of sulfur dioxide in the presence of the strong UV-absorbing matrix. Each sample solution was prepared using 2 different diluents: 1) 50 mM ammonium acetate in methanol +1% v/v hydrochloric acid, pH 1.3, and 2) 50 mM ammonium acetate in methanol +1% glacial acetic acid, pH 4.0. The buffer solutions were carefully selected so that the UV absorbance of the sample matrix (excluding sulfur dioxide) at 276 nm remains constant. In the pH 1.3 buffer system, sulfur dioxide shows strong UV absorbance at 276 nm. Therefore, the UV absorbance of sample solution is the sum of sulfur dioxide and sample matrix. While in the pH 4.0 buffer system, sulfur dioxide has

  12. Airborne spectrophotometry of P/Halley from 16 to 30 microns

    NASA Technical Reports Server (NTRS)

    Herter, T.; Gull, G. E.; Campins, H.

    1986-01-01

    Comet Halley was observed in the 16 to 30 micron region using the Cornell University 7-channel spectrometer (resolution = 0.02) on board the Kuiper Airborne Observatory on 1985 Dec. 14.2. A 30-arcsec aperture (FWHM) was used. Measurements centered on the nuclear condensation micron indicate that if present, the 20 micron silicate feature is very weak, and that a relatively narrow strong feature centered at 28.4 microns possibly exists. However, this feature may be an artifact of incomplete correction for telluric water vapor absorption.

  13. Solar Absorption in Cloudy Atmospheres

    NASA Technical Reports Server (NTRS)

    Harshvardhan; Ridgway, William; Ramaswamy, V.; Freidenreich, S. M.; Batey, Michael

    1996-01-01

    The theoretical computations used to compute spectral absorption of solar radiation are discussed. Radiative properties relevant to the cloud absorption problem are presented and placed in the context of radiative forcing. Implications for future measuring programs and the effect of horizontal inhomogeneities are discussed.

  14. Atmospheric absorption of sound - Update

    NASA Technical Reports Server (NTRS)

    Bass, H. E.; Sutherland, L. C.; Zuckerwar, A. J.

    1990-01-01

    Best current expressions for the vibrational relaxation times of oxygen and nitrogen in the atmosphere are used to compute total absorption. The resulting graphs of total absorption as a function of frequency for different humidities should be used in lieu of the graph published earlier by Evans et al (1972).

  15. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  16. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  17. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  18. Assessment of cosmetic ingredients in the in vitro reconstructed human epidermis test method EpiSkin™ using HPLC/UPLC-spectrophotometry in the MTT-reduction assay.

    PubMed

    Alépée, N; Hibatallah, J; Klaric, M; Mewes, K R; Pfannenbecker, U; McNamee, P

    2016-06-01

    Cosmetics Europe recently established HPLC/UPLC-spectrophotometry as a suitable alternative endpoint detection system for measurement of formazan in the MTT-reduction assay of reconstructed human tissue test methods irrespective of the test system involved. This addressed a known limitation for such test methods that use optical density for measurement of formazan and may be incompatible for evaluation of strong MTT reducer and/or coloured chemicals. To build on the original project, Cosmetics Europe has undertaken a second study that focuses on evaluation of chemicals with functionalities relevant to cosmetic products. Such chemicals were primarily identified from the Scientific Committee on Consumer Safety (SCCS) 2010 memorandum (addendum) on the in vitro test EpiSkin™ for skin irritation testing. Fifty test items were evaluated in which both standard photometry and HPLC/UPLC-spectrophotometry were used for endpoint detection. The results obtained in this study: 1) provide further support for Within Laboratory Reproducibility of HPLC-UPLC-spectrophotometry for measurement of formazan; 2) demonstrate, through use a case study with Basazol C Blue pr. 8056, that HPLC/UPLC-spectrophotometry enables determination of an in vitro classification even when this is not possible using standard photometry and 3) addresses the question raised by SCCS in their 2010 memorandum (addendum) to consider an endpoint detection system not involving optical density quantification in in vitro reconstructed human epidermis skin irritation test methods.

  19. Spectrophotometry of pluto-charon mutual events: individual spectra of pluto and charon.

    PubMed

    Sawyer, S R; Barker, E S; Cochran, A L; Cochran, W D

    1987-12-11

    Time-resolved spectra of the 3 March and 4 April 1987 mutual events of Pluto and its satellite Charon were obtained with spectral coverage from 5,500 to 10,000 angstroms with 25 angstrom spectral resolution. Since both events were total occultations of Charon by Pluto, spectra were obtained of the anti-Charon-facing hemisphere of Pluto, with no contribution from Charon during totality. On 4 April, a combined spectrum of Pluto and Charon immediately before first contact was also obtained. The spectrum of the Pluto-facing hemisphere of Charon was extracted by differencing the pre-event and totality spectra. The spectra were reduced to reflectances by ratioing them to spectra of solar analog stars. Charon has a featureless reflectance spectrum, with no evidence of methane absorption. Charon's reflectance appears neutral in color and corresponds to a geometric albedo of approximately 0.37 at 6000 angstroms. The Pluto reflectance spectrum displays methane absorption bands at 7300, 7900, 8400, 8600, and 8900 angstroms and is red in color, with a geometric albedo of approximately 0.56 at 6000 angstroms. The signal-to-noise ratios of the eclipse spectra were not high enough to unambiguously identify the weaker methane band at 6200 angstroms.

  20. UV Spectrophotometry of the Hottest Stars from the Southern HK Survey

    NASA Astrophysics Data System (ADS)

    Drilling, John S.; Beers, Timothy C.

    1995-06-01

    Low-resolution UV spectra have been obtained with the long- and short-wavelength lUE cameras for seven of the hottest stars identified in the ongoing HK objective-prism/interference-filter survey begun by Beers, Preston, & Shectman. These stars are a subset of a sample of some 25,000 stars at high galactic latitude whose objective-prism spectra indicate that they are hotter than the Population II main-sequence turnoff in the magnitude range 11 ≤ B ≤ 15.5. The UV fluxes have been corrected for interstellar reddening using a standard reddening law, and comparison of the integrated fluxes in the two lUE cameras indicates that the effective temperatures of these stars range from 40,000 K to 80,000 K. The UV absorption spectra of six of the seven stars are characterized by a strong He II λ1640 line and 3-n series of He II. Five of these stars show strong C IV λ1550 absorption. The low-resolution UV spectrum of the remaining object is featureless.