Sample records for absorption spectroscopic analyses

  1. Chemical and spectroscopic analyses of organic matter transformation in warming tundra soils

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B. F.; Graham, D. E.; Bargar, J.; Gu, B.; Liang, L.

    2013-12-01

    Many tundra soils are currently major carbon sinks; however, an increase in temperature may shift these systems to C sources and create a positive feedback for warming. In order to predict future C release from tundra soils, it is necessary to quantify rates of SOM degradation and to identify the reactants and products of microbial decomposition reactions. In this study, multiple spectroscopic techniques are used to investigate SOM during laboratory incubations of tundra soils. We aim to characterize the chemical transformation of organic matter during decomposition as a function of temperature and geochemistry. Frozen soil cores were obtained from the Barrow Environmental Observatory (BEO) in northern Alaska as part of the Next Generation Ecosystem Experiment Arctic project. To investigate the influence of temperature on organic matter degradation and compositional changes, soil horizons from each core were homogenized and soil material was incubated at -2°C, +4°C, or +8°C. Samples were sacrificed periodically over 100 days, and chemical and physical extractions were used to separate SOM into operationally-defined pools, including light (density < 1.6 g cm-2) and mineral-bound, and water-, acid-, base-, and non-soluble fractions. A suite of wet-chemical and spectroscopic analyses was used to measure CO2 and CH4 formation and soil C compositional changes, including techniques such as Fourier transform infrared spectroscopy, high performance liquid chromatography (HPLC), high resolution mass spectrometry, and X-ray absorption spectroscopy. Detailed chemical and spectroscopic analyses reveal significant differences amongst extracts and with depth in the soil. In general, more organic C was extracted in the base than in the acid and water fractions, and mineral-bound organic C increased with depth. The water-soluble C fraction showed the lowest molar absorptivity of the three extracts and consisted of mostly lower-molecular weight organics. Acid-soluble C increased

  2. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Impact of absorption in the top layer of a two layer sample on spectroscopic spectral domain interferometry of the bottom layer

    NASA Astrophysics Data System (ADS)

    Fleischhauer, F.; Feuchter, T.; Leick, L.; Rajendram, R.; Podoleanu, A.

    2018-03-01

    Spectroscopic spectral domain interferometry and spectroscopic optical coherence tomography combine depth information with spectrally-resolved localised absorption data. These additional data can improve diagnostics by giving access to functional information of the investigated sample. One possible application is measuring oxygenation levels at the retina for earlier detection of several eye diseases. Here measurements with different hollow glass tube phantoms are shown to measure the impact of a superficial absorbing layer on the precision of reconstructed attenuation spectra of a deeper layer. Measurements show that a superficial absorber has no impact on the reconstructed absorption spectrum of the deeper absorber. Even when diluting the concentration of the deeper absorber so far that an incorrect absorption maximum is obtained, still no influence of the superficially placed absorber is identified.

  4. Absorption and emission spectroscopic characteristics of dipterex and its molecularly imprinted recognition: A TD-DFT investigation

    NASA Astrophysics Data System (ADS)

    Cheng, Xueli; Li, Liqing; Zhao, Yanyun; Wang, Chang'an

    2016-05-01

    By using G09 program package, the absorption and fluorescence/phosphorescence spectra of dipterex were explored, and its spectroscopic characters were altered by methacrylic acid (MAA) as the imprinted molecule. The TD-DFT results revealed that: (1) All absorption and emission excitations of dipterex are assigned to the nσ∗ transition; (2) without MAA as imprinted molecule, one of the dipterex Csbnd Cl bonds is extended significantly and dipterex is almost destroyed in transition states; (3) dipterex is connected to methacrylic acid via two hydrogen bonds; (4) for the dipterex-MAA complex, the electronic excitation (ππ∗ excitation) in absorption spectra is dominated by the configuration HOMO → LUMO.

  5. Near-infrared diode laser based spectroscopic detection of ammonia: a comparative study of photoacoustic and direct optical absorption methods

    NASA Technical Reports Server (NTRS)

    Bozoki, Zoltan; Mohacsi, Arpad; Szabo, Gabor; Bor, Zsolt; Erdelyi, Miklos; Chen, Weidong; Tittel, Frank K.

    2002-01-01

    A photoacoustic spectroscopic (PAS) and a direct optical absorption spectroscopic (OAS) gas sensor, both using continuous-wave room-temperature diode lasers operating at 1531.8 nm, were compared on the basis of ammonia detection. Excellent linear correlation between the detector signals of the two systems was found. Although the physical properties and the mode of operation of both sensors were significantly different, their performances were found to be remarkably similar, with a sub-ppm level minimum detectable concentration of ammonia and a fast response time in the range of a few minutes.

  6. Novel Molecular Spectroscopic Multimethod Approach for Monitoring Water Absorption/Desorption Kinetics of CAD/CAM Poly(Methyl Methacrylate) Prosthodontics.

    PubMed

    Wiedemair, Verena; Mayr, Sophia; Wimmer, Daniel S; Köck, Eva Maria; Penner, Simon; Kerstan, Andreas; Steinmassl, Patricia-Anca; Dumfahrt, Herbert; Huck, Christian W

    2017-07-01

    Water absorbed to poly(methyl methacrylate) (PMMA)-based CAD/CAM (computer-assisted design/computer-assisted manufacturing) prosthodontics can alter their properties including hardness and stability. In the present contribution, water absorption and desorption kinetics under defined experimental conditions were monitored employing several supplementary and advanced Fourier transform infrared (FT-IR) spectroscopic techniques in combination with multivariate analysis (MVA). In this synergistic vibrational spectroscopic multimethod approach, first a novel near-infrared (NIR) diffuse fiber optic probe reflection spectroscopic method was established for time-resolved analysis of water uptake within seven days under controlled conditions. Near-infrared water absorbance spectra in a wavenumber range between 5288-5100 cm -1 (combination band) and 5424-5352 cm -1 (second overtone) were used establishing corresponding calibration and validation models to quantify the amount of water in the milligram range. Therefore, 14 well-defined samples exposed to prior optimized experimental conditions were taken into consideration. The average daily water uptake conducting reference analysis was calculated as 22 mg/day for one week. Additionally, in this study for the first time NIR two-dimensional correlation spectroscopy (2D-COS) was conducted to monitor and interpret the spectral dynamics of water absorption on the prosthodontics in a wavenumber range of 5100-5300 cm -1 . For sensitive time-resolved recording of water desorption, a recently developed high-temperature, high-pressure FT-IR reaction cell with water-free ultra-dry in situ and operando operation was applied. The reaction cell, as well as the sample holder, was fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high temperature zone. Applying a temperature gradient in the range of 25-150 ℃, mid-infrared (MIR) 2D-COS was successfully conducted to get insights into the dynamic

  7. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Zhou, Luwenjia; Chen, Yan-Mei

    2016-11-01

    In this paper, we extend our work of Papers I and II, which are assigned to systematically survey C IV λλ1548,1551 narrow absorption lines (NALs) with zabs ≪ zem on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS) to collect C IV NALs with zabs ≈ zem from blue to red wings of C IV λ1549 emission lines. Together with Papers I and II, we have collected a total number of 41 479 C IV NALs with 1.4544 ≤ zabs ≤ 4.9224 in surveyed spectral region redward of Lyα until red wing of C IV λ1549 emission line. We find that the stronger C IV NALs tend to be the more saturated absorptions, and associated systems (zabs ≈ zem) seem to have larger absorption strengths when compared to intervening ones (zabs ≪ zem). The redshift density evolution behaviour of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity (β) distribution of Mg II absorbers, the β distribution of C IV absorbers is broader at β ≈ 0, shows longer extended tail, and exhibits a larger dispersion for environmental absorptions. In addition, for associated C IV absorbers, we find that low-luminosity quasars seem to exhibit smaller β and stronger absorptions when compared to high-luminosity quasars.

  8. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    PubMed

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  9. Technical note: Aerosol light absorption measurements with a carbon analyser - Calibration and precision estimates

    NASA Astrophysics Data System (ADS)

    Ammerlaan, B. A. J.; Holzinger, R.; Jedynska, A. D.; Henzing, J. S.

    2017-09-01

    Equivalent Black Carbon (EBC) and Elemental Carbon (EC) are different mass metrics to quantify the amount of combustion aerosol. Both metrics have their own measurement technique. In state-of-the-art carbon analysers, optical measurements are used to correct for organic carbon that is not evolving because of pyrolysis. These optical measurements are sometimes used to apply the technique of absorption photometers. Here, we use the transmission measurements of our carbon analyser for simultaneous determination of the elemental carbon concentration and the absorption coefficient. We use MAAP data from the CESAR observatory, the Netherlands, to correct for aerosol-filter interactions by linking the attenuation coefficient from the carbon analyser to the absorption coefficient measured by the MAAP. Application of the calibration to an independent data set of MAAP and OC/EC observations for the same location shows that the calibration is applicable to other observation periods. Because of simultaneous measurements of light absorption properties of the aerosol and elemental carbon, variation in the mass absorption efficiency (MAE) can be studied. We further show that the absorption coefficients and MAE in this set-up are determined within a precision of 10% and 12%, respectively. The precisions could be improved to 4% and 8% when the light transmission signal in the carbon analyser is very stable.

  10. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achyuthan, Komandoor; Adams, Paul; Simmons, Blake

    2011-07-13

    Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detectionmore » and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance.« less

  11. X-ray absorption spectroscopic studies on gold nanoparticles in mesoporous and microporous materials.

    PubMed

    Akolekar, Deepak B; Foran, Garry; Bhargava, Suresh K

    2004-05-01

    Au L(3)-edge X-ray absorption spectroscopic measurements were carried out over a series of mesoporous and microporous materials containing gold nanoparticles to investigate the effects of the host matrix and preparation methods on the properties of gold nanoparticles. The materials of structure type MCM-41, ZSM-5, SAPO-18 and LSX with varying framework composition containing low concentrations of gold nanoparticles were prepared and characterized. In these materials the size of the gold nanoparticles varied in the range approximately 1 to 4 nm. A series of gold nanoparticles within different mesoporous and microporous materials have been investigated using X-ray absorption fine structure (XANES, EXAFS) and other techniques. Information such as atomic distances, bonding and neighbouring environment obtained from XAFS measurements was useful in elucidating the nature and structure of gold nanoparticles on these catalytic materials. The influence of the high-temperature (823, 1113, 1273 K) treatment on gold nanoparticles inside the mesoporous matrix was investigated using the XAFS technique. The XAFS and XANES results confirm various characteristics of gold nanoparticles in these materials suitable for catalysis, fabrication of nanodevices and other applications.

  12. Absorption and emission spectroscopic characterisation of combined wildtype LOV1-LOV2 domain of phot from Chlamydomonas reinhardtii.

    PubMed

    Song, S-H; Dick, B; Zirak, P; Penzkofer, A; Schiereis, T; Hegemann, P

    2005-10-03

    An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.

  13. Correction: Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source.

    PubMed

    Telling, Mark T F; Campbell, Stuart I; Engberg, Dennis; Martín Y Marero, David; Andersen, Ken H

    2016-03-21

    Correction for 'Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source' by Mark T. F. Telling et al., Phys. Chem. Chem. Phys., 2005, 7, 1255-1261.

  14. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westre, Tami E.

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been appliedmore » to the study of non-heme iron enzyme active sites.« less

  15. The HITRAN2016 molecular spectroscopic database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, I. E.; Rothman, L. S.; Hill, C.

    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additionalmore » absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 200 additional significant molecules have been added to the database.« less

  16. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  17. Optical absorption and photoluminescence properties of Nd3+ doped mixed alkali phosphate glasses-spectroscopic investigations.

    PubMed

    Ratnakaram, Y C; Srihari, N V; Kumar, A Vijaya; Naidu, D Thirupathi; Chakradhar, R P S

    2009-02-01

    Spectroscopic investigations were performed on 68NH(4)H(2)PO(4).xLi(2)CO(3)(30-x)K(2)CO(3) and 68NH(4)H(2)PO(4).xNa(2)CO(3)(30-x)K(2)CO(3) (where x=5, 10, 15, 20 and 25) glasses containing 2 mol% Nd(2)O(3). Various spectroscopic parameters (Racah (E(1), E(2), E(3)), spin-orbit (xi(4f)) and configuration interaction (alpha)) are reported. Judd-Ofelt intensity parameters (Omega(2), Omega(4), Omega(6)) are calculated for Nd(3+) doped two mixed alkali phosphate glass matrices. From the magnitude of Judd-Ofelt parameters, covalency is studied as a function of x in the glass matrix. Using Judd-Ofelt intensity parameters, total radiative transition probabilities (A(T)), radiative lifetimes (tau(R)), branching ratios (beta) and integrated absorption cross sections (Sigma) have been computed for certain excited states of Nd(3+) in these mixed alkali phosphate glasses. Emission cross sections (sigma(P)) are calculated for the two transitions, (4)G(7/2)-->(4)I(11/2) and (4)G(7/2)-->(4)I(13/2) of Nd(3+) in these mixed alkali phosphate glasses. Optical band gaps (E(opt)) for direct and indirect transitions are reported.

  18. Reactivity of Chromium(III) Nutritional Supplements in Biological Media: An X-Ray Absorption Spectroscopic Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, A.; Mulyani, I.; Levina, A.

    2009-05-22

    Chromium(III) nutritional supplements are widely used due to their purported ability to enhance glucose metabolism, despite growing evidence on low activity and the potential genotoxicity of these compounds. Reactivities of Cr(III) complexes used in nutritional formulations, including [Cr3O(OCOEt)6(OH2)3]+ (A), [Cr(pic)3] (pic) = 2-pyridinecarboxylato(-) (B), and trans-[CrCl2(OH2)4]+ (CrCl3 {center_dot} 6H2O; C), in a range of natural and simulated biological media (artificial digestion systems, blood and its components, cell culture media, and intact L6 rat skeletal muscle cells) were studied by X-ray absorption near-edge structure (XANES) spectroscopy. The XANES spectroscopic data were processed by multiple linear-regression analyses with the use of amore » library of model Cr(III) compounds, and the results were corroborated by the results of X-ray absorption fine structure spectroscopy and electrospray mass spectrometry. Complexes A and B underwent extensive ligand-exchange reactions under conditions of combined gastric and intestinal digestion (in the presence of a semisynthetic meal, 3 h at 310 K), as well as in blood serum and in a cell culture medium (1-24 h at 310 K), with the formation of Cr(III) complexes with hydroxo and amino acid/protein ligands. Reactions of compounds A-C with cultured muscle cells led to similar ligand-exchange products, with at least part of Cr(III) bound to the surface of the cells. The reactions of B with serum greatly enhanced its propensity to be converted to Cr(VI) by biological oxidants (H2O2 or glucose oxidase system), which is proposed to be a major cause of both the insulin-enhancing activity and toxicity of Cr(III) compounds (Mulyani, I.; Levina, A.; Lay, P. A. Angew. Chem. Int. Ed. 2004, 43, 4504-4507). This finding enhances the current concern over the safety of consumption of large doses of Cr(III) supplements, particularly [Cr(pic)3].« less

  19. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.

    PubMed

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank

    2017-05-26

    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C 60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  20. Combined Mössbauer spectroscopic, multi-edge X-ray absorption spectroscopic, and density functional theoretical study of the radical SAM enzyme spore photoproduct lyase.

    PubMed

    Silver, Sunshine C; Gardenghi, David J; Naik, Sunil G; Shepard, Eric M; Huynh, Boi Hanh; Szilagyi, Robert K; Broderick, Joan B

    2014-03-01

    Spore photoproduct lyase (SPL), a member of the radical S-adenosyl-L-methionine (SAM) superfamily, catalyzes the direct reversal of the spore photoproduct, a thymine dimer specific to bacterial spores, to two thymines. SPL requires SAM and a redox-active [4Fe-4S] cluster for catalysis. Mössbauer analysis of anaerobically purified SPL indicates the presence of a mixture of cluster states with the majority (40 %) as [2Fe-2S](2+) clusters and a smaller amount (15 %) as [4Fe-4S](2+) clusters. On reduction, the cluster content changes to primarily (60 %) [4Fe-4S](+). The speciation information from Mössbauer data allowed us to deconvolute iron and sulfur K-edge X-ray absorption spectra to uncover electronic (X-ray absorption near-edge structure, XANES) and geometric (extended X-ray absorption fine structure, EXAFS) structural features of the Fe-S clusters, and their interactions with SAM. The iron K-edge EXAFS data provide evidence for elongation of a [2Fe-2S] rhomb of the [4Fe-4S] cluster on binding SAM on the basis of an Fe···Fe scatterer at 3.0 Å. The XANES spectra of reduced SPL in the absence and presence of SAM overlay one another, indicating that SAM is not undergoing reductive cleavage. The X-ray absorption spectroscopy data for SPL samples and data for model complexes from the literature allowed the deconvolution of contributions from [2Fe-2S] and [4Fe-4S] clusters to the sulfur K-edge XANES spectra. The analysis of pre-edge features revealed electronic changes in the Fe-S clusters as a function of the presence of SAM. The spectroscopic findings were further corroborated by density functional theory calculations that provided insights into structural and electronic perturbations that can be correlated by considering the role of SAM as a catalyst or substrate.

  1. Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine

    NASA Astrophysics Data System (ADS)

    Pieters, Carle M.; Klima, Rachel L.; Hiroi, Takahiro; Dyar, M. Darby; Lane, Melissa D.; Treiman, Allan H.; Noble, Sarah K.; Sunshine, Jessica M.; Bishop, Janice L.

    2008-06-01

    A second Martian meteorite has been identified that is composed primarily of heavily shocked dunite, Northwest Africa (NWA) 2737. This meteorite has several similarities to the Chassigny dunite cumulate, but the olivine is more Mg rich and, most notably, is very dark and visually brown. Carefully coordinated analyses of NWA 2737 whole-rock and olivine separates were undertaken using visible and near-infrared reflectance, midinfrared emission and reflectance, and Mössbauer spectroscopic studies of the same samples along with detailed petrography, chemistry, scanning electron microscopy, and transmission electron microscopy analyses. Midinfrared spectra of this sample indicate that the olivine is fully crystalline and that its molecular structure remains intact. The unusual color and spectral properties that extend from the visible through the near-infrared part of the spectrum are shown to be due to nanophase metallic iron particles dispersed throughout the olivine during a major shock event on Mars. Although a minor amount of Fe3+ is present, it cannot account for the well-documented unusual optical properties of Martian meteorite NWA 2737. Perhaps unique to the Martian environment, this ``brown'' olivine exhibits spectral properties that can potentially be used to remotely explore the pressure-temperature history of surface geology as well as assess surface composition.

  2. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  3. Spectroscopic thermoacoustic imaging of water and fat composition

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Wang, Xiong; Vollin, Jeff; Xin, Hao; Witte, Russell S.

    2012-07-01

    During clinical studies, thermoacoustic imaging (TAI) failed to reliably identify malignant breast tissue. To increase detection capability, we propose spectroscopic TAI to differentiate samples based on the slope of their dielectric absorption. Phantoms composed of different ratios of water and fat were imaged using excitation frequencies between 2.7 and 3.1 GHz. The frequency-dependent slope of the TA signal was highly correlated with that of its absorption coefficient (R2 = 0.98 and p < 0.01), indicating spectroscopic TAI can distinguish materials based on their intrinsic dielectric properties. This approach potentially enhances cancer detection due to the increased water content of many tumors.

  4. Extractability of water-soluble soil organic matter as monitored by spectroscopic and chromatographic analyses.

    PubMed

    Nkhili, Ezzhora; Guyot, Ghislain; Vassal, Nathalie; Richard, Claire

    2012-07-01

    Cold and hot water processes have been intensively used to recover soil organic matter, but the effect of extraction conditions on the composition of the extracts were not well investigated. Our objective was to optimize the extraction conditions (time and temperature) to increase the extracted carbon efficiency while minimizing the possible alteration of water extractable organic matter of soil (WEOM). WEOM were extracted at 20°C, 60°C, or 80°C for 24 h, 10-60 min, and 20 min, respectively. The different processes were compared in terms of pH of suspensions, yield of organic carbon, spectroscopic properties (ultraviolet-visible absorption and fluorescence), and by chromatographic analyses. For extraction at 60°C, the time 30 min was optimal in terms of yield of organic carbon extracted and concentration of absorbing and fluorescent species. The comparison of WEOM 20°C, 24 h; 60°C, 30 min; and 80°C, 20 min highlighted significant differences. The content of total organic carbon, the value of specific ultraviolet absorbance (SUVA(254)), the absorbance ratio at 254 and 365 nm (E (2)/E (3)), and the humification index varied in the order: WEOM (20°C, 24 h) < WEOM (80°C, 20 min) < WEOM (60°C, 30 min). The three WEOM contained common fluorophores associated with simple aromatic structures and/or fulvic-like and common peaks of distinct polarity as detected by ultra performance liquid chromatography. For the soil chosen, extraction at 60°C for 30 min is the best procedure for enrichment in organic chemicals and minimal alteration of the organic matter.

  5. Preparation of the COROT mission: fundamental stellar parameters from photometric and spectroscopic analyses of target candidates

    NASA Astrophysics Data System (ADS)

    Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.

    2001-09-01

    We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Stromgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best chi^2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.

  6. Preparation of the COROT mission: fundamental stellar parameters from photometric and spectroscopic analyses of target candidates

    NASA Astrophysics Data System (ADS)

    Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.

    2001-12-01

    We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Strömgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best χ2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.

  7. Spectroscopic identification of rare earth elements in phosphate glass

    NASA Astrophysics Data System (ADS)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  8. The HITRAN 2008 Molecular Spectroscopic Database

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence S.; Gordon, Iouli E.; Barbe, Alain; Benner, D. Chris; Bernath, Peter F.; Birk, Manfred; Boudon, V.; Brown, Linda R.; Campargue, Alain; Champion, J.-P.; hide

    2009-01-01

    This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are not resolved; individual line parameters and absorption cross sections for bands in the ultra-violet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for forty-two molecules including many of their isotopologues.

  9. Resolving Spectral Lines with a Periscope-Type DVD Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka

    2008-01-01

    A new type of DVD spectroscope, the periscope type, is described and the numerical analysis of the observed emission and absorption spectra is demonstrated. A small and thin mirror is put inside and an eighth part of a DVD is used as a grating. Using this improved DVD spectroscope, one can observe and photograph visible spectra more easily and…

  10. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  11. Extended X-ray Absorption Fine Structure Study of Bond Constraints in Ge-Sb-Te Alloys

    DTIC Science & Technology

    2011-02-07

    Ray Absorption Spectroscopy, or EXAFS. Using the spectroscopic capabilities provided by the MCAT line at the Advanced Photon Source at Argonne...Absorption Spectroscopy, or EXAFS. Using the spectroscopic capabilities provided by the MCAT line at the Advanced Photon Source at Argonne National

  12. New Developments of Broadband Cavity Enhanced Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Walsh, A.; Zhao, D.; Linnartz, H.; Ubachs, W.

    2013-06-01

    In recent years, cavity enhanced spectroscopic techniques, such as cavity ring-down spectroscopy (CRDS), cavity enhanced absorption spectroscopy (CEAS), and broadband cavity enhanced absorption spectroscopy (BBCEAS), have been widely employed as ultra-sensitive methods for the measurement of weak absorptions and in the real-time detection of trace species. In this contribution, we introduce two new cavity enhanced spectroscopic concepts: a) Optomechanical shutter modulated BBCEAS, a variant of BBCEAS capable of measuring optical absorption in pulsed systems with typically low duty cycles. In conventional BBCEAS applications, the latter substantially reduces the signal-to-noise ratio (S/N), consequently also reducing the detection sensitivity. To overcome this, we incorporate a fast optomechanical shutter as a time gate, modulating the detection scheme of BBCEAS and increasing the effective duty cycle reaches a value close to unity. This extends the applications of BBCEAS into pulsed samples and also in time-resolved studies. b) Cavity enhanced self-absorption spectroscopy (CESAS), a new spectroscopic concept capable of studying light emitting matter (plasma, flames, combustion samples) simultaneously in absorption and emission. In CESAS, a sample (plasma, flame or combustion source) is located in an optically stable cavity consisting of two high reflectivity mirrors, and here it acts both as light source and absorbing medium. A high detection sensitivity of weak absorption is reached without the need of an external light source, such as a laser or broadband lamp. The performance is illustrated by the first CESAS result on a supersonically expanding hydrocarbon plasma. We expect CESAS to become a generally applicable analytical tool for real time and in situ diagnostics. A. Walsh, D. Zhao, W. Ubachs, H. Linnartz, J. Phys. Chem. A, {dx.doi.org/10.1021/jp310392n}, in press, 2013. A. Walsh, D. Zhao, H. Linnartz Rev. Sci. Instrum. {84}(2), 021608 2013. A. Walsh, D. Zhao

  13. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    PubMed

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. No microplastics in benthic eelpout (Zoarces viviparus): An urgent need for spectroscopic analyses in microplastic detection.

    PubMed

    Wesch, Charlotte; Barthel, Anne-Kathrin; Braun, Ulrike; Klein, Roland; Paulus, Martin

    2016-07-01

    Monitoring the ingestion of microplastics is challenging and suitable detection techniques are insufficiently used. Thus, misidentifying natural for synthetic microfibres cannot be avoided. As part of a framework to monitor the ingestion of microplastics in eelpout, this short report addresses the accurate identification of microfibres. We show that, following visual inspections, putatively synthetic microfibres are indeed of natural origin, as ascertained by spectrometric analyses. Consequently, we call for an inclusion of spectroscopic techniques in standardized microplastic monitoring schemes. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei

    2015-12-01

    Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio < {{S}}/{{N}}> ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow

  16. Spectroscopic properties for identifying sapphire samples from Ban Bo Kaew, Phrae Province, Thailand

    NASA Astrophysics Data System (ADS)

    Mogmued, J.; Monarumit, N.; Won-in, K.; Satitkune, S.

    2017-09-01

    Gemstone commercial is a high revenue for Thailand especially ruby and sapphire. Moreover, Phrae is a potential gem field located in the northern part of Thailand. The studies of spectroscopic properties are mainly to identify gemstone using advanced techniques (e.g. UV-Vis-NIR spectrophotometry, FTIR spectrometry and Raman spectroscopy). Typically, UV-Vis-NIR spectrophotometry is a technique to study the cause of color in gemstones. FTIR spectrometry is a technique to study the functional groups in gem-materials. Raman pattern can be applied to identify the mineral inclusions in gemstones. In this study, the natural sapphires from Ban Bo Kaew were divided into two groups based on colors including blue and green. The samples were analyzed by UV-Vis-NIR spectrophotometer, FTIR spectrometer and Raman spectroscope for studying spectroscopic properties. According to UV-Vis-NIR spectra, the blue sapphires show higher Fe3+/Ti4+ and Fe2+/Fe3+ absorption peaks than those of green sapphires. Otherwise, green sapphires display higher Fe3+/Fe3+ absorption peaks than blue sapphires. The FTIR spectra of both blue and green sapphire samples show the absorption peaks of -OH,-CH and CO2. The mineral inclusions such as ferrocolumbite and rutile in sapphires from this area were observed by Raman spectroscope. The spectroscopic properties of sapphire samples from Ban Bo Kaew, Phrae Province, Thailand are applied to be the specific evidence for gemstone identification.

  17. EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan

    2015-12-01

    We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsicmore » Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.« less

  18. Spectroscopic quantification of extremely rare molecular species in the presence of interfering optical absorption

    DOEpatents

    Ognibene, Ted; Bench, Graham; McCartt, Alan Daniel; Turteltaub, Kenneth; Rella, Chris W.; Tan, Sze; Hoffnagle, John A.; Crosson, Eric

    2017-05-09

    Optical spectrometer apparatus, systems, and methods for analysis of carbon-14 including a resonant optical cavity configured to accept a sample gas including carbon-14, an optical source configured to deliver optical radiation to the resonant optical cavity, an optical detector configured to detect optical radiation emitted from the resonant cavity and to provide a detector signal; and a processor configured to compute a carbon-14 concentration from the detector signal, wherein computing the carbon-14 concentration from the detector signal includes fitting a spectroscopic model to a measured spectrogram, wherein the spectroscopic model accounts for contributions from one or more interfering species that spectroscopically interfere with carbon-14.

  19. The LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap. I. The Spectroscopic Redshift Catalog

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Wu, Hong; Yang, Fan; Lam, Man I.; Cao, Tian-Wen; Wu, Chao-Jian; Zhao, Pin-Song; Zhang, Tian-Meng; Zhou, Zhi-Min; Wu, Xue-Bing; Zhang, Yan-Xia; Shao, Zheng-Yi; Jing, Yi-Peng; Shen, Shi-Yin; Zhu, Yi-Nan; Du, Wei; Lei, Feng-Jie; He, Min; Jin, Jun-Jie; Shi, Jian-Rong; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Zhang, Hao-Tong; Luo, A.-Li; Yuan, Hai-Long; Bai, Zhong-Rui; Kong, Xu; Gu, Qiu-Sheng; Zhou, Xu; Ma, Jun; Hu, Zou; Nie, Jun-Dan; Wang, Jia-Li; Zhang, Yong; Hou, Yong-Hui; Zhao, Yong-Heng

    2018-01-01

    We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extragalactic) by using repeating observations with a limiting magnitude of r=18.1 {mag} in two 20 {\\deg }2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods, and the basic performance parameters of the LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to the LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with an uncertainty of {σ }z/(1+z)< 0.001. In total, 1528 redshifts (623 absorption and 905 emission line galaxies) in Field A and 1570 redshifts (569 absorption and 1001 emission line galaxies) in Field B have been measured. The results show that it is possible to derive redshift from low S/N galaxies with our post-processing and visual inspection. Our analysis also indicates that up to one-fourth of the input targets for a typical extragalactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in M r /W2-W3 and M */W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼ 30 % ).

  20. Carbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: pattern-recognition analyses for screening quality control purposes.

    PubMed

    Flumignan, Danilo Luiz; Boralle, Nivaldo; Oliveira, José Eduardo de

    2010-06-30

    In this work, the combination of carbon nuclear magnetic resonance ((13)C NMR) fingerprinting with pattern-recognition analyses provides an original and alternative approach to screening commercial gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-defined classes. Following optimized (13)C NMR-SIMCA algorithm, sensitivity values were obtained in the training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Governmental laboratories could employ this method as a rapid screening analysis to discourage adulteration practices. Copyright 2010 Elsevier B.V. All rights reserved.

  1. The HITRAN2016 Molecular Spectroscopic Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, I. E.; Rothman, L. S.; Hill, C.

    This article describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additionalmore » absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. Finally, a powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.« less

  2. The HITRAN2016 Molecular Spectroscopic Database

    DOE PAGES

    Gordon, I. E.; Rothman, L. S.; Hill, C.; ...

    2017-07-05

    This article describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additionalmore » absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. Finally, a powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.« less

  3. The HITRAN2016 molecular spectroscopic database

    NASA Astrophysics Data System (ADS)

    Gordon, I. E.; Rothman, L. S.; Hill, C.; Kochanov, R. V.; Tan, Y.; Bernath, P. F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K. V.; Drouin, B. J.; Flaud, J.-M.; Gamache, R. R.; Hodges, J. T.; Jacquemart, D.; Perevalov, V. I.; Perrin, A.; Shine, K. P.; Smith, M.-A. H.; Tennyson, J.; Toon, G. C.; Tran, H.; Tyuterev, V. G.; Barbe, A.; Császár, A. G.; Devi, V. M.; Furtenbacher, T.; Harrison, J. J.; Hartmann, J.-M.; Jolly, A.; Johnson, T. J.; Karman, T.; Kleiner, I.; Kyuberis, A. A.; Loos, J.; Lyulin, O. M.; Massie, S. T.; Mikhailenko, S. N.; Moazzen-Ahmadi, N.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Polyansky, O. L.; Rey, M.; Rotger, M.; Sharpe, S. W.; Sung, K.; Starikova, E.; Tashkun, S. A.; Auwera, J. Vander; Wagner, G.; Wilzewski, J.; Wcisło, P.; Yu, S.; Zak, E. J.

    2017-12-01

    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

  4. Molecular dynamics and a spectroscopic study of sulfur dioxide absorption by an ionic liquid and its mixtures with PEO.

    PubMed

    Hoher, Karina; Cardoso, Piercarlo F; Lepre, Luiz F; Ando, Rômulo A; Siqueira, Leonardo J A

    2016-10-19

    An investigation comprising experimental techniques (absorption capacity of SO 2 and vibrational spectroscopy) and molecular simulations (thermodynamics, structure, and dynamics) has been performed for the polymer poly(ethylene oxide) (PEO), the ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N 4111 ][Tf 2 N]) and their mixtures as sulfur dioxide (SO 2 ) absorbing materials. The polymer PEO has higher capacity to absorb SO 2 than the neat ionic liquid, whereas the mixtures presented intermediary absorption capacities. The band assigned to the symmetric stretching band of SO 2 at ca. 1140 cm -1 , which is considered a spectroscopic probe for the strength of SO 2 interactions with its neighborhood, shifts to lower wavenumbers as more negative total interaction energy values of SO 2 were evaluated from the simulations. The solvation free energy of SO 2 , ΔG sol , correlates linearly with the absorption capacity of SO 2 . The negative values of ΔG sol are due to negative and positive values of enthalpy and entropy, respectively. In the ionic liquid, SO 2 weakens the cation-anion interactions, whereas in the mixture with a high content of PEO these interactions are slightly increased. Such effects were correlated with the relative population of cisoid and transoid conformers of Tf 2 N anions as revealed by Raman spectroscopy. Moreover, the presence of SO 2 in the systems provokes the increase of diffusion coefficients of the absorbing species in comparison with the systems without the gas. Proper to the slow dynamics of the polymer, the diffusion coefficient of ions and SO 2 diminishes with the increase of the PEO content.

  5. Ultraviolet-Absorption Spectroscopic Biofilm Monitor

    NASA Technical Reports Server (NTRS)

    Micheels, Ronald H.

    2004-01-01

    An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.

  6. The GEISA Spectroscopic Database System in its latest Edition

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Crépeau, L.; Capelle, V.; Scott, N. A.; Armante, R.; Chédin, A.

    2009-04-01

    GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information)[1] is a computer-accessible spectroscopic database system, designed to facilitate accurate forward planetary radiative transfer calculations using a line-by-line and layer-by-layer approach. It was initiated in 1976. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI (Infrared Atmospheric Sounding Interferometer on board the METOP European satellite -http://earth-sciences.cnes.fr/IASI/)) through the GEISA/IASI database[2] derived from GEISA. Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data, using the 4A radiative transfer model[3] (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and Noveltis with the support of CNES). Also, GEISA is involved in planetary research, i.e.: modelling of Titan's atmosphere, in the comparison with observations performed by Voyager: http://voyager.jpl.nasa.gov/, or by ground-based telescopes, and by the instruments on board the Cassini-Huygens mission: http://www.esa.int/SPECIALS/Cassini-Huygens/index.html. The updated 2008 edition of GEISA (GEISA-08), a system comprising three independent sub-databases devoted, respectively, to line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols, will be described. Spectroscopic parameters quality requirement will be discussed in the context of comparisons between observed or simulated Earth's and other planetary atmosphere spectra. GEISA is implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. More than 350 researchers are

  7. Alteration of fluorescent protein spectroscopic properties upon cryoprotection.

    PubMed

    von Stetten, David; Batot, Gaëlle O; Noirclerc-Savoye, Marjolaine; Royant, Antoine

    2012-11-01

    Cryoprotection of a protein crystal by addition of small-molecule compounds may sometimes affect the structure of its active site. The spectroscopic and structural effects of the two cryoprotectants glycerol and ethylene glycol on the cyan fluorescent protein Cerulean were investigated. While glycerol had almost no noticeable effect, ethylene glycol was shown to induce a systematic red shift of the UV-vis absorption and fluorescence emission spectra. Additionally, ethylene glycol molecules were shown to enter the core of the protein, with one of them binding in close vicinity to the chromophore, which provides a sound explanation for the observed spectroscopic changes. These results highlight the need to systematically record spectroscopic data on crystals of light-absorbing proteins and reinforce the notion that fluorescent proteins must not been seen as rigid structures.

  8. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  9. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  10. MAPPING THE DYNAMICS OF COLD GAS AROUND SGR A* THROUGH 21 cm ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Pierre; Loeb, Abraham, E-mail: pchristian@cfa.harvard.edu

    2015-11-20

    The presence of a circumnuclear stellar disk around Sgr A* and megamaser systems near other black holes indicates that dense neutral disks can be found in galactic nuclei. We show that depending on their inclination angle, optical depth, and spin temperature, these disks could be observed spectroscopically through 21 cm absorption. Related spectroscopic observations of Sgr A* can determine its HI disk parameters and the possible presence of gaps in the disk. Clumps of dense gas similar to the G2 could could also be detected in 21 cm absorption against Sgr A* radio emission.

  11. Highly specific spectroscopic photoacoustic molecular imaging of dynamic optical absorption shifts of an antibody-ICG contrast agent (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wilson, Katheryne E.; Bachawal, Sunitha; Abou-Elkacem, Lotfi; Jensen, Kristen C.; Machtaler, Steven; Tian, Lu; Willmann, Juergen K.

    2017-03-01

    Improved techniques for breast cancer screening are critically needed as current methods lack diagnostic accuracy. Using spectroscopic photoacoustic (sPA) molecular imaging with a priori knowledge of optical absorption spectra allows suppression of endogenous background signal, increasing the overall sensitivity and specificity of the modality to exogenous contrast agents. Here, sPA imaging was used to monitor antibody-indocyanine green (ICG) conjugates as they undergo optical absorption spectrum shifts after cellular endocytosis and degradation to allow differentiation between normal murine mammary glands from breast cancer by enhancing molecular imaging signal from target (B7-H3)-bound antibody-ICG. First, B7-H3 was shown to have highly specific (AUC of 0.93) expression on both vascular endothelium and tumor stroma in malignant lesions through quantitative immunohistochemical staining of B7-H3 on 279 human samples (normal (n=53), benign lesions (11 subtypes, n=182), breast cancers (4 subtypes, n=97)), making B7-H3 a promising target for sPA imaging. Second, absorption spectra of intracellular and degraded B7-H3-ICG and Isotype control (Iso-ICG) were characterized through in vitro and in vivo experiments. Finally, a transgenic murine breast cancer model (FVB/N-Tg(MMTVPyMT)634Mul) was imaged, and sPA imaging in found a 3.01 (IQR 2.63, 3.38, P<0.001) fold increase in molecular B7-H3-ICG signal in tumors (n=80) compared to control conditions (B7-H3-ICG in tumor negative animals (n=60), Iso-ICG (n=30), blocking B7-H3+B7-H3-ICG (n=20), and free ICG (n=20)) despite significant tumor accumulation of Iso-ICG, confirmed through ex vivo histology. Overall, leveraging anti-B7-H3 antibody-ICG contrast agents, which have dynamic optical absorption spectra representative of molecular interactions, allows for highly specific sPA imaging of murine breast cancer.

  12. Spectroscopic remote sensing for material identification, vegetation characterization, and mapping

    USGS Publications Warehouse

    Kokaly, Raymond F.; Lewis, Paul E.; Shen, Sylvia S.

    2012-01-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.

  13. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    PubMed Central

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503

  14. Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, H.A.; Bautista, J.A.; Josue, J.

    2000-05-11

    The spectroscopic properties and dynamics of the lowest excited singlet states of peridinin, fucoxanthin, neoxanthin, uriolide acetate, spheroidene, and spheroidenone in several different solvents have been studied by steady-state absorption and fast-transient optical spectroscopic techniques. Peridinin, fucoxanthin, uriolide acetate, and spheroidenone, which contain carbonyl functional groups in conjugation with the carbon-carbon {pi}-electron system, display broader absorption spectral features and are affected more by the solvent environment than neoxanthin and spheroidene, which do not contain carbonyl functional groups. The possible sources of the spectral broadening are explored by examining the absorption spectra at 77 K in glassy solvents. Also, carotenoids whichmore » contain carbonyls have complex transient absorption spectra and show a pronounced dependence of the excited singlet state lifetime on the solvent environment. It is postulated that these effects are related to the presence of an intramolecular charge transfer state strongly coupled to the S{sub 1} (2{sup 1}A{sub g}) excited singlet state. Structural variations in the series of carotenoids studied here make it possible to focus on the general molecular features that control the spectroscopic and dynamic properties of carotenoids.« less

  15. Spectroscopic properties of some borate glasses containg uranium

    NASA Astrophysics Data System (ADS)

    Culea, E.; Milea, I.; Bratu, I.

    1993-03-01

    Spectroscopic properties of some borate glasses containing 1-5%UO 3 have been studied in the fields of 700-1200 cm -1 and 10,000-30,000 cm -1 Absorption bands specific for U 6+ and U 4+ ions were observed. The increase of the melting time produces the reduction of U 6+ ions to U 4+.

  16. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  17. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    NASA Astrophysics Data System (ADS)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and

  18. Spectroscopic and photochemical properties of open-chain carotenoids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, H. A.; Josue, J. S.; Bautista, J. A.

    2002-02-28

    The spectroscopic properties of open-chain, all-trans-C{sub 30} carotenoids having seven, eight and nine {pi}-electron conjugated carbon-carbon double bonds were studied using steady-state absorption, fluorescence, fluorescence excitation and time-resolved absorption spectroscopy. These diapocarotenes were purified by high performance liquid chromatography (HPLC) prior to the spectroscopic experiments. The fluorescence data show a systematic crossover from dominant S{sub 1} {yields} S{sub 0} (2{sup 1}Ag{yields} 1{sup 1}Ag) emission to dominant S{sub 2} {yields} S{sub 0} (1{sup 1}Bu {yields} 1{sup 1}Ag) with increasing extent of conjugation. The low temperatures facilitated the determination of the spectral origins of the S{sub 1} {yields} S{sub 0} (2{sup 1}Agmore » {yields} 1{sup 1}Ag) emissions, which were assigned by Gaussian deconvolution of the experimental line shapes. The lifetimes of the S{sub 1} states of the molecules were measured by transient absorption spectroscopy and were found to decrease as the conjugated chain length increases. The energy gap law for radiationless transitions is used to correlate the S{sub 1} energies with the dynamics. These molecules provide a systematic series for understanding the structural features that control the photochemical properties of open-chain, diapocarotenoids. The implications of these results on the roles of carotenoids in photosynthetic organisms are discussed.« less

  19. Terahertz spectroscopic analysis of crystal orientation in polymers

    NASA Astrophysics Data System (ADS)

    Azeyanagi, Chisato; Kaneko, Takuya; Ohki, Yoshimichi

    2018-05-01

    Terahertz time-domain spectroscopy (THz-TDS) is attracting keen attention as a new spectroscopic tool for characterizing various materials. In this research, the possibility of analyzing the crystal orientation in a crystalline polymer by THz-TDS is investigated by measuring angle-resolved THz absorption spectra for sheets of poly(ethylene terephthalate), poly(ethylene naphthalate), and poly(phenylene sulfide). The resultant angle dependence of the absorption intensity of each polymer is similar to that of the crystal orientation examined using pole figures of X-ray diffraction. More specifically, THz-TDS can indicate the alignment of molecules in polymers.

  20. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  1. Spectroscopic temperature measurements in interior ballistic environments

    NASA Astrophysics Data System (ADS)

    Klingenberg, G.; Mach, H.

    1984-11-01

    Spectroscopic temperature measurements during the interior ballistic cycle of a 20 mm test fixture gun and inside the muzzle flash of a 7.62 mm rifle are described. The investigation yields information on temperature distribution in the burning propellant charge of the 20 mm test fixture and on radial temperature profiles in the 7.62 mm muzzle flash region. A technique to obtain temperature during the ignition and combustion within the 20 mm propellant charge is presented. Additional in-bore measurements by quartz windows mounted into bores along the barrel and emission-absorption measurements inside the muzzle flash of the 20 mm test fixture yield a complete temperature profile for the gun system. Spectroscopic infrared measurements inside the muzzle flash of a 7.62 mm rifle complete the investigation.

  2. Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses.

    PubMed

    Merroun, Mohamed L; Nedelkova, Marta; Ojeda, Jesus J; Reitz, Thomas; Fernández, Margarita López; Arias, José M; Romero-González, María; Selenska-Pobell, Sonja

    2011-12-15

    This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Spectroscopic Confirmation of Five Galaxy Clusters at z > 1.25 in the 2500 deg^2 SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Khullar, Gourav; Bleem, Lindsey; Bayliss, Matthew; Gladders, Michael; South Pole Telescope (SPT) Collaboration

    2018-06-01

    We present spectroscopic confirmation of 5 galaxy clusters at 1.25 < z < 1.5, discovered in the 2500 deg2 South Pole Telescope Sunyaev-Zel’dovich (SPT-SZ) survey. These clusters, taken from a nearly redshift-independent mass-limited sample of clusters, have multi-wavelength follow-up imaging data from the X-ray to the near-IR, and currently form the most homogenous massive high-redshift cluster sample in existence. We briefly describe the analysis pipeline used on the low S/N spectra of these faint galaxies, and describing the multiple techniques used to extract robust redshifts from a combination of absorption-line (Ca II H&K doublet - λλ3934,3968Å) and emission-line ([OII] λλ3727,3729Å) spectral features. We present several ensemble analyses of cluster member galaxies that demonstrate the reliability of the measured redshifts. We also identify modest [OII] emission and pronounced CN and Hδ absorption in a composite stacked spectrum of 28 low S/N passive galaxy spectra with redshifts derived primarily from Ca II H&K features. This work increases the number of spectroscopically-confirmed SPT-SZ galaxy clusters at z > 1.25 from 2 to 7, further demonstrating the efficacy of SZ selection for the highest redshift massive clusters, and enabling further detailed study of these confirmed systems.

  4. Galaxy And Mass Assembly (GAMA): spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Hopkins, A. M.; Driver, S. P.; Brough, S.; Owers, M. S.; Bauer, A. E.; Gunawardhana, M. L. P.; Cluver, M. E.; Colless, M.; Foster, C.; Lara-López, M. A.; Roseboom, I.; Sharp, R.; Steele, O.; Thomas, D.; Baldry, I. K.; Brown, M. J. I.; Liske, J.; Norberg, P.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Drinkwater, M. J.; Loveday, J.; Meyer, M.; Peacock, J. A.; Tuffs, R.; Agius, N.; Alpaslan, M.; Andrae, E.; Cameron, E.; Cole, S.; Ching, J. H. Y.; Christodoulou, L.; Conselice, C.; Croom, S.; Cross, N. J. G.; De Propris, R.; Delhaize, J.; Dunne, L.; Eales, S.; Ellis, S.; Frenk, C. S.; Graham, Alister W.; Grootes, M. W.; Häußler, B.; Heymans, C.; Hill, D.; Hoyle, B.; Hudson, M.; Jarvis, M.; Johansson, J.; Jones, D. H.; van Kampen, E.; Kelvin, L.; Kuijken, K.; López-Sánchez, Á.; Maddox, S.; Madore, B.; Maraston, C.; McNaught-Roberts, T.; Nichol, R. C.; Oliver, S.; Parkinson, H.; Penny, S.; Phillipps, S.; Pimbblet, K. A.; Ponman, T.; Popescu, C. C.; Prescott, M.; Proctor, R.; Sadler, E. M.; Sansom, A. E.; Seibert, M.; Staveley-Smith, L.; Sutherland, W.; Taylor, E.; Van Waerbeke, L.; Vázquez-Mata, J. A.; Warren, S.; Wijesinghe, D. B.; Wild, V.; Wilkins, S.

    2013-04-01

    The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ˜300 000 galaxies over 280 deg2, to a limiting magnitude of rpet < 19.8 mag. The target galaxies are distributed over 0 < z ≲ 0.5 with a median redshift of z ≈ 0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z = 1. The redshift accuracy ranges from σv ≈ 50 km s-1 to σv ≈ 100 km s-1 depending on the signal-to-noise ratio of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750 ≲ λ ≲ 8850 Å at a resolution of R ≈ 1300. The final flux calibration is typically accurate to 10-20 per cent, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterized through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [N II]/Hα versus [O III]/Hβ spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.

  5. Laser diode absorption spectroscopy for accurate CO(2) line parameters at 2 microm: consequences for space-based DIAL measurements and potential biases.

    PubMed

    Joly, Lilian; Marnas, Fabien; Gibert, Fabien; Bruneau, Didier; Grouiez, Bruno; Flamant, Pierre H; Durry, Georges; Dumelie, Nicolas; Parvitte, Bertrand; Zéninari, Virginie

    2009-10-10

    Space-based active sensing of CO(2) concentration is a very promising technique for the derivation of CO(2) surface fluxes. There is a need for accurate spectroscopic parameters to enable accurate space-based measurements to address global climatic issues. New spectroscopic measurements using laser diode absorption spectroscopy are presented for the preselected R30 CO(2) absorption line ((20(0)1)(III)<--(000) band) and four others. The line strength, air-broadening halfwidth, and its temperature dependence have been investigated. The results exhibit significant improvement for the R30 CO(2) absorption line: 0.4% on the line strength, 0.15% on the air-broadening coefficient, and 0.45% on its temperature dependence. Analysis of potential biases of space-based DIAL CO(2) mixing ratio measurements associated to spectroscopic parameter uncertainties are presented.

  6. Spectroscopic method for determination of the absorption coefficient in brain tissue

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  7. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.

    PubMed

    Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi

    2017-04-01

    The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.

  8. Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae

    PubMed Central

    Penzkofer, Alfons; Scheib, Ulrike; Stehfest, Katja; Hegemann, Peter

    2017-01-01

    The rhodopsin-guanylyl cyclase from the nematophagous fungus Catenaria anguillulae belongs to a recently discovered class of enzymerhodopsins and may find application as a tool in optogenetics. Here the rhodopsin domain CaRh of the rhodopsin-guanylyl cyclase from Catenaria anguillulae was studied by absorption and emission spectroscopic methods. The absorption cross-section spectrum and excitation wavelength dependent fluorescence quantum distributions of CaRh samples were determined (first absorption band in the green spectral region). The thermal stability of CaRh was studied by long-time attenuation measurements at room temperature (20.5 °C) and refrigerator temperature of 3.5 °C. The apparent melting temperature of CaRh was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 62 ± 2 °C). The photocycle dynamics of CaRh was investigated by sample excitation to the first inhomogeneous absorption band of the CaRhda dark-adapted state around 590 nm (long-wavelength tail), 530 nm (central region) and 470 nm (short-wavelength tail) and following the absorption spectra development during exposure and after exposure (time resolution 0.0125 s). The original protonated retinal Schiff base PRSBall-trans in CaRhda photo-converted reversibly to protonated retinal Schiff base PRSBall-trans,la1 with restructured surroundings (CaRhla1 light-adapted state, slightly blue-shifted and broadened first absorption band, recovery to CaRhda with time constant of 0.8 s) and deprotonated retinal Schiff base RSB13-cis (CaRhla2 light-adapted state, first absorption band in violet to near ultraviolet spectral region, recovery to CaRhda with time constant of 0.35 s). Long-time light exposure of light-adapted CaRhla1 around 590, 530 and 470 nm caused low-efficient irreversible degradation to photoproducts CaRhprod. Schemes of the primary photocycle dynamics of CaRhda and the secondary photocycle dynamics of CaRhla1 are developed. PMID:28981475

  9. Absorption and emission spectroscopic characterization of BLUF protein Slr1694 from Synechocystis sp. PCC6803 with roseoflavin cofactor.

    PubMed

    Zirak, P; Penzkofer, A; Mathes, T; Hegemann, P

    2009-11-09

    The wild-type BLUF protein Slr1694 from Synechocystis sp. PCC6803 (BLUF=blue-light sensor using FAD) has flavin adenosine dinucleotide (FAD) as natural cofactor. This light sensor causes positive phototaxis of the marine cyanobacterium. In this study the FAD cofactor of the wild-type Slr1694 was replaced by roseoflavin (RoF) and the roseoflavin derivatives RoFMN and RoFAD during heterologous expression in a riboflavin auxotrophic E. coli strain. An absorption and emission spectroscopic characterization of the cofactor-exchanged-Slr1694 (RoSlr) was carried out both under dark conditions and under illuminated conditions. The behaviour of RoF embedded in RoSlr in aqueous solution at pH 8 is compared with the behaviour of RoF in aqueous solution. The fluorescence of RoF and RoSlr is quenched by photo-induced twisted intra-molecular charge transfer at room temperature with stronger effect for RoF. The fluorescence quenching is diminished at liquid nitrogen temperature. Light exposure of RoSlr causes irreversible conversion of the protein embedded roseoflavins to 8-methylamino-flavins, 8-dimethylamino-lumichrome and 8-methylamino-lumichrome.

  10. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates.

    PubMed

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-03-27

    Fe III -hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme Fe III -hypohalite intermediates of possible relevance to iron halogenases. We show that Fe III -OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the Fe III -OCl, and ultimately Fe IV =O, species and provide indirect evidence for a short-lived Fe II -OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases.

  11. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**

    PubMed Central

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-01-01

    FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379

  12. The Data-Driven Approach to Spectroscopic Analyses

    NASA Astrophysics Data System (ADS)

    Ness, M.

    2018-01-01

    I review the data-driven approach to spectroscopy, The Cannon, which is a method for deriving fundamental diagnostics of galaxy formation of precise chemical compositions and stellar ages, across many stellar surveys that are mapping the Milky Way. With The Cannon, the abundances and stellar parameters from the multitude of stellar surveys can be placed directly on the same scale, using stars in common between the surveys. Furthermore, the information that resides in the data can be fully extracted, this has resulted in higher precision stellar parameters and abundances being delivered from spectroscopic data and has opened up new avenues in galactic archeology, for example, in the determination of ages for red giant stars across the Galactic disk. Coupled with Gaia distances, proper motions, and derived orbit families, the stellar age and individual abundance information delivered at the precision obtained with the data-driven approach provides very strong constraints on the evolution of and birthplace of stars in the Milky Way. I will review the role of data-driven spectroscopy as we enter the era where we have both the data and the tools to build the ultimate conglomerate of galactic information as well as highlight further applications of data-driven models in the coming decade.

  13. Spectroscopic Methods of Remote Sensing for Vegetation Characterization

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.

    2013-12-01

    Imaging spectroscopy (IS), often referred to as hyperspectral remote sensing, is one of the latest innovations in a very long history of spectroscopy. Spectroscopic methods have been used for understanding the composition of the world around us, as well as, the solar system and distant parts of the universe. Continuous sampling of the electromagnetic spectrum in narrow bands is what separates IS from previous forms of remote sensing. Terrestrial imaging spectrometers often have hundreds of channels that cover the wavelength range of reflected solar radiation, including the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions. In part due to the large number of channels, a wide variety of methods have been applied to extract information from IS data sets. These can be grouped into several broad classes, including: multi-channel indices, statistical procedures, full spectrum mixing models, and spectroscopic methods. Spectroscopic methods carry on the more than 150 year history of laboratory-based spectroscopy applied to material identification and characterization. Spectroscopic methods of IS relate the positions and shapes of spectral features resolved by airborne and spaceborne sensors to the biochemical and physical composition of vegetation in a pixel. The chlorophyll 680nm, water 980nm, water 1200nm, SWIR 1700nm, SWIR 2100nm, and SWIR 2300nm features have been the subject of study. Spectral feature analysis (SFA) involves isolating such an absorption feature using continuum removal (CR) and calculating descriptors of the feature, such as center position, depth, width, area, and asymmetry. SFA has been applied to quantify pigment and non-pigment biochemical concentrations in leaves, plants, and canopies. Spectral feature comparison (SFC) utilizes CR of features in each pixel's spectrum and linear regression with continuum-removed features in reference spectra in a library of known vegetation types to map vegetation species and communities. SFC has

  14. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  15. Photometric and Spectroscopic Observations of GRB 140629A

    NASA Astrophysics Data System (ADS)

    Xin, Li-Ping; Zhong, Shu-Qing; Liang, En-Wei; Wang, Jing; Liu, Hao; Zhang, Tian-Meng; Huang, Xiao-Li; Li, Hua-Li; Qiu, Yu-Lei; Han, Xu-Hui; Wei, Jian-Yan

    2018-06-01

    We present our optical photometric and spectroscopical observations of GRB 140629A. A redshift of z = 2.275 ±0.043 is measured through the metal absorption lines in our spectroscopic data. Using our photometric data and multiple observational data from other telescopes, we show that its optical light curve is well interpreted with the standard forward shock models in the thin shell case. Its optical–X-ray afterglow spectrum is jointly fitted with a single power-law function, yielding a photon index of ‑1.90 ± 0.05. The optical extinction and neutral hydrogen absorption of the gamma-ray burst (GRB) host galaxy are negligible. The fit to the light curve with the standard models shows that the ambient density is 60 ± 9 cm‑3 and the GRB radiating efficiency is as low as ∼0.24%, likely indicating a baryonic-dominated ejecta of this GRB. This burst agrees well with the {L}{{p},{iso}}{--}{E}p{\\prime }{--}{{{Γ }}}0 relation, but confidently violates those empirical relations involving geometric corrections (or jet break time). This gives rise to an issue of the possible selection effect on these relations since the jet opening angle of this GRB is extremely narrow (0.04 rad).

  16. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration

    USGS Publications Warehouse

    Kokaly, R.F.

    2001-01-01

    The reflectance spectra of dried and ground plant foliage are examined for changes directly due to increasing nitrogen concentration. A broadening of the 2.1-??m absorption feature is observed as nitrogen concentration increases. The broadening is shown to arise from two absorptions at 2.054 ??m and 2.172 ??m. The wavelength positions of these absorptions coincide with the absorption characteristics of the nitrogen-containing amide bonds in proteins. The observed presence of these absorption features in the reflectance spectra of dried foliage is suggested to form a physical basis for high correlations established by stepwise multiple linear regression techniques between the reflectance of dry plant samples and their nitrogen concentration. The consistent change in the 2.1-??m absorption feature as nitrogen increases and the offset position of protein absorptions compared to those of other plant components together indicate that a generally applicable algorithm may be developed for spectroscopic estimates of nitrogen concentration from the reflectance spectra of dried plant foliage samples. ?? 2001 Published by Elsevier Science Ireland Ltd.

  17. The variability of the BRITE-est Wolf-Rayet binary, γ2 Velorum-I. Photometric and spectroscopic evidence for colliding winds

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Russell, Christopher M. P.; St-Jean, Lucas; Moffat, Anthony F. J.; St-Louis, Nicole; Shenar, Tomer; Pablo, Herbert; Hill, Grant M.; Ramiaramanantsoa, Tahina; Corcoran, Michael; Hamuguchi, Kenji; Eversberg, Thomas; Miszalski, Brent; Chené, André-Nicolas; Waldron, Wayne; Kotze, Enrico J.; Kotze, Marissa M.; Luckas, Paul; Cacella, Paulo; Heathcote, Bernard; Powles, Jonathan; Bohlsen, Terry; Locke, Malcolm; Handler, Gerald; Kuschnig, Rainer; Pigulski, Andrzej; Popowicz, Adam; Wade, Gregg A.; Weiss, Werner W.

    2017-11-01

    We report on the first multi-colour precision light curve of the bright Wolf-Rayet binary γ2 Velorum, obtained over six months with the nanosatellites in the BRITE-Constellation fleet. In parallel, we obtained 488 high-resolution optical spectra of the system. In this first report on the data sets, we revise the spectroscopic orbit and report on the bulk properties of the colliding winds. We find a dependence of both the light curve and excess emission properties that scales with the inverse of the binary separation. When analysing the spectroscopic properties in combination with the photometry, we find that the phase dependence is caused only by excess emission in the lines, and not from a changing continuum. We also detect a narrow, high-velocity absorption component from the He I λ5876 transition, which appears twice in the orbit. We calculate smoothed-particle hydrodynamical simulations of the colliding winds and can accurately associate the absorption from He I to the leading and trailing arms of the wind shock cone passing tangentially through our line of sight. The simulations also explain the general strength and kinematics of the emission excess observed in wind lines such as C III λ5696 of the system. These results represent the first in a series of investigations into the winds and properties of γ2 Velorum through multi-technique and multi-wavelength observational campaigns.

  18. Spectroscopic Classification of DLT18w/AT2018bko with SOAR

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Foley, R. J.

    2018-05-01

    < p > We report the classification of DLT18w/AT2018bko (ATel #11638) from spectroscopic observation performed on 2018 May 13 UT with the Goodman spectrograph on the Southern Astrophysical Research (SOAR) telescope. The spectrum appears to be blue and shows Balmer absorption lines at z=0, indicating that the transient is Galactic.

  19. Absorption and resonance Raman characteristics of β-carotene in water-ethanol mixtures, emulsion and hydrogel

    NASA Astrophysics Data System (ADS)

    Meinhardt-Wollweber, Merve; Suhr, Christian; Kniggendorf, Ann-Kathrin; Roth, Bernhard

    2018-05-01

    Absorption or resonance Raman scattering are often used to identify and even quantify carotenoids in situ. We studied the absorption spectra, the Raman spectra and their resonance behavior of β-carotene in different molecular environments set up as mixtures from lipid (emulsion) and non-polar (ethanol) solvents and a polar component (water) with regard to their application as references for in situ measurement. We show how both absorption profiles and resonance spectra of β-carotene strongly depend on the molecular environment. Most notably, our data suggests that the characteristic bathochromic absorption peak of J-aggregates does not contribute to carotenoid resonance conditions, and show how the Raman shift of the C=C stretching mode is dependent on both, the molecular environment and the excitation wavelength. Overall, the spectroscopic data collected here is highly relevant for the interpretation of in situ spectroscopic data in terms of carotenoid identification and quantification by resonance Raman spectroscopy as well as the preparation of reference samples. In particular, our data promotes careful consideration of appropriate molecular environment for reference samples.

  20. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1991-01-01

    One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approx. 10 meter/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this study was to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight were made in the near infrared (approx. 2 micron), using the Kitt Peak McMath Fourier transform spectrometer, with a N2O gas absorption cell for calibration. An accuracy of approx. 5 meter/sec was achieved.

  1. MALS–NOT: Identifying Radio-bright Quasars for the MeerKAT Absorption Line Survey

    NASA Astrophysics Data System (ADS)

    Krogager, J.-K.; Gupta, N.; Noterdaeme, P.; Ranjan, A.; Fynbo, J. P. U.; Srianand, R.; Petitjean, P.; Combes, F.; Mahabal, A.

    2018-03-01

    We present a preparatory spectroscopic survey to identify radio-bright, high-redshift quasars for the MeerKAT Absorption Line Survey. The candidates have been selected on the basis of a single flux density limit at 1.4 GHz (>200 mJy), together with mid-infrared color criteria from the Wide-field Infrared Survey Explorer. Through spectroscopic observations using the Nordic Optical Telescope, we identify 72 quasars out of 99 candidates targeted. We measure the spectroscopic redshifts based on characteristic, broad emission lines present in the spectra. Of these 72 quasars, 64 and 48 objects are at sufficiently high redshift (z > 0.6 and z > 1.4) to be used for the L-band and UHF-band spectroscopic follow-up with the Square Kilometre Array precursor in South Africa: the MeerKAT.

  2. Spectroscopic, microchemical and petrographic analyses of plasters from ancient buildings in Lamezia Terme (Calabria, Southern Italy)

    NASA Astrophysics Data System (ADS)

    De Luca, Raffaella; Gigliotti, Valentina; Panarello, Mario; Bloise, Andrea; Crisci, Gino M.; Miriello, Domenico

    2016-01-01

    This work shows the results of the spectroscopic, microchemical and petrographic study carried out on six plasters coming from three important residential buildings of the 18th century, located in Lamezia Terme (Catanzaro, Southern Italy). To study the provenance of the raw materials used to make the plasters, one sample of limestone and two samples of sand were also collected from the quarries near Lamezia Terme and compared with the historical plasters. Samples were studied by polarized optical microscopy (OM), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy. The results of these analyses allowed to determine the mineralogical, petrographical and chemical characteristics of the plasters, identify the pigments used for their coloration and provide useful information about the building techniques, the raw materials employed and the production technology of plasters during the 18th century in Lamezia Terme. SEM-EDS microanalysis also revealed the presence of gold and silver on the surface of two samples.

  3. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  4. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    NASA Astrophysics Data System (ADS)

    Behm, P.; Hashemi, M.; Hoppe, S.; Wessel, S.; Hagens, R.; Jaspers, S.; Wenck, H.; Rübhausen, M.

    2017-11-01

    We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  5. Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra.

    PubMed

    Czerski, J; Colomb, W; Cannataro, F; Sarkar, S K

    2018-01-25

    The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics. Photoluminescence excitation spectra, where excitation is varied and emission is detected at a fixed wavelength, allows hyperspectral imaging with a single emission filter for high signal-to-background ratio without any moving optics on the emission side. We report a high throughput method for measuring the photoluminescence excitation spectra of individual fluorophores using a tunable supercontinuum laser and prism-type total internal reflection fluorescence microscope. We used the system to measure and sort the photoluminescence excitation spectra of individual Alexa dyes, fluorescent nanodiamonds (FNDs), and fluorescent polystyrene beads. We used a Gaussian mixture model with maximum likelihood estimation to objectively separate the spectra. Finally, we spectroscopically identified different species of fluorescent nanodiamonds with overlapping spectra and characterized the heterogeneity of fluorescent nanodiamonds of varying size. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  6. Absorption spectroscopic studies of Np(IV) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, D. T.

    2004-01-01

    The complexation of neptunium (IV) with selected inorganic and organic ligands was studied as part of an investigation to establish key subsurface interactions between neptunium and biological systems. The prevalence of reducing environments in most subsurface migation scenarios, which are in many cases induced by biological activity, has increased the role and importance of Np(IV) as a key subsurface neptunium oxidation state. The biodegradation of larger organics that often coexist with actinides in the subsurface leads to the formation of many organic acids as transient products that, by complexation, play a key role in defining the fate and speciation ofmore » neptunium in biologically active systems. These often compete with inorganic complexes e.g. hydrolysis and phosphate. Herein we report the results of a series of complexation studies based on new band formation of the characteristic 960 nm band for Np(IV). Formation constants for Np(IV) complexes with phosphate, hydrolysis, succinate, acetohydroxamic acid, and acetate were determined. These results show the 960 nm absorption band to be very amenable to these types of complexation studies.« less

  7. Spectroscopic abundance analyses of the 3He stars HD 185330 and 3 Cen A

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Nishimura, Masayoshi

    2018-04-01

    Abundances of 21 elements in two 3He stars, HD 185330 and 3 Cen A, have been analysed relative to the well-studied sharp-lined B3 V star ι Her. Six elements (P, Ti, Mn, Fe, Ni, and Br) are over-abundant in these two peculiar stars, while six elements (C, O, Mg, Al, S, and Cl) are under-abundant. Absorption lines of the two rarely observed heavy elements Br II and Kr II are detected in both stars and these elements are both over-abundant. The centroid wavelengths of the Ca II infrared triplet lines in these stars are redshifted relative to those lines in ι Her and the presence of heavy isotopes of Ca (mass number 44-46) in these two stars is confirmed. In spite of these similarities, there are several remarkable differences in abundance pattern between these two stars. N is under-abundant in HD 185330, as in many Hg-Mn stars, while it is significantly over-abundant in 3 Cen A. P and Ga are both over-abundant in 3 Cen A, while only P is over-abundant and no trace of absorption line of Ga II can be found in HD 185330. Large over-abundances of Kr and Xe are found in both stars, while the abundance ratio Kr/Xe is significantly different between them (-1.4 dex in HD 185330 and +1.2 dex in 3 Cen A). Some physical explanations are needed to account for these qualitative differences.

  8. Spectroscopic abundance analyses of the 3He stars HD 185330 and 3 Cen A

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Nishimura, Masayoshi

    2018-06-01

    Abundances of 21 elements in two 3He stars, HD 185330 and 3 Cen A, have been analysed relative to the well-studied sharp-lined B3 V star ι Her. Six elements (P, Ti, Mn, Fe, Ni, and Br) are over-abundant in these two peculiar stars, while six elements (C, O, Mg, Al, S, and Cl) are under-abundant. Absorption lines of the two rarely observed heavy elements Br II and Kr II are detected in both stars and these elements are both over-abundant. The centroid wavelengths of the Ca II infrared triplet lines in these stars are redshifted relative to those lines in ι Her and the presence of heavy isotopes of Ca (mass number 44-46) in these two stars is confirmed. In spite of these similarities, there are several remarkable differences in abundance pattern between these two stars. N is under-abundant in HD 185330, as in many Hg-Mn stars, while it is significantly over-abundant in 3 Cen A. P and Ga are both over-abundant in 3 Cen A, while only P is over-abundant and no trace of absorption line of Ga II can be found in HD 185330. Large over-abundances of Kr and Xe are found in both stars, while the abundance ratio Kr/Xe is significantly different between them (-1.4 dex in HD 185330 and +1.2 dex in 3 Cen A). Some physical explanations are needed to account for these qualitative differences.

  9. Spectroscopic determination of anthraquinone in kraft pulping liquors using a membrane interface

    Treesearch

    X.S. Chai; X.T. Yang; Q.X. Hou; J.Y. Zhu; L.-G. Danielsson

    2003-01-01

    A spectroscopic technique for determining AQ in pulping liquor was developed to effectively separate AQ from dissolved lignin. This technique is based on a flow analysis system with a Nafion membrane interface. The AQ passed through the membrane is converted into its reduced form, AHQ, using sodium hydrosulfite. AHQ has distinguished absorption characteristics in the...

  10. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    PubMed

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.

  11. Combined Quantum Chemical/Raman Spectroscopic Analyses of Li+ Cation Solvation: Cyclic Carbonate Solvents - Ethylene Carbonate and Propylene Earbonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Joshua L.; Borodin, Oleg; Seo, D. M.

    2014-12-01

    Combined computational/Raman spectroscopic analyses of ethylene carbonate (EC) and propylene carbonate (PC) solvation interactions with lithium salts are reported. It is proposed that previously reported Raman analyses of (EC)n-LiX mixtures have utilized faulty assumptions. In the present studies, density functional theory (DFT) calculations have provided corrections in terms of both the scaling factors for the solvent's Raman band intensity variations and information about band overlap. By accounting for these factors, the solvation numbers obtained from two different EC solvent bands are in excellent agreement with one another. The same analysis for PC, however, was found to be quite challenging. Commerciallymore » available PC is a racemic mixture of (S)- and (R)-PC isomers. Based upon the quantum chemistry calculations, each of these solvent isomers may exist as multiple conformers due to a low energy barrier for ring inversion, making deconvolution of the Raman bands daunting and inherently prone to significant error. Thus, Raman spectroscopy is able to accurately determine the extent of the EC...Li+ cation solvation interactions using the provided methodology, but a similar analysis of PC...Li+ cation solvation results in a significant underestimation of the actual solvation numbers.« less

  12. Novel Semi-Parametric Algorithm for Interference-Immune Tunable Absorption Spectroscopy Gas Sensing

    PubMed Central

    Michelucci, Umberto; Venturini, Francesca

    2017-01-01

    One of the most common limits to gas sensor performance is the presence of unwanted interference fringes arising, for example, from multiple reflections between surfaces in the optical path. Additionally, since the amplitude and the frequency of these interferences depend on the distance and alignment of the optical elements, they are affected by temperature changes and mechanical disturbances, giving rise to a drift of the signal. In this work, we present a novel semi-parametric algorithm that allows the extraction of a signal, like the spectroscopic absorption line of a gas molecule, from a background containing arbitrary disturbances, without having to make any assumption on the functional form of these disturbances. The algorithm is applied first to simulated data and then to oxygen absorption measurements in the presence of strong fringes.To the best of the authors’ knowledge, the algorithm enables an unprecedented accuracy particularly if the fringes have a free spectral range and amplitude comparable to those of the signal to be detected. The described method presents the advantage of being based purely on post processing, and to be of extremely straightforward implementation if the functional form of the Fourier transform of the signal is known. Therefore, it has the potential to enable interference-immune absorption spectroscopy. Finally, its relevance goes beyond absorption spectroscopy for gas sensing, since it can be applied to any kind of spectroscopic data. PMID:28991161

  13. Continuous measurements of nitrous oxide, carbon monoxide, methane and carbon dioxide in the surface ocean with novel laser-absorption analysers

    NASA Astrophysics Data System (ADS)

    Kaiser, Jan; Grefe, Imke; Wager, Natalie; Bakker, Dorothee C. E.; Lee, Gareth A.

    2013-04-01

    In recent years, improvements in spectroscopic technology have revolutionised atmospheric trace gas research. In particular, cavity-based optical absorption analysers allow determination of gas concentrations with high frequency, repeatability, reproducibility and long-term stability. These qualities make them particularly suitable for autonomous measurements on voluntary observing ships (VOS). Here, we present results from three of the first deployments of such analysers on research ships, as a first step towards VOS installations. Los Gatos off-axis ICOS (Integrated Cavity Output Spectroscopy) analysers were used to measure nitrous oxide (N2O), carbon monoxide (CO), methane (CH4) and carbon dioxide (CO2) mixing ratios in ocean surface water during research cruises in 2010, 2011 and 2012. The analysers were coupled to an equilibrator fed by the scientific seawater supply in the ship's laboratories. The equilibrator measurements were alternated with regular measurements of marine air and calibrated standard gases. Short-term precision for 10 s-average N2O mole fractions at an acquisition rate of 1 Hz was better than 0.2 nmol mol-1. The same value was achieved for duplicate measurements of a standard gas analysed within 1 hour of each other. The response time to concentration changes in water was 142-203 s, depending on the headspace flow rate. During the first deployment on the AMT20 cruise (Atlantic Meridional Transect, Southampton to Punta Arenas, 12 October to 25 November 2010), we unexpectedly found the subtropical gyres to be slightly undersaturated in N2O, implying that this region acted as a sink for this greenhouse gas. In contrast, the equatorial region was supersaturated and a source of nitrous oxide to the atmosphere. Mean sea-to-air fluxes were overall small and ranged between -1.6 and 0.11 μmol m-2 d-1 (negative fluxes imply an net uptake by the ocean). Despite the good short-term repeatability, significant calibration drift occurred between the six

  14. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ˜700 and ˜1400 km s-1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ˜700 km s-1 has a density in the range of 109 to 1010 cm-3 and a distance of ˜1 pc, and the gas with blueshift velocity of ˜1400 km s-1 has a density of 103 cm-3 and a distance of ˜1 kpc.

  15. INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Ting; Stocke, John T.; Darling, Jeremy

    2016-03-15

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5more » and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is

  16. Structural study of aggregated β-carotene by absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Li Ping; Wei, Liang Shu

    2017-10-01

    By UV-visible absorption spectroscope, the aggregated β-carotene in hydrated ethanol was studied in the temperature range of 5 55°C, with different ethanol/water ratio. And the structural evolutions of these aggregates with time were detected. The spectrophotometric analysis showed that the aggregate of β-carotene formed in 1:1 ethanol/water solution transfered from H-type to J-type with temperature increase. In 2:1 ethanol/water solution a new type of aggregate with strong coupling was predicated by the appearing absorption peak located at about 550 nm. In the time scales of 48 houses all the aggregated structures were stable, but the absorption intensity decreased with time. It was concluded that the types of aggregated β-carotene which wouldn't change with time depended on the solvent composition and temperature.

  17. Synthesis, spectroscopic, thermal and antimicrobial investigations of charge-transfer complexes formed from the drug procaine hydrochloride with quinol, picric acid and TCNQ

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.

    2012-12-01

    Intermolecular charge-transfer or proton-transfer complexes between the drug procaine hydrochloride (PC-HCl) as a donor and quinol (QL), picric acid (PA) or 7,7',8,8'-tetracyanoquinodimethane (TCNQ) as a π-acceptor have been synthesized and spectroscopically studied in methanol at room temperature. Based on elemental analyses and photometric titrations, the stoichiometry of the complexes (donor:acceptor molar ratios) was determined to be 1:1 for all three complexes. The formation constant (KCT), molar extinction coefficient (ɛCT) and other spectroscopic data have been determined using the Benesi-Hildebrand method and its modifications. The newly synthesized CT complexes have been characterized via elemental analysis, IR, Raman, 1H NMR, and electronic absorption spectroscopy. The morphological features of these complexes were investigated using scanning electron microscopy (SEM), and the sharp, well-defined Bragg reflections at specific 2θ angles have been identified from the powder X-ray diffraction patterns. Thermogravimetric analyses (TGAs) and kinetic thermodynamic parameters were also used to investigate the thermal stability of the synthesized solid CT complexes. Finally, the CT complexes were screened for their antibacterial and antifungal activities against various bacterial and fungal strains, and only the complex obtained using picric acid exhibited moderate antibacterial activity against all of the tested strains.

  18. First Spectroscopic Identification of Massive Young Stellar Objects in the Galactic Center

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C.; Schultheis, Mathias; Stolovy, Susan R.; Cotera, Angela S.; Robitaille, Thomas P.; Smith, Howard A.

    2009-01-01

    We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.

  19. Tunable diode-laser absorption measurements of methane at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Nagali, V.; Chou, S. I.; Baer, D. S.; Hanson, R. K.; Segall, J.

    1996-07-01

    A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2 nu 3 band near 1.646 mu m, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH 4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.

  20. Theoretical modeling of the absorption spectrum of aqueous riboflavin

    NASA Astrophysics Data System (ADS)

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea

    2017-02-01

    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.

  1. Are your spectroscopic data being used?

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli E.; Potterbusch, Megan R.; Bouquin, Daina; Erdmann, Christopher C.; Wilzewski, Jonas S.; Rothman, Laurence S.

    2016-09-01

    The issue of availability of data and their presentation in spectroscopic publications is discussed. Different current practices are critically reviewed from the point of view of potential users, government policies, and merit of success of the authors. Indeed, properly providing the data benefits not only users but also the authors of the spectroscopic research. We will show that this increases citations to the spectroscopy papers and visibility of the research groups. Examples based on the statistical analyses of the articles published in the Journal of Molecular Spectroscopy will be shown. We will discuss different methods including supplementary materials to the Journals, public-curated databases and also new tools that can be utilized by spectroscopists.

  2. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  3. Spectroscopic observations of spatial and temporal variations on Venus

    NASA Technical Reports Server (NTRS)

    Young, A. T.; Young, L. G.; Woszczyk, A.

    1974-01-01

    Details of the Table Mountain spectroscopic patrol of Venus in September-October 1972 are given. The data indicate systematic variation over the disc, with more CO2 absorption near the terminator than at the limb, and slightly more in the southern than in the northern hemisphere. The semiregular four-day variation, reported to occur simultaneously over the disk at 8689 A by Young et al. (1973), is confirmed by observations of the 7820 A and 7883 A CO2 bands.

  4. Spectroscopic properties of Sm3+ doped sodium-tellurite glasses: Judd-Ofelt analysis

    NASA Astrophysics Data System (ADS)

    Mawlud, Saman Q.; Ameen, Mudhafar M.; Sahar, Md. Rahim; Mahraz, Zahra Ashur Said; Ahmed, Kasim F.

    2017-07-01

    Modifying the optical response of rare earth doped inorganic glasses for diverse optical applications is the current challenge in materials science and technology. We report the enhancement of the visible emissions of the Sm3+ ions doped sodium-tellurite (TNS) glasses. The impacts of varying Sm3+ ions concentration on the spectroscopic properties of such glass samples are evaluated. Synthesized glass samples are characterized via emission and absorption measurements. The UV-Vis-NIR absorption spectra revealed nine absorption peaks which are assigned to the transitions from the ground level (6H5/2) to 6P3/2, 4I11/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2 and 6F1/2 excited energy levels of Sm3+ ions. Emission spectra of the prepared glass under 404 nm excitation wavelength consisted of four bands centered at 561 nm, 598 nm, 643 nm and 704 nm which are originated from 4G5/2→6HJ (J = 5/2, 7/2, 9/2 and 11/2) transitions. The experimental oscillator strengths, fexp are calculated from the area under absorption bands. Using Judd-Ofelt theory and fit process of least square, the phenomenological intensity parameters Ωλ (λ = 2, 4, 6) are obtained. In order to evaluate potential applications of Sm3+ ions in telluride glasses, the spectroscopic parameters: radiative transition probability AR, branching ratio BR, radiative life time τr and stimulated emission cross section σλ for each band are calculated. These glass compositions could be a potential candidate for lasers.

  5. Spectroscopic evidence for Davydov-like solitons in acetanilide

    NASA Astrophysics Data System (ADS)

    Careri, G.; Buontempo, U.; Galluzzi, F.; Scott, A. C.; Gratton, E.; Shyamsunder, E.

    1984-10-01

    Detailed measurements of infrared absorption and Raman scattering on crystalline acetanilide [(CH3CONHC6H5)x] at low temperature show a new band close to the conventional amide I band. Equilibrium properties and spectroscopic data rule out explanations based on a conventional assignment, crystal defects, Fermi resonance, and upon frozen kinetics between two different subsystems. Thus we cannot account for this band using the concepts of conventional molecular spectroscopy, but a soliton model, similar to that proposed by Davydov for α-helix in protein, is in satisfactory agreement with the experimental data.

  6. Spectroscopic characterization of the ethyl radical-water complex.

    PubMed

    Lin, Chen; Finney, Brian A; Laufer, Allan H; Anglada, Josep M; Francisco, Joseph S

    2016-10-14

    An ab initio investigation has been employed to determine the structural and spectroscopic parameters, such as rotational constants, vibrational frequencies, vertical excitation energies, and the stability of the ethyl-water complex. The ethyl-water complex has a binding energy of 1.15 kcal⋅mol -1 . The interaction takes place between the hydrogen of water and the unpaired electron of the radical. This interaction is found to produce a red shift in the OH stretching bands of water of ca. 84 cm -1 , and a shift of all UV absorption bands to higher energies.

  7. Analysing spectroscopically the propagation of a CME from its source on the disk to its impact as it propagates outwards

    NASA Astrophysics Data System (ADS)

    Harra, Louise K.; Doschek, G. A.; Matthews, Sarah A.; De Pontieu, Bart; Long, David

    We analyse a complex coronal mass ejection observed by Hinode, SDO and IRIS. SDO AIA shows that the eruption occurs between several active regions with flaring occurring in all of them. Hinode EIS observed one of the flaring active regions that shows a fast outwards propagation which is related to the CME lifting off. The eruption is then observed as it propagates away from the Sun, pushing the existing post-flare loops downwards as it goes. Spectroscopic observations are made during this time with IRIS measuring the impact that this CME front has as it pushes the loops downwards. Strong enhancements in the cool Mg II emission at these locations that show complex dynamics. We discuss these new observations in context of CME models.

  8. The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    NASA Astrophysics Data System (ADS)

    MacLeod, Chelsea L.; Green, Paul J.; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie; Nielsen Brandt, William; Badenes, Carles; Greene, Jenny; Morganson, Eric; Schmidt, Sarah J.; Schwope, Axel; Shen, Yue; Amaro, Rachael; Lebleu, Amy; Filiz Ak, Nurten; Grier, Catherine J.; Hoover, Daniel; McGraw, Sean M.; Dawson, Kyle; Hall, Patrick B.; Hawley, Suzanne L.; Mariappan, Vivek; Myers, Adam D.; Pâris, Isabelle; Schneider, Donald P.; Stassun, Keivan G.; Bershady, Matthew A.; Blanton, Michael R.; Seo, Hee-Jong; Tinker, Jeremy; Fernández-Trincado, J. G.; Chambers, Kenneth; Kaiser, Nick; Kudritzki, R.-P.; Magnier, Eugene; Metcalfe, Nigel; Waters, Chris Z.

    2018-01-01

    As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectroscopy in the Time Domain Spectroscopic Survey (TDSS), part of the extended Baryon Oscillation Spectroscopic Survey within the Sloan Digital Sky Survey (SDSS)-IV. Also discussed are the scientific rationale and technical constraints leading to these target selections. The TDSS includes a large “repeat quasar spectroscopy” (RQS) program delivering ∼13,000 repeat spectra of confirmed SDSS quasars, and several smaller “few-epoch spectroscopy” (FES) programs targeting specific classes of quasars as well as stars. The RQS program aims to provide a large and diverse quasar data set for studying variations in quasar spectra on timescales of years, a comparison sample for the FES quasar programs, and an opportunity for discovering rare, serendipitous events. The FES programs cover a wide variety of phenomena in both quasars and stars. Quasar FES programs target broad absorption line quasars, high signal-to-noise ratio normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, binary supermassive black hole candidates, and the most photometrically variable quasars. Strongly variable stars are also targeted for repeat spectroscopy, encompassing many types of eclipsing binary systems, and classical pulsators like RR Lyrae. Other stellar FES programs allow spectroscopic variability studies of active ultracool dwarf stars, dwarf carbon stars, and white dwarf/M dwarf spectroscopic binaries. We present example TDSS spectra and describe anticipated sample sizes and results.

  9. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do notmore » change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.« less

  10. Inherited Fe and Ti electron transition spectroscopic features in altered ultramafic-carbonatite intrusives

    NASA Astrophysics Data System (ADS)

    Shavers, E. J.; Ghulam, A.; Encarnacion, J. P.

    2016-12-01

    Spectroscopic reflectance in the visible to short-wave infrared region is an important tool for remote geologic mapping and is applied at scales from satellite to field measurements. Remote geologic mapping is challenging in regions subject to significant surficial weathering. Here we identify absorption features found in altered volcanic pipes and dikes in the Avon Volcanic District, Missouri, that are inherited from the original ultramafic and carbonatite lithology. Alteration ranges from small degree hydrothermal alteration to extensive laterization. The absorption features are three broad minima centered near 690, 890, and 1100 nm. Features in this region are recognized to be caused by ferric and ferrous Fe minerals including olivine, carbonates, chlorite, and goethite all of which are found among the Avon pipes and dikes that are in various stages of alteration. Iron-related intervalence charge transfer and crystal field perturbations of ions are the principal causes of the spectroscopic features in the visible to near-infrared region yet spectra are also distorted by factors like texture and the presence of opaque minerals known to reduce overall reflectance. In the Avon samples, Fe oxide content can reach >15 wt% leading to prominent absorption features even in the less altered ultramafics with reflectance curve maxima as low as 5%. The exaggerated minima allow the altered intrusive rocks to stand out among other weathered lithologies that will often have clay features in the region yet have lower iron concentration. The absorption feature centered near 690 nm is particularly noteworthy. Broad mineral-related absorption features centered at this wavelength are rare but have been linked to Ti3+ in octahedral coordination. The reduced form of Ti is not common in surface lithologies. Titanium-rich andradite has Ti3+ in the octahedral position, is resistant to weathering, is found among the Avon lithologies including ultramafic, carbonatite, and carbonated

  11. Synthesis, characterization and spectroscopic behavior of novel 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile dyes.

    PubMed

    Khan, Salman A; Asiri, Abdullah M; Al-Thaqafy, Saad H; Faidallah, Hassan M; El-Daly, Samy A

    2014-12-10

    Two synthetic pathways were adopted to synthesize the target 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydro-benzo[h]quinoline-3-carbonitriles. Structure of the synthesized compounds has been characterized based on FT-IR, (1)H NMR, (13)C NMR and elemental analyses. UV-Vis and fluorescence spectroscopy measurements provided that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, Stokes shift, oscillator strength and dipole moment were investigated in order to explore the analytical potential of synthesized compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Detection of Ne VIII in an Intervening Multiphase Absorption System Toward 3C 263

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Wakker, Bart P.; Savage, Blair D.

    2009-09-01

    We report the detection of Ne VIII in an intervening multiphase absorption line system at z = 0.32566 in the Far Ultraviolet Spectroscopic Explorer spectrum of the quasar 3C 263 (zem = 0.646). The Ne VIII λ770 Å detection has a 3.9σ significance. At the same velocity, we also find absorption lines from C IV, O III, O IV, and N IV. The line parameter measurements yield log [N(Ne VIII) cm-2] = 13.98+0.10 -0.13 and b = 49.8 ± 5.5 km s-1. We find that the ionization mechanism in the gas phase giving rise to the Ne VIII absorption is inconsistent with photoionization. The absorber has a multiphase structure, with the intermediate ions produced in cool photoionized gas and the Ne VIII most likely in a warm collisionally ionized medium in the temperature range (0.5-1.0) × 106 K. This is the second ever detection of an intervening Ne VIII absorption system. Its properties resemble the previous Ne VIII absorber reported by Savage and colleagues. Direct observations of H I and O VI are needed to better constrain the physical conditions in the collisionally ionized gas phase of this absorber. Based on observations with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer operated by Johns Hopkins University, supported by NASA contract NAS5-32985.

  13. Quantifying the effect of finite spectral bandwidth on extinction coefficient of species in laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.

    2016-11-01

    The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.

  14. Spectroscopic properties of vitamin E models in solution

    NASA Astrophysics Data System (ADS)

    Oliveira, L. B. A.; Colherinhas, G.; Fonseca, T. L.; Castro, M. A.

    2015-05-01

    We investigate the first absorption band and the 13C and 17O magnetic shieldings of vitamin E models in chloroform and in water using the S-MC/QM methodology in combination with the TD-DFT and GIAO approaches. The results show that the solvent effects on these spectroscopic properties are small but a proper description of the solvent shift for 17O magnetic shielding of the hydroxyl group in water requires the use of explicit solute-solvent hydrogen bonds. In addition, the effect of the replacement of hydrogen atoms by methyl groups in the vitamin E models only affects magnetic shieldings.

  15. A quantum cascade laser-based Mach-Zehnder interferometer for chemical sensing employing molecular absorption and dispersion

    NASA Astrophysics Data System (ADS)

    Hayden, Jakob; Hugger, Stefan; Fuchs, Frank; Lendl, Bernhard

    2018-02-01

    We employ a novel spectroscopic setup based on an external cavity quantum cascade laser and a Mach-Zehnder interferometer to simultaneously record spectra of absorption and dispersion of liquid samples in the mid-infrared. We describe the theory underlying the interferometric measurement and discuss its implications for the experiment. The capability of simultaneously recording a refractive index and absorption spectrum is demonstrated for a sample of acetone in cyclohexane. The recording of absorption spectra is experimentally investigated in more detail to illustrate the method's capabilities as compared to direct absorption spectroscopy. We find that absorption signals are recorded with strongly suppressed background, but with smaller absolute sensitivity. A possibility of optimizing the setup's performance by unbalancing the interferometer is presented.

  16. Diffuse-light absorption spectroscopy by fiber optics for detecting and quantifying the adulteration of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-09-01

    A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.

  17. Real-time spectroscopic sensing using a widely tunable external cavity-QCL with MOEMS diffraction grating

    NASA Astrophysics Data System (ADS)

    Ostendorf, Ralf; Butschek, Lorenz; Merten, André; Grahmann, Jan; Jarvis, Jan; Hugger, Stefan; Fuchs, Frank; Wagner, Joachim

    2016-02-01

    We present spectroscopic measurements performed with an EC-QCL combining a broadly tunable quantum cascade laser chip with a tuning range of more than 300 cm-1 and a resonantly driven MOEMS scanner with an integrated diffraction grating for wavelength selection in Littrow configuration. The grating geometry was optimized to provide high diffraction efficiency over the wide tuning range of the QCL, thus assuring high power density and high spectral resolution in the MIR range. The MOEMS scanner has a resonance frequency of 1 kHz, hence allowing for two full wavelength scans, one up and the other downwards, within 1 ms. The capability for real-time spectroscopic sensing based on MOEMS EC-QCLs is demonstrated by transmission measurements performed on polystyrene reference absorber sheets as well as on gaseous samples of carbon monoxide. For the latter one, a large portion of the characteristic CO absorption band containing several absorption lines in the range of 2070 cm-1 to 2280 cm-1 can be monitored in real-time.

  18. Ultraviolet Spectroscopic Monitoring of a Tidal Disruption Eventd

    NASA Astrophysics Data System (ADS)

    Kochanek, Chris

    2017-08-01

    Tidal disruption events (TDE), where supermassive black holes destroy stars toproduce accretion flares, are of great current observational andtheoretical interest. Here we propose a seven epoch STIS UV spectroscopic movie'' of a UV bright TDE spread over the first 90 days after a rapid TOO trigger. The roughly 15 day cadence is comparable to the expected and observed time scales for kinematic changes in theoptical and UV emission and absorption lines. We will measurethe evolution of UV absorption and emission lines from elements(e.g., C, N, Si) and ionization states/potentials not seen in optical spectra of TDEs, which should help to illuminate theirdynamical evolution. In some cases, the debris from the stellar cores should have significantly enhanced [N/C] abundances due to the CNO cycle, so UV spectra can provide a means of differentiating debris fromthe core and the envelope of the disrupted star. Optically-selectedTDEs are energetically dominated by their UV emission, making itthe wavelength range most needed to understand these fascinatingtransients.

  19. Visible Spectroscopic Observation Of Asteroid 162173 (1999ju3) With The Gemini-s Telescope

    NASA Astrophysics Data System (ADS)

    Sugita, Seiji; Kuroda, D.; Kameda, S.; Hasegawa, S.; Kamata, S.; Abe, M.; Ishiguro, M.; Takato, N.; Yoshikawa, M.

    2012-10-01

    Asteroid 162173 (1999JU3; hereafter JU3) is the target of the Hayabusa-2 mission. Its visible reflectance spectra have been observed a few times [1,2], and obtained spectra exhibit a wide variety of spectral patterns ranging from a spectra with absorption in the UV region (May 1999) to a flat spectrum with a faint broad absorption centered around 0.6 microns (September 2007) and that with UV absorption and strong broad absorption centered around 0.7 micron (July 2007). The apparent large spectral variation may be due to variegation on the asteroid surface. Such variegation would make a large influence on remote sensing strategy for Hayabusa-2 before its sampling operations. In order to better constraint the spectral properties of JU3, we conducted visible spectroscopic observations at the GEMINI-South observatory 8.1-m telescope with the GMOS instrument. We could obtain three different sets of data in June and July 2012. Although the JU3 rotation phases of two of the observation are close to each other, the other is about 120 degrees away from the two. Our preliminary analyses indicate that these three spectra are slightly reddish but generally flat across the observed wavelength range (0.47 - 0.89 microns). The observed flat spectra are most similar to the spectrum obtained in September 2007, which probably has the highest signal-to-noise ratio among the previous three spectra. This result suggests that material with a flat spectrum probably covers a dominant proportion of the JU3 surface and that the other two types of previously obtained spectra may not cover a very large fraction of the JU3 surface. [1] Binzel, R. P. et al. (2001) Icarus, 151, 139-149; [2] Vilas, F. (2008) AJ, 135, 1101-1105.

  20. Absorption and emission spectroscopic characterization of photo-dynamics of photoactivated adenylyl cyclase mutant bPAC-Y7F of Beggiatoa sp.

    PubMed

    Penzkofer, Alfons; Stierl, Manuela; Mathes, Tilo; Hegemann, Peter

    2014-11-01

    The photoactivated cyclase bPAC of the microbial mats bacterium Beggiatoa sp. consists of a BLUF domain and an adenylyl cyclase domain. It has strong activity of photo-induced cyclic adenylyl monophosphate (cAMP) formation and is therefore an important optogenetic tool in neuroscience applications. The SUMO-bPAC-Y7F mutant where Tyr-7 is replaced by Phe-7 in the BLUF domain has lost the typical BLUF domain photo-cycle dynamics. Instead, the investigated SUMO-bPAC-Y7F mutant consisted of three protein conformations with different triplet based photo-dynamics: (i) reversible flavin quinone (Fl) cofactor reduction to flavin semiquinone (FlH), (ii) reversible violet/near ultraviolet absorbing flavin photoproduct (FlA) formation, and (iii) irreversible red absorbing flavin photoproduct (FlC) formation. Absorption and emission spectroscopic measurements on SUMO-bPAC-Y7F were carried out before, during and after light exposure. Flavin photo-dynamics schemes are developed for the SUMO-bPAC-Y7F fractions performing photo-induced FlH, FlA, and FlC formation. Quantitative parameters of the flavin cofactor excitation, relaxation and recovery dynamics in SUMO-bPAC-Y7F are determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Study of spectroscopic properties of nanosized particles of core-shell morphology

    NASA Astrophysics Data System (ADS)

    Bzhalava, T. N.; Kervalishvili, P. J.

    2018-03-01

    Method of studying spectroscopic properties of nanosized particles and estimation of resonance wavelength range for determination of specific and unique “spectral” signatures in purpose of sensing, identification of nanobioparticles, viruses is proposed. Elaboration of relevant models of viruses, estimation of spectral response on interaction of electromagnetic (EM) field and viral nanoparticle is the goal of proposed methodology. Core-shell physical model is used as the first approximation of shape-structure of virion. Theoretical solution of EM wave scattering on single spherical virus-like particle (VLP) is applied for determination of EM fields in the areas of core, shell and surrounding medium of (VLP), as well as scattering and absorption characteristics. Numerical results obtained by computer simulation for estimation of EM “spectra” of bacteriophage T7 demonstrate the strong dependence of spectroscopic characteristics on core-shell related electric and geometric parameters of VLP in resonance wavelengths range. Expected spectral response is observable on far-field characterizations. Obtained analytical EM field expressions, modelling technique in complement with experimental spectroscopic methods should be the way of providing the virus spectral signatures, important in bioparticles characterization.

  2. Laser absorption spectroscopy applied to monitoring of short-lived climate pollutants (SLCPs)

    NASA Astrophysics Data System (ADS)

    Wang, Gaoxuan; Shen, Fengjiao; Yi, Hongming; Hubert, Patrice; Deguine, Alexandre; Petitprez, Denis; Maamary, Rabih; Augustin, Patrick; Fourmentin, Marc; Fertein, Eric; Sigrist, Markus W.; Ba, Tong-Nguyen; Chen, Weidong

    2018-06-01

    Enhanced mitigation of short-lived climate pollutants (SLCPs) has been recently paid more attention in order to provide more sizeable short-term reductions of global warming effects over the next several decades. We overview in this article our recent progress in the development of spectroscopic instruments for optical monitoring of major SLCPs based on laser absorption spectroscopy. Methane (CH4) and black carbon (BC) are the most important SLCPs contributing to the human enhancement of the global greenhouse effect after CO2. We present optical sensing of these two climate-change related atmospheric species to illustrate how "classical" spectroscopy can help to address today's challenging issues: (1) Photoacoustic measurements of BC optical absorption coefficient in order to determine its radiative-forcing related optical parameters (such as mass absorption coefficient, absorption Ångström coefficient) with higher precision (∼7.4% compared to 12-30% for filter-based methods routinely used nowadays). The 1σ (SNR = 1) minimum measurable volumetric mass density of 21 ng/m3 (in 60 s) for black carbon. (2) Direct absorption spectroscopy-based monitoring of methane (CH4) in field campaign to identify pollution source in conjunction with air mass back-trajectory modeling. Using a White-type multipass cell (an effective path-length of 175 m), a 1σ detection limit of 33.3 ppb in 218 s was achieved with a relative measurement precision of 1.1% and an overall measurement uncertainty of about 5.1%. Performance of the custom, lab-based instruments (in terms of detection limits, measurement precision, temporal response, etc.), spectroscopic measurement aspects, experimental details, spectral data processing, analysis and modeling of the observed environmental episode will be presented and discussed.

  3. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  4. The GEISA Spectroscopic Database as a Tool for Hyperspectral Earth' Tropospheric Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, Nicole; Crépeau, Laurent; Capelle, Virginie; Scott, Noëlle; Armante, Raymond; Chédin, Alain

    2010-05-01

    Remote sensing of the terrestrial atmosphere has advanced significantly in recent years, and this has placed greater demands on the compilations in terms of accuracy, additional species, and spectral coverage. The successful performances of the new generation of hyperspectral Earth' atmospheric sounders like AIRS (Atmospheric Infrared Sounder -http://www-airs.jpl.nasa.gov/), in the USA, and IASI (Infrared Atmospheric Sounding Interferometer -http://earth-sciences.cnes.fr/IASI/) in Europe, which have a better vertical resolution and accuracy, compared to the previous satellite infrared vertical sounders, depend ultimately on the accuracy to which the spectroscopic parameters of the optically active gases are known, since they constitute an essential input to the forward radiative transfer models that are used to interpret their observations. In this context, the GEISA (1) (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer-accessible database, initiated in 1976, is continuously developed and maintained at LMD (Laboratoire de Météorologie Dynamique, France). The updated 2009 edition of GEISA (GEISA-09)is a system comprising three independent sub-databases devoted respectively to: line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. In this edition, the contents of which will be summarized, 50 molecules are involved in the line transition parameters sub-database, including 111 isotopes, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031 cm-1. Currently, GEISA is involved in activities related to the assessment of the capabilities of IASI through the GEISA/IASI database derived from GEISA (2). Since the Metop (http://www.eumetsat.int) launch (October 19th 2006), GEISA/IASI is the reference spectroscopic database for the validation of the level-1 IASI data

  5. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  6. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  7. CuTaS 3 : Intermetal d–d Transitions Enable High Solar Absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Jaeseok; Yu, Liping; Altschul, Emmeline

    To realize the fundamental limits of photovoltaic device efficiency, solar absorbers must exhibit strong absorption and abrupt absorption onsets. Ideally, onsets to maximum absorption (a > 105 cm-1) occur over a few tenths of an electronvolt. First-principles calculations predict CuTaS3 represents a potentially new class of materials with such absorption characteristics. Narrow metallic d bands in both the initial and final states present high joint densities of states and, therefore, strong absorption. Specifically, a mixture of metal d (Cu1+, d10) and S p characterizes states near the valence band maximum, and metal d (Ta5+, d0) dominates near the conduction bandmore » minimum. Optical absorption measurements on thin films confirm the abrupt onset to strong absorption a > 105 cm-1 at Eg + 0.4 eV (Eg = 1.0 eV). Theoretical CuTaS3 solar cell efficiency is predicted to be 28% for a 300 nm film based on the metric of spectroscopic limited maximum efficiency, which exceeds that of CuInSe2. This sulfide may offer new opportunities to discover and develop a new class of mixed d-element solar absorbers.« less

  8. Dissociative absorption: An empirically unique, clinically relevant, dissociative factor.

    PubMed

    Soffer-Dudek, Nirit; Lassri, Dana; Soffer-Dudek, Nir; Shahar, Golan

    2015-11-01

    Research of dissociative absorption has raised two questions: (a) Is absorption a unique dissociative factor within a three-factor structure, or a part of one general dissociative factor? Even when three factors are found, the specificity of the absorption factor is questionable. (b) Is absorption implicated in psychopathology? Although commonly viewed as "non-clinical" dissociation, absorption was recently hypothesized to be specifically associated with obsessive-compulsive symptoms. To address these questions, we conducted exploratory and confirmatory factor analyses on 679 undergraduates. Analyses supported the three-factor model, and a "purified" absorption scale was extracted from the original inclusive absorption factor. The purified scale predicted several psychopathology scales. As hypothesized, absorption was a stronger predictor of obsessive-compulsive symptoms than of general psychopathology. In addition, absorption was the only dissociative scale that longitudinally predicted obsessive-compulsive symptoms. We conclude that absorption is a unique and clinically relevant dissociative tendency that is particularly meaningful to obsessive-compulsive symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Spectroscopic Characterization of Streptavidin Functionalized Quantum dots1

    PubMed Central

    Wu, Yang; Lopez, Gabriel P.; Sklar, Larry A.; Buranda, Tione

    2007-01-01

    The spectroscopic properties of quantum dots can be strongly influenced by the conditions of their synthesis. In this work we have characterized several spectroscopic properties of commercial, streptavidin functionalized quantum dots (QD525, lot#1005-0045 and QD585, Lot#0905-0031 from Invitrogen). This is the first step in the development of calibration beads, to be used in a generalizable quantification scheme of multiple fluorescent tags in flow cytometry or microscopy applications. We used light absorption, photoexcitation, and emission spectra, together with excited-state lifetime measurements to characterize their spectroscopic behavior, concentrating on the 400-500nm wavelength ranges that are important in biological applications. Our data show an anomalous dependence of emission spectrum, lifetimes, and quantum yield (QY) on excitation wavelength that is particularly pronounced in the QD525. For QD525, QY values ranged from 0.2 at 480nm excitation up to 0.4 at 450nm and down again to 0.15 at 350nm. For QD585, QY values were constant at 0.2 between 500nm and 400nm, but dropped to 0.1 at 350nm. We attribute the wavelength dependences to heterogeneity in size and surface defects in the QD525, consistent with characteristics previously described in the chemistry literature. The results are discussed in the context of bridging the gap between what is currently known in the physical chemistry literature of quantum dots, and the quantitative needs of assay development in biological applications. PMID:17368555

  10. A photometrically and spectroscopically confirmed population of passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin A.; Dolley, Tim; Crossett, Jacob P.; Bonne, Nicolas J.

    2016-10-01

    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z < 0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000 Å breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and integral field spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.

  11. Characterization of dissolved organic matter in Dongjianghu Lake by UV-visible absorption spectroscopy with multivariate analysis.

    PubMed

    Zhu, Yanzhong; Song, Yonghui; Yu, Huibin; Liu, Ruixia; Liu, Lusan; Lv, Chunjian

    2017-08-08

    UV-visible absorption spectroscopy coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to characterize spectroscopic components, detect latent factors, and investigate spatial variations of dissolved organic matter (DOM) in a large-scale lake. Twelve surface water samples were collected from Dongjianghu Lake in China. DOM contained lignin and quinine moieties, carboxylic acid, microbial products, and aromatic and alkyl groups, which in the northern part of the lake was largely different from the southern part. Fifteen spectroscopic indices were deduced from the absorption spectra to indicate molecular weight or humification degree of DOM. The northern part of the lake presented the smaller molecular weight or the lower humification degree of DOM than the southern part. E 2/4 , E 3/4 , E 2/3 , and S 2 were latent factors of characterizing the molecular weight of DOM, while E 2/5 , E 3/5 , E 2/6 , E 4/5 , E 3/6 , and A 2/1 were latent factors of evaluating the humification degree of DOM. The UV-visible absorption spectroscopy combined with PCA and HCA may not only characterize DOM fractions of lakes, but may be transferred to other types of waterscape.

  12. Small main-belt asteroid spectroscopic survey: Initial results

    NASA Technical Reports Server (NTRS)

    Xu, Shui; Binzel, Richard P.; Burbine, Thomas H.; Bus, Schelte J.

    1995-01-01

    The spectral characterization of small asteroids is important for understanding the evolution of their compositional and mineralogical properties. We report the results of a CCD spectroscopic survey of small main-belt asteroids which we call the Small Main-belt Asteroid Spectroscopic Survey (SMASS). Spectra of 316 asteroids were obtained, with wavelength coverage ranging from 4000 to 10000 A (0.4 to 1 micrometers). More than half of the objects in our survey have diameters less than 20 km. Survey results include the identification of the first object resembling ordinary chondrite meteorites among the main-belt asteroids (Binzel, R. P., et al, 1993) and observations of more than 20 asteroids showing basaltic achondrite spectral absorption features that strongly link Vesta as the parent body for the basaltic achondrite meteorites (Binzel, R. P., and S. Xu 1993). A potential Mars-crossing asteroid analog to ordinary chondrite meteorites (H chondrites), 2078 Nanking, is reported here. Through a principal component analysis, we have assigned classifications to the members of our sample. The majority of the small main-belt asteroids belong to S and C classes, similar to large asteroids. Our analysis shows that two new classes are justified which we label as J and O. Small asteroids display more diversity in spectral absorption features than the larger ones, which may indicate a greater variation of compositions in the small asteroid population. We found a few candidates for olivine-rich asteroids within the S class. Although the total number of olivine-rich candidates is relatively small, we present evidence suggesting that such objects are more prevalent at smaller sizes.

  13. Combined spectroscopic and quantum chemical studies of ezetimibe

    NASA Astrophysics Data System (ADS)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti

    2016-12-01

    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.

  14. The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colletti, Lisa Michelle; Copping, Roy; Garduno, Katherine

    Through assay analysis into an excess of 1 M H 2SO 4 at fixed temperature a technique has been developed for uranium concentration analysis by visible absorption spectroscopy over an assay concentration range of 1.8 – 13.4 mgU/g. Once implemented for a particular spectrophotometer and set of spectroscopic cells this technique promises to provide more rapid results than a classical method such as Davies-Gray (DG) titration analysis. While not as accurate and precise as the DG method, a comparative analysis study reveals that the spectroscopic method can analyze for uranium in well characterized uranyl(VI) solution samples to within 0.3% ofmore » the DG results. For unknown uranium solutions in which sample purity is less well defined agreement between the developed spectroscopic method and DG analysis is within 0.5%. The technique can also be used to detect the presence of impurities that impact the colorimetric analysis, as confirmed through the analysis of ruthenium contamination. Finally, extending the technique to other assay solution, 1 M HNO 3, HCl and Na 2CO 3, has also been shown to be viable. As a result, of the four aqueous media the carbonate solution yields the largest molar absorptivity value at the most intensely absorbing band, with the least impact of temperature.« less

  15. The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions

    DOE PAGES

    Colletti, Lisa Michelle; Copping, Roy; Garduno, Katherine; ...

    2017-07-18

    Through assay analysis into an excess of 1 M H 2SO 4 at fixed temperature a technique has been developed for uranium concentration analysis by visible absorption spectroscopy over an assay concentration range of 1.8 – 13.4 mgU/g. Once implemented for a particular spectrophotometer and set of spectroscopic cells this technique promises to provide more rapid results than a classical method such as Davies-Gray (DG) titration analysis. While not as accurate and precise as the DG method, a comparative analysis study reveals that the spectroscopic method can analyze for uranium in well characterized uranyl(VI) solution samples to within 0.3% ofmore » the DG results. For unknown uranium solutions in which sample purity is less well defined agreement between the developed spectroscopic method and DG analysis is within 0.5%. The technique can also be used to detect the presence of impurities that impact the colorimetric analysis, as confirmed through the analysis of ruthenium contamination. Finally, extending the technique to other assay solution, 1 M HNO 3, HCl and Na 2CO 3, has also been shown to be viable. As a result, of the four aqueous media the carbonate solution yields the largest molar absorptivity value at the most intensely absorbing band, with the least impact of temperature.« less

  16. Measuring water contents in animal organ tissues using terahertz spectroscopic imaging.

    PubMed

    Lee, Kyumin; Jeoung, Kiyong; Kim, Sang Hoon; Ji, Young-Bin; Son, Hyeyoung; Choi, Yuna; Huh, Young-Min; Suh, Jin-Suck; Oh, Seung Jae

    2018-04-01

    We investigated the water contents in several organ tissues such as the liver, spleen, kidney, and brain tissue of rats using the terahertz spectroscopic imaging technique. The water contents of the tissues were determined by using a simple equation containing the absorption coefficients of fresh and lyophilized tissues and water. We compared the measured water contents with the difference in mass of tissues before and after lyophilization. All results showed a good match except for the kidney, which has several Bowman's capsules.

  17. Spectroscopic investigations of novel pharmaceuticals: Stability and resonant interaction with laser beam

    NASA Astrophysics Data System (ADS)

    Smarandache, Adriana; Boni, Mihai; Andrei, Ionut Relu; Handzlik, Jadwiga; Kiec-Kononowicz, Katarzyna; Staicu, Angela; Pascu, Mihail-Lucian

    2017-09-01

    This paper presents data about photophysics of two novel thio-hydantoins that exhibit promising pharmaceutical properties in multidrug resistance control. Time stability studies are necessary to establish the proper use of these compounds in different applications. As for their administration as drugs, it is imperative to know their shelf life, as well as storage conditions. At the same time, laser induced modified properties of the two new compounds are valuable to further investigate their specific interactions with other materials, including biological targets. The two new thio-hydantoins under generic names SZ-2 and SZ-7 were prepared as solutions in dimethyl sulfoxide at different concentrations, as well as in deionised water. For the stability assay they were kept in various light/temperature conditions up to 60 days. The stability was estimates based on UV-vis absorption measurements. The samples in bulk shape were exposed different time intervals to laser radiation emitted at 266 nm as the fourth harmonic of a Nd:YAG laser. The resonant interaction of the studied compounds with laser beams was analysed through spectroscopic methods UV-vis and FTIR absorption, as well as laser induced fluorescence spectroscopy. As for stability assay, only solutions kept in dark at 4 °C have preserved the absorption characteristics, considering the cumulated measuring errors, less than one week. The vibrational changes that occur in their FTIR and modified fluorescence spectra upon laser beam exposure are also discussed. A result of the experimental analysis is that modifications are induced in molecular structures of the investigated compounds by resonant interaction with laser radiation. This fact evidences that the molecules are photoreactive and their characteristics might be shaped through controlled laser radiation exposure using appropriate protocols. This conclusion opens many opportunities both in the biomedical field, but also in other industrial activities

  18. Finite Element Simulation for Analysing the Design and Testing of an Energy Absorption System

    PubMed Central

    Segade, Abraham; López-Campos, José A.; Fernández, José R.; Casarejos, Enrique; Vilán, José A.

    2016-01-01

    It is not uncommon to use profiles to act as energy absorption parts in vehicle safety systems. This work analyses an impact attenuator based on a simple design and discusses the use of a thermoplastic material. We present the design of the impact attenuator and a mechanical test for the prototype. We develop a simulation model using the finite element method and explicit dynamics, and we evaluate the most appropriate mesh size and integration for describing the test results. Finally, we consider the performance of different materials, metallic ones (steel AISI 4310, Aluminium 5083-O) and a thermoplastic foam (IMPAXX500™). This reflects the car industry’s interest in using new materials to make high-performance, low-mass energy absorbers. We show the strength of the models when it comes to providing reliable results for large deformations and strong non-linearities, and how they are highly correlated with respect to the test results both in value and behaviour. PMID:28773778

  19. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  20. Investigation into Spectroscopic Techniques for Thermal Barrier Coating Spall Detection

    NASA Technical Reports Server (NTRS)

    deGroot, Wim; Opila, Beth

    2001-01-01

    Spectroscopic methods are proposed for detection of thermal barrier coating (TBC) spallation from engine hot zone components. These methods include absorption and emission of airborne marker species originally embedded in the TBC bond coat. In this study, candidate marker materials for this application were evaluated. Thermochemical analysis of candidate marker materials combined with additional constraints such as toxicity and uniqueness to engine environment, provided a short list of four potential species: platinum, copper oxide, zinc oxide. and indium. The melting point of indium was considered to be too low for serious consideration. The other three candidate marker materials, platinum, copper oxide, and zinc oxide were placed in a high temperature furnace and emission and absorption properties were measured over a temperature range from 800-1400 C and a spectral range from 250 to 18000 nm. Platinum did not provide the desired response, likely due to the low vapor Pressure of the metallic species and the low absorption of the oxide species. It was also found, however. that platinum caused a broadening of the carbon dioxide absorption at 4300 nm. The nature of this effect is not known. Absorption and emission caused by sodium and potassium impurities in the platinum were found in the platinum tests. Zinc oxide did not provide the desired response, again, most likely due to the low vapor pressure of the metallic species and the low absorption of the oxide species. Copper oxide generated two strongly temperature dependent absorption peaks at 324.8 and 327.4 nm. The melting point of copper oxide was determined to be too low for serious consideration as marker material.

  1. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, Joseph; Le Breton, Michael; Allen, Grant; Percival, Carl; Gallagher, Martin; Bauguitte, Stephane; O'Shea, Sebastian; Muller, Jennifer; Zahniser, Mark; Pyle, John; Palmer, Paul

    2016-04-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We evaluate the performance of the mid-IR continuous wave Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. Test flight data demonstrating the sensitivity of the instrument to changes in cabin pressure is presented, and a new in-flight calibration procedure to account for this issue is described and assessed. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA).

  2. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M. R.; Allen, G.; Percival, C.; Gallagher, M. W.; Bauguitte, S.; O'Shea, S.; Muller, J.; Zahniser, M. S.; Pyle, J. A.; Palmer, P. I.

    2015-12-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We evaluate the performance of the mid-IR continuous wave Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. Test flight data demonstrating the sensitivity of the instrument to changes in cabin pressure is presented, and a new in-flight calibration procedure to account for this issue is described and assessed. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA).

  3. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma

  4. Infrared Spectroscopic Imaging: The Next Generation

    PubMed Central

    Bhargava, Rohit

    2013-01-01

    Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas— data recording, interpretation of recorded data, and information extraction—and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist. PMID:23031693

  5. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    NASA Astrophysics Data System (ADS)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  6. Comparative spectroscopic analysis of urinary calculi inhibition by Larrea Tridentata infusion and NDGA chemical extract

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia

    2012-10-01

    In the present comparative spectroscopic study we try to understand calcium oxalate kidney stone formation as well as its inhibition by using a traditional medicine approach with Larrea Tridentata (LT) herbal extracts and nordihydroguaiaretic acid (NDGA), which is a chemical extract of the LT bush. The samples were synthesized without and with LT or NDGA using a simplified single diffusion gel growth technique. While the use of infusion from LT decreases the sizes of calcium oxalate crystals and also changes their structure from monohydrate for pure crystals to dihydrate for crystals grown with different amounts of inhibitor, both Raman and infrared absorption spectroscopic techniques, which are the methods of analysis employed in this work, reveal that NDGA is not responsible for the change in the morphology of calcium oxalate crystals and does not contribute significantly to the inhibition process. The presence of NDGA slightly affects the structure of the crystals by modifying the strength of the C-C bonds as seen in the Raman data. Also, the current infrared absorption results demonstrate the presence of NDGA in the samples through a vibrational line that corresponds to the double bond between carbon atoms of the ester group of NDGA.

  7. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  8. A simple heat-pipe cell for X-ray absorption spectrometry of potassium vapor

    NASA Astrophysics Data System (ADS)

    Pres̆eren, R.; Kodre, A.; Arc̆on, I.; Padez̆nik Gomils̆ek, J.; Hribar, M.

    1999-01-01

    The construction and operation of a simple high-temperature X-ray absorption cell for potassium vapor is described. The principle of "spectroscopic heat pipe" is exploited to separate kapton windows, indispensable for good transmission in the low-energy region, from the hot and aggressive vapor. High-resolution spectrum of the K-edge region of atomic potassium reveals fingerprints of multielectron photoexcitations.

  9. Deformation-related spectroscopic features in natural Type Ib-IaA diamonds from Zimmi (West African craton)

    NASA Astrophysics Data System (ADS)

    Smit, Karen V.; D'Haenens-Johansson, Ulrika F. S.; Howell, Daniel; Loudin, Lorne C.; Wang, Wuyi

    2018-06-01

    Zimmi diamonds (Sierra Leone) have 500 million year mantle residency times whose origin is best explained by rapid tectonic exhumation to shallower depths in the mantle, associated with continental collision but prior to kimberlite eruption. Here we present spectroscopic data for a new suite of Zimmi sulphide-bearing diamonds that allow us to evaluate the link between their spectroscopic features and their unusual geological history. Cathodoluminesence (CL) imaging of these diamonds revealed irregular patterns with abundant deformation lamellae, associated with the diamonds' tectonic exhumation. Vacancies formed during deformation were subsequently naturally annealed to form vacancy clusters, NV0/- centres and H3 (NVN0). The brownish-yellow to greenish-yellow colours observed in Zimmi Ib-IaA diamonds result from visible absorption by a combination of isolated substitutional nitrogen ( {N}S^0 ) and deformation-related vacancy clusters. Colour-forming centres and other spectroscopic features can all be attributed to the unique geological history of Zimmi Ib-IaA diamonds and their rapid exhumation after formation.

  10. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts

    NASA Astrophysics Data System (ADS)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, Ian; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; de Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiß, A.; van der Werf, P.

    2017-05-01

    We present spectroscopic redshifts of {\\text{}}{S}870μ {{m}} ≳ 2 mJy submillimeter galaxies (SMGs), which have been identified from the ALMA follow-up observations of 870 μm detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spectroscopic redshifts for 52 SMGs, with a median of z = 2.4 ± 0.1. However, the distribution features a high-redshift tail, with ˜23% of the SMGs at z≥slant 3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets of up to 2000 km s-1. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimized spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of {M}\\star = (6 ± 1)× 1010 M {}⊙ for our SMGs with spectroscopic redshift. By combining these stellar masses with the star formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor of ˜5 above the so-called “main sequence” at z˜ 2. We provide this library of 52 template fits with robust and uniquely well-sampled SEDs as a resource for future studies of SMGs, and also release the spectroscopic catalog of ˜2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.

  11. SPECTROSCOPIC AND PHOTOMETRIC VARIABILITY IN THE A0 SUPERGIANT HR 1040

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corliss, David J.; Morrison, Nancy D.; Adelman, Saul J., E-mail: david.corliss@wayne.edu

    2015-12-15

    A time-series analysis of spectroscopic and photometric observables of the A0 Ia supergiant HR 1040 has been performed, including equivalent widths, radial velocities, and Strömgren photometric indices. The data, obtained from 1993 through 2007, include 152 spectroscopic observations from the Ritter Observatory 1 m telescope and 269 Strömgren photometric observations from the Four College Automated Photoelectric Telescope. Typical of late B- and early A-type supergiants, HR 1040 has a highly variable Hα profile. The star was found to have an intermittent active phase marked by correlation between the Hα absorption equivalent width and blue-edge radial velocity and by photospheric connectionsmore » observed in correlations to equivalent width, second moment and radial velocity in Si ii λλ6347, 6371. High-velocity absorption (HVA) events were observed only during this active phase. HVA events in the wind were preceded by photospheric activity, including Si ii radial velocity oscillations 19–42 days prior to onset of an HVA event and correlated increases in Si ii W{sub λ} and second moment from 13 to 23 days before the start of the HVA event. While increases in various line equivalent widths in the wind prior to HVA events have been reported in the past in other stars, our finding of precursors in enhanced radial velocity variations in the wind and at the photosphere is a new result.« less

  12. Electrically tunable coherent optical absorption in graphene with ion gel.

    PubMed

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  13. Investigation of silicate mineral sanidine by vibrational and NMR spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Anbalagan, G.; Sankari, G.; Ponnusamy, S.; kumar, R. Thilak; Gunasekaran, S.

    2009-10-01

    Sanidine, a variety of feldspar minerals has been investigated through optical absorption, vibrational (IR and Raman), EPR and NMR spectroscopic techniques. The principal reflections occurring at the d-spacings, 3.2892, 3.2431, 2.9022 and 2.6041 Å confirm the presence of sanidine structure in the mineral. Sanidine shows five prominent characteristic infrared absorption bands in the region 1200-950, 770-720, 590-540 and 650-640 cm -1. The Raman spectrum shows the strongest band at 512 cm -1 characteristic of the feldspar structure, which contains four membered rings of tetrahedra. The UV-vis-NIR absorption spectrum had strong absorption features at 6757, 5780 and 5181 cm -1 due to the combination of fundamental OH- stretching. The bands at 11236 and 8196 cm -1and the strong, well-defined band at (30303 cm -1 attest the presence of Fe 2+ and Fe 3+, respectively, in the sample. The signals at g = 4.3 and 3.7 are interpreted in terms of Fe 3+ at two distinct tetrahedral positions Tl and T2 of the monoclinic crystal structure The 29Si NMR spectrum shows two peaks at -97 and -101 ppm corresponding to T2 and T1, respectively, and one peak in 27Al NMR for Al(IV).

  14. Investigation of silicate mineral sanidine by vibrational and NMR spectroscopic methods.

    PubMed

    Anbalagan, G; Sankari, G; Ponnusamy, S; Kumar, R Thilak; Gunasekaran, S

    2009-10-01

    Sanidine, a variety of feldspar minerals has been investigated through optical absorption, vibrational (IR and Raman), EPR and NMR spectroscopic techniques. The principal reflections occurring at the d-spacings, 3.2892, 3.2431, 2.9022 and 2.6041 A confirm the presence of sanidine structure in the mineral. Sanidine shows five prominent characteristic infrared absorption bands in the region 1200-950, 770-720, 590-540 and 650-640 cm(-1). The Raman spectrum shows the strongest band at 512 cm(-1) characteristic of the feldspar structure, which contains four membered rings of tetrahedra. The UV-vis-NIR absorption spectrum had strong absorption features at 6757, 5780 and 5181 cm(-1) due to the combination of fundamental OH- stretching. The bands at 11236 and 8196 cm(-1)and the strong, well-defined band at (30303 cm(-1) attest the presence of Fe(2+) and Fe(3+), respectively, in the sample. The signals at g = 4.3 and 3.7 are interpreted in terms of Fe(3+) at two distinct tetrahedral positions Tl and T2 of the monoclinic crystal structure The (29)Si NMR spectrum shows two peaks at -97 and -101 ppm corresponding to T2 and T1, respectively, and one peak in (27)Al NMR for Al(IV).

  15. The water vapour continuum in near-infrared windows - Current understanding and prospects for its inclusion in spectroscopic databases

    NASA Astrophysics Data System (ADS)

    Shine, Keith P.; Campargue, Alain; Mondelain, Didier; McPheat, Robert A.; Ptashnik, Igor V.; Weidmann, Damien

    2016-09-01

    report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.

  16. ORIGINS OF ABSORPTION SYSTEMS OF CLASSICAL NOVA V2659 CYG (NOVA CYG 2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, A.; Kawakita, H.; Shinnaka, Y.

    2016-10-10

    We report on high-dispersion spectroscopy results of a classical nova V2659 Cyg (Nova Cyg 2014) that are taken 33.05 days after the V -band maximum. The spectrum shows two distinct blueshifted absorption systems originating from H i, Fe ii, Ca ii, etc. The radial velocities of the absorption systems are −620 km s{sup −1}, and −1100 to −1500 km s{sup −1}. The higher velocity component corresponds to the P-Cygni absorption features frequently observed in low-resolution spectra. Much larger numbers of absorption lines are identified at the lower velocity. These mainly originate from neutral or singly ionized Fe-peak elements (Fe i,more » Ti ii, Cr ii, etc.). Based on the results of our spectroscopic observations, we discuss the structure of the ejecta of V2659 Cyg. We conclude that the low- and high-velocity components are likely to be produced by the outflow wind and the ballistic nova ejecta, respectively.« less

  17. Spectroscopic investigation on the efficient organic nonlinear crystals of pure and diethanolamine added DAST.

    PubMed

    Karthikeyan, C; Haja Hameed, A S; Sagaya Agnes Nisha, J; Ravi, G

    2013-11-01

    4-N,N'-dimethylamino-N-methyl-4-stilbazolium toyslate (DAST) and diethanolamine (DEA) added DAST crystals are grown by slow cooling method. The corresponding powder samples are examined by characterization studies such as XRD, FT-IR, FT-Raman, UV-Vis-NIR and photoluminescence studies. From the powder X-ray diffraction, their lattice parameter values are found out. Since the vibrational spectra of the molecules are considerably contributed to their linear and nonlinear optical effects, Infrared and Raman spectroscopic studies are carried out for the samples. The UV-Vis-NIR absorption spectra of the samples are used to find the nature of transitions occurred in the samples. Using the density functional theory, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) analyses are done in order to explain the transition and density of states (DOS). The first order hyperpolarizability is calculated by HF and B3LYP/6-311 G(d,p) basis sets for the DAST molecule. From the photoluminescence (PL) spectral studies, the strong excitation emissions are observed. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh

    2015-06-24

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  19. Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: 'traps for new users'.

    PubMed

    Zohdi, Vladislava; Whelan, Donna R; Wood, Bayden R; Pearson, James T; Bambery, Keith R; Black, M Jane

    2015-01-01

    Fourier Transform Infrared (FTIR) micro-spectroscopy is an emerging technique for the biochemical analysis of tissues and cellular materials. It provides objective information on the holistic biochemistry of a cell or tissue sample and has been applied in many areas of medical research. However, it has become apparent that how the tissue is handled prior to FTIR micro-spectroscopic imaging requires special consideration, particularly with regards to methods for preservation of the samples. We have performed FTIR micro-spectroscopy on rodent heart and liver tissue sections (two spectroscopically very different biological tissues) that were prepared by desiccation drying, ethanol substitution and formalin fixation and have compared the resulting spectra with that of fully hydrated freshly excised tissues. We have systematically examined the spectra for any biochemical changes to the native state of the tissue caused by the three methods of preparation and have detected changes in infrared (IR) absorption band intensities and peak positions. In particular, the position and profile of the amide I, key in assigning protein secondary structure, changes depending on preparation method and the lipid absorptions lose intensity drastically when these tissues are hydrated with ethanol. Indeed, we demonstrate that preserving samples through desiccation drying, ethanol substitution or formalin fixation significantly alters the biochemical information detected using spectroscopic methods when compared to spectra of fresh hydrated tissue. It is therefore imperative to consider tissue preparative effects when preparing, measuring, and analyzing samples using FTIR spectroscopy.

  20. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    NASA Astrophysics Data System (ADS)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  1. Spectroscopic Imaging of NIR to Visible Upconversion from NaYF4:Yb3+, Er3+ Nanoparticles on Au Nano-cavity Arrays

    NASA Astrophysics Data System (ADS)

    Fisher, Jon; Zhao, Bo; Lin, Cuikun; Berry, Mary; May, P. Stanley; Smith, Steve

    2015-03-01

    We use spectroscopic imaging to assess the spatial variations in upconversion luminescence from NaYF4:Er3+,Yb3+ nanoparticles embedded in PMMA on Au nano-cavity arrays. The nano-cavity arrays support a surface plasmon (SP) resonance at 980nm, coincident with the peak absorption of the Yb3+ sensitizer. Spatially-resolved upconversion spectra show a 30X to 3X luminescence intensity enhancement on the nano-cavity array compared to the nearby smooth Au surface, corresponding to excitation intensities from 1 W/cm2 to 300kW/cm2. Our analysis shows the power dependent enhancement in upconversion luminescence can be almost entirely accounted for by a constant shift in the effective excitation intensity, which is maintained over five orders of magnitude variation in excitation intensity. The variations in upconversion luminescence enhancement with power are modeled by a 3-level-system near the saturation limit, and by simultaneous solution of a system of coupled nonlinear differential equations, both analyses agree well with the experiments. Analysis of the statistical distribution of emission intensities in the spectroscopic images on and off the nano-cavity arrays provides an estimate of the average enhancement factor independent of fluctuations in nano-particle density. Funding provided by NSF Award # 0903685 (IGERT).

  2. Fitting by Orthonormal Polynomials of Silver Nanoparticles Spectroscopic Data

    NASA Astrophysics Data System (ADS)

    Bogdanova, Nina; Koleva, Mihaela

    2018-02-01

    Our original Orthonormal Polynomial Expansion Method (OPEM) in one-dimensional version is applied for first time to describe the silver nanoparticles (NPs) spectroscopic data. The weights for approximation include experimental errors in variables. In this way we construct orthonormal polynomial expansion for approximating the curve on a non equidistant point grid. The corridors of given data and criteria define the optimal behavior of searched curve. The most important subinterval of spectra data is investigated, where the minimum (surface plasmon resonance absorption) is looking for. This study describes the Ag nanoparticles produced by laser approach in a ZnO medium forming a AgNPs/ZnO nanocomposite heterostructure.

  3. Spectroscopic and thermal investigations of charge-transfer complexes formed between sulfadoxine drug and different types of acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2011-01-01

    Charge-transfer reactions between sulfadoxine (SDOX) as a donor with iodine (I 2), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), p-chloranil (CHL) and picric acid (PA) have been studied in solid and solution forms. The stoichiometry of all complexes was found to be 1:1 by molar ratio method between donor and acceptor at a CT-band absorption bands. The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength (ƒ), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complexes were shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents which were used. IR, 1H NMR and UV-Vis spectroscopic techniques, Elemental analyses (CHN) and TG-DTG investigation were used to characterize the four sulfadoxine charge-transfer complexes.

  4. Effect of surface treatment on unalloyed titanium implants: spectroscopic analyses.

    PubMed

    Kilpadi, D V; Raikar, G N; Liu, J; Lemons, J E; Vohra, Y; Gregory, J C

    1998-06-15

    Surgical implant finishing and sterilization procedures were investigated to determine surface characteristics of unalloyed titanium (Ti). All specimens initially were cleaned with phosphoric acid and divided into five groups for comparisons of different surface treatments (C = cleaned as above, no further treatment; CP = C and passivated in nitric acid; CPS = CP and dry-heat sterilized; CPSS = CPS and resterilized; CS = C and dry-heat sterilized). Auger (AES), X-ray photoelectron (XPS), and Raman spectroscopic methods were used to examine surface compositions. The surface oxides formed by all treatments primarily were TiO2, with some Ti2O3 and possibly TiO. Significant concentrations of carbonaceous substances also were observed. The cleaning procedure alone resulted in residual phosphorus, primarily as phosphate groups along with some hydrogen phosphates. A higher percentage of physisorbed water appeared to be associated with the phosphorus. Passivation (with HNO3) alone removed phosphorus from the surface; specimens sterilized without prior passivation showed the thickest oxide and phosphorus profiles, suggesting that passivation alters the oxide characteristics either directly by altering the oxide structure or indirectly by removing moieties that alter the oxide. Raman spectroscopy showed no crystalline order in the oxide. Carbon, oxygen, phosphorus, and nitrogen presence were found to correlate with previously determined surface energy.

  5. Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm

    NASA Astrophysics Data System (ADS)

    Yoon, S. J.; Mackenzie, J. I.

    2014-05-01

    We present our measurements of the key spectroscopic properties over the temperature range of 77 K to 450 K for Nd3+ ions doped in Y3Al5O12 (YAG). From room to liquid nitrogen temperature (LNT), the peak absorption cross section around 808 nm increased by almost 3 times, in conjunction the bandwidth of this absorption line reduced by the same factor. At LNT the peak of the absorption line was blue shifted by 0.25 nm with respect to that at 300 K. The fluorescence spectrum between 850 nm - 1450 nm was measured, from which the emission cross sections for the three main transitions were calculated. One note of particular interest for the dominant emission wavelengths around 1064nm and 1061nm (4F3/2 --> 4I11/2) was the switch in their relative strength below 170K, and at LNT the 1061 nm line has almost twice the cross section as at 1064nm.. The fluorescence and lifetime of the upper laser level (4F3/2) was measured and the effective emission cross section determined by the Fuchtbauer-Ladenburg (F-L) method. The effective emission cross section for 946 nm (R1 --> Z5) increased by more than two times over the 300 K to 77 K range. A numerical fit for the temperature dependent emission cross section at 946 nm and 1064 nm and also calculated absorption coefficient at 808 nm pump diode laser have also obtained from the measured spectroscopic data.

  6. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    DOE PAGES

    Hakel, Peter

    2016-10-01

    Here we report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  7. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    NASA Astrophysics Data System (ADS)

    Hakel, Peter

    2016-10-01

    We report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  8. Synthesis, spectroscopic, single crystal diffraction and potential nonlinear optical properties of novel pyrazoline derivatives: Interplay of experimental and computational analyses.

    PubMed

    Arshad, Muhammad Nadeem; Birinji, Abdulhadi Salih; Khalid, Muhammad; Asiri, Abdullah M; Al-Amry, Khalid A; Aqlan, Faisal M S; Braga, Ataualpa A C

    2018-09-05

    Pyrazoline are widely being studied due to their potential applications in chemical field. Herein, five pyrazolines compounds were synthesized and characterized spectroscopically using nuclear magnetic resonance techniques ( 1 H NMR & 13 C NMR) to determine the structures of molecules along-with UV-Visible and infrared (FT-IR) studies for additional spectroscopic support in characterization of entitle synthesized molecules. Unit cells, specific space groups, bond lengths, bond angles and hydrogen bonding interactions were determined by the x-ray diffraction studies. Further, computational study of compounds with B3LYP/6-311 + G(d,p) level were carried out to explore optimized geometry, spectroscopic data for FT-IR, frontier molecular orbitals (FMOs) and non-linear optical (NLO) parameters. While, UV-Vis spectral were performed by TD-DFT/B3LYP/6-311 + G(d,p) level. The experimental results of spectroscopic and single crystal studies were compared and found in good agreement with the computational. The global reactivity parameters have been calculated with the help of the energy of FMOs. The order for the total first and second order hyperpolarizabilities of 1-5 is found in the following orders: 1 > 4 > 3 > 5 > 2 and 1 > 4 > 5 > 2 > 3 respectively. Overall, greater NLO response than urea molecule prove that investigated molecules are excellent candidate for NLO applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Bowles, Neil; Braude, Ashwin S.; Garland, Ryan; Calcutt, Simon

    2018-03-01

    Observations of the visible/near-infrared reflectance spectrum of Jupiter have been made with the Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) instrument in the spectral range 0.48-0.93 μm in support of the NASA/Juno mission. These spectra contain spectral signatures of gaseous ammonia (NH3), whose abundance above the cloud tops can be determined if we have reliable information on its absorption spectrum. While there are a number of sources of NH3 absorption data in this spectral range, they cover small sub-ranges, which do not necessarily overlap and have been determined from a variety of sources. There is thus considerable uncertainty regarding the consistency of these different sources when modelling the reflectance of the entire visible/near-IR range. In this paper we analyse the VLT/MUSE observations of Jupiter to determine which sources of ammonia absorption data are most reliable. We find that the band model coefficients of Bowles et al. (2008) provide, in general, the best combination of reliability and wavelength coverage over the MUSE range. These band data appear consistent with ExoMOL ammonia line data of Yurchenko et al. (2011), at wavelengths where they overlap, but these latter data do not cover the ammonia absorption bands at 0.79 and 0.765 μm, which are prominent in our MUSE observations. However, we find the band data of Bowles et al. (2008) are not reliable at wavelengths less than 0.758 μm. At shorter wavelengths we find the laboratory observations of Lutz and Owen (1980) provide a good indication of the position and shape of the ammonia absorptions near 0.552 μm and 0.648 μm, but their absorption strengths appear inconsistent with the band data of Bowles et al. (2008) at longer wavelengths. Finally, we find that the line data of the 0.648 μm absorption band of Giver et al. (1975) are not suitable for modelling these data as they account for only 17% of the band absorption and cannot be extended reliably to the cold

  10. Proposal of AAA-battery-size one-shot ATR Fourier spectroscopic imager for on-site analysis: Simultaneous measurement of multi-components with high accuracy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro

    2015-03-01

    For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye

  11. THE YOUNG SOLAR ANALOGS PROJECT. I. SPECTROSCOPIC AND PHOTOMETRIC METHODS AND MULTI-YEAR TIMESCALE SPECTROSCOPIC RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, R. O.; Briley, M. M.; Lambert, R. A.

    2015-12-15

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indicesmore » based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days

  12. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  13. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  14. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  15. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  16. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  17. Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses.

    PubMed

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Eccentric muscle actions of the lower extremity absorb kinetic energy during landing. Greater total sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing has been associated with landing biomechanics considered high risk for anterior cruciate ligament (ACL) injury. We do not know whether groups with different INI EA magnitudes exhibit meaningful differences in ACL-related landing biomechanics and whether INI EA might be useful to identify ACL injury-risk potential. To compare biomechanical factors associated with noncontact ACL injury among sagittal-plane INI EA groups and to determine whether an association exists between sex and sagittal-plane INI EA group assignment to evaluate the face validity of using sagittal-plane INI EA to identify ACL injury risk. Descriptive laboratory study. Research laboratory. A total of 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active individuals volunteered. We assessed landing biomechanics using an electromagnetic motion-capture system and force plate during a double-legged jump-landing task. Total INI EA was used to group participants into high, moderate, and low tertiles. Sagittal- and frontal-plane knee kinematics; peak vertical and posterior ground reaction forces (GRFs); anterior tibial shear force; and internal hip extension, knee extension, and knee varus moments were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to compare male and female representation in the high and low groups. The high group exhibited greater knee-extension moment and posterior GRFs than both the moderate (P < .05) and low (P < .05) groups and greater anterior tibial shear force than the low group (P < .05). No other group differences were noted. Women were not represented more than men in the high group (χ(2) = 1.20, P = .27). Greater sagittal-plane INI EA likely indicates greater ACL loading

  18. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. I - The naphthalene cation (C10H8/+/)

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1991-01-01

    The ultraviolet, visible, and near-infrared absorption spectra of naphthalene (C10H8) and its radical ion (C10H8/+/), formed by vacuum ultraviolet irradiation, were measured in argon and neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion production in the solid phase. The absorption coefficients were calculated for the ion and found lower than previous values, presumably due to the low polarizability of the neon matrix.

  19. Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, R.; Rajkumar, P.

    2014-11-01

    The abstract of this paper explains the presence of minerals in air which causes great concern regarding public health issues. The spectroscopic investigation of air dust particles of several samples in various locations in the state of Tamilnadu, India is reported. Qualitative analyses were carried out to determine the major and minor constituent minerals present in the samples based on the FTIR, XRD absorption peaks. This study also identified the minerals like quartz, asbestos, kaolinite, calcite, hematite, montmorillonite, nacrite and several other trace minerals in the air dust particles. The presents of quartz is mainly found in all the samples invariably. Hence the percentage of quartz and its crystalline nature were determined with the help of extinction co-efficient and crystallinity index respectively. The shape and size of the particulates are studied with SEM analysis.

  20. Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: A spectroscopic study in solution and solid states

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ismail, Lamia A.; Adam, Abdel Majid A.

    2015-01-01

    Given the great importance of the various uses of 1,8-naphthalimides in the trends of biology, medicine and industry, the current study focused on extending the scope of these dyes by introducing some of their charge-transfer (CT) complexes. For this purpose, two highly fluorescent bis-1,8-naphthalimide dyes and their complexes with some π-acceptors have been synthesized and characterized spectroscopically. The π-acceptors include picric acid (PA), chloranilic acid (CLA), tetracyanoquinodimethane (TCNQ) and dichlorodicyanobenzoquinone (DDQ). The molecular structure, spectroscopic and fluorescence properties as well as the binding modes were deduced from IR, UV-vis and 1H NMR spectral studies. The binding ratio of complexation was determined to be 1:1 according to the elemental analyses and photometric titrations. It has been found that the order of acceptance ability for the different acceptors is TCNQ > DDQ > CLA > PA. The photostability of 1,8-naphthalimide dye as a donor and its charge-transfer complex doped in polymethyl methacrylate/PMMA were exposed to UV-Vis radiation and the change in the absorption spectra was achieved at different times during irradiation period.

  1. Spectroscopic and DFT-based computational studies on the molecular electronic structural characteristics and the third-order nonlinear property of an organic NLO crystal: (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide

    NASA Astrophysics Data System (ADS)

    Sasikala, V.; Sajan, D.; Joseph, Lynnette; Balaji, J.; Prabu, S.; Srinivasan, P.

    2017-04-01

    Single crystals of (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide (CBMBSH) have been grown by slow evaporation crystal growth method. The structure stabilizing intramolecular donor-acceptor interactions and the presence of the Nsbnd H⋯O, Csbnd H⋯O and Csbnd H⋯C(π) hydrogen bonds in the crystal were confirmed by vibrational spectroscopic and DFT methods. The linear optical absorption characteristics of the solvent phase of CBMBSH were investigated using UV-Vis-NIR spectroscopic and TD-DFT approaches. The 2PA assisted RSA nonlinear absorption and the optical limiting properties of CBMBSH were studied using the open-aperture Z-scan method. The topological characteristics of the electron density have been determined using the quantum theory of atoms in molecules method.

  2. VUV Spectroscopic Study of the D 1Π u State of Molecular Deuterium

    NASA Astrophysics Data System (ADS)

    Dickenson, G. D.; Ivanov, T. I.; Ubachs, W.; Roudjane, M.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Tchang-Brillet, W.-Ü. L.; Glass-Maujean, M.; Schmoranzer, H.; Knie, A.; Kübler, S.; Ehresmann, A.

    2011-11-01

    The D 1Π u - ? absorption system of molecular deuterium has been re-investigated using the VUV Fourier-Transform (FT) spectrometer at the DESIRS beamline of the synchrotron SOLEIL and photon-induced fluorescence spectrometry (PIFS) using the 10 m normal incidence monochromator at the synchrotron BESSY II. Using the FT spectrometer absorption spectra in the range 72-82 nm were recorded in quasi static gas at 100 K and in a free flowing jet at a spectroscopic resolution of 0.50 and 0.20 cm-1 respectively. The narrow Q-branch transitions, probing states of Π- symmetry, were observed up to vibrational level v = 22. The states of Π+ symmetry, known to be broadened due to predissociation and giving rise to asymmetric Beutler-Fano resonances, were studied up to v = 18. The 10 m normal incidence beamline setup at BESSY II was used to simultaneously record absorption, dissociation, ionization and fluorescence decay channels from which information on the line intensities, predissociated widths, and Fano q-parameters were extracted. R-branch transitions were observed up to v = 23 for J = 1-3 as well as several transitions for J = 4 and 5 up to v = 22 and 18 respectively. The Q-branch transitions are found to weakly predissociate and were observed from v = 8 to the final vibrational level of the state v = 23. The spectroscopic study is supported by two theoretical frameworks. Results on the Π- symmetry states are compared to ab initio multi-channel-quantum defect theory (MQDT) calculations, demonstrating that these calculations are accurate to within 0.5 cm-1. Furthermore, the calculated line intensities of Q-lines agree well with measured values. For the states of Π+ symmetry a perturbative model based on a single bound state interacting with a predissociation continuum was explored, yielding good agreement for predissociation widths, Fano q-parameters and line intensities.

  3. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Takahiro, E-mail: nakamu@tagen.tohoku.ac.jp; Sato, Shunichi; Herbani, Yuliati

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empiricalmore » equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.« less

  4. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, B., E-mail: bkarthik@nitt.edu; Hariharan, S.; Udayabhaskar, R.

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO throughmore » hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.« less

  5. High Velocity Absorption during Eta Car B's Periastron Passage

    NASA Technical Reports Server (NTRS)

    Nielsen, Krister E.; Groh, J. H.; Hillier, J.; Gull, Theodore R.; Owocki, S. P.; Okazaki, A. T.; Damineli, A.; Teodoro, M.; Weigelt, G.; Hartman, H.

    2010-01-01

    Eta Car is one of the most luminous massive stars in the Galaxy, with repeated eruptions with a 5.5 year periodicity. These events are caused by the periastron passage of a massive companion in an eccentric orbit. We report the VLT/CRIRES detection of a strong high-velocity, (<1900 km/s) , broad absorption wing in He I at 10833 A during the 2009.0 periastron passage. Previous observations during the 2003.5 event have shown evidence of such high-velocity absorption in the He I 10833 transition, allowing us to conclude that the high-velocity gas is crossing the line-of-sight toward Eta Car over a time period of approximately 2 months. Our analysis of HST/STlS archival data with observations of high velocity absorption in the ultraviolet Si IV and C IV resonance lines, confirm the presence of a high-velocity material during the spectroscopic low state. The observations provide direct detection of high-velocity material flowing from the wind-wind collision zone around the binary system, and we discuss the implications of the presence of high-velocity gas in Eta Car during periastron

  6. The GEISA 2009 Spectroscopic Database System and its CNES/CNRS Ether Products and Services Center Interactive Distribution

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, Nicole; Crépeau, Laurent; Capelle, Virginie; Scott, Noëlle; Armante, Raymond; Chédin, Alain; Boonne, Cathy; Poulet-Crovisier, Nathalie

    2010-05-01

    The GEISA (1) (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer-accessible database, initiated in 1976, is developed and maintained at LMD (Laboratoire de Météorologie Dynamique, France) a system comprising three independent sub-databases devoted respectively to : line transition parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. The updated 2009 edition (GEISA-09) archives, in its line transition parameters sub-section, 50 molecules, corresponding to 111 isotopes, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031 cm-1. Detailed description of the whole database contents will be documented. GEISA and GEISA/IASI are implemented on the CNES/CNRS Ether Products and Services Centre WEB site (http://ether.ipsl.jussieu.fr), where all archived spectroscopic data can be handled through general and user friendly associated management software facilities. These facilities will be described and widely illustrated, as well. Interactive demonstrations will be given if technical possibilities are feasible at the time of the Poster Display Session. More than 350 researchers are registered for on line use of GEISA on Ether. Currently, GEISA is involved in activities (2) related to the remote sensing of the terrestrial atmosphere thanks to the sounding performances of new generation of hyperspectral Earth' atmospheric sounders, like AIRS (Atmospheric Infrared Sounder -http://www-airs.jpl.nasa.gov/), in the USA, and IASI (Infrared Atmospheric Sounding Interferometer -http://earth-sciences.cnes.fr/IASI/) in Europe, using the 4A radiative transfer model (3) (4A/LMD http://ara.lmd.polytechnique.fr; 4A/OP co-developed by LMD and NOVELTIS -http://www.noveltis.fr/) with the support of CNES (2006). Refs: (1) Jacquinet-Husson N., N.A. Scott, A. Chédin,L. Crépeau, R. Armante, V. Capelle

  7. Spectroscopic properties of Sm3 + ions doped Alkaliborate glasses for photonics applications

    NASA Astrophysics Data System (ADS)

    Nagaraj, R.; Suthanthirakumar, P.; Vijayakumar, R.; Marimuthu, K.

    2017-10-01

    A new series of Sm3 + doped alkaliborate glasses have been prepared by melt quenching technique and their structural and spectroscopic properties were analysed employing XRD, FTIR, optical absorption, photoluminescence and decay spectral measurements in order to explore their suitability for photonic applications. The amorphous nature have been confirmed through XRD analysis and the FTIR spectra reveal the presence of fundamental stretching and bending vibrations of the borate networks in the prepared glasses. From the absorption peak positions, bonding parameter (δ) values were calculated to examine the nature of the metal-ligand bond. The optical band gap (Eopt) corresponds to the direct and indirect allowed transitions and the Urbach energies (ΔE) were calculated from the absorption spectra to understand the electronic band structure of the studied glasses. The Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6) were determined to explore the symmetry of the ligand environment around the Sm3 + ions in the studied glasses. The luminescence spectra exhibit four emission bands in the visible region due to the 4G5/2 → 6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions. The radiative parameters such as transition probability (A), stimulated emission cross-section (σPE), branching ratios (βR) and radiative lifetime (τR) have been determined from the luminescence spectra using JO theory to ensure the suitability of the studied glasses for optoelectronic applications. The luminescence spectra were characterized through CIE 1931 chromaticity diagram to examine the dominant emission color of the studied glasses. The lifetime values of the Sm3 + doped studied glasses pertaining to the 4G5/2 excited level have been determined through decay curve measurements and the non-exponential decay curves were fitted to the Inokuti-Hirayama model to analyze the energy transfer mechanism between the nearby Sm3 + ions. The obtained results were discussed and compared with the

  8. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  9. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    PubMed

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  10. Spectroscopic studies of Wolf-Rayet stars with absorption lines. VIII - HD 193793

    NASA Astrophysics Data System (ADS)

    Conti, P. S.; Dupre, D. Roussel; Massey, P.; Rensing, M.

    1984-07-01

    The authors present absorption-line velocities for the O type star spanning over 16 years and emission-line velocities for the WC star covering 10 years. They find no periodicities in either of these sets of data. In particular, they are unable to confirm the claim of Lamontagne, Moffat, and Seggewiss that the two stars are in orbit about one another. Rather, it seems that a generic relationship between the two components has not been established and one is dealing with a situation in which two stars are in the same line of sight.

  11. Spectroscopic ellipsometry study of Cu2ZnSnS4 bulk poly-crystals

    NASA Astrophysics Data System (ADS)

    Levcenko, S.; Hajdeu-Chicarosh, E.; Garcia-Llamas, E.; Caballero, R.; Serna, R.; Bodnar, I. V.; Victorov, I. A.; Guc, M.; Merino, J. M.; Pérez-Rodriguez, A.; Arushanov, E.; León, M.

    2018-04-01

    The linear optical properties of Cu2ZnSnS4 bulk poly-crystals have been investigated using spectroscopic ellipsometry in the range of 1.2-4.6 eV at room temperature. The characteristic features identified in the optical spectra are explained by using the Adachi analytical model for the interband transitions at the corresponding critical points in the Brillouin zone. The experimental data have been modeled over the entire spectral range taking into account the lowest E0 transition near the fundamental absorption edge and E1A and E1B higher energy interband transitions. In addition, the spectral dependences of the refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity values have been accurately determined and are provided since they are essential data for the design of Cu2ZnSnS4 based optoelectronic devices.

  12. Quantitative spectroscopic analyses in the IACOB+OWN project: Massive O-type stars in the Galaxy with the current Gaia information

    NASA Astrophysics Data System (ADS)

    Holgado, Gonzalo; Simón-Díaz, Sergio; Barbá, Rodolfo

    2017-11-01

    We present the results from the quantitative spectroscopic analysis of ~280 likely single O stars targeted by the IACOB and OWN surveys. This implies the largest sample of Galactic O-type stars analyzed homogeneously to date. We used the iacob-broad and iacob-gbat tools (see Simón-Díaz et al. 2011,2015) to obtain the complete set of spectroscopic parameters which can be determined from the optical spectrum of O-type stars: projected rotational velocity (v sin i), macroturbulence velocity (v mac), effective temperature (T eff), gravity (logg), wind-strength (logQ), helium abundance (Y He), microturbulence (ξt), and the exponent of the wind-law (β).

  13. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Grace O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it,more » from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.« less

  14. CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-12-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilizes measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin I using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when I ≠ j as a function of the measured angular cross-correlation when I = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4 per cent. For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  15. Glutathione binding to dirhodium tetraacetate: a spectroscopic, mass spectral and computational study of an anti-tumour compound.

    PubMed

    Wong, Daisy L; Zhang, Angel; Faponle, Abayomi S; de Visser, Sam P; Stillman, Martin J

    2017-05-24

    Glutathione (γ-l-glutamyl-l-cysteinyl-glycine) is a ubiquitous tripeptide found in all plants and animals. Glutathione has key roles as a metallochaperone and as a cellular thiol involved in metabolism. Little is known about how glutathione interacts with organometallic compounds in vivo. Here, we report the reactions of glutathione in vitro with dirhodium(ii) tetraacetate (tetrakis(μ-acetato)dirhodium(ii), Rh 2 (OAc) 4 ), a compound with anti-tumour properties. Electrospray ionization mass spectrometry, UV-Visible absorption and circular dichroism spectroscopic methods were used to determine the stoichiometries and optical properties of the final conjugate. Computational analyses were used to predict the binding modes of glutathione to the Rh 2 (OAc) 4 , and report on the orbital assignments for the resulting products. We explored the competition by GSH for methionine-bound axial sites on Rh 2 (OAc) 4 to investigate the use of weak thioether to protect its cellular-based anti-cancer activity. Our study highlights the important role that axial ligation would play in deactivating or significantly decreasing the efficacy of this bimetallic anti-tumor drug. The computational data explain the stability of the mono-adduct and the appearance of new absorption bands in the UV region including retention of the Rh-Rh single bond. Additionally, these data show that glutathione can effectively disable the potency of these metallo-drugs through orbital overlap of the entire Rh-Rh core as a result of the strong binding. Electronic absorption spectroscopy, mass spectrometry and computational analysis are a powerful combination in understanding possible chemical reactions in vivo and this information can be used to synthetically tune dirhodium complexes for use in the fight against cancer.

  16. Spectroscopic Ellipsometry Studies of n-i-p Hydrogenated Amorphous Silicon Based Photovoltaic Devices

    PubMed Central

    Karki Gautam, Laxmi; Junda, Maxwell M.; Haneef, Hamna F.; Collins, Robert W.; Podraza, Nikolas J.

    2016-01-01

    Optimization of thin film photovoltaics (PV) relies on characterizing the optoelectronic and structural properties of each layer and correlating these properties with device performance. Growth evolution diagrams have been used to guide production of materials with good optoelectronic properties in the full hydrogenated amorphous silicon (a-Si:H) PV device configuration. The nucleation and evolution of crystallites forming from the amorphous phase were studied using in situ near-infrared to ultraviolet spectroscopic ellipsometry during growth of films prepared as a function of hydrogen to reactive gas flow ratio R = [H2]/[SiH4]. In conjunction with higher photon energy measurements, the presence and relative absorption strength of silicon-hydrogen infrared modes were measured by infrared extended ellipsometry measurements to gain insight into chemical bonding. Structural and optical models have been developed for the back reflector (BR) structure consisting of sputtered undoped zinc oxide (ZnO) on top of silver (Ag) coated glass substrates. Characterization of the free-carrier absorption properties in Ag and the ZnO + Ag interface as well as phonon modes in ZnO were also studied by spectroscopic ellipsometry. Measurements ranging from 0.04 to 5 eV were used to extract layer thicknesses, composition, and optical response in the form of complex dielectric function spectra (ε = ε1 + iε2) for Ag, ZnO, the ZnO + Ag interface, and undoped a-Si:H layer in a substrate n-i-p a-Si:H based PV device structure. PMID:28773255

  17. Distorted tetrahedral nickel-nitrosyl complexes: spectroscopic characterization and electronic structure.

    PubMed

    Soma, Shoko; Van Stappen, Casey; Kiss, Mercedesz; Szilagyi, Robert K; Lehnert, Nicolai; Fujisawa, Kiyoshi

    2016-09-01

    The linear nickel-nitrosyl complex [Ni(NO)(L3)] supported by a highly hindered tridentate nitrogen-based ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3), was prepared by the reaction of the potassium salt of the ligand with the nickel-nitrosyl precursor [Ni(NO)(Br)(PPh 3 ) 2 ]. The obtained nitrosyl complexes as well as the corresponding chlorido complexes [Ni(NO)(Cl)(PPh 3 ) 2 ] and [Ni(Cl)(L3)] were characterized by X-ray crystallography and different spectroscopic methods including IR/far-IR, UV-Vis, NMR, and multi-edge X-ray absorption spectroscopy at the Ni K-, Ni L-, Cl K-, and P K-edges. For comparative electronic structure analysis we also performed DFT calculations to further elucidate the electronic structure of [Ni(NO)(L3)]. These results provide the nickel oxidation state and the character of the Ni-NO bond. The complex [Ni(NO)(L3)] is best described as [Ni (II) (NO (-) )(L3)], and the spectroscopic results indicate that the phosphane complexes have a similar [Ni (II) (NO (-) )(X)(PPh 3 ) 2 ] ground state.

  18. Spectroscopic mode identification of γ Doradus stars: frequencies, modes, rotation and wave leakage

    NASA Astrophysics Data System (ADS)

    Pollard, Karen R.; Brunsden, E.; Davie, M.; Greenwood, A.; Cottrell, P. L.

    The gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. The MUSICIAN programme at the University of Canterbury has been successfully identifying frequencies and pulsation modes in many γ Doradus stars using hundreds of precise, high resolution spectroscopic observations obtained with the 1.0 m telescope and HERCULES spectrograph at the Mt John Observatory in New Zealand. In this paper we present a summary of our spectroscopic frequency and mode identifications. Of particular interest from our spectroscopic analyses are: the prevalence of (l, m) = 1, 1 modes in many γ Dor stars; the importance of stellar rotation in the interpretation of the frequency and mode identification; and finally, possible evidence of wave leakage in one of these stars.

  19. Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.

    1991-01-01

    Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.

  20. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  1. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage.

    PubMed

    Rieppo, L; Saarakkala, S; Närhi, T; Helminen, H J; Jurvelin, J S; Rieppo, J

    2012-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is a promising method that enables the analysis of spatial distribution of biochemical components within histological sections. However, analysis of FT-IR spectroscopic data is complicated since absorption peaks often overlap with each other. Second derivative spectroscopy is a technique which enhances the separation of overlapping peaks. The objective of this study was to evaluate the specificity of the second derivative peaks for the main tissue components of articular cartilage (AC), i.e., collagen and proteoglycans (PGs). Histological bovine AC sections were measured before and after enzymatic removal of PGs. Both formalin-fixed sections (n = 10) and cryosections (n = 6) were investigated. Relative changes in the second derivative peak heights caused by the removal of PGs were calculated for both sample groups. The results showed that numerous peaks, e.g., peaks located at 1202 cm(-1) and 1336 cm(-1), altered less than 5% in the experiment. These peaks were assumed to be specific for collagen. In contrast, two peaks located at 1064 cm(-1) and 1376 cm(-1) were seen to alter notably, approximately 50% or more. These peaks were regarded to be specific for PGs. The changes were greater in cryosections than formalin-fixed sections. The results of this study suggest that the second derivative spectroscopy offers a practical and more specific method than routinely used absorption spectrum analysis methods to obtain compositional information on AC with FT-IR spectroscopic imaging. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  3. Arsenic in Ironite fertilizer: The absorption by hamsters and the chemical form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aposhian, M.M.; Koch, I.; Avram, M.D.

    2009-09-11

    We determined the gastrointestinal absorption of the arsenic in Ironite, a readily available fertilizer, for male hamsters (Golden Syrian), considered to be an excellent model for how the human processes inorganic arsenic. Urine and feces were collected after administering an aqueous suspension of Ironite by stomach tube. In addition, we studied the forms and oxidation states of arsenic in Ironite by synchrotron spectroscopic techniques. The absorption of the arsenic in Ironite (1-0-0) was 21.2% and the absorption relative to sodium arsenite was 31.0%. Our results using XANES spectra determinations indicate that Ironite contains scorodite (AsV) as well as previously reportedmore » arsenopyrite (As(-1)). Since the 1-0-0 Ironite is readily available for purchase, its risk assessment for children by professionals is recommended. This is especially important because it is used to fertilize large areas of grass in playgrounds and parks where children play. The absorption of the arsenic in it, the hand to mouth activity of children, and the potential of ground water contamination makes the use of 1-0-0 Ironite as a fertilizer a potential environmental hazard.« less

  4. Lower Extremity Energy Absorption and Biomechanics During Landing, Part I: Sagittal-Plane Energy Absorption Analyses

    PubMed Central

    Norcross, Marc F.; Lewek, Michael D.; Padua, Darin A.; Shultz, Sandra J.; Weinhold, Paul S.; Blackburn, J. Troy

    2013-01-01

    Context: Eccentric muscle actions of the lower extremity absorb kinetic energy during landing. Greater total sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing has been associated with landing biomechanics considered high risk for anterior cruciate ligament (ACL) injury. We do not know whether groups with different INI EA magnitudes exhibit meaningful differences in ACL-related landing biomechanics and whether INI EA might be useful to identify ACL injury-risk potential. Objective: To compare biomechanical factors associated with noncontact ACL injury among sagittal-plane INI EA groups and to determine whether an association exists between sex and sagittal-plane INI EA group assignment to evaluate the face validity of using sagittal-plane INI EA to identify ACL injury risk. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: A total of 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active individuals volunteered. Intervention(s): We assessed landing biomechanics using an electromagnetic motion-capture system and force plate during a double-legged jump-landing task. Main Outcome Measure(s): Total INI EA was used to group participants into high, moderate, and low tertiles. Sagittal- and frontal-plane knee kinematics; peak vertical and posterior ground reaction forces (GRFs); anterior tibial shear force; and internal hip extension, knee extension, and knee varus moments were identified and compared across groups using 1-way analyses of variance. We used a χ2 analysis to compare male and female representation in the high and low groups. Results: The high group exhibited greater knee-extension moment and posterior GRFs than both the moderate (P < .05) and low (P < .05) groups and greater anterior tibial shear force than the low group (P < .05). No other group differences were noted. Women were not represented more than

  5. High definition infrared spectroscopic imaging for lymph node histopathology.

    PubMed

    Leslie, L Suzanne; Wrobel, Tomasz P; Mayerich, David; Bindra, Snehal; Emmadi, Rajyasree; Bhargava, Rohit

    2015-01-01

    Chemical imaging is a rapidly emerging field in which molecular information within samples can be used to predict biological function and recognize disease without the use of stains or manual identification. In Fourier transform infrared (FT-IR) spectroscopic imaging, molecular absorption contrast provides a large signal relative to noise. Due to the long mid-IR wavelengths and sub-optimal instrument design, however, pixel sizes have historically been much larger than cells. This limits both the accuracy of the technique in identifying small regions, as well as the ability to visualize single cells. Here we obtain data with micron-sized sampling using a tabletop FT-IR instrument, and demonstrate that the high-definition (HD) data lead to accurate identification of multiple cells in lymph nodes that was not previously possible. Highly accurate recognition of eight distinct classes - naïve and memory B cells, T cells, erythrocytes, connective tissue, fibrovascular network, smooth muscle, and light and dark zone activated B cells was achieved in healthy, reactive, and malignant lymph node biopsies using a random forest classifier. The results demonstrate that cells currently identifiable only through immunohistochemical stains and cumbersome manual recognition of optical microscopy images can now be distinguished to a similar level through a single IR spectroscopic image from a lymph node biopsy.

  6. Spectroscopic and laser properties of Er{sup 3+} doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, S.; Seshadri, M.; Reddy Prasad, V.

    2015-10-15

    Highlights: • Erbium doped different fluoro-phosphate glasses are prepared and characterized. • Spectroscopic properties have been determined using Judd–Ofelt and Mc-Cumber theory. • Prominent laser transition Er{sup 3+}:{sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} is observed at 1.53 μm. - Abstract: Different fluoro-phosphate glasses doped with 0.5 mol% Er{sup 3+} doped are prepared by melt quenching method. Both structural and spectroscopic properties have been characterized in order to evaluate their potential as both laser source and amplifier materials. Optical absorption measurements are carried out and analyzed through Judd–Ofelt and Mc-Cumber theories where spectroscopic parameters such as intensity parameters Ω{sub l}more » (λ = 2,4,6), transition probabilities, radiative lifetimes, stimulated absorption cross-sections and emission cross-sections at 1.5 μm have been evaluated for Er{sup 3+} doped different fluorophosphate glasses. The various luminescence and gain properties are explained from photoluminescence studies. The decay curve analysis have been done for obtaining the decay time constants of Er{sup 3+} excited level {sup 4}I{sub 13/2} in all the fluoro-phosphate glasses. The obtained results of each glass matrix are compared with the equivalent parameters for several other host glasses. These fluoro-phosphate glasses are found to be suitable candidates for laser and amplifier applications.« less

  7. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  8. Kinetic and spectroscopic characterization of tungsten-substituted DMSO reductase from Rhodobacter sphaeroides.

    PubMed

    Pacheco, Josué; Niks, Dimitri; Hille, Russ

    2018-03-01

    We have examined the kinetic and spectroscopic properties of a tungsten-substituted form of DMSO reductase from Rhodobacter sphaeroides, an enzyme that normally possesses molybdenum. Partial reduction with sodium dithionite yields a well-resolved W(V) EPR signal of the so-called "high-g split" type that exhibits markedly greater g-anisotropy than the corresponding Mo(V) signal of the native form of the enzyme, with the g values shifted to higher magnetic field by as much as Δg ave  = 0.056. Deuteration of the enzyme confirms that the coupled proton is solvent-exchangeable, allowing us to accurately simulate the tungsten hyperfine coupling. Global curve-fitting analysis of UV/vis absorption spectra observed in the course of the reaction of the tungsten-substituted enzyme with sodium dithionite affords a well-defined absorption spectrum for the W(V) species. Surprisingly, the absorption spectrum for this species exhibits significantly larger molar extinction coefficients than either the reduced or the oxidized spectrum. This spectrum, in conjunction with those for fully oxidized W(VI) and fully reduced W(IV) enzyme, has been used to deconvolute the absorption spectra seen in the course of turnover, in the which enzyme is reacted with sodium dithionite and DMSO, demonstrating that the W(V) is an authentic catalytic intermediate that accumulates to approximately 50% of the total enzyme in the steady state.

  9. Scramjet Performance Assessment Using Water Absorption Diagnostics (U)

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George

    1995-01-01

    Simultaneous multiple path measurements of temperature and H2O concentration will be presented for the AIMHYE test entries in the NASA Ames 16-Inch Shock Tunnel. Monitoring the progress of high temperature chemical reactions that define scramjet combustor efficiencies is a task uniquely suited to nonintrusive optical diagnostics. One application strategy to overcome the many challenges and limitations of nonintrusive measurements is to use laser absorption spectroscopy coupled with optical fibers. Absorption spectroscopic techniques with rapidly tunable lasers are capable of making simultaneous measurements of mole fraction, temperature, pressure, and velocity. The scramjet water absorption diagnostic was used to measure combustor efficiency and was compared to thrust measurements using a nozzle force balance and integrated nozzle pressures to develop a direct technique for evaluating integrated scramjet performance. Tests were initially performed with a diode laser tuning over a water absorption feature at 1391.7 nm. A second diode laser later became available at a wavelength near 1343.3 nm covering an additional water absorption feature and was incorporated in the system for a two-wavelength technique. Both temperature and mole fraction can be inferred from the lineshape analysis using this approach. Additional high temperature spectroscopy research was conducted to reduce uncertainties in the scramjet application. The lasers are optical fiber coupled to ports at the combustor exit and in the nozzle region. The output from the two diode lasers were combined in a single fiber, and the resultant two-wavelength beam was subsequently split into four legs. Each leg was directed through 60 meters of optical fiber to four combustor exit locations for measurement of beam intensity after absorption by the water within the flow. Absorption results will be compared to 1D combustor analysis using RJPA and nozzle CFD computations as well as to data from a nozzle metric

  10. Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards.

    PubMed

    Riley, Mark R; Lucas, Pierre; Le Coq, David; Juncker, Christophe; Boesewetter, Dianne E; Collier, Jayne L; DeRosa, Diana M; Katterman, Matthew E; Boussard-Plédel, Catherine; Bureau, Bruno

    2006-11-05

    Health risks associated with the inhalation of biological materials have been a topic of great concern; however, there are no rapid and automatable methods available to evaluate the potential health impact of inhaled materials. Here we describe a novel approach to evaluate the potential toxic effects of materials evaluated through cell-based spectroscopic analysis. Anchorage-dependent cells are grown on the surface of optical fibers transparent to infrared light. The probe system is composed of a single chalcogenide fiber (composed of Te, As, and Se) acting as both the sensor and transmission line for infrared optical signals. The cells are exposed to potential toxins and alterations of cellular composition are monitored through their impact on cellular spectral features. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber through spectral changes between 3,000 and 600 cm(-1) (3,333-16,666 nm). Cell physiology, composition, and function are non-invasively tracked through monitoring infrared light absorption by the cell layer. This approach is demonstrated with an immortalized lung cell culture (A549, human lung carcinoma epithelia) in response to a variety of inhalation hazards including gliotoxin (a fungal metabolite), etoposide (a genotoxin), and methyl methansesulfonate (MMS, an alkylating agent). Gliotoxin impacts cell metabolism, etoposide impacts nucleic acids and the cell cycle, and MMS impacts nucleic acids and induces an immune response. This spectroscopic method is sensitive, non-invasive, and provides information on a wide range of cellular damage and response mechanisms and could prove useful for cell response screening of pharmaceuticals or for toxicological evaluations. (c) 2006 Wiley Periodicals, Inc.

  11. A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags

    NASA Astrophysics Data System (ADS)

    Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.

    2016-03-01

    Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.

  12. Accurate spectroscopic redshift of the multiply lensed quasar PSOJ0147 from the Pan-STARRS survey

    NASA Astrophysics Data System (ADS)

    Lee, C.-H.

    2017-09-01

    Context. The gravitational lensing time delay method provides a one-step determination of the Hubble constant (H0) with an uncertainty level on par with the cosmic distance ladder method. However, to further investigate the nature of the dark energy, a H0 estimate down to 1% level is greatly needed. This requires dozens of strongly lensed quasars that are yet to be delivered by ongoing and forthcoming all-sky surveys. Aims: In this work we aim to determine the spectroscopic redshift of PSOJ0147, the first strongly lensed quasar candidate found in the Pan-STARRS survey. The main goal of our work is to derive an accurate redshift estimate of the background quasar for cosmography. Methods: To obtain timely spectroscopically follow-up, we took advantage of the fast-track service programme that is carried out by the Nordic Optical Telescope. Using a grism covering 3200-9600 Å, we identified prominent emission line features, such as Lyα, N V, O I, C II, Si IV, C IV, and [C III] in the spectra of the background quasar of the PSOJ0147 lens system. This enables us to determine accurately the redshift of the background quasar. Results: The spectrum of the background quasar exhibits prominent absorption features bluewards of the strong emission lines, such as Lyα, N V, and C IV. These blue absorption lines indicate that the background source is a broad absorption line (BAL) quasar. Unfortunately, the BAL features hamper an accurate determination of redshift using the above-mentioned strong emission lines. Nevertheless, we are able to determine a redshift of 2.341 ± 0.001 from three of the four lensed quasar images with the clean forbidden line [C III]. In addition, we also derive a maximum outflow velocity of 9800 km s-1 with the broad absorption features bluewards of the C IV emission line. This value of maximum outflow velocity is in good agreement with other BAL quasars.

  13. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials

    NASA Astrophysics Data System (ADS)

    Lyapin, A. A.; Fedorov, P. P.; Garibin, E. A.; Malov, A. V.; Osiko, V. V.; Ryabochkina, P. A.; Ushakov, S. N.

    2013-08-01

    The laser quality transparent СаF2:Tm fluoride ceramics has been prepared by hot forming. Comparative study of absorption and emission spectra of СаF2:Tm (4 mol.% TmF3) ceramic and single crystal samples demonstrated that these materials possess almost identical spectroscopic properties. Laser oscillations of СаF2:Tm ceramics were obtained at 1898 nm under diode pumping, with the slope efficiency of 5.5%. Also, the continuous-wave (CW) laser have been obtained for СаF2:Tm single crystal at 1890 nm pumped by a diode laser was demonstrated.

  14. Spectroscopic properties of Er3+-doped fluorotellurite glasses containing various modifiers

    NASA Astrophysics Data System (ADS)

    Burtan-Gwizdała, Bożena; Reben, Manuela; Cisowski, Jan; Grelowska, Iwona; Yousef, El Sayed; Algarni, Hamed; Lisiecki, Radosław; Nosidlak, Natalia

    2017-11-01

    We have investigated the optical and spectroscopic properties of new Er3+-doped fluorotellurite glasses with the basic molar composition 75%TeO2-10%P2O5-10%ZnO-5%PbF2, modified by replacing 5%TeO2 by four various metal oxides, namely MgO, PbO, SrO and CdO. The ellipsometric data have provided a Sellmeier-type dispersion relation of the refractive index of the investigated glasses. The optical absorption edge has been described within the Urbach approach, while the absorption and fluorescence spectra have been analyzed in terms of the standard Judd-Ofelt theory along with the photoluminescence decay of the 4I13/2 and 4S3/2 levels of the Er3+ ion. The absorption and emission spectra of the 4I15/2 ↔ 4I13/2 infrared transition have been analyzed within the McCumber theory to yield the peak emission cross-section and figure of merit (FOM) for the amplifier gain. It appears that the glass containing MgO as a modifier is characterized by the largest FOM suggesting that the fluorotellurite matrix with this oxide can be a good novel host for Er3+ ion doping. Finally, we propose a new simple method to calculate the mean transition energy of the McCumber approach as the arithmetic average of the barycenter wavenumbers of absorption and emission spectra.

  15. Influence of silver nanoparticles on the spectroscopic properties of Sm{sup 3+} doped boro-phosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthanthirakumar, P.; Marimuthu, K., E-mail: emari-ram2000@yahoo.com

    The Sm{sup 3+} doped novel boro-phosphate glasses containing silver nanoparticles (NPs) (SmBPxA) have been prepared following the melt quenching technique and their structural and spectroscopic behavior were studied through HR-TEM, optical absorption and photoluminescence spectral measurements. The TEM analysis validates the existence of Ag NPs with an average diameter of ~8 nm. The Surface plasmon resonance (SPR) band of silver NPs was found at around 600 nm from the absorption spectrum of the Sm{sup 3+} ions free glass sample. The optical band gap energy (E{sub opt}) corresponding to the direct and indirect allowed transitions and the Urbach energy (ΔE) valuesmore » were determined from the absorption spectral measurements. The luminescence intensity is found to get enhance when the Ag NPs were embedded along with the Sm{sup 3+} ions in the prepared glasses due to the local electric field effect around the rare earth (RE) ion site produced by the SPR of Ag NPs.« less

  16. Interaction of sodium benzoate with trypsin by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Mu, Yue; Lin, Jing; Liu, Rutao

    2011-12-01

    The toxicity of sodium benzoate to trypsin was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, UV-visible absorption spectroscopy and circular dichroism (CD) spectroscopy under mimic physiological conditions. Sodium benzoate could unfold trypsin by decreasing the β-sheet structure, which leads to more exposure of internal amino acid groups and the obvious intrinsic fluorescence quenching with the rising concentration of sodium benzoate. The results of spectroscopic measurements indicated that sodium benzoate changed the internal microenvironment of trypsin and induced the alteration of the whole molecule, which were performed toxic effects on the organism. Trypsin and sodium benzoate interacted with each other to produce a substance by van der Waals forces and hydrogen bond, the model of which was shown by AutoDock software.

  17. Laser-Based Remote Sensing of Explosives by a Differential Absorption and Scattering Method

    NASA Astrophysics Data System (ADS)

    Ayrapetyan, V. S.

    2018-01-01

    A multifunctional IR parametric laser system is developed and tested for remote detection and identification of atmospheric gases, including explosive and chemically aggressive substances. Calculations and experimental studies of remote determination of the spectroscopic parameters of the best known explosive substances TNT, RDX, and PETN are carried out. The feasibility of high sensitivity detection ( 1 ppm) of these substances with the aid of a multifunctional IR parametric light source by differential absorption and scattering is demonstrated.

  18. Er-doped sesquioxides for 1.5-micron lasers - spectroscopic comparisons

    NASA Astrophysics Data System (ADS)

    Merkle, Larry D.; Ter-Gabrielyan, Nikolay

    2013-05-01

    Due to the favorable thermal properties of sesquioxides as hosts for rare earth laser ions, we have recently studied the spectroscopy of Er:Lu2O3 in the 1400-1700 nm wavelength range, and here report its comparison with our earlier results on Er:Y2O3 and Er:Sc2O3. These studies include absorption and fluorescence spectra, fluorescence lifetimes, and inference of absorption and stimulated emission cross sections, all as a function of temperature. At room temperature, optical absorption limits practical laser operation to wavelengths longer than about 1620 nm. In that spectral range, the strongest stimulated emission peak is that at 1665 nm in Er:Sc2O3, with an effective cross section considerably larger than those of Er:Y2O3 and Er:Lu2O3. At 77K, the absorption is weak enough for efficient laser operation at considerably shorter wavelengths, where there are peaks with much larger stimulated emission cross sections. The three hosts all have peaks near 1575-1580 nm with comparably strong cross sections. As we have reported earlier, it is possible to lase even shorter wavelengths efficiently at this temperature, in particular the line at 1558 nm in Er:Sc2O3. Our new spectroscopic studies of Er:Lu2O3 indicate that its corresponding peak, like that of Er:Sc2O3, has a less favorable ratio of stimulated emission to absorption cross sections. Reasons for the differences will be discussed. We conclude that for most operating scenarios, Er:Sc2O3 is the most promising of the Er-doped sesquioxides studied for laser operation around 1.5-1.6 microns.

  19. NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupree, A. K.; Dotter, A.; Johnson, C. I.

    High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (∼200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/ Magellan Fiber System and MSpec spectrograph on the Magellan -Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H α emission (indicative of Be-star decretion disks), others have shallow broad H α absorption (consistent with rotation ≳150 km s{sup −1}), or deep H α core absorption signaling lower rotation velocities (≲150 km s{sup −1}).more » The spectra appear consistent with two populations of stars—one rapidly rotating, and the other, younger and slowly rotating.« less

  20. Infrared laser spectroscopic trace gas sensing

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus

    2016-04-01

    Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short

  1. Electron Spin Resonance and optical absorption spectroscopic studies of manganese centers in aluminium lead borate glasses.

    PubMed

    SivaRamaiah, G; LakshmanaRao, J

    2012-12-01

    Electron Spin Resonance (ESR) and optical absorption studies of 5Al(2)O(3)+75H(3)BO(3)+(20-x)PbO+xMnSO(4) (where x=0.5, 1,1.5 and 2 mol% of MnSO(4)) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g≈2.0 has been attributed to Mn(2+) centers in an octahedral symmetry. The ESR resonance signals at isotropic g≈3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn(2+) ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to (5)E(g)→(5)T(2g) transition of Mn(3+)centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstratedmore » for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.« less

  3. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source.

    PubMed

    Osborne, G C; Kantsyrev, V L; Safronova, A S; Esaulov, A A; Weller, M E; Shrestha, I; Shlyaptseva, V V; Ouart, N D

    2012-10-01

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (∼10-40 eV) plasmas than emission spectra (∼350-500 eV).

  4. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Chao; Zhou, Lin; Ma, Fei; Liu, Shuchao; Wei, Shaohua; Zhou, Jiahong; Zhou, Yanhuai

    2012-10-01

    In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.

  5. High-resolution optical measurements of atmospheric winds from space. I - Lower atmosphere molecular absorption

    NASA Technical Reports Server (NTRS)

    Hays, P. B.

    1982-01-01

    A high-resolution spectroscopic technique, analogous to that used in the thermosphere to measure the vector wind fields in the upper troposphere and stratosphere, is described which uses narrow features in the spectrum of light scattered from the earth's lower atmosphere to provide Doppler information on atmospheric scattering and absorption. It is demonstrated that vector winds can be measured from a satellite throughout the lower atmosphere, using a multiple-etalon Fabry-Perot interferometer of modest aperture. It is found that molecular oxygen and water vapor absorption lines in the spectrum of sunlight scattered by the atmosphere are Doppler-shifted by the line of sight wind, so that they may be used to monitor the global wind systems in the upper troposphere and stratosphere.

  6. Determination of gold nanoparticle shape from absorption spectroscopy and ellipsometry

    NASA Astrophysics Data System (ADS)

    Battie, Yann; Izquierdo-Lorenzo, Irene; Resano-Garcia, Amandine; Naciri, Aotmane En; Akil, Suzanna; Adam, Pierre Michel; Jradi, Safi

    2017-11-01

    A new methodology is developed to determine the shape distribution of gold nanoparticles (NPs) from optical spectroscopic measurements. Indeed, the morphology of Au colloids is deduced by fitting their absorption spectra with an effective medium theory which takes into account the nanoparticle shape distribution. The same procedure is applied to ellipsometric measurements recorded on photoresist films which contain Au NPs. Three spaces (L2, r2, P2) are introduced to interpret the NPs shape distribution. In the P2 space, the sphericity, the prolacity and the oblacity estimators are proposed to quantify the shape of NPs. The r2 space enables the determination of the NP aspect ratio distribution. The distributions determined from optical spectroscopy were found to be in very good agreement with the shape distributions obtained by transmission electron microscopy. We found that fitting absorption or ellipsometric spectra with an adequate effective medium theory, provides a robust tool for measuring the shape and concentration of metallic NPs.

  7. A quantitative evaluation of spurious results in the infrared spectroscopic measurement of CO2 isotope ratios

    NASA Astrophysics Data System (ADS)

    Mansfield, C. D.; Rutt, H. N.

    2002-02-01

    The possible generation of spurious results, arising from the application of infrared spectroscopic techniques to the measurement of carbon isotope ratios in breath, due to coincident absorption bands has been re-examined. An earlier investigation, which approached the problem qualitatively, fulfilled its aspirations in providing an unambiguous assurance that 13C16O2/12C16O2 ratios can be confidently measured for isotopic breath tests using instruments based on infrared absorption. Although this conclusion still stands, subsequent quantitative investigation has revealed an important exception that necessitates a strict adherence to sample collection protocol. The results show that concentrations and decay rates of the coincident breath trace compounds acetonitrile and carbon monoxide, found in the breath sample of a heavy smoker, can produce spurious results. Hence, findings from this investigation justify the concern that breath trace compounds present a risk to the accurate measurement of carbon isotope ratios in breath when using broadband, non-dispersive, ground state absorption infrared spectroscopy. It provides recommendations on the length of smoking abstention required to avoid generation of spurious results and also reaffirms, through quantitative argument, the validity of using infrared absorption spectroscopy to measure CO2 isotope ratios in breath.

  8. A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Hellmig, Ortwin; Baev, Valery M.

    2018-04-01

    A broadband tunable Tm/Ho-doped fiber laser is developed for sensitive in situ measurements of intracavity absorption spectra in the spectral range of 4780-5560 cm-1. This spectral range includes an atmospheric transmission window enabling sensitive measurements of various species. The spectral bandwidth of laser emission varies from 20 to 60 cm-1 and is well suitable for multicomponent spectroscopy. The sensitivity achieved in cw operation corresponds to an effective absorption path length of L eff = 20 km, with a spectral noise of less than 1%. The spectroscopic system is applied for measurements of absorption spectra of H2O, NH3 and for simultaneous in situ detection of three isotopes of CO2 in human breath, which is important for medical diagnostics procedures.

  9. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing

    NASA Astrophysics Data System (ADS)

    Saha, Dipika; Negi, Devendra P. S.

    2018-01-01

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20 × 105 M- 1. Infrared spectroscopic measurements indicated the participation of the sbnd NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules.

  10. Experimental and theoretical investigations on spectroscopic properties of the imidazole-fused phenanthroline and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhong, Rongfeng; Xu, Shengxian; Wang, Jinglan; Zhao, Feng; Xia, Hongying; Wang, Yibo

    2016-05-01

    Two phenanthroline derivatives, 1H-imidazo[4,5-f][1,10]phenanthroline (imPhen) and 2-(9H-fluoren-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (Flu-imPhen), have been synthesized and characterized and the corresponding absorption and emission spectroscopic properties have been studied in CH2Cl2 solution. The imPhen exhibits the main two absorption bands at 282 nm and 229 nm and these bands are assigned as the typical π → π*(Phen) state. In addition, the weak absorption bands at 313 nm associated with a shoulder near 302 nm were assigned to the π → π*(Phen) state with partial charge transfer (CT) character. A similar absorption spectra are observed in the case of the Flu-imPhen in the region of 200-300 nm, while the region of 300-400 nm of the spectra are dominated by the characteristic π → π* transition of the fluorene moiety. imPhen shows the typical ligand-centered 1π → π* emission, while Flu-imPhen emits from the mixed 1π → π*/CT states. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) were employed to rationalize the photophysical properties of these ligands studied. The theoretical data confirm the assignment of the experimental absorption spectra and the nature of the emitting states.

  11. Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from Roseiflexus castenholzii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzwiedzki, Dariusz; Collins, Aaron M.; LaFountain, Amy M.

    Carotenoids present in the photosynthetic light-harvesting reaction center (LHRC) complex from chlorosome lacking filamentous anoxygenic phototroph, Roseiflexus castenholzii were purified and characterized for their photochemical properties. The LHRC from anaerobically grown cells contains five different carotenoids, methoxy-keto-myxocoxanthin, γ-carotene, and its three derivatives, whereas the LHRC from aerobically grown cells contains only three carotenoid pigments with methoxy-keto-myxocoxanthin being the dominant one. The spectroscopic properties and dynamics of excited singlet states of the carotenoids were studied by steady-state absorption, fluorescence and ultrafast time-resolved optical spectroscopy in organic solvent and in the intact LHRC complex. Time-resolved transient absorption spectroscopy performed in the near-infraredmore » (NIR) on purified carotenoids combined with steady-state absorption spectroscopy led to the precise determination of values of the energies of the S 1(2 1A g -) excited state. Global and single wavelength fitting of the ultrafast spectral and temporal data sets of the carotenoids in solvents and in the LHRC revealed the pathways of de-excitation of the carotenoid excited states.« less

  12. Synthesis, structure, spectroscopic and electrochemical properties of bis(histamine-saccharinate) copper(II) complex

    NASA Astrophysics Data System (ADS)

    Bulut, İclal; Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet

    2007-05-01

    Crystal structure of [Cu(hsm) 2(sac) 2] (hsm is histamine and sac is saccharinate) complex has been determined by X-ray diffraction analyses and its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystallizes in the monoclinic system, space group P 21/ c with a = 7.4282(4), b = 22.5034(16), c = 8.3300(5) Å, β = 106.227(4)°, V = 1336.98(14) Å 3, and Z = 2. The structure consist of discrete [Cu(hsm) 2(sac) 2] molecules in which the copper ion is centrosymmetrically coordinated by two histamine ligands forming an equatorial plane [Cu-N hsm = 2.024(2) and Cu-N hsm = 2.0338(18) Å]. Two N atoms from the saccharinate ligands coordinate on the elongated axial positions with Cu-N sac being 2.609(5) Å. The complex is also characterized by spectroscopic (IR, UV/Vis) and thermal (TG, and TDA) methods. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centred electroactivity in the potential range - 1.25-1.5 V versus Ag/AgCl reference electrode. The molecular orbital bond coefficients of Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters.

  13. Spectroscopic analyses of the parent stars of extrasolar planetary system candidates

    NASA Astrophysics Data System (ADS)

    Gonzalez, Guillermo

    1998-06-01

    The stars rho () 1 Cnc, rho CrB, 16 Cyg B, 51 Peg, 47 UMa, 70 Vir, and HD 114762 have recently been proposed to harbor planetary mass companions based on small amplitude radial velocity variations. From spectroscopic analyses we derive the following values of [Fe/H] for these stars: 0.29, -0.29, 0.06, 0.21, 0.01, -0.03, and -0.60 (all with an uncertainty of 0.06 dex), respectively; the [Fe/H] value for 16 Cyg A is 0.11. The four 51 Peg-like systems, upsilon And, tau Boo, rho () 1 Cnc, and 51 Peg, have a mean [Fe/H] value of 0.25. Otherwise, the abundance patterns, expressed as [X/Fe], are approximately solar. We used Fourier analysis, supplemented by line profile synthesis, to derive the following v sin i values: <1.3, 1.4 +/- 0.3, 1.7 +/- 0.4, < 0.5, and < 1.5 km s(-1) for rho () 1 Cnc, 51 Peg, 47 UMa, 70 Vir, and HD 114762, respectively. A similar analysis of the spectrum of rho CrB (with a lower resolving power) yields a value of ~ 1.5 km s() -1. Combining these data with published estimates of v sin i and rotation periods and assuming that the radial velocity variations are due to the presence of planets, we derive the following masses for the companions: >0.66, 2.9(+13.6}_{-1.3) , 0.49+/-0.03, 3.4() +3.1_-1.1, >9.4, and >10.4 cal M_J for rho () 1 Cnc, rho CrB, 51 Peg, 47 UMa, 70 Vir, and HD 114762, respectively; the mass of 16 Cyg B b, calculated using a published estimate for sin i, is 2.0() +1.1_-0.3 cal M_J. The masses of the companions to upsilon And and tau Boo, which were analyzed in a previous paper, are 0.76() +0.19_-0.03 and 5.9() +43.9_-1.8 cal M_J, respectively. We confirm previous claims that rho () 1 Cnc appears to be a subgiant. However, the theoretical isochrone-derived age is much greater than the age of the universe. At this time we have insufficient data to determine the true nature of rho () 1 Cnc, but we suggest that it may be an unresolved stellar binary viewed nearly pole-on. A search for line profile variations might help to resolve this

  14. Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuuki; Kawase, Kodo; Ikari, Tomofumi; Ito, Hiromasa; Ishikawa, Youichi; Minamide, Hiroaki

    2003-10-01

    We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1-2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.

  15. A spectroscopic transfer standard for accurate atmospheric CO measurements

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  16. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilic, Mukremin; Kowalski, Piotr M.; Von Hippel, Ted

    2009-07-15

    We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski and Saumon, we findmore » that the majority of the stars in our sample have hydrogen-rich atmospheres. We do not find any pure helium atmosphere WDs below 5000 K, and we find a trend of increasing hydrogen to helium ratio with decreasing temperature. These findings present an important challenge to understanding the spectral evolution of WDs.« less

  17. Spectroscopic investigation on structure and pH dependent Cocrystal formation between gamma-aminobutyric acid and benzoic acid

    NASA Astrophysics Data System (ADS)

    Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi

    2018-02-01

    Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00 ≤ pH ≤ 7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields.

  18. Analyses of Impact of Needle Surface Properties on Estimation of Needle Absorption Spectrum: Case Study with Coniferous Needle and Shoot Samples

    PubMed Central

    Yang, Bin; Knyazikhin, Yuri; Lin, Yi; Yan, Kai; Chen, Chi; Park, Taejin; Choi, Sungho; Mõttus, Matti; Rautiainen, Miina; Myneni, Ranga B.; Yan, Lei

    2017-01-01

    Leaf scattering spectrum is the key optical variable that conveys information about leaf absorbing constituents from remote sensing. It cannot be directly measured from space because the radiation scattered from leaves is affected by the 3D canopy structure. In addition, some radiation is specularly reflected at the surface of leaves. This portion of reflected radiation is partly polarized, does not interact with pigments inside the leaf and therefore contains no information about its interior. Very little empirical data are available on the spectral and angular scattering properties of leaf surfaces. Whereas canopy-structure effects are well understood, the impact of the leaf surface reflectance on estimation of leaf absorption spectra remains uncertain. This paper presents empirical and theoretical analyses of angular, spectral, and polarimetric measurements of light reflected by needles and shoots of Pinus koraiensis and Picea koraiensis species. Our results suggest that ignoring the leaf surface reflected radiation can result in an inaccurate estimation of the leaf absorption spectrum. Polarization measurements may be useful to account for leaf surface effects because radiation reflected from the leaf surface is partly polarized, whereas that from the leaf interior is not. PMID:28868160

  19. Interaction of sodium benzoate with trypsin by spectroscopic techniques.

    PubMed

    Mu, Yue; Lin, Jing; Liu, Rutao

    2011-12-01

    The toxicity of sodium benzoate to trypsin was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, UV-visible absorption spectroscopy and circular dichroism (CD) spectroscopy under mimic physiological conditions. Sodium benzoate could unfold trypsin by decreasing the β-sheet structure, which leads to more exposure of internal amino acid groups and the obvious intrinsic fluorescence quenching with the rising concentration of sodium benzoate. The results of spectroscopic measurements indicated that sodium benzoate changed the internal microenvironment of trypsin and induced the alteration of the whole molecule, which were performed toxic effects on the organism. Trypsin and sodium benzoate interacted with each other to produce a substance by van der Waals forces and hydrogen bond, the model of which was shown by AutoDock software. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    PubMed Central

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  1. Broadband spectroscopic sensor for real-time monitoring of industrial SO(2) emissions.

    PubMed

    Xu, Feng; Zhang, Yungang; Somesfalean, Gabriel; Wang, Huashan; Wu, Shaohua; Zhang, Zhiguo

    2007-05-01

    A spectroscopic system for continuous real-time monitoring of SO(2) concentrations in industrial emissions was developed. The sensor is well suited for field applications due to simple and compact instrumental design, and robust data evaluation based on ultraviolet broadband absorption without the use of any calibration cell. The sensor has a detection limit of 1 ppm, and was employed both for gas-flow simulations with and without suspended particles, and for in situ measurement of SO(2) concentrations in the flue gas emitted from an industrial coal-fired boiler. The price/performance ratio of the instrument is expected to be superior to other comparable real-time monitoring systems.

  2. High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6-11 μm range

    NASA Astrophysics Data System (ADS)

    Heinrich, Robert; Popescu, Alexandru; Hangauer, Andreas; Strzoda, Rainer; Höfling, Sven

    2017-08-01

    The availability of accurate and fast hydrocarbon analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in the petro-chemical industry. Primarily gas chromatographs measure the composition of hydrocarbon process streams. Due to sophisticated gas sampling, these analyzers are limited in response time. As hydrocarbons absorb in the mid-infrared spectral range, the employment of fast spectroscopic systems is highly attractive due to significantly reduced maintenance costs and the capability to setup real-time process control. New developments in mid-infrared laser systems pave the way for the development of high-performance analyzers provided that accurate spectral models are available for multi-species detection. In order to overcome current deficiencies in the availability of spectroscopic data, we developed a laser-based setup covering the 6-11 μm wavelength range. The presented system is designated as laboratory reference system. Its spectral accuracy is at least 6.6× 10^{-3} cm^{-1} with a precision of 3× 10^{-3} cm^{-1}. With a "per point" minimum detectable absorption of 1.3× 10^{-3} cm^{-1} Hz^{{-}{1/2}} it allows us to perform systematic measurements of hydrocarbon spectra of the first 7 alkanes under conditions which are not tabulated in spectroscopic database. We exemplify the system performance with measured direct absorption spectra of methane, propane, iso-butane, and a mixture of methane and propane.

  3. High-definition Fourier transform infrared spectroscopic imaging of prostate tissue

    NASA Astrophysics Data System (ADS)

    Wrobel, Tomasz P.; Kwak, Jin Tae; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2016-03-01

    Histopathology forms the gold standard for cancer diagnosis and therapy, and generally relies on manual examination of microscopic structural morphology within tissue. Fourier-Transform Infrared (FT-IR) imaging is an emerging vibrational spectroscopic imaging technique, especially in a High-Definition (HD) format, that provides the spatial specificity of microscopy at magnifications used in diagnostic surgical pathology. While it has been shown for standard imaging that IR absorption by tissue creates a strong signal where the spectrum at each pixel is a quantitative "fingerprint" of the molecular composition of the sample, here we show that this fingerprint also enables direct digital pathology without the need for stains or dyes for HD imaging. An assessment of the potential of HD imaging to improve diagnostic pathology accuracy is presented.

  4. Spectroscopic study of N-acetylcysteine and N-acetylcystine/hydrogen peroxide complexation

    NASA Astrophysics Data System (ADS)

    Picquart, Michel; Abedinzadeh, Zohreh; Grajcar, Lydie; Baron, Marie Héléne

    1998-03-01

    A spectroscopic study of N-acetylcysteine (RSH) and N-acetylcystine (RSSR) has been performed using infrared absorption and Raman scattering in order to pinpoint the sites of complexation of these two species with H 2O 2. Molecules of RSH and RSSR were studied in KBr pellets, and in aqueous solutions of H 2O, D 2O and H 2O with H 2O 2 (1 mol l -1) to characterize the specific influence of the solvent molecules. A time-resolved Raman study was performed for RSH-H 2O 2 in aqueous solution at 1:1 molar ratio in order to observe the formation of RSSR and to discuss the mechanism of this redox reaction.

  5. Effects of Calcium Ions on the Thermostability and Spectroscopic Properties of the LH1-RC Complex from a New Thermophilic Purple Bacterium Allochromatium tepidum.

    PubMed

    Kimura, Yukihiro; Lyu, Shuwen; Okoshi, Akira; Okazaki, Koudai; Nakamura, Natsuki; Ohashi, Akira; Ohno, Takashi; Kobayashi, Manami; Imanishi, Michie; Takaichi, Shinichi; Madigan, Michael T; Wang-Otomo, Zheng-Yu

    2017-05-18

    The light harvesting-reaction center (LH1-RC) complex from a new thermophilic purple sulfur bacterium Allochromatium (Alc.) tepidum was isolated and characterized by spectroscopic and thermodynamic analyses. The purified Alc. tepidum LH1-RC complex showed a high thermostability comparable to that of another thermophilic purple sulfur bacterium Thermochromatium tepidum, and spectroscopic characteristics similar to those of a mesophilic bacterium Alc. vinosum. Approximately 4-5 Ca 2+ per LH1-RC were detected by inductively coupled plasma atomic emission spectroscopy and isothermal titration calorimetry. Upon removal of Ca 2+ , the denaturing temperature of the Alc. tepidum LH1-RC complex dropped accompanied by a blue-shift of the LH1 Q y absorption band. The effect of Ca 2+ was also observed in the resonance Raman shift of the C3-acetyl νC═O band of bacteriochlorophyll-a, indicating changes in the hydrogen-bonding interactions between the pigment and LH1 polypeptides. Thermodynamic parameters for the Ca 2+ -binding to the Alc. tepidum LH1-RC complex indicated that this reaction is predominantly driven by the largely favorable electrostatic interactions that counteract the unfavorable negative entropy change. Our data support a hypothesis that Alc. tepidum may be a transitional organism between mesophilic and thermophilic purple bacteria and that Ca 2+ is one of the major keys to the thermostability of LH1-RC complexes in purple bacteria.

  6. Optical absorption spectra of the uranium (4+) ion in the thorium germanate matrix

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Krupa, J. C.; Antic-Fidancev, E.

    1997-01-01

    Visible and infrared absorption measurements on the 0953-8984/9/2/023/img6 ion in tetragonal zircon-type matrix 0953-8984/9/2/023/img7 are reported and analysed in terms of the standard parametrization scheme. The observed 17 main peaks and a number of less intense lines have been assigned and fitted to most of the 32 allowed electric dipole transitions with the root mean square error equal to 0953-8984/9/2/023/img8. The free-ion parameters obtained for the model Hamiltonian, 0953-8984/9/2/023/img9, 0953-8984/9/2/023/img10, 0953-8984/9/2/023/img11 and 0953-8984/9/2/023/img12, as well as the corresponding crystal-field parameters, 0953-8984/9/2/023/img13, 0953-8984/9/2/023/img14, 0953-8984/9/2/023/img15, 0953-8984/9/2/023/img16 and 0953-8984/9/2/023/img17, agree fairly well with the initial theoretical estimations. The results are discussed in relation to the previous spectroscopic study on the scheelite-type matrix 0953-8984/9/2/023/img18.

  7. Synthesis and evaluation of changes induced by solvent and substituent in electronic absorption spectra of some azo disperse dyes

    NASA Astrophysics Data System (ADS)

    Mohammadi, Asadollah; Yazdanbakhsh, Mohammad Reza; Farahnak, Lahya

    2012-04-01

    Five azo disperse dyes were prepared by diazotizing 4'-aminoacetophenone and p-anisidine and coupling with varies N-alkylated aromatic amines. Characterization of the dyes was carried out by using UV-vis, FTIR and 1H NMR spectroscopic techniques. The electronic absorption spectra of dyes are determined at room temperature in fifteen solvents with different polarities. The solvent dependent maximum absorption band shifts, were investigated using dielectric constant (ɛ), refractive index (n) and Kamlet-Taft polarity parameters (hydrogen bond donating ability (α), hydrogen bond accepting ability (β) and dipolarity/polarizability polarity scale (π*)). Acceptable agreement was found between the maximum absorption band of dyes and solvent polarity parameters especially with π*. The effect of substituents of coupler and/or diazo component on the color of dyes was investigated. The effects of acid and base on the visible absorption maxima of the dyes are also reported.

  8. A comprehensive near- and far-ultraviolet spectroscopic study of the hot DA white dwarf G191-B2B

    NASA Astrophysics Data System (ADS)

    Preval, S. P.; Barstow, M. A.; Holberg, J. B.; Dickinson, N. J.

    2013-11-01

    We present a detailed spectroscopic analysis of the hot DA white dwarf G191-B2B, using the best signal-to-noise ratio, high-resolution near- and far-UV spectrum obtained to date. This is constructed from co-added Hubble Space Telescope (HST) Space Telescope Imaging Spectrometer (STIS) E140H, E230H and FUSE observations, covering the spectral ranges of 1150-3145 Å and 910-1185 Å, respectively. With the aid of recently published atomic data, we have been able to identify previously undetected absorption features down to equivalent widths of only a few mÅ. In total, 976 absorption features have been detected to 3σ confidence or greater, with 947 of these lines now possessing an identification, the majority of which are attributed to Fe and Ni transitions. In our survey, we have also potentially identified an additional source of circumstellar material originating from Si III. While we confirm the presence of Ge detected by Vennes et al., we do not detect any other species. Furthermore, we have calculated updated abundances for C, N, O, Si, P, S, Fe and Ni, while also calculating, for the first time, a non-local thermodynamic equilibrium abundance for Al, deriving Al III/H=1.60_{-0.08}^{+0.07}× {10}^{-7}. Our analysis constitutes what is the most complete spectroscopic survey of any white dwarf. All observed absorption features in the FUSE spectrum have now been identified, and relatively few remain elusive in the STIS spectrum.

  9. Quasars with P v broad absorption in BOSS data release 9

    NASA Astrophysics Data System (ADS)

    Capellupo, D. M.; Hamann, F.; Herbst, H.; Brandt, W. N.; Ge, J.; Pâris, I.; Petitjean, P.; Schneider, D. P.; Streblyanska, A.; York, D.

    2017-07-01

    Broad absorption lines (BALs) found in a significant fraction of quasar spectra identify high-velocity outflows that might be present in all quasars and could be a major factor in feedback to galaxy evolution. Understanding the nature of these flows requires further constraints on their physical properties, including their column densities, for which well-studied BALs, such as C IV λλ1548,1551, typically provide only a lower limit because of saturation effects. Low-abundance lines, such as P v λλ1118,1128, indicate large column densities, implying that outflows more powerful than measurements of C IV alone would indicate. We search through a sample of 2694 BAL quasars from the Sloan Digital Sky Survey III/Baryon Oscillation Spectroscopic Survey data release 9 quasar catalogue for such absorption, and we identify 81 'definite' and 86 'probable' detections of P v broad absorption, yielding a firm lower limit of 3.0-6.2 per cent for the incidence of such absorption among BAL quasars. The P v-detected quasars tend to have stronger C IV and Si IV absorption, as well as a higher incidence of LoBAL absorption, than the overall BAL quasar population. Many of the P v-detected quasars have C IV troughs that do not reach zero intensity (at velocities where P v is detected), confirming that the outflow gas only partially covers the UV continuum source. P v appears significantly in a composite spectrum of non-P v-detected BAL quasars, indicating that P v absorption (and large column densities) is much more common than indicated by our search results. Our sample of P v detections significantly increases the number of known P v detections, providing opportunities for follow-up studies to better understand BAL outflow energetics.

  10. Detecting the highest redshift (z > 8) quasi-stellar objects in a wide, near-infrared slitless spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Roche, Nathan; Franzetti, Paolo; Garilli, Bianca; Zamorani, Giovanni; Cimatti, Andrea; Rossetti, Emanuel

    2012-02-01

    We investigate the prospects of extending observations of high-redshift quasi-stellar objects (QSOs) from the current z˜ 7 to z > 8 by means of a very wide-area near-infrared slitless spectroscopic survey, considering as an example the planned survey with the European Space Agency's Euclid telescope (scheduled for a 2019 launch). For any QSOs at z > 8.06, the strong Lyman α line will enter the wavelength range of the Euclid Near-Infrared Spectometer and Imaging Photometer (NISP). We perform a detailed simulation of near infrared spectrometer and imaging photometer (Euclid) NISP slitless spectroscopy (with the parameters of the wide survey) in an artificial field containing QSO spectra at all redshifts up to z= 12 and to a faint limit H= 22.5. QSO spectra are represented with a template based on a Sloan Digital Sky Survey composite spectrum, with the added effects of absorption from neutral hydrogen in the intergalactic medium. The spectra extracted from the simulation are analysed with an automated redshift finder, and a detection rate estimated as a function of H magnitude and redshift (defined as the proportion of spectra with both correct redshift measurements and classifications). We show that, as expected, spectroscopic identification of QSOs would reach deeper limits for the redshift ranges where either ? (0.67 < z < 2.05) or Lyman α (z > 8.06) is visible. Furthermore, if photometrically selected z > 8 spectra can be re-examined and refitted to minimize the effects of spectral contamination, the QSO detection rate in the Lyman α window will be increased by an estimated ˜60 per cent and will then be better here than at any other redshift, with an effective limit H≃ 21.5. With an extrapolated rate of QSO evolution, we predict that the Euclid wide (15 000 ?) spectroscopic survey will identify and measure spectroscopic redshifts for a total of 20-35 QSOs at z > 8.06 (reduced slightly to 19-33 if we apply a small correction for missed weak-lined QSOs

  11. Spectroscopic characterisation of Er-doped LuVO4 single crystals

    NASA Astrophysics Data System (ADS)

    Lisiecki, R.; Dominiak-Dzik, G.; Solarz, P.; Strzęp, A.; Ryba-Romanowski, W.; Łukasiewicz, T.

    2010-12-01

    The LuVO4:Er single crystals were grown by the Czochralski technique. The crystal-field split energy levels of Er3+ ion were derived experimentally employing absorption and emission spectra measured at T=10 K. The Judd-Ofelt phenomenological method was used to estimate intensity parameters, radiative lifetimes and branching ratios of luminescence. The excited state dynamics of the LuVO4:Er systems was investigated and experimental lifetimes of emitting levels were measured. The emission cross section of the 4I13/2→4I15/2 transition in the infrared was calculated by the Füchtbauer-Ladenburg method. The gain cross section, estimated for several inverse-population parameters, allowed us to evaluate a potential laser activity of the LuVO4:Er system at 1.6 μm. Also, the potential range of the optical pumping was assessed based on absorption spectra achieved at the room temperature. The optical losses related to the green up-converted emission, encountered under the 978 nm excitation between 300 and 670 K were indicated and discussed. Spectroscopic peculiarities of the Er3+-doped LuVO4 crystal were discussed in relation to optical properties of the YVO4:Er and GdVO4:Er crystals. Taking into account the high quantum efficiency of the 4I13/2 level, and satisfactory absorption and emission features, the LuVO4:Er crystal can be considered as a promising active material for laser operation near 1.6 μm.

  12. Spectroscopic Observations of the Mass Donor Star in SS 433

    NASA Astrophysics Data System (ADS)

    Hillwig, T. C.; Gies, D. R.

    2008-03-01

    The microquasar SS 433 is an interacting massive binary consisting of an evolved mass donor and a compact companion that ejects relativistic jets. The mass donor was previously identified through spectroscopic observations of absorption lines in the blue part of the spectrum that showed Doppler shifts associated with orbital motion and strength variations related to the orbital modulation of the star-to-disk flux ratio and to disk obscuration. However, subsequent observations revealed other absorption features that lacked these properties and that were probably formed in the disk gas outflow. We present follow-up observations of SS 433 at orbital and precession phases identical to those from several previous studies, with the goals of confirming the detection of the mass donor spectrum and providing more reliable masses for the two system components. We show that the absorption features present as well as those previously observed almost certainly belong to the mass donor star, and find revised masses of 12.3 ± 3.3 and 4.3 ± 0.8 M⊙ for the mass donor and compact object, respectively. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and SECYT (Argentina).

  13. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Optimization of absorption air-conditioning for solar energy applications

    NASA Technical Reports Server (NTRS)

    Perry, E. H.

    1976-01-01

    Improved performance of solar cooling systems using the lithium bromide water absorption cycle is investigated. Included are computer simulations of a solar-cooled house, analyses and measurements of heat transfer rates in absorption system components, and design and fabrication of various system components. A survey of solar collector convection suppression methods is presented.

  15. Temperature dependent absorption measurement of various transition metal doped laser materials

    NASA Astrophysics Data System (ADS)

    Horackova, Lucie; Šulc, Jan; Jelinkova, Helena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomás.

    2015-05-01

    In recent years, there has been a vast development of high energy class lasers of the order of 100 J to kJ level which have potential applications in the field of science and technology. Many such systems use the gain media cooled at cryogenic temperatures which will help in enhancing the spectroscopic and thermo-optical properties. Nevertheless, parasitic effects like amplified spontaneous emission enhance and affect the overall efficiency. The best way to suppress this effect is to use cladding element attached to the gain material. Based on these facts, this work was focused on the systematic investigation of temperature dependent absorption of several materials doped with transition metals, which can be used as cladding, as laser gain material, or as passive Q-switching element. The Ti:sapphire, Cr:YAG, V:YAG, and Co:MALO samples were measured in temperature range from 80 K to 330 K by step of 50 K. Using Beer-Lambert law we estimated the absorption coefficient of these materials.

  16. Aprotic solvents effect on the UV-visible absorption spectra of bixin

    NASA Astrophysics Data System (ADS)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-01

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0 → S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  17. Spectroscopic Observations of Nearby Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Vican, Laura; Zuckerman, B. M.; Rodriguez, D.

    2014-01-01

    Young low-mass stars are known to be bright in X-ray and UV due to a high level of magnetic activity. By cross-correlating the GALEX Catalog with the WISE and 2MASS Point Source Catalogs, we have identified more than 2,000 stars whose UV excesses suggest ages in the 10-100 Myr range. We used the Shane 3-m telescope at Lick Observatory on Mount Hamilton, California to observe some of these 2,000 stars spectroscopically. We measured the equivalent width of lithium at 6708 A absorption and H-alpha emission lines. Out of a total of 122 stars observed with the Kast grating spectrometer, we find that roughly 10% have strong lithium absorption features. The high percentage of stars with lithium present is further evidence of the importance of UV emission as a youth indicator for low-mass stars. In addition, we used high-resolution spectra obtained with the Hamilton echelle spectrograph to determine radial velocities for several UV-bright stars. These radial velocities will be useful for the calculation of Galactic UVW space velocities for determination of possible moving group membership. This work is supported by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA and Chilean FONDECYT grant 3130520 to Universidad de Chile. This submission presents work for the GALNYSS project and should be linked to abstracts submitted by David Rodriguez, Laura Vican, and Joel Kastner.

  18. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    NASA Astrophysics Data System (ADS)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  19. VizieR Online Data Catalog: BOSS narrow CIV absorption lines. II. zem>2.4 (Chen+, 2014)

    NASA Astrophysics Data System (ADS)

    Chen, Z.-F.; Qin, Y.-P.; Qin, M.; Pan, C.-J.; Pan, D.-S.

    2015-01-01

    We identify absorption doublets, such as CIVλλ1548,1551 in the quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS), which is a part of the SDSS-III (Eisenstein et al. 2011AJ....142...72E). This work continues the analysis of Paper I (Chen+, 2014, J/ApJS/210/7; 2014ApJS..212...17C) by expanding the quasar sample to those quasars with zem>2.4. (1 data file).

  20. Morphology, stability, and X-ray absorption spectroscopic study of iron oxide (Hematite) nanoparticles prepared by micelle nanolithography

    NASA Astrophysics Data System (ADS)

    Bera, Anupam; Bhattacharya, Atanu; Tiwari, N.; Jha, S. N.; Bhattacharyya, D.

    2018-03-01

    Currently, considerable effort is being made towards synthesis and characterization of iron oxide nanoparticles. In this article, we report on the preparation and characterization of iron oxide nanoparticle (NP) arrays supported on natively oxidized Si(100) surface. The NPs are synthesized by reverse micelle nanolithography technique and are then deposited onto natively oxidized Si(100) surface via spin-coating. Plasma oxidation followed by high temperature annealing results in a unimodal size distribution of pseudohexagonally-ordered array of iron oxide NPs (with ∼14 nm mean diameter and ∼5 nm mean height). High temperature annealing does not fragment the NPs. Particles are sinter-resistant: the unimodal arrays are robust with respect to thermal treatment. X-ray absorption spectroscopy (XAS), including X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS), reveals that structure of the iron oxide particle resembles closely the hematite α-Fe2O3 structure. Furthermore, with the help of EXAFS spectra, we eliminate the possibility of γ-Fe2O3, Fe3O4, FeO and FeO(OH) structures for the NPs.

  1. Spectroscopic classification of supernova SN 2018Z by NUTS (NOT Un-biased Transient Survey)

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Mattila, S.; Kotak, R.; Harmanen, J.; Reynolds, T.; Pastorello, A.; Benetti, S.; Stritzinger, M.; Onori, F.; Somero, A.; Kangas, T.; Lundqvist, P.; Taddia, F.; Ergon, M.

    2018-01-01

    The NOT Unbiased Transient Survey (NUTS; ATel #8992) collaboration reports the spectroscopic classification of supernova SN 2018Z in host galaxy SDSS J231809.76+212553.5 The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.6 nm) on 2018-01-09.9 UT. Survey Name | IAU Name | Discovery (UT) | Discovery mag | Observation (UT) | Redshift | Type | Phase | Notes PS18ao | SN 2018Z | 2018-01-01.2 | 19.96 | 2018-01-09.9 | 0.102 | Ia | post-maximum? | (1) (1) Redshift was derived from the SN and host absorption features.

  2. Advanced X-ray Spectroscopic Methods for Studying Iron-Sulfur-Containing Proteins and Model Complexes.

    PubMed

    DeBeer, Serena

    2018-01-01

    In this chapter, a brief overview of X-ray spectroscopic methods that may be utilized to obtain insight into the geometric and electronic structure of iron-sulfur proteins is provided. These methods include conventional methods, such as metal and ligand K-edge X-ray absorption, as well as more advanced methods including nonresonant and resonant X-ray emission. In each section, the basic information content of the spectra is highlighted and important experimental considerations are discussed. Throughout the chapter, recent applications to iron-sulfur-containing models and proteins are highlighted. © 2018 Elsevier Inc. All rights reserved.

  3. Interstellar Medium, Young Stars, and Astrometric Binaries in Galactic Archaeology Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.

    2016-10-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.

  4. The Origin, Composition and History of Comets from Spectroscopic Studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1997-01-01

    A wealth of information essential to understanding the composition and physical structure of cometary ice and hence gain deep insight into the comet's origin and history, can be gleaned by carrying out a full range of spectroscopic studies on the returned sample. These studies ought to be among the first performed as they are generally non-destructive and will provide a broad data bank which will be crucial in planning subsequent analysis. Examples of the spectroscopic techniques along with relative sensitivities and transitions probed, are discussed. Different kind of "spectroscopy" is summarized, with emphasis placed on the kind of information each provides. Infrared spectroscopy should be the premier method of analysis as the mid-IR absorption spectrum of a substance contains more global information about the identity and structure of that material than any other property. In fact, the greatest strides in our understanding of the composition of interstellar ices (thought by many to be the primordial material from which comets have formed) have been taken during the past ten years or so because this was when high quality infrared spectra of the interstellar medium (ISM) first became available. The interpretation of the infrared spectra of mixtures, such as expected in comets, is often (not always) ambiguous. Consequently, a full range of other non-destructive, complementary spectroscopic measurements are required to fully characterize the material, to probe for substances for which the IR is not well suited and to lay the groundwork for future analysis. Given the likelihood that the icy component (including some of the organic and mineral phases) of the returned sample will be exceedingly complex, these techniques must be intensely developed over the next decade and then made ready to apply flawlessly to what will certainly be one of the most precious, and most challenging, samples ever analyzed.

  5. Thermal and Spectroscopic Characterization of a Proton Pumping Rhodopsin from an Extreme Thermophile*

    PubMed Central

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-01-01

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding. PMID:23740255

  6. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile.

    PubMed

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-07-26

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding.

  7. Optimal methodologies for terahertz time-domain spectroscopic analysis of traditional pigments in powder form

    NASA Astrophysics Data System (ADS)

    Ha, Taewoo; Lee, Howon; Sim, Kyung Ik; Kim, Jonghyeon; Jo, Young Chan; Kim, Jae Hoon; Baek, Na Yeon; Kang, Dai-ill; Lee, Han Hyoung

    2017-05-01

    We have established optimal methods for terahertz time-domain spectroscopic analysis of highly absorbing pigments in powder form based on our investigation of representative traditional Chinese pigments, such as azurite [blue-based color pigment], Chinese vermilion [red-based color pigment], and arsenic yellow [yellow-based color pigment]. To accurately extract the optical constants in the terahertz region of 0.1 - 3 THz, we carried out transmission measurements in such a way that intense absorption peaks did not completely suppress the transmission level. This required preparation of pellet samples with optimized thicknesses and material densities. In some cases, mixing the pigments with polyethylene powder was required to minimize absorption due to certain peak features. The resulting distortion-free terahertz spectra of the investigated set of pigment species exhibited well-defined unique spectral fingerprints. Our study will be useful to future efforts to establish non-destructive analysis methods of traditional pigments, to construct their spectral databases, and to apply these tools to restoration of cultural heritage materials.

  8. Spectroscopic analysis and control

    DOEpatents

    Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles

    2017-04-18

    Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.

  9. Surface force and vibrational spectroscopic analyses of interfacial water molecules in the vicinity of methoxy-tri(ethylene glycol)-terminated monolayers: mechanisms underlying the effect of lateral packing density on bioinertness.

    PubMed

    Sekine, Taito; Asatyas, Syifa; Sato, Chikako; Morita, Shigeaki; Tanaka, Masaru; Hayashi, Tomohiro

    Unequivocal dependence of bioinertness of self-assembled monolayers of methoxy-tri(ethylene glycol)-terminated alkanethiol (EG3-OMe SAMs) on their packing density has been a mystery for more than two decades. We tackled this long-standing question by performing surface force and surface-enhanced infrared absorption (SEIRA) spectroscopic measurements. Our surface force measurements revealed a physical barrier of interfacial water in the vicinity of the Au-supported EG3-OMe SAM (low packing density), whereas the Ag-supported one (high packing density) did not possess such interfacial water. In addition, the results of SEIRA measurements clearly exhibited that hydrogen bonding states of the interfacial water differ depending on the substrates. We also characterized the bioinertness of these SAMs by protein adsorption tests and adhesion assays of platelet and human umbilical vein endothelial cells. The hydrogen bonding states of the interfacial water and water-induced interaction clearly correlated with the bioinertness of the SAMs, suggesting that the interfacial water plays an important role determining the interaction of the SAMs with biomolecules and cells.

  10. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing.

    PubMed

    Saha, Dipika; Negi, Devendra P S

    2018-01-15

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20×10 5 M -1 . Infrared spectroscopic measurements indicated the participation of the NH 2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Determination of UV-visible-NIR absorption coefficient of graphite bulk using direct and indirect methods

    NASA Astrophysics Data System (ADS)

    Smausz, T.; Kondász, B.; Gera, T.; Ajtai, T.; Utry, N.; Pintér, M.; Kiss-Albert, G.; Budai, J.; Bozóki, Z.; Szabó, G.; Hopp, B.

    2017-10-01

    Absorption coefficient of graphite bulk pressed from 1 to 5 μm-sized crystalline grains was measured in UV-Vis-NIR range with three different methods: (i) determination of pulsed laser ablation rate as the function of laser fluence for different wavelengths (248, 337, 532, and 1064 nm, respectively); (ii) production of aerosol particles by UV laser ablation of the bulk graphite in inert atmosphere and determination of the mass-specific absorption coefficient with a four-wavelength (266, 355, 532, and 1064 nm, respectively) photoacoustic spectrometer, and (iii) spectroscopic ellipsometry in 250-1000 nm range. Taking into account the wide range of the absorption coefficients of different carbon structures, an overall relatively good agreement was observed for the three methods. The ellipsometric results fit well with the ablation rate measurement, and the data obtained with photoacoustic method are also similar in the UV and NIR region; however, the values were somewhat higher in visible and near-UV range. Taking into account the limitations of the methods, they can be promising candidates for the determination of absorption coefficient when the samples are strongly scattering and there is no possibility to perform transmissivity measurements.

  12. Growth and spectroscopic properties of Sm3+:KY(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Demesh, M. P.; Dernovich, O. P.; Gusakova, N. V.; Yasukevich, A. S.; Kornienko, A. A.; Dunina, E. B.; Fomicheva, L. A.; Pavlyuk, A. A.; Kuleshov, N. V.

    2018-01-01

    A Sm3+:KY(WO4)2 crystal was grown by the modified Czochralski technique. Polarized absorption and fluorescence spectra, as well as a fluorescence decay curve, were recorded at room temperature. Radiative properties such as emission probabilities, branching ratios and radiative lifetimes were investigated within the framework of the Judd-Ofelt theory as well as the theory of f-f transition intensities which takes into account the influence of the excited configurations. Emission cross section spectra were determined. 4G5/2 fluorescence decay was analyzed within the framework of the Inokuti-Hirayama model. The spectroscopic properties of Sm:KYW crystal were compared with those of other Sm3+-doped materials.

  13. Application of spectroscopic techniques in the radiation dosimetry of glasses: An update

    NASA Astrophysics Data System (ADS)

    Natarajan, V.

    2009-07-01

    The colorimetry and thermoluminescence properties of gamma irradiated glass were reported in as early as 1920. The utility of radio-photoluminescence (RPL) of silver activated metaphosphate glass for monitoring high doses of accidental and routine gamma radiation was reported in the 1960s. Since then considerable amount of research work has been carried out to study the thermoluminescence (TL), optical absorption (OA), electron paramagnetic resonance (EPR) and optically stimulated luminescence (OSL) of different commercially available glasses for high as well as low dose applications. A brief review of the progress made in the spectroscopic studies of glasses during the past few decades and the application of glasses for radiation dosimetry has been given in this paper.

  14. Computational and spectroscopic data correlation study of N,N'-bisarylmalonamides (Part II).

    PubMed

    Arsovski, Violeta M; Božić, Bojan Đ; Mirković, Jelena M; Vitnik, Vesna D; Vitnik, Željko J; Petrović, Slobodan D; Ušćumlić, Gordana S; Mijin, Dušan Ž

    2015-09-01

    To complement a previous UV study, we present a quantitative evaluation of substituent effects on spectroscopic data ((1)H and (13)C NMR chemical shifts as well as FT-IR absorption frequency) applied to N,N'-bisarylmalonamides, using simple and extended Hammett equations as well as the Swain-Lupton equation. Furthermore, the DFT CAM-B3LYP/6-311+G(d,p) method was applied to study the impact of different solvents on the geometry of the molecules and their spectral data. Additionally, experimental data are correlated with theoretical results; excellent linear dependence was obtained. The overall results presented in this paper show that N,N'-bisarylmalonamides are prominent candidates for model molecules.

  15. Quantum-chemical investigations of spectroscopic properties of a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.

    2012-09-01

    The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.

  16. Controlling coulomb interactions in infrared stereometamaterials for unity light absorption

    NASA Astrophysics Data System (ADS)

    Mudachathi, Renilkumar; Moritake, Yuto; Tanaka, Takuo

    2018-05-01

    We investigate the influence of near field interactions between the constituent 3D split ring resonators on the absorbance and resonance frequency of a stereo metamaterial based perfect light absorber. The experimental and theoretical analyses reveal that the magnetic resonance red shifts and broadens for both the decreasing vertical and lateral separations of the constituents within the metamaterial lattice, analogous to plasmon hybridization. The strong interparticle interactions for higher density reduce the effective cross-section per resonator, which results in weak light absorption observed in both experimental and theoretical analyses. The red shift of the magnetic resonance with increasing lattice density is an indication of the dominating electric dipole interactions and we analyzed the metamaterial system in an electrostatic point of view to explain the observed resonance shift and decreasing absorption peak. From these analyses, we found that the fill factor introduces two competing factors determining the absorption efficiency such as coulomb interactions between the constituent resonators and their number density in a given array structure. We predicted unity light absorption for a fill factor of 0.17 balancing these two opposing factors and demonstrate an experimental absorbance of 99.5% at resonance with our 3D device realized using residual stress induced bending of 2D patterns.

  17. Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging.

    PubMed

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2009-03-01

    A magnetic resonance spectroscopic imaging (MRSI) pulse sequence based on proton-echo-planar-spectroscopic-imaging (PEPSI) is introduced that measures two-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3-T whole-body scanner equipped with a 12-channel array coil. Four-step interleaved phase encoding and fourfold SENSE acceleration were used to encode a 16 x 16 spatial matrix with a 390-Hz spectral width. Comparison with conventional PEPSI and PEPSI with fourfold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor-related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of inositol, choline, creatine, and N-acetyl-aspartate (NAA) in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement.

  18. Biophysical influence of coumarin 35 on bovine serum albumin: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bayraktutan, Tuğba; Onganer, Yavuz

    2017-01-01

    The binding mechanism and protein-fluorescence probe interactions between bovine serum albumin (BSA) and coumarin 35 (C35) was investigated by using UV-Vis absorption and fluorescence spectroscopies since they remain major research topics in biophysics. The spectroscopic data indicated that a fluorescence quenching process for BSA-C35 system was occurred. The fluorescence quenching processes were analyzed using Stern-Volmer method. In this regard, Stern-Volmer quenching constants (KSV) and binding constants were calculated at different temperatures. The distance r between BSA (donor) and C35 (acceptor) was determined by exploiting fluorescence resonance energy transfer (FRET) method. Synchronous fluorescence spectra were also studied to observe information about conformational changes. Moreover, thermodynamics parameters were calculated for better understanding of interactions and conformational changes of the system.

  19. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume

    2016-03-01

    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  20. Spectroscopic method for Earth-satellite-Earth laser long-path absorption measurements using Retroreflector In Space (RIS)

    NASA Technical Reports Server (NTRS)

    Sugimoto, Nobuo; Minato, Atsushi; Sasano, Yasuhiro

    1992-01-01

    The Retroreflector in Space (RIS) is a single element cube-corner retroreflector with a diameter of 0.5 m designed for earth-satellite-earth laser long-path absorption experiments. The RIS is to be loaded on the Advanced Earth Observing System (ADEOS) satellite which is scheduled for launch in Feb. 1996. The orbit for ADEOS is a sun synchronous subrecurrent polar-orbit with an inclination of 98.6 deg. It has a period of 101 minutes and an altitude of approximately 800 km. The local time at descending node is 10:15-10:45, and the recurrent period is 41 days. The velocity relative to the ground is approximately 7 km/s. In the RIS experiment, a laser beam transmitted from a ground station is reflected by RIS and received at the ground station. The absorption of the intervening atmosphere is measured in the round-trip optical path.

  1. 4-Cyano-α-methyl-l-phenylalanine as a spectroscopic marker for the investigation of peptaibiotic-membrane interactions.

    PubMed

    De Zotti, Marta; Bobone, Sara; Bortolotti, Annalisa; Longo, Edoardo; Biondi, Barbara; Peggion, Cristina; Formaggio, Fernando; Toniolo, Claudio; Dalla Bona, Andrea; Kaptein, Bernard; Stella, Lorenzo

    2015-04-01

    Two analogs of the ten-amino acid residue, membrane-active lipopeptaibiotic trichogin GA IV, mono-labeled with 4-cyano-α-methyl-L-phenylalanine, a potentially useful fluorescence and IR absorption probe of the local microenvironment, were synthesized by the solid-phase methodology and conformationally characterized. The single modification was incorporated either at the N-terminus (position 1) or near the C-terminus (position 8) of the peptide main chain. In both cases, the replaced amino acid was the equally helicogenic α-aminoisobutyric acid (Aib) residue. We performed a solution conformational analysis by use of FT-IR absorption, CD, and 2D-NMR spectroscopies. The results indicate that both labeled analogs essentially maintain the overall helical propensity of the naturally occurring lipopeptaibiotic. Peptide-membrane interactions were assessed by fluorescence and ATR-IR absorption techniques. Analogies and differences between the two peptides were highlighted. Taken together, our data confirm literature results that some of the spectroscopic parameters of the 4-cyanobenzyl chromophore are sensitive markers of the local microenvironment. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  2. Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview

    PubMed Central

    Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B.; Röpcke, Jürgen

    2010-01-01

    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry. PMID:22163581

  3. Quantum cascade laser absorption spectroscopy as a plasma diagnostic tool: an overview.

    PubMed

    Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B; Röpcke, Jürgen

    2010-01-01

    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry.

  4. On the Interpretation of the Influence of Substituents on the UV-Spectroscopic Properties of Benzimidazole and Indazole Derivatives (In German)

    NASA Astrophysics Data System (ADS)

    Fabian, Walter

    1983-12-01

    On the interpretation of the influence of substituents on the UV-spectroscopic properties of benzimidazole and indazole derivatives. The UV spectra of a series of substituted benzimidazoles and indazoles were calculated by means of semiempirical quantum chemical methods (PPP, CNDO/S-CI). The results of the PPP calculations were subjected to a configuration analysis. Using this method, the influence of the nature and position of substituents on the absorption characteristics could be rationalized.

  5. Spectroscopic diagnostics of plasma during laser processing of aluminium

    NASA Astrophysics Data System (ADS)

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  6. Spectroscopic investigation on structure and pH dependent Cocrystal formation between gamma-aminobutyric acid and benzoic acid.

    PubMed

    Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi

    2018-02-15

    Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00≤pH≤7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    NASA Astrophysics Data System (ADS)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  8. The development and evaluation of airborne in situ N2O and CH4 sampling using a quantum cascade laser absorption spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2016-01-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large atmospheric research aircraft. We present details of the mid-infrared quantum cascade laser absorption spectrometer (QCLAS, Aerodyne Research Inc., USA) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure are presented. Total 1σ uncertainties of 2.47 ppb for CH4 and 0.54 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Fast Greenhouse Gas Analyser (FGGA, Los Gatos Research, USA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  9. The development and evaluation of airborne in situ N2O and CH4 sampling using a Quantum Cascade Laser Absorption Spectrometer (QCLAS)

    NASA Astrophysics Data System (ADS)

    Pitt, J. R.; Le Breton, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.; Bauguitte, S. J.-B.; O'Shea, S. J.; Muller, J. B. A.; Zahniser, M. S.; Pyle, J.; Palmer, P. I.

    2015-08-01

    Spectroscopic measurements of atmospheric N2O and CH4 mole fractions were made on board the FAAM (Facility for Airborne Atmospheric Measurements) large Atmospheric Research Aircraft. We present details of the mid-IR Aerodyne Research Inc. Quantum Cascade Laser Absorption Spectrometer (QCLAS) employed, including its configuration for airborne sampling, and evaluate its performance over 17 flights conducted during summer 2014. Two different methods of correcting for the influence of water vapour on the spectroscopic retrievals are compared and evaluated. A new in-flight calibration procedure to account for the observed sensitivity of the instrument to ambient pressure changes is described, and its impact on instrument performance is assessed. Test flight data linking this sensitivity to changes in cabin pressure is presented. Total 1σ uncertainties of 1.81 ppb for CH4 and 0.35 ppb for N2O are derived. We report a mean difference in 1 Hz CH4 mole fraction of 2.05 ppb (1σ = 5.85 ppb) between in-flight measurements made using the QCLAS and simultaneous measurements using a previously characterised Los Gatos Research Fast Greenhouse Gas Analyser (FGGA). Finally, a potential case study for the estimation of a regional N2O flux using a mass balance technique is identified, and the method for calculating such an estimate is outlined.

  10. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  11. Hemodynamic analysis of patients in intensive care unit based on diffuse optical spectroscopic imaging system

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Sheng; Wang, Chun-Yang; Ling, Yo-Wei; Chuang, Ming-Lung; Chuang, Ching-Cheng; Tsai, Jui-che; Lu, Chih-Wei; Sun, Chia-Wei

    2010-02-01

    Diffuse optical spectroscopic imaging (DOSI) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues and provides the monitoring of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. In our preliminary study, the temporal tracings of hemodynamic oxygenation are measured with DOSI and venous occlusion test (VOT) from normal subjects, patients with heart failure and patients with sepsis in intensive care unit (ICU). In experiments, the obvious differences of hemodynamic signals can be observed among the three groups. The physiological relevance of VOT hemodynamics with respect to diseases is also discussed in this paper.

  12. Observation of Frenkel and charge transfer excitons in pentacene single crystals using spectroscopic generalized ellipsometry

    NASA Astrophysics Data System (ADS)

    Qi, Dongchen; Su, Haibin; Bastjan, M.; Jurchescu, O. D.; Palstra, T. M.; Wee, Andrew T. S.; Rübhausen, M.; Rusydi, A.

    2013-09-01

    We report on the emerging and admixture of Frenkel and charge transfer (CT) excitons near the absorption onset in pentacene single crystals. Using high energy-resolution spectroscopic generalized ellipsometry with in-plane polarization dependence, the excitonic nature of three lowest lying excitations is discussed. Their distinct polarization dependence strongly indicates the presence of both Frenkel and CT types of excitons near the excitation onset. In particular, the peculiar polarization behavior of the second excitation can only be rationalized by taking into account the inherent CT transition dipole moment. This observation has important implications for the pentacene-based optoelectronic devices.

  13. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  14. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    PubMed

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-11

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  15. Spectroscopic characterization of N = 9 armchair graphene nanoribbons

    DOE PAGES

    Senkovskiy, B. V.; Haberer, D.; Usachov, D. Yu.; ...

    2017-07-03

    In this study, we investigate the N = 9 atoms wide armchair-type graphene nanoribbons (9-AGNRs) by performing a comprehensive spectroscopic and microscopic characterization of this novel material. In particular, we use X-ray photoelectron, near edge X-ray absorption fine structure, scanning tunneling, polarized Raman and angle-resolved photoemission (ARPES) spectroscopies. The ARPES measurements are aided by calculations of the photoemission matrix elements which yield the position in k space having the strongest photoemission cross section. Comparison with well-studied narrow N = 7 AGNRs shows that the effective electron mass in 9-AGNRs is reduced by two times and the valence band maximum ismore » shifted to lower binding energy by ~0.6 eV. In polarized Raman measurements of the aligned 9-AGNR, we reveal anisotropic signal depending upon the phonon symmetry. To conclude, our results indicate the 9-AGNRs are a novel 1D semiconductor with a high potential in nanoelectronic applications.« less

  16. Analysing baryon acoustic oscillations in sparse spectroscopic samples via cross-correlation with dense photometry

    NASA Astrophysics Data System (ADS)

    Patej, A.; Eisenstein, D. J.

    2018-07-01

    We develop a formalism for measuring the cosmological distance scale from baryon acoustic oscillations (BAO) using the cross-correlation of a sparse redshift survey with a denser photometric sample. This reduces the shot noise that would otherwise affect the autocorrelation of the sparse spectroscopic map. As a proof of principle, we make the first on-sky application of this method to a sparse sample defined as the z > 0.6 tail of the Sloan Digital Sky Survey's (SDSS) BOSS/CMASS sample of galaxies and a dense photometric sample from SDSS DR9. We find a 2.8σ preference for the BAO peak in the cross-correlation at an effective z = 0.64, from which we measure the angular diameter distance DM(z = 0.64) = (2418 ± 73 Mpc)(rs/rs, fid). Accordingly, we expect that using this method to combine sparse spectroscopy with the deep, high-quality imaging that is just now becoming available will enable higher precision BAO measurements than possible with the spectroscopy alone.

  17. High resolution spectroscopic optical coherence tomography in the 900-1100 nm wavelength range

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Povazay, Boris; Apolonski, Alexander A.; Unterhuber, Angelika; Hermann, Boris; Sattmann, Harald; Russell, Phillip S. J.; Krausz, Ferenc; Fercher, Adolf F.; Drexler, Wolfgang

    2002-06-01

    We demonstrate for the first time optical coherence tomography (OCT) in the 900-1100 nm wavelength range. A photonic crystal fiber (PCF) in combination with a sub-15fs Ti:sapphire laser is used to produce an emission spectrum with an optical bandwidth of 35 nm centered at ~1070 nm. Coupling the light from the PCF based source to an optimized free space OCT system results in ~15 micrometers axial resolution in air, corresponding to ~10 micrometers in biological tissue. The near infrared wavelength range around 1100 nm is very attractive for high resolution ophthalmologic OCT imaging of the anterior and posterior eye segment with enhanced penetration. The emission spectrum of the PCF based light source can also be reshaped and tuned to cover the wavelength region around 950-970 nm, where water absorption has a local peak. Therefore, the OCT system described in this paper can also be used for spatially resolved water absorption measurements in non-transparent biological tissue. A preliminary qualitative spectroscopic Oct measurement in D2O and H2 O phantoms is described in this paper.

  18. Gas phase absorption studies of photoactive yellow protein chromophore derivatives.

    PubMed

    Rocha-Rinza, Toms; Christiansen, Ove; Rajput, Jyoti; Gopalan, Aravind; Rahbek, Dennis B; Andersen, Lars H; Bochenkova, Anastasia V; Granovsky, Alexander A; Bravaya, Ksenia B; Nemukhin, Alexander V; Christiansen, Kasper Lincke; Nielsen, Mogens Brøndsted

    2009-08-27

    Photoabsorption spectra of deprotonated trans p-coumaric acid and two of its methyl substituted derivatives have been studied in gas phase both experimentally and theoretically. We have focused on the spectroscopic effect of the location of the two possible deprotonation sites on the trans p-coumaric acid which originate to either a phenoxide or a carboxylate. Surprisingly, the three chromophores were found to have the same absorption maximum at 430 nm, in spite of having different deprotonation positions. However, the absorption of the chromophore in polar solution is substantially different for the distinct deprotonation locations. We also report on the time scales and pathways of relaxation after photoexcitation for the three photoactive yellow protein chromophore derivatives. As a result of these experiments, we could detect the phenoxide isomer within the deprotonated trans p-coumaric acid in gas phase; however, the occurrence of the carboxylate is uncertain. Several computational methods were used simultaneously to provide insights and assistance in the interpretation of our experimental results. The calculated excitation energies S(0)-S(1) are in good agreement with experiment for those systems having a negative charge on a phenoxide moiety. Although our augmented multiconfigurational quasidegenerate perturbation theory calculations agree with experiment in the description of the absorption spectrum of anions with a carboxylate functional group, there are some puzzling disagreements between experiment and some calculational methods in the description of these systems.

  19. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    NASA Astrophysics Data System (ADS)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  20. A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes.

    PubMed

    Freiberg, Arvi; Rätsep, Margus; Timpmann, Kõu

    2012-08-01

    Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. Copyright © 2011. Published by Elsevier B.V.

  1. Synthesis, spectroscopic properties and theoretical studies of bis-Schiff bases derived from polyamine and pyrazolones.

    PubMed

    Ren, Tiegang; Liu, Shuyun; Li, Guihui; Zhang, Jinglai; Guo, Jia; Li, Weijie; Yang, Lirong

    2012-11-01

    A series of novel bis-Schiff base were synthesized from 1-aryl-3-methyl-4-benzoyl-5-pyrazolones and diethylenetriamine (or triethylenetetramine) as the starting materials. All of these bis-Schiff bases were characterized by means of NMR, IR, and MS. The UV-vis absorption spectra and fluorescent spectra of these bis-Schiff bases were also measured. Moreover, the B3LYP/6-31G(d) method was used to optimize the ground state geometry of the bis-Schiff bases; and the UV-vis spectroscopic properties of the products were computed and compared with corresponding experimental data based on cc-pVDZ basis set of TD-B3LYP method. It has been found that all of these bis-Schiff bases show a remarkable absorption peak in a wavelength range of 270-340 nm; and their maximum emission peaks are around 348 nm. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials

    NASA Astrophysics Data System (ADS)

    Pradhan, Asima

    Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can

  3. Spectroscopic survey of southern hemisphere white dwarfs. II. Spectroscopic data for forty-one southern white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegner, G.

    New spectroscopic data on 41 southern white dwarfs are presented. Most of these stars have not teen previously observed spectroscopically. Spectral types, as well as equivalent widths and line profiles for a few selected lines, are given. (auth)

  4. X-ray Absorption Spectroscopic and Theoretical Studies on (L)2[Cu2(S2)n]2+ Complexes: Disulfide Versus Disulfide(•1−) Bonding

    PubMed Central

    Sarangi, Ritimukta; York, John T.; Helton, Matthew E.; Fujisawa, Kiyoshi; Karlin, Kenneth D.; Tolman, William B.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2008-01-01

    Cu K-, L- and S K-edge X-ray absorption spectroscopic (XAS) data have been combined with density functional theory (DFT) calculations on [{(TMPA)Cu}2S2](ClO4)2 (1), [{Cu[HB(3,5-Pri2pz)3]}2(S2)] (2) and [{(TMEDA)Cu}2(S2)2](OTf)2 (3) to obtain a quantitative description of their ground state wavefunctions. The Cu L-edge intensities give 63% and 37% Cu d-character in the ground state of 1 and 2, respectively while the S K-pre-edge intensities reflect 20% and 48% S character in their ground states. These data indicate a more than two-fold increase in the total disulfide bonding character in 2 relative to 1. The increase in the number of Cu-S bonds in 2 (µ-η2:η2 S22− bridge) compared to 1 ((µ-η1:η1 S22− bridge), dominantly determines the large increase in covalency and Cu-disulfide bond strength in 2. Cu K- and L- and S K-pre-edge energy positions directly demonstrate the CuII/(S2−)2 nature of 3. The two disulfide(•1−)’s in 3 undergo strong bonding interactions which destabilize the resultant filled antibonding π* orbitals of the (S2−)2 fragment relative to the Cu 3d levels. This leads to an inverted bonding scheme in 3 with dominantly ligand based holes in its ground state, consistent with its description as a dicopper(II)-bis-disulfide(•1−) complex. PMID:18076173

  5. Pump absorption in coiled and twisted double-clad hexagonal fiber: effect of launching conditions and core location

    NASA Astrophysics Data System (ADS)

    Dalidet, Romain; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Koška, Pavel

    2018-02-01

    Ever extending applications of fiber lasers require energy efficient, high-power, small footprint and reliable fiber lasers and laser wavelength versatility. To meet these demands, next generation of active fibers for high-power fiber lasers is coming out that will eventually offer tailored spectroscopic properties, high robustness and reduced cooling requirements and improved efficiency through tailored pump absorption. We report on numerical modelling of the efficiency of the pump absorption in double clad active fibers with hexagonal shape of the inner cladding cross section and rare-earth-doped core. We analyze both the effect of different radii of the spool on which the fiber is coiled and different fiber twisting rates. Two different launching conditions were investigated: the Gaussian input pump beam and a speckle pattern that mimics the output of the pump laser diode pigtail. We have found that by asymmetric position of the rare-earth-doped core we can significantly improve the pump absorption.

  6. The identification of post-starburst galaxies at z ˜ 1 using multiwavelength photometry: a spectroscopic verification

    NASA Astrophysics Data System (ADS)

    Maltby, David T.; Almaini, Omar; Wild, Vivienne; Hatch, Nina A.; Hartley, William G.; Simpson, Chris; McLure, Ross J.; Dunlop, James; Rowlands, Kate; Cirasuolo, Michele

    2016-06-01

    Despite decades of study, we still do not fully understand why some massive galaxies abruptly switch off their star formation in the early Universe, and what causes their rapid transition to the red sequence. Post-starburst galaxies provide a rare opportunity to study this transition phase, but few have currently been spectroscopically identified at high redshift (z > 1). In this paper, we present the spectroscopic verification of a new photometric technique to identify post-starbursts in high-redshift surveys. The method classifies the broad-band optical-near-infrared spectral energy distributions (SEDs) of galaxies using three spectral shape parameters (supercolours), derived from a principal component analysis of model SEDs. When applied to the multiwavelength photometric data in the UKIDSS Ultra Deep Survey, this technique identified over 900 candidate post-starbursts at redshifts 0.5 < z < 2.0. In this study, we present deep optical spectroscopy for a subset of these galaxies, in order to confirm their post-starburst nature. Where a spectroscopic assessment was possible, we find the majority (19/24 galaxies; ˜80 per cent) exhibit the strong Balmer absorption (H δ equivalent width Wλ > 5 Å) and Balmer break, characteristic of post-starburst galaxies. We conclude that photometric methods can be used to select large samples of recently-quenched galaxies in the distant Universe.

  7. Spectroscopic database

    NASA Technical Reports Server (NTRS)

    Husson, N.; Barbe, A.; Brown, L. R.; Carli, B.; Goldman, A.; Pickett, H. M.; Roche, A. E.; Rothman, L. S.; Smith, M. A. H.

    1985-01-01

    Several aspects of quantitative atmospheric spectroscopy are considered, using a classification of the molecules according to the gas amounts in the stratosphere and upper troposphere, and reviews of quantitative atmospheric high-resolution spectroscopic measurements and field measurements systems are given. Laboratory spectroscopy and spectral analysis and prediction are presented with a summary of current laboratory spectroscopy capabilities. Spectroscopic data requirements for accurate derivation of atmospheric composition are discussed, where examples are given for space-based remote sensing experiments of the atmosphere: the ATMOS (Atmospheric Trace Molecule) and UARS (Upper Atmosphere Research Satellite) experiment. A review of the basic parameters involved in the data compilations; a summary of information on line parameter compilations already in existence; and a summary of current laboratory spectroscopy studies are used to assess the data base.

  8. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K.

    PubMed

    Yamanashi, Yoshihide; Takada, Tappei; Kurauchi, Ryoya; Tanaka, Yusuke; Komine, Toko; Suzuki, Hiroshi

    2017-04-03

    Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using genome-edited mice, genome-wide association approaches, gene mutation analyses, and the development of cholesterol absorption inhibitors have revealed that several membrane proteins play crucial roles in the intestinal absorption of cholesterol. Surprisingly, detailed analyses of these cholesterol transporters have revealed that they can also transport vitamin E and vitamin K, providing clues to uncover the molecular mechanisms underlying the intestinal absorption of these fat-soluble vitamins. In this review, we focus on the membrane proteins (Niemann-Pick C1 like 1, scavenger receptor class B type I, cluster of differentiation 36, and ATP-binding cassette transporter A1) that are (potentially) involved in the intestinal absorption of cholesterol, vitamin E, and vitamin K and discuss their physiological and pharmacological importance. We also discuss the related uncertainties that need to be explored in future studies.

  9. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K

    PubMed Central

    Yamanashi, Yoshihide; Kurauchi, Ryoya; Tanaka, Yusuke; Komine, Toko; Suzuki, Hiroshi

    2017-01-01

    Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using genome-edited mice, genome-wide association approaches, gene mutation analyses, and the development of cholesterol absorption inhibitors have revealed that several membrane proteins play crucial roles in the intestinal absorption of cholesterol. Surprisingly, detailed analyses of these cholesterol transporters have revealed that they can also transport vitamin E and vitamin K, providing clues to uncover the molecular mechanisms underlying the intestinal absorption of these fat-soluble vitamins. In this review, we focus on the membrane proteins (Niemann-Pick C1 like 1, scavenger receptor class B type I, cluster of differentiation 36, and ATP-binding cassette transporter A1) that are (potentially) involved in the intestinal absorption of cholesterol, vitamin E, and vitamin K and discuss their physiological and pharmacological importance. We also discuss the related uncertainties that need to be explored in future studies. PMID:28100881

  10. Simulation of X-ray transient absorption for following vibrations in coherently ionized F2 molecules

    NASA Astrophysics Data System (ADS)

    Dutoi, Anthony D.; Leone, Stephen R.

    2017-01-01

    Femtosecond and attosecond X-ray transient absorption experiments are becoming increasingly sophisticated tools for probing nuclear dynamics. In this work, we explore and develop theoretical tools needed for interpretation of such spectra,in order to characterize the vibrational coherences that result from ionizing a molecule in a strong IR field. Ab initio data for F2 is combined with simulations of nuclear dynamics, in order to simulate time-resolved X-ray absorption spectra for vibrational wavepackets after coherent ionization at 0 K and at finite temperature. Dihalogens pose rather difficult electronic structure problems, and the issues encountered in this work will be reflective of those encountered with any core-valence excitation simulation when a bond is breaking. The simulations reveal a strong dependence of the X-ray absorption maximum on the locations of the vibrational wave packets. A Fourier transform of the simulated signal shows features at the overtone frequencies of both the neutral and the cation, which reflect spatial interferences of the vibrational eigenstates. This provides a direct path for implementing ultrafast X-ray spectroscopic methods to visualize coherent nuclear dynamics.

  11. Spectroscopic characterizations of organic/inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Govani, Jayesh R.

    2009-12-01

    In the present study, pure and 0.3 wt%, 0.4 wt%, as well as 0.5 wt% L-arginine doped potassium dihydrogen phosphate (KDP) crystals were grown using solution growth techniques and further subjected to infrared (IR) absorption and Raman studies for confirmation of chemical group functionalization for investigating the incorporation mechanism of the L-arginine organic material into the KDP crystal structure. Infrared spectroscopic analysis suggests that structural changes are occurring for the L-arginine molecule as a result of its interaction with the KPD crystal. Infrared spectroscopic technique confirms the disturbance of the N-H, C-H and C-N bonds of the amino acid, suggesting successful incorporation of L-arginine into the KDP crystals. Raman analysis also reveals modification of the N-H, C-H and C-N bonds of the amino acid, implying successful inclusion of L-arginine into the KDP crystals. With the help of Gaussian software, a prediction of possible incorporation mechanisms of the organic material was obtained from comparison of the simulated infrared and Raman vibrational spectra with the experimental results. Furthermore, we also studied the effect of L-arginine doping on the thermal stability of the grown KDP crystal by employing Thermo gravimetric analysis (TGA). TGA suggests that increasing the level of L-arginine doping speeds the decomposition process and it weakens the KDP crystal, which indicates successful doping of the KDP crystals with L-arginine amino acid. Urinary stones are one of the oldest and most widely spread diseases in humans, animals and birds. Many remedies have been employed through the ages for the treatment of urinary stones. Recent medicinal measures reflect the modern advances, which are based on surgical removal, percutaneous techniques and extracorporeal shock wave lithotripsy (ESWL). Although these procedures are valuable, they are quite expensive for most people. Furthermore, recurrence of these diseases is awfully frequent with

  12. Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.

    1999-02-01

    Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.

  13. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; hide

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  14. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons

    2009-09-25

    Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the differentmore » selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with

  15. Modeling MgII Absorbers from SDSS Spectroscopic and Imaging Catalogs

    NASA Astrophysics Data System (ADS)

    Rimoldini, L. G.; Menard, B.; Nestor, D. B.; Rao, S. M.; Sheth, R. K.; Turnshek, D. A.; Zibetti, S.; Feather, S.; Quider, A.

    2005-12-01

    The detection of more than 14,000 MgII absorption doublets along the sight-lines to SDSS DR4 QSOs (pursued by Turnshek, Nestor, Rao, and collaborators) has produced the largest sample of MgII absorbers to date in the redshift interval 0.37 < z < 2.30. The statistical relation between galaxies and MgII systems is investigated by cross-correlating the spectroscopic MgII catalog with the SDSS imaging catalog of galaxies in the neighborhood of QSO sight-lines. A model for MgII absorbers is derived to account for the measured MgII rest equivalent width distribution and the absorbing galaxy properties (e.g., luminosity, impact parameter, and morphological type). Some preliminary results of our analysis are presented. This work was supported in part by the National Science Foundation. L.G.R. acknowledges further support from the Z. Daniel's Predoctoral Fellowship.

  16. High Resolution UV SO2 Absorption Cross Sections and VUV N2 Oscillator Strengths for Planetary Atmospheres Studies

    NASA Astrophysics Data System (ADS)

    Smith, P. L.; Stark, G.; Rufus, J.

    2000-10-01

    The determination of the chemical composition of the atmosphere of Io in the 190-220 nm wavelength region requires a knowledge of the photoabsorption cross section of SO2 at temperatures ranging from 110 to 300 K. We are continuing our laboratory program to measure SO2 absorption cross sections with very high resolving power (450,000) at a range of temperatures appropriate to the Io atmosphere. Previous photoabsorption measurements have been unable to resolve the very congested SO2 spectrum. Out measurements are being undertaken at Imperial College, London, using an ultraviolet Fourier transform spectrometer. We recently completed room temperature measurements of SO2 cross sections in the 190-220 nm region (Stark et al., JGR Planets 104, 16,585 (1999)). Current laboratory work is focusing on a complementary set of measurements at 160 K. Preliminary results will be presented. Analyses of Voyager VUV occultation measurements of the N2-rich atmospheres of Titan and Triton are hampered by the lack of fundamental spectroscopic data for N2, in particular, by the lack of reliable f-values and line widths for electronic bands of N2 in the 80-100 nm wavelength region. We are continuing our program to measure band oscillator strengths for about 100 N2 bands between 80-100 nm. We have begun an on-line molecular spectroscopic atlas [http://cfa-www.harvard.edu/amdata/ampdata/N2ARCHIVE/n2home.html]. The archive includes published and unpublished 14N2, 14N15N, and 15N2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N2 literature. The listings are searchable by wavelength interval or band identification and are suitable for down-loading in a convenient format. This work was supported in part by NASA Grant NAG5-6222 and the Smithsonian Institution Atherton Seidel Grant Program.

  17. Infrared spectroscopic ellipsometry in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Guittet, Pierre-Yves; Mantz, Ulrich; Weidner, Peter; Stehle, Jean-Louis; Bucchia, Marc; Bourtault, Sophie; Zahorski, Dorian

    2004-05-01

    Infrared spectroscopic ellipsometry (IRSE) metrology is an emerging technology in semiconductor production environment. Infineon Technologies SC300 implemented the first worldwide automated IRSE in a class 1 clean room in 2002. Combining properties of IR light -- large wavelength, low absorption in silicon -- with a short focus optics -- no backside reflection -- which allow model-based analysis, a large number of production applications were developed. Part of Infineon IRSE development roadmap is now focused on depth monitoring for arrays of 3D dry-etched structures. In trench DRAM manufacturing, the areal density is high, and critical dimensions are much lower than mid-IR wavelength. Therefore, extensive use of effective medium theory is made to model 3D structures. IR-SE metrology is not limited by shrinking critical dimensions, as long as the areal density is above a specific cut-off value determined by trenches dimensions, trench-filling and surrounding materials. Two applications for depth monitoring are presented. 1D models were developed and successfully applied to the DRAM trench capacitor structures. Modeling and correlation to reference methods are shown as well as dynamic repeatability and gauge capability results. Limitations of the current tool configuration are reviewed for shallow structures.

  18. Effects of velocity-changing collisions on two-photon and stepwise-absorption spectroscopic line shapes

    NASA Astrophysics Data System (ADS)

    Liao, P. F.; Bjorkholm, J. E.; Berman, P. R.

    1980-06-01

    We report the results of an experimental study of the effects of velocity-changing collisions on two-photon and stepwise-absorption line shapes. Excitation spectra for the 3S12-->3P12-->4D12 transitions of sodium atoms undergoing collisions with foreign gas perturbers are obtained. These spectra are obtained with two cw dye lasers. One laser, the pump laser, is tuned 1.6 GHz below the 3S12-->3P12 transition frequency and excites a nonthermal longitudinal velocity distribution of excited 3P12 atoms in the vapor. Absorption of the second (probe) laser is used to monitor the steady-state excited-state distribution which is a result of collisions with rare gas atoms. The spectra are obtained for various pressures of He, Ne, and Kr gases and are fit to a theoretical model which utilizes either the phenomenological Keilson-Störer or the classical hardsphere collision kernel. The theoretical model includes the effects of collisionally aided excitation of the 3P12 state as well as effects due to fine-structure state-changing collisions. Although both kernels are found to predict line shapes which are in reasonable agreement with the experimental results, the hard-sphere kernel is found superior as it gives a better description of the effects of large-angle scattering for heavy perturbers. Neither kernel provides a fully adequate description over the entire line profile. The experimental data is used to extract effective hard-sphere collision cross sections for collisions between sodium 3P12 atoms and helium, neon, and krypton perturbers.

  19. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    PubMed

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Electrochemical and spectroscopic study on the interaction between isoprenaline and DNA using multivariate curve resolution-alternating least squares.

    PubMed

    Ni, Yongnian; Wei, Min; Kokot, Serge

    2011-11-01

    Interaction of isoprenaline (ISO) with calf-thymus DNA was studied by spectroscopic and electrochemical methods. The behavior of ISO was investigated at a glassy carbon electrode (GCE) by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV); ISO was oxidized and an irreversible oxidation peak was observed. The binding constant K and the stoichiometric coefficient m of ISO with DNA were evaluated. Also, with the addition of DNA, hyperchromicity of the UV-vis absorption spectra of ISO was noted, while the fluorescence intensity decreased significantly. Multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics method was applied to resolve the combined spectroscopic data matrix, which was obtained by the UV-vis and fluorescence methods. Pure spectra of ISO, DNA and ISO-DNA complex, and their concentration profiles were then successfully obtained. The results indicated that the ISO molecule intercalated into the base-pairs of DNA, and the complex of ISO-DNA was formed. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses.

    PubMed

    Vasconcelos, Maydla Dos Santos; Passos, Wilson Espíndola; Lescanos, Caroline Honaiser; Pires de Oliveira, Ivan; Trindade, Magno Aparecido Gonçalves; Caires, Anderson Rodrigues Lima; Muzzi, Rozanna Marques

    2018-01-01

    The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.). The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB) and ∼90% (RSLB). The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2), about 49%, and the oleic monounsaturated (18  :  1), ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3), ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  2. Spectroscopic data for thermal infrared remote sensing

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Nemtchinov, V.; Li, Z.

    1995-01-01

    There has been extensive world-wide use of chloro-fluoro-carbons (CFC's), especially CFC-11 (CFCl3) and CFC-12 (CF2Cl2), hydro-chloro-fluoro-carbons (HCFC's), HCFC-22 (CHFCl2) in particular, and sulphur hexaflouride (SF6) in numerous many industrial applications. These chemicals possess either a strong ozone-depletion potential or a global-warming potential, or both, and pose a threat to the inhabitability of our planet. Recognition of this fact has led to significant curtailment, if not total banishment, of their use globally. However, as recent satellite observations have shown, decline in their atmospheric concentrations may not be immediate. The marked depletion of ozone which has been observed in recent years at high latitudes has made infrared remote sensing of the atmosphere an activity of high priority. The success of any infrared remote sensing experiment conducted in the atmosphere depends upon the availability of accurate, high-resolution, spectroscopic data that are applicable to that experiment. This paper presents a preliminary phase of a multi-faceted work using a Fourier-transform spectrometer (FTS) which is in progress in our laboratory. The concept of how laboratory-borne measurements can be geared toward obtaining a database that is directly applicable to satellite-borne remote sensing missions is the main thrust of this paper which addresses itself to ongoing or planned international space missions. Spectroscopic data on the unresolvable bands of the above mentioned as well as several other man-made gases and on the individual spectral lines of such naturally present trace gases as CO2, N2O, NH3, and CH4 are presented. There is often significant overlap between the isolated lines of better known bands of the more abundant species and the weaker absorption features identifiable as bands of the currently less abundant CFC's, HCFC's, and SF6.

  3. Spectroscopic investigations of Nd3+ doped flouro- and chloro-borate glasses.

    PubMed

    Mohan, Shaweta; Thind, Kulwant Singh; Sharma, Gopi; Gerward, Leif

    2008-10-01

    Spectroscopic and physical properties of Nd3+ doped sodium lead flouro- and chloro-borate glasses of the type 20NaX-30PbO-49.5B2O3-0.5Nd2O3 (X=F and Cl) have been investigated. Optical absorption spectra have been used to determine the Slater Condon (F2, F4, and F6), spin orbit xi4f and Racah parameters (E1, E2, and E3). The oscillator strengths and the intensity parameters Omega2, Omega4 and Omega6 have been determined by the Judd-Ofelt theory, which in turn provide the radiative transition probability (A), total transition probability (A(T)), radiative lifetime (tauR) and branching ratio (beta) for the fluorescent level 4F3/2. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Omega4/Omega6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. Nephelauxetic effect results in a red shift in the energy levels of Nd3+ for chloroborate glass. The radiative transition probability of the potential lasing transition 4F3/2-->4I11/2 of Nd3+ ions is found to be higher for flouroborate as compared to chloroborate glass.

  4. Spectroscopic study of non-amphiphilic 2-(4-biphenylyl)-5-(4- tert-butylphenyl)-l,3,4-oxadiazole aggregates at air-water interface and in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Acharya, Somobrata; Bhattacharjee, D.; Sarkar, Jyotirmoy; Talapatra, G. B.

    2004-07-01

    This Letter reports the spectroscopic characteristics of a non-amphiphilic 2-(4-biphenylyl)-5-(4- tert-butylphenyl)-1,3,4-oxadiazole (buPBD) molecule, in Langmuir and Langmuir-Blodgett (LB) films mixed with polymethyl methacrylate (PMMA) as well as with arachidic acid (AA). The π- A isotherms of buPBD mixed with PMMA/AA at different molefractions show that at very low surface pressure, a phase transition corresponding to a reorientation of the buPBD molecules occur, whereas at high surface pressure, buPBD molecules form aggregates among the hydrophobic tail part of PMMA/AA. Absorption and fluorescence spectroscopic study of the mixed LB films reveal formation of different types of aggregates.

  5. Anodic stripping voltammetry with gold electrodes as an alternative method for the routine determination of mercury in fish. Comparison with spectroscopic approaches.

    PubMed

    Giacomino, Agnese; Ruo Redda, Andrea; Squadrone, Stefania; Rizzi, Marco; Abete, Maria Cesarina; La Gioia, Carmela; Toniolo, Rosanna; Abollino, Ornella; Malandrino, Mery

    2017-04-15

    The applicability to the determination of mercury in tuna of square wave anodic stripping voltammetry (SW-ASV) conducted at both solid gold electrode (SGE) and a gold nanoparticle-modified glassy carbon electrode (AuNPs-GCE) was demonstrated. Mercury content in two certified materials and in ten samples of canned tuna was measured. The performances of the electrodes were compared with one another as well as with two spectroscopic techniques, namely cold vapour atomic absorption spectroscopy (CV-AAS) and a direct mercury analyser (DMA). The results found pointed out that both SW-ASV approaches were suitable and easy-to-use method to monitor mercury concentration in tunas, since they allowed accurate quantification at concentration values lower than the maximum admissible level in this matrix ([Hg]=1mg/kg wet weight,ww ). In particular, mercury detection at the AuNPs-GCE showed a LOQ in fish-matrix of 0.1μg/l, corresponding to 0.06mg/kg ww , with performance comparable to that of DMA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption.

    PubMed

    Hung, Yung-Jr; Lee, San-Liang; Coldren, Larry A

    2010-03-29

    Tapered silicon photonic crystals (PhCs) with smooth sidewalls are realized using a novel single-step deep reactive ion etching. The PhCs can significantly reduce the surface reflection over the wavelength range between the ultra-violet and near-infrared regions. From the measurements using a spectrophotometer and an angle-variable spectroscopic ellipsometer, the sub-wavelength periodic structure can provide a broad and angular-independent antireflective window in the visible region for the TE-polarized light. The PhCs with tapered rods can further reduce the reflection due to a gradually changed effective index. On the other hand, strong optical resonances for TM-mode can be found in this structure, which is mainly due to the existence of full photonic bandgaps inside the material. Such resonance can enhance the optical absorption inside the silicon PhCs due to its increased optical paths. With the help of both antireflective and absorption-enhanced characteristics in this structure, the PhCs can be used for various applications.

  7. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at redshift two

    DOE PAGES

    Smith, M.

    2017-12-11

    Here, we present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z~2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z=1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z=0.102), with a peak absolute magnitude of U=-22.26more » $$\\pm$$0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with ten similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV (~2500A), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z<1) and high redshift (z>1), but there is clear evidence of diversity in the spectrum at <2000A, possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z=3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z<1), we highlight that at z>2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-Field Infrared Survey Telescope, which should detect such SLSNe-I to z=3.5, 3.7, and 6.6, respectively.« less

  8. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two

    NASA Astrophysics Data System (ADS)

    Smith, M.; Sullivan, M.; Nichol, R. C.; Galbany, L.; D’Andrea, C. B.; Inserra, C.; Lidman, C.; Rest, A.; Schirmer, M.; Filippenko, A. V.; Zheng, W.; Cenko, S. Bradley; Angus, C. R.; Brown, P. J.; Davis, T. M.; Finley, D. A.; Foley, R. J.; González-Gaitán, S.; Gutiérrez, C. P.; Kessler, R.; Kuhlmann, S.; Marriner, J.; Möller, A.; Nugent, P. E.; Prajs, S.; Thomas, R.; Wolf, R.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; Davis, C.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Johnson, M. W. G.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Ogando, R. L. C.; Petravick, D.; Plazas, A. A.; Romer, A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; The DES Collaboration

    2018-02-01

    We present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z≈ 2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z = 1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z = 0.102), with a peak absolute magnitude of U=-22.26+/- 0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with 10 similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV ({λ }{rest}≈ 2500 Å), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z< 1) and high redshift (z> 1), but there is clear evidence of diversity in the spectrum at {λ }{rest}< 2000 \\mathringA , possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z = 3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z< 1), we highlight that at z> 2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-field Infrared Survey Telescope, which should detect such SLSNe-I to z = 3.5, 3.7, and 6.6, respectively.

  9. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at redshift two

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.

    Here, we present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z~2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z=1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z=0.102), with a peak absolute magnitude of U=-22.26more » $$\\pm$$0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with ten similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV (~2500A), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z<1) and high redshift (z>1), but there is clear evidence of diversity in the spectrum at <2000A, possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z=3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z<1), we highlight that at z>2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-Field Infrared Survey Telescope, which should detect such SLSNe-I to z=3.5, 3.7, and 6.6, respectively.« less

  10. Low-coherence terahertz tomography based on spatially separated counterpropagating beams with allowance for probe radiation absorption in the medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandrosov, V I

    2015-10-31

    This paper analyses low-coherence tomography of absorbing media with the use of spatially separated counterpropagating object and reference beams. A probe radiation source based on a broadband terahertz (THz) generator that emits sufficiently intense THz waves in the spectral range 90 – 350 μm and a prism spectroscope that separates out eight narrow intervals from this range are proposed for implementing this method. This allows media of interest to be examined by low-coherence tomography with counterpropagating beams in each interval. It is shown that, according to the Rayleigh criterion, the method is capable of resolving inhomogeneities with a size nearmore » one quarter of the coherence length of the probe radiation. In addition, the proposed tomograph configuration allows one to determine the average surface asperity slope and the refractive index and absorption coefficient of inhomogeneities 180 to 700 mm in size, and obtain spectra of such inhomogeneities in order to determine their chemical composition. (laser applications and other topics in quantum electronics)« less

  11. Enhancing forensic science with spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Ricci, Camilla; Kazarian, Sergei G.

    2006-09-01

    This presentation outlines the research we are developing in the area of Fourier Transform Infrared (FTIR) spectroscopic imaging with the focus on materials of forensic interest. FTIR spectroscopic imaging has recently emerged as a powerful tool for characterisation of heterogeneous materials. FTIR imaging relies on the ability of the military-developed infrared array detector to simultaneously measure spectra from thousands of different locations in a sample. Recently developed application of FTIR imaging using an ATR (Attenuated Total Reflection) mode has demonstrated the ability of this method to achieve spatial resolution beyond the diffraction limit of infrared light in air. Chemical visualisation with enhanced spatial resolution in micro-ATR mode broadens the range of materials studied with FTIR imaging with applications to pharmaceutical formulations or biological samples. Macro-ATR imaging has also been developed for chemical imaging analysis of large surface area samples and was applied to analyse the surface of human skin (e.g. finger), counterfeit tablets, textile materials (clothing), etc. This approach demonstrated the ability of this imaging method to detect trace materials attached to the surface of the skin. This may also prove as a valuable tool in detection of traces of explosives left or trapped on the surfaces of different materials. This FTIR imaging method is substantially superior to many of the other imaging methods due to inherent chemical specificity of infrared spectroscopy and fast acquisition times of this technique. Our preliminary data demonstrated that this methodology will provide the means to non-destructive detection method that could relate evidence to its source. This will be important in a wider crime prevention programme. In summary, intrinsic chemical specificity and enhanced visualising capability of FTIR spectroscopic imaging open a window of opportunities for counter-terrorism and crime-fighting, with applications ranging

  12. Spectroscopic analysis of a novel Nd3+-activated barium borate glass for broadband laser amplification

    NASA Astrophysics Data System (ADS)

    Vázquez, G. V.; Muñoz H., G.; Camarillo, I.; Falcony, C.; Caldiño, U.; Lira, A.

    2015-08-01

    Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd-Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high Ω6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron-phonon coupling between Nd3+ and free OH- ions, which is consistent with the phonon energy maximum (3442.1 cm-1) recorded by Raman spectroscopy. This strong electron-phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2 → 4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2 → 4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2 → 4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2 → 4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.

  13. Broad Absorption Lines in Qsos: Observations and Implications for Models.

    NASA Astrophysics Data System (ADS)

    Turnshek, David Alvin

    Spectroscopic observations of fourteen broad absorption line (BAL) QSOs are presented and analyzed. Other observations are summarized. The following major conclusions are reached. Broad absorption lines (BALs) are probably present in 3 to 10 percent of the spectra of moderate to high redshift QSOs. The BALs exhibit a variety of velocity structures, from seemingly smooth, continuous absorption to complexes of individual absorption lines. Outflow velocities up to 40,000 km s(' -1) are observed. The level of ionization is high. The minimum total absorption column densities are 10('20) to 10('22) cm('-2). The emission line properties of BAL QSOs appear to be different from those of non-BAL QSOs. For example, N V emission is generally stronger in BAL QSOs and the emission near C III} (lamda)1909 is generally broader in BAL QSOs. The distribution of multiplicities for isolated absorption troughs suggests that the large -scale spatial distribution of BAL clouds is non-random, possibly described by a disk geometry. The BAL clouds are incapable of accounting for all of the observed broad emission lines, particularly C III} (lamda)1909 and Mg II (lamda)2798. Therefore, if the BAL clouds give rise to observable emission, the generally adopted (optically thick, single component) model for the emission line region must be incorrect. Also, photoionization models, which utilize solar abundances and take the ionizing continuum to be a simple power law, are incapable of explaining the level of ionization in the BAL clouds. By considering the observed percentage of QSOs with BALs and resonance line scattering models, it is found that the absorption covering factor in BAL QSOs is between 3 and 20 percent. This suggests that possibly all, but not less than 15 percent, of the QSOs have BAL clouds associated with them. The amount of observable emission and polarization expected to be produced by the BAL clouds from resonance line scattering and collisional excitation is considered in

  14. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. II. The phenanthrene cation (C14H10+) and its 1-methyl derivative

    NASA Technical Reports Server (NTRS)

    Salama, F.; Joblin, C.; Allamandola, L. J.

    1994-01-01

    The ultraviolet, visible, and near infrared absorption spectra of phenanthrene (C14H10), 1-methylphenanthrene [(CH3)C14H9], and their radical ions [C14H10+; (CH3)C14H9+], formed by vacuum-ultraviolet irradiation, were measured in neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed. The oscillator strengths were calculated for the phenanthrene ion and found lower than the theoretical predictions. This study presents the first spectroscopic data for phenanthrene and its methyl derivative trapped in a neon matrix where the perturbation of the isolated species by its environment is minimum; a condition crucial to astrophysical applications.

  15. Spectroscopic investigations on Pr3+ ions doped lead telluro-borate glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Suthanthirakumar, P.; Mariyappan, M.; Marimuthu, K.

    2018-04-01

    A new series of Lead telluro-borate glasses doped with different concentrations of Pr3+ ions (xPLTB) were prepared by melt quenching technique and their structural and spectroscopic properties were investigated by recording XRD, FTIR, optical absorption and luminescence spectral measurements. XRD measurements confirm the amorphous nature and the FTIR spectra reveal the presence of different vibrational modes of borate and tellurite networks in the prepared glasses. The bonding parameter values (δ) obtained from the absorption band positions indicates that the bonding between Pr3+ ions and their surrounding ligands is of ionic in nature. The optical band gap (Eopt) corresponding to the direct and indirect allowed transitions were determined with the framework of tauc's plot. From the luminescence spectra, important radiative parameters such as stimulated emission cross-section (σPE) , branching ratios (βR) and radiative lifetime (τR) were calculated for the dominant emission transition 3P0→3H4 (blue) in order to suggest the suitability of the studied glasses for suitable photonic applications.

  16. Electrochemical and spectroscopic effects of mixed substituents in bis(phenolate)–copper(II) galactose oxidase model complexes

    PubMed Central

    Pratt, Russell C.; Lyons, Christopher T.; Wasinger, Erik C.; Stack, T. Daniel. P.

    2012-01-01

    Non-symmetric substitution of salen (1R1,R2) and reduced salen (2R1,R2) CuII-phenoxyl complexes with a combination of -tBu, -SiPr, and -OMe substituents leads to dramatic differences in their redox and spectroscopic properties, providing insight into the influence of the cysteine-modified tyrosine cofactor in the enzyme galactose oxidase (GO). Using a modified Marcus-Hush analysis, the oxidized copper complexes are characterized as Class II mixed-valent due to the electronic differentiation between the two substituted phenolates. Sulfur K-edge X-ray absorption spectroscopy (XAS) assesses the degree of radical delocalization onto the single sulfur atom of non-symmetric [1tBu,SMe]+ at 7%, consistent with other spectroscopic and electrochemical results that suggest preferential oxidation of the -SMe bearing phenolate. Estimates of the thermodynamic free-energy difference between the two localized states (ΔG∘) and reorganizational energies (λR1R2) of [1R1,R2]+ and [2R1,R2]+ leads to accurate predictions of the spectroscopically observed IVCT transition energies. Application of the modified Marcus-Hush analysis to GO using parameters determined for [2R1,R2]+ predicts a νmax of ~ 13600 cm−1, well within the energy range of the broad Vis-NIR band displayed by the enzyme. PMID:22471355

  17. Understanding the shrinkage of optical absorption edges of nanostructured Cd-Zn sulphide films for photothermal applications

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Sohrab; Kabir, Humayun; Rahman, M. Mahbubur; Hasan, Kamrul; Bashar, Muhammad Shahriar; Rahman, Mashudur; Gafur, Md. Abdul; Islam, Shariful; Amri, Amun; Jiang, Zhong-Tao; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.

    2017-01-01

    In this article Cd-Zn sulphide thin films deposited onto soda lime glass substrates via chemical bath deposition (CBD) technique were investigated for photovoltaic applications. The synthesized films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible (UV-vis) spectroscopic methodologies. A higher degree of crystallinity of the films was attained with the increase of film thicknesses. SEM micrographs exhibited a partial crystalline structure with a particulate appearance surrounded by the amorphous grain boundaries. The optical absorbance and absorption coefficient of the films were also enhanced significantly with the increase in film thicknesses. Optical band-gap analysis indicated a monotonic decrease in direct and indirect band-gaps with the increase of thicknesses of the films. The presence of direct and indirect transitional energies due to the exponential falling edges of the absorption curves may either be due to the lack of long-range order or to the existence of defects in the films. The declination of the optical absorption edges was also confirmed via Urbach energy and steepness parameters studies.

  18. Analysis of the Spectroscopic Aspects of Cationic Dye Basic Orange 21.

    PubMed

    Eizig, Zehavit; Major, Dan T; Kasdan, Harvey L; Afrimzon, Elena; Zurgil, Naomi; Sobolev, Maria; Deutsch, Mordechai

    2015-09-24

    Spectroscopic properties of cationic dye basic orange 21 (BO21) in solutions, in solids, and within leukocytes were examined. Results obtained with solutions indicate that influence of variables such as pH, viscosity, salt composition, and various proteins on the absorption spectrum of BO21 is negligible. However, in the presence of heparin, a blue shift (484-465 nm) is observed, which is attributed to the aggregation of BO21 on the polyanion. Applying density functional theory demonstrates that in aqueous solutions (a) the formation of BO21 oligomers is thermodynamically favorable, they are oriented in an antiparallel dipolar arrangement, and their binding energies are lower than those of parallel dipolar arrangements, (b) association between BO21 aggregates and heparin is highly favorable, and (c) the blue shift is due to the mixing of π → π* transitions caused by BO21 molecule stacking. However, when embedded in basophils, the absorption spectra of intracellular BO21 is extremely red-shifted, with two peaks (at 505 and 550 nm) found to be attributed to BO21 and the BO21-heparin complex, respectively, which are intracellularly hosted in nonaqueous environments. Initial evidence of the ability to differentiate between leukocyte types by BO21 is presented.

  19. Monitoring the layer-by-layer self-assembly of graphene and graphene oxide by spectroscopic ellipsometry.

    PubMed

    Zhou, Kai-Ge; Chang, Meng-Jie; Wang, Hang-Xing; Xie, Yu-Long; Zhang, Hao-Li

    2012-01-01

    Thin films of graphene oxide, graphene and copper (II) phthalocyanine dye have been successfully fabricated by electrostatic layer-by-layer (LbL) assembly approach. We present the first variable angle spectroscopic ellipsometry (VASE) investigation on these graphene-dye hybrid thin films. The thickness evaluation suggested that our LbL assembly process produces highly uniform and reproducible thin films. We demonstrate that the refractive indices of the graphene-dye thin films undergo dramatic variation in the range close to the absorption of the dyes. This investigation provides new insight to the optical properties of graphene containing thin films and shall help to establish an appropriate optical model for graphene-based hybrid materials.

  20. Spectroscopic Evolution of Disintegrating Planetesimals: Minute to Month Variability in the Circumstellar Gas Associated with WD 1145+017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redfield, Seth; Cauley, P. Wilson; Duvvuri, Girish M.

    With the recent discovery of transiting planetary material around WD 1145+017, a critical target has been identified that links the evolution of planetary systems with debris disks and their accretion onto the star. We present a series of observations, five epochs over a year, taken with Keck and the VLT, which for the first time show variability of circumstellar absorption in the gas disk surrounding WD 1145+017 on timescales of minutes to months. Circumstellar absorption is measured in more than 250 lines of 14 ions among 10 different elements associated with planetary composition, e.g., O, Mg, Ca, Ti, Cr, Mn,more » Fe, and Ni. Broad circumstellar gas absorption with a velocity spread of 225 km s{sup −1} is detected, but over the course of a year blueshifted absorption disappears, while redshifted absorption systematically increases. A correlation of equivalent width and oscillator strength indicates that the gas is not highly optically thick (median τ ≈ 2). We discuss simple models of an eccentric disk coupled with magnetospheric accretion to explain the basic observed characteristics of these high-resolution and high signal-to-noise observations. Variability is detected on timescales of minutes in the two most recent observations, showing a loss of redshifted absorption for tens of minutes, coincident with major transit events and consistent with gas hidden behind opaque transiting material. This system currently presents a unique opportunity to learn how the gas causing the spectroscopic, circumstellar absorption is associated with the ongoing accretion evidenced by photospheric contamination, as well as the transiting planetary material detected in photometric observations.« less

  1. Discovery of Variable Hydrogen Balmer Absorption Lines with Inverse Decrement in PG 1411+442

    NASA Astrophysics Data System (ADS)

    Shi, Xi-Heng; Pan, Xiang; Zhang, Shao-Hua; Sun, Lu-Ming; Wang, Jian-Guo; Ji, Tuo; Yang, Chen-Wei; Liu, Bo; Jiang, Ning; Zhou, Hong-Yan

    2017-07-01

    We present new optical spectra of the well-known broad absorption line (BAL) quasar PG 1411+442, using the DBSP spectrograph at the Palomar 200 inch telescope in 2014 and 2017 and the YFOSC spectrograph at the Lijiang 2.4 m telescope in 2015. A blueshifted narrow absorption line system is clearly revealed in 2014 and 2015 consisting of hydrogen Balmer series and metastable He I lines. The velocity of these lines is similar to the centroid velocity of the UV BALs, suggesting that both originate from the outflow. The Balmer lines vary significantly between the two observations and vanished in 2017. They were also absent in the archived spectra obtained before 2001. The variation is thought to be driven by photoionization change. Besides, the absorption lines show inversed Balmer decrement, I.e., the apparent optical depths of higher-order Balmer absorption lines are larger than those of lower-order lines, which is inconsistent with the oscillator strengths of the transitions. We suggest that such anomalous line ratios can be naturally explained by the thermal structure of a background accretion disk, which allows the obscured part of the disk to contribute differently to the continuum flux at different wavelengths. High-resolution spectroscopic and photometric monitoring would be very useful to probe the structure of the accretion disk as well as the geometry and physical conditions of the outflow.

  2. New 1,6-heptadienes with pyrimidine bases attached: Syntheses and spectroscopic analyses

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; Ghannoum, Amer M.; Fares, Fares A.; Abramian, Lara K.; Bouhadir, Kamal H.

    2008-06-01

    A simple, high yielding synthesis leading to the functionalization of some pyrimidine bases with a 1,6-heptadienyl moiety spaced from the N - 1 position by a methylene group is described. A key step in this synthesis involves a Mitsunobu reaction by coupling 3N-benzoyluracil and 3N-benzoylthymine to 2-allyl-pent-4-en-1-ol followed by alkaline hydrolysis of the 3N-benzoyl protecting groups. This protocol should eventually lend itself to the synthesis of a host of N-alkylated nucleoside analogs. The absorption and emission properties of these pyrimidine derivatives ( 3- 6) were studied in solvents of different physical properties. Computerized analysis and multiple regression techniques were applied to calculate the regression and correlation coefficients based on the equation that relates peak position λmax to the solvent parameters that depend on the H-bonding ability, refractive index, and dielectric constant of solvents.

  3. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    PubMed

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Asymmetry between absorption and photoluminescence line shapes of TPD: spectroscopic fingerprint of the twisted biphenyl core.

    PubMed

    Scholz, Reinhard; Gisslén, Linus; Himcinschi, Cameliu; Vragović, Igor; Calzado, Eva M; Louis, Enrique; San Fabián Maroto, Emilio; Díaz-García, María A

    2009-01-08

    We analyze absorption, photoluminescence (PL), and resonant Raman spectra of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), with the aim of providing a microscopic interpretation of a significant Stokes shift of about 0.5 eV that makes this material suitable for stimulated emission. The optical spectra were measured for TPD dissolved in toluene and chloroform, as well as for polystyrene films doped with varying amounts of TPD. In addition, we measured preresonant and resonant Raman spectra, giving direct access to the vibrational modes elongated in the relaxed excited geometry of the molecule. The experimental data are interpreted with calculations of the molecular geometry in the electronic ground state and the optically excited state using density functional theory. Several strongly elongated high-frequency modes within the carbon rings results in a vibronic progression with a calculated spacing of 158 meV, corroborated by the observation of vibrational sidebands in the PL spectra. The peculiarities of the potential energy surfaces related to a twisting around the central bond in the biphenyl core of TPD allow to quantify the asymmetry between the line shapes observed in absorption and emission.

  5. Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant.

    PubMed

    Casa, G; Castrillo, A; Galzerano, G; Wehr, R; Merlone, A; Di Serafino, D; Laporta, P; Gianfrani, L

    2008-05-23

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) nu1+2nu2(0)+nu3 transition in CO2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of approximately 1.6 x 10(-4).

  6. Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant

    NASA Astrophysics Data System (ADS)

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-05-01

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν1+2ν20+ν3 transition in CO2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of ˜1.6×10-4.

  7. Spectroscopic investigation of zinc tellurite glasses doped with Yb(3+) and Er(3+) ions.

    PubMed

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-05

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80-x-y) TeO2+(0.20) ZnO+xEr2O3+yYb2O3 (x=0, y=0; x=0.004, y=0; x=0, y=0.05 and x=0.004, y=0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er(3+) glasses as erbium doped fiber amplifiers at 1.55μm in infrared emission region. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  9. Concentric Rings K-Space Trajectory for Hyperpolarized 13C MR Spectroscopic Imaging

    PubMed Central

    Jiang, Wenwen; Lustig, Michael; Larson, Peder E.Z.

    2014-01-01

    Purpose To develop a robust and rapid imaging technique for hyperpolarized 13C MR Spectroscopic Imaging (MRSI) and investigate its performance. Methods A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized 13C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on 13C phantoms and in vivo animal hyperpolarized 13C MRSI studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented. Results The concentric rings MRSI trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging (EPSI). It provides sufficient spectral bandwidth with relatively high SNR efficiency compared to EPSI and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to EPSI. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized 13C in vivo study. Conclusion The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized 13C MRSI. PMID:25533653

  10. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  11. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    PubMed Central

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  12. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements.

    PubMed

    Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M

    2017-08-01

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.

  13. Identifying the Young Low-mass Stars within 25 pc. I. Spectroscopic Observations

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill

    2009-07-01

    We have completed a high-resolution (R ≈ 60,000) optical spectroscopic survey of 185 nearby M dwarfs identified using ROSAT data to select active, young objects with fractional X-ray luminosities comparable to or greater than Pleiades members. Our targets are drawn from the NStars 20 pc census and the Moving-M sample with distances determined from parallaxes or spectrophotometric relations. We limited our sample to 25 pc from the Sun, prior to correcting for pre-main-sequence overluminosity or binarity. Nearly half of the resulting M dwarfs are not present in the Gliese catalog and have no previously published spectral types. We identified 30 spectroscopic binaries (SBs) from the sample, which have strong X-ray emission due to tidal spin-up rather than youth. This is equivalent to a 16% SB fraction, with at most a handful of undiscovered SBs. We estimate upper limits on the age of the remaining M dwarfs using spectroscopic youth indicators such as surface gravity-sensitive indices (CaH and K I). We find that for a sample of field stars with no metallicity measurements, a single CaH gravity index may not be sufficient, as higher metallicities mimic lower gravity. This is demonstrated in a subsample of metal-rich radial velocity (RV) standards, which appear to have low surface gravity as measured by the CaH index, yet show no other evidence of youth. We also use additional youth diagnostics such as lithium absorption and strong Hα emission to set more stringent age limits. Eleven M dwarfs with no Hα emission or absorption are likely old (>400 Myr) and were caught during an X-ray flare. We estimate that our final sample of the 144 youngest and nearest low-mass objects in the field is less than 300 Myr old, with 30% of them being younger than 150 Myr and four very young (lap10 Myr), representing a generally untapped and well-characterized resource of M dwarfs for intensive planet and disk searches. Based on observations collected at the W. M. Keck Observatory and

  14. Miniaturized differential optical absorption spectroscopy (DOAS) system for the analysis of NO2

    NASA Astrophysics Data System (ADS)

    Morales, J. Alberto; Walsh, James E.; Treacy, Jack E.; Garland, Wendy E.

    2003-03-01

    Current trends in optical design engineering are leading to the development of new systems which can analyze atmospheric pollutants in a fast and easy way, allowing remote-sensing and miniaturization at a low cost. A small portable fiber-optic based system is presented for the spectroscopic analysis of a common gas pollutant, NO2. The novel optical set-up described consists of a small telescope that collects ultraviolet-visible light from a xenon lamp located 600 m away. The light is coupled into a portable diode array spectrometer through a fiber-optic cable and the system is controlled by a lap-top computer where the spectra are recorded. Using the spectrum of the lamp as a reference, the absorption spectrum of the open path between the lamp and the telescope is calculated. Known absorption features in the NO2 spectrum are used to calculate the concentration of the pollutant using the principles of Differential Optical Absorption Spectroscopy (DOAS). Calibration is carried by using sample gas bags of known concentration of the pollutant. The results obtained demonstrate that it is possible to detect and determine NO2 concentrations directly from the atmosphere at typical environment levels by using an inexpensive field based fiber-optic spectrometer system.

  15. Quantitative Absorption and Kinetic Studies of Transient Species Using Gas Phase Optical Calorimetry

    NASA Astrophysics Data System (ADS)

    Melnik, Dmitry G.

    2014-06-01

    Quantitative measurements of the absorption cross-sections and reaction rates constants of free radicals by spectroscopic means requires the knowledge of the absolute concentration of the target species. We have demonstrated earlier that such information can be retrieved from absorption measurements of the well-known ``reporter" molecule, co-produced in radical synthesis. This method is limited to photochemical protocols allowing for production of ``reporters" stochiometrically with the target species. This limitation can be overcome by use of the optical calorimetry (OC) which measures heat signatures of a photochemical protocol. These heat signatures are directly related to the amount of species produced and the thermochemical data of the reactants and stable products whose accuracy is usually substantially higher than that of the absorption data for prospective ``reporters". The implementation of the OC method presented in this talk is based on the measurements of the frequency shift of the resonances due to the change in the optical density of the reactiove sample within a Fabry-Perot cavity caused by deposition of heat from the absorbed photolysis beam and subsequent chemical reactions. Preliminary results will be presented and future development of this experimental technique will be discussed. D. Melnik, R. Chhantyal-Pun and T. A. Miller, J. Phys. Chem. A, 114, 11583, (2010)

  16. Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts.

    PubMed

    Lim, Seung Rok; Hwang, Junhyeok; Kim, Chang Soo; Park, Ho Seok; Cheong, Minserk; Kim, Hoon Sik; Lee, Hyunjoo

    2015-05-30

    SO2 absorption and desorption behaviors were investigated in aqueous solutions of diamine-derived molten salts with a tertiary amine group on the cation and a chloride anion, including butyl-(2-dimethylaminoethyl)-dimethylammonium chloride ([BTMEDA]Cl, pKb=8.2), 1-butyl-1,4-dimethylpiperazinium chloride ([BDMP]Cl, pKb=9.8), and 1-butyl-4-aza-1-azoniabicyclo[2,2,2]octane chloride ([BDABCO]Cl, pKb=11.1). The SO2 absorption and desorption performance of the molten salt were greatly affected by the basicity of the molten salt. Spectroscopic, X-ray crystallographic, and computational results for the interactions of SO2 with molten salts suggest that two types of SO2-containg species could be generated depending on the basicity of the unquaternized amino group: a dicationic species comprising two different anions, HSO3(-) and Cl(-), and a monocationic species bearing Cl(-) interacting with neutral H2SO3. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Theoretical infrared and electronic absorption spectra of C16H10 isomers, their ions and doubly ions

    NASA Astrophysics Data System (ADS)

    Naganathappa, Mahadevappa; Chaudhari, Ajay

    2012-09-01

    Polycyclic aromatic hydrocarbons (PAHs) or PAH-related molecules are considered to be responsible for the unidentified infrared (UIR) emission features at 3.3, 6.2, 7.7, 8.6 and 11.2 μm. However, the exact identification of PAH or PAH-related molecules is difficult. There have been several investigations on the spectroscopic characterization of PAH molecules. But none of them compared the spectra of isomers of PAHs, which might have help in the identification of the UIR emission features. This work presents the infrared and electronic absorption spectra of isomers of C16H10. The aim of the present work is to compare infrared and electronic absorption spectra of four isomers of C16H10 PAH viz. pyrene, aceanthrylene, acephenanthrylene and fluoranthene, their ions and doubly ions. We also compare the spectra of pyrene in the gas-phase and in H2O ice. We have used the density functional theory with B3LYP exchange and correlation functional and 6-311++g** basis set to study the infrared spectra. The time-dependent density functional theory (TDDFT) has been used to obtain the electronic absorption spectra. Significant difference in the CC stretching, CH in-plane bending and CH out-of-plane bending vibration modes is observed for the isomers of C16H10 whereas there is no large difference in the CH stretching vibration band. A significant change in the vibrational band is observed for pyrene in H2O ice compared to gas-phase pyrene. Though isomers of C16H10 PAH have the same number of carbon and hydrogen atoms, their spectroscopic characteristics are different. This study should help in identifying the isomers of C16H10, their ions and doubly cation in the interstellar medium.

  18. Spectroscopic and laser characterization of emerald. Final report, April 1983-April 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, S.T.; Chai, B.H.

    1986-08-01

    The spectroscopic characteristics and laser properties of emerald were investigated. The laser measurements showed that the emerald-laser tuning range was 720-842 nm and exhibited a high gain and high efficiency in the 760-790 nm range. Under a crystal growth development program, the laser loss was reduced from 11%/cm to 0.4%/cm. The limiting factor in the laser efficiency is the excited-state absorption (ESA). The ESA was measured by two methods: a laser-pumped single-pass gain method, which is generally applicable to all tunable laser materials, and a laser-pumped laser method. A 76% laser quantum yield was obtained in high-optical-quality emerald. The maximummore » yield is estimated to be 83%, based on the ESA measurements.« less

  19. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Ong, H. C.; Chang, R. P. H.

    2001-11-01

    The complex dielectric functions of wurtzite ZnS thin films grown on (0001) Al2O3 have been determined by using spectroscopic ellipsometry over the spectral range of 1.33-4.7 eV. Below the band gap, the refractive index n is found to follow the first-order Sellmeir dispersion relationship n2(λ)=1+2.22λ2/(λ2-0.0382). Strong and well-defined free excitonic features located above the band edge are clearly observed at room temperature. The intrinsic optical parameters of wurtzite ZnS such as band gaps and excitonic binding energies have been determined by fitting the absorption spectrum using a modified Elliott expression together with Lorentizan broadening. Both parameters are found to be larger than their zinc blende counterparts.

  20. Tuning optical absorption and photoexcited recombination dynamics in La1-xSrxFeO3-δ through A-site substitution and oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey; Scafetta, Mark; Choquette, Amber; Sfeir, Matthew; Baxter, Jason; May, Steven

    We study optical absorption and recombination dynamics in La1-xSrxFeO3-δ thin films, uncovering the effects of tuning nominal Fe valence via A-site substitution and oxygen stoichiometry. Variable angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. These results demonstrate that while the static optical absorption is strongly dependent on Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics. Nsf: ECCS-1201957, MRI DMR-0922929, MRI DMR-1040166. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  1. Line-by-line spectroscopic parameters of HFC-32 ro-vibrational transitions within the atmospheric window around 8.2 μm

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Ceselin, Giorgia; Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi

    2018-06-01

    Difluoromethane (CH2F2,HFC-32) presents strong ro-vibrational bands within the 8-12 μm atmospheric window and hence it represents a greenhouse gas able of contributing to global warming. Numerous spectroscopic studies have been devoted to this molecule, however, much information on line-by-line parameters, like line intensities and broadening parameters, is still lacking. In this work, line-by-line spectroscopic parameters are retrieved for several CH2F2 ro-vibrational transitions belonging to the ν7 band located around 8.5 μm. Self-broadening as well N2- and O2- broadening experiments are carried out at room temperature by using a tunable diode laser (TDL) spectrometer. The line shape analysis of CH2F2 self-broadened spectra leads to the determination of resonant frequencies, integrated absorption coefficients and self-broadening parameters, while CH2F2-N2 and CH2F2-O2 broadening coefficients are obtained from foreign-broadening measurements. In addition, the broadening parameters of CH2F2 in air are derived from the N2- and O2- broadening coefficients. The results of the present work provide fundamental information to measure the concentration profiles of this molecule in the atmosphere through remote sensing spectroscopic techniques.

  2. On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I-III

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Ménard, Brice; Baron, Dalya; Johnson, Sean; Poznanski, Dovi; Prochaska, J. Xavier; O'Meara, John M.

    2018-07-01

    We investigate the limitations of statistical absorption measurements with the Sloan Digital Sky Survey (SDSS) optical spectroscopic surveys. We show that changes in the data reduction strategy throughout different data releases have led to a better accuracy at long wavelengths, in particular for sky line subtraction, but a degradation at short wavelengths with the emergence of systematic spectral features with an amplitude of about 1 per cent. We show that these features originate from inaccuracy in the fitting of modelled F-star spectra used for flux calibration. The best-fitting models for those stars are found to systematically overestimate the strength of metal lines and underestimate that of Lithium. We also identify the existence of artefacts due to masking and interpolation procedures at the wavelengths of the hydrogen Balmer series leading to the existence of artificial Balmer α absorption in all SDSS optical spectra. All these effects occur in the rest frame of the standard stars and therefore present Galactic longitude variations due to the rotation of the Galaxy. We demonstrate that the detection of certain weak absorption lines reported in the literature is solely due to calibration effects. Finally, we discuss new strategies to mitigate these issues.

  3. On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I-III

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Ménard, Brice; Baron, Dalya; Johnson, Sean; Poznanski, Dovi; Prochaska, J. Xavier; O'Meara, John M.

    2018-04-01

    We investigate the limitations of statistical absorption measurements with the SDSS optical spectroscopic surveys. We show that changes in the data reduction strategy throughout different data releases have led to a better accuracy at long wavelengths, in particular for sky line subtraction, but a degradation at short wavelengths with the emergence of systematic spectral features with an amplitude of about one percent. We show that these features originate from inaccuracy in the fitting of modeled F-star spectra used for flux calibration. The best-fit models for those stars are found to systematically over-estimate the strength of metal lines and under-estimate that of Lithium. We also identify the existence of artifacts due to masking and interpolation procedures at the wavelengths of the hydrogen Balmer series leading to the existence of artificial Balmer α absorption in all SDSS optical spectra. All these effects occur in the rest-frame of the standard stars and therefore present Galactic longitude variations due to the rotation of the Galaxy. We demonstrate that the detection of certain weak absorption lines reported in the literature are solely due to calibration effects. Finally, we discuss new strategies to mitigate these issues.

  4. Two-dimensional Fano lineshapes: Excited-state absorption contributions

    NASA Astrophysics Data System (ADS)

    Finkelstein-Shapiro, Daniel; Pullerits, Tõnu; Hansen, Thorsten

    2018-05-01

    Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.

  5. Two-dimensional Fano lineshapes: Excited-state absorption contributions.

    PubMed

    Finkelstein-Shapiro, Daniel; Pullerits, Tõnu; Hansen, Thorsten

    2018-05-14

    Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.

  6. Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H2-driven NAD+-reduction in the presence of O2.

    PubMed

    Preissler, Janina; Wahlefeld, Stefan; Lorent, Christian; Teutloff, Christian; Horch, Marius; Lauterbach, Lars; Cramer, Stephen P; Zebger, Ingo; Lenz, Oliver

    2018-01-01

    Biocatalysts that mediate the H 2 -dependent reduction of NAD + to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD + -reducing [NiFe]‑hydrogenase that sustains catalytic activity at high temperatures and in the presence of O 2 , which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD + -reducing [NiFe]‑hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1 T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H 2 -oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H 2 -mediated NAD + reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O 2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]‑hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD + -reducing [NiFe]‑hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H 2 -driven cofactor recycling under oxic conditions at elevated temperatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Star Formation in a Complete Spectroscopic Survey of Galaxies

    NASA Astrophysics Data System (ADS)

    Carter, B. J.; Fabricant, D. G.; Geller, M. J.; Kurtz, M. J.; McLean, B.

    2001-10-01

    The 15R-North galaxy redshift survey is a uniform spectroscopic survey (S/N~10) covering the range 3650-7400 Å for 3149 galaxies with median redshift 0.05. The sample is 90% complete to R=15.4. The median slit covering fraction is 24% of the galaxy, apparently sufficient to minimize the effects of aperture bias on the EW(Hα). Forty-nine percent of the galaxies in the survey have one or more emission lines detected at >=2 σ. In agreement with previous surveys, the fraction of absorption-line galaxies increases steeply with galaxy luminosity. We use Hβ, [O III], Hα, and [N II] to discriminate between star-forming galaxies and AGNs. At least 20% of the galaxies are star-forming, at least 17% have AGN-like emission, and 12% have unclassifiable emission. The unclassified 12% may include a ``hybrid'' population of galaxies with both star formation and AGN activity. The AGN fraction increases steeply with luminosity; the fraction of star-forming galaxies decreases. We use the EW(Hα+[N II]) to estimate the Scalo birthrate parameter, b, the ratio of the current star formation rate to the time averaged star formation rate. The median birthrate parameter is inversely correlated with luminosity in agreement with the conclusions based on smaller samples (Kennicutt, Tamblyn, & Congdon). Because our survey is large, we identify 33 vigorously star-forming galaxies with b>3. We confirm the conclusion of Jansen, Franx, & Fabricant that EW([O II]) must be used with caution as a measure of current star formation. Finally, we examine the way galaxies of different spectroscopic type trace the large-scale galaxy distribution. As expected the absorption-line fraction decreases and the star-forming emission-line fraction increases as the galaxy density decreases. The AGN fraction is insensitive to the surrounding galaxy density; the unclassified fraction declines slowly as the density increases. For the star-forming galaxies, the EW(Hα) increases very slowly as the galaxy number

  8. Temporal Variations of Telluric Water Vapor Absorption at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Li, Dan; Blake, Cullen H.; Nidever, David; Halverson, Samuel P.

    2018-01-01

    Time-variable absorption by water vapor in Earth’s atmosphere presents an important source of systematic error for a wide range of ground-based astronomical measurements, particularly at near-infrared wavelengths. We present results from the first study on the temporal and spatial variability of water vapor absorption at Apache Point Observatory (APO). We analyze ∼400,000 high-resolution, near-infrared (H-band) spectra of hot stars collected as calibration data for the APO Galactic Evolution Experiment (APOGEE) survey. We fit for the optical depths of telluric water vapor absorption features in APOGEE spectra and convert these optical depths to Precipitable Water Vapor (PWV) using contemporaneous data from a GPS-based PWV monitoring station at APO. Based on simultaneous measurements obtained over a 3° field of view, we estimate that our PWV measurement precision is ±0.11 mm. We explore the statistics of PWV variations over a range of timescales from less than an hour to days. We find that the amplitude of PWV variations within an hour is less than 1 mm for most (96.5%) APOGEE field visits. By considering APOGEE observations that are close in time but separated by large distances on the sky, we find that PWV is homogeneous across the sky at a given epoch, with 90% of measurements taken up to 70° apart within 1.5 hr having ΔPWV < 1.0 mm. Our results can be used to help simulate the impact of water vapor absorption on upcoming surveys at continental observing sites like APO, and also to help plan for simultaneous water vapor metrology that may be carried out in support of upcoming photometric and spectroscopic surveys.

  9. Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in

    2015-01-14

    Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π{sup 1}*; S{sub 1} state) and the shorter (1π-π{sup 1}*; S{sub 2} state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bondmore » weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S{sub 2} state relative to the ground state. Raman excitation profiles of PQ (400–1800 cm{sup −1}) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C{sub 2ν} symmetry constraint on the S{sub 2} state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.« less

  10. Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies.

    PubMed

    Zamani, Mehdi; Moradi Delfani, Ali; Jabbari, Morteza

    2018-05-03

    The radical scavenging performance and antioxidant activity of γ-alumina nanoparticles towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical were investigated by spectroscopic and computational methods. The radical scavenging ability of γ-alumina nanoparticles in the media with different polarity (i.e. i-propanol and n-hexane) was evaluated by measuring the DPPH absorbance in UV-Vis absorption spectra. The structure and morphology of γ-alumina nanoparticles before and after adsorption of DPPH were studied using XRD, FT-IR and UV-Vis spectroscopic techniques. The adsorption of DPPH free radical on the clean and hydrated γ-alumina (1 1 0) surface was examined by dispersion corrected density functional theory (DFT-D) and natural bond orbital (NBO) calculations. Also, time-dependent density functional theory (TD-DFT) was used to predict the absorption spectra. The adsorption was occurred through the interaction of radical nitrogen N and NO 2 groups of DPPH with the acidic and basic sites of γ-alumina surface. The high potential for the adsorption of DPPH radical on γ-alumina nanoparticles was investigated. Interaction of DPPH with Brønsted and Lewis acidic sites of γ-alumina was more favored than Brønsted basic sites. The following order for the adsorption of DPPH over the different active sites of γ-alumina was predicted: Brønsted base < Lewis acid < Brønsted acid. These results are of great significance for the environmental application of γ-alumina nanoparticles in order to remove free radicals. Copyright © 2018. Published by Elsevier B.V.

  11. Absorption and emission spectroscopic characterization of blue-light receptor Slr1694 from Synechocystis sp. PCC6803.

    PubMed

    Zirak, P; Penzkofer, A; Lehmpfuhl, C; Mathes, T; Hegemann, P

    2007-01-03

    The BLUF protein Slr1694 from the cyanobacterium Synechocystis sp. PCC6803 is characterized by absorption and emission spectroscopy. Slr1694 expressed from E. coli which non-covalently binds FAD, FMN, and riboflavin (called Slr1694(I)), and reconstituted Slr1694 which dominantly contains FAD (called Slr1694(II)) are investigated. The receptor conformation of Slr1694 (dark adapted form Slr1694(r)) is transformed to the putative signalling state (light adapted form Slr1694(s)) with red-shifted absorption and decreased fluorescence efficiency by blue-light excitation. In the dark at 22 degrees C, the signalling state recovers back to the initial receptor state with a time constants of about 14.2s for Slr1694(I) and 17s for Slr1694(II). Quantum yields of signalling state formation of approximately 0.63+/-0.07 for both Slr1694(I) and Slr1694(II) were determined by transient transmission measurements and intensity dependent steady-state transmission measurements. Extended blue-light excitation causes some bound flavin conversion to the hydroquinone form and some photo-degradation, both with low quantum efficiency. The flavin-hydroquinone re-oxidizes slowly back (time constant 5-9 min) to the initial flavoquinone form in the dark. A photo-cycle dynamics scheme is presented.

  12. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  13. Fiber-coupled 2.7 µm laser absorption sensor for CO2 in harsh combustion environments

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    2013-05-01

    A tunable diode laser absorption sensor near 2.7 µm, based on 1f-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f), was developed to measure CO2 concentration in harsh combustion flows. Wavelength selection at 3733.48 cm-1 exploited the overlap of two CO2 transitions in the ν1 + ν3 vibrational band at 3733.468 cm-1 and 3733.498 cm-1. Primary factors influencing wavelength selection were isolation and strength of the CO2 absorption lines relative to infrared water absorption at elevated pressures and temperatures. The HITEMP 2010 database was used to model the combined CO2 and H2O absorption spectra, and key line-strength and line-broadening spectroscopic parameters were verified by high-temperature static cell measurements. To validate the accuracy and precision of the WMS-based sensor, measurements of CO2 concentration were carried out in non-reactive shock-tube experiments (P ˜ 3-12 atm, T ˜ 1000-2600 K). The laser was then free-space fiber-coupled with a zirconium fluoride single-mode fiber for remote light delivery to harsh combustion environments, and demonstrated on an ethylene/air pulse detonation combustor at pressures up to 10 atm and temperatures up to 2500 K. To our knowledge, this work represents the first time-resolved in-stream measurements of CO2 concentration in a detonation-based engine.

  14. High resolution absorption cross sections for the A2Pi-X2Pi system of ClO

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Ravishankara, A. R.; Philen, D. L.; Davis, D. D.; Watson, R. T.

    1977-01-01

    High-resolution ultraviolet absorption cross-sections for the ClO molecule are obtained, with the aim of facilitating studies of ozone depletion resulting from the injection of chlorofluorocarbons into the atmosphere. The spectroscopic analysis, which involves a frequency-doubled tunable dye laser with a bandwidth of 0.015 A, is described. Studies of the rotational lines of the ClO A 2Pi 3/2-X2Pi 3/2 9-10 band were conducted. Peak cross-sections for the P and R lines of the 9-0 band are found to be 10.0, 9.6, 8.6, 10.6, 10.3, and 9.2 times ten to the negative seventeenth power cm squared, with estimated accuracy of plus or minus 25%. Problems in distinguishing between Cl-35 and Cl-37 absorption are also considered.

  15. Spectroscopic studies of transition metal ions in molten alkali metal carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, V.A.; Maciejewski, M.L.

    Electronic absorption and C-13 NMR spectroscopic studies were carried out to investigate the structure of (i) alkali metal formate (Fm) and acetate (Ac) eutectic melts and (ii) solutions of 3d transition metal (TM) cations in these eutectics. Measurements were made over the temperature range 90..-->..190/sup 0/C. The most stable oxidation states of the individual TMs in the Fm and Ac eutectics were: Ti/sup 3 +/, V/sup 3 +/, VO/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/, Fe/sup 2 +/, Co/sup 2 +/, Ni/sup 2 +/, and Cu/sup 2 +/. The ligand field absorption spectra obtained in these carboxylate meltsmore » bore a consistent resemblance to the spectra of these same cations in aqueous media, but the absorptivities were generally higher than are observed for the hexaquo complexes. The results were interpreted in terms of the existence of bidentate coordination in some (if not all) cases, leading to noncentrosymmetric complexation geometries. Key results of the NMR measurements included the apparent observation of two different carboxylate anion environments in Ni/sup 2 +/ solutions. C-13 spin-lattice relaxation of the carboxylate anions in the TM-free eutectics was found to be controlled by dipolar coupling to another nucleus. In the TM-containing solutions, the spin-lattice relaxation times were reduced by a factor of 10 to 1000, evidencing the expected shift to electron-nuclear dipolar coupling. Activation energies for viscous flow derived from the spin-lattice relaxation measurements on TM-free melts were in the 10..-->..11 kcal/mol range, reflecting the highly ordered, glassy nature of the eutectics studied.« less

  16. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1988-01-01

    One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approximately 10 meters/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar-type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this investigation is to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight are made in the near infrared (approximately 2 micrometer), using the Kitt Peak McMath Fourier transform spectrometer, with an N2O gas absorption cell for calibration. Researchers currently achieve an accuracy of approximately 5 meters/sec. Solar rotation velocities vary by plus or minus 2000 meters/sec across the solar disk, and imperfect optical integration of these velocities is the principal source of error. We have been monitoring the apparent velocity of integrated sunlight since 1983. They initially saw a decrease of approximately 30 meters/sec in the integrated light velocity from 1983 through 1985, but in 1987 to 1988 the integrated light velocity returned to its 1983 level. It is too early to say whether these changes are solar-cycle related. Although the FTS, unlike a slit spectrograph, has a large field of view, researchers are always looking for ways to improve the optical integration of the solar disk. They recently made an improvement in the method used to optically collimate the FTS, and this has reduced the error level, eliminating some systematic effects seen earlier.

  17. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  18. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  19. Spectroscopic Confirmation of TCP J07134590-2112330 as a Galactic Classical Nova in Canis Major

    NASA Astrophysics Data System (ADS)

    Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Swihart, Sam

    2018-03-01

    TCP J07134590-2112330 was discovered by Yuji Nakamura on 2018 March 24.5 UT as a 12 mag optical transient. We obtained spectroscopic observations of TCP J07134590-2112330 with the Goodman spectrograph on the 4-m SOAR telescope on 2018 Mar 25.1 UT, with a low-resolution spectrum (R 1200) covering 3850-7850 A. The spectrum indicates that TCP J07134590-2112330 is a young classical nova, with strong hydrogen Balmer emission lines and additional strong lines of [O I] and Fe II. The Balmer lines show P Cygni profiles; the FWHM of the H alpha emission component is 1250 km/s, and the absorption trough extends to -2000 km/s.

  20. Experimental study of H2O spectroscopic parameters in the near-IR (6940 7440 cm-1) for gas sensing applications at elevated temperature

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Zhou, Xin; Jeffries, Jay B.; Hanson, Ronald K.

    2007-02-01

    Tunable diode laser (TDL) absorption sensors of water vapor are attractive for temperature, gas composition, velocity, pressure, and mass flux measurements in a variety of practical applications including hydrocarbon-fueled combustion systems. Optimized design of these sensors requires a complete catalog of the assigned transitions with accurate spectroscopic data; our particular interest has been in the 2ν1, 2ν3, and ν1+ν3 bands in the near-IR where telecommunications diode lasers are available. In support of this need, fully resolved absorption spectra of H2O vapor in the spectral range of 6940 7440 cm-1 (1344 1441 nm) have been measured as a function of temperature (296 1000 K) and pressure (1 800 Torr), and quantitative spectroscopic parameters inferred from these spectra compared to published data from Toth, HITRAN 2000 and HITRAN 2004. The peak absorbances were measured for more than 100 strong transitions at 296 and 828 K, and linestrengths determined for 47 strong lines in this region. In addition to reference linestrengths S(296 K), the air-broadening coefficients γair(296 K) and temperature exponents n were inferred for strong transitions in five narrow regions, near 7185.60, 7203.89, 7405.11, 7426.14 and 7435.62 cm-1 that had been targeted as attractive for future diagnostics applications. Most of the measured results, determined within an accuracy of 5%, are found to be in better agreement with HITRAN 2004 than with earlier editions of this database. Large discrepancies (>10%) between measurements and HITRAN 2004 database are identified for some of the probed transitions. These new spectroscopic data for H2O provide a useful test of the sensor design capabilities of HITRAN 2004 for combustion and other applications at elevated temperatures.

  1. A convenient sol-gel route for the synthesis of salicylate-titania nanocomposites having visible absorption and blue luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Atanu; Bhaumik, Asim, E-mail: msab@iacs.res.i; Nandi, Mahasweta

    2009-05-15

    Syntheses of titania-based nanomaterials by simple sol-gel route using a mixture of CTAB and salicylate as well as salicylate ions as templates have been reported. The materials are characterized by the powder X-ray diffraction (XRD), thermal analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and spectroscopic (FT IR, UV-VIS) analyses. A disordered mesoscale orientation of nanoparticles (ca. 2-4 nm) composed of TiO{sub 2}-salicylate surface complex has been obtained when 1:1 mixing ratio of CTAB and salicylate at the CTAB concentration of 0.001 M was employed as a template. All these nanocomposites exhibit a considerable red shift at the onsetsmore » of their absorption band compared to pure (organic-free) nanocrystalline TiO{sub 2} and show blue luminescence at room temperature. This assembly of nanoparticles is highly interesting in the context of visible light sensitization and nanodevice fabrication. - Graphical abstract: A new titania-salicylate nanostructure material has been synthesized, which exhibit a considerable red shift towards the visible region vis-a-vis nanocrystalline (organic-free) TiO{sub 2} and blue luminescence at room temperature.« less

  2. Elucidation of two photon absorption of ethylenediaminium (2,4-dinitrophenolate) crystals

    NASA Astrophysics Data System (ADS)

    Indumathi, C.; Sabari Girisun, T. C.; Anitha, K.; Cecil Raj, S. Alfred

    2016-10-01

    Optical quality single crystals of ethylenediaminium (2,4-dinitrophenolate) [EDA(2,4)DNP] were grown by solvent evaporation method for optical limiting applications against intense ultrashot pulse lasers. Single crystal XRD showed that the material crystallizes in monoclinic system with centric space group P21/C. The crystal packing diagram was elucidated for the first time in literature and it revealed six hydrogen bonds played a very important role in stabilizing the structure. A bifurcated hydrogen bond was also observed between ethylenediamminium and dinitrophenolate ions. The formation of charge transfer complex during the reaction of ethylenediamine and 2,4-dinitrophenol was strongly evident through the vibrational spectroscopic studies. TG-DTA and DSC curves indicate that the material exhibited strong decomposition at 224 °C. Ground state absorption analysis showed that the grown crystals possess absorption maxima in UV region (270 nm, 346 nm) and wide optical transmittance window (480-1200 nm) in the entire visible and NIR region. Measurement of two photon absorption (2PA) and optical limiting response by Z-scan technique under nanosecond pulse excitation was reported. Hence EDA(2,4)DNP with high 2PA coefficient (0.79 ± 0.04 × 10-10 m/W) and low limiting threshold (2.40 ± 0.05 × 1012 W/m2) will be a potential candidate for optical limiting applications like eye and sensor protection against short pulse lasers that are well spread in human interactive sectors.

  3. Spectroscopic and Density Functional Theory Studies of the Blue–Copper Site in M121SeM and C112SeC Azurin: Cu–Se Versus Cu–S Bonding

    PubMed Central

    Sarangi, Ritimukta; Gorelsky, Serge I.; Basumallick, Lipika; Hwang, Hee Jung; Pratt, Russell C.; Stack, T. Daniel P.; Lu, Yi; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2009-01-01

    S K-edge X-ray absorption, UV–vis absorption, magnetic circular dichroism (MCD), and resonance Raman spectroscopies are used to investigate the electronic structure differences among WT, M121SeM, and C112SeC Pseudomonas aeruginosa (P.a) azurin. A comparison of S K-edge XAS of WT and M121SeM azurin and a CuII–thioether model complex shows that the 38% S character in the ground state wave function of the blue–copper (BC) sites solely reflects the Cu–SCys bond. Resonance Raman (rR) data on WT and C112SeC azurin give direct evidence for the kinematic coupling between the Cu–SCys stretch and the cysteine deformation modes in WT azurin, which leads to multiple features in the rR spectrum of the BC site. The UV–vis absorption and MCD data on WT, M121SeM, and C112SeC give very similar C0/D0 ratios, indicating that the C-term MCD intensity mechanism involves Cu-centered spin–orbit coupling (SOC). The spectroscopic data combined with density functional theory (DFT) calculations indicate that SCys and SeCys have similar covalent interactions with Cu at their respective bond lengths of 2.1 and 2.3 Å. This reflects the similar electronegativites of S and Se in the thiolate/selenolate ligand fragment and explains the strong spectroscopic similarities between WT and C112SeC azurin. PMID:18314977

  4. Raman spectroscopic study of the photoprotection of extremophilic microbes against ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Moeller, R.; Jorge Villar, S. E.; Horneck, G.; Stackebrandt, E.

    2006-12-01

    Extremophiles use a range of pigments for protection against low-wavelength radiation in exposed terrestrial habitats and photoaccessory materials are synthesized for the effective harnessing of photosynthetically active radiation. Raman spectroscopy has been demonstrated to be a useful probe for information on the survival strategies employed by extremophilic bacteria through the identification of key biomolecular signatures of the suite of protective chemicals synthesized by the organisms in stressed environments. Raman spectroscopic analyses of Bacillus spp. spores, Bacillus atrophaeus (DSM 675: deep red) and Bacillus subtilis (DSM 5611: light grey and DSM 7264: dark grey), Deinococcus radiodurans (pink) and Natronomonas pharaonis (red), of visually different pigmentation showed the presence of different carotenoids and other protectant biomolecules, which assist microorganisms against UVA radiation. The implications for the survival of extremophilic microbes in extraterrestrial habitats and for the detection of the protectant biomolecules by remote, robotic Raman spectroscopic instrumentation in an astrobiological search for life context are discussed.

  5. Synthesis, crystal structures and spectroscopic properties of triazine-based hydrazone derivatives; a comparative experimental-theoretical study.

    PubMed

    Arshad, Muhammad Nadeem; Bibi, Aisha; Mahmood, Tariq; Asiri, Abdullah M; Ayub, Khurshid

    2015-04-03

    We report here a comparative theoretical and experimental study of four triazine-based hydrazone derivatives. The hydrazones are synthesized by a three step process from commercially available benzil and thiosemicarbazide. The structures of all compounds were determined by using the UV-Vis., FT-IR, NMR (1H and 13C) spectroscopic techniques and finally confirmed unequivocally by single crystal X-ray diffraction analysis. Experimental geometric parameters and spectroscopic properties of the triazine based hydrazones are compared with those obtained from density functional theory (DFT) studies. The model developed here comprises of geometry optimization at B3LYP/6-31G (d, p) level of DFT. Optimized geometric parameters of all four compounds showed excellent correlations with the results obtained from X-ray diffraction studies. The vibrational spectra show nice correlations with the experimental IR spectra. Moreover, the simulated absorption spectra also agree well with experimental results (within 10-20 nm). The molecular electrostatic potential (MEP) mapped over the entire stabilized geometries of the compounds indicated their chemical reactivates. Furthermore, frontier molecular orbital (electronic properties) and first hyperpolarizability (nonlinear optical response) were also computed at the B3LYP/6-31G (d, p) level of theory.

  6. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking

    NASA Astrophysics Data System (ADS)

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J.; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-01

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level.

  7. Color change of tourmaline by heat treatment and electron beam irradiation: UV-Visible, EPR, and Mid-IR spectroscopic analyses

    NASA Astrophysics Data System (ADS)

    Maneewong, Apichate; Seong, Baek Seok; Shin, Eun Joo; Kim, Jeong Seog; Kajornrith, Varavuth

    2016-01-01

    The color of pink tourmaline gemstone changed to colorless when heating at temperature of 600 °C in air. This colorless tourmaline recovered its pink color when irradiated with an electron beam (e-beam) of 800 kGy. The origin of the color change was investigated in three types of tourmaline gemstones, two pink are from Afghanistan and one green are from Nigeria, by using Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and Energy Dispersive X-ray Fluorescence (EDXRF). The UV-Vis absorption spectrum of the pink tourmaline with higher Mn concentration (T2, 0.24 wt%) showed characteristic absorption peaks originating from the Mn3+ color center: two absorption bands centered at wavelength of 396 and 520 nm, respectively. Both absorption bands disappeared when heated in air at 600 °C and then reappeared when irradiated with an e-beam at 800 kGy. EPR T2 spectra showed that the color change was related to the valence change of Mn3+ to Mn2+ and vice versa. The pink tourmaline of lower MnO content (T1, 0.08 wt%) also became colorless when heated, but the color was not recovered when the gemstone underwent e-beam irradiation. Instead, a yellow color was obtained. UV-Vis and FTIR spectra indicated that this yellow color originated from a decomposition of the hydroxyl group (-OH) into O- and Ho by the e-beam irradiation. Green tourmaline did not show any color change with either heat treatment or e-beam irradiation.

  8. Spectroscopic Detection of Caries Lesions

    PubMed Central

    Ruohonen, Mika; Palo, Katri; Alander, Jarmo

    2013-01-01

    Background. A caries lesion causes changes in the optical properties of the affected tissue. Currently a caries lesion can be detected only at a relatively late stage of development. Caries diagnosis also suffers from high interobserver variance. Methods. This is a pilot study to test the suitability of an optical diffuse reflectance spectroscopy for caries diagnosis. Reflectance visible/near-infrared spectroscopy (VIS/NIRS) was used to measure caries lesions and healthy enamel on extracted human teeth. The results were analysed with a computational algorithm in order to find a rule-based classification method to detect caries lesions. Results. The classification indicated that the measured points of enamel could be assigned to one of three classes: healthy enamel, a caries lesion, and stained healthy enamel. The features that enabled this were consistent with theory. Conclusions. It seems that spectroscopic measurements can help to reduce false positives at in vitro setting. However, further research is required to evaluate the strength of the evidence for the method's performance. PMID:27006907

  9. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  10. Discovery of Variable Hydrogen Balmer Absorption Lines with Inverse Decrement in PG 1411+442

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xi-Heng; Pan, Xiang; Zhang, Shao-Hua

    We present new optical spectra of the well-known broad absorption line (BAL) quasar PG 1411+442, using the DBSP spectrograph at the Palomar 200 inch telescope in 2014 and 2017 and the YFOSC spectrograph at the Lijiang 2.4 m telescope in 2015. A blueshifted narrow absorption line system is clearly revealed in 2014 and 2015 consisting of hydrogen Balmer series and metastable He i lines. The velocity of these lines is similar to the centroid velocity of the UV BALs, suggesting that both originate from the outflow. The Balmer lines vary significantly between the two observations and vanished in 2017. Theymore » were also absent in the archived spectra obtained before 2001. The variation is thought to be driven by photoionization change. Besides, the absorption lines show inversed Balmer decrement, i.e., the apparent optical depths of higher-order Balmer absorption lines are larger than those of lower-order lines, which is inconsistent with the oscillator strengths of the transitions. We suggest that such anomalous line ratios can be naturally explained by the thermal structure of a background accretion disk, which allows the obscured part of the disk to contribute differently to the continuum flux at different wavelengths. High-resolution spectroscopic and photometric monitoring would be very useful to probe the structure of the accretion disk as well as the geometry and physical conditions of the outflow.« less

  11. Novel D-π-A-π-D type organic chromophores for second harmonic generation and multi-photon absorption applications

    NASA Astrophysics Data System (ADS)

    Aditya, Pusala; Kumar, Hari; Kumar, Sunil; Rajashekar, Muralikrishna, M.; Muthukumar, V. Sai; Kumar, B. Siva; Sai, S. Siva Sankara; Rao, G. Nageshwar

    2013-06-01

    We report here the optical and non-linear optical properties of six different novel bis-chalcones of D-π-A-π-D derivatives of diarylideneacetone (DBA). These derivatives have been synthesized by Claisen-Schmidt condensation reaction and were well characterized by using FTIR, 1HNMR, 13CNMR, UV-Visible absorption and mass spectroscopic techniques. The optical bandgap for each of the DBA derivatives were determined both experimentally (UV-Visible spectra & Tauc Plot) and theoretically by ab intio DFT calculations using SIESTA software package. They were found to be in close agreement with each other. The Second Harmonic Generation from these organic chromophores were studied by standard Kurtz and Perry Powder SHG method at 1064 nm. They were found to have superior SHG conversion efficiency when compared to urea (standard sample). Further, we investigated the Multi-Photon absorption properties were using conventional open aperture z-scan technique. These DBA derivatives exhibited strong two photon absorption in the order of 1e-11m/W. Hence, these are potential candidate for various photonic applications like optical power limiting, photonic switching and frequency conversion.

  12. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  13. Mid-infrared fiber-coupled supercontinuum spectroscopic imaging using a tapered chalcogenide photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Rosenberg Petersen, Christian; Prtljaga, Nikola; Farries, Mark; Ward, Jon; Napier, Bruce; Lloyd, Gavin Rhys; Nallala, Jayakrupakar; Stone, Nick; Bang, Ole

    2018-02-01

    We present the first demonstration of mid-infrared spectroscopic imaging of human tissue using a fiber-coupled supercontinuum source spanning from 2-7.5 μm. The supercontinuum was generated in a tapered large mode area chalcogenide photonic crystal fiber in order to obtain broad bandwidth, high average power, and single-mode output for good imaging properties. Tissue imaging was demonstrated in transmission by raster scanning over a sub-mm region of paraffinized colon tissue on CaF2 substrate, and the signal was measured using a fiber-coupled grating spectrometer. This demonstration has shown that we can distinguish between epithelial and surrounding connective tissues within a paraffinized section of colon tissue by imaging at discrete wavelengths related to distinct chemical absorption features.

  14. Biotransformations of anticancer ruthenium(III) complexes: an X-ray absorption spectroscopic study.

    PubMed

    Levina, Aviva; Aitken, Jade B; Gwee, Yee Yen; Lim, Zhi Jun; Liu, Mimi; Singharay, Anannya Mitra; Wong, Pok Fai; Lay, Peter A

    2013-03-11

    An anti-metastatic drug, NAMI-A ((ImH)[Ru(III) Cl4 (Im)(dmso)]; Im=imidazole, dmso=S-bound dimethylsulfoxide), and a cytotoxic drug, KP1019 ((IndH)[Ru(III) Cl4 (Ind)2 ]; Ind=indazole), are two Ru-based anticancer drugs in human clinical trials. Their reactivities under biologically relevant conditions, including aqueous buffers, protein solutions or gels (e.g, albumin, transferrin and collagen), undiluted blood serum, cell-culture medium and human liver (HepG2) cancer cells, were studied by Ru K-edge X-ray absorption spectroscopy (XAS). These XAS data were fitted from linear combinations of spectra of well-characterised Ru compounds. The absence of XAS data from the parent drugs in these fits points to profound changes in the coordination environments of Ru(III) . The fits point to the presence of Ru(IV/III) clusters and binding of Ru(III) to S-donor groups, amine/imine and carboxylato groups of proteins. Cellular uptake of KP1019 is approximately 20-fold higher than that of NAMI-A under the same conditions, but it diminishes drastically after the decomposition of KP1019 in cell-culture media, which indicate that the parent complex is taken in by cells through passive diffusion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Basic Principles of Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penner, Michael H.

    Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation-matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses. Spectroscopic methods based on the absorption or emission of radiation in the ultraviolet (UV), visible (Vis), infrared (IR), and radio (nuclear magnetic resonance, NMR) frequency ranges are most commonly encountered in traditional food analysis laboratories. Each of these methods is distinct in that it monitors different types of molecular or atomic transitions. The basis of these transitions is explained in the following sections.

  16. Characterization and spectroscopic studies of multi-component calcium zinc bismuth phosphate glass ceramics doped with iron ions

    NASA Astrophysics Data System (ADS)

    Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, M. V. Sambasiva; Tirupataiah, Ch.; Rao, D. Krishna

    2018-04-01

    Glass ceramics with the composition 10CaF2-20ZnO-(15-x)Bi2O3-55P2O5:x Fe2O3(0≤x≤2.5) were synthesized by melt-quenching technique and heat treatment. These glass ceramics were characterized by XRD and SEM. Spectroscopic studies such as optical absorption, EPR were also carried out on these glass ceramics. From the absorption spectra the observed bands around 438 and 660nm are the octahedral transitions of Fe3+ (d5) ions and another band at about 536 nm is the tetrahedral transition of Fe3+ (d5) ions. The absorption spectrum also consist of a band around 991 nm and is attributed to the octahedral transition of Fe2+ ions. The EPR spectra of the prepared glass ceramics have exhibited two resonance signals one at g1=4.32 and another signal at g2=2.008. The observed decrease in band gap energy up to 2 mol% Fe2O3 doped glass ceramics is an evidence for the change of environment around iron ions and ligands from more covalent to less covalent (ionic) and induces higher concentration of NBOs which causes the depolymerization of the glass ceramic network.

  17. The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec 6 in CANDELS

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-04-01

    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds

  18. Indium-chlorine and gallium-chlorine tetrasubstituted phthalocyanines in a bulk system, Langmuir monolayers and Langmuir-Blodgett nanolayers--spectroscopic investigations.

    PubMed

    Bursa, B; Wróbel, D; Biadasz, A; Kędzierski, K; Lewandowska, K; Graja, A; Szybowicz, M; Durmuş, M

    2014-07-15

    The paper deals with spectroscopic characterization of metallic phthalocyanines (Pc's) (indium and gallium) complexed with chlorine and substituted with four benzyloxyphenoxy peripheral groups in bulk systems, 2D Langmuir monolayers and Langmuir-Blodgett nanolayers. An influence of the molecular structure of dyes (the presence of metal and of substitutes attached to the phthalocyanine macroring) on the in situ measurements of light absorption is reported. Molecular arrangement of the phthalocyanine molecular skeleton in the Langmuir monolayers on water substrate and in the Langmuir-Blodgett nanolayers is evaluated. A comparison of the light absorption spectra of the phthalocyanine monolayers with the spectra of the dyes in solution supports the existence of dye aggregates in the monolayer. It was shown that the type of dye aggregates (oblique and H types) depends markedly on the dye molecular structures. The NIR-IR, IR reflection-absorption and Raman spectra are also monitored for Langmuir-Blodgett nanolayers in non-polarized and polarized light. It was shown that the dye molecules in the Langmuir-Blodgett layers are oriented nearly vertically with respect to a gold substrate. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Neutron Spectroscopic Factors from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Lee, Jenny; Tsang, M. B.

    2007-05-01

    We have extracted the ground state to ground state neutron spectroscopic factors for 80 nuclei ranging in Z from 3 to 24 by analyzing the past measurements of the angular distributions from (d,p) and (p,d) reactions. We demonstrate an approach that provides systematic and consistent values with a minimum of assumptions. A three-body model with global optical potentials and standard geometry of n-potential is applied. For the 60 nuclei where modern shell model calculations are available, such analysis reproduces, to within 20%, the experimental spectroscopic factors for most nuclei. If we constraint the nucleon-target optical potential and the geometries of the bound neutron-wave function with the modern Hartree-Fock calculations, our deduced neutron spectroscopic factors are reduced by 30% on average.

  20. In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)

    USGS Publications Warehouse

    Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.

    2001-01-01

    The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.

  1. The spectroscopic indistinguishability of red giant branch and red clump stars

    NASA Astrophysics Data System (ADS)

    Masseron, T.; Hawkins, K.

    2017-01-01

    Context. Stellar spectroscopy provides useful information on the physical properties of stars such as effective temperature, metallicity and surface gravity. However, those photospheric characteristics are often hampered by systematic uncertainties. The joint spectro-sismo project (APOGEE+Kepler, aka APOKASC) of field red giants has revealed a puzzling offset between the surface gravities (log g) determined spectroscopically and those determined using asteroseismology, which is largely dependent on the stellar evolutionary status. Aims: Therefore, in this letter, we aim to shed light on the spectroscopic source of the offset. Methods: We used the APOKASC sample to analyse the dependencies of the log g discrepancy as a function of stellar mass and stellar evolutionary status. We discuss and study the impact of some neglected abundances on spectral analysis of red giants, such as He and carbon isotopic ratio. Results: We first show that, for stars at the bottom of the red giant branch where the first dredge-up had occurred, the discrepancy between spectroscopic log g and asteroseismic log g depends on stellar mass. This seems to indicate that the log g discrepancy is related to CN cycling. Among the CN-cycled elements, we demonstrate that the carbon isotopic ratio (12C /13C) has the largest impact on stellar spectrum. In parallel, we observe that this log g discrepancy shows a similar trend as the 12C /13C ratios as expected by stellar evolution theory. Although we did not detect a direct spectroscopic signature of 13C, other corroborating evidences suggest that the discrepancy in log g is tightly correlated to the production of 13C in red giants. Moreover, by running the data-driven algorithm (the Cannon) on a synthetic grid trained on the APOGEE data, we try to evaluate more quantitatively the impact of various 12C /13C ratios. Conclusions: While we have demonstrated that 13C indeed impacts all parameters, the size of the impact is smaller than the observed offset

  2. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  3. Operando Spectroscopic Microscopy of LiCoO 2 Cathodes Outside Standard Operating Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson Weker, Johanna; Wise, Anna M.; Lim, Kipil

    LiCoO 2 can experience over-lithiation (over-discharge) in an electrochemical cell due to poor battery management, failure such as a short circuit, or when LiCoO 2 is utilized as a negative electrode conversion material. Furthermore, in order to understand the chemical and morphological changes which occur during over-lithiation, LiCoO 2 electrodes were studied during deep discharge to 0.8 V with operando X-ray absorption spectroscopy and spectroscopic X-ray microscopy. During over-lithiation, micron-sized LiCoO 2 particles suffer significant cracking, pulverization and an incomplete conversion to Co metal. These irreversible morphological and structural changes then inflict permanent damage on the cathode even during amore » single over-lithiation event and highlight the need for more sophisticated battery management systems.« less

  4. Operando Spectroscopic Microscopy of LiCoO 2 Cathodes Outside Standard Operating Potentials

    DOE PAGES

    Nelson Weker, Johanna; Wise, Anna M.; Lim, Kipil; ...

    2017-07-14

    LiCoO 2 can experience over-lithiation (over-discharge) in an electrochemical cell due to poor battery management, failure such as a short circuit, or when LiCoO 2 is utilized as a negative electrode conversion material. Furthermore, in order to understand the chemical and morphological changes which occur during over-lithiation, LiCoO 2 electrodes were studied during deep discharge to 0.8 V with operando X-ray absorption spectroscopy and spectroscopic X-ray microscopy. During over-lithiation, micron-sized LiCoO 2 particles suffer significant cracking, pulverization and an incomplete conversion to Co metal. These irreversible morphological and structural changes then inflict permanent damage on the cathode even during amore » single over-lithiation event and highlight the need for more sophisticated battery management systems.« less

  5. Reduction and Reoxidation of Humic Acid: Influence on Spectroscopic Properties and Proton Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, F.; Christl, I; Kretzschmar, R

    2010-01-01

    Previous studies on proton and metal binding to humic substances have not considered a potential influence of reduction and oxidation of functional groups. Therefore, we investigated how proton binding of a purified soil humic acid was affected by reduction. Reduction of the humic acid was carried out using an electrochemical cell that allowed us to measure the amounts of electrons and protons involved in reduction reactions. We further applied spectroscopic methods (UV-vis, fluorescence, FT-IR, C-1s NEXAFS) to detect possible chemical changes in the humic acid induced by reduction and reoxidation. The effect of reduction on proton binding was determined withmore » acid-base titrations in the pH range 4-10 under controlled redox conditions. During reduction, 0.54 mol kg{sup -1} protons and 0.55 mol kg{sup -1} electrons were transferred to humic acid. NICA-Donnan modeling revealed an equivalent increase in proton-reactive sites (0.52 mol kg{sup -1}) in the alkaline pH-range. Our results indicate that reduction of humic acid increased the amount of proton-reactive sites by 15% compared to the untreated state. Spectroscopic differences between the untreated and reduced humic acid were minor, apart from a lower UV-vis absorption of the reduced humic acid between 400 and 700 nm.« less

  6. New polarimetric and spectroscopic evidence of anomalous enrichment in spinel-bearing calcium-aluminium-rich inclusions among L-type asteroids

    NASA Astrophysics Data System (ADS)

    Devogèle, M.; Tanga, P.; Cellino, A.; Bendjoya, Ph.; Rivet, J.-P.; Surdej, J.; Vernet, D.; Sunshine, J. M.; Bus, S. J.; Abe, L.; Bagnulo, S.; Borisov, G.; Campins, H.; Carry, B.; Licandro, J.; McLean, W.; Pinilla-Alonso, N.

    2018-04-01

    Asteroids can be classified into several groups based on their spectral reflectance. Among these groups, the one belonging to the L-class in the taxonomic classification based on visible and near-infrared spectra exhibit several peculiar properties. First, their near-infrared spectrum is characterized by a strong absorption band interpreted as the diagnostic of a high content of the FeO bearing spinel mineral. This mineral is one of the main constituents of Calcium-Aluminum-rich Inclusions (CAI) the oldest mineral compounds found in the solar system. In polarimetry, they possess an uncommonly large value of the inversion angle incompatible with all known asteroid belonging to other taxonomical classes. Asteroids found to possess such a high inversion angle are commonly called Barbarians based on the first asteroid on which this property was first identified, (234) Barbara. In this paper we present the results of an extensive campaign of polarimetric and spectroscopic observations of L-class objects. We have derived phase-polarization curves for a sample of 7 Barbarians, finding a variety of inversion angles ranging between 25 and 30°. Spectral reflectance data exhibit variations in terms of spectral slope and absorption features in the near-infrared. We analyzed these data using a Hapke model to obtain some inferences about the relative abundance of CAI and other mineral compounds. By combining spectroscopic and polarimetric results, we find evidence that the polarimetric inversion angle is directly correlated with the presence of CAI, and the peculiar polarimetric properties of Barbarians are primarily a consequence of their anomalous composition.

  7. Analyser-based mammography using single-image reconstruction.

    PubMed

    Briedis, Dahliyani; Siu, Karen K W; Paganin, David M; Pavlov, Konstantin M; Lewis, Rob A

    2005-08-07

    We implement an algorithm that is able to decode a single analyser-based x-ray phase-contrast image of a sample, converting it into an equivalent conventional absorption-contrast radiograph. The algorithm assumes the projection approximation for x-ray propagation in a single-material object embedded in a substrate of approximately uniform thickness. Unlike the phase-contrast images, which have both directional bias and a bias towards edges present in the sample, the reconstructed images are directly interpretable in terms of the projected absorption coefficient of the sample. The technique was applied to a Leeds TOR[MAM] phantom, which is designed to test mammogram quality by the inclusion of simulated microcalcifications, filaments and circular discs. This phantom was imaged at varying doses using three modalities: analyser-based synchrotron phase-contrast images converted to equivalent absorption radiographs using our algorithm, slot-scanned synchrotron imaging and imaging using a conventional mammography unit. Features in the resulting images were then assigned a quality score by volunteers. The single-image reconstruction method achieved higher scores at equivalent and lower doses than the conventional mammography images, but no improvement of visualization of the simulated microcalcifications, and some degradation in image quality at reduced doses for filament features.

  8. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  9. The Role of Trait and State Absorption in the Enjoyment of Music

    PubMed Central

    2016-01-01

    Little is known about the role of state versus trait characteristics on our enjoyment of music. The aim of this study was to investigate the influence of state and trait absorption upon preference for music, particularly preference for music that evokes negative emotions. The sample consisted of 128 participants who were asked to listen to two pieces of self-selected music and rate the music on variables including preference and felt and expressed emotions. Participants completed a brief measure of state absorption after listening to each piece, and a trait absorption inventory. State absorption was strongly positively correlated with music preference, whereas trait absorption was not. Trait absorption was related to preference for negative emotions in music, with chi-square analyses demonstrating greater enjoyment of negative emotions in music among individuals with high trait absorption. This is the first study to show that state and trait absorption have separable and distinct effects on a listener’s music experience, with state characteristics impacting music enjoyment in the moment, and trait characteristics influencing music preference based on its emotional content. PMID:27828970

  10. The Role of Trait and State Absorption in the Enjoyment of Music.

    PubMed

    Hall, Sarah E; Schubert, Emery; Wilson, Sarah J

    2016-01-01

    Little is known about the role of state versus trait characteristics on our enjoyment of music. The aim of this study was to investigate the influence of state and trait absorption upon preference for music, particularly preference for music that evokes negative emotions. The sample consisted of 128 participants who were asked to listen to two pieces of self-selected music and rate the music on variables including preference and felt and expressed emotions. Participants completed a brief measure of state absorption after listening to each piece, and a trait absorption inventory. State absorption was strongly positively correlated with music preference, whereas trait absorption was not. Trait absorption was related to preference for negative emotions in music, with chi-square analyses demonstrating greater enjoyment of negative emotions in music among individuals with high trait absorption. This is the first study to show that state and trait absorption have separable and distinct effects on a listener's music experience, with state characteristics impacting music enjoyment in the moment, and trait characteristics influencing music preference based on its emotional content.

  11. Characterizing the Cloud Decks of Luhman 16AB with Medium-resolution Spectroscopic Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellogg, Kendra; Metchev, Stanimir; Heinze, Aren

    2017-11-01

    We present results from a two-night R ∼ 4000 0.9–2.5 μ m spectroscopic monitoring campaign of Luhman 16AB (L7.5 + T0.5). We assess the variability amplitude as a function of pressure level in the atmosphere of Luhman 16B: the more variable of the two components. The amplitude decreases monotonically with decreasing pressure, indicating that the source of variability—most likely patchy clouds—lies in the lower atmosphere. An unexpected result is that the strength of the K i absorption is higher in the faint state of Luhman 16B and lower in the bright state. We conclude that either the abundance of Kmore » i increases when the clouds roll in, potentially because of additional K i in the cloud itself, or that the temperature–pressure profile changes. We reproduce the change in K i absorption strengths with combinations of spectral templates to represent the bright and the faint variability states. These are dominated by a warmer L8 or L9 component, with a smaller contribution from a cooler T1 or T2 component. The success of this approach argues that the mechanism responsible for brown dwarf variability is also behind the diverse spectral morphology across the L-to-T transition. We further suggest that the L9–T1 part of the sequence represents a narrow but random ordering of effective temperatures and cloud fractions, obscured by the monotonic progression in methane absorption strength.« less

  12. The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi

    We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less

  13. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest

    DOE PAGES

    Vadai, Yishay; Poznanski, Dovi; Baron, Dalya; ...

    2017-08-14

    In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less

  14. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vadai, Yishay; Poznanski, Dovi; Baron, Dalya

    In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less

  15. The crystalline nanocluster phase as a medium for structural and spectroscopic studies of light absorption of photosensitizer dyes on semiconductor surfaces.

    PubMed

    Benedict, Jason B; Coppens, Philip

    2010-03-10

    The crystalline nanocluster phase, in which nanoscale metal oxide clusters are self-assembled in three-dimensional periodic arrays, is described. The crystalline assembly of nanoparticles functionalized with technologically relevant ligands offers the opportunity to obtain unambiguous structural information that can be combined with theoretical calculations based on the known geometry and used to interpret spectroscopic and other information. A series of Ti/O clusters up to approximately 2.0 nm in diameter have been synthesized and functionalized with the adsorbents catechol and isonicotinic acid. Whereas the isonicotinate is always adsorbed in a bridging monodentate mode, four different adsorption modes of catechol have been identified. The particles show a significantly larger variation of the Ti-O distances than observed in the known TiO(2) phases and exhibit both sevenfold overcoordination and five- and fourfold undercoordination of the Ti atoms. Theoretical calculations show only a moderate dependence of the catecholate net charge on the geometry of adsorption. All of the catechol-functionalized clusters have a deep-red color due to penetration of the highest occupied catechol levels into the band gap of the Ti/O particles. Spectroscopic measurements of the band gap of the Ti(17) cluster are in good agreement with the theoretical values and show a blue shift of approximately 0.22 eV relative to those reported for anatase nanoparticles.

  16. Spectroscopic investigation of inner filter effect by magnolol solutions

    NASA Astrophysics Data System (ADS)

    Li, Hongmei; YuzhuHu

    2007-12-01

    Spectroscopy is useful tool for aggregation studies on fluorephores. One of the major problems with this technique is that the inner filter effect becomes unavoidable since the samples are used at high concentration. In this work, our investigation on magnolol spectroscopic properties shows that the inner filter effect (IFE) of fluorescence plays a critical role in the spectra of magnolol. The strong dependence of the fluorescence parameters on the concentration accounts for the apparent experimental evidence of magnolol aggregation at high concentrations. There are some questions despite the aggregation model based on fluorescent aggregates seems to describe the behavior of the system. The mathematical correction on the emission intensities shows the linear fluorescence-concentration relationship. Furthermore, we propose a mathematic model of excitation spectrum based on the primary IFE (absorption of light of excitation wavelength), which provide a correct explanation of the unusual spectral shift and spectral narrowing in the excitation spectra of magnolol at high concentrations. The shapes of spectra are completely independent on magnolol aggregation and are due only to experimental artifacts, i.e. IFE.

  17. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  18. Spectroscopic analysis of cinnamic acid using quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2015-02-01

    In this present study, FT-IR, FT-Raman, 13C NMR and 1H NMR spectra for cinnamic acid have been recorded for the vibrational and spectroscopic analysis. The observed fundamental frequencies (IR and Raman) were assigned according to their distinctiveness region. The computed frequencies and optimized parameters have been calculated by using HF and DFT (B3LYP) methods and the corresponding results are tabulated. On the basis of the comparison between computed and experimental results assignments of the fundamental vibrational modes are examined. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The alternation of the vibration pattern of the pedestal molecule related to the substitutions was analyzed. The 13C and 1H NMR spectra have been recorded and the chemical shifts have been calculated using the gauge independent atomic orbital (GIAO) method. The Mulliken charges, UV spectral analysis and HOMO-LUMO analysis of have been calculated and reported. The molecular electrostatic potential (MEP) was constructed.

  19. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Wang, Yifeng; ...

    2017-08-01

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematicallymore » compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.« less

  20. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja; Wang, Yifeng

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematicallymore » compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.« less

  1. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  2. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  3. Evaluation of Optical Depths and Self-Absorption of Strontium and Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.

  4. Two-photon absorption spectra of carotenoids compounds

    NASA Astrophysics Data System (ADS)

    Vivas, Marcelo Gonçalves; Silva, Daniel Luiz; Boni, Leonardo de; Zalesny, Robert; Bartkowiak, Wojciech; Mendonca, Cleber Renato

    2011-05-01

    Carotenoids are biosynthetic organic pigments that constitute an important class of one-dimensional π-conjugated organic molecules with enormous potential for application in biophotonic devices. In this context, we studied the degenerate two-photon absorption (2PA) cross-section spectra of two carotenoid compounds (β-carotene and β-apo-8'-carotenal) employing the conventional and white-light-continuum Z-scan techniques and quantum chemistry calculations. Because carotenoids coexist at room temperature as a mixture of isomers, the 2PA spectra reported here are due to samples containing a distribution of isomers, presenting distinct conjugation length and conformation. We show that these compounds present a defined structure on the 2PA spectra, that peaks at 650 nm with an absorption cross-section of approximately 5000 GM, for both compounds. In addition, we observed a 2PA band at 990 nm for β-apo-8'-carotenal, which was attributed to a overlapping of 11Bu+-like and 21Ag--like states, which are strongly one- and two-photon allowed, respectively. Spectroscopic parameters of the electronic transitions to singlet-excited states, which are directly related to photophysical properties of these compounds, were obtained by fitting the 2PA spectra using the sum-over-states approach. The analysis and interpretations of the 2PA spectra of the investigated carotenoids were supported by theoretical predictions of one- and two-photon transitions carried out using the response functions formalism within the density functional theory framework, using the long-range corrected CAM-B3LYP functional.

  5. Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes

    PubMed Central

    2015-01-01

    Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792

  6. Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manfred, K. M.; Ritchie, G. A. D.; Lang, N.

    2015-06-01

    The development of interband cascade lasers (ICLs) has made the strong C-H transitions in the 3 μm spectral region increasingly accessible. We present the demonstration of a single mode distributed feedback ICL coupled to a V-shaped optical cavity in an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) experiment. We achieved a minimum detectable absorption coefficient, α{sub min}, of (7.1±0.2)×10{sup −8} cm{sup −1} for a spectrum of CH{sub 4} at 3.24 μm with a two second acquisition time (100 scans averaged). This corresponds to a detection limit of 3 ppb CH{sub 4} at atmospheric pressure, which is comparable to previously reported OF-CEAS instruments with diodemore » lasers or quantum cascade lasers. The ability to frequency lock an ICL source in the important 3 μm region to an optical cavity holds great promise for future spectroscopic applications.« less

  7. Theory of Transient Excited State Absorptions in Pentacene and Derivatives: Triplet-Triplet Biexciton versus Free Triplets.

    PubMed

    Khan, Souratosh; Mazumdar, Sumit

    2017-12-07

    Recent experiments in several singlet-fission materials have found that the triplet-triplet biexciton either is the primary product of photoexcitation or has a much longer lifetime than believed until now. It thus becomes essential to determine the difference in the spectroscopic signatures of the bound triplet-triplet and free triplets to distinguish between them optically. We report calculations of excited state absorptions (ESAs) from the singlet and triplet excitons and from the triplet-triplet biexciton for a pentacene crystal with the herringbone structure and for nanocrystals of bis(triisopropylsilylethynyl) (TIPS)-pentacene. The triplet-triplet biexciton absorbs in both the visible and the near-infrared (NIR), while the monomer free triplet absorbs only in the visible. The intensity of the NIR absorption depends on the extent of intermolecular coupling, in agreement with observations in TIPS-pentacene nanocrystals. We predict additional weak ESA from the triplet-triplet but not from the triplet, at still lower energy.

  8. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  9. Service-Learning General Chemistry: Lead Paint Analyses

    NASA Astrophysics Data System (ADS)

    Kesner, Laya; Eyring, Edward M.

    1999-07-01

    Houses painted with lead-based paints are ubiquitous in the United States because the houses and the paint have not worn out two decades after federal regulations prohibited inclusion of lead in paint. Remodeling older homes thus poses a health threat for infants and small children living in those homes. In a service-learning general chemistry class, students disseminate information about this health threat in an older neighborhood. At some of the homes they collect paint samples that they analyze for lead both qualitatively and quantitatively. This service-learning experience generates enthusiasm for general chemistry through the process of working on a "real" problem. Sample collection familiarizes the students with the concept of "representative" sampling. The sample preparation for atomic absorption spectroscopic (AAS) analysis enhances their laboratory skills. The focus of this paper is on the mechanics of integrating this particular service project into the first-term of the normal general chemistry course.

  10. Investigations on the photoreactions of phenothiazine and phenoxazine in presence of 9-cyanoanthracene by using steady state and time resolved spectroscopic techniques.

    PubMed

    Bardhan, Munmun; Mandal, Paulami; Tzeng, Wen-Bih; Ganguly, Tapan

    2010-09-01

    By using electrochemical, steady state and time resolved (fluorescence lifetime and transient absorption) spectroscopic techniques, detailed investigations were made to reveal the mechanisms of charge separation or forward electron transfer reactions within the electron donor phenothiazine (PTZH) or phenoxazine (PXZH) and well known electron acceptor 9-cyanoanthracene (CNA). The transient absorption spectra suggest that the charge separated species formed in the excited singlet state resulted from intermolecular photoinduced electron transfer reactions within the donor PTZH (or PXZH) and CNA acceptor relaxes to the corresponding triplet state. Though alternative mechanisms of via formations of contact neutral radical by H-transfer reaction have been proposed but the observed results obtained from the time resolved measurements indicate that the regeneration of ground state reactants is primarily responsible due to direct recombination of triplet contact ion-pair (CIP) or solvent-separated ion-pair (SSIP).

  11. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  12. Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey Y.

    -dependent, variable-angle spectroscopic ellipsometry and time-resolved ultrafast optical spectroscopy on a type I heterostructure, we clarify thermal and electronic contributions to spectral transients in LaFeO3. Upon comparison to thermally-derived static spectra of LaFeO3, we find that thermal contributions dominate the transient absorption and reflectance spectra above the band gap. A transient photoinduced absorption feature below the band gap at 1.9 eV is not reproduced in the thermally derived spectra and has significantly longer decay kinetics from the thermallyinduced features; therefore, this long lived photoinduced absorption is likely derived, at least partially, from photoexcited carriers with lifetimes much longer than 3 nanoseconds. LaFeO3 has a wide band gap of 2.4 eV but its absorption can be decreased with chemical substitution of Sr for Fe to make it more suitable for various applications. This type of A-site substitution is a common route to change static optical absorption in perovskite oxides, but there are no systematic studies looking at how A-site substitution changes dynamic optoelectronic properties. To understand the relationship between composition and static and dynamic optical properties we worked with the model system of La1-xSrxFeO 3-delta epitaxial films grown on LSAT, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy with broadband visible (1.6 eV to 4 eV) and near-infrared (0.9 eV to 1.5 eV) probes. The sign of the reflectance

  13. Spectroscopic comparison of effects of electron radiation on mechanical properties of two polyimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.

    1987-01-01

    The differences in the radiation durabilities of two polyimide materials, Du Pont Kapton and General Electric Ultem, are compared. An explanation of the basic mechanisms which occur during exposure to electron radiation from analyses of infrared (IR) and electron paramagnetic resonance (EPR) spectroscopic data for each material is provided. The molecular model for Kapton was, in part, established from earlier modeling for Ultem (pp. 1293-1298 of IEEE Transactions on Nuclear Science, December 1984). Techniques for understanding the durability of one complex polymer based on the understanding of a different and equally complex polymer are demonstrated. The spectroscopic data showed that the primary radiation-generated change in the tensile properties of Ultem (a large reduction in tensile elongation) was due to crosslinking, which followed the capture by phenyl radicals of hydrogen atoms removed from gem-dimethyl groups. In contrast, the tensile properties of Kapton remained unchanged because radical-radical recombination, a self-mending process, took place.

  14. Exploring the Time Evolution of Cool Metallic Absorption Features in UV Burst Spectra

    NASA Astrophysics Data System (ADS)

    Belmes, K.; Madsen, C. A.; DeLuca, E.

    2017-12-01

    UV bursts are compact brightenings in active regions that appear in UV images. They are identified through three spectroscopic features: (1) broadening and intensification of NUV/FUV emission lines, (2) the presence of optically thin Si IV emission, and (3) the presence of absorption features from cool metallic ions. Properties (2) and (3) imply that bursts exist at transition region temperatures (≥ 80,000 K) but are located in the cooler lower chromosphere ( 5,000 K). Their energetic and dynamical properties remain poorly constrained. Improving our understanding of this phenomena could help us further constrain the energetic and dynamical properties of the chromosphere, as well as give us insight into whether or not UV bursts contribute to chromospheric and/or coronal heating. We analyzed the time evolution of UV bursts using spectral data from the Interface Region Imaging Spectrograph (IRIS). We inspected Si IV 1393.8 Å line profiles for Ni II 1393.3 Å absorption features to look for signs of heating. Weakening of absorption features over time could indicate heating of the cool ions above the burst, implying that thermal energy from the burst could rapidly conduct upward through the chromosphere. To detect the spectral profiles corresponding to bursts, we applied a four-parameter Gaussian fit to every profile in each observation and took cuts in parameter space to isolate the bursts. We then manually reviewed the remaining profiles by looking for a statistically significant appearance of Ni II 1393.3 Å absorption. We quantified these absorption features by normalizing the Si IV 1393.8 Å emission profiles and measuring the maximum fractional extinction in each. Our preliminary results indicate that Ni II 1393.3 Å absorption may undergo a cycle of strengthening and weakening throughout a burst's lifetime. However, further investigation is needed for confirmation. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  15. H2O absorption spectroscopy for determination of temperature and H2O mole fraction in high-temperature particle synthesis systems.

    PubMed

    Torek, Paul V; Hall, David L; Miller, Tiffany A; Wooldridge, Margaret S

    2002-04-20

    Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.

  16. Sound absorption of microperforated panels inside compact acoustic enclosures

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Cheng, Li

    2016-01-01

    This paper investigates the sound absorption effect of microperforated panels (MPPs) in small-scale enclosures, an effort stemming from the recent interests in using MPPs for noise control in compact mechanical systems. Two typical MPP backing cavity configurations (an empty backing cavity and a honeycomb backing structure) are studied. Although both configurations provide basically the same sound absorption curves from standard impedance tube measurements, their in situ sound absorption properties, when placed inside a small enclosure, are drastically different. This phenomenon is explained using a simple system model based on modal analyses. It is shown that the accurate prediction of the in situ sound absorption of the MPPs inside compact acoustic enclosures requires meticulous consideration of the configuration of the backing cavity and its coupling with the enclosure in front. The MPP structure should be treated as part of the entire system, rather than an absorption boundary characterized by the surface impedance, calculated or measured in simple acoustic environment. Considering the spatial matching between the acoustic fields across the MPP, the possibility of attenuating particular enclosure resonances by partially covering the enclosure wall with a properly designed MPP structure is also demonstrated.

  17. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Nicholas P.; Kirkpatrick, Jessica A.; Carithers, William C.

    2012-03-01

    The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg{sup 2}, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Ly{alpha} absorption from the spectra of a sample of {approx}150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z Almost-Equal-To 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithmmore » for quasars in the redshift range 2.2 < z < 3.5, where their colors tend to overlap those of the far more numerous stars. During the first year of the BOSS survey, quasar target selection (QTS) methods were developed and tested to meet the requirement of delivering at least 15 quasars deg{sup -2} in this redshift range, with a goal of 20 out of 40 targets deg{sup -2} allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g {<=} 22.0 or r {<=} 21.85. While detection of the BAO signature in the distribution of Ly{alpha} absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg{sup -2}, for which the selection efficiency is just over 50% ({approx}10 z > 2.20 quasars deg{sup -2}). This 'CORE' subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg{sup -2}, we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations

  18. The BAT AGN Spectroscopic Survey (BASS)

    NASA Astrophysics Data System (ADS)

    Koss, Michael

    2017-08-01

    We present the Swift BAT AGN Spectroscopic Survey (BASS) and discus the first four papers. The catalog represents an unprecedented census of hard-X-ray selected AGN in the local universe, with ~90% of sources at z<0.2. Starting from an all-sky catalog of AGN detected based on their 14-195 keV flux from the 70-month Swift/BAT catalog, we analyze a total of 1279 optical spectra, taken from twelve different telescopes, for a total of 642 spectra of unique AGN. We present the absorption and emission line measurements as well as black hole masses and accretion rates for the majority of obscured and un-obscured AGN (473), representing more than a factor of 10 increase from past studies. Consistent with previous surveys, we find an increase in the fraction of un-obscured (type 1) AGN, as measured from broad Hbeta and Halpha, with increasing 14-195 keV and 2-10 keV luminosity. We find the FWHM of the emission lines to show broad agreement with the X-ray obscuration measurements. Compared to narrow line AGN in the SDSS, the X-ray selected AGN in our sample with emission lines have a larger fraction of dustier galaxies suggesting these types of galaxies are missed in optical AGN surveys using emission line diagnostics.

  19. W134: A new pre-main-sequence double-lined spectroscopic binary

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah L.; Stapelfeldt, Karl R.

    1994-01-01

    We report the discovery that the pre-main-sequence star Walker 134 in the young cluster NGC 2264 is a double-lined spectroscopic binary. Both components are G stars with strong Li I 6708 A absorption lines. Twenty radial velocity measurements have been used to determined the orbital elements of this system. The orbit has a period of 6.3532 +/- 0.0012 days and is circular within the limits of our velocity resolution; e less than 0.01. The total system mass is stellar mass sin(exp 3) i = 3.16 solar mass with a mass ratio of 1.04. Estimates for the orbit inclination angle and stellar radii place the system near the threshold for eclipse observability; howerver, no decrease in brightness was seen during two attempts at photometric monitoring. The circular orbit of W 134 fills an important gap in the period distribution of pre-main-sequence binaries and thereby constrains the effectiveness of tidal orbital circularization during the pre-main sequence.

  20. Spectroscopic properties of HoAl3(BO3)4 single crystal

    NASA Astrophysics Data System (ADS)

    Ikonnikov, D. A.; Malakhovskii, A. V.; Sukhachev, A. L.; Temerov, V. L.; Krylov, A. S.; Bovina, A. F.; Aleksandrovsky, A. S.

    2014-11-01

    The Judd-Ofelt theory has been applied to analyze absorption spectra of Ho3+ ion in HoAl3(BO3)4 measured in spectral range 300-700 nm at room temperature. The Judd-Ofelt spectroscopic parameters have been determined as: Ω2 = 18.87 × 10-20 cm2, Ω4 = 17.04 × 10-20 cm2, Ω6 = 9.21 × 10-20 cm2. These parameters have been used to calculate radiative lifetimes and branching ratios of the luminescence manifolds. Three luminescent bands were found in the spectral range 450-700 nm ascribed to transitions from the 5F5, (5F4, 5S2) and 3K8 states to the ground state 5I8. Experimental intensities of these luminescence transitions were compared with those calculated by using Judd-Ofelt theory and the system of kinetic equations for populations of starting luminescing states. Probabilities of radiativeless transitions were evaluated from this comparison.

  1. SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Miller, Victor A.; Mitchell Spearrin, R.; Strand, Christopher L.

    2017-10-01

    SpectraPlot is a web-based application for simulating spectra of atomic and molecular gases. At the time this manuscript was written, SpectraPlot consisted of four primary tools for calculating: (1) atomic and molecular absorption spectra, (2) atomic and molecular emission spectra, (3) transition linestrengths, and (4) blackbody emission spectra. These tools currently employ the NIST ASD, HITRAN2012, and HITEMP2010 databases to perform line-by-line simulations of spectra. SpectraPlot employs a modular, integrated architecture, enabling multiple simulations across multiple databases and/or thermodynamic conditions to be visualized in an interactive plot window. The primary objective of this paper is to describe the architecture and spectroscopic models employed by SpectraPlot in order to provide its users with the knowledge required to understand the capabilities and limitations of simulations performed using SpectraPlot. Further, this manuscript discusses the accuracy of several underlying approximations used to decrease computational time, in particular, the use of far-wing cutoff criteria.

  2. Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry)

    NASA Astrophysics Data System (ADS)

    Shirdel, J.; Zirak, P.; Penzkofer, A.; Breitkreuz, H.; Wolf, E.

    2008-09-01

    The absorption and fluorescence behaviour of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) in a pH 8 aqueous buffer solution is studied. The flavin adenine dinucleotide (FAD) cofactor of dCry is identified to be present in its oxidized form (FAD ox), and the 5,10-methenyltetrahydrofolate (MTHF) cofactor is found to be hydrolyzed and oxidized to 10-formyldihydrofolate (10-FDHF). The absorption and the fluorescence behaviour of dCry is investigated in the dark-adapted (receptor) state, the light-adapted (signalling) state, and under long-time violet light exposure. Photo-excitation of FAD ox in dCry causes a reductive electron transfer to the formation of anionic FAD semiquinone (FAD rad - ), and photo-excitation of the generated FAD rad - causes an oxidative electron transfer to the back formation of FAD ox. In light adapted dCry a photo-induced equilibrium between FAD ox and FAD rad - exists. The photo-cycle dynamics of signalling state formation and recovery is discussed. Quantum yields of photo-induced signalling state formation of about 0.2 and of photo-induced back-conversion of about 0.2 are determined. A recovery of FAD rad - to FAD ox in the dark with a time constant of 1.6 min at room temperature is found.

  3. Spectroscopic Needs for Imaging Dark Energy Experiments

    DOE PAGES

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; ...

    2015-03-15

    uncertainty in their mean redshift, RMS dispersion, etc. – rather than to make the moments themselves small. Calibration may be done with the same spectroscopic dataset used for training if that dataset is extremely high in redshift completeness (i.e., no populations of galaxies to be used in analyses are systematically missed). Accurate photo-z calibration is necessary for all imaging experiments; Requirements: If extremely low levels of systematic incompleteness (<~0.1%) are attained in training samples, the same datasets described above should be sufficient for calibration. However, existing deep spectroscopic surveys have failed to yield secure redshifts for 30–60% of targets, so that would require very large improvements over past experience. This incompleteness would be a limiting factor for training, but catastrophic for calibration. If <~0.1% incompleteness is not attainable, the best known option for calibration of photometric redshifts is to utilize cross-correlation statistics in some form. The most direct method for this uses cross-correlations between positions on the sky of bright objects of known spectroscopic redshift with the sample of objects that we wish to calibrate the redshift distribution for, measured as a function of spectroscopic z. For such a calibration, redshifts of ~100,000 objects over at least several hundred square degrees, spanning the full redshift range of the samples used for dark energy, would be necessary; and Options: The proposed BAO experiment eBOSS would provide sufficient spectroscopy for basic calibrations, particularly for ongoing and near-future imaging experiments. The planned DESI experiment would provide excellent calibration with redundant cross-checks, but will start after the conclusion of some imaging projects. An extension of DESI to the Southern hemisphere would provide the best possible calibration from cross-correlation methods for DES and LSST. We thus anticipate that our two primary needs for spectroscopy

  4. X-ray Absorption and Emission Spectroscopic Studies of [L2Fe2S2]n Model Complexes: Implications for the Experimental Evaluation of Redox States in Iron–Sulfur Clusters

    PubMed Central

    2016-01-01

    Herein, a systematic study of [L2Fe2S2]n model complexes (where L = bis(benzimidazolato) and n = 2-, 3-, 4-) has been carried out using iron and sulfur K-edge X-ray absorption (XAS) and iron Kβ and valence-to-core X-ray emission spectroscopies (XES). These data are used as a test set to evaluate the relative strengths and weaknesses of X-ray core level spectroscopies in assessing redox changes in iron–sulfur clusters. The results are correlated to density functional theory (DFT) calculations of the spectra in order to further support the quantitative information that can be extracted from the experimental data. It is demonstrated that due to canceling effects of covalency and spin state, the information that can be extracted from Fe Kβ XES mainlines is limited. However, a careful analysis of the Fe K-edge XAS data shows that localized valence vs delocalized valence species may be differentiated on the basis of the pre-edge and K-edge energies. These findings are then applied to existing literature Fe K-edge XAS data on the iron protein, P-cluster, and FeMoco sites of nitrogenase. The ability to assess the extent of delocalization in the iron protein vs the P-cluster is highlighted. In addition, possible charge states for FeMoco on the basis of Fe K-edge XAS data are discussed. This study provides an important reference for future X-ray spectroscopic studies of iron–sulfur clusters. PMID:27097289

  5. Absorption and fluorescence emission spectroscopic characters of naphtho-homologated yy-DNA bases and effect of methanol solution and base pairing.

    PubMed

    Zhang, Laibin; Li, Huifang; Li, Jilai; Chen, Xiaohua; Bu, Yuxiang

    2010-03-01

    A comprehensive theoretical study of electronic transitions of naphtho-homologated base analogs, namely, yy-T, yy-C, yy-A, and yy-G, was performed. The nature of the low-lying excited states is discussed, and the results are compared with those from experiment and also with those of y-bases. Geometrical characteristics of the lowest excited singlet pipi* and npi* states were explored using the CIS method, and the effects of methanol solution and paring with their complementary natural bases on the relevant absorption and emission spectra of these modified bases were examined. The calculated excitation and emission energies agree well with the measured data, where experimental results are available. In methanol solution, the fluorescence from yy-A and yy-G would be expected to occur around 539 and 562 nm, respectively, suggesting that yy-A is a green-colored fluorophore, whereas yy-G is a yellow-colored fluorophore. The methanol solution was found to red-shift both the absorption and emission maxima of yy-A, yy-T, and yy-C, but blue-shift those for yy-G. Generally, though base pairing has no significant effects on the absorption and fluorescence maxima of yy-A, yy-C, and yy-T, it blue-shifts those for yy-G. (c) 2009 Wiley Periodicals, Inc.

  6. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system.

    PubMed

    Zhong, Hua; Redo-Sanchez, Albert; Zhang, X-C

    2006-10-02

    We present terahertz (THz) reflective spectroscopic focal-plane imaging of four explosive and bio-chemical materials (2, 4-DNT, Theophylline, RDX and Glutamic Acid) at a standoff imaging distance of 0.4 m. The 2 dimension (2-D) nature of this technique enables a fast acquisition time and is very close to a camera-like operation, compared to the most commonly used point emission-detection and raster scanning configuration. The samples are identified by their absorption peaks extracted from the negative derivative of the reflection coefficient respect to the frequency (-dr/dv) of each pixel. Classification of the samples is achieved by using minimum distance classifier and neural network methods with a rate of accuracy above 80% and a false alarm rate below 8%. This result supports the future application of THz time-domain spectroscopy (TDS) in standoff distance sensing, imaging, and identification.

  7. Spectroscopic studies on the interaction of fluorescein and safranine T in PC liposomes

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ebru; Bayraktutan, Tuğba; Acar, Murat; Toprak, Mahmut

    2013-01-01

    In this study, the fluorescence quenching of fluorescein by safranine T in liposome media had been investigated systematically by fluorescence spectroscopy, UV-vis absorption spectroscopy and fluorescence decay lifetime measurements. The spectroscopic data were analyzed using a Stern-Volmer equation to determine the quenching process. The experimental results showed that the intrinsic fluorescence of fluorescein was strongly quenched by safranine T, and that the quenching mechanism was considered as static quenching by forming a ground-complex. The Stern-Volmer quenching constant Ksv, and the bimolecular quenching constant Kq were estimated. The distances between the donor (fluorescein) and the acceptor (safranine T) were calculated according to the Förster non-radiation energy transfer theory. In addition, the partition coefficient of the safranine T (Kp) in the L-egg lecithin phosphatidylcholine liposomes was also calculated by utilizing the fluorescence quenching.

  8. Investigating broad absorption line quasars with SDSS and UKIDSS .

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hewett, P. C.

    The SDSS contains the largest set of spectroscopically confirmed broad line quasars ever compiled. Upon its completion, the UKIDSS LAS will provide a near-infrared counterpart to the SDSS, reaching 3 magnitudes deeper than 2MASS over a 4000 square degree area within the SDSS footprint. Combining the SDSS optical and UKIDSS near-infrared data, allows a new insight into the photometric and spectroscopic properties of broad absorption line quasars (BALQSOs) relative to the quasar population as a whole. An accurate estimate of the intrinsic BALQSO fraction is essential for determining the BAL cloud covering fraction and the implications for the co-evolution of accreting supermassive black holes and their host galaxies. Defining a K-band limited sample of quasars makes clear the significantly redder distribution of i-K colours of the BALQSOs. The BALQSO i-K colour distribution enables us to estimate a lower limit to the intrinsic BALQSO fraction, computed to be ˜ 30 percent, significantly larger than the optical fraction of 15-20 percent found by several authors. We combined the high-quality SDSS spectra of the quasar sample to make several composite spectra based on i-K colour, and the properties of these composites are compared to a composite spectrum of unreddened quasars. If the origin of the wavelength dependent differences between the red and unreddened objects is ascribed to attenuation by dust, we find that the extinction curve of the material is intermediate in form between the steep SMC-like extinction curve and the recent, empirically determined, extinction curve presented by Gaskell & Benker (2007).

  9. Theoretical studies of spectroscopic problems of importance for atmospheric radiation measurements

    NASA Technical Reports Server (NTRS)

    Tipping, Richard H.

    1994-01-01

    Many of the instruments used to deduce the physical parameters of the Earth's atmosphere necessary for climate studies or for pollution monitoring (for instance, temperature versus pressure or number densities of trace molecules) rely on the existence of accurate spectroscopic data and an understanding of the physical processes responsible for the absorption or emission of radiation. During the summer, research was either continued or begun on three distinct problems: (1) an improved theoretical framework for the calculation of the far-wing absorption of allowed spectral lines; (2) a refinement of the calculation of the collision-induced fundamental spectrum of N2; and (3) an investigation of possible line-mixing effects in the fundamental spectrum of CH4. Progress in these three areas is summarized below. During the past few years, we have developed a theoretical framework for the calculation of the absorption of radiation by the far wings of spectral lines. Such absorption due to water vapor plays a crucial role in the greenhouse effect as well as limiting the retrieval of temperature profiles from satellite data. Several improvements in the theory have been made and the results are being prepared for publication. Last year we published results for the theoretical calculation of the absorption of radiation due to the dipoles induced during binary collisions of N2 molecules using independently measured molecular parameters; the results were in reasonable agreement with experimental data. However, recent measurements have revealed new fine structure that has been attributed to line-mixing effects. We do not think that this is correct, rather that the structure results from short-range anisotropic dipoles. We are in the process of including this refinement in our theoretical calculation in order to compare with the new experimental data. Subtle changes in the spectra of CH4 measured by researchers at Langley have also been attributed to line-mixing effects. By

  10. Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong

    2016-12-01

    We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm-1. Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N2O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.

  11. Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser.

    PubMed

    Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong

    2016-12-01

    We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm -1 . Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N 2 O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.

  12. Sound absorption of textile material using a microfibres resistive layer

    NASA Astrophysics Data System (ADS)

    Segura Alcaraz, M. P.; Bonet-Aracil, M.; Segura Alcaraz, J. G.; Montava Seguí, I.

    2017-10-01

    Acoustic comfort is a basic human need. One of the adverse effects of noise is its interference with speech discrimination. Textile materials are suitable to be used as sound absorptive materials and thus help to improve acoustic comfort in rooms. Micro-fibre fabrics can be considered as better sound absorbers than regular fibre fabrics mainly due to the higher surface of its fibres and bigger contact area with the air thus, allowing greater dissipation of sound energy. In this work, the use of a microfibre woven fabric as an upstream layer is analysed considering acoustic issues. Authors demonstrate it improves the sound absorption of a polyester nonwoven, resulting in a material suitable for absorption at the sound frequencies of the human voice.

  13. Spectroscopic properties of Sm3+ and V4+ ions in Na2O-SiO2-ZrO2 glasses

    NASA Astrophysics Data System (ADS)

    Neeraja, K.; Rao, T. G. V. M.; Kumar, A. Rupesh; Uma Lakshmi, V.; Veeraiah, N.; Rami Reddy, M.

    2013-12-01

    Na2O-SiO2-ZrO2 glasses of Sm3+ ions with and without V2O5 are characterized by spectroscopic and optical properties. The XRD and EDS spectra of the glass samples reveal an amorphous nature with different compositions within the glass matrix. The Infrared and Raman spectral studies are carried out and the existence of conventional structural units are analyzed in the glass network. The ESR spectra of the glass samples have indicating that a considerable proportion of vanadium ion exists in V4+ state. The optical absorption spectra of these glasses are recorded at room temperature, from the measured intensities of various absorption bands the Judd-Ofelt parameters Ω2, Ω4 and Ω6 are calculated. The photo-luminescence spectra recorded with excited wavelength 400 nm, five emission bands are observed; in this the energy transfer probability takes place between Sm3+ and V4+ ions.

  14. Handbook of Basic Atomic Spectroscopic Data

    National Institute of Standards and Technology Data Gateway

    SRD 108 Handbook of Basic Atomic Spectroscopic Data (Web, free access)   This handbook provides a selection of the most important and frequently used atomic spectroscopic data. The compilation includes data for the neutral and singly-ionized atoms of all elements hydrogen through einsteinium (Z = 1-99). The wavelengths, intensities, and spectrum assignments are given for each element, and the data for the approximately 12,000 lines of all elements are also collected into a single table.

  15. Spectroscopic, orbital, and physical properties of the binary Feige 24 and detection of transient He II absorption in the system

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Thorstensen, John R.

    1994-01-01

    We have obtained new high-dispersion optical spectroscopy at Kitt Peak National Observatory (KPNO) and new International Ultraviolet Explorer (IUE) spectroscopy of the white dwarf+red dwarf binary system Feige 24. The optical range shows a composite DA+dM spectrum, together with H I Balmer and He I emission. The orbital phase dependence of the emission shows that it results from extreme ultraviolet (EUV) light reprocessing in the red dwarf upper atmosphere. The systems close enough and hot enough to show this reprocessing signature only recently emerged from common-envelope evolution. The ultraviolet spectrum exclusively emanates from the white dwarf and shows numerous heavy element absorption lines. We measured accurate radial velocities of the red dwarf component motion, traced by both optical absorption and emission lines, and new radial velocities of the white dwarf, traced by ultraviolet Fe V lines. Combining these measurements, we refined the orbital parameters presented by Vennes et al. (1991), and we confirmed that the white dwarf gravitational redshift is exceptionally small with 9 +/- 2 km/s. From this we deduced that the interior is either pure helium or carbon with a thick hydrogen layer, and we derived, for the combined interior compositions, a white dwarf mass and radius of M(sub WD) = 0.44-050 solar mass and R(sub WD) = 0.028-0.036 solar radius. We suggest that Feige 24 could be a typical case of close binary evolution leading to the formation of a low-mass helium white dwarf. The mass of the red dwarf and the inclination of the system naturally follow: M(sub dM) = 0.26-0.33 solar mass, i greater than or equal to 75 deg. High-dispersion H-alpha line profiles are asymmetrical, strongly enhanced toward the blue, suggesting a moving atmosphere possibly linked to a mass loss rate of 10(exp -10) solar mass/yr. The IUE spectra taken when the system is near inferior conjunction show strong He II 1640 A absorption. The profile is highly variable in width and

  16. Analyzing optical properties of thin vanadium oxide films through semiconductor-to-metal phase transition using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Sun, Jianing; Pribil, Greg K.

    2017-11-01

    We investigated the optical behaviors of vanadium dioxide (VO2) films through the semiconductor-to-metal (STM) phase transition using spectroscopic ellipsometry. Correlations between film thickness and refractive index were observed resulting from the absorbing nature of these films. Simultaneously analyzing data at multiple temperatures using Kramers-Kronig consistent oscillator models help identify film thickness. Nontrivial variations in resulting optical constants were observed through STM transition. As temperature increases, a clear increase is observed in near infrared absorption due to Drude losses that accompany the transition from semiconducting to metallic phases. Thin films grown on silicon and sapphire substrate present different optical properties and thermal hysteresis due to lattice stress and compositional differences.

  17. Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory.

    PubMed

    De Giovannini, Umberto; Brunetto, Gustavo; Castro, Alberto; Walkenhorst, Jessica; Rubio, Angel

    2013-05-10

    Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experiment, provide additional information about electronic structure and dynamics that improve characterization of a system. As an extension of this approach, time-dependent 2D spectroscopy can also be simulated, in principle, for large-scale structures and extended systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Femtosecond electron diffraction and spectroscopic studies of a solid state organic chemical reaction

    NASA Astrophysics Data System (ADS)

    Jean-Ruel, Hubert

    Photochromic diarylethene molecules are excellent model systems for studying electrocyclic reactions, in addition to having important technological applications in optoelectronics. The photoinduced ring-closing reaction in a crystalline photochromic diarylethene derivative was fully resolved using the complementary techniques of transient absorption spectroscopy and femtosecond electron crystallography. These studies are detailed in this thesis, together with the associated technical developments which enabled them. Importantly, the time-resolved crystallographic investigation reported here represents a highly significant proof-of-principle experiment. It constitutes the first study directly probing the molecular structural changes associated with an organic chemical reaction with sub-picosecond temporal and atomic spatial resolution---to follow the primary motions directing chemistry. In terms of technological development, the most important advance reported is the implementation of a radio frequency rebunching system capable of producing femtosecond electron pulses of exceptional brightness. The temporal resolution of this newly developed electron source was fully characterized using laser ponderomotive scattering, confirming a 435 +/- 75 fs instrument response time with 0.20 pC bunches. The ultrafast spectroscopic and crystallographic measurements were both achieved by exploiting the photoreversibility of diarylethene. The transient absorption study was first performed, after developing a novel robust acquisition scheme for thermally irreversible reactions in the solid state. It revealed the formation of an open-ring excited state intermediate, following photoexcitation of the open-ring isomer with an ultraviolet laser pulse, with a time constant of approximately 200 fs. The actual ring closing was found to occur from this intermediate with a time constant of 5.3 +/- 0.3 ps. The femtosecond diffraction measurements were then performed using multiple crystal

  19. A new concept of efficient therapeutic drug monitoring using the high-resolution continuum source absorption spectrometry and the surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xing, Yanlong; Fuss, Harald; Lademann, Jürgen; Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora; Esser, Norbert

    2018-04-01

    In this study, a new therapeutic drug monitoring approach has been tested based on the combination of CaF molecular absorption using high-resolution continuum source absorption spectrometry (HR-CSAS) and surface enhanced Raman spectroscopy (SERS). HR-CSAS with mini graphite tube was successfully tested for clinical therapeutic drug monitoring of the fluorine-containing drug capecitabine in sweat samples of cancer patients: It showed advantageous features of high selectivity (no interference from Cl), high sensitivity (characteristic mass of 0.1 ng at CaF 583.069 nm), low sample consumption (down to 30 nL) and fast measurement (no sample pretreatment and less than 1 min of responding time) in tracing the fluorine signal out of capecitabine. However, this technique has the disadvantage of the total loss of the drug's structure information after burning the sample at very high temperature. Therefore, a new concept of combining HR-CSAS with a non-destructive spectroscopic method (SERS) was proposed for the sensitive sensing and specific identification of capecitabine. We tested and succeed in obtaining the molecular characteristics of the metabolite of capecitabine (named 5-fluorouracil) by the non-destructive SERS technique. With the results shown in this work, it is demonstrated that the combined spectroscopic technique of HR-CSAS and SERS will be very useful in efficient therapeutic drug monitoring in the future.

  20. Spectroscopic characterization of the quantum wires in titanosilicates ETS-4 and ETS-10

    NASA Astrophysics Data System (ADS)

    Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert, Jr.

    2006-08-01

    Titanosilicates ETS-4 and ETS-10 contain octahedrally coordinated monatomic semiconductor \\cdots \\mathrm {Ti} -O-Ti-O-\\mathrm {Ti}\\cdots (titania) chains in their frameworks. Titania chains are isolated from one another by a siliceous matrix. Thus, these chains can be regarded as one-dimensional nanostructures, i.e., 'quantum wires'. Diffuse reflectance UV-vis (DR-UV-vis) spectroscopy analysis demonstrated a significant blue-shift of the optical absorption edge (>60 nm) for both ETS-4 and ETS-10 compared to bulk titania. This blue-shift is consistent with the hypothesis that the titania chains in ETS-4 and ETS-10 are acting as quantum wires. A broad range of ETS-4 and ETS-10 samples with diverse crystallo-chemical characteristics was prepared. The DR-UV-vis and Raman spectra of various ETS-4 and ETS-10 samples exhibited different characteristics, which were hypothesized to be related to the titania chain 'quality'. Detailed investigation of the spectroscopic bands associated with the titania chains in ETS-4 was performed for the first time. The 'quality' of these titania chains/quantum wires in ETS-4 and ETS-10 was correlated with the crystal growth mechanisms of these materials. Comparison of the growth mechanisms and the spectroscopic behaviour for ETS-4 and ETS-10 suggests that the control of 'quantum wire quality' via hydrothermal synthesis is possible in ETS-4 but would be difficult in ETS-10.

  1. Spectroscopic properties of Tm3+/Al3+ co-doped sol-gel silica glass

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Lou, Fengguang; Wang, Shikai; Yu, Chunlei; Chen, Danping; Hu, Lili

    2015-04-01

    Tm3+/Al3+ co-doped silica glass was prepared by sol-gel method combined with high temperature sintering. Glasses with compositions of xTm2O3-15xAl2O3-(100 - 16x) SiO2 (in mol%, x = 0.1, 0.3, 0.5, 0.8 and 1.0) were prepared. The high thulium doped silica glass was realized. Their spectroscopic parameters were calculated and analyzed by Judd-Ofelt theory. Large absorption cross section (4.65 × 10-21 cm2 at 1668 nm) and stimulated emission cross section (6.00 × 10-21 cm2 at 1812 nm), as well as low hydroxyl content (0.180 cm-1), long fluorescence lifetime (834 μs at 1800 nm), large σem × τrad (30.05 × 10-21 cm2 ms) and large relative intensity ratio of the 1.8 μm (3F4 → 3H6) to 1.46 (3H4 → 3F4) emissions (90.33) are achieved in this Tm3+/Al3+ co-doped silica glasses. According to emission characteristics, the optimum thulium doping concentration is around 0.8 mol%. The cross relaxation (CR) between ground and excited states of Tm3+ ions was used to explain the optimum thulium doping concentration. These results suggest that the sol-gel method is an effective way to prepare Tm3+ doped silica glass with high Tm3+ doping and prospective spectroscopic properties.

  2. Data Processing Algorithm for Diagnostics of Combustion Using Diode Laser Absorption Spectrometry.

    PubMed

    Mironenko, Vladimir R; Kuritsyn, Yuril A; Liger, Vladimir V; Bolshov, Mikhail A

    2018-02-01

    A new algorithm for the evaluation of the integral line intensity for inferring the correct value for the temperature of a hot zone in the diagnostic of combustion by absorption spectroscopy with diode lasers is proposed. The algorithm is based not on the fitting of the baseline (BL) but on the expansion of the experimental and simulated spectra in a series of orthogonal polynomials, subtracting of the first three components of the expansion from both the experimental and simulated spectra, and fitting the spectra thus modified. The algorithm is tested in the numerical experiment by the simulation of the absorption spectra using a spectroscopic database, the addition of white noise, and the parabolic BL. Such constructed absorption spectra are treated as experimental in further calculations. The theoretical absorption spectra were simulated with the parameters (temperature, total pressure, concentration of water vapor) close to the parameters used for simulation of the experimental data. Then, spectra were expanded in the series of orthogonal polynomials and first components were subtracted from both spectra. The value of the correct integral line intensities and hence the correct temperature evaluation were obtained by fitting of the thus modified experimental and simulated spectra. The dependence of the mean and standard deviation of the evaluation of the integral line intensity on the linewidth and the number of subtracted components (first two or three) were examined. The proposed algorithm provides a correct estimation of temperature with standard deviation better than 60 K (for T = 1000 K) for the line half-width up to 0.6 cm -1 . The proposed algorithm allows for obtaining the parameters of a hot zone without the fitting of usually unknown BL.

  3. Stellar populations in spiral galaxies: Broadband versus spectroscopic viewpoints

    NASA Astrophysics Data System (ADS)

    MacArthur, Lauren Anne

    This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful

  4. Stellar populations in spiral galaxies: broadband versus spectroscopic viewpoints

    NASA Astrophysics Data System (ADS)

    MacArthur, Lauren Anne

    2006-06-01

    This thesis addresses the stellar population content in the bulges and disks of spiral galaxies using broad-band and spectroscopic data. The results can be used to constrain models of galaxy formation in addition to establishing a comprehensive, model-independent, picture of colour and line-index gradients in spiral galaxies. Building upon my Masters study of structural parameters in spiral galaxies, I use the largest collection of multi-band (optical and IR) surface brightness profiles for face-on and moderately-tilted galaxies to extract radial colour profiles. The colour gradients are then translated into age and metallicity gradients by comparison with stellar population synthesis (SPS) models considering a range of star formation histories, including recent bursts. Based on their integrated light, we find that high surface brightness (SB) regions of galaxies formed their stars earlier than lower SB ones, or at a similar epoch but on shorter timescale. At a given SB level, the star formation histories are modulated by the overall potential of the galaxy such that brighter/higher rotational velocity galaxies formed earlier. This formation "down-sizing" implied by our results is inconsistent with current implementations of semi-analytic structure formation models. In order to alleviate concerns that our colour gradients could be affected by dust reddening, we designed a similar spectroscopic investigation and explored the dust sensitivity of absorption-line indices. The latter test makes use of the latest SPS, models incorporating a multi-component model for the line and continuum attenuation due to dust. For quiescent stellar populations (e.g. spheroids and globular clusters), dust extinction effects are small for most indices with the exception of the 4000 Å break. For models with current star formation, many indices may suffer from dust reddening and any departures depend on age, dust distribution, and the effective optical depth. However, a number of useful

  5. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo

    PubMed Central

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-01

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992

  6. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    PubMed

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  7. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    DOEpatents

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  8. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    PubMed

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  9. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    PubMed Central

    2011-01-01

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750

  10. Arsenic speciation in sulfidic waters: reconciling contradictory spectroscopic and chromatographic evidence.

    PubMed

    Planer-Friedrich, Britta; Suess, Elke; Scheinost, Andreas C; Wallschläger, Dirk

    2010-12-15

    In recent years, analytical methods have been developed that have demonstrated that soluble arsenic-sulfur species constitute a major fraction of dissolved arsenic in sulfidic waters. However, an intense debate is going on about the exact chemical nature of these compounds, since X-ray absorption spectroscopy (XAS) data generated at higher (mmol/L) concentrations suggest the presence of (oxy)thioarsenites in such waters, while ion chromatographic (IC) and mass spectroscopic data at lower (μmol/L to nmol/L) concentrations indicate the presence of (oxy)thioarsenates. In this contribution, we connect and explain these two apparently different types of results. We show by XAS that thioarsenites are the primary reaction products of arsenite and sulfide in geochemical model experiments in the complete absence of oxygen. However, thioarsenites are extremely unstable toward oxidation, and convert rapidly into thioarsenates when exposed to atmospheric oxygen, e.g., while waiting for analysis on the chromatographic autosampler. This problem can only be eliminated when the entire chromatographic process is conducted inside a glovebox. We also show that thioarsenites are unstable toward sample dilution, which is commonly employed prior to chromatographic analysis when ultrasensitive detectors like ICP-MS are used. This instability has two main reasons: if pH changes during dilution, then equilibria between individual arsenic-sulfur species rearrange rapidly due to their different stability regions within the pH range, and if pH is kept constant during dilution, then this changes the ratio between OH(-) and SH(-) in solution, which in turn shifts the underlying speciation equilibria. This problem is avoided by analyzing samples undiluted. Our studies show that thioarsenites appear as thioarsenates in IC analyses if oxygen is not excluded completely, and as arsenite if samples are diluted in alkaline anoxic medium. This also points out that thioarsenites are necessary

  11. HST/COS Far-ultraviolet Spectroscopic Analysis of U Geminorum Following a Wide Outburst

    NASA Astrophysics Data System (ADS)

    Godon, Patrick; Shara, Michael M.; Sion, Edward M.; Zurek, David

    2017-12-01

    We used the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) to obtain a series of four far-ultraviolet (FUV; 915-2148 Å) spectroscopic observations of the prototypical dwarf nova U Geminorum during its cooling following a two-week outburst. Our FUV spectral analysis of the data indicates that the white dwarf (WD) cools from a temperature of ˜41,500 K, 15 days after the peak of the outburst, to ˜36,250 K, 56 days after the peak of the outburst, assuming a massive WD (log(g) = 8.8) and a distance of 100.4 ± 3.7 pc. These results are self-consistent with a ˜1.1 M ⊙ WD with a 5000 ± 200 km radius. The spectra show absorption lines of H I, He II, C II III IV, N III IV, O VI, S IV, Si II III IV, Al III, Ar III, and Fe II, but no emission features. We find suprasolar abundances of nitrogen, confirming the anomalous high N/C ratio. The FUV light curve reveals a ±5% modulation with the orbital phase, showing dips near phases 0.25 and ˜0.75, where the spectra exhibit an increase in the depth of some absorption lines and in particular strong absorption lines from Si II, Al III, and Ar III. The phase dependence we observe is consistent with material overflowing the disk rim at the hot spot, reaching a maximum elevation near phase 0.75, falling back at smaller radii near phase 0.5 where it bounces off the disk surface, and again rising above the disk near phase ˜0.25. There is a large scatter in the absorption lines’ velocities, especially for the silicon lines, while the carbon lines seem to match more closely the orbital velocity of the WD. This indicates that many absorption lines are affected by—or form in—the overflowing stream material veiling the WD, making the analysis of the WD spectra more difficult. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  12. Crystal structure characterization as well as theoretical study of spectroscopic properties of novel Schiff bases containing pyrazole group.

    PubMed

    Guo, Jia; Ren, Tiegang; Zhang, Jinglai; Li, Guihui; Li, Weijie; Yang, Lirong

    2012-09-01

    A series of novel Schiff bases containing pyrazole group were synthesized using 1-aryl-3-methyl-4-benzoyl-5-pyrazolone and phenylenediamine as the starting materials. All as-synthesized Schiff bases were characterized by means of NMR, FT-IR, and MS; and the molecular geometries of two Schiff bases as typical examples were determined by means of single crystal X-ray diffraction. In the meantime, the ultraviolet-visible light absorption spectra and fluorescent spectra of various as-synthesized products were also measured. Moreover, the B3LYP/6-1G(d,p) method was used for the optimization of the ground state geometry of the Schiff bases; and the spectroscopic properties of the products were computed and compared with corresponding experimental data based on cc-pVTZ basis set of TD-B3LYP method. It has been found that all as-synthesized Schiff bases show a remarkable absorption peak in a wavelength range of 270-370 nm; and their maximum emission peaks are around 344 nm and 332 nm, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika

    2005-11-01

    The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.

  14. Near-Simultaneous Spectroscopic and Broadband Polarimetric Observations of Be Stars

    NASA Technical Reports Server (NTRS)

    Ghosh, K.; Iyengar, K. V. K.; Ramsey, B. D.; Austin, R. A.

    1999-01-01

    Near simultaneous optical spectroscopic (on four nights) and broadband linear continuum (B, V, R, and I bands) polarimetric (on seven nights) observations of 29 Be stars were carried out during 1993 November-December. The program Be stars displayed wavelength dependence of intrinsic polarizations with no frequency dependence of polarimetric position angles. Some of the Be stars displayed long-term polarization variability. The Be and Be-shell stars could not be distinguished from one another solely on the basis of their polarization values. Full widths at half-maximum of the H.alpha profiles and the intrinsic linear continuum polarizations are closely correlated with the projected rotational velocities of the program stars. Photospheric-absorption-corrected equivalent widths of H.alpha profiles [W(alpha)] and the radii of H.alpha-emitting or -absorbing envelopes (R(sub e) or R(sub a)) are nonlinearly correlated with the intrinsic continuum polarizations of these stars. However, W(alpha) and R(sub e) are linearly correlated. With large uncertainties, there is a trend of spectral dependence of polarization. Detailed discussion of these results is presented in this paper.

  15. Infrared spectroscopy and spectroscopic imaging in forensic science.

    PubMed

    Ewing, Andrew V; Kazarian, Sergei G

    2017-01-16

    Infrared spectroscopy and spectroscopic imaging, are robust, label free and inherently non-destructive methods with a high chemical specificity and sensitivity that are frequently employed in forensic science research and practices. This review aims to discuss the applications and recent developments of these methodologies in this field. Furthermore, the use of recently emerged Fourier transform infrared (FT-IR) spectroscopic imaging in transmission, external reflection and Attenuated Total Reflection (ATR) modes are summarised with relevance and potential for forensic science applications. This spectroscopic imaging approach provides the opportunity to obtain the chemical composition of fingermarks and information about possible contaminants deposited at a crime scene. Research that demonstrates the great potential of these techniques for analysis of fingerprint residues, explosive materials and counterfeit drugs will be reviewed. The implications of this research for the examination of different materials are considered, along with an outlook of possible future research avenues for the application of vibrational spectroscopic methods to the analysis of forensic samples.

  16. Dissociative absorption, mind-wandering, and attention-deficit symptoms: Associations with obsessive-compulsive symptoms.

    PubMed

    Soffer-Dudek, Nirit

    2018-06-05

    Dissociative absorption is a tendency to become absorbed in imagination or in an external stimulus (movie, book) to the point of obliviousness to one's surroundings and reduced self-awareness. It has been hypothesized to play a role in the maintenance of obsessive-compulsive (OC) symptoms. However, because absorption is a trait of reduced attentional control, a possible confound may be attention-deficit/hyperactivity (ADHD) symptoms, which have been reported to be comorbid with obsessive-compulsive disorder (OCD). This study aimed to validate dissociative absorption as unique from ADHD symptoms as well as from mind-wandering and to show that it has incremental predictive value over these constructs in predicting OC symptoms. Cross-sectional. Three-hundred and three undergraduate students completed online questionnaires, which were analysed using exploratory and confirmatory factor analyses. As hypothesized, dissociative absorption emerged as a unique construct, separate from ADHD, and mind-wandering (whereas the latter two were not completely separate from each other). Additionally, absorption was uniquely associated with OC symptoms, with a moderate-to-strong effect size, demonstrating incremental predictive value over the other constructs. Attentional deficits and mind-wandering cannot account for the association between absorption and OC symptoms. Future research should explore whether reports of comorbidity between ADHD and OC symptoms may be inflated due to misdiagnosis of absorption tendencies as ADHD. Dissociative absorption is a personality tendency that may interact with obsessive-compulsive symptoms, and thus, it may deserve clinical attention when treating obsessive-compulsive disorder (OCD) Dissociative absorption might bring about an unnecessary diagnosis of attention-deficit hyperactivity disorder (ADHD) in individuals with obsessive-compulsive symptoms, and thus, it should be screened for. This study was based on a non-clinical sample; future studies

  17. Growth and spectroscopic properties of Tm3+:NaBi(MoO4)2 single crystal

    NASA Astrophysics Data System (ADS)

    Gusakova, N. V.; Mudryi, A. V.; Demesh, M. P.; Yasukevich, A. S.; Pavlyuk, A. A.; Kornienko, A. A.; Dunina, E. B.; Khodasevich, I. A.; Orlovich, V. A.; Kuleshov, N. V.

    2018-06-01

    In this work we report the spectroscopic properties of Tm3+:NaBi(MoO4)2 crystals with the dopant concentrations of 0.7 at.% and 3 at.%. The energy levels of the Tm3+ in the NaBi(MoO4)2 host were determined from polarized optical absorption and photoluminescence spectra measured at 77.4 K. Radiative properties of the crystals were calculated in context of Judd-Ofelt theory. Raman spectra of the crystal were studied. The concentration dependences of emission decay times of 3H4 and 3F4 levels were analyzed. The potential of the crystal for building tunable and ultrafast pulse lasers is shown on the base of cross sections and gain coefficient in the range of 1.9 μm.

  18. An early "Atkins' Diet": RA Fisher analyses a medical "experiment".

    PubMed

    Senn, Stephen

    2006-04-01

    A study on vitamin absorption which RA Fisher analysed for WRG Atkins and co-authored with him is critically examined. The historical background as well as correspondence between Atkins and Fisher is presented.

  19. Intermolecular interaction of fosinopril with bovine serum albumin (BSA): The multi-spectroscopic and computational investigation.

    PubMed

    Zhou, Kai-Li; Pan, Dong-Qi; Lou, Yan-Yue; Shi, Jie-Hua

    2018-04-16

    The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi-spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, K b , value was found to lie between 2.69 × 10 3 and 9.55 × 10 3  M -1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub-domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril-BSA interaction, and 8-anilino-1-naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3-dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Spectroscopic study of N2(b1Πu, ν = 8) by atmospheric-pressure resonant-enhanced multiphoton ionization and fluorescence detection.

    PubMed

    Adams, Steven F; Williamson, James M

    2013-12-19

    A spectroscopic analysis of the strongly perturbed N2(b(1)Πu, ν = 8) state has been conducted, accounting for b(1)Πu(ν = 8) ← X (1)Σg(+)(ν = 0) transitions, for the first time, up to J' = 20. A novel laser spectroscopy technique, using a combination of resonant-enhanced multiphoton ionization and fluorescence detection at atmospheric pressure, avoids the severe effects of perturbation reported in past extreme vacuum ultraviolet absorption experiments that produced weak and unusable spectra for the ν = 8 level. The R, Q, and P branches of the three-photon absorption transition b(1)Πu(ν = 8) ← X(1)Σg(+)(ν = 0) were fit, allowing rotational term energy assignment up to J' = 20 and molecular constants to be determined. Evidence of the previously suspected perturbation in b(1)Πu(ν = 8) is clear in this data, with significant Λ-type doubling at higher J' along with an anomalous negative value determined for the centrifugal distortion coefficient.

  1. Absorption Spectroscopy Analysis of Calcium-Phosphate Glasses Highly Doped with Monovalent Copper.

    PubMed

    Jiménez, José A

    2016-06-03

    CaO-P2 O5 glasses with high concentrations of monovalent copper ions were prepared by a simple melt-quench method through CuO and SnO co-doping. Spectroscopic characterization was carried out by optical absorption with the aim of analyzing the effects of Cu(+) ions on the optical band-gap energies, which were estimated on the basis of indirect-allowed transitions. The copper(I) content is estimated in the CuO/SnO-containing glasses after the assessment of the concentration dependence of Cu(2+) absorption in the visible region for CuO singly doped glasses. An exponential dependence of the change in optical band gaps (relative to the host) with Cu(+) concentration is inferred up to about 10 mol %. However, the entire range is divided into two distinct linear regions that are characterized by different rates of change with respect to concentration: 1) below 5 mol %, where the linear dependence presents a relatively high magnitude of the slope; and 2) from 5-10 mol %, where a lower magnitude of the slope is manifested. With increasing concentration, the mean Cu(+) -Cu(+) interionic distance decreases, thereby decreasing the sensitivity of monovalent copper for light absorption. The decrease in optical band-gap energies is ultimately shown to follow a linear dependence with the interionic distance, suggesting the potential of the approach to gauge the concentration of monovalent copper straightforwardly in amorphous hosts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mineral mapping and applications of imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  3. Communication: Saturated CO2 absorption near 1.6 μm for kilohertz-accuracy transition frequencies

    NASA Astrophysics Data System (ADS)

    Burkart, Johannes; Sala, Tommaso; Romanini, Daniele; Marangoni, Marco; Campargue, Alain; Kassi, Samir

    2015-05-01

    Doppler-free saturated-absorption Lamb dips were measured on weak rovibrational lines of 12C16O2 between 6189 and 6215 cm-1 at sub-Pa pressures using optical feedback frequency stabilized cavity ring-down spectroscopy. By referencing the laser source to an optical frequency comb, transition frequencies for ten lines of the 30013←00001 band P-branch and two lines of the 31113←01101 hot band R-branch were determined with an accuracy of a few parts in 1011. Involving rotational quantum numbers up to 42, the data were used for improving the upper level spectroscopic constants. These results provide a highly accurate reference frequency grid over the spectral interval from 1599 to 1616 nm.

  4. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mtat, D.; Touati, R.; Guerfel, T., E-mail: taha-guerfel@yahoo.fr

    2016-12-15

    Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C{sub 17}H{sub 22}NO{sub 2}Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P2{sub 1}2{sub 1}2{sub 1}. In the crystal structure, molecules are interconnected by N–H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO–LUMO compositions and their respective energy gaps are also drawn to explain themore » activity of the compound. The first hyperpolarizability β{sub tot} of the title compound is determined using DFT calculations. The optical properties are also investigated by UV–Vis absorption spectrum.« less

  5. One-Pot Synthesis, Spectroscopic and Physicochemical Studies of Quinoline Based Blue Emitting Donor-Acceptor Chromophores with Their Biological Application.

    PubMed

    Asiri, Abdullah M; Khan, Salman A; Al-Thaqafya, Saad H

    2015-09-01

    Blue emitting cyano substituted isoquinoline dyes were synthesized by one-pot multicomponent reactions (MCRs) of aldehydes, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic (FT-IR, (1)H-NMR, (13)C-NMR, EI-MS) and elemental analysis of synthesized compounds was in good agreement with their chemical structures. UV-vis and fluorescence spectroscopy measurements proved that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, excitation coefficient, stokes shift, oscillator strength, transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of synthesized compounds. The anti-bacterial activity of these compounds were first studied in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria then the minimum inhibitory concentration (MIC) was determined with the reference of standard drug chloramphenicol. The results displayed that compound 3 was better inhibitors of both types of the bacteria (Gram-positive and Gram-negative) than chloramphenicol. Graphical Abstract ᅟ.

  6. Evaluating the influence of particulate matter on spectroscopic measurements of a combusting flow

    NASA Astrophysics Data System (ADS)

    Herlan, Jonathan; Murray, Nathan

    2017-11-01

    An adiabatic table-top burner has been used to develop a method for estimating the temperature and concentration of OH in a measurement volume of a non-premixed, hydrogen-air flame. The estimation method uses a nonlinear curve-fitting routine to compare experimental absorption spectra with a model derived, using statistical mechanics, from the Beer-Lambert law. With the aim of applying this method to the analysis of rocket exhaust plumes, this study evaluates whether or not it provides faithful estimates of temperature and OH concentration when the combusting flow contains particulate matter-such as soot or tracers used for particle image velocimetry (PIV) measurements. The hydrogen line of the table-top burner will be seeded with alumina, Al2O3, particles and their influence on spectroscopic measurements elucidated. The authors wish to thank Mr. Bernard Jansen for his support and insight in laboratory activities.

  7. In situ combustion measurements of H2O and temperature near 2.5 µm using tunable diode laser absorption

    NASA Astrophysics Data System (ADS)

    Farooq, Aamir; Jeffries, Jay B.; Hanson, Ronald K.

    2008-07-01

    In situ combustion measurements of water vapor concentration and gas temperature were carried out with a new tunable diode laser sensor near 2.5 µm. Recent availability of room-temperature semiconductor diode lasers operating at longer wavelengths provides access to fundamental vibrational bands (ν1 and ν3) of H2O. These bands have stronger absorption line strength compared to the overtone (2ν1, 2ν3) and combination (ν1 + ν3) vibrational bands in the near-infrared region probed previously with telecommunication diode lasers. The absorption transitions of H2O vapor in the 2.5-3.0 µm region are systematically analyzed via spectral simulation, and optimal spectral line pairs are selected for combustion measurements in the temperature range of 1000-2500 K. Fundamental spectroscopic parameters (line strength, line position and line-broadening coefficients) of the selected transitions are determined via laboratory measurements in a heated cell. Absorption measurements of H2O concentration and temperature are then made in a laboratory flat-flame burner to illustrate the potential of this sensor for sensitive and accurate measurements in combustion gases with short optical path lengths.

  8. Polymer:Fullerene Bimolecular Crystals for Near-Infrared Spectroscopic Photodetectors.

    PubMed

    Tang, Zheng; Ma, Zaifei; Sánchez-Díaz, Antonio; Ullbrich, Sascha; Liu, Yuan; Siegmund, Bernhard; Mischok, Andreas; Leo, Karl; Campoy-Quiles, Mariano; Li, Weiwei; Vandewal, Koen

    2017-09-01

    Spectroscopic photodetection is a powerful tool in disciplines such as medical diagnosis, industrial process monitoring, or agriculture. However, its application in novel fields, including wearable and biointegrated electronics, is hampered by the use of bulky dispersive optics. Here, solution-processed organic donor-acceptor blends are employed in a resonant optical cavity device architecture for wavelength-tunable photodetection. While conventional photodetectors respond to above-gap excitation, the cavity device exploits weak subgap absorption of intermolecular charge-transfer states of the intercalating poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bimolecular crystal. This enables a highly wavelength selective, near-infrared photoresponse with a spectral resolution down to 14 nm, as well as dark currents and detectivities comparable with commercial inorganic photodetectors. Based on this concept, a miniaturized spectrophotometer, comprising an array of narrowband cavity photodetectors, is fabricated by using a blade-coated PBTTT:PCBM thin film with a thickness gradient. As an application example, a measurement of the transmittance spectrum of water by this device is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins.

    PubMed

    Thomas, Daniel B; McGoverin, Cushla M; McGraw, Kevin J; James, Helen F; Madden, Odile

    2013-06-06

    Many animals extract, synthesize and refine chemicals for colour display, where a range of compounds and structures can produce a diverse colour palette. Feather colours, for example, span the visible spectrum and mostly result from pigments in five chemical classes (carotenoids, melanins, porphyrins, psittacofulvins and metal oxides). However, the pigment that generates the yellow colour of penguin feathers appears to represent a sixth, poorly characterized class of feather pigments. This pigment class, here termed 'spheniscin', is displayed by half of the living penguin genera; the larger and richer colour displays of the pigment are highly attractive. Using Raman and mid-infrared spectroscopies, we analysed yellow feathers from two penguin species (king penguin, Aptenodytes patagonicus; macaroni penguin, Eudyptes chrysolophus) to further characterize spheniscin pigments. The Raman spectrum of spheniscin is distinct from spectra of other feather pigments and exhibits 17 distinctive spectral bands between 300 and 1700 cm(-1). Spectral bands from the yellow pigment are assigned to aromatically bound carbon atoms, and to skeletal modes in an aromatic, heterocyclic ring. It has been suggested that the penguin pigment is a pterin compound; Raman spectra from yellow penguin feathers are broadly consistent with previously reported pterin spectra, although we have not matched it to any known compound. Raman spectroscopy can provide a rapid and non-destructive method for surveying the distribution of different classes of feather pigments in the avian family tree, and for correlating the chemistry of spheniscin with compounds analysed elsewhere. We suggest that the sixth class of feather pigments may have evolved in a stem-lineage penguin and endowed modern penguins with a costly plumage trait that appears to be chemically unique among birds.

  10. Microscopic and Spectroscopic Analyses of Chlorhexidine Tolerance in Delftia acidovorans Biofilms

    PubMed Central

    Rema, Tara; Lawrence, John R.; Dynes, James J.; Hitchcock, Adam P.

    2014-01-01

    The physicochemical responses of Delftia acidovorans biofilms exposed to the commonly used antimicrobial chlorhexidine (CHX) were examined in this study. A CHX-sensitive mutant (MIC, 1.0 μg ml−1) was derived from a CHX-tolerant (MIC, 15.0 μg ml−1) D. acidovorans parent strain using transposon mutagenesis. D. acidovorans mutant (MT51) and wild-type (WT15) strain biofilms were cultivated in flow cells and then treated with CHX at sub-MIC and inhibitory concentrations and examined by confocal laser scanning microscopy (CLSM), scanning transmission X-ray microscopy (STXM), and infrared (IR) spectroscopy. Specific morphological, structural, and chemical compositional differences between the CHX-treated and -untreated biofilms of both strains were observed. Apart from architectural differences, CLSM revealed a negative effect of CHX on biofilm thickness in the CHX-sensitive MT51 biofilms relative to those of the WT15 strain. STXM analyses showed that the WT15 biofilms contained two morphochemical cell variants, whereas only one type was detected in the MT51 biofilms. The cells in the MT51 biofilms bioaccumulated CHX to a similar extent as one of the cell types found in the WT15 biofilms, whereas the other cell type in the WT15 biofilms did not bioaccumulate CHX. STXM and IR spectral analyses revealed that CHX-sensitive MT51 cells accumulated the highest levels of CHX. Pretreating biofilms with EDTA promoted the accumulation of CHX in all cells. Thus, it is suggested that a subpopulation of cells that do not accumulate CHX appear to be responsible for greater CHX resistance in D. acidovorans WT15 biofilm in conjunction with the possible involvement of bacterial membrane stability. PMID:25022584

  11. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins

    PubMed Central

    Thomas, Daniel B.; McGoverin, Cushla M.; McGraw, Kevin J.; James, Helen F.; Madden, Odile

    2013-01-01

    Many animals extract, synthesize and refine chemicals for colour display, where a range of compounds and structures can produce a diverse colour palette. Feather colours, for example, span the visible spectrum and mostly result from pigments in five chemical classes (carotenoids, melanins, porphyrins, psittacofulvins and metal oxides). However, the pigment that generates the yellow colour of penguin feathers appears to represent a sixth, poorly characterized class of feather pigments. This pigment class, here termed ‘spheniscin’, is displayed by half of the living penguin genera; the larger and richer colour displays of the pigment are highly attractive. Using Raman and mid-infrared spectroscopies, we analysed yellow feathers from two penguin species (king penguin, Aptenodytes patagonicus; macaroni penguin, Eudyptes chrysolophus) to further characterize spheniscin pigments. The Raman spectrum of spheniscin is distinct from spectra of other feather pigments and exhibits 17 distinctive spectral bands between 300 and 1700 cm−1. Spectral bands from the yellow pigment are assigned to aromatically bound carbon atoms, and to skeletal modes in an aromatic, heterocyclic ring. It has been suggested that the penguin pigment is a pterin compound; Raman spectra from yellow penguin feathers are broadly consistent with previously reported pterin spectra, although we have not matched it to any known compound. Raman spectroscopy can provide a rapid and non-destructive method for surveying the distribution of different classes of feather pigments in the avian family tree, and for correlating the chemistry of spheniscin with compounds analysed elsewhere. We suggest that the sixth class of feather pigments may have evolved in a stem-lineage penguin and endowed modern penguins with a costly plumage trait that appears to be chemically unique among birds. PMID:23516063

  12. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    PubMed

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Solute-Solvent Charge-Transfer Excitations and Optical Absorption of Hydrated Hydroxide from Time-Dependent Density-Functional Theory.

    PubMed

    Opalka, Daniel; Sprik, Michiel

    2014-06-10

    The electronic structure of simple hydrated ions represents one of the most challenging problems in electronic-structure theory. Spectroscopic experiments identified the lowest excited state of the solvated hydroxide as a charge-transfer-to-solvent (CTTS) state. In the present work we report computations of the absorption spectrum of the solvated hydroxide ion, treating both solvent and solute strictly at the same level of theory. The average absorption spectrum up to 25 eV has been computed for samples taken from periodic ab initio molecular dynamics simulations. The experimentally observed CTTS state near the onset of the absorption threshold has been analyzed at the generalized-gradient approximation (GGA) and with a hybrid density-functional. Based on results for the lowest excitation energies computed with the HSE hybrid functional and a Davidson diagonalization scheme, the CTTS transition has been found 0.6 eV below the first absorption band of liquid water. The transfer of an electron to the solvent can be assigned to an excitation from the solute 2pπ orbitals, which are subject to a small energetic splitting due to the asymmetric solvent environment, to the significantly delocalized lowest unoccupied orbital of the solvent. The distribution of the centers of the excited state shows that CTTS along the OH(-) axis of the hydroxide ion is avoided. Furthermore, our simulations indicate that the systematic error arising in the calculated spectrum at the GGA originates from a poor description of the valence band energies in the solution.

  14. FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores

    PubMed Central

    Scully, M. O.; Kattawar, G. W.; Lucht, R. P.; Opatrný, T.; Pilloff, H.; Rebane, A.; Sokolov, A. V.; Zubairy, M. S.

    2002-01-01

    Airborne contaminants, e.g., bacterial spores, are usually analyzed by time-consuming microscopic, chemical, and biological assays. Current research into real-time laser spectroscopic detectors of such contaminants is based on e.g., resonance fluorescence. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. However, generating and using maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is challenging. In particular, the short dephasing times and rapid internal conversion rates are major obstacles. However, adiabatic fast passage techniques and the ability to generate combs of phase-coherent femtosecond pulses provide tools for the generation and utilization of maximal quantum coherence in large molecules and biopolymers. We call this technique FAST CARS (femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman spectroscopy), and the present article proposes and analyses ways in which it could be used to rapidly identify preselected molecules in real time. PMID:12177405

  15. Analyses of absorption distribution of a rubidium cell side-pumped by a Laser-Diode-Array (LDA)

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Han, Juhong; Rong, Kepeng; Wang, Shunyan; Cai, He; An, Guofei; Zhang, Wei; Yu, Qiang; Wu, Peng; Wang, Hongyuan; Wang, You

    2018-01-01

    A diode-pumped alkali laser (DPAL) has been regarded as one of the most potential candidates to achieve high power performances of next generation. In this paper, we investigate the physical properties of a rubidium cell side-pumped by a Laser-Diode-Array (LDA) in this study. As the saturated concentration of a gain medium inside a vapor cell is extremely sensitive to the temperature, the populations of every energy-level of the atomic alkali are strongly relying on the vapor temperature. Thus, the absorption characteristics of a DPAL are mainly dominated by the temperature distribution. In this paper, the temperature, absorption, and lasing distributions in the cross-section of a rubidium cell side-pumped by a LDA are obtained by means of a complicated mathematic procedure. Based on the original end-pumped mode we constructed before, a novel one-direction side-pumped theoretical mode has been established to explore the distribution properties in the transverse section of a rubidium vapor cell by combining the procedures of heat transfer and laser kinetics together. It has been thought the results might be helpful for design of a side-pumped configuration in a high-powered DPAL.

  16. New method in muon-hadron absorption on Thx DUO2 nano material structure at 561 MHz quantum gyro-magnetic

    NASA Astrophysics Data System (ADS)

    Hardiyanto, M.; Ermawaty, I. R.

    2018-01-01

    We present an experimental of muan-hadron tunneling chain investigation with new methods of Thx DUO2 nano structure based on Josephson’s tunneling and Abrikosov-Balseiro-Russel (ABR) formulation with quantum quadrupole interacting with a strongly localized high gyro-magnetic optical field as encountered in high-resolution near-field optical microscopy for 1.2 nano meter lambda-function. The strong gradients of these localized gyro-magnetic fields suggest that higher-order multipolar interactions will affect the standard magnetic quadrupole transition rates in 1.8 x 103 currie/mm fuel energy in nuclear moderator pool and selection rules with quatum dot. For muan-hadron absorption in Josephson’s tunnelling quantum quadrupole in the strong confinement limit we calculated the inter band of gyro-magnetic quadrupole absorption rate and the associated selection rules. Founded that the magnetic quadrupole absorption rate is comparable with the absorption rate calculated in the gyro-magneticdipole approximation of ThxDUO2 nano material structure. This implies that near-field optical techniques can extend the range of spectroscopic measurements for 545 MHz at quantum gyro-magnetic field until 561 MHz deployment quantum field at B around 455-485 tesla beyond the standard dipole approximation. However, we also show that spatial resolution could be improved by the selective excitation of ABR formulation in quantum quadrupole transitions.

  17. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  18. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE PAGES

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.; ...

    2017-06-22

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  19. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  20. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.