Science.gov

Sample records for absorption spectroscopic characterization

  1. Ultraviolet-Absorption Spectroscopic Biofilm Monitor

    NASA Technical Reports Server (NTRS)

    Micheels, Ronald H.

    2004-01-01

    An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.

  2. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [differential thermal and atomic absorption spectroscopic analysis of nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Rock, M.

    1981-01-01

    Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.

  3. Spectroscopic characterization of C7H3(+) and C7H3˙: electronic absorption and fluorescence in 6 K neon matrices.

    PubMed

    Chakraborty, Arghya; Fulara, Jan; Dietsche, Rainer; Maier, John P

    2014-04-21

    Mass selective deposition of C7H3(+) (m/z = 87) into solid neon reveals the 1(1)A1←X(1)A1 electronic absorption system of hepta-1,2,3,4,5,6-heptahexaenylium cation B(+) [H2CCCCCCCH](+) with an origin band at 441.3 nm, 1(1)A'←X(1)A' transition of 2,4-pentadiynylium,1-ethynyl cation C(+) [HCCCHCCCCH](+) starting at 414.6 nm and the 1(1)A1←X(1)A1 one of cyclopropenylium,1,3-butadiynyl cation A(+) [HCCCCC<(CH=CH)](+) with an onset at 322.2 nm. Vibrationally resolved fluorescence was observed for isomer B(+) upon laser excitation of the absorption bands in the 1(1)A1←X(1)A1 transition. After neutralization of the cations in the matrix five absorption systems of the C7H3 neutral radicals starting at 530.3, 479.4, 482.3, 325.0 and 302.5 nm were detected. These were identified as the 1(2)A'←X(2)A' and 2(2)A'←X(2)A' electronic transitions of 2-(buta-1,3-diynyl)cycloprop-2yl-1-1ylidene E˙ [HCCCCC<(C=CH2)]˙, 1(2)B1←X(2)B1 of 1,2,3,4,5,6-heptahexaenyl B˙ [H2CCCCCCCH]˙, 3(2)B1←X(2)B1 of 3-buta-1,3-diynyl-cyclopropenyl A˙ [HCCCCC<(CH=CH)]˙ and 2(2)B1←X(2)A2 transition of 1,2-divinylidene-cyclopropanyl radical F˙ [HCC-cyc-(CCHC)-CCH]˙, respectively. The assignment is based on calculated vertical excitation energies using the CASPT2 method. Comparison of the calculated harmonic vibrational frequencies with those inferred from the spectra supports the assignment.

  4. Vibrational spectroscopic characterization of fluoroquinolones

    NASA Astrophysics Data System (ADS)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.

    2005-05-01

    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  5. Spectroscopic characterization of manganese minerals.

    PubMed

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-01

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals.

  6. Spectroscopic characterization of manganese minerals

    NASA Astrophysics Data System (ADS)

    Lakshmi Reddy, S.; Padma Suvarna, K.; Udayabhaska Reddy, G.; Endo, Tamio; Frost, R. L.

    2014-01-01

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals.

  7. Spectroscopic Characterization of Streptavidin Functionalized Quantum dots1

    PubMed Central

    Wu, Yang; Lopez, Gabriel P.; Sklar, Larry A.; Buranda, Tione

    2007-01-01

    The spectroscopic properties of quantum dots can be strongly influenced by the conditions of their synthesis. In this work we have characterized several spectroscopic properties of commercial, streptavidin functionalized quantum dots (QD525, lot#1005-0045 and QD585, Lot#0905-0031 from Invitrogen). This is the first step in the development of calibration beads, to be used in a generalizable quantification scheme of multiple fluorescent tags in flow cytometry or microscopy applications. We used light absorption, photoexcitation, and emission spectra, together with excited-state lifetime measurements to characterize their spectroscopic behavior, concentrating on the 400-500nm wavelength ranges that are important in biological applications. Our data show an anomalous dependence of emission spectrum, lifetimes, and quantum yield (QY) on excitation wavelength that is particularly pronounced in the QD525. For QD525, QY values ranged from 0.2 at 480nm excitation up to 0.4 at 450nm and down again to 0.15 at 350nm. For QD585, QY values were constant at 0.2 between 500nm and 400nm, but dropped to 0.1 at 350nm. We attribute the wavelength dependences to heterogeneity in size and surface defects in the QD525, consistent with characteristics previously described in the chemistry literature. The results are discussed in the context of bridging the gap between what is currently known in the physical chemistry literature of quantum dots, and the quantitative needs of assay development in biological applications. PMID:17368555

  8. Characterization of semicrystalline polymers after nanoimprint by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Wang, Si; Rond, Johannes; Steinberg, Christian; Papenheim, Marc; Scheer, Hella-Christin

    2016-02-01

    Semicrystalline Reg-P3HT (regio-regular poly-3-hexylthiophene) is a promising material for organic electronics. It features relatively high charge mobility and enables easy preparation because of its solubility. Due to its high optical and electrical anisotropy, the size, number and orientation of the ordered domains are important for applications. To control these properties without limitation from crystalline domains existing after spin coating, thermal nanoimprint is performed beyond the melting point. The state of the art of measurement to analyze the complex morphology is X-ray diffraction (XRD). We address an alternative measurement method to characterize the material by its optical properties, spectroscopic ellipsometry. It provides information on the degree of order from the typical fingerprint absorption spectrum. In addition, when the material is modeled as a uniaxial layer, an anisotropy factor can be derived. The results obtained from spectroscopic ellipsometry are in accordance with those from XRD. In particular, spectroscopic ellipsometry is able to distinguish between order along the backbone and order in π- π stacking direction, which is important with respect to conductivity.

  9. Spectroscopic Methods of Remote Sensing for Vegetation Characterization

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.

    2013-12-01

    Imaging spectroscopy (IS), often referred to as hyperspectral remote sensing, is one of the latest innovations in a very long history of spectroscopy. Spectroscopic methods have been used for understanding the composition of the world around us, as well as, the solar system and distant parts of the universe. Continuous sampling of the electromagnetic spectrum in narrow bands is what separates IS from previous forms of remote sensing. Terrestrial imaging spectrometers often have hundreds of channels that cover the wavelength range of reflected solar radiation, including the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions. In part due to the large number of channels, a wide variety of methods have been applied to extract information from IS data sets. These can be grouped into several broad classes, including: multi-channel indices, statistical procedures, full spectrum mixing models, and spectroscopic methods. Spectroscopic methods carry on the more than 150 year history of laboratory-based spectroscopy applied to material identification and characterization. Spectroscopic methods of IS relate the positions and shapes of spectral features resolved by airborne and spaceborne sensors to the biochemical and physical composition of vegetation in a pixel. The chlorophyll 680nm, water 980nm, water 1200nm, SWIR 1700nm, SWIR 2100nm, and SWIR 2300nm features have been the subject of study. Spectral feature analysis (SFA) involves isolating such an absorption feature using continuum removal (CR) and calculating descriptors of the feature, such as center position, depth, width, area, and asymmetry. SFA has been applied to quantify pigment and non-pigment biochemical concentrations in leaves, plants, and canopies. Spectral feature comparison (SFC) utilizes CR of features in each pixel's spectrum and linear regression with continuum-removed features in reference spectra in a library of known vegetation types to map vegetation species and communities. SFC has

  10. Spectroscopic characterization of genetically modified flax fibers

    NASA Astrophysics Data System (ADS)

    Dymińska, L.; Gągor, A.; Hanuza, J.; Kulma, A.; Preisner, M.; Żuk, M.; Szatkowski, M.; Szopa, J.

    2014-09-01

    The principal goal of this paper is an analysis of flax fiber composition. Natural and genetically modified flax fibers derived from transgenic flax have been analyzed. Development of genetic engineering enables to improve the quality of fibers. Three transgenic plant lines with different modifications were generated based on fibrous flax plants as the origin. These are plants with: silenced cinnamyl alcohol dehydrogenase (CAD) gene; overexpression of polygalacturonase (PGI); and expression of three genes construct containing β-ketothiolase (phb A), acetoacetyl-CoA reductase (phb B), and poly-3-hydroxybutyric acid synthase (phb C). Flax fibers have been studied by FT-IR spectroscopy. The integral intensities of the IR bands have been used for estimation of the chemical content of the normal and transgenic flaxes. The spectroscopic data were compared to those obtained from chemical analysis of flax fibers. X-ray studies have been used to characterize the changes of the crystalline structure of the flax cellulose fibers.

  11. Spectroscopic characterizations of organic/inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Govani, Jayesh R.

    2009-12-01

    In the present study, pure and 0.3 wt%, 0.4 wt%, as well as 0.5 wt% L-arginine doped potassium dihydrogen phosphate (KDP) crystals were grown using solution growth techniques and further subjected to infrared (IR) absorption and Raman studies for confirmation of chemical group functionalization for investigating the incorporation mechanism of the L-arginine organic material into the KDP crystal structure. Infrared spectroscopic analysis suggests that structural changes are occurring for the L-arginine molecule as a result of its interaction with the KPD crystal. Infrared spectroscopic technique confirms the disturbance of the N-H, C-H and C-N bonds of the amino acid, suggesting successful incorporation of L-arginine into the KDP crystals. Raman analysis also reveals modification of the N-H, C-H and C-N bonds of the amino acid, implying successful inclusion of L-arginine into the KDP crystals. With the help of Gaussian software, a prediction of possible incorporation mechanisms of the organic material was obtained from comparison of the simulated infrared and Raman vibrational spectra with the experimental results. Furthermore, we also studied the effect of L-arginine doping on the thermal stability of the grown KDP crystal by employing Thermo gravimetric analysis (TGA). TGA suggests that increasing the level of L-arginine doping speeds the decomposition process and it weakens the KDP crystal, which indicates successful doping of the KDP crystals with L-arginine amino acid. Urinary stones are one of the oldest and most widely spread diseases in humans, animals and birds. Many remedies have been employed through the ages for the treatment of urinary stones. Recent medicinal measures reflect the modern advances, which are based on surgical removal, percutaneous techniques and extracorporeal shock wave lithotripsy (ESWL). Although these procedures are valuable, they are quite expensive for most people. Furthermore, recurrence of these diseases is awfully frequent with

  12. Spectroscopic remote sensing for material identification, vegetation characterization, and mapping

    USGS Publications Warehouse

    Kokaly, Raymond F.; Lewis, Paul E.; Shen, Sylvia S.

    2012-01-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.

  13. Spectroscopic remote sensing for material identification, vegetation characterization, and mapping

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.

    2012-06-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.

  14. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  15. Opto-nanomechanical spectroscopic material characterization

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Farahi, R. H.; Thundat, Thomas; Davison, Brian H.

    2015-08-10

    Cellulosic ethanol is a biofuel of considerable potential in the search for sustainable and renewable bioenergy [1,2]. However, while rich in carbohydrates [3], the plant cell walls exhibit a natural resistance to complex phenotype treatments such as enzymatic microbial deconstruction, heat and acid treatments that can remove the lignin polymers from cellulose before hydrolysis [5]. Noninvasive physical and chemical characterization of the cell walls and the effect of such treatments on biomass are challenging but necessary to understand and overcome such resistance [6]. Although lacking chemical recognition in their traditional forms, the various emerging modalities of nano-mechanical [7] and opto-nano-mechanical [8] force microscopies [9,10] provide a superb window into the needed nanoscale material characterization [6]. Infrared absorption spectroscopy is a powerful, non- destructive and ultra-sensitive technique that can provide the needed molecular fingerprinting but the photothermal channel is delocalized and thus lacks spatial resolution. Utilizing the emerging dynamic concepts of mode synthesizing atomic force microscopy (MSAFM) [11] and virtual resonance [12], we introduce a hybrid photonic and nanomechanical force microscopy (hp-MSAFM) with molecular recognition and characterize the extraction, holopulping and acid treatment of biomass. We present spatially and spectrally resolved cell wall images that reveal both the morphological and the compositional alterations of the cell walls. The measured biomolecular traits are in agreement with chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. The presented findings should prove highly relevant in fields such as cancer research [13], nanotoxicity [14], energy storage and production [15], where morphological, chemical and subsurface studies of nanocomposites [16], nanoparticle uptake by cells [14], and nanoscale quality control [17] are in demand.

  16. Opto-nanomechanical spectroscopic material characterization

    DOE PAGES

    Tetard, Laurene; Passian, Ali; Farahi, R. H.; Thundat, Thomas; Davison, Brian H.

    2015-08-10

    Cellulosic ethanol is a biofuel of considerable potential in the search for sustainable and renewable bioenergy [1,2]. However, while rich in carbohydrates [3], the plant cell walls exhibit a natural resistance to complex phenotype treatments such as enzymatic microbial deconstruction, heat and acid treatments that can remove the lignin polymers from cellulose before hydrolysis [5]. Noninvasive physical and chemical characterization of the cell walls and the effect of such treatments on biomass are challenging but necessary to understand and overcome such resistance [6]. Although lacking chemical recognition in their traditional forms, the various emerging modalities of nano-mechanical [7] and opto-nano-mechanicalmore » [8] force microscopies [9,10] provide a superb window into the needed nanoscale material characterization [6]. Infrared absorption spectroscopy is a powerful, non- destructive and ultra-sensitive technique that can provide the needed molecular fingerprinting but the photothermal channel is delocalized and thus lacks spatial resolution. Utilizing the emerging dynamic concepts of mode synthesizing atomic force microscopy (MSAFM) [11] and virtual resonance [12], we introduce a hybrid photonic and nanomechanical force microscopy (hp-MSAFM) with molecular recognition and characterize the extraction, holopulping and acid treatment of biomass. We present spatially and spectrally resolved cell wall images that reveal both the morphological and the compositional alterations of the cell walls. The measured biomolecular traits are in agreement with chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. The presented findings should prove highly relevant in fields such as cancer research [13], nanotoxicity [14], energy storage and production [15], where morphological, chemical and subsurface studies of nanocomposites [16], nanoparticle uptake by cells [14], and nanoscale quality control [17] are in demand.« less

  17. Spectroscopic study of low-temperature hydrogen absorption in palladium

    SciTech Connect

    Ienaga, K. Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T.; Tsujii, H.; Kimura, T.

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  18. Spectroscopic study of low-temperature hydrogen absorption in palladium

    NASA Astrophysics Data System (ADS)

    Ienaga, K.; Takata, H.; Onishi, Y.; Inagaki, Y.; Tsujii, H.; Kimura, T.; Kawae, T.

    2015-01-01

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H2 using inelastic electron spectroscopy (IES). After introduction of liquid H2, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ˜ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  19. Absorption mapping for characterization of glass surfaces.

    PubMed

    Commandré, M; Roche, P; Borgogno, J P; Albrand, G

    1995-05-01

    The surface quality of bare substrates and preparation procedures take on an important role in optical coating performances. The most commonly used techniques of characterization generally give information about roughness and local defects. A photothermal deflection technique is used for mapping surface absorption of fused-silica and glass substrates. We show that absorption mapping gives specific information on surface contamination of bare substrates. We present experimental results concerning substrates prepared by different cleaning and polishing techniques. We show that highly polished surfaces lead to the lowest values of residual surface absorption. Moreover the cleaning behavior of surfaces of multicomponent glasses and their optical performance in terms of absorption are proved to be different from those of fused silica.

  20. 60 Kelvin Absorption Cell for Planetary Spectroscopic Research

    NASA Technical Reports Server (NTRS)

    Chackerian, Charles, Jr.; McGee, James; Gore, Warren I. Y. (Technical Monitor)

    1995-01-01

    We will describe a 30 cm long absorption cell which has been in operation for about two years. The cell is designed for use with sensitive-wide-spectral-coverage Fourier transform spectrometers. A helium compressor refrigerator allows temperatures to be achieved down to about 57 K. Heaters allow above-ambient temperatures as well. A unique vibration isolation system effectively quenches the transfer of vibration of the compressor unit to the spectrometer. An acid-resistant stainless steel liner in the copper body of the call permits the use of corrosive gases.

  1. Spectroscopic characterization of matrix isolated transient species

    NASA Astrophysics Data System (ADS)

    Lue, Christopher J.

    Part I describes the electronic spectra of various actinide containing compounds isolated in solid Ar using laser induced fluorescence (LIF) spectroscopy. The IR spectra for many of the same molecules were also recorded to aid in the identification of the fluorescing species in the LIF spectra. LIF spectra of UO2 isolated in solid Ar were recorded to investigate the interactions between actinide compounds and the rare gas matrix host. At the time of the experiments, it had been proposed that for UO2 and CUO, the interactions between the actinide containing molecule and Ar were strong enough to reorder the low-lying electronic states of the molecule. The experiments presented here showed no evidence of a reordering of low-lying electronic states based on comparison of the matrix spectra with theoretical predictions and gas phase spectra. An attempt to observe fluorescence from higher order uranium oxides was undertaken. A matrix was made by ablating U metal in a 1.0% O2/Ar mixture. UO3 was a probable molecule formed in the experiment. And, while absorptions belonging to UO3 were observed in IR spectra, LIF from the same matrix provided evidence that another molecule was fluorescing. Two different vibrational frequencies observed in the U-O symmetric stretching region were indicative of at least two low-lying electronic states in fluorescing molecule. UO3 is a closed shell molecule, and it is unlikely that it has any low-lying electronic states. Instead, the fluorescence was attributed to the open shell species (UO2)+(O2) -. LIF and IR spectra of thermally vaporized UCl4 isolated in solid Ar were recorded. UCl4 contains U(IV), which is the most stable oxidation state other than U(VI). Before these experiments, no fluorescence had been recorded that could be attributed to UCl4. Based on the observed vibrational frequencies in the fluorescence bands and the lifetime of the fluorescence, it was determine that there was at least two different fluorescing species. The

  2. Spectroscopic characterization of isomerization transition states

    NASA Astrophysics Data System (ADS)

    Baraban, Joshua H.; Changala, P. Bryan; Mellau, Georg Ch.; Stanton, John F.; Merer, Anthony J.; Field, Robert W.

    2015-12-01

    Transition state theory is central to our understanding of chemical reaction dynamics. We demonstrate a method for extracting transition state energies and properties from a characteristic pattern found in frequency-domain spectra of isomerizing systems. This pattern—a dip in the spacings of certain barrier-proximal vibrational levels—can be understood using the concept of effective frequency, ωeff. The method is applied to the cis-trans conformational change in the S1 state of C2H2 and the bond-breaking HCN-HNC isomerization. In both cases, the barrier heights derived from spectroscopic data agree extremely well with previous ab initio calculations. We also show that it is possible to distinguish between vibrational modes that are actively involved in the isomerization process and those that are passive bystanders.

  3. Laser absorption spectroscopy system for vaporization process characterization and control

    NASA Astrophysics Data System (ADS)

    Galkowski, Joseph J.; Hagans, Karla G.

    1994-03-01

    In support of the Lawrence Livermore National Laboratory's (LLNL's) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multilaser system is capable of simultaneously measuring the line densities of 238U ground and metastable states, 235U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL's LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode- lasers has capabilities far beyond the requirements of its primary mission.

  4. Extraction, Purification, and Spectroscopic Characterization of a Mixture of Capsaicinoids

    ERIC Educational Resources Information Center

    Wagner, Carl E.; Cahill, Thomas M.; Marshall, Pamela A.

    2011-01-01

    This laboratory experiment provides a safe and effective way to instruct undergraduate organic chemistry students about natural-product extraction, purification, and NMR spectroscopic characterization. On the first day, students extract dried habanero peppers with toluene, perform a pipet silica gel column to separate carotenoids from…

  5. Spectroscopic characterization of inductive binding in ions

    NASA Astrophysics Data System (ADS)

    Lessen, D.; Asher, R. L.; Brucat, P. J.

    1990-12-01

    Molecular ions without conventional covalent bonds have been synthesized via supersonic adiabatic expansion and studied in a tandem time-of-fligth mass spectrometer. Resonant laser photofragmentation of these ions reveal a wealth of vibrational and electronic structure previously unknown. The ground and excited state "bond" strengths of transition-metal rare-gas diatomic ions (MRg+) are determined spectroscopically. The vibrational structure of these diatomics has been analyzed using model metal rare-gas interatomic potential that incorporates only charge induced-dipole as the attractive force. This potential is used to predict the binding energy and structure of the MRg+n, n = 2-14, clusters. V+ is predicted to be four coordinate in its first "solvation shell" with Ar in accord with experimental observation. The dynamic of the MRg+n ions is probed by classical trajectory analysis of a model many-body potential. An example demonstrates that the lowest energy structure of a cluster can be less important to its dynamical structure at finite temperature than higher-lying, lower-symmetry isomers. Resonant photodissociation spectroscopy is used to show the existence of the charge dipole bound V(OH2)+ in both ground and excited states.

  6. Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals

    NASA Astrophysics Data System (ADS)

    Chesnokova, T. Yu.; Chentsov, A. V.; Rokotyan, N. V.; Zakharov, V. I.

    2016-09-01

    The impact of uncertainties in CH4 and CO2 absorption line parameters in modern spectroscopic databases on the atmospheric transmission simulation in the near-infrared region is investigated. The atmospheric contents of CH4 and CO2 are retrieved from the absorption solar spectra measured by a ground-based Fourier transform spectrometer. Different spectroscopic databases are used in the forward radiative transfer model and a comparison of the retrieved results is made.

  7. Spectroscopic characterization of natural calcite minerals

    NASA Astrophysics Data System (ADS)

    Gunasekaran, S.; Anbalagan, G.

    2007-11-01

    The FT-IR, FT-Raman, NMR spectral data of ten different limestone samples have been compared. FT-IR and FT-Raman spectral data show that calcium carbonate in limestone, principally in the form of calcite, as identified by its main absorption bands at 1426, 1092, 876 and 712 cm -1. The sharp diffractions at the d-spacings, 3.0348, 1.9166 and 1.8796 confirm the presence of calcite structure and the calculated lattice parameters are: a = 4.9781 Å, c = 17.1188 Å. The range of 13C chemical shifts for different limestone samples is very small, varying from 198.38 to 198.42 ppm. The observed chemical shifts are consistent with the identical C-O bonding in different limestone samples. 27Al MAS NMR spectra of the samples exhibit a central line at 1 ppm and another line at 60 ppm corresponding to octahedral and tetrahedral Al ions, respectively. The five component resonances were observed in 29Si MAS NMR spectrum of limestone and these resonances were assigned to Si (4 Al), Si (3 Al), Si (2 Al), Si (1 Al) and Si (0 Al) from low field to high field.

  8. Opto-nanomechanical spectroscopic material characterization

    NASA Astrophysics Data System (ADS)

    Tetard, L.; Passian, A.; Farahi, R. H.; Thundat, T.; Davison, B. H.

    2015-10-01

    The non-destructive, simultaneous chemical and physical characterization of materials at the nanoscale is an essential and highly sought-after capability. However, a combination of limitations imposed by Abbe diffraction, diffuse scattering, unknown subsurface, electromagnetic fluctuations and Brownian noise, for example, have made achieving this goal challenging. Here, we report a hybrid approach for nanoscale material characterization based on generalized nanomechanical force microscopy in conjunction with infrared photoacoustic spectroscopy. As an application, we tackle the outstanding problem of spatially and spectrally resolving plant cell walls. Nanoscale characterization of plant cell walls and the effect of complex phenotype treatments on biomass are challenging but necessary in the search for sustainable and renewable bioenergy. We present results that reveal both the morphological and compositional substructures of the cell walls. The measured biomolecular traits are in agreement with the lower-resolution chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. These results should prove relevant in other fields such as cancer research, nanotoxicity, and energy storage and production, where morphological, chemical and subsurface studies of nanocomposites, nanoparticle uptake by cells and nanoscale quality control are in demand.

  9. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Zhou, Luwenjia; Chen, Yan-Mei

    2016-11-01

    In this paper, we extend our work of Papers I and II, which are assigned to systematically survey C IV λλ1548,1551 narrow absorption lines (NALs) with zabs ≪ zem on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS) to collect C IV NALs with zabs ≈ zem from blue to red wings of C IV λ1549 emission lines. Together with Papers I and II, we have collected a total number of 41 479 C IV NALs with 1.4544 ≤ zabs ≤ 4.9224 in surveyed spectral region redward of Lyα until red wing of C IV λ1549 emission line. We find that the stronger C IV NALs tend to be the more saturated absorptions, and associated systems (zabs ≈ zem) seem to have larger absorption strengths when compared to intervening ones (zabs ≪ zem). The redshift density evolution behaviour of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity (β) distribution of Mg II absorbers, the β distribution of C IV absorbers is broader at β ≈ 0, shows longer extended tail, and exhibits a larger dispersion for environmental absorptions. In addition, for associated C IV absorbers, we find that low-luminosity quasars seem to exhibit smaller β and stronger absorptions when compared to high-luminosity quasars.

  10. Interaction between indium tin oxide nanoparticles and cytochrome c: A surface-enhanced Raman scattering and absorption spectroscopic study

    SciTech Connect

    Yang, Yimin E-mail: tqiu@seu.edu.cn; Du, Deyang; Fan, Jiyang; Qiu, Teng E-mail: tqiu@seu.edu.cn; Kong, Fan

    2015-06-28

    Indium-tin-oxide (ITO) nanoparticles were annealed in vacuum or reducing atmosphere to obtain different surface structures and investigate their influence on the adsorptive character and conformation of cytochrome c (Cyt c) molecule. Annealing-induced morphometric or structural changes of ITO nanoparticles were characterized by instruments of transmission electron microscopy, x-ray diffraction, and Raman scattering. Semiconductor ITO nanoparticle-enhanced Raman scattering of Cyt c was observed and the enhanced efficiency was found to closely depend on the surface structures which control the adsorbance of buffer anions needed for Cyt c loading. Direct electron transfer between Cyt c and ITO surface at the moment of molecular elastic collision was found and a reverse electron transfer process for O-terminated surface and metal-terminated surface was observed, according to absorption spectroscopic measurement on the residual solution.

  11. Interaction between indium tin oxide nanoparticles and cytochrome c: A surface-enhanced Raman scattering and absorption spectroscopic study

    NASA Astrophysics Data System (ADS)

    Yang, Yimin; Du, Deyang; Kong, Fan; Fan, Jiyang; Qiu, Teng

    2015-06-01

    Indium-tin-oxide (ITO) nanoparticles were annealed in vacuum or reducing atmosphere to obtain different surface structures and investigate their influence on the adsorptive character and conformation of cytochrome c (Cyt c) molecule. Annealing-induced morphometric or structural changes of ITO nanoparticles were characterized by instruments of transmission electron microscopy, x-ray diffraction, and Raman scattering. Semiconductor ITO nanoparticle-enhanced Raman scattering of Cyt c was observed and the enhanced efficiency was found to closely depend on the surface structures which control the adsorbance of buffer anions needed for Cyt c loading. Direct electron transfer between Cyt c and ITO surface at the moment of molecular elastic collision was found and a reverse electron transfer process for O-terminated surface and metal-terminated surface was observed, according to absorption spectroscopic measurement on the residual solution.

  12. Crystallographic and X-ray absorption spectroscopic characterization of Helicobacter pylori UreE bound to Ni²⁺ and Zn²⁺ reveals a role for the disordered C-terminal arm in metal trafficking.

    PubMed

    Banaszak, Katarzyna; Martin-Diaconescu, Vlad; Bellucci, Matteo; Zambelli, Barbara; Rypniewski, Wojciech; Maroney, Michael J; Ciurli, Stefano

    2012-02-01

    The survival and growth of the pathogen Helicobacter pylori in the gastric acidic environment is ensured by the activity of urease, an enzyme containing two essential Ni²⁺ ions in the active site. The metallo-chaperone UreE facilitates in vivo Ni²⁺ insertion into the apoenzyme. Crystals of apo-HpUreE (H. pylori UreE) and its Ni⁺- and Zn⁺-bound forms were obtained from protein solutions in the absence and presence of the metal ions. The crystal structures of the homodimeric protein, determined at 2.00 Å (apo), 1.59 Å (Ni²⁺) and 2.52 Å (Zn²⁺) resolution, show the conserved proximal and solvent-exposed His¹⁰² residues from two adjacent monomers invariably involved in metal binding. The C-terminal regions of the apoprotein are disordered in the crystal, but acquire significant ordering in the presence of the metal ions due to the binding of His¹⁵². The analysis of X-ray absorption spectral data obtained using solutions of Ni²⁺- and Zn²⁺-bound HpUreE provided accurate information of the metal-ion environment in the absence of solid-state effects. These results reveal the role of the histidine residues at the protein C-terminus in metal-ion binding, and the mutual influence of protein framework and metal-ion stereo-electronic properties in establishing co-ordination number and geometry leading to metal selectivity.

  13. Phenanthro[4,5-fgh]quinoxaline-Fused Subphthalocyanines: Synthesis, Structure, and Spectroscopic Characterization.

    PubMed

    Pan, Houhe; Liu, Wenbo; Wang, Chiming; Wang, Kang; Jiang, Jianzhuang

    2016-07-01

    A series of four phenanthro[4,5-fgh]quinoxaline-fused subphthalocyanine derivatives 0-3 containing zero, one, two, and three phenanthro[4,5-fgh]quinoxaline moieties, respectively, were isolated from the mixed cyclotrimerization reaction of 2,9-di-tert-butylphenanthro[4,5-fgh]quinoxaline-5,6-dicarbonitrile with 4,5-bis(2,6-diisopropylphenoxy)phthalonitrile and characterized by a series of spectroscopic methods including MALDI-TOF mass, (1) H NMR, electronic absorption, magnetic circular dichroism (MCD), and fluorescence spectroscopy. The molecular structures for the compounds 0 and 2 were clearly revealed on the basis of single-crystal X-ray diffraction analysis. Their electrochemical properties were also studied by cyclic voltammetry. In particular, theoretical calculations in combination with the electronic absorption and electrochemical analyses revealed the significant influence of the fused-phenanthro[4,5-fgh]quinoxaline units on the electronic structures.

  14. Spectroscopically Characterized Synthetic Mononuclear Nickel-Oxygen Species.

    PubMed

    Corona, Teresa; Company, Anna

    2016-09-12

    Iron, copper, and manganese are the predominant metals found in oxygenases that perform efficient and selective hydrocarbon oxidations and for this reason, a large number of the corresponding metal-oxygen species has been described. However, in recent years nickel has been found in the active site of enzymes involved in oxidation processes, in which nickel-dioxygen species are proposed to play a key role. Owing to this biological relevance and to the existence of different catalytic protocols that involve the use of nickel catalysts in oxidation reactions, there is a growing interest in the detection and characterization of nickel-oxygen species relevant to these processes. In this Minireview the spectroscopically/structurally characterized synthetic superoxo, peroxo, and oxonickel species that have been reported to date are described. From these studies it becomes clear that nickel is a very promising metal in the field of oxidation chemistry with still unexplored possibilities.

  15. Spectroscopically Characterized Synthetic Mononuclear Nickel-Oxygen Species.

    PubMed

    Corona, Teresa; Company, Anna

    2016-09-12

    Iron, copper, and manganese are the predominant metals found in oxygenases that perform efficient and selective hydrocarbon oxidations and for this reason, a large number of the corresponding metal-oxygen species has been described. However, in recent years nickel has been found in the active site of enzymes involved in oxidation processes, in which nickel-dioxygen species are proposed to play a key role. Owing to this biological relevance and to the existence of different catalytic protocols that involve the use of nickel catalysts in oxidation reactions, there is a growing interest in the detection and characterization of nickel-oxygen species relevant to these processes. In this Minireview the spectroscopically/structurally characterized synthetic superoxo, peroxo, and oxonickel species that have been reported to date are described. From these studies it becomes clear that nickel is a very promising metal in the field of oxidation chemistry with still unexplored possibilities. PMID:27484613

  16. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  17. UV spectroscopic characterization of dimethyl- and ethyl-substituted carbonyl oxides.

    PubMed

    Liu, Fang; Beames, Joseph M; Green, Amy M; Lester, Marsha I

    2014-03-27

    Dimethyl- and ethyl-substituted Criegee intermediates, (CH3)2COO and CH3CH2CHOO, are photolytically generated from diiodo precursors, detected by VUV photoionization at 118 nm, and spectroscopically characterized via UV-induced depletion of the m/z = 74 signals under jet-cooled conditions. In each case, UV excitation resonant with the B-X transition results in significant ground-state depletion, reflecting the large absorption cross section and rapid dynamics in the excited B state. The broad UV absorption spectra of both (CH3)2COO and CH3CH2CHOO peak at ~320 nm with absorption cross sections approaching ~4 × 10(-17) cm(2) molec(-1). The UV absorption spectra for (CH3)2COO and CH3CH2CHOO are similar to that reported previously for syn-CH3CHOO, suggesting analogous intramolecular interactions between the α-H and terminal O of the COO groups. Hydroxyl radical products generated concurrently with the Criegee intermediates are detected by 1 + 1' resonance enhanced multiphoton ionization. The OH signals, scaled relative to those for the Criegee intermediates, are compared with prior studies of OH yield from alkene ozonolysis. The stationary points along the reaction coordinates from the alkyl-substituted Criegee intermediates to vinyl hydroperoxides and OH products are also computed to provide insight on the OH yields.

  18. Characterization by spectroscopic Ellipsometry, the physical properties of silver nanoparticles.

    NASA Astrophysics Data System (ADS)

    Coanga, Jean-Maurice

    2013-04-01

    Physicists are able to change their minds through their experiments. I think it is time to go kick the curse and go further in research if we want a human future. I work in the Nano-Optics and Plasmonics research. I defined with ellipsomètrie the structure of new type of Nano particles of silver. It's same be act quickly to replace the old dirty leaded electronic-connexion chip and by the other hand to find a new way for the heath care of cancer disease by nanoparticles the next killers of bad cells. Silver nanoparticle layers are obtained by Spark Plasma Sintering are investigated as an alternative to lead alloy based material for solder joint in power mechatronics modules. These layers are characterized by mean of conventional techniques that is the dilatometry technique, the resistivity measurement through the van der Pauw method, and the flash laser technique. Furthermore, the nanoparticles of silver layer are deeply studied by UV-Visible spectroscopic ellipsometry. Spectroscopic angles parameters are determined in function of temperature and dielectric constants are deduced and analyzed through an optical model which takes into account a Drude and a Lorentz component within the Bruggeman effective medium approximation (EMA). The relaxation times and the electrical conductivity are plot in function of temperature. The obtained electrical conductivity give significant result in good agreement to those reported by four points electrical measurement method.

  19. Optical absorption and emission characterization of P3HT: graphene composite for its prospective photovoltaic application

    NASA Astrophysics Data System (ADS)

    Singh, Joginder; Prasad, Neetu; Nirwal, Varun Singh; Gautam, Khyati; Peta, Koteswara Rao; Bhatnagar, P. K.

    2016-05-01

    In the present work, regioregular P3HT (Poly (3-hexylthiophene-2, 5-diyl) was blended with graphene nanopowder and the optical spectroscopic characterization of the composite has been performed. It was observed that at low concentration of graphene (up to 0.1 wt %) there is no significant variation in absorption intensity or wavelength range. But at higher concentration (> 0.1 wt %) the absorption intensity starts reducing. Whereas, the photoluminescence of the composite solution quenches as we increase the concentration of graphene. It reveals that charge recombination decreases with increase in concentration (0.05 to 0.5 wt %) of graphene. Therefore 0.1 wt % seems to be the optimized concentration of graphene in the composite for which appropriate quenching of PL was observed without any significant reduction in absorption of photons. Thus maximum efficiency in P3HT: graphene composite photovoltaic cell is expected for 0.1 wt % of graphene concentration in our typical case.

  20. Vibrational spectroscopic characterization of new calcium phosphate bioactive coatings.

    PubMed

    Taddei, P; Tinti, A; Bottura, G; Bertoluzza, A

    2000-01-01

    In this work calcium phosphate (CaP) compounds with different PO(3-)(4)/HPO(2-)(4) R molar ratios in the 0.65-149 range were synthesized. In fact, all these CaPs contain different amounts of HPO(2-)(4) and PO(3-)(4) ions as well as the amorphous precursors (tricalcium phosphate and octacalcium phosphate) of hydroxyapatite deposition, which was shown by in vitro and in vivo measurements. Spectroscopical IR and Raman results showed the presence of bands whose intensity ratio can be related to the molar ratio R; in particular, the Raman I(962)/I(987) and the IR I(1035)/I(1125) intensity ratios were characterized as markers of the molar ratio. For these CaP compounds a nucleation model, which was based on the ability of HPO(2-)(4) ions to form strong H bonds with PO(3-)(4) ions, was proposed.

  1. Isolation and spectroscopic characterization of a recombinant bell pepper hydroperoxide lyase.

    PubMed

    Psylinakis, E; Davoras, E M; Ioannidis, N; Trikeriotis, M; Petrouleas, V; Ghanotakis, D F

    2001-09-28

    Fatty acid hydroperoxide (HPO) lyase is a component of the oxylipin pathway and holds a central role in elicited plant defense. HPO lyase from bell pepper has been identified as a heme protein which shares 40% homology with allene oxide synthase, a cytochrome P450 (CYP74A). HPO lyase of immature bell pepper fruits was expressed in Escherichia coli and the enzyme was purified and characterized by spectroscopic techniques. The electronic structure and ligand coordination properties of the heme were investigated by using a series of exogenous ligands. The various complexes were characterized by using UV-visible absorption and electron paramagnetic resonance spectroscopy. The spectroscopic data demonstrated that the isolated recombinant HPO lyase has a pentacoordinate, high-spin heme with thiolate ligation. Addition of the neutral ligand imidazole or the anionic ligand cyanide results in the formation of hexacoordinate adducts that retain thiolate ligation. The striking similarities between both the ferric and ferrous HPO lyase-NO complexes with the analogous P450 complexes, suggest that the active sites of HPO lyase and P450 share common structural features.

  2. The Far Ultraviolet Spectroscopic Explorer Survey of O VI Absorption in and near the Galaxy

    NASA Astrophysics Data System (ADS)

    Wakker, B. P.; Savage, B. D.; Sembach, K. R.; Richter, P.; Meade, M.; Jenkins, E. B.; Shull, J. M.; Ake, T. B.; Blair, W. P.; Dixon, W. V.; Friedman, S. D.; Green, J. C.; Green, R. F.; Kruk, J. W.; Moos, H. W.; Murphy, E. M.; Oegerle, W. R.; Sahnow, D. J.; Sonneborn, G.; Wilkinson, E.; York, D. G.

    2003-05-01

    We present Far Ultraviolet Spectroscopic Explorer (FUSE) observations of the O VI λλ1031.926, 1037.617 absorption lines associated with gas in and near the Milky Way, as detected in the spectra of a sample of 100 extragalactic targets and two distant halo stars. We combine data from several FUSE Science Team programs with guest observer data that were public before 2002 May 1. The sight lines cover most of the sky above Galactic latitude |b|>25deg-at lower latitude the ultraviolet extinction is usually too large for extragalactic observations. We describe the details of the calibration, alignment in velocity, continuum fitting, and manner in which several contaminants were removed-Galactic H2, absorption intrinsic to the background target and intergalactic Lyβ lines. This decontamination was done very carefully, and in several sight lines very subtle problems were found. We searched for O VI absorption in the velocity range -1200 to 1200 km s-1. With a few exceptions, we only find O VI in the velocity range -400 to 400 km s-1 the exceptions may be intergalactic O VI. In this paper we analyze the O VI associated with the Milky Way (and possibly with the Local Group). We discuss the separation of the observed O VI absorption into components associated with the Milky Way halo and components at high velocity, which are probably located in the neighborhood of the Milky Way. We describe the measurements of equivalent width and column density, and we analyze the different contributions to the errors. We conclude that low-velocity Galactic O VI absorption occurs along all sight lines-the few nondetections only occur in noisy spectra. We further show that high-velocity O VI is very common, having equivalent width >65 mÅ in 50% of the sight lines and equivalent width >30 mÅ in 70% of the high-quality sight lines. The central velocities of high-velocity O VI components range from |vLSR|=100 to 330 km s-1 there is no correlation between velocity and absorption strength

  3. Near-infrared diode laser based spectroscopic detection of ammonia: a comparative study of photoacoustic and direct optical absorption methods

    NASA Technical Reports Server (NTRS)

    Bozoki, Zoltan; Mohacsi, Arpad; Szabo, Gabor; Bor, Zsolt; Erdelyi, Miklos; Chen, Weidong; Tittel, Frank K.

    2002-01-01

    A photoacoustic spectroscopic (PAS) and a direct optical absorption spectroscopic (OAS) gas sensor, both using continuous-wave room-temperature diode lasers operating at 1531.8 nm, were compared on the basis of ammonia detection. Excellent linear correlation between the detector signals of the two systems was found. Although the physical properties and the mode of operation of both sensors were significantly different, their performances were found to be remarkably similar, with a sub-ppm level minimum detectable concentration of ammonia and a fast response time in the range of a few minutes.

  4. Spectroscopic characterization of dissolved organic matter isolated from rainwater.

    PubMed

    Santos, Patrícia S M; Otero, Marta; Duarte, Regina M B O; Duarte, Armando C

    2009-02-01

    Rainwater is a matrix containing extremely low concentrations (in the range of muM C) of dissolved organic carbon (DOC) and for its characterization, an efficient extraction procedure is essential. A recently developed procedure based on adsorption onto XAD-8 and XAD-4 resins in series was used in this work for the extraction and isolation of rainwater dissolved organic matter (DOM). Prior to the isolation and fractionation of DOM, and to obtain sufficient mass for the spectroscopic analyses, individual rainwater samples were batched together according to similar meteorological conditions on a total of three composed samples. The results of the isolation procedure indicated that the resin tandem procedure is not applicable for rainwater DOM since the XAD-4 resin caused samples contamination. On the other hand, the XAD-8 resin allowed DOM recoveries of 39.9-50.5% of the DOC of the original combined samples. This recovered organic fraction was characterized by UV-visible, molecular fluorescence, FTIR-ATR and 1H NMR spectroscopies. The chemical characterization of the rainwater DOM showed that the three samples consist mostly of hydroxylated and carboxylic acids with a predominantly aliphatic character, containing a minor component of aromatic structures. The obtained results suggest that the DOM in rainwater, and consequently in the precursor atmospheric particles, may have a secondary origin via the oxidation of volatile organic compounds from different origins.

  5. Galactic Soft X-ray Emission Revealed with Spectroscopic Study of Absorption and Emission Spectra

    NASA Astrophysics Data System (ADS)

    Yamasaki, Noriko Y.; Mitsuda, K.; Takei, Y.; Hagihara, T.; Yoshino, T.; Wang, Q. D.; Yao, Y.; McCammon, D.

    2010-03-01

    Spectroscopic study of Oxygen emission/absorption lines is a new tool to investigate the nature of the soft X-ray background. We investigated the emission spectra of 14 fields obtained by Suzaku, and detected OVII and OVIII lines separately. There is an almost isotropic OVII line emission with 2 LU intensity. As the attenuation length in the Galactic plane for that energy is short, that OVII emission should arise within 300 pc of our neighborhood. In comparison with the estimated emission measure for the local bubble, the most plausible origin of this component is the solar wind charge exchange with local interstellar materials. Another component presented from the correlation between the OVII and OVIII line intensity is a thermal emission with an apparent temperature of 0.2 keV with a field-to-field fluctuation of 10% in temperature, while the intensity varies about a factor of 4. By the combination analysis of the emission and the absorption spectra, we can investigate the density and the scale length of intervening plasma separately. We analyzed the Chanrdra grating spectra of LMC X-3 and PKS 2155-304, and emission spectra toward the line of sight by Suzaku. In both cases, the combined analysis showed that the hot plasma is not iso-thermal nor uniform. Assuming an exponential disk distribution, the thickness of the disk is as large as a few kpc. It suggests that there is a thick hot disk or hot halo surrounding our Galaxy, which is similar to X-ray hot haloes around several spiral galaxies.

  6. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile.

    PubMed

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-07-26

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding.

  7. Thermal and Spectroscopic Characterization of a Proton Pumping Rhodopsin from an Extreme Thermophile*

    PubMed Central

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-01-01

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding. PMID:23740255

  8. Spectroscopic properties of Bi2ZnOB2O6 single crystals doped with Pr3+ ions: Absorption and luminescence investigations

    NASA Astrophysics Data System (ADS)

    Kasprowicz, D.; Brik, M. G.; Jaroszewski, K.; Pedzinski, T.; Bursa, B.; Głuchowski, P.; Majchrowski, A.; Michalski, E.

    2015-09-01

    Nonlinear optical Bi2ZnOB2O6 single crystals doped with Pr3+ ions were grown using the Kyropoulos method. The absorption and luminescence properties of these new systems were investigated for the first time. The crystals are characterized by the large values of nonlinear optical coefficients. Effective luminescence of the Pr3+ ions makes this system an excellent candidate for the near-infrared (NIR) and/or ultraviolet (UV) to visible (VIS) laser converters. Based on the obtained experimental spectroscopic data, detailed analysis of the absorption and luminescence spectra was performed using the conventional Judd-Ofelt theory. Those transitions, which can be potentially used for laser applications of the Pr3+ ion, have been identified. In addition to the intensity parameters Ω2, Ω4, Ω6 the branching ratios and radiative lifetimes were estimated for all possible transitions in the studied spectral region.

  9. BASE: Bayesian Astrometric and Spectroscopic Exoplanet Detection and Characterization Tool

    NASA Astrophysics Data System (ADS)

    Schulze-Hartung, Tim

    2012-08-01

    BASE is a novel program for the combined or separate Bayesian analysis of astrometric and radial-velocity measurements of potential exoplanet hosts and binary stars. The tool fulfills two major tasks of exoplanet science, namely the detection of exoplanets and the characterization of their orbits. BASE was developed to provide the possibility of an integrated Bayesian analysis of stellar astrometric and Doppler-spectroscopic measurements with respect to their binary or planetary companions’ signals, correctly treating the astrometric measurement uncertainties and allowing to explore the whole parameter space without the need for informative prior constraints. The tool automatically diagnoses convergence of its Markov chain Monte Carlo (MCMC[2]) sampler to the posterior and regularly outputs status information. For orbit characterization, BASE delivers important results such as the probability densities and correlations of model parameters and derived quantities. BASE is a highly configurable command-line tool developed in Fortran 2008 and compiled with GFortran. Options can be used to control the program’s behaviour and supply information such as the stellar mass or prior information. Any option can be supplied in a configuration file and/or on the command line.

  10. Spectroscopic method for determination of the absorption coefficient in brain tissue.

    PubMed

    Johansson, Johannes D

    2010-01-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  11. Evaluation of laser absorption spectroscopic techniques for eddy covariance flux measurements of ammonia.

    PubMed

    Whitehead, James D; Twigg, Marsailidh; Famulari, Daniela; Nemitz, Eiko; Sutton, Mark A; Gallagher, Martin W; Fowler, David

    2008-03-15

    An intercomparison was made between eddy covariance flux measurements of ammonia by a quantum cascade laser absorption spectrometer (QCLAS) and a lead-salt tunable diode laser absorption spectrometer (TDLAS). The measurements took place in September 2004 and again in April 2005 over a managed grassland site in Southern Scotland, U.K. These were also compared with a flux estimate derived from an "Ammonia Measurement by ANnular Denuder with online Analysis" (AMANDA), using the aerodynamic gradient method (AGM). The concentration and flux measurements from the QCLAS correlated well with those of the TDLAS and the AGM systems when emissions were high, following slurry application to the field. Both the QCLAS and TDLAS, however, underestimated the flux when compared with the AMANDA system, by 64%. A flux loss of 41% due to chemical reaction of ammonia in the QCLAS (and 37% in the TDLAS) sample tube walls was identified and characterized using laboratory tests but did not fully accountforthis difference. Recognizing these uncertainties, the agreement between the systems was nevertheless very close (R2 = 0.95 between the QCLAS and the TDLAS; R2 = 0.84 between the QCLAS and the AMANDA) demonstrating the suitability of the laser absorption methods for quantifying the temporal dynamics of ammonia fluxes.

  12. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    NASA Astrophysics Data System (ADS)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and

  13. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  14. Adsorption and spectroscopic characterization of lactoferrin on hydroxyapatite nanocrystals.

    PubMed

    Iafisco, Michele; Di Foggia, Michele; Bonora, Sergio; Prat, Maria; Roveri, Norberto

    2011-01-28

    Lactoferrin (LF), a well-characterized protein of blood plasma and milk with antioxidant, cariostatic, anticarcinogenic and anti-inflammatory properties, has been adsorbed onto biomimetic hydroxyapatite (HA) nanocrystals at two different pH values (7.4 and 9.0). The interaction was herein investigated by spectroscopic, thermal and microscopic techniques. The positive electrostatic surface potential of LF at pH 7.4 allows a strong surface interaction with the slightly negative HA nanocrystals and avoids the protein-protein interaction, leading to the formation of a coating protein monolayer. In contrast, at pH 9.0 the surface potential of LF is a mix of negative and positive zones favouring the protein-protein interaction and reducing the interaction with HA nanocrystals; as a result a double layer of coating protein was formed. These experimental findings are supported by the good fittings of the adsorption isotherms by different theoretical models according to Langmuir, Freundlich and Langmuir-Freundlich models. The nanosized HA does not appreciably affect the conformation of the adsorbed protein. In fact, using FT-Raman and FT-IR, we found that after adsorption the protein was only slightly unfolded with a small fraction of the α-helix structure being converted into turn, while the β-sheet content remained almost unchanged. The bioactive surface of HA functionalized with LF could be utilized to improve the material performance towards the biological environment for biomedical applications.

  15. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes

    SciTech Connect

    Miller, Terry

    2015-06-04

    Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work has demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.

  16. Synthesis, characterization, and spectroscopic investigation of benzoxazole conjugated Schiff bases.

    PubMed

    Santos, Fabiano S; Costa, Tania M H; Stefani, Valter; Gonçalves, Paulo F B; Descalzo, Rodrigo R; Benvenutti, Edilson V; Rodembusch, Fabiano S

    2011-11-24

    Two Schiff bases were synthesized by reaction of 2-(4'-aminophenyl)benzoxazole derivatives with 4-N,N-diethylaminobenzaldehyde. UV-visible (UV-vis) and steady-state fluorescence in solution were applied in order to characterize its photophysical behavior. The Schiff bases present absorption in the UV region with fluorescence emission in the blue-green region, with a large Stokes' shift. The UV-vis data indicates that each dye behaves as two different chromophores in solution in the ground state. The fluorescence emission spectra of the dye 5a show that an intramolecular proton transfer (ESIPT) mechanism takes place in the excited state, whereas a twisted internal charge transfer (TICT) state is observed for the dye 5b. Theoretical calculations were performed in order to study the conformation and polarity of the molecules at their ground and excited electronic states. Using density functional theory (DFT) methods at theoretical levels BLYP/Aug-SV(P) for geometry optimizations and B3LYP/6-311++G(2d,p) for single-point energy evaluations, the calculations indicate that the lowest energy conformations are in all cases nonplanar and that the dipole moments of the excited state relaxed structures are much larger than those of the ground state structures, which corroborates the experimental UV-vis absorption results.

  17. Direct imaging and spectroscopic characterization of habitable planets with ELTs

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien

    2015-12-01

    While the ~1e10 reflected light contrast between Earth-like planets and Sun-like stars is extremely challenging to overcome for ground-based telescopes, habitable planets around lower-mass stars can be "only" a 10 million times fainter than their host stars. Thanks to the small angular resolution offered by upcoming extremely large telescopes (ELTs) and recent advances in wavefront control and coronagraphic techniques, direct imaging and spectroscopic characterization of habitable planets will be possible around nearby M-type stars. Deep (~1e-8) contrast can be achieved by combining (1) sensitive fast visible light wavefront sensing (extreme-AO) with (2) kHz speckle control in the near-IR and (3) high efficiency coronagraphy. Spectroscopy will measure abundances of water, oxygen and methane, measure the planet rotation period, orbit, and identify main surface features through time-domain spectrophotometry.The Subaru Coronagraphic Extreme AO (SCExAO) system is a technology precursor to such a habitable planet imager for ELTs, and is currently under active development. By combining small inner working angle coronagraphy, visible-WFS based extreme-AO and fast speckle control, it will include the key elements of a future ELT system able to image and characterize habitable planets. We describe a technical plan to evolve SCExAO into a habitable planet imager for the Thirty Meter Telescope (TMT), which is aimed at providing such scientific capability during the 2020 decade, and inform the design, deployment and scientific operation of a more capable Extreme-AO instrument.

  18. [Electrochemical synthesis and spectroscopic characterization of gold nanoparticles].

    PubMed

    Shen, Li-Ming; Yao, Jian-Lin; Gu, Ren-Ao

    2005-12-01

    Two electrochemical methods were used to synthesize Au nanoparticles (AuNPs) with different shapes depending on the applied current. The dumbbell, spheroid and rod-like AuNPs were synthesized by increasing the current with a certain increment, while spheroid and dumbbell AuNPs were obtained by applying constant current. The AuNPs were characterized by TEM, UV-Vis spectrum and surface enhanced Raman spectra (SERS). One absorption band located at near-IR region was observed on the AuNPs, indicating the existence of gold nanorods with the aspect ratio of about 6. The SERS effect from the AuNPs surface was studied by using crystal violet as probe molecules, which adsorbed on AuNPs surface with flat orientation. Meanwhile, the forming mechanism of AuNPs involving crystallization and growth was deduced based on the TEM results. PMID:16544491

  19. Theoretical modeling of the spectroscopic absorption properties of luciferin and oxyluciferin: A critical comparison with recent experimental studies

    NASA Astrophysics Data System (ADS)

    Anselmi, Massimiliano; Marocchi, Simone; Aschi, Massimiliano; Amadei, Andrea

    2012-01-01

    Firefly luciferin and its oxidated form, oxyluciferin, are two heterocyclic compounds involved in the enzymatic reaction, catalyzed by redox proteins called luciferases, which provides the bioluminescence in a wide group of arthropods. Whereas the electronic absorption spectra of D-luciferin in water at different pHs are known since 1960s, only recently reliable experimental electronic spectra of oxyluciferin have become available. In addition oxyluciferin is involved in a triple chemical equilibria (deprotonation of the two hydroxyl groups and keto-enol tautomerism of the 4-hydroxythiazole ring), that obligates to select during an experiment a predominant species, tuning pH or solvent polarity besides introducing chemical modifications. In this study we report the absorption spectra of luciferin and oxyluciferin in each principal chemical form, calculated by means of perturbed matrix method (PMM), which allowed us to successfully introduce the effect of the solvent on the spectroscopic absorption properties, and compare the result with available experimental data.

  20. Spectroscopic characterization of III-V semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Crankshaw, Shanna Marie

    through a novel spectroscopic technique first formulated for the rather different purpose of dispersion engineering for slow-light schemes. The frequency-resolved technique combined with the unusual (110) quantum wells in a furthermore atypical waveguide experimental geometry has revealed fascinating behavior of electron spin splitting which points to the possibility of optically orienting electron spins with linearly polarized light---an experimental result supporting a theoretical description of the phenomenon itself only a few years old. Lastly, to explore a space of further-restricted dimensionality, the final chapters describe InP semiconductor nanowires with dimensions small enough to be considered truly one-dimensional. Like the bulk GaAs of the first few chapters, the InP nanowires here crystallize in a wurtzite structure. In the InP nanowire case, though, the experimental techniques explored for characterization are temperature-dependent time-integrated photoluminescence at the single-wire level (including samples with InAsP insertions) and time-resolved photoluminescence at the ensemble level. The carrier dynamics revealed through these time-resolved studies are the first of their kind for wurtzite InP nanowires. The chapters are thus ordered as a progression from three (bulk), to two (quantum well), to one (nanowire), to zero dimensions (axially-structured nanowire), with the uniting theme the emphasis on connecting the semiconductor nanomaterials' crystallinity to its exhibited properties by relevant experimental spectroscopic techniques, whether these are standard methods or effectively invented for the case at hand.

  1. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  2. Functional and Spectroscopic Characterization of Chlamydomonas reinhardtii Truncated Hemoglobins.

    PubMed

    Ciaccio, Chiara; Ocaña-Calahorro, Francisco; Droghetti, Enrica; Tundo, Grazia R; Sanz-Luque, Emanuel; Polticelli, Fabio; Visca, Paolo; Smulevich, Giulietta; Ascenzi, Paolo; Coletta, Massimo

    2015-01-01

    The single-cell green alga Chlamydomonas reinhardtii harbors twelve truncated hemoglobins (Cr-TrHbs). Cr-TrHb1-1 and Cr-TrHb1-8 have been postulated to be parts of the nitrogen assimilation pathway, and of a NO-dependent signaling pathway, respectively. Here, spectroscopic and reactivity properties of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4, all belonging to clsss 1 (previously known as group N or group I), are reported. The ferric form of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 displays a stable 6cLS heme-Fe atom, whereas the hexa-coordination of the ferrous derivative appears less strongly stabilized. Accordingly, kinetics of azide binding to ferric Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are independent of the ligand concentration. Conversely, kinetics of CO or NO2- binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are ligand-dependent at low CO or NO2- concentrations, tending to level off at high ligand concentrations, suggesting the presence of a rate-limiting step. In agreement with the different heme-Fe environments, the pH-dependent kinetics for CO and NO2-binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are characterized by different ligand-linked protonation events. This raises the question of whether the simultaneous presence in C. reinhardtii of multiple TrHb1s may be related to different regulatory roles. PMID:25993270

  3. Structural and spectroscopic characterization of mixed planetary ices.

    PubMed

    Plattner, Nuria; Lee, Myung Won; Meuwly, Markus

    2010-01-01

    Mixed ices play a central role in characterizing the origin, evolution, stability and chemistry of planetary ice surfaces. Examples include the polar areas of Mars, the crust of the Jupiter moon Europa, or atmospheres of planets and their satellites, particularly in the outer solar system. Atomistic simulations using accurate representations of the interaction potentials have recently shown to be suitable to quantitatively describe both, the mid- and the far-infrared spectrum of mixed H2O/CO amorphous ices. In this work, molecular dynamics simulations are used to investigate structural and spectroscopic properties of mixed and crystalline ices containing H2O, CO and CO2. Particular findings include: (a) the sensitivity of the water bending mode to the local environment of the water molecules which, together with structural insights from MD simulations, provides a detailed picture for the relationship between spectroscopy and structure; and (b) the sensitivity of the low-frequency spectrum to the structure of the mixed CO2/H2O ice. Specifically, for mixed H2O/CO2 ices with low water contents isolated water molecules are found which give rise to a band shifted by only 12 cm(-1) from the gas-phase value whereas for increasing water concentration (for a 1 : 1 mixture) the band progressively shifts to higher frequency because water clusters can form. More generally it is found that changes in the ice structure due to the presence of CO2 are larger compared to changes induced by the presence of CO and that this difference is reflected in the shape of the water bending vibration. Thus, the water bending vibration appears to be a suitable diagnostic for structural and chemical aspects of mixed ices. PMID:21302549

  4. Mid-infrared vibrational spectroscopic characterization of 5,6-dihydroxyindole and eumelanin derived from it

    NASA Astrophysics Data System (ADS)

    Hyogo, Ryosuke; Nakamura, Atsushi; Okuda, Hidekazu; Wakamatsu, Kazumasa; Ito, Shosuke; Sota, Takayuki

    2011-12-01

    Mid-infrared vibrational spectroscopic study has been made on 5,6-dihydroxyindole (DHI) and DHI-derived eumelanin. It has been revealed for DHI monomer that measured infrared absorption spectrum is well reproduced by that predicted from ab initio calculations. Thus, vibrational modes of DHI monomer causing dominant absorption bands have been successfully assigned. It has been also reconfirmed that DHI-derived eumelanin includes indolequinone and/or quinone methide units in addition to DHI units.

  5. Characterization of hydrophobic nanoporous particle liquids for energy absorption

    NASA Astrophysics Data System (ADS)

    Hsu, Yi; Liu, Yingtao

    2016-04-01

    Recently, the development of hydrophobic nanoporous technologies has drawn increased attention, especially for the applications of energy absorption and impact protection. Although significant amount of research has been conducted to synthesis and characterize materials to protect structures from impact damage, the tradition methods focused on converting kinetic energy to other forms, such as heat and cell buckling. Due to their high energy absorption efficiency, hydrophobic nanoporous particle liquids (NPLs) are one of the most attractive impact mitigation materials. During impact, such particles directly trap liquid molecules inside the non-wetting surface of nanopores in the particles. The captured impact energy is simply stored temporarily and isolated from the original energy transmission path. In this paper we will investigate the energy absorption efficiency of combinations of silica nanoporous particles and with multiple liquids. Inorganic particles, such as nanoporous silica, are characterized using scanning electron microscopy. Small molecule promoters, such as methanol and ethanol, are introduced to the prepared NPLs. Their effects on the energy absorption efficiency are studied in this paper. NPLs are prepared by dispersing the studied materials in deionized water. Energy absorption efficiency of these liquids are experimentally characterized using an Instron mechanical testing frame and in-house develop stainless steel hydraulic cylinder system.

  6. White-light continuum probed femtosecond time-resolved absorption spectroscopic measurement of β-carotene under high pressure

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Long; Zheng, Zhi-Ren; Zhang, Jian-Ping; Wu, Wen-Zhi; Li, Ai-Hua; Zhang, Wei; Huo, Ming-Ming; Liu, Zhi-Guo; Zhu, Rui-Bin; Zhao, Lian-Cheng; Su, Wen-Hui

    2012-04-01

    We have performed a femtosecond time-resolved absorption spectroscopic experiment of β-carotene in n-hexane solution under high pressure up to ˜1.0 GPa. Using white-light continuum in the visible spectral region as probe light, we found that the energy level of S1 state descends, whereas its lifetime becomes longer with the rising pressure. We ascribe this tendency deviating from the energy gap law to the viscosity effects on the Cdbnd C stretching vibrations, which is fully consistent with the microviscosity theory. This Letter may provide some insights on the light harvesting and photoprotection functions of carotenoids in photosynthetic organisms.

  7. Spectroscopic characterization of iron-doped II-VI compounds for laser applications

    NASA Astrophysics Data System (ADS)

    Martinez, Alan

    The middle Infrared (mid-IR) region of the electromagnetic spectrum between 2 and 15 ?m has many features which are of interest to a variety of fields such as molecular spectroscopy, biomedical applications, industrial process control, oil prospecting, free-space communication and defense-related applications. Because of this, there is a demand for broadly tunable, laser sources operating over this spectral region which can be easily and inexpensively produced. II-VI semiconductor materials doped with transition metals (TM) such as Co 2+, Cr2+, or Fe2+ exhibit highly favorable spectroscopic characteristics for mid-IR laser applications. Among these TM dopants, Fe2+ has absorption and emission which extend the farthest into the longer wavelength portion of the mid-IR. Fe2+:II-VI crystals have been utilized as gain elements in laser systems broadly tunable over the 3-5.5 microm range [1] and as saturable absorbers to Q -switch [2] and mode-lock [3] laser cavities operating over the 2.7-3 microm. TM:II-VI laser gain elements can be fabricated inexpensively by means of post-growth thermal diffusion with large homogeneous dopant concentration and good optical quality[4,5]. The work outlined in this dissertation will focus on the spectroscopic characterization of TM-doped II-VI semiconductors. This work can be categorized into three major thrusts: 1) the development of novel laser materials, 2) improving and extending applications of TM:II-VI crystals as saturable absorbers, and 3) fabrication of laser active bulk crystals. Because current laser sources based on TM:II-VI materials do not cover the entire mid-IR spectral region, it is necessary to explore novel laser sources to extend available emissions toward longer wavelengths. The first objective of this dissertation is the spectroscopic characterization of novel ternary host crystals doped with Fe2+ ions. Using crystal field engineering, laser materials can be prepared with emissions placed in spectral regions not

  8. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    PubMed

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  9. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    PubMed Central

    2011-01-01

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750

  10. Time-resolved spectroscopic fluorescence imaging, transient absorption and vibrational spectroscopy of intact and photo-inhibited photosynthetic tissue.

    PubMed

    Lukins, Philip B; Rehman, Shakil; Stevens, Gregory B; George, Doaa

    2005-01-01

    Fluorescence, absorption and vibrational spectroscopic techniques were used to study spinach at the photosystem II (PS II), chloroplast and cellular levels and to determine the effects and mechanisms of ultraviolet-B (UV-B) photoinhibition of these structures. Two-photon fluorescence spectroscopic imaging of intact chloroplasts shows significant spatial variations in the component fluorescence spectra in the range 640-740 nm, indicating that the type and distribution of chlorophylls vary markedly with position in the chloroplast. The chlorophyll distributions and excitonic behaviour in chloroplasts and whole plant tissue were studied using picosecond time-gated fluorescence imaging, which also showed UV-induced kinetic changes that clearly indicate that UV-B induces both structural and excitonic uncoupling of chlorophylls within the light-harvesting complexes. Transient absorption measurements and low-frequency infrared and Raman spectroscopy show that the predominant sites of UV-B damage in PS II are at the oxygen-evolving centre (OEC) itself, as well as at specific locations near the OEC-binding sites.

  11. Photochemistry of furyl- and thienyldiazomethanes: spectroscopic characterization of triplet 3-thienylcarbene.

    PubMed

    Pharr, Caroline R; Kopff, Laura A; Bennett, Brian; Reid, Scott A; McMahon, Robert J

    2012-04-11

    Photolysis (λ > 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N(2) at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm(-1), |E/hc| = 0.0554 cm(-1); |D/hc| = 0.579 cm(-1), |E/hc| = 0.0315 cm(-1)). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon-an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λ(max) = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C(5)H(4)S or C(5)H(4)O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively).

  12. Spectroscopic characterization of novel multilayer mirrors intended for astronomical and laboratory applications

    NASA Astrophysics Data System (ADS)

    Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.

    2009-05-01

    We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.

  13. Characterization of vanadium, manganese and iron model clusters by vibrational and optical spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin

    1999-12-01

    The active ferryl intermediates in the catalytic cycles of heme proteins are subject to interactions from the proximal and distal amino acid residues which control their activities and affect the ν(FeIVO) frequency. The effects of sixth axial ligation, hydrogen bonding, and solvent induced polarization on the resonance Raman (RR) spectra of the ferryl porphyrin analogs, vanadyl (VIVO) porphyrins and their π-cation radicals, are characterized. ν(VIVO) stretching bands for (VO)TMPyP and (VO)PPIX are observed to be sensitive to the pH value of the aqueous solutions, and reveal a number of coexisting 5-coordinate (c) and 6- c vanadyl porphyrins in solution. Moreover, the ν(VIVO) bands for (VO)TMP and (VO)TPP porphyrins upshift to higher frequencies with the formation of their π-cation radicals, in agreement with that of the (VO)OEP radical. For both a1u (OEP) and a2u (TPP, TMP) type radicals, an increased positive charge on the porphyrin reduces the porphyrin --> vanadium electron donation, but enhances the oxo --> V donation. The UV-Vis absorption and RR spectroscopic studies on a series of oxo-bridged vanadium(III) and manganese (III, IV) complexes established spectrostructural correlations that are useful as monitors of the structure of vanadium(III) and manganese(III, IV) centers in biological systems. The linear and bent V-O-V dimers display distinctive RR and absorption spectra. The linear V-O-V bridge displays an intense μ-O --> V charge transfer (CT) absorption band and a strongly enhanced symmetric (νs) or antisymmetric (νas) V-O-V stretching band in RR spectra, depending upon terminal ligands. In contrast, the bent bridge shows two μ-O --> V CT bands and both νs and νas V- O-V stretches are observed in RR spectra. These νs and νas vibrations are used to indicate that the vanadium(III) oxo-bridged dimer intercalates with DNA. The Mn-O-Mn vibrational frequencies in the 400-700 cm -1 region of the oxo-bridged manganese(III, IV) dimers, trimers, and

  14. Spectroscopic characterization of Venus at the single molecule level.

    PubMed

    David, Charlotte C; Dedecker, Peter; De Cremer, Gert; Verstraeten, Natalie; Kint, Cyrielle; Michiels, Jan; Hofkens, Johan

    2012-02-01

    Venus is a recently developed, fast maturating, yellow fluorescent protein that has been used as a probe for in vivo applications. In the present work the photophysical characteristics of Venus were analyzed spectroscopically at the bulk and single molecule level. Through time-resolved single molecule measurements we found that single molecules of Venus display pronounced fluctuations in fluorescence emission, with clear fluorescence on- and off-times. These fluorescence intermittencies were found to occupy a broad range of time scales, ranging from milliseconds to several seconds. Such long off-times can complicate the analysis of single molecule counting experiments or single-molecule FRET experiments.

  15. Characterization of used mineral oil condition by spectroscopic techniques.

    PubMed

    Vanhanen, Jarmo; Rinkiö, Marcus; Aumanen, Jukka; Korppi-Tommola, Jouko; Kolehmainen, Erkki; Kerkkänen, Tuula; Törmä, Päivi

    2004-08-20

    Optical absorption, fluorescence, and quantitative 13C NMR spectroscopy have been used to study the degradation of mineral gearbox oil. Samples of used oil were collected from field service. Measured absorption, fluorescence, and quantitative 13C NMR spectra of used oils show characteristic changes from the spectra of a fresh oil sample. A clearly observable, approximately 20-nm blueshift of the fluorescence emission occurs during the early stages of oil use and correlates with changes in intensity of some specific 13C NMR resonance lines. These changes correlate with oil age because of the connection between the blueshift and breaking of the larger conjugated hydrocarbons of oil as a result of use.

  16. Absorption spectroscopic probe to investigate the interaction between Nd(III) and calf-thymus DNA

    NASA Astrophysics Data System (ADS)

    Devi, Ch. Victory; Singh, N. Rajmuhon

    2011-03-01

    The interaction between Nd(III) and Calf Thymus DNA (CT-DNA) in physiological buffer (pH 7.4) has been studied using absorption spectroscopy involving 4f-4f transition spectra in different aquated organic solvents. Complexation with CT-DNA is indicated by the changes in absorption intensity following the subsequent changes in the oscillator strengths of different 4f-4f bands and Judd-Ofelt intensity ( Tλ) parameters. The other spectral parameters namely Slator-Condon ( Fk's), nephelauxetic effect ( β), bonding ( b1/2) and percent covalency ( δ) parameters are computed to correlate with the binding of Nd(III) with DNA. The absorption spectra of Nd(III) exhibited hyperchromism and red shift in the presence of DNA. The binding constant, Kb has been determined by absorption measurement. The relative viscosity of DNA decreased with the addition of Nd(III). Thermodynamic parameters have been calculated according to relevant absorption data and Van't Hoff equation. The characterisation of bonding mode has been studied in detail. The results suggested that the major interaction mode between Nd(III) and DNA was external electrostatic binding.

  17. Differential optical spectroscopy for absorption characterization of scattering media.

    PubMed

    Billet, Cyril; Sablong, Raphaël

    2007-11-15

    Reflectance techniques are commonly used to characterize the optical properties of tissues. However, the precise determination of local chromophore concentrations in turbid media is usually difficult because of the nonlinear dependence of light intensity as a function of scattering and absorption coefficients. A technique is presented to easily determine absorbent compound concentration ratios in a turbid media from three optical reflectance spectra, in the visible range, measured for source-detector distances less than 1cm. The validity of the method is experimentally established, in cases of sets of diluted milk containing absorbent inks, over a relatively wide range of absorption (0.05-0.5 cm(-1)) and reduced scattering (10-20 cm(-1)) coefficients.

  18. Life Finder Detectors; Detector Needs and Status for Spectroscopic Biosignature Characterization

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Bolcar, Matthew R.; Clampin, Mark; Domagal-Goldman, Shawn; McElwain, Michael W.; Moseley, Samuel H.; Stahle, Carl; Stark, Christopher C.; Thronson, Harley A.

    2016-01-01

    The search for life on other worlds looms large in NASA's future. Outside our solar system, direct spectroscopic biosignature characterization using very large UV-Optical-IR telescopes with coronagraphs or starshades is a core technique to both AURA's High Definition Space Telescope (HDST) concept and NASA's 30-year strategic plan. These giant space observatories require technological advancements in several areas, one of which is detectors. In this presentation, we review the detector requirements for spectroscopic biosignature characterization and discuss the status of some existing and proposed detector technologies for meeting them.

  19. Three-photon absorption and vibrational spectroscopic study of 2-methylamino-5-chlorobenzophenone.

    PubMed

    Sajan, D; Chaitanya, K; Safakath, K; Philip, Reji; Suthan, T; Rajesh, N P

    2013-04-01

    In this paper, the vibrational spectral analysis and three-photon absorption properties of an organic material of 2-methylamino-5-chlorobenzophenone have been reported. The geometry and harmonic vibrational wavenumbers are calculated with the help of B3LYP density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of normal coordinate analysis following the scaled quantum mechanical force field methodology (SQM). SQM force fields have also been used to calculate potential energy distribution (PED) in order to make conspicuous vibrational assignments. The nonlinear absorption properties have been investigated in ethanol solution at 532nm using the Z-scan technique employing laser pulses of 5ns duration. Open aperture Z-scan data reveal the presence of effective three-photon absorption for ns pulses at 532nm resulting in a strong optical limiting behavior, indicating possible photonic applications. PMID:23410921

  20. Comprehensive Spectroscopic Characterization of Model Aromatic Substituents of Lignin

    NASA Astrophysics Data System (ADS)

    Dean, Jacob C.; Vara, Vanesa Vaquero; Hotopp, Kelly M.; Dian, Brian C.; Zwier, Timothy S.

    2012-06-01

    2,6-Dimethoxyphenol (2,6-DMP) is a model compound with aromatic substitution similar to that in sinapyl alcohol, one of the three monomers that make up lignin. 2,6-DMP has been studied combining several spectroscopic techniques that span the microwave, infrared and ultraviolet regions. Spectra from laser-induced fluorescence excitation, IR-UV hole-burning, fluorescence dip IR, dispersed fluorescence and rotational spectra have allowed us to develop more insight to the structural details, intramolecular H-bonding and electronic excited states of this sinapyl alcohol analog. Coupling in the CH stretch region, broadening effects in the IR spectra and Coriolis coupling due to the OH tunneling coordinate in the rotational spectrum will be shown as we present this diverse set of experimental data involving transitions between different vibronic, vibrational and rotational levels of the molecule. These features will be compared to those in 2-methoxyphenol and 4-methyl-2,6-DMP during the discussion.

  1. Spectroscopic modeling and characterization of a collisionally confined laser-ablated plasma plume.

    PubMed

    Sherrill, M E; Mancini, R C; Bailey, J; Filuk, A; Clark, B; Lake, P; Abdallah, J

    2007-11-01

    Plasma plumes produced by laser ablation are an established method for manufacturing the high quality stoichiometrically complex thin films used for a variety of optical, photoelectric, and superconducting applications. The state and reproducibility of the plasma close to the surface of the irradiated target plays a critical role in producing high quality thin films. Unfortunately, this dense plasma has historically eluded quantifiable characterization. The difficulty in modeling the plume formation arises in the accounting for the small amount of energy deposited into the target when physical properties of these exotic target materials are not known. In this work we obtain the high density state of the plasma plume through the use of an experimental spectroscopic technique and a custom spectroscopic model. In addition to obtaining detailed temperature and density profiles, issues regarding line broadening and opacity for spectroscopic characterization will be addressed for this unique environment.

  2. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    SciTech Connect

    Westre, T.E.

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s{yields}3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  3. Spectroscopic investigation of amber color silicate glasses and factors affecting the amber related absorption bands.

    PubMed

    Morsi, Morsi M; El-Sherbiny, Samya I; Mohamed, Karam M

    2015-06-15

    The effects of carbon, Fe2O3 and Na2SO4 contents on the amber color of glass with composition (wt%) 64.3 SiO2, 25.7 CaO, 10 Na2O were studied. The effect of some additives that could be found in glass batch or cullets on the amber related absorption band(s) was also studied. An amber related absorption band due to the chromophore Fe(3+)O3S(2-) was recorded at 420 nm with shoulder at 440 nm. A second amber related band recorded at 474 nm with shoulder at 483 nm was assigned to FeS. Increasing melting time at 1400°C up to 6h caused fainting of the amber color, decreases the intensities of the amber related bands and shifted the first band to 406 nm. Addition of ZnO, Cu2O and NaNO3 to the glass produced decolorizing effect and vanishing of the amber related bands. The effects of melting time and these additives were explained on the bases of destruction the amber chromophore and its conversion into Fe(3+) in tetrahedral sites or ZnS. Addition of Se intensifies the amber related bands and may cause dark coloration due to the formation of Se° and polyselenide. Amber color can be monitored through measuring the absorption in the range 406-420 nm.

  4. Spectroscopic investigation of amber color silicate glasses and factors affecting the amber related absorption bands

    NASA Astrophysics Data System (ADS)

    Morsi, Morsi M.; El-sherbiny, Samya I.; Mohamed, Karam M.

    2015-06-01

    The effects of carbon, Fe2O3 and Na2SO4 contents on the amber color of glass with composition (wt%) 64.3 SiO2, 25.7 CaO, 10 Na2O were studied. The effect of some additives that could be found in glass batch or cullets on the amber related absorption band(s) was also studied. An amber related absorption band due to the chromophore Fe3+O3S2- was recorded at 420 nm with shoulder at 440 nm. A second amber related band recorded at 474 nm with shoulder at 483 nm was assigned to FeS. Increasing melting time at 1400 °C up to 6 h caused fainting of the amber color, decreases the intensities of the amber related bands and shifted the first band to 406 nm. Addition of ZnO, Cu2O and NaNO3 to the glass produced decolorizing effect and vanishing of the amber related bands. The effects of melting time and these additives were explained on the bases of destruction the amber chromophore and its conversion into Fe3+ in tetrahedral sites or ZnS. Addition of Se intensifies the amber related bands and may cause dark coloration due to the formation of Se° and polyselenide. Amber color can be monitored through measuring the absorption in the range 406-420 nm.

  5. Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics

    SciTech Connect

    Rahman, Md. T. Ramana, C. V.

    2014-10-28

    Gadolinium (Gd) substituted cobalt ferrites (CoFe{sub 2−x}Gd{sub x}O{sub 4}, referred to CFGO) with variable Gd content (x = 0.0–0.4) have been synthesized by solid state ceramic method. The crystal structure and impedance properties of CFGO compounds have been evaluated. X-ray diffraction measurements indicate that CFGO crystallize in the inverse spinel phase. The CFGO compounds exhibit lattice expansion due to substitution of larger Gd ions into the crystal lattice. Impedance spectroscopy analysis was performed under a wide range of frequency (f = 20 Hz–1 MHz) and temperature (T = 303–573 K). Electrical properties of Gd incorporated Co ferrite ceramics are enhanced compared to pure CoFe{sub 2}O{sub 4} due to the lattice distortion. Impedance spectroscopic analysis illustrates the variation of bulk grain and grain-boundary contributions towards the electrical resistance and capacitance of CFGO materials with temperature. A two-layer heterogeneous model consisting of moderately conducting grain interior (ferrite-phase) regions separated by insulating grain boundaries (resistive-phase) accurately account for the observed temperature and frequency dependent electrical characteristic of CFGO ceramics.

  6. Vibrational spectroscopic characterization of wild growing mushrooms and toadstools

    NASA Astrophysics Data System (ADS)

    Mohaček-Grošev, Vlasta; Božac, Romano; Puppels, Gerwin J.

    2001-12-01

    Recently, there has been increase of general interest in fungi because of the possible medical applications of their polysaccharide constituents called glucans, some of which are reported to have immunomodulatory properties. Since an extraction method can change the chemical composition of a substance, especially a delicate one such as fungal thallus, it is necessary and useful to know more about the studied matter in advance in order to choose the chemical procedure properly. We demonstrated the usefulness of vibrational spectroscopy in identifying different glucan types in various parts of intact fruiting bodies of Asco- and Basidiomycetes. Fourier transform-infrared (FT-IR) spectroscopy was used for obtaining vibrational spectra of spores and fruiting bodies of more than 70 species belonging to 37 different genera of wild growing mushrooms. The list of the bands in 750-950 cm -1 interval, assigned to α- and β-glucans, is provided for all species studied. Vibrational spectra in the interval 1000-1200 cm -1 could serve as an indicator of mushroom genus, although particular species cannot be identified spectroscopically. Great similarities in spectra of spores of the same genus, but different species, e.g. Tricholoma album and Trichloma sulphureum, were observed. On the other hand, spectra of cap, stalk and spores of the same mushroom show great differences, indicating variety in the chemical composition of different parts of the same fruiting body.

  7. Isomerism of Cyanomethanimine: Accurate Structural, Energetic, and Spectroscopic Characterization.

    PubMed

    Puzzarini, Cristina

    2015-11-25

    The structures, relative stabilities, and rotational and vibrational parameters of the Z-C-, E-C-, and N-cyanomethanimine isomers have been evaluated using state-of-the-art quantum-chemical approaches. Equilibrium geometries have been calculated by means of a composite scheme based on coupled-cluster calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The latter approach is proved to provide molecular structures with an accuracy of 0.001-0.002 Å and 0.05-0.1° for bond lengths and angles, respectively. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled-cluster theory, including up to single, double, triple, and quadruple excitations, and corrected for core-electron correlation and anharmonic zero-point vibrational energy, have been used to accurately determine relative energies and the Z-E isomerization barrier with an accuracy of about 1 kJ/mol. Vibrational and rotational spectroscopic parameters have been investigated by means of hybrid schemes that allow us to obtain rotational constants accurate to about a few megahertz and vibrational frequencies with a mean absolute error of ∼1%. Where available, for all properties considered, a very good agreement with experimental data has been observed.

  8. Synthesis and spectroscopic characterization of cadmium sulfide nanowires

    NASA Astrophysics Data System (ADS)

    Kuthirummal, Narayanan; Reppert, Jason; Diehl, Brian; Rao, Apparao

    2009-03-01

    Pulsed laser vaporization method has been used for preparing cadmium sulfide (CdS) nanowires of 50 -- 100 nm in diameter. The morphology and crystallinity of as-prepared CdS nanowires are studied by means of X-ray diffraction, scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). Excellent ordering of the lattice planes perpendicular to the [001] plane has been observed. Photoacoustic (PA), UV-Vis, Raman, and photoluminescence spectroscopy have been used to measure the optical properties. PA spectra yielded a steeper absorption edge for as-prepared CdS nanowires when compared to the conventional optical absorption spectrum. The increased steepness might be attributed to the well-ordered structure and size distribution. The data shows that PA spectroscopy is an excellent technique to investigate opaque and highly light scattering samples. Raman data suggests increased exciton-LO phonon coupling in CdS nanowires. The appearance of a narrow photoluminescence peak at 491 nm (FWHM of 9 nm) and the absence of emission above 500 nm demonstrate the high quality of nanowires.

  9. Synthesis and spectroscopic characterization of magnesium oxalate nano-crystals.

    PubMed

    Lakshmi Reddy, S; Ravindra Reddy, T; Siva Reddy, G; Endo, Tamio; Frost, Ray L

    2014-04-01

    Synthesis of MgC92)O(4)⋅2H(2)O nano particles was carried out by thermal double decomposition of solutions of oxalic acid dihydrate (C(2)H(2)O(4)⋅2H(2)O) and Mg(OAc)(2)⋅(40H(2)O employing CATA-2R microwave reactor. Structural elucidation was carried out by employing X-ray diffraction (XRD), particle size and shape were studied by transmission electron microscopy (TEM) and nature of bonding was investigated by optical absorption and near-infrared (NIR) spectral studies. The powder resulting from this method is pure and possesses distorted rhombic octahedral structure. The synthesized nano rod is 80 nm in diameter and 549 nm in length.

  10. Characterization of the solid-state: spectroscopic techniques.

    PubMed

    Bugay, D E

    2001-05-16

    The physical characterization of pharmaceutical solids is an integral aspect of the drug development process. This review summarizes the use of solid-state spectroscopy techniques used in the physical characterization of the active pharmaceutical ingredient, excipients, physical mixtures, and the final dosage form. A brief introduction to infrared, Raman, and solid-state NMR experimental techniques are described as well as a more thorough description of qualitative and quantitative applications. The use of solid-state imaging techniques such as IR, Raman, and TOF-SIMS is also introduced to the reader.

  11. ACCURATE SPECTROSCOPIC CHARACTERIZATION OF PROTONATED OXIRANE: A POTENTIAL PREBIOTIC SPECIES IN TITAN’S ATMOSPHERE

    PubMed Central

    Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2015-01-01

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm−1 for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan’s atmosphere but also in the interstellar medium. PMID:26543241

  12. Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere

    SciTech Connect

    Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2014-09-10

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm{sup –1} for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  13. Spectroscopic and thermal characterizations of Yb:LaF3 single crystal

    NASA Astrophysics Data System (ADS)

    Hong, Jiaqi; Zhang, Lianhan; Hang, Yin; Xu, Min

    2016-10-01

    A Yb3+ doped LaF3 laser crystal was detailed investigated by both spectroscopic and thermal measurements. A peak absorption at 974 nm with FWHM broader than 60 nm makes the crystal suitable to InGaAs LDs. Fluorescence spectrum and calculated spectroscopic parameters show potential of Yb:LaF3 crystal to laser operations around 1009 nm. A relatively long fluorescence lifetime of 2.92 ms was detected for Yb3+:2F5/2 manifold. The thermal diffusivity and specific heat capacity in the range of 300-575 K were studied to calculate the thermal conductivity of Yb:LaF3. The results indicate that the Yb:LaF3 crystal is a good candidate for diode-pumped ∼1 μm solid-state laser applications.

  14. Spectroscopic Characterization of Mineralogy Across Vesta: Evidence of Different Lithologies

    NASA Technical Reports Server (NTRS)

    De Sanotis, M. C.; Ammannito, E.; Filacchione, G.; Capria, M. T.; Tosi, F.; Capaccioni, F.; Zambon, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Jaumann, R.; Magni, G.; Marchi, S.; McCord, T. B.; McFadden, L. A.; McSween, H. Y.; Mittlefehldt, D. W.; Nathues, A.; Palomba, E.; Pieters, C. M.; Raymond, C. A.; Russell, C. T.; Turrini, D.

    2012-01-01

    The average spectrum of Vesta, obtained by VIR in the range 0.25-5.1 microns, shows clear evidence of absorption bands due to pyroxenes and thermal emissions beyond 3.5 11m. Vesta shows considerable variability across its surface in terms of spectral reflectance and emission, band depths, bands widths and bands centers, reflecting a complex geological history. Vesta's average spectrum and inferred mineralogy resemble those of howardite meteorites. On a regional scale, significant deviations are seen: the south polar 500km Rheasilvia impact crater has a higher diogenitic component, and equatorial regions show a higher eucritic component. This lithologic distribution, with a concentration of Mg-pyroxenes in the Rheasilvia area, reinforces the hypothesis of a deeper diogenitic crust excavated by the impact that formed the Rheasilvia crater, and an upper eucritic crust, whose remnants are seen in the equatorial region. This scenario has implications for Vesta differentiation, consistent with magma ocean models. However, serial magmatism models could also have concentrated pyroxene cumulates in plutons emplaced within the lower crust,

  15. Spectroscopic characterization of nanohydroxyapatite synthesized by molten salt method.

    PubMed

    Gopi, D; Indira, J; Kavitha, L; Kannan, S; Ferreira, J M F

    2010-10-01

    Hydroxyapatite (HAP) nanopowders were synthesized by molten salt method at 260 degrees C. The as-prepared powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo gravimetric analysis (TGA). With the aid of the obtained results the effect of calcining time on the crystallinity, size and morphology of HAP nanopowders is presented. The HAP nanopowders synthesized by molten salt method consist of pure phase of HAP without any impurities and showed the rod-like morphology without detectable decomposition up to 1100 degrees C.

  16. Simultaneous electronic and lattice characterization using coupled femtosecond spectroscopic techniques.

    SciTech Connect

    Beechem Iii, Thomas Edwin; Serrano, Justin Raymond; Hopkins, Patrick E

    2009-09-01

    High-power electronics are central in the development of radar, solid-state lighting, and laser systems. Large powers, however, necessitate improved heat dissipation as heightened temperatures deleteriously affect both performance and reliability. Heat dissipation, in turn, is determined by the cascade of energy from the electronic to lattice system. Full characterization of the transport then requires analysis of each. In response, this four-month late start effort has developed a transient thermoreflectance (TTR) capability that probes the thermal response of electronic carriers with 100 fs resolution. Simultaneous characterization of the lattice carriers with this electronic assessment was then investigated by equipping the optical arrangement to acquire a Raman signal from radiation discarded during the TTR experiment. Initial results show only tentative acquisition of a Raman response at these timescales. Using simulations of the response, challenges responsible for these difficulties are then examined and indicate that with outlined refinements simultaneous acquisition of TTR/Raman signals remains attainable in the near term.

  17. Characterization of Sorolla's gouache pigments by means of spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Roldán, Clodoaldo; Juanes, David; Ferrazza, Livio; Carballo, Jorgelina

    2016-02-01

    This paper presents the characterization of the Joaquín Sorolla's gouache sketches for the oil on canvas series "Vision of Spain" commissioned by A. M. Huntington to decorate the library of the Hispanic Society of America in New York. The analyses were focused on the identification of the elemental composition of the gouache pigments by means of portable EDXRF spectrometry in a non-destructive mode. Additionally, SEM-EDX and FTIR analyses of a selected set of micro-samples were carried out to identify completely the pigments, the paint technique and the binding media. The obtained results have confirmed the identification of lead and zinc white, vermillion, earth pigments, ochre, zinc yellow, chrome yellow, ultramarine, Prussian blue, chromium based and copper-arsenic based green pigments, bone black and carbon based black pigments, and the use of gum arabic as binding media in the gouache pigments.

  18. Absorption spectroscopic study of synergistic extraction of praseodymium with benzoyl acetone in presence of crown ether.

    PubMed

    Banerjee, Shrabanti; Bhattacharya, Sumanta; Basu, Sukalyan

    2005-04-01

    The extraction behaviour of Pr(III) from aqueous nitric acid medium employing benzoylacetone has been studied in presence of two crown ethers, viz., 15-crown-5 and benzo-15-crown-5 in chloroform medium using UV-vis absorption spectroscopy. The binary equilibrium constant (logk(ex)) for the complex [Pr(benzoylacetonate)(NO3(-))2(H(2)O)] in organic phase was found to be 1.170. The overall equilibrium constants (logK) for the ternary species [Pr(benzoylacetonate)(crown ether)(NO3(-))(2)] were estimated to be 4.01 and 4.41 for 15-crown-5 and benzo-15-crown-5, respectively. The trend in the equilibrium constant values were very much in accordance with the nature of substitution of the donor moiety. The extraction of Pr(III) by the benzoylacetone-crown ether combination was maximum at pH 3.0 and extraction decreases with increase in pH. It has been found that the extent of extraction of Pr(III) in organic phase as the binary as well as ternary complex [Pr(benzoylacetonate)(NO3(-))(2)(H(2)O)] and [Pr(benzoylacetonate)(crown ether)(NO3(-))(2)] increases with increase in concentration of the ligand. Similar trend is observed in the extraction by only donors. Enthalpies and entropies of formation for the ternary extraction process have been estimated. In addition, the effect of NaNO(3) as foreign salt was also studied and it was observed that with increase in ionic strength, percentage extraction increases.

  19. Spectroscopic and morphologic characterization of the dentin/adhesive interface

    NASA Astrophysics Data System (ADS)

    Lemor, R. M.; Kruger, Michael B.; Wieliczka, David M.; Swafford, Jim R.; Spencer, Paulette

    1999-01-01

    The potential environmental risks associated with mercury release have forced many European countries to ban the use of dental amalgam. Alternative materials such as composite resins do not provide the clinical function for the length of time characteristically associated with dental amalgam. The weak link in the composite restoration is the dentin/adhesive bond. The purpose of this study was to correlate morphologic characterization of the dentin/adhesive bond with chemical analyses using micro- Fourier transform infrared and micro-Raman spectroscopy. A commercial dental adhesive was placed on dentin substrates cut from extracted, unerupted human third molars. Sections of the dentin/adhesive interface were investigated using infrared radiation produced at the Aladdin synchrotron source; visible radiation from a Kr+ laser was used for the micro-Raman spectroscopy. Sections of the dentin/adhesive interface, differentially stained to identify protein, mineral, and adhesive, were examined using light microscopy. Due to its limited spatial resolution and the unknown sample thickness the infrared results cannot be used quantitatively in determining the extent of diffusion. The results from the micro-Raman spectroscopy and light microscopy indicate exposed protein at the dentin/adhesive interface. Using a laser that reduces background fluorescence, the micro-Raman spectroscopy provides quantitative chemical and morphologic information on the dentin/adhesive interface. The staining procedure is sensitive to sites of pure protein and thus, complements the Raman results.

  20. Spectroscopic characterization of bioactive carboxyamide with trinuclear lanthanide (III) ions

    NASA Astrophysics Data System (ADS)

    Singh, Bibhesh K.; Prakash, Anant; Adhikari, Devjani

    2009-10-01

    Complexes of La(III), Sm(III), Eu(III) and Tb(III) with bioactive carboxyamide ligands N',N″-bis(3-caboxy-1-oxophenelenyl)2-amino-N-arylbenzamidine have been synthesized and characterized by various physico-chemical techniques. Mass spectrum explains the successive degradation of the molecular species in solution and justifies ML complexes. Vibrational spectra indicate coordination of Ln(III) with amide and carboxylate oxygen of the ligand along with nitrate ions. The magnetic moment of Sm(III) and Eu(III) complexes showed slightly higher-values which originated due to low J- J separation leading to thermal population of next higher energy J levels and susceptibility due to first order Zeeman effect. The strong luminescence emitting peaks at 587 nm for Eu(III) and 543 nm for Tb(III) can be observed, which could be attributed to the ligand have an enhanced effect to the luminescence intensity of the Eu(III) and Tb(III). The thermal behaviour of complexes shows that water molecules and nitrate ion are removed in first step followed by the removal of two molecules of nitrate ions and then decomposition of the ligand molecule in subsequent step. Kinetic and thermodynamic parameters were computed from the thermal data using Coats and Redferm method, which confirm first order kinetics.

  1. Spectroscopic Studies on the Characterization of a Persian Playing Card.

    PubMed

    Holakooei, Parviz; Niknejad, Maryam; Vaccaro, Carmela

    2016-01-01

    This paper presents the results of our investigations on a playing card preserved at The Mūzih-i Āynih va Rushanāī in Yazd, Iran. Conducting micro X-ray fluorescence spectrometry (μ-XRF), micro-Raman spectroscopy (μ-Raman), infrared reflectography (IRR), ultraviolet fluorescence photography, radiography, and optical microscopy, various paints applied on the playing card were identified. According to our analytical studies, red, green, blue, black, and gold-like metallic paints were identified to be a red monoazo pigment (β-naphthol PR 53:1), chrome green, artificial ultramarine blue, carbon black, and brass powder (Dutch metal powder), respectively, dating the playing card to 1895 onward based on the manufacturing date of the red monoazo pigment. Barite was also shown to be mixed with the pigments as an extender. On the other hand, the portrait's face of the playing card was peculiarly blackened. Our analytical approach toward characterizing the blackened face showed that the black paint was achieved by carbon black and, in other words, the face was not blackened due to the darkening of Pb-bearing pigments. Moreover, it was shown that there was no underdrawing under the black face and the black paint was most probably executed in the same time with the other paints. Considering the possible use of the playing card, it was suggested not to remove the blackened face in the cleaning process since the black paint was a part of the integrity of the playing card.

  2. Spectroscopic Studies on the Characterization of a Persian Playing Card.

    PubMed

    Holakooei, Parviz; Niknejad, Maryam; Vaccaro, Carmela

    2016-01-01

    This paper presents the results of our investigations on a playing card preserved at The Mūzih-i Āynih va Rushanāī in Yazd, Iran. Conducting micro X-ray fluorescence spectrometry (μ-XRF), micro-Raman spectroscopy (μ-Raman), infrared reflectography (IRR), ultraviolet fluorescence photography, radiography, and optical microscopy, various paints applied on the playing card were identified. According to our analytical studies, red, green, blue, black, and gold-like metallic paints were identified to be a red monoazo pigment (β-naphthol PR 53:1), chrome green, artificial ultramarine blue, carbon black, and brass powder (Dutch metal powder), respectively, dating the playing card to 1895 onward based on the manufacturing date of the red monoazo pigment. Barite was also shown to be mixed with the pigments as an extender. On the other hand, the portrait's face of the playing card was peculiarly blackened. Our analytical approach toward characterizing the blackened face showed that the black paint was achieved by carbon black and, in other words, the face was not blackened due to the darkening of Pb-bearing pigments. Moreover, it was shown that there was no underdrawing under the black face and the black paint was most probably executed in the same time with the other paints. Considering the possible use of the playing card, it was suggested not to remove the blackened face in the cleaning process since the black paint was a part of the integrity of the playing card. PMID:26767645

  3. Flash spectroscopic characterization of photosynthetic electron transport in isolated heterocysts

    SciTech Connect

    Houchins, J.P.; Hind, G.

    1983-07-01

    Electron transport was studied in heterocysts of the filamentous cyanobacterium Anabaena 7120 using spectral and kinetic analysis of absorbance transients elicited by single turnover flashes. Consistent photosynthetic turnovers were observed only in the presence of an exogenous source of reductant; therefore measurements were routinely made under a gas phase containing H2. Prominent absorbance changes corresponding to the oxidation of cytochrome c (554 nm) and the reduction of cytochrome b563 (563 nm) were observed. Under the most reducing conditions (99% H2/1% O2) cytochrome b563 was partially reduced between flashes in a slow, dark reaction. At 10-15% O2, the slow, dark reduction of cytochrome b563 was eliminated. Cytochrome turnover ceased entirely at high O2 concentrations (30%) but was restored by the addition of 25 microM KCN, demonstrating an interaction between the photosynthetic and respiratory electron transfer chains. Strobilurin A slowed the re-reduction of cytochrome c and eliminated the appearance of reduced cytochrome b563 by blocking electron transfer between reduced plastoquinone and the cytochrome b/f complex. Inhibition at a second site was apparent with 2-(n-heptyl)-4-hydroxyquinoline N-oxide, which blocked the reoxidation of cytochrome b563 but had little effect on cytochrome c relaxation. In uncoupled heterocysts, the rates of cytochrome c re-reduction and cytochrome b563 reduction were equal. Additional unassigned absorbance changes at 475 nm, 515 nm, and 572 nm were partially characterized. No absorbance change corresponding to an electrochromic shift was observed.

  4. Crystal structure characterization as well as theoretical study of spectroscopic properties of novel Schiff bases containing pyrazole group.

    PubMed

    Guo, Jia; Ren, Tiegang; Zhang, Jinglai; Li, Guihui; Li, Weijie; Yang, Lirong

    2012-09-01

    A series of novel Schiff bases containing pyrazole group were synthesized using 1-aryl-3-methyl-4-benzoyl-5-pyrazolone and phenylenediamine as the starting materials. All as-synthesized Schiff bases were characterized by means of NMR, FT-IR, and MS; and the molecular geometries of two Schiff bases as typical examples were determined by means of single crystal X-ray diffraction. In the meantime, the ultraviolet-visible light absorption spectra and fluorescent spectra of various as-synthesized products were also measured. Moreover, the B3LYP/6-1G(d,p) method was used for the optimization of the ground state geometry of the Schiff bases; and the spectroscopic properties of the products were computed and compared with corresponding experimental data based on cc-pVTZ basis set of TD-B3LYP method. It has been found that all as-synthesized Schiff bases show a remarkable absorption peak in a wavelength range of 270-370 nm; and their maximum emission peaks are around 344 nm and 332 nm, respectively.

  5. Quaoar: New, Longitudinaly Resolved, Spectroscopic Characterization of Its Surface

    NASA Technical Reports Server (NTRS)

    Ore, C. M. Dalle; Barucci, M. A.; Cruikshank, D. P.; Alunni, Antonella

    2014-01-01

    (50000) Quaoar, one of the largest Trans-neptunian objects, is comparable in size to Pluto's moon Charon. However, while Charon's surface is rich almost exclusively in H2O ice, Quaoar's surface characterized by ices of CH4, N2, as well as C2H6, a product of irradiation of CH4 (Dalle Ore et al. 2009). Because of its distance from the Sun, Quaoar is expected to have preserved, to a degree, its original composition, however, its relatively small size did not make it a prime candidate for presence of volatile ices in the study by Schaller and Brown (2007). Furthermore, based on the Brown et al. (2011) study (Brown, Schaller, & Fraser, 2011. A Hypothesis for the Color Diversity of the Kuiper Belt. ApJL, 739, L60) its red coloration points to CH3OH as the ice which, when irradiated, might have produced the red material. We present new visible to near-infrared (0.3-2.48 micrometers) spectro-photometric data obtained with the XSHOOTER (Vernet et al. 2011, A&A, 536A, 105 ) instrument at the VLT-ESO facility at four different longitudes on the surface of Quaoar. The data are complemented by previously published photometric observations obtained in the near-infrared (3.6, 4.5 micrometers) with the Spitzer Space Telescope, which provide an extra set of constraints in the model calculation process in spite of the different observing times that preclude establishing the spatial consistency between the two sets. For each of the four spectra we perform spectral modeling of the entire wavelength range -from 0.3 to 4.5 micrometers- by means of a code based on the Shkuratov radiative transfer formulation of the slab model. We obtain spatially resolved compositional information for the surface of Quaoar supporting the presence of CH4 and C2H6, as previously reported, along with evidence for N2 and NH3OH. The albedo at the two Spitzer bands indicates the likely presence of CO and CO2. CH3OH, predicted on the basis of Quaoar's coloration (Brown et al. 2011), is not found at any of the

  6. A mononuclear nonheme iron(III)-superoxo complex: Crystallographic and spectroscopic characterization and reactivities

    PubMed Central

    Hong, Seungwoo; Sutherlin, Kyle D.; Park, Jiyoung; Kwon, Eunji; Siegler, Maxime A.; Solomon, Edward I.; Nam, Wonwoo

    2016-01-01

    Mononuclear nonheme iron(III)-superoxo species (FeIII-O2−•) have been implicated as key intermediates in the catalytic cycles of dioxygen activation by nonheme iron enzymes. Although nonheme iron(III)-superoxo species have been trapped and characterized spectroscopically in enzymatic and biomimetic reactions, no structural information has yet been obtained. Here we report for the first time the isolation, spectroscopic characterization, and crystal structure of a mononuclear side-on (η2) iron(III)-superoxo complex with a tetraamido macrocyclic ligand (TAML), [FeIII (TAML) (O2)]2− (1). The nonheme iron(III)-superoxo species undergoes both electrophilic and nucleophilic oxidation reactions as well as O2-transfer between metal complexes. In the O2-transfer reaction, 1 transfers the bound O2 unit to a manganese(III) analogue, resulting in the formation of a manganese(IV)-peroxo complex, [MnIV(TAML)(O2)]2− (2); 2 is characterized structurally and spectroscopically as a mononuclear side-on (η2) manganese(IV)-peroxo complex. The difference in the redox distribution between the metal ions and O2 in 1 and 2 is rationalized using density functional theory calculations. PMID:25510711

  7. Spectroscopic characterization of dissolved organic matter in coking wastewater during bio-treatment: full-scale plant study.

    PubMed

    Xu, Ronghua; Ou, Huase; Yu, Xubiao; He, Runsheng; Lin, Chong; Wei, Chaohai

    2015-01-01

    This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r=0.921, n=60, P<0.01) and DOC (r=0.959, n=60, P<0.01) and significant correlation (r=0.875, n=60, P<0.01) was also found between C2 and TN. Therefore, spectroscopic characterization could provide novel insights into removal behaviors of DOM and potential to monitor water quality real-time during CWW bio-treatment.

  8. Spectroscopic characterization of dissolved organic matter in coking wastewater during bio-treatment: full-scale plant study.

    PubMed

    Xu, Ronghua; Ou, Huase; Yu, Xubiao; He, Runsheng; Lin, Chong; Wei, Chaohai

    2015-01-01

    This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r=0.921, n=60, P<0.01) and DOC (r=0.959, n=60, P<0.01) and significant correlation (r=0.875, n=60, P<0.01) was also found between C2 and TN. Therefore, spectroscopic characterization could provide novel insights into removal behaviors of DOM and potential to monitor water quality real-time during CWW bio-treatment. PMID:26465313

  9. Spectroscopic and Functional Characterization of Iron-Bound Forms of Azotobacter vinelandiiNifIscA†

    PubMed Central

    Mapolelo, Daphne T.; Zhang, Bo; Naik, Sunil G.; Huynh, Boi Hanh; Johnson, Michael K.

    2012-01-01

    The ability of Azotobacter vinelandii NifIscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. NifIscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, CD and VTMCD, EPR, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5cm−1) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm−1) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound NifIscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ±15 mV at pH 7.8 (versus NHE). L-cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of NifIscA. Fe(III)-bound NifIscA was also shown to a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results. PMID:23003563

  10. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-01

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  11. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions

    NASA Astrophysics Data System (ADS)

    Sathish, K.; Thirumaran, S.

    2015-08-01

    The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  12. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA.

    PubMed

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.

  13. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-01

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  14. Spectroscopic characterization of alumina-supported bis(allyl)iridium complexes : site-isolation, reactivity, and decomposition studies.

    SciTech Connect

    Trovitch, R. J.; Guo, N.; Janicke, M. T.; Li, H.; Marshall, C. L.; Miller, J. T.; Sattelberger, A. P.; John, K. D.; Baker, R. T.; LANL; Univ. of Ottawa

    2010-01-01

    The covalent attachment of tris(allyl)iridium to partially dehydroxylated ?-alumina is found to proceed via surface hydroxyl group protonation of one allyl ligand to form an immobilized bis(allyl)iridium moiety, (?AlO)Ir(allyl)2, as characterized by CP-MAS 13C NMR, inductively coupled plasma-mass spectrometry, and Ir L3 edge X-ray absorption spectroscopy. Extended X-ray absorption fine-structure (EXAFS) measurements taken on unsupported Ir(allyl)3 and several associated tertiary phosphine addition complexes suggest that the ?3-allyl ligands generally account for an Ir-C coordination number of 2 rather than 3, with an average Ir-C distance of 2.16 A. Using this knowledge, combined EXAFS and X-ray absorption near-edge structure studies reveal that a small amount of Ir0 is also formed upon reaction of Ir(allyl)3 with the surface. It was found that the addition of either 2,6-dimethylphenyl isocyanide or carbon monoxide to the supported complex allows spectroscopic identification of the supported bis(allyl)iridium complexes, (?AlO)Ir(allyl)2(CNAr) [Ar = 2,6-(CH3)2C6H4] and (?AlO)Ir(allyl)2(CO)2, respectively. Although samples of the supported bis(allyl)iridium complex are active for the dehydrogenation of cyclohexane to benzene at temperatures between 180 and 220C, in situ temperature-programmed reaction XAFS and continuous-flow reactor studies suggest that Ir0 nanoparticles, rather than a well-defined Ir3+ complex, are responsible for the observed activity.

  15. Spectroscopic characterization of alumina-supported bis(allyl)iridium complexes: site-isolation, reactivity, and decomposition studies.

    PubMed

    Trovitch, Ryan J; Guo, Neng; Janicke, Michael T; Li, Hongbo; Marshall, Christopher L; Miller, Jeffrey T; Sattelberger, Alfred P; John, Kevin D; Baker, R Thomas

    2010-03-01

    The covalent attachment of tris(allyl)iridium to partially dehydroxylated gamma-alumina is found to proceed via surface hydroxyl group protonation of one allyl ligand to form an immobilized bis(allyl)iridium moiety, (=AlO)Ir(allyl)(2), as characterized by CP-MAS (13)C NMR, inductively coupled plasma-mass spectrometry, and Ir L(3) edge X-ray absorption spectroscopy. Extended X-ray absorption fine-structure (EXAFS) measurements taken on unsupported Ir(allyl)(3) and several associated tertiary phosphine addition complexes suggest that the eta(3)-allyl ligands generally account for an Ir-C coordination number of 2 rather than 3, with an average Ir-C distance of 2.16 A. Using this knowledge, combined EXAFS and X-ray absorption near-edge structure studies reveal that a small amount of Ir(0) is also formed upon reaction of Ir(allyl)(3) with the surface. It was found that the addition of either 2,6-dimethylphenyl isocyanide or carbon monoxide to the supported complex allows spectroscopic identification of the supported bis(allyl)iridium complexes, (=AlO)Ir(allyl)(2)(CNAr) [Ar = 2,6-(CH(3))(2)C(6)H(4)] and (=AlO)Ir(allyl)(2)(CO)(2), respectively. Although samples of the supported bis(allyl)iridium complex are active for the dehydrogenation of cyclohexane to benzene at temperatures between 180 and 220 degrees C, in situ temperature-programmed reaction XAFS and continuous-flow reactor studies suggest that Ir(0) nanoparticles, rather than a well-defined Ir(3+) complex, are responsible for the observed activity. PMID:20112918

  16. Reactivity of Chromium(III) Nutritional Supplements in Biological Media: An X-Ray Absorption Spectroscopic Study

    SciTech Connect

    Nguyen, A.; Mulyani, I.; Levina, A.; Lay, P.A.

    2009-05-22

    Chromium(III) nutritional supplements are widely used due to their purported ability to enhance glucose metabolism, despite growing evidence on low activity and the potential genotoxicity of these compounds. Reactivities of Cr(III) complexes used in nutritional formulations, including [Cr3O(OCOEt)6(OH2)3]+ (A), [Cr(pic)3] (pic) = 2-pyridinecarboxylato(-) (B), and trans-[CrCl2(OH2)4]+ (CrCl3 {center_dot} 6H2O; C), in a range of natural and simulated biological media (artificial digestion systems, blood and its components, cell culture media, and intact L6 rat skeletal muscle cells) were studied by X-ray absorption near-edge structure (XANES) spectroscopy. The XANES spectroscopic data were processed by multiple linear-regression analyses with the use of a library of model Cr(III) compounds, and the results were corroborated by the results of X-ray absorption fine structure spectroscopy and electrospray mass spectrometry. Complexes A and B underwent extensive ligand-exchange reactions under conditions of combined gastric and intestinal digestion (in the presence of a semisynthetic meal, 3 h at 310 K), as well as in blood serum and in a cell culture medium (1-24 h at 310 K), with the formation of Cr(III) complexes with hydroxo and amino acid/protein ligands. Reactions of compounds A-C with cultured muscle cells led to similar ligand-exchange products, with at least part of Cr(III) bound to the surface of the cells. The reactions of B with serum greatly enhanced its propensity to be converted to Cr(VI) by biological oxidants (H2O2 or glucose oxidase system), which is proposed to be a major cause of both the insulin-enhancing activity and toxicity of Cr(III) compounds (Mulyani, I.; Levina, A.; Lay, P. A. Angew. Chem. Int. Ed. 2004, 43, 4504-4507). This finding enhances the current concern over the safety of consumption of large doses of Cr(III) supplements, particularly [Cr(pic)3].

  17. 13C Solid State Nuclear Magnetic Resonance and µ-Raman Spectroscopic Characterization of Sicilian Amber.

    PubMed

    Barone, Germana; Capitani, Donatella; Mazzoleni, Paolo; Proietti, Noemi; Raneri, Simona; Longobardo, Ugo; Di Tullio, Valeria

    2016-08-01

    (13)C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) and µ-Raman spectroscopy were applied to characterize Sicilian amber samples. The main goal of this work was to supply a complete study of simetite, highlighting discriminating criteria useful to distinguish Sicilian amber from fossil resins from other regions and laying the foundations for building a spectroscopic database of Sicilian amber. With this aim, a private collection of unrefined simetite samples and fossil resins from the Baltic region and Dominican Republic was analyzed. Overall, the obtained spectra permitted simetite to be distinguished from the other resins. In addition, principal component analysis (PCA) was applied to the spectroscopic data, allowing the clustering of simetite samples with respect to the Baltic and Dominican samples and to group the simetite samples in two sets, depending on their maturity. Finally, the analysis of loadings allowed for a better understanding of the spectral features that mainly influenced the discriminating characteristics of the investigated ambers.

  18. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    NASA Astrophysics Data System (ADS)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  19. Magnetic circular dichroism spectroscopic characterization of the NOS-like protein from Geobacillus stearothermophilus (gsNOS).

    PubMed

    Kinloch, Ryan D; Sono, Masanori; Sudhamsu, Jawahar; Crane, Brian R; Dawson, John H

    2010-03-01

    Nitric oxide synthase (NOS) catalyzes the NADPH- and O(2)-dependent oxidation of l-arginine (l-Arg) to nitric oxide (NO) and citrulline via an N(G)-hydroxy-l-arginine (NHA) intermediate. Mammalian NOSs have been studied quite extensively; other eukaryotes and some prokaryotes appear to express NOS-like proteins comparable to the oxygenase domain of mammalian NOSs. In this study, a recombinant NOS-like protein from the thermostable bacterium Geobacillus stearothermophilus (gsNOS) has been characterized using magnetic circular dichroism (MCD) and UV-Vis absorption spectroscopic techniques. Spectral comparisons of ligand complexes (with O(2), NO and CO) of substrate-bound (l-Arg or NHA) gsNOS, including the key oxyferrous complex studied at -50 degrees C in cryogenic mixed solvents, with analogous mammalian NOS complexes indicate overall spectroscopic similarities between gsNOS and mammalian NOSs. However, more detailed spectral comparisons reflect subtle structural differences between gsNOS and mammalian NOSs. This may be due to an incomplete tetrahydrobiopterin (BH(4))-binding site and low BH(4)-binding affinity, which may become even lower in the presence of cryosolvent in gsNOS. Although BH(4)-binding may be altered, gsNOS appears to require the pterin for NO production since formation of the stable ferric-NO product complex was only observed when excess BH(4) (>150muM) over gsNOS was present upon single turnover reaction in which O(2) was bubbled into dithionite-reduced NHA-bound protein solution at -35 degrees C or -50 degrees C. PMID:20110129

  20. Characterizing the collision of potassium atoms with a siloxane coated glass surface using spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Morgus, Tyler Christophe

    2001-07-01

    We have developed a series of three experiments to characterize the collisions between potassium atoms and a siloxane coated non-stick surface on a glass substrate. The first experiment looks at the aggregate effect of multiple collisions of the potassium atoms with the surface. The atoms are observed spectroscopically. The spectroscopic information allows for the calculation of the flux, average velocity, and density of the potassium atoms. These quantities are also calculated with a computer model. The parameters of the model are the probability that a potassium atom will stick to the surface during a collision, and the probabilities that the collision is specular or diffuse. The second experiment uses the photo-desorption effect to create a spatially peaked non-equilibrium density distribution. The rate of decay of this distribution is fit with a computer model whose free parameter is proportional to the probability that an atom will stick to the siloxane coated wall during a collision. The third experiment is designed to observe the results of a single collision with a siloxane coated surface. Again, the potassium atoms are observed spectroscopically, the Doppler effect providing velocity resolution. The intensity of the fluorescence is related to the velocity-density distribution. The density is then theoretically modeled using the same simple kernel, accounting for contributions to the density from the potassium source, specular collisions, and diffuse collisions.

  1. Spectroscopic characterization of biological agents using FTIR, normal Raman and surface-enhanced Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Luna-Pineda, Tatiana; Soto-Feliciano, Kristina; De La Cruz-Montoya, Edwin; Pacheco Londoño, Leonardo C.; Ríos-Velázquez, Carlos; Hernández-Rivera, Samuel P.

    2007-04-01

    FTIR, Raman spectroscopy and Surface Enhanced Raman Scattering (SERS) requires a minimum of sample allows fast identification of microorganisms. The use of this technique for characterizing the spectroscopic signatures of these agents and their stimulants has recently gained considerable attention due to the fact that these techniques can be easily adapted for standoff detection from considerable distances. The techniques also show high sensitivity and selectivity and offer near real time detection duty cycles. This research focuses in laying the grounds for the spectroscopic differentiation of Staphylococcus spp., Pseudomonas spp., Bacillus spp., Salmonella spp., Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, and E. coli, together with identification of their subspecies. In order to achieve the proponed objective, protocols to handle, cultivate and analyze the strains have been developed. Spectroscopic similarities and marked differences have been found for Spontaneous or Normal Raman spectra and for SERS using silver nanoparticles have been found. The use of principal component analysis (PCA), discriminate factor analysis (DFA) and a cluster analysis were used to evaluate the efficacy of identifying potential threat bacterial from their spectra collected on single bacteria. The DFA from the bacteria Raman spectra show a little discrimination between the diverse bacterial species however the results obtained from the SERS demonstrate to be high discrimination technique. The spectroscopic study will be extended to examine the spores produced by selected strains since these are more prone to be used as Biological Warfare Agents due to their increased mobility and possibility of airborne transport. Micro infrared spectroscopy as well as fiber coupled FTIR will also be used as possible sensors of target compounds.

  2. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong Soo; Song, Joon Woo; Jang, Sun-Joo; Lee, Jae Joong; Oh, Wang-Yuhl; Kim, Jin Won; Yoo, Hongki

    2016-07-01

    Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the internal structures of walls of coronary arteries in vivo. However, accurate characterization of atherosclerotic plaques with gray-scale IV-OCT images is often limited by various intrinsic artifacts. In this study, we present an algorithm for characterizing lipid-rich plaques with a spectroscopic OCT technique based on a Gaussian center of mass (GCOM) metric. The GCOM metric, which reflects the absorbance properties of lipids, was validated using a lipid phantom. In addition, the proposed characterization method was successfully demonstrated in vivo using an atherosclerotic rabbit model and was found to have a sensitivity and specificity of 94.3% and 76.7% for lipid classification, respectively.

  3. Fe-complex of a tetraamido macrocyclic ligand: Spectroscopic characterization and catalytic oxidation studies

    NASA Astrophysics Data System (ADS)

    Sullivan, Shane Z.; Ghosh, Anindya; Biris, Alexandru S.; Pulla, Sharon; Brezden, Anna M.; Collom, Samulel L.; Woods, Ross M.; Munshi, Pradip; Schnackenberg, Laura; Pierce, Brad S.; Kannarpady, Ganesh K.

    2010-10-01

    This work presents the spectroscopic characterization and reaction studies of a Fe III-complex (2) of a tetraamido macrocyclic ligand (1, 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[a,g]cyclotridecene-6,7,14,16-tetraone). 2 was characterized primarily by means of EPR. In agreement with the magnetic moment ( μeff = 3.87 BM), EPR spectroscopy of 2 shows signals consistent with S = 3/2 intermediate-spin ferric-iron. Besides EPR, mass spectrometry, UV/vis spectroscopy and cyclic voltammetry were used to further characterize 2. 2 is soluble in water and activates hydrogen peroxide under ambient conditions. 2 catalytically bleaches dyes, pulp and paper effluents and oxidizes several amines to their corresponding N-oxides with high turnover number and good yields.

  4. Spectroscopic characterization of both aqueous and solid-state diacerhein/hydroxypropyl-β-cyclodextrin inclusion complexes

    NASA Astrophysics Data System (ADS)

    Petralito, Stefania; Zanardi, Iacopo; Spera, Romina; Memoli, Adriana; Travagli, Valter

    2014-06-01

    Diacerhein, a poorly water soluble antirheumatic prodrug, was spectroscopically characterized to form inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβCD) in both aqueous solution and in solid phase. Complexation with the hydrophilic carriers was used to improve the solubility and dissolution rate of the compound. The kinetics of the prodrug degradation to the active rhein in aqueous buffer solution were also investigated as a function of HPβCD concentration. The solid complexes prepared by different methods such as physical mixture, kneading, co-evaporation method and freeze dried method in 1:1 M ratio, were characterized by DSC and FTIR. The dissolution profiles of solid complexes were determined and compared with diacerhein alone and their physical mixture, in the simulated intestinal fluid at 37 °C. The accurate molecular spectroscopic characterization of diacerhein in the presence of different amounts of aqueous cyclodextrins was essential to determine the correct binding constants for the diacerhein/HPβCD system. The binding constants were also validated by UV spectrometry and HPLC procedure in order to compare the values from the different methods. Higuchi-Connors phase solubility method has proved not suitable when either the free or/and the complexed prodrug degrade in aqueous solution.

  5. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    NASA Astrophysics Data System (ADS)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  6. Mass spectroscopic characterization of the GeSe:GeI4 vapor transport system

    NASA Technical Reports Server (NTRS)

    Buchan, Nicholas I.; Rosenberger, Franz

    1987-01-01

    The GeSe:GeI4 vapor crystal growth system was characterized mass spectroscopically. A steady-state Knudsen effusion technique was developed to simulate the equilibrium conditions at one end of a vapor transport ampoule. It was found that the previously neglected equilibrium GeSe2(s) = GeSe(v) + 1/2Se2(v) reduces the Se2(v) concentration to an extent that sublimation/condensation of GeSe becomes the dominant transport mechanism. At total pressures near 1 atm the concentration of an additional Ge-Se-I vapor species becomes comparable to that of GeSe(v).

  7. Synthesis, spectroscopic characterization and hydroxylation of Mn(II) complexes with bis(2-pyridylmethyl)benzylamine.

    PubMed

    Li, Jun-Feng; Chen, Qiu-Yun

    2009-07-01

    Two new Mn(II) complexes of bis(2-pyridylmethyl)benzylamine (bpa) were synthesized and characterized by elemental analyses, IR and UV-visible spectroscopies, thermal analyses and ES-MS. These complexes are stable in air with the formula of [(pba)2Mn2Cl2(micro-Cl)2] (1) and [(pba)2Mn2(H2O)2(micro-Ac)2] (Ac)2 (2). The spectroscopic titration results show that the complexes could react with H2O2 resulting active oxidants, which could cause the intramolecular aromatic hydroxylation. The hydroxylated ligand (pba-OH) was confirmed by ES-MS and HPLC. PMID:19223230

  8. Processing of High Level Waste: Spectroscopic Characterization of Redox Reactions in Supercritical Water - Final Report

    SciTech Connect

    Arrington Jr., C. A.

    2000-11-15

    Current efforts are focused on the oxidative dissolution of chromium compounds found in Hanford tank waste sludge. Samples of chromium oxides and hydroxides with varying degrees of hydration are being characterized using Raman, FTIR, and XPS spectroscopic techniques. Kinetics of oxidation reactions at subcritical and supercritical temperatures are being followed by Raman spectroscopy using a high temperature stainless steel cell with diamond windows. In these reactions both hydrogen peroxide and nitrate anions are used as the oxidizing species with Cr(III) compounds and organic compounds as reducing agents.

  9. Mass spectroscopic characterization of yttrium-containing metallofullerene YC82 using resonant laser ablation

    SciTech Connect

    Wang Shiliang; Tian Jiahe; Dai Songtao; Chen Dieyan; Luo Chuping; Tan Haisong; Gan Liangbing; Huang Chunhui

    1995-04-01

    In this paper, resonant laser ablation time-of-flight mass spectroscopy (RLA-TOF-MS) has been used to mass spectroscopic characterization of yttrium-containing fullerenes. Solvent soluble, yttrium-containing fullerenes are extracted from yttrium/carbon soot produced by the carbon-arc fullerene generation method. The RLA-TOF mass spectra indicate the presence of YC82. The metallofullerences YC60, YC70, Y2C82 and a series of Y2C2n are not observed by RLA-TOF-MS. This result is consistent with the ESR spectral result reported by Shinohara et al.

  10. Synthesis and spectroscopic characterization of Yb3+ in Ca1-XYbXF2+X crystals

    NASA Astrophysics Data System (ADS)

    Ito, M.; Goutaudier, C.; Guyot, Y.; Lebbou, K.; Fukuda, T.; Boulon, G.

    2004-11-01

    Ca1-XYbXF2+X crystals were grown by two different methods: simple melting under CF{4} atmosphere and laser heated pedestal growth (LHPG) method under Ar atmosphere. Spectroscopic characterization has been carried out to separate different crystallographic site in Ca1-XYbXF2+X crystals and to identify Stark's levels of Yb3+ transitions. Experimental decay time dependence of Yb3+ concentration was analyzed by using concentration gradient fiber in order to understand concentration quenching mechanisms. Energy transfer to unexpected rare earth impurities observed by up-conversion emission spectra in visible region under IR Yb3+ ion pumping seems to be an efficient process.

  11. Infrared spectroscopic characterization of human white matter, grey matter, and multiple sclerosis lesions

    NASA Astrophysics Data System (ADS)

    Choo, Lin-P'ing; Jackson, Michael; Halliday, William C.; Mantsch, Henry H.

    1994-01-01

    FT-IR spectroscopy has been used to characterize white matter, grey matter, and multiple sclerosis (MS) plaques from human central nervous system (CNS) tissue. Discrimination among these three tissue types is possible due to variations in composition. Spectra of white matter exhibit strong lipid absorptions. In contrast, spectra of grey matter reveal a reduced lipid contribution and a significant absorption from water. MS plaques exhibit spectra indicative of lipid loss and, depending upon whether the plaques are chronic or acute, changes in the protein and/or water content.

  12. Silver sulfadoxinate: Synthesis, structural and spectroscopic characterizations, and preliminary antibacterial assays in vitro

    NASA Astrophysics Data System (ADS)

    Zanvettor, Nina T.; Abbehausen, Camilla; Lustri, Wilton R.; Cuin, Alexandre; Masciocchi, Norberto; Corbi, Pedro P.

    2015-02-01

    The sulfa drug sulfadoxine (SFX) reacted with Ag+ ions in aqueous solution, affording a new silver(I) complex (AgSFX), which was fully characterized by chemical, spectroscopic and structural methods. Elemental, ESI-TOF mass spectrometric and thermal analyses of AgSFX suggested a [Ag(C12H13N4O2S)] empirical formula. Infrared spectroscopic measurements indicated ligand coordination to Ag(I) through the nitrogen atoms of the (deprotonated) sulfonamide group and by the pyrimidine ring, as well as through oxygen atom(s) of the sulfonamide group. These hypotheses were corroborated by 13C and 15N SS-NMR spectroscopy and by an unconventional structural characterization based on X-ray powder diffraction data. The latter showed that AgSFX crystallizes as centrosymmetric dimers with a strong Ag⋯Ag interaction of 2.7435(6) Å, induced by the presence of exo-bidentate N,N‧ bridging ligands and the formation of an eight-membered ring of [AgNCN]2 sequence, nearly planar. Participation of oxygen atoms of the sulfonamide residues generates in the crystal a 1D coordination polymer, likely responsible for its very limited solubility in all common solvents. Besides the analytical, spectroscopic and structural description, the antibacterial properties of AgSFX were assayed using disc diffusion methods against Escherichia coli and Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) bacterial strains. The AgSFX complex showed to be active against Gram-positive and Gram-negative bacterial strains, being comparable to the activities of silver sulfadiazine.

  13. Spectroscopic Characterization of the Water Oxidation Intermediates in the Blue Dimer Ru-Based Catalyst for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Pushkar, Yulia; Jurss, Jonah; Concepcion, Javier; Meyer, Thomas; Zakharova, Taisiya; Alperovich, Igor

    2012-02-01

    Utilization of sunlight requires solar capture, light-to-energy conversion and storage. One effective way to store energy is to convert it into chemical energy by fuel-forming reactions, such as water splitting into hydrogen and oxygen. Ruthenium complexes are among few molecular-defined catalysts capable of water splitting. Mechanistic insights about such catalysts can be acquired by spectroscopic analysis of short-lived intermediates of catalytic water oxidation. Use of techniques such as EPR and X-ray absorption spectroscopy (XAS) are used to determine electronic requirements of catalytic water oxidation. About 30 years ago Meyer and coworkers reported first ruthenium-based catalyst for water oxidation, the ``blue dimer''. We performed EPR studies and characterized structures and electronic configurations of intermediates of water oxidation by the ``blue dimer''. Intermediates were prepared chemically by oxidation of Ru-complexes with defined number of Ce (IV) equivalents and freeze-quenched at controlled times. Changes in oxidation state of Ru atom were detected by XANES at Ru K-edges. K-edges are sensitive to changes in Ru oxidation state for Blue Dimer [3,3]^4+, [3,4]^4+, [3,4]'^4+ and [4,5]^3+ allowing a clear assignment of Ru oxidation state in intermediates. EXAFS demonstrated structural changes.

  14. Synthesis, structural characterization, Hirshfeld surface analysis and spectroscopic studies of cadmium (II) chloride complex with 4-hydroxy-1-methylpiperidine

    NASA Astrophysics Data System (ADS)

    Soudani, S.; Ferretti, V.; Jelsch, C.; Lefebvre, F.; Nasr, C. Ben

    2016-05-01

    The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel cadmium (II) 4-hydroxy-1-methylpiperidine complex, Cd4Cl10(C6H14NO)2·2H2O, have been reported. The atomic arrangement can be described as built up by an anionic framework, formed by edge sharing CdCl6 and CdCl5O octahedral linear chains spreading along the a-axis. These chains are interconnected by water molecules via O-H⋯Cl and O-H⋯O hydrogen bonds to form layers parallel to (011) plane. The organic cations are inserted between layers through C-H⋯Cl hydrogen bonds. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that the HC⋯Cl and HC⋯HC intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The statistical analysis of crystal contacts reveals the driving forces in the packing formation. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.

  15. Characterization of spectroscopic and laser properties of Pr3+ in Sr5(PO4)3F crystal

    NASA Astrophysics Data System (ADS)

    Sardar, Dhiraj K.; Castano, Francisco

    2002-02-01

    Spectroscopic and laser properties have been characterized for Pr3+ incorporated into Sr5(PO4)3F crystal belonging to the apatite structure family. The standard Judd-Ofelt analysis has been applied to the measured optical absorption intensities to determine the radiative decay rates, branching ratios, and emission cross sections of principal intermanifold transitions of Pr3+ from the 1D2 and 3P0 states to the lower-lying manifolds in the visible region. The measured room temperature fluorescence lifetimes of the 1D2→3H4 (594 nm) and 3P0→3F2 (625 nm) transition are 325 and 105 μs, respectively, while the Judd-Ofelt analysis predicts the radiative lifetimes for the 1D2 and 3P0 states to be 822 and 116 μs, respectively. The room temperature emission cross sections of the 1D2→3H4 and 3P0→3F2 intermanifold transitions have been also determined to be 0.54×10-20 and 4.15×10-20 cm2, respectively.

  16. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    PubMed

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  17. Accurate geometric characterization of gold nanorod ensemble by an inverse extinction/scattering spectroscopic method.

    PubMed

    Xu, Ninghan; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan

    2013-09-01

    Aspect ratio, width, and end-cap factor are three critical parameters defined to characterize the geometry of metallic nanorod (NR). In our previous work [Opt. Express 21, 2987 (2013)], we reported an optical extinction spectroscopic (OES) method that can measure the aspect ratio distribution of gold NR ensembles effectively and statistically. However, the measurement accuracy was found to depend on the estimate of the width and end-cap factor of the nanorod, which unfortunately cannot be determined by the OES method itself. In this work, we propose to improve the accuracy of the OES method by applying an auxiliary scattering measurement of the NR ensemble which can help to estimate the mean width of the gold NRs effectively. This so-called optical extinction/scattering spectroscopic (OESS) method can fast characterize the aspect ratio distribution as well as the mean width of gold NR ensembles simultaneously. By comparing with the transmission electron microscopy experimentally, the OESS method shows the advantage of determining two of the three critical parameters of the NR ensembles (i.e., the aspect ratio and the mean width) more accurately and conveniently than the OES method.

  18. Quantitative ultrasound spectroscopic imaging for characterization of disease extent in prostate cancer patients.

    PubMed

    Sadeghi-Naini, Ali; Sofroni, Ervis; Papanicolau, Naum; Falou, Omar; Sugar, Linda; Morton, Gerard; Yaffe, Martin J; Nam, Robert; Sadeghian, Alireza; Kolios, Michael C; Chung, Hans T; Czarnota, Gregory J

    2015-02-01

    Three-dimensional quantitative ultrasound spectroscopic imaging of prostate was investigated clinically for the noninvasive detection and extent characterization of disease in cancer patients and compared to whole-mount, whole-gland histopathology of radical prostatectomy specimens. Fifteen patients with prostate cancer underwent a volumetric transrectal ultrasound scan before radical prostatectomy. Conventional-frequency (~5MHz) ultrasound images and radiofrequency data were collected from patients. Normalized power spectra were used as the basis of quantitative ultrasound spectroscopy. Specifically, color-coded parametric maps of 0-MHz intercept, midband fit, and spectral slope were computed and used to characterize prostate tissue in ultrasound images. Areas of cancer were identified in whole-mount histopathology specimens, and disease extent was correlated to that estimated from quantitative ultrasound parametric images. Midband fit and 0-MHz intercept parameters were found to be best associated with the presence of disease as located on histopathology whole-mount sections. Obtained results indicated a correlation between disease extent estimated noninvasively based on midband fit parametric images and that identified histopathologically on prostatectomy specimens, with an r(2) value of 0.71 (P<.0001). The 0-MHz intercept parameter demonstrated a lower level of correlation with histopathology. Spectral slope parametric maps offered no discrimination of disease. Multiple regression analysis produced a hybrid disease characterization model (r(2)=0.764, P<.05), implying that the midband fit biomarker had the greatest correlation with the histopathologic extent of disease. This work demonstrates that quantitative ultrasound spectroscopic imaging can be used for detecting prostate cancer and characterizing disease extent noninvasively, with corresponding gross three-dimensional histopathologic correlation.

  19. Quantitative Ultrasound Spectroscopic Imaging for Characterization of Disease Extent in Prostate Cancer Patients1

    PubMed Central

    Sadeghi-Naini, Ali; Sofroni, Ervis; Papanicolau, Naum; Falou, Omar; Sugar, Linda; Morton, Gerard; Yaffe, Martin J.; Nam, Robert; Sadeghian, Alireza; Kolios, Michael C.; Chung, Hans T.; Czarnota, Gregory J.

    2015-01-01

    Three-dimensional quantitative ultrasound spectroscopic imaging of prostate was investigated clinically for the noninvasive detection and extent characterization of disease in cancer patients and compared to whole-mount, whole-gland histopathology of radical prostatectomy specimens. Fifteen patients with prostate cancer underwent a volumetric transrectal ultrasound scan before radical prostatectomy. Conventional-frequency (~ 5 MHz) ultrasound images and radiofrequency data were collected from patients. Normalized power spectra were used as the basis of quantitative ultrasound spectroscopy. Specifically, color-coded parametric maps of 0-MHz intercept, midband fit, and spectral slope were computed and used to characterize prostate tissue in ultrasound images. Areas of cancer were identified in whole-mount histopathology specimens, and disease extent was correlated to that estimated from quantitative ultrasound parametric images. Midband fit and 0-MHz intercept parameters were found to be best associated with the presence of disease as located on histopathology whole-mount sections. Obtained results indicated a correlation between disease extent estimated noninvasively based on midband fit parametric images and that identified histopathologically on prostatectomy specimens, with an r2 value of 0.71 (P < .0001). The 0-MHz intercept parameter demonstrated a lower level of correlation with histopathology. Spectral slope parametric maps offered no discrimination of disease. Multiple regression analysis produced a hybrid disease characterization model (r2 = 0.764, P < .05), implying that the midband fit biomarker had the greatest correlation with the histopathologic extent of disease. This work demonstrates that quantitative ultrasound spectroscopic imaging can be used for detecting prostate cancer and characterizing disease extent noninvasively, with corresponding gross three-dimensional histopathologic correlation. PMID:25749174

  20. Isolation and spectroscopic characterization of two isomers of the metallofullerene Nd at C82

    SciTech Connect

    Porfyrakis, Kyriakos; Briggs, G. Andrew D.; Kanai, Mito; Dennis, T. John S.; Morley, Gavin W.; Ardavan, Arzhang

    2005-09-27

    For the first time, two types of the metallofullerene Nd at C82 have been isolated and characterized. HPLC was used to isolate Nd at C82(I, II). The two isomers were characterized by mass spectrometry and UV-Vis-NIR absorption spectroscopy. Nd at C82(I) was found to be similar in structure to the main isomer of other lanthanofullerenes such as La at C82, as was previously reported. We assign Nd at C82(I) to have a C2v cage symmetry. Nd at C82(II) showed a markedly different UV-Vis-NIR absorption spectrum to Nd at C82(I). Its spectrum is in good agreement with that of the minor isomer of metallofullerenes such as Pr at C82. We therefore assign Nd at C82(II) to have a Cs cage symmetry. In contrast to other metallofullerenes, both isomers appear to be equally abundant.

  1. Spectroscopic Character and Spatial Distribution of Hydroxyl and Water Absorption Features Measured on the Lunar Surface by the Moon Mineralogy Mapper Imaging Spectrometer on Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Green, R. O.; Pieters, C. M.; Goswami, J.; Clark, R. N.; Annadurai, M.; Boardman, J. W.; Buratti, B. J.; Combe, J.; Dyar, M. D.; Head, J. W.; Hibbitts, C.; Hicks, M.; Isaacson, P.; Klima, R. L.; Kramer, G. Y.; Kumar, S.; Livo, K. E.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J. F.; Nettles, J. W.; Petro, N. E.; Runyon, C. J.; Staid, M.; Sunshine, J. M.; Taylor, L. A.; Tompkins, S.; Varanasi, P.

    2009-12-01

    The Moon Mineralogy Mapper imaging spectrometer on Chandrayaan-1 has a broad spectral range from 430 to 3000 nm. By design, the range was specified to extend to 3000 nm to allow for possible detection of trace volatile compounds that possess absorption bands near 3000 nm. Soon after acquisition and calibration of a large fraction of the lunar surface in early February 2009, absorption features in the 2700 to 3000 nm region were detected over unexpectedly large regional areas. This extraordinary discovery has withstood extensive re-analysis and falsification efforts. We have concluded these absorption features are fundamentally present in the M3 measurements and are indicators of extensive hydroxyl and water-bearing materials occurring on the surface of the Moon. Based on current analyses, these absorption features appear strongest at high latitudes, but also occur in association with several fresh feldspathic craters. Interestingly, the distribution of these absorption features are not directly correlated with existing neutron spectrometer hydrogen abundance data for the sunlight surface. This may indicate that the formation and retention of hydroxyl and water is an active process largely restricted to the upper most surface. We present the detailed spectroscopic character of these absorption features in the 2700 to 3000 nm spectral region, including selected examples through all levels of measurement processing from raw data to calibrated apparent surface reflectance. In summary we show the measured strength and latitudinal distribution of the absorptions as well as selected localized occurrences in association with fresh feldspathic craters. The presence of hydroxyl and water bearing material over extensive regions of the lunar surface provides a new and unexpected source of volatiles. Options for harvesting these elements directly from the regolith may provide an alternate supply of volatiles for long term human exploration objectives.

  2. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT

    NASA Astrophysics Data System (ADS)

    Bardak, F.; Karaca, C.; Bilgili, S.; Atac, A.; Mavis, T.; Asiri, A. M.; Karabacak, M.; Kose, E.

    2016-08-01

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, 1H and 13C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400 nm. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400 cm- 1 and 3500-50 cm- 1, respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The 13C and 1H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained.

  3. Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT.

    PubMed

    Bardak, F; Karaca, C; Bilgili, S; Atac, A; Mavis, T; Asiri, A M; Karabacak, M; Kose, E

    2016-08-01

    Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, (1)H and (13)C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400nm. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400cm(-1) and 3500-50cm(-1), respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The (13)C and (1)H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained. PMID:27107533

  4. Quantitative characterization of energy absorption in femtosecond laser micro-modification of fused silica.

    PubMed

    Dostovalov, A V; Wolf, A A; Mezentsev, V K; Okhrimchuk, A G; Babin, S A

    2015-12-14

    We present the results of experimental and theoretical study of an energy absorption of femtosecond laser pulse in fused silica. Fundamental and second harmonics of ytterbium laser were used in experiment while general case was considered theoretically and numerically. More efficient absorption at the second harmonics is confirmed both experimentally and numerically. Quantitative characterization of the theoretical model is performed by fitting key parameters of the absorption process such as cross-section of multi-photon absorption and effective electronic collision and recombination times. PMID:26699043

  5. Precision atomic beam density characterization by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  6. Optical characterization of the PtSi/Si by using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Le, Van Long; Kim, Tae Jung; Park, Han Gyeol; Kim, Hwa Seob; Yoo, Chang Hyun; Kim, Hyoung Uk; Kim, Young Dong; Kim, Junsoo; Im, Solyee; Choi, Won Chul; Moon, Seung Eon; Nam, Eun Soo

    2016-08-01

    We report an optical characterization of PtSi films for thermoelectric device applications which was done by using nondestructive spectroscopic ellipsometry (SE). A Pt monolayer and a Pt-Si multilayer which consisted of three pairs of Pt and Si layers were deposited on p-doped-silicon substrates by using sputtering method; then, rapid annealing process was done to form PtSi films through intermixing of Pt and Si atoms at the interface. Pseudodielectric function data < ɛ > = < ɛ 1 > + i < ɛ 2 > for the PtSi/Si samples were obtained from 1.12 to 6.52 eV by using spectroscopic ellipsometry. Employing the Tauc-Lorentz and the Drude models, determined the dielectric function ( ɛ) of the PtSi films. We found that the composition ratio of Pt:Si was nearly 1:1 for the PtSi monolayer and we observed transitions between occupied and unoccupied states in the Pt 5 d states. We also observed the formation of PtSi layers in the Pt-Si multilayer sample. The SE results were confirmed by the transmission electron microscopy and energy dispersive X-ray spectroscopy.

  7. FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization

    NASA Astrophysics Data System (ADS)

    Selvaraju, R.; Raja, A.; Thiruppathi, G.

    2015-02-01

    In the present study, FT-IR, XRD, TGA-DTA spectral methods have been used to investigate the chemical compositions of urinary calculi. Multi-components of urinary calculi such as calcium oxalate, hydroxyl apatite, struvite and uric acid have been studied. The chemical compounds are identified by FT-IR spectroscopic technique. The mineral identification was confirmed by powder X-ray diffraction patterns as compared with JCPDS reported values. Thermal analysis techniques are considered the best techniques for the characterization and detection of endothermic and exothermic behaviors of the urinary stones. The percentages of each hydrate (COM and COD) are present together, in the presences of MAPH or UA. Finally, the present study suggests that the Urolithiasis is significant health problem in children, and is very common in some parts of the world, especially in India. So that present study is so useful and helpful to the scientific community for identification of latest human health problems and their remedies using spectroscopic techniques.

  8. 13C Solid State Nuclear Magnetic Resonance and µ-Raman Spectroscopic Characterization of Sicilian Amber.

    PubMed

    Barone, Germana; Capitani, Donatella; Mazzoleni, Paolo; Proietti, Noemi; Raneri, Simona; Longobardo, Ugo; Di Tullio, Valeria

    2016-08-01

    (13)C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) and µ-Raman spectroscopy were applied to characterize Sicilian amber samples. The main goal of this work was to supply a complete study of simetite, highlighting discriminating criteria useful to distinguish Sicilian amber from fossil resins from other regions and laying the foundations for building a spectroscopic database of Sicilian amber. With this aim, a private collection of unrefined simetite samples and fossil resins from the Baltic region and Dominican Republic was analyzed. Overall, the obtained spectra permitted simetite to be distinguished from the other resins. In addition, principal component analysis (PCA) was applied to the spectroscopic data, allowing the clustering of simetite samples with respect to the Baltic and Dominican samples and to group the simetite samples in two sets, depending on their maturity. Finally, the analysis of loadings allowed for a better understanding of the spectral features that mainly influenced the discriminating characteristics of the investigated ambers. PMID:27340217

  9. Chemical and spectroscopic characterization of a suite of Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Banin, A.; Orenberg, J. B.; Carle, G. C.; Chang, S.; Scattergood, T. W.

    1987-01-01

    The National Aeronautics and Space Administration has begun preparations for the flight of the Mars Observer Mission in the early 1990s. An advanced ground-based study is being conducted on a usefully limited suite of Mars Soil Analog Materials (MarSAM) intended to simulate the aeolian material covering the surface of Mars. A series of variably proportioned iron/calcium smectite clays were prepared from a typical montmorillonite clay using the Banin method. The effect of increasing iron on a diverse set of chemical and spectroscopic properties of the suite of clays is discussed. In order to chemically characterize the MarSAM and compare them with the Martian soil studied by Viking, the clays were analyzed for their major and minor elemental compositions by X-ray fluorescence and ion-coupled plasma techniques. It was concluded that the surface iron has a complex and hitherto uninvestigated impact on the catalytic and spectroscopic properties of clays and on the ability of these material to store energy.

  10. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  11. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Shivashankar, S. A.

    2015-12-01

    We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 °C), decomposition temperature (202 °C) as that with zinc acetylacetonate (136 °C, 220 °C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process.

  12. ATLAST Detector Needs for Direct Spectroscopic Biosignature Characterization in the Visible and Near-IR

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Bolcar, Matthew R.; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Moseley, S. H.; Stahle, Carl; Stark, Christopher C.; Thronson, Harley A.

    2015-01-01

    Are we alone? Answering this ageless question will be a major focus for astrophysics in coming decades. Our tools will include unprecedentedly large UV-Optical-IR space telescopes working with advanced coronagraphs and starshades. Yet, these facilities will not live up to their full potential without better detectors than we have today. To inform detector development, this paper provides an overview of visible and near-IR (VISIR; lambda = 0.4 - 1.8 micrometers) detector needs for the Advanced Technology Large Aperture Space Telescope (ATLAST), specifically for spectroscopic characterization of atmospheric biosignature gasses. We also provide a brief status update on some promising detector technologies for meeting these needs in the context of a passively cooled ATLAST.

  13. Positron surface state as a spectroscopic probe for characterizing surfaces of topological insulator materials

    NASA Astrophysics Data System (ADS)

    Callewaert, Vincent; Shastry, K.; Saniz, Rolando; Makkonen, Ilja; Barbiellini, Bernardo; Assaf, Badih A.; Heiman, Donald; Moodera, Jagadeesh S.; Partoens, Bart; Bansil, Arun; Weiss, A. H.

    2016-09-01

    Topological insulators are attracting considerable interest due to their potential for technological applications and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control, and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of Eb=2.7 ±0.2 eV is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant signal originating from annihilation with the topological surface states and show the feasibility to detect their spin texture through the use of spin-polarized positron beams.

  14. Spectroscopic characterization of recently excavated archaeological potsherds from Tamilnadu, India with multi-analytical approach.

    PubMed

    Raja Annamalai, G; Ravisankar, R; Rajalakshmi, A; Chandrasekaran, A; Rajan, K

    2014-12-10

    A combined analytical study of potsherds excavated from different archaeological sites of Tamilnadu (Kavalapatti, Nattapuraki and Thamaraikulam villages), India are analyzed by spectroscopic techniques such as FTIR, X-ray diffraction, thermogravimetric analysis (TGA) and Scanning Electron Microscope (SEM) coupled with Energy Dispersive Spectrometer (EDS). FTIR and XRD techniques have been attempted to characterize the mineralogical composition, firing temperature and firing conditions of the archaeological potsherds. Thermogravimetric analysis (TGA) is the complementary study to estimate the firing temperature from characteristic thermal reactions in potsherds under controlled firing in inert gas atmosphere. Further, Scanning Electron Microscopy (SEM) equipped and coupled with an Energy Dispersive Spectrometer (EDS) to analyze internal morphology and chemical composition of the potsherds was used. From the results of the above techniques, the firing temperatures of potsherds were found to be greater than 650°C.

  15. Chemical Vapor Deposition Synthesis and Raman Spectroscopic Characterization of Large-Area Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Liao, Chun-Da; Lu, Yi-Ying; Tamalampudi, Srinivasa Reddy; Cheng, Hung-Chieh; Chen, Yit-Tsong

    2013-10-01

    We present a chemical vapor deposition (CVD) method to catalytically synthesize large-area, transferless, single- to few-layer graphene sheets using hexamethyldisilazane (HMDS) on a SiO2/Si substrate as a carbon source and thermally evaporated alternating Ni/Cu/Ni layers as a catalyst. The as-synthesized graphene films were characterized by Raman spectroscopic imaging to identify single- to few-layer sheets. This HMDS-derived graphene layer is continuous over the entire growth substrate, and single- to trilayer mixed sheets can be up to 30 -m in the lateral dimension. With the synthetic CVD method proposed here, graphene can be grown into tailored shapes directly on a SiO2/Si surface through vapor priming of HMDS onto predefined photolithographic patterns. The transparent and conductive HMDS-derived graphene exhibits its potential for widespread electronic and opto-electronic applications.

  16. Spectroscopic characterization of recently excavated archaeological potsherds from Tamilnadu, India with multi-analytical approach.

    PubMed

    Raja Annamalai, G; Ravisankar, R; Rajalakshmi, A; Chandrasekaran, A; Rajan, K

    2014-12-10

    A combined analytical study of potsherds excavated from different archaeological sites of Tamilnadu (Kavalapatti, Nattapuraki and Thamaraikulam villages), India are analyzed by spectroscopic techniques such as FTIR, X-ray diffraction, thermogravimetric analysis (TGA) and Scanning Electron Microscope (SEM) coupled with Energy Dispersive Spectrometer (EDS). FTIR and XRD techniques have been attempted to characterize the mineralogical composition, firing temperature and firing conditions of the archaeological potsherds. Thermogravimetric analysis (TGA) is the complementary study to estimate the firing temperature from characteristic thermal reactions in potsherds under controlled firing in inert gas atmosphere. Further, Scanning Electron Microscopy (SEM) equipped and coupled with an Energy Dispersive Spectrometer (EDS) to analyze internal morphology and chemical composition of the potsherds was used. From the results of the above techniques, the firing temperatures of potsherds were found to be greater than 650°C. PMID:24929323

  17. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    PubMed

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  18. X-Ray Absorption Characterization of Diesel Exhaust Particulates

    SciTech Connect

    Nelson, A J; Ferreira, J L; Reynolds, J G; Roos, J W

    1999-11-18

    We have characterized particulates from a 1993 11.1 Detroit Diesel Series 60 engine with electronic unit injectors operated using fuels with and without methylcyclopentadienyl manganese tricarbonyl (MMT) and overbased calcium sulfonate added. X-ray photoabsorption (XAS) spectroscopy was used to characterize the diesel particulates. Results reveal a mixture of primarily Mn-phosphate with some Mn-oxide, and Ca-sulfate on the surface of the filtered particulates from the diesel engine.

  19. Electroanalytical and spectroscopic characterization of poly(o-phenylenediamine) grown on highly oriented pyrolytic graphite.

    PubMed

    De Giglio, Elvira; Losito, Ilario; Torsi, Luisa; Sabbatini, Luigia; Zambonin, Pier Giorgio

    2003-03-01

    The polymerization of ortho-phenylenediamine (o-PD) on Highly Oriented Pyrolytic Graphite (HOPG) at different pH (1,3,5,7) was investigated by electroanalytical and spectroscopic methods. Cyclic voltammetry was used both to polymerize o-PD and to study the electroactivity of the resulting poly(ortho-phenylenediamine) (PPD) film. A redox couple associated to the PPD electroactivity, deeply influenced by the pH adopted during polymerization, was recorded. A correlation between this feature and the electrochemistry shown by the oligomers of o-PD, generated in solution during the polymer synthesis, was also found. A comparison between the absorption spectra, in the visible region, of the soluble oligomers and of the PPD films was also performed, suggesting that changes in both the polymer and the oligomer structure occur and are highly related to the polymerization pH. In particular, a higher degree of conjugation is exhibited by the PPD films electrosynthesised at lower pH and this likely explains the higher conductivity as well as the higher electroactivity shown by the material obtained in these conditions.

  20. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  1. Optical and spectroscopic characterization of Er3+-Yb3+co-doped tellurite glasses and fibers

    NASA Astrophysics Data System (ADS)

    Narro-García, R.; Desirena, H.; Chillcce, E. F.; Barbosa, L. C.; Rodriguez, E.; De la Rosa, E.

    2014-04-01

    Optical and spectroscopic properties of Er3+-Yb3+ co-doped TeO2-WO3-Nb2O5-Na2O-Al2O3 glasses and fibers were investigated. Emission spectra and fluorescence lifetimes of 4I13/2 level of Er3+ion as a function of rare earth concentration and fiber length were measured in glasses. Results show that the self-absorption effect broadens the spectral bandwidth of 4I13/2→4I15/2 transition and lengthens the lifetime significantly from 3.5 to 4.6 ms. Fibers were fabricated by the rod-in-tube technique using a Heathway drawing tower. The emission power of these Er3+-Yb3+ co-doped Step Index Tellurite Fibers (SITFs; lengths varying from 2 to 60 cm) were generated by a 980 nm diode laser pump and then the emission power spectra were acquired with an OSA. The maximum emission power spectra, within the 1530-1560 nm region, were observed for fiber lengths ranging from 3 to 6 cm. The highest bandwidth obtained was 108 nm for 8 cm fiber length around 1.53 µm.

  2. Synthesis, characterization and spectroscopic behavior of novel 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile dyes

    NASA Astrophysics Data System (ADS)

    Khan, Salman A.; Asiri, Abdullah M.; Al-Thaqafy, Saad H.; Faidallah, Hassan M.; El-Daly, Samy A.

    2014-12-01

    Two synthetic pathways were adopted to synthesize the target 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydro-benzo[h]quinoline-3-carbonitriles. Structure of the synthesized compounds has been characterized based on FT-IR, 1H NMR, 13C NMR and elemental analyses. UV-Vis and fluorescence spectroscopy measurements provided that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, Stokes shift, oscillator strength and dipole moment were investigated in order to explore the analytical potential of synthesized compounds.

  3. Synthesis, characterization and spectroscopic behavior of novel 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile dyes.

    PubMed

    Khan, Salman A; Asiri, Abdullah M; Al-Thaqafy, Saad H; Faidallah, Hassan M; El-Daly, Samy A

    2014-12-10

    Two synthetic pathways were adopted to synthesize the target 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydro-benzo[h]quinoline-3-carbonitriles. Structure of the synthesized compounds has been characterized based on FT-IR, (1)H NMR, (13)C NMR and elemental analyses. UV-Vis and fluorescence spectroscopy measurements provided that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, Stokes shift, oscillator strength and dipole moment were investigated in order to explore the analytical potential of synthesized compounds. PMID:24934972

  4. Characterization of the oral absorption of several aminopenicillins: determination of intrinsic membrane absorption parameters in the rat intestine in situ

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Amidon, G. L.

    1992-01-01

    The absorption mechanism of several penicillins was characterized using in situ single-pass intestinal perfusion in the rat. The intrinsic membrane parameters were determined using a modified boundary layer model (fitted value +/- S.E.): Jmax* = 11.78 +/- 1.88 mM, Km = 15.80 +/- 2.92 mM, Pm* = 0, Pc* = 0.75 +/- 0.04 for ampicillin; Jmax* = 0.044 +/- 0.018 mM, Km = 0.058 +/- 0.026 mM, Pm* = 0.558 +/- 0.051, Pc* = 0.757 +/- 0.088 for amoxicillin; and Jmax* = 16.30 +/- 3.40 mM, Km = 14.00 +/- 3.30 mM, Pm* = 0, Pc* = 1.14 +/- 0.05 for cyclacillin. All of the aminopenicillins studied demonstrated saturable absorption kinetics as indicated by their concentration-dependent wall permeabilities. Inhibition studies were performed to confirm the existence of a nonpassive absorption mechanism. The intrinsic wall permeability (Pw*) of 0.01 mM ampicillin was significantly lowered by 1 mM amoxicillin and the Pw* of 0.01 mM amoxicillin was reduced by 2 mM cephradine consistent with competitive inhibition.

  5. Transient Spectroscopic Characterization of the Genesis of a Ruthenium Complex Catalyst Supported on Zeolite Y

    SciTech Connect

    Ogino, Isao; Gates, Bruce C.

    2010-01-12

    A mononuclear ruthenium complex anchored to dealuminated zeolite HY, Ru(acac)(C{sub 2}H{sub 4}){sup 2+} (acac = acetylacetonate, C{sub 5}H{sub 7}O{sup 2}{sup -}), was characterized in flow reactors by transient infrared (IR) spectroscopy and Ru K edge X-ray absorption spectroscopy. The combined results show how the supported complex was converted into a form that catalyzes ethene conversion to butene. The formation of these species resulted from the removal of acac ligands from the ruthenium (as shown by IR and extended X-ray absorption fine structure (EXAFS) spectra) and the simultaneous decrease in the symmetry of the ruthenium complex, with the ruthenium remaining mononuclear and its oxidation state remaining essentially unchanged (as shown by EXAFS and X-ray absorption near-edge structure spectra). The removal of anionic acac ligands from the ruthenium was evidently compensated by the bonding of other anionic ligands, such as hydride from H2 in the feed stream, to form species suggested to be Ru(H)(C{sub 2}H{sub 4}){sub 2}{sup +}, which is coordinatively unsaturated and inferred to react with ethene, leading to the observed formation of butene in a catalytic process.

  6. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    PubMed

    Banerjee, Aulie; Supakar, Subhrangshu; Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13)C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  7. [Chromatographic and spectroscopic characterization of phycocyanin and its subunits purified from Anabaena variabilis CCC421].

    PubMed

    Chakdar, N; Sakha, S; Pabbi, S

    2014-01-01

    Phycocyanin, a high value pigment was purified from diazotrophic cyanobacteria Anabaena variabilis CCC421 using a strategy involving ammonium sulfate precipitation, dialysis and anion exchange chromatography using DEAE-cellulose column. 36% phycocyanin with a purity of 2.75 was recovered finally after anion exchange chromatography. Purified phycocyanin was found to contain 2 subunits of 17 and 18 kDa which were identified as a-and (3 subunits by SDS-PAGE and MALDI-TOE HPLC method using a C5 column coupled with fluorescence or photodiode-based detection was also developed to separate and detect the A. variabilis CCC421 phycocyanin subunits. The fluorescence method was more sensitive than photodiode one. The purified phycocyanin from A. variabilis CCC421 as well as its subunits was characterized with respect to absorption and IR spectra. Spectral characterization of the subunits revealed that alpha and beta subunits contained one and two phycocyanobilin groups as chromophores, respectively. PMID:25272755

  8. Solution properties and spectroscopic characterization of polymeric precursors to SiNCB and BN ceramic materials

    SciTech Connect

    Cortez, E.; Remsen, E; Chlanda, V.; Carrol, P.; Sneddon, L.

    1998-06-01

    Boron Nitride, BN, and composite SiNCB ceramic fibers are important structural materials because of their excellent thermal and oxidative stabilities. Consequently, polymeric materials as precursors to ceramic composites are receiving increasing attention. Characterization of these materials requires the ability to evaluate simultaneous molecular weight and compositional heterogeneity within the polymer. Size exclusion chromatography equipped with viscometric and refractive index detection as well as coupled to a LC-transform device for infrared absorption analysis has been employed to examine these heterogeneities. Using these combined approaches, the solution properties and the relative amounts of individual functional groups distributed through the molecular weight distribution of SiNCB and BN polymeric precursors were characterized. {copyright} {ital 1998 American Institute of Physics.}

  9. Solvate Structures and Computational/Spectroscopic Characterization of LiPF6 Electrolytes

    SciTech Connect

    Han, Sang D.; Yun, Sung-Hyun; Borodin, Oleg; Seo, D. M.; Sommer, Roger D.; Young, Victor G.; Henderson, Wesley A.

    2015-04-23

    Raman spectroscopy is a powerful method for identifying ion-ion interactions, but only if the vibrational band signature for the anion coordination modes can be accurately deciphered. The present study characterizes the PF6- anion P-F Raman symmetric stretching vibrational band for evaluating the PF6-...Li+ cation interactions within LiPF6 crystalline solvates to create a characterization tool for liquid electrolytes. To facilitate this, the crystal structures for two new solvates—(G3)1:LiPF6 and (DEC)2:LiPF6 with triglyme and diethyl carbonate, respectively—are reported. The information obtained from this analysis provides key guidance about the ionic association information which may be obtained from a Raman spectroscopic evaluation of electrolytes containing the LiPF6 salt and aprotic solvents. Of particular note is the overlap of the Raman bands for both solvent-separated ion pair (SSIP) and contact ion pair (CIP) coordination in which the PF6- anions are uncoordinated or coordinated to a single Li+ cation, respectively.

  10. Matrix isolation and spectroscopic characterization of perfluorinated ortho- and meta-benzyne.

    PubMed

    Wenk, H H; Sander, W

    2001-05-01

    The matrix isolation and spectroscopic characterization of two C6F4 isomers, the perfluorinated o-benzyne 4 and the m-benzyne 5, is reported. UV photolysis of tetrafluorophthalic anhydride 6 in solid argon at 10 K results in the formation of CO, CO2, and 1,2-didehydro-3,4,5,6-tetrafluorobenzene (4) in a clean reaction. On subsequent 350 nm irradiation 4 is carbonylated to give the cyclopropenone 7. 1,3-Didehydro-2,4,5,6-tetrafluorobenzene (5) was synthesized by UV irradiation of 1,3-diiodo-2,4,5,6-tetrafluorobenzene (8) via 2,3,4,6-tetrafluoro-5-iodophenylradical 9. Photolysis of 8 in solid neon at 3 K produces good yields of both radical 9 and benzyne 5, while in argon at 10 K no reaction is observed. Thus, the photochemistry in neon at extremely low temperature markedly differs from the photochemistry in argon. The formation of 5 from 8 via 9 is reversible, and annealing the neon matrix at 8 K leads back to the starting material 8. The benzynes 4 and 5 and the radical 9 were characterized by comparison of their matrix IR spectra with density functional theory (DFT) calculations.

  11. Toward the characterization of biological toxins using field-based FT-IR spectroscopic instrumentation

    NASA Astrophysics Data System (ADS)

    Schiering, David W.; Walton, Robert B.; Brown, Christopher W.; Norman, Mark L.; Brewer, Joseph; Scott, James

    2004-12-01

    IR spectroscopy is a broadly applicable technique for the identification of covalent materials. Recent advances in instrumentation have made Fourier Transform infrared (FT-IR) spectroscopy available for field characterization of suspect materials. Presently, this instrumentation is broadly deployed and used for the identification of potential chemical hazards. This discussion concerns work towards expanding the analytical utility of field-based FT-IR spectrometry in the characterization of biological threats. Two classes of materials were studied: biologically produced chemical toxins which were non-peptide in nature and peptide toxin. The IR spectroscopic identification of aflatoxin-B1, trichothecene T2 mycotoxin, and strychnine was evaluated using the approach of spectral searching against large libraries of materials. For pure components, the IR method discriminated the above toxins at better than the 99% confidence level. The ability to identify non-peptide toxins in mixtures was also evaluated using a "spectral stripping" search approach. For the mixtures evaluated, this method was able to identify the mixture components from ca. 32K spectral library entries. Castor bean extract containing ricin was used as a representative peptide toxin. Due to similarity in protein spectra, a SIMCA pattern recognition methodology was evaluated for classifying peptide toxins. In addition to castor bean extract the method was validated using bovine serum albumin and myoglobin as simulants. The SIMCA approach was successful in correctly classifying these samples at the 95% confidence level.

  12. Vanadium oxide-carbon nanotube composite films characterized by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    He, Qiong; Xu, Xiangdong; Gu, Yu; Wang, Meng; Yao, Jie; Jiang, Yadong; Sun, Minghui; Ao, Tianhong; Lian, Yuxiang; Wang, Fu; Li, Xinrong

    2016-10-01

    Spectroscopic ellipsometry (SE) is utilized to characterize the vanadium oxide (VO x )-single walled carbon nanotube (SWCNT) composite films prepared by sol-gel. Five Tauc-Lorentz oscillators model is employed to describe the dispersions in the optical responses of VO x and VO x -SWCNT thin films. Results reveal that if the SWCNT concentration in the composite film is increased, the refractive index is decreased, while the extinction coefficient is increased. Moreover, higher SWCNT content leads to lower optical band gap (E g) but larger localized state (E e). Interestingly, both E g and E e values reach saturated at a SWCNT content of ~8 wt%. Particularly, the peak transition energies of the 5 Tauc-Lorentz oscillators have been assigned to the specific transitions according to the band structures of VO x . This work reveals the feasibility of investigating the optical properties and microstructures of VO x -SWCNT composite films by SE. These experimental results will be helpful for better understanding the VO x -SWCNT composite films, and promoting future characterizations of other SWCNT-based composites by SE.

  13. Synergic use of TOMS and AERONET observations for characterization of aerosol absorption

    NASA Astrophysics Data System (ADS)

    Torres, O.; Sinyuk, A.; Bhartia, P. K.; Dubovik, O.; Holben, B.

    2003-04-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  14. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  15. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  16. Raman Spectroscopic Characterization of the Feldspars: Implications for Surface Mineral Characterization in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Freeman, J. J.; Wang, Alian; Kuebler, K. E.; Haskin, L. A.

    2003-01-01

    The availability in the last decade of improved Raman instrumentation using small, stable, intense lasers, sensitive CCD array detectors, and advanced fast grating systems enabled us to develop the Mars Microbeam Raman Spectrometer (MMRS), a field-portable Raman spectrometer with precision and accuracy capable of identifying minerals and their different compositions. For example, we can determine Mg cation ratios in pyroxenes and olivines to +/-0.1 on the basis of Raman peak positions. Feldspar is another major mineral formed in igneous systems whose characterization is important for determining rock petrogenesis and alteration. From their Raman spectral pattern, feldspars can be readily distinguished from ortho- and chain-silicates and from other tecto-silicates such as quartz and zeolites. We show here how well Raman spectral analysis can distinguish among members within the feldspar group.

  17. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    NASA Technical Reports Server (NTRS)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  18. Spectroscopic method for Earth-satellite-Earth laser long-path absorption measurements using Retroreflector In Space (RIS)

    NASA Technical Reports Server (NTRS)

    Sugimoto, Nobuo; Minato, Atsushi; Sasano, Yasuhiro

    1992-01-01

    The Retroreflector in Space (RIS) is a single element cube-corner retroreflector with a diameter of 0.5 m designed for earth-satellite-earth laser long-path absorption experiments. The RIS is to be loaded on the Advanced Earth Observing System (ADEOS) satellite which is scheduled for launch in Feb. 1996. The orbit for ADEOS is a sun synchronous subrecurrent polar-orbit with an inclination of 98.6 deg. It has a period of 101 minutes and an altitude of approximately 800 km. The local time at descending node is 10:15-10:45, and the recurrent period is 41 days. The velocity relative to the ground is approximately 7 km/s. In the RIS experiment, a laser beam transmitted from a ground station is reflected by RIS and received at the ground station. The absorption of the intervening atmosphere is measured in the round-trip optical path.

  19. Biochemical and Spectroscopic Characterization of Highly Stable Photosystem II Supercomplexes from Arabidopsis.

    PubMed

    Crepin, Aurelie; Santabarbara, Stefano; Caffarri, Stefano

    2016-09-01

    Photosystem II (PSII) is a large membrane supercomplex involved in the first step of oxygenic photosynthesis. It is organized as a dimer, with each monomer consisting of more than 20 subunits as well as several cofactors, including chlorophyll and carotenoid pigments, lipids, and ions. The isolation of stable and homogeneous PSII supercomplexes from plants has been a hindrance for their deep structural and functional characterization. In recent years, purification of complexes with different antenna sizes was achieved with mild detergent solubilization of photosynthetic membranes and fractionation on a sucrose gradient, but these preparations were only stable in the cold for a few hours. In this work, we present an improved protocol to obtain plant PSII supercomplexes that are stable for several hours/days at a wide range of temperatures and can be concentrated without degradation. Biochemical and spectroscopic properties of the purified PSII are presented, as well as a study of the complex solubility in the presence of salts. We also tested the impact of a large panel of detergents on PSII stability and found that very few are able to maintain the integrity of PSII. Such new PSII preparation opens the possibility of performing experiments that require room temperature conditions and/or high protein concentrations, and thus it will allow more detailed investigations into the structure and molecular mechanisms that underlie plant PSII function. PMID:27432883

  20. Spectroscopic ellipsometric characterization of Si/Si(1-x)Ge(x) strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Yao, H.; Woollam, J. A.; Wang, P. J.; Tejwani, M. J.; Alterovitz, S. A.

    1993-01-01

    Spectroscopic ellipsometry (SE) was employed to characterize Si/Si(1-x)Ge(x) strained-layer superlattices. An algorithm was developed, using the available optical constants measured at a number of fixed x values of Ge composition, to compute the dielectric function spectrum of Si(1-x)Ge(x) at an arbitrary x value in the spectral range 17 to 5.6 eV. The ellipsometrically determined superlattice thicknesses and alloy compositional fractions were in excellent agreement with results from high-resolution x ray diffraction studies. The silicon surfaces of the superlattices were subjected to a 9:1 HF cleaning prior to the SE measurements. The HF solution removed silicon oxides on the semiconductor surface, and terminated the Si surface with hydrogen-silicon bonds, which were monitored over a period of several weeks, after the HF cleaning, by SE measurements. An equivalent dielectric layer model was established to describe the hydrogen-terminated Si surface layer. The passivated Si surface remained unchanged for greater than 2 h, and very little surface oxidation took place even over 3 to 4 days.

  1. Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection.

    PubMed

    Hidi, I J; Jahn, M; Weber, K; Cialla-May, D; Popp, J

    2015-09-01

    Levofloxacin (Levo), a second generation fluoroquinolone, has both clinical and environmental relevance. Therefore, the implementation of fast, robust and cost effective techniques for its monitoring is required. Here, its spectroscopic characterization and its detection in aqueous environment were carried out using surface enhanced Raman spectroscopy combined with droplet based microfluidics. The Levo molecule interacts with the silver nanoparticles via the carboxylate group and it adopts an upright or slightly tilted orientation. Furthermore, it is shown that the presence of Cl(-) ions has a strong influence on the enhancement efficiency of the Raman signal of the target molecule. Thus, for the determination of the limit of detection (LOD) the measurements were carried out in the absence of any electrolytes. The estimated LOD is ∼0.8 μM and the linear dynamic window ranges between 1-15 μM. These results were achieved after the normalization of the SERS signal to the Raman mode at 230 cm(-1). This band was attributed to the ν(Ag-O) stretching and it accounts for the Levo molecules in the first layer on the Ag nanoparticles.

  2. Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Serres, J. M.; Mateos, X.; Demesh, M. P.; Yasukevich, A. S.; Yumashev, K. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2016-01-01

    We report on a comprehensive spectroscopic and laser characterization of monoclinic Yb,Tm:KLu(WO4)2 crystals. Stimulated-emission cross-section spectra corresponding to the 3F4 → 3H6 transition of Tm3+ ions are determined. The radiative lifetime of the 3F4 state of Tm3+ ions is 0.82 ms. The maximum Yb3+ → Tm3+ energy transfer efficiency is 83.9% for 5 at.% Yb - 8 at.% Tm doping. The fractional heat loading for Yb,Tm:KLu(WO4)2 is 0.45 ± 0.05. Using a hemispherical cavity and 5 at.% Yb - 6 at.% Tm doped crystal, a maximum CW power of 227 mW is achieved at 1.983-2.011 μm with a maximum slope efficiency η = 14%. In the microchip laser set-up, the highest slope efficiency is 20% for a 5 at.% Yb- 8 at.% Tm doped crystal with a maximum output power of 201 mW at 1.99-2.007 μm. Operation of Yb,Tm:KLu(WO4)2 as a vibronic laser emitting at 2.081-2.093 μm is also demonstrated.

  3. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    SciTech Connect

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  4. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique.

    PubMed

    Chan, K L; Jiang, S Y N; Ning, Z

    2016-03-31

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R(2) > 0.999) and low detection limit (0.06 μg L(-1)) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. PMID:26965332

  5. Sensitivity analysis for OMOG and EUV photomasks characterized by UV-NIR spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Richter, U.; Mikolajick, T.

    2013-09-01

    We investigated the potentials, applicability and advantages of spectroscopic ellipsometry (SE) for the characterization of high-end photomasks. The SE measurements were done in the ultraviolet-near infrared (UVNIR) wavelength range from 300 nm to 980 nm, at angle of incidences (AOI) between 10 and 70° and with a microspot size of 45 x 10 μm2 (AOI=70°). The measured Ψ and 𝛥 spectra were modeled using the rigorous coupled wave analysis (RCWA) to determine the structural parameters of a periodic array, i.e. the pitch and critical dimension (CD). Two different types of industrial photomasks consisting of line/space structures were evaluated, the reflecting extreme ultraviolet (EUV) and the transmitting opaque MoSi on glass (OMOG) mask. The Ψ and 𝛥 spectra of both masks show characteristic differences, which were related to the Rayleigh singularities and the missing transmission diffraction in the EUV mask. In the second part of the paper, a simulation based sensitivity analysis of the Fourier coefficients α and β is presented, which is used to define the required measurement precision to detect a CD deviation of 1%. This study was done for both mask types to investigate the influence of the stack transmission. It was found that sensitivities to CD variations are comparable for OMOG and EUV masks. For both masks, the highest sensitivities appear close to the Rayleigh singularities and significantly increase at very low AOI. To detect a 1% CD deviation for pitches below 150 nm a measurement precision in the order of 0.01 is required. This measurement precision can be realized with advanced optical hardware. It is concluded that UV-NIR ellipsometry is qualified to characterize photomasks down to the 13 nm technology node in 2020.

  6. Spectroscopic, topological, and electronic characterization of ultrathin a-CdTe:O tunnel barriers

    NASA Astrophysics Data System (ADS)

    Dolog, Ivan; Mallik, Robert R.; Malz, Dan; Mozynski, Anthony

    2004-03-01

    Ultrathin oxygenated amorphous CdTe (a-CdTe:O) films are prepared by rf sputtering of CdTe in a background of argon or argon/nitrogen/oxygen mixtures. Atomic force microscopy (AFM) is used to characterize the films and shows that they have an island structure typical of most sputtered thin films. However, when sufficiently low powers and deposition rates are employed during sputtering, the resulting films are remarkably smooth and sufficiently thin for use as barrier layers in inelastic electron tunneling (IET) junctions. Four terminal current-voltage data are recorded for Al/a-CdTe:O/Pb tunnel junctions and conductance-voltage curves are derived numerically. WKB fits to the conductance-voltage curves are obtained using a two-component trapezoidal plus square (TRAPSQR) model barrier potential to determine values for the tunnel barrier parameters (height, shape, and width); these parameters are consistent with AFM topological measurements and values from similar devices reported in the literature. IET spectra are presented which confirm that electrons tunnel through ultrathin regions of the a-CdTe:O films, which contain aluminum oxide subregions in a manner consistent with the TRAPSQR barrier model. Because tunneling occurs predominantly through these ultrathin regions, IET spectroscopic data obtained are representative of states at, or within a few tenths of nanometers from, the surface and confirm that the a-CdTe:O surface stoichiometry is very sensitive to changes in the argon/oxygen/nitrogen concentration ratios during film growth. Full IET spectra, current-voltage, and conductance-voltage data are presented together with tunnel barrier parameters derived from (WKB) fits to the data. The results presented here indicate that inelastic electron tunneling spectroscopy is a useful tool for characterizing the surface states of a-CdTe:O and possibly other photovoltaic materials.

  7. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen

    PubMed Central

    Bağcıoğlu, Murat; Zimmermann, Boris; Kohler, Achim

    2015-01-01

    Background Analysis of pollen grains reveals valuable information on biology, ecology, forensics, climate change, insect migration, food sources and aeroallergens. Vibrational (infrared and Raman) spectroscopies offer chemical characterization of pollen via identifiable spectral features without any sample pretreatment. We have compared the level of chemical information that can be obtained by different multiscale vibrational spectroscopic techniques. Methodology Pollen from 15 different species of Pinales (conifers) were measured by seven infrared and Raman methodologies. In order to obtain infrared spectra, both reflectance and transmission measurements were performed on ground and intact pollen grains (bulk measurements), in addition, infrared spectra were obtained by microspectroscopy of multigrain and single pollen grain measurements. For Raman microspectroscopy measurements, spectra were obtained from the same pollen grains by focusing two different substructures of pollen grain. The spectral data from the seven methodologies were integrated into one data model by the Consensus Principal Component Analysis, in order to obtain the relations between the molecular signatures traced by different techniques. Results The vibrational spectroscopy enabled biochemical characterization of pollen and detection of phylogenetic variation. The spectral differences were clearly connected to specific chemical constituents, such as lipids, carbohydrates, carotenoids and sporopollenins. The extensive differences between pollen of Cedrus and the rest of Pinaceae family were unambiguously connected with molecular composition of sporopollenins in pollen grain wall, while pollen of Picea has apparently higher concentration of carotenoids than the rest of the family. It is shown that vibrational methodologies have great potential for systematic collection of data on ecosystems and that the obtained phylogenetic variation can be well explained by the biochemical composition of

  8. First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics

    NASA Astrophysics Data System (ADS)

    Toci, Guido; Pirri, Angela; Li, Jiang; Xie, Tengfei; Pan, Yubai; Nikl, Martin; Babin, Vladimir; Beitlerová, Alena; Vannini, Matteo

    2016-03-01

    We present the optical and spectroscopic characterization and the first example of laser operation of Yb doped LuYAG ceramics, with two different compositions, namely (Lu0.25Y0.75)3Al5O12 and (Lu0.50Y0.50)3Al5O12, both with 15% Yb doping. Ceramic samples were prepared by reactive sintering from high purity α-Al2O3, Lu2O3, Y2O3, Yb2O3 powders using Tetraethoxysilane (TEOS) and MgO as sintering aids. After ball milling, the slurry was dried, uniaxially pressed into 20 mm diameter pellets at 20 MPa, and then cold isostatically pressed at 200 MPa. Sintering was conducted at 1850°C for 30 h under vacuum, followed by annealing in air (1500 °C, 10 h) to remove the oxygen vacancies. Laser tests were carried out in a laser cavity end pumped by a fiber coupled diode laser emitting at 936 nm. A slope efficiency as high as 65.2% with a maximum output power of 8.7 W (in quasi-CW pumping conditions) was obtained from the sample with composition (Lu0.25Y0.75)3Al5O12, whereas the sample with composition (Lu0.50Y0.50)3Al5O12 had a maximum slope efficiency of 49.5% (due to the higher scattering losses), and 6.7 W of maximum output power. Furthermore we characterized the tuning range of the two samples.

  9. Chemical, enzymatic and spectroscopic characterization of collagen and other organic fractions from prehistoric bones

    SciTech Connect

    DeNiro, M.J.; Weiner, S. )

    1988-09-01

    Three organic fractions from 9 modern bones were prepared: collagen, the HCl insoluble fraction, and the HCl soluble fraction. The fraction that has the same solubility characteristics as collagen (referred to herein as collagen) and the HCl soluble and insoluble fractions from 44 prehistoric bones were also prepared. Of these 44, 17 had collagen with {delta}{sup 13}C and {delta}{sup 15}N values and C/N ratios within the ranges displayed by collagen from modern animals that ate the same types of food, whereas collagen in the remaining samples displayed clear evidence of diagenetic isotopic and/or elemental alteration based on comparisons with modern collagen. The bones were characterized in terms of the amino acid compositions and infrared spectra of the three organic fractions, and the amino acid compositions of the low molecular weight products of the reaction between collagenase and collagen. Application of the chemical, enzymatic and spectroscopic methods presented here should permit unequivocable identification of prehistoric samples that have suffered postmortem alteration of their collagen isotopic compositions, including those that have undergone more subtle isotopic shifts than can be identified by changes in the collagen C/N ratio, the only criterion applied to data for identifying altered samples. Some of the techniques the authors used to identify altered samples can be applied to fractions more readily prepared than collagen, thereby facilitating screening of large numbers of samples in order to eliminate those unsuitable for isotopic paleodietary analysis. The same criteria the authors have established to identify collagen samples that have not suffered postmortem stable isotopic alteration could be applied to characterize samples prepared for radiocarbon analysis, leading to more accurate dating of bone.

  10. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

    PubMed

    Zhang, Rongfu; Sahu, Indra D; Liu, Lishan; Osatuke, Anna; Comer, Raven G; Dabney-Smith, Carole; Lorigan, Gary A

    2015-01-01

    Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment. PMID

  11. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

    PubMed

    Zhang, Rongfu; Sahu, Indra D; Liu, Lishan; Osatuke, Anna; Comer, Raven G; Dabney-Smith, Carole; Lorigan, Gary A

    2015-01-01

    Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment.

  12. Development of Cellular Absorptive Tracers (CATs) for a Quantitative Characterization of Microbial Mass in Flow Systems

    SciTech Connect

    Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.

    2005-03-16

    We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.

  13. Norharmane rhenium(I) polypyridyl complexes: synthesis, structural and spectroscopic characterization.

    PubMed

    Maisuls, Iván; Wolcan, Ezequiel; Piro, Oscar E; Etcheverría, Gustavo A; Petroselli, Gabriela; Erra-Ballsels, Rosa; Cabrerizo, Franco M; Ruiz, Gustavo T

    2015-10-21

    Two novel Re(i) complexes with the general formula fac-[Re(CO)3(L)(nHo)]CF3SO3, where L = 2,2'-bipyridine (bpy) or 1,10 phenanthroline (phen) and nHo (9H-pyrido[3,4-b]indole; norharmane) have been synthesized. The Re(i)-nHo complexes were characterized by structural X-ray diffraction, (1)H and (13)C NMR, UV-vis absorption and FT-IR spectroscopy, and by a combination of two mass spectrometry techniques, namely ESI-MS and UV-MALDI-MS. All characterizations showed that nHo is coordinated to the metal atom by the pyridine nitrogen of the molecule. X-ray structural analysis revealed that the crystal lattices for both complexes are further stabilized by a strong >N-HO bond between the pyrrole NH group of the pyridoindole ligand and one oxygen atom of the trifluoromethanesulfonate counter-ion. Ground state geometry optimization by DFT calculations showed that in fluid solution the nHo ligand may rotate freely. The nature of the electronic transitions of Re(CO)3(bpy)(nHo)(+) were established by TD-DFT calculations. The set of the most important electronic transitions present in this complex are comprised of π→π* electronic transitions centered on bpy and nHo moieties, LLCTnHo→COs, MLLCTRe(CO)3→bpy and LLCTnHo→bpy transitions. Additionally, TD-DFT calculations predict the existence of another two intense MLLCTRe(CO)3→nHo electronic transitions. Calculated UV-vis absorption spectra are in good agreement with the corresponding experimental data for the bpy-containing complex. PMID:26365709

  14. Norharmane rhenium(I) polypyridyl complexes: synthesis, structural and spectroscopic characterization.

    PubMed

    Maisuls, Iván; Wolcan, Ezequiel; Piro, Oscar E; Etcheverría, Gustavo A; Petroselli, Gabriela; Erra-Ballsels, Rosa; Cabrerizo, Franco M; Ruiz, Gustavo T

    2015-10-21

    Two novel Re(i) complexes with the general formula fac-[Re(CO)3(L)(nHo)]CF3SO3, where L = 2,2'-bipyridine (bpy) or 1,10 phenanthroline (phen) and nHo (9H-pyrido[3,4-b]indole; norharmane) have been synthesized. The Re(i)-nHo complexes were characterized by structural X-ray diffraction, (1)H and (13)C NMR, UV-vis absorption and FT-IR spectroscopy, and by a combination of two mass spectrometry techniques, namely ESI-MS and UV-MALDI-MS. All characterizations showed that nHo is coordinated to the metal atom by the pyridine nitrogen of the molecule. X-ray structural analysis revealed that the crystal lattices for both complexes are further stabilized by a strong >N-HO bond between the pyrrole NH group of the pyridoindole ligand and one oxygen atom of the trifluoromethanesulfonate counter-ion. Ground state geometry optimization by DFT calculations showed that in fluid solution the nHo ligand may rotate freely. The nature of the electronic transitions of Re(CO)3(bpy)(nHo)(+) were established by TD-DFT calculations. The set of the most important electronic transitions present in this complex are comprised of π→π* electronic transitions centered on bpy and nHo moieties, LLCTnHo→COs, MLLCTRe(CO)3→bpy and LLCTnHo→bpy transitions. Additionally, TD-DFT calculations predict the existence of another two intense MLLCTRe(CO)3→nHo electronic transitions. Calculated UV-vis absorption spectra are in good agreement with the corresponding experimental data for the bpy-containing complex.

  15. New spectroscopic tools and techniques for characterizing M dwarfs and discovering their planets in the near-infrared

    NASA Astrophysics Data System (ADS)

    Terrien, Ryan C.

    M dwarfs are the least massive and most common stars in the Galaxy. Due to their prevalence and long lifetimes, these diminutive stars play an outsize role in several fields of astronomical study. In particular, it is now known that they commonly host planetary systems, and may be the most common hosts of Earth-size, rocky planets in the habitable zone. A comprehensive understanding of M dwarfs is crucial for understanding the origins and conditions of their planetary systems, including their potential habitability. Such an understanding depends on methods for precisely and accurately measuring their properties. These tools have broader applicability as well, underlying the use of M dwarfs as fossils of Galactic evolution, and helping to constrain the structures and interiors of these stars. The measurement of the fundamental parameters of M dwarfs is encumbered by their spectral complexity. Unlike stars of spectral type F, G, or K that are similar to our G type Sun, whose spectra are dominated by continuum emission and atomic features, the cool atmospheres of M dwarfs are dominated by complex molecular absorption. Another challenge for studies of M dwarfs is that these stars are optically faint, emitting much of their radiation in the near-infrared (NIR). The availability and performance of NIR spectrographs have lagged behind those of optical spectrographs due to the challenges of producing low-noise, high-sensitivity NIR detector arrays, which have only recently become available. This thesis discusses two related lines of work that address these challenges, motivated by the development of the Habitable Zone Planet Finder (HPF), a NIR radial velocity (RV) spectrograph under development at Penn State that will search for and confirm planets around nearby M dwarfs. This work includes the development and application of new NIR spectroscopic techniques for characterizing M dwarfs, and the development and optimization of new NIR instrumentation for HPF. The first line

  16. Characterization of fresh and aged natural ingredients used in historical ointments by molecular spectroscopic techniques: IR, Raman and fluorescence.

    PubMed

    Brambilla, L; Riedo, C; Baraldi, C; Nevin, A; Gamberini, M C; D'Andrea, C; Chiantore, O; Goidanich, S; Toniolo, L

    2011-10-01

    Natural organic materials used to prepare pharmaceutical mixtures including ointments and balsams have been characterized by a combined non-destructive spectroscopic analytical approach. Three classes of materials which include vegetable oils (olive, almond and palm tree), gums (Arabic and Tragacanth) and beeswax are considered in this study according to their widespread use reported in ancient recipes. Micro-FTIR, micro-Raman and fluorescence spectroscopies have been applied to fresh and mildly thermally aged samples. Vibrational characterization of these organic compounds is reported together with tabulated frequencies, highlighting all spectral features and changes in spectra which occur following artificial aging. Synchronous fluorescence spectroscopy has been shown to be particularly useful for the assessment of changes in oils after aging; spectral difference between Tragacanth and Arabic gum could be due to variations in origin and processing of raw materials. Analysis of these materials using non-destructive spectroscopic techniques provided important analytical information which could be used to guide further study.

  17. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats environmental technology

    SciTech Connect

    Lezama-pacheco, Juan S; Conradson, Steven D; Clark, David L

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO{sub 2+x}-type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO{sub 2+x}, and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO{sub 2+x} would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  18. Spectroscopic characterization and energy transfer process in cobalt and cobalt-iron co-doped ZnSe/ZnS crystals

    NASA Astrophysics Data System (ADS)

    Peppers, J.; Martyshkin, D. V.; Fedorov, V. V.; Mirov, S. B.

    2014-02-01

    Cobalt doped II-VI wide band semiconductors (e.g. ZnSe, ZnS, CdSe) are promising media for infrared (IR) laser applications. They could be utilized as effective passive Q-switches for cavities of Alexandrite as well as Nd and Er lasers operating over 0.7-0.8, 1.3-1.6, and ~2.8 μm spectral ranges. We report spectroscopic characterization of Co:ZnSe and Co:ZnS crystals. Absorption cross-sections were measured for 4A2(F) → 4T1(P), 4A2(F) → 4T1(F), and 4A2(F) → 4T2(F) transitions with maximum absorption at 768(726), 1615(1500), 2690(2740) nm for ZnSe(ZnS) crystals, respectively. The calculated absorption cross-sections of the above transitions were estimated to be 64(56)×1019, 7.5(7.8)×1019, and 0.52(0.49)×1019 cm2 for ZnSe(ZnS) crystal hosts. In addition to the above applications the cobalt ions could be utilized for excitation of Fe2+ ions via resonance energy transfer process. Tunable room temperature lasing of Fe 2+ doped binary and ternary chalcogenides has been successfully demonstrated over 3.5-6 μm spectral range. However, II-VI lasers based on Fe2+ active ions don't feature convenient commercially available pump sources (e.g. some Fe doped crystal hosts require pump wavelengths longer than 3 μm). Therefore, the process of energy transfer from Co2+ to Fe2+ ions could enable utilization of commercially available visible and near-infrared pump sources. We report a spectroscopic characterization of iron-cobalt co-doped ZnS and ZnSe crystals over 14-300K temperature range. Mid-IR laser oscillation at 3.9 μm(3.6 μm) via energy transfer in the Co:Fe:ZnSe (Co:Fe:ZnS) co-doped crystals was demonstrated under cobalt excitation at 4A2(F) → 4T1(P) (~0.7μm) and 4A2(F) → 4T1(F) (~1.56 μm) transitions.

  19. Spectroscopic characterization and density functional studies of (Z)-1-[(2-methoxy-5-(trifluoromethyl)phenylamino)methylene]naphthalene-2(1H)-one

    NASA Astrophysics Data System (ADS)

    Alpaslan, Yelda Bingöl; Gökce, Halil; Alpaslan, Gökhan; Macit, Mustafa

    2015-10-01

    In the current work, the Schiff base compound (Z)-1-[(2-Methoxy-5-(trifluoromethyl)phenylamino)methylene]naphthalene-2(1H)-one (I) has been characterized by using 13C NMR, 1H NMR, FT-IR and UV-vis spectroscopic techniques. Molecular geometry of the compound I in the ground state, vibrational frequencies, electronic absorption spectra and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values have been calculated by using the density functional method (DFT) with 6-311++G(d,p) basis set and compared with the experimental data. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational frequencies were determined based on the recorded FT-IR spectra in the range of 4000-400 cm-1 for solid state. Using the TD-DFT method, electronic absorption spectra of the compound I have been predicted and good agreement is determined with the experimental ones. In addition, molecular electrostatic potential (MEP), frontier molecular orbital analysis (HOMO-LUMO), non-linear optical (NLO) properties, NBO analysis and NBO atomic charges of the compound I were investigated using same theoretical calculations.

  20. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.

    2015-06-01

    Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted

  1. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  2. Nuclear Magnetic Resonance and X-Ray Absorption Spectroscopic Studies of Lithium Insertion in Silver Vanadium Oxide Cathodes

    SciTech Connect

    Leifer,N.; Colon, A.; Martocci, k.; Greenbaum, S.; Alamgir, F.; Reddy, T.; Gleason, N.; Leising, R.; Takeuchi, E.

    2007-01-01

    Structural studies have been carried out on Ag{sub 2}V{sub 4}O{sub 11} (silver vanadium oxide, SVO) and Li{sub x}Ag{sub 2}V{sub 4}O{sub 11}, lithiated SVO with x=0.72, 2.13, and 5.59 using nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy (XAS). Lithium-7 NMR indicates the formation of a solid electrolyte interphase layer on the x=0.72 sample and lithium intercalation into both octahedral and tetrahedral sites in the SVO lattice, and that most but not all of the Ag (I) is reduced prior to initiation of V(V) reduction. Vanadium-51 NMR studies of SVO and lithiated SVO show decreased crystallinity with increased lithiation, as previously reported. Silver XAS studies indicate the formation of metallic silver crystallites in all the lithiated samples. A comparison of X-ray absorption near edge spectroscopy spectra for vanadium in these samples with those of reference compounds shows that some reduction of vanadium (V) occurs in the lithiated SVO with x=0.72 and increases with further lithiation leading to the formation of V(IV) and V(III) species. The results of this study indicate that vanadium(V) reduction occurs in parallel with silver (I) reduction during the initial stages of SVO lithiation, leading ultimately to the formation of vanadium (IV) and (III) species with further lithiation.

  3. PROBING THE FERMI BUBBLES IN ULTRAVIOLET ABSORPTION: A SPECTROSCOPIC SIGNATURE OF THE MILKY WAY'S BICONICAL NUCLEAR OUTFLOW

    SciTech Connect

    Fox, Andrew J.; Bordoloi, Rongmon; Hernandez, Svea; Tumlinson, Jason; Savage, Blair D.; Wakker, Bart P.; Lockman, Felix J.; Bland-Hawthorn, Joss; Kim, Tae-Sun; Benjamin, Robert A.

    2015-01-20

    Giant lobes of plasma extend ≈55° above and below the Galactic center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity of the outflowing gas within these regions, targeting the quasar PDS 456 (ℓ, b = 10.°4, +11.°2). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v {sub LSR} = –235 and +250 km s{sup –1}, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic center. We develop simple kinematic biconical outflow models that can explain the observed profiles with an outflow velocity of ≳900 km s{sup –1} and a full opening angle of ≈110° (matching the X-ray bicone). This indicates Galactic center activity over the last ≈2.5-4.0 Myr, in line with age estimates of the Fermi Bubbles. The observations illustrate the use of UV spectroscopy to probe the properties of swept-up gas venting into the Fermi Bubbles.

  4. Melanin from the Nitrogen-Fixing Bacterium Azotobacter chroococcum: A Spectroscopic Characterization

    PubMed Central

    Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation. PMID:24416247

  5. Spectroscopic characterization of the binding mechanism of fluorescein and carboxyfluorescein in human serum albumin

    NASA Astrophysics Data System (ADS)

    Sulaiman, Saba A. J.; Kulathunga, H. Udani; Abou-Zied, Osama K.

    2015-03-01

    Fluorescein (FL) and some of its precursors have proven to be effective fluorescent tracers in pharmaceutical and medical applications owing to their high quantum yield of fluorescence in physiological conditions and their high membrane permeability. In order to protect FL from metabolic effects during the process of its delivery, human serum albumin (HSA) has been used as a carrier because of its compatibility with the human body. In the present work, we used spectroscopic methods to characterize the binding mechanisms of FL and one of its derivatives, 5(6)- carboxyfluorescein (CFL), in the HSA protein. The absorbance change of the two ligands (FL and CFL) was quantified as a function of the HSA concentration and the results indicate a moderate binding strength for the two ligands inside HSA (1.00 +/- 0.12 x 104 M-1). The quenching effect of FL(CFL) on the fluorescence intensity of W214 (the sole tryptophan in HSA) indicates that FL and CFL occupy Site I in the protein which is known to bind several hydrophobic drugs. By performing site-competitive experiments, the location of the ligands is determined to be similar to that of the anticoagulant drug warfarin. At higher ratios of [ligand]/[HSA], we observed an upward curvature in the Stern-Volmer plots which indicates that the ligands occupy more pockets in Site I, close to W214. Our results indicate that both ligands bind in HSA with a moderate strength that should not affect their release when used as fluorescent reporters. The chemical and physical identities of the two ligands are also preserved inside the HSA binding sites.

  6. Spectroscopic Characterization of Dust-Fall Samples Collected from Greater Cairo, Egypt.

    PubMed

    Shaltout, Abdallah A; Allam, Mousa A; Mostafa, Nasser Y; Heiba, Zein K

    2016-04-01

    This work aimed to characterize dust-fall samples collected from street's trees in Greater Cairo (GC), Egypt, and its surroundings by different spectroscopic techniques, namely; X-ray diffraction (XRD), attenuated total-reflection Fourier transform infrared (ATR-FTIR), particle-size analyzer, and scanning electron microscopy (SEM) combined with energy dispersive X-ray measurements. Samples were collected from 19 different locations inside and outside of GC. Quantitative phase analysis of the dust-fall samples was performed using the Rietveld method. Results showed that the most frequently observed phases in the dust-fall samples were calcite (CaCO3), dolomite (CaMg(CO3)2), gypsum (CaSO4·2H2O), and quartz (SiO2) with average concentrations of 39 ± 16, 8 ± 7, 22 ± 13, and 33 ± 14 wt%, respectively. The occurrence of these constituents referred to a combination of different anthropogenic and natural sources. The ATR-FTIR results are in good agreements with XRD data of the different observed phases. Based on the SEM and particle-size measurements, quantitative determination of the particle-size distribution was described. It was found that not only the large-sized particles are deposited but also the small-sized ones (PM10 and PM2.5). In addition, the particle size of the collected dust-fall samples varied from 0.1 to 200 µm with an average particle size of 17.36 µm; however, the particle size ranged from 2.5 to 40 µm predominated in all of the dust-fall samples. PMID:26710766

  7. Far ultraviolet polychromator for spectroscopic characterization of the tokamak divertor and plasma scrape-off layer

    SciTech Connect

    Soukhanovskii, V.A.; Stutman, D.; May, M.J.; Finkenthal, M.; Moos, H.W.; Terry, J.L.; Goetz, J.A.; Lipschultz, B.

    1999-01-01

    The Plasma Spectroscopy Group of The Johns Hopkins University is developing diagnostics for spectroscopic characterization of the tokamak plasma scrape-off layer and divertor regions. A far ultraviolet polychromator has been designed for radiative divertor studies at the Alcator C-Mod and D-IIID tokamaks. Local measurements of resonant transitions of lithium- to boron-like ions of intrinsic or seeded low {ital Z} impurity elements will be performed along multiple chords around the {ital X} point. Planar diffraction gratings and stacked grids will be used for dispersion and angular collimation of radiation. Phosphor wavelength converters coupled to a photomultiplier tube by an optical fiber will be used as detectors. The design provides a wavelength resolution of {approx_equal}10 {Angstrom}, a spatial resolution of {le}2 cm, and an adequate photometric sensitivity. The in-vessel instrument, proposed for the Alcator C-Mod tokamak, will measure intensities of the lines at 1240 (N V), 765, 923 (N IV), and 990 {Angstrom} (N III). The port-mounted polychromator at DIII-D will be able to monitor intensities of 1550 (C IV), 977, 1176 (C III), and 1335 {Angstrom} (C II) lines. This, together with visible and bolometric diagnostics, should enable estimates of power losses, charge state distribution and local transport of the impurity ions in the divertor. A one-channel prototype of the C-Mod and D-IIID instruments is being built for the CDX-U spherical tokamak. Line-integrated brightnesses of the 2s{endash}2p transition at 1550 {Angstrom} will be measured and inverted to obtain C IV emissivity distribution. {copyright} {ital 1999 American Institute of Physics.}

  8. Hydride generation and condensation flame atomic absorption spectroscopic determination of antimony in raw coffee beans and processed coffee.

    PubMed

    Kuennen, R W; Hahn, M H; Fricke, F L; Wolnik, K A

    1982-09-01

    A method was developed for determining Sb at nanogram per gram levels in raw coffee beans and processed coffee. The procedure uses either total acid digestion or extraction with 6M HCl followed by hydride generation/condensation with subsequent revolatilization of stibine (SbH3) and detection by flame atomic absorption spectroscopy. The lowest quantifiable level, based on a 2 g (dry weight) sample, is 2 ng Sb/g. The results of recoveries on spiked samples, precision studies on composited coffee samples, and the analysis of National Bureau of Standards Standard Reference Materials demonstrate the reliability and accuracy of the procedure. Sb concentrations in coffee samples were verified by neutron activation analysis and inductively coupled plasma atomic emission spectroscopy. Advantages of the method compared with the AOAC colorimetric procedure and hydride generation without condensation are discussed. PMID:7130087

  9. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  10. Probing the Fermi Bubbles in Ultraviolet Absorption: A Spectroscopic Signature of the Milky Way's Biconical Nuclear Outflow

    NASA Astrophysics Data System (ADS)

    Fox, Andrew J.; Bordoloi, Rongmon; Savage, Blair D.; Lockman, Felix J.; Jenkins, Edward B.; Wakker, Bart P.; Bland-Hawthorn, Joss; Hernandez, Svea; Kim, Tae-Sun; Benjamin, Robert A.; Bowen, David V.; Tumlinson, Jason

    2015-01-01

    Giant lobes of plasma extend ≈55° above and below the Galactic center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity of the outflowing gas within these regions, targeting the quasar PDS 456 (l, b = 10.°4, +11.°2). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v LSR = -235 and +250 km s-1, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic center. We develop simple kinematic biconical outflow models that can explain the observed profiles with an outflow velocity of gsim900 km s-1 and a full opening angle of ≈110° (matching the X-ray bicone). This indicates Galactic center activity over the last ≈2.5-4.0 Myr, in line with age estimates of the Fermi Bubbles. The observations illustrate the use of UV spectroscopy to probe the properties of swept-up gas venting into the Fermi Bubbles. Based on observations taken under program 13448 of the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, and under program 14B-299 of the NRAO Green Bank Telescope, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  11. Structural Characterization of Bimetallic Nanomaterials with Overlapping X-ray Absorption Edges

    SciTech Connect

    Menard, L.; Wang, Q; Kang, J; Sealey, A; Girolami, G; Teng, X; Frenkel, A; Nuzzo, R

    2009-01-01

    We describe a data analysis method for extended x-ray absorption fine structure spectroscopy suitable for use with compounds of diverse form that contain overlapping absorption edges. This method employs direct concurrent analysis of the data-demonstrated here for cases involving two interfering metal edges-and does not utilize subtractive or data filtering strategies that have been previously used to address this challenge. Its generality and precision are demonstrated in analyses made on two model nanoscale samples: (1) a Ir-Pt nanoparticle system supported on ?-Al2O3 and (2) a hybrid system of Pt nanowires on which Au nanoparticles have been nucleated and grown at the nanowire tips, stacking faults, and twinning boundaries. The results obtained demonstrate the unique compositional and structural qualities of these two systems as well as the broader utility of the new x-ray absorption spectroscopy based protocol used to characterize them.

  12. Size separation method for absorption characterization in brown carbon: Application to an aged biomass burning sample

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Robert A.; Young, Cora J.

    2016-01-01

    The majority of brown carbon (BrC) in atmospheric aerosols is derived from biomass burning (BB) and is primarily composed of extremely low volatility organic carbons. We use two chromatographic methods to compare the contribution of large and small light-absorbing BrC components in aged BB aerosols with UV-vis absorbance detection: (1) size exclusion chromatography (SEC) and (2) reverse phase high-performance liquid chromatography. We observe no evidence of small molecule absorbers. Most BrC absorption arises from large molecular weight components (>1000 amu). This suggests that although small molecules may contribute to BrC absorption near the BB source, analyses of aerosol extracts should use methods selective to large molecular weight compounds because these species may be responsible for long-term BrC absorption. Further characterization with electrospray ionization mass spectrometry (MS) coupled to SEC demonstrates an underestimation of the molecular size determined through MS as compared to SEC.

  13. Soft X-ray absorption spectroscopic studies with different probing depths: Effect of an electrolyte additive on electrode surfaces

    NASA Astrophysics Data System (ADS)

    Yogi, Chihiro; Takamatsu, Daiko; Yamanaka, Keisuke; Arai, Hajime; Uchimoto, Yoshiharu; Kojima, Kazuo; Watanabe, Iwao; Ohta, Toshiaki; Ogumi, Zenpachi

    2014-02-01

    A solid electrolyte interphase (SEI) formed on a model LiCoO2 electrode was analyzed by the ultra-soft X-ray absorption spectroscopy (XAS). The data of Li K-, B K-, C K-, O K-, and Co L-edges spectra for the SEI film on the electrode were collected using three detection methods with different probing depths. The electrode was prepared by a pulsed laser deposition method. All the spectral data consistently indicated that the SEI film containing lithium carbonate was instantly formed just after the soak of the electrode into the electrolyte solution and that it decomposed during the repeated charge-discharge reactions. The decomposition of the SEI film seems to cause the deterioration in lithium ion battery cycle performance. By adding lithium bis(oxalate) borate (LiBOB) to the electrolyte the decomposition could be suppressed leading to longer cycle life. It was found that some of the Co ions at the electrode surface were reduced to Co(II) during the charge-discharge reactions and this reaction could also be suppressed by the addition of LiBOB.

  14. X-ray absorption and X-ray photoelectron spectroscopic study of arsenic mobilization during mackinawite (FeS) oxidation.

    PubMed

    Jeong, Hoon Y; Han, Young-Soo; Hayes, Kim F

    2010-02-01

    In this study we investigated the speciation of the solid-phase As formed by reacting 2 x 10(-4) M As(III) with 1.0 g/L mackinawite and the potential for these sorbed species to be mobilized (released into the aqueous phase) upon exposure to atmospheric oxygen at pH 4.9, 7.1, and 9.1. Before oxygen exposure, X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) analyses indicated that As(III) was removed from the aqueous phase by forming As(0), AsS, and surface precipitates as thioarsenites at pH 4.9 and As(0) and thioarsenite surface precipitates at pH 7.1 and 9.1. When oxygen was introduced, XAS analysis indicated that As(0) and the surface precipitates were quickly transformed, whereas AsS was persistent. During intermediate oxygen exposure times, dissolved As increased at pH 4.9 and 7.1 due to the rapid oxidation of As(0) and the slow precipitation of iron (oxyhydr)oxides, the oxidation products of mackinawite. This indicates that oxidative mobilization is a potential pathway for arsenic contamination of water at acidic to neutral pH. The mobilized As was eventually resorbed by forming edge-sharing and double-corner-sharing surface complexes with iron (oxyhydr)oxides.

  15. Different speciation for bromine in brown and red algae, revealed by in vivo X-ray absorption spectroscopic studies.

    PubMed

    Küpper, Frithjof C; Leblanc, Catherine; Meyer-Klaucke, Wolfram; Potin, Philippe; Feiters, Martin C

    2014-08-01

    Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron-based technique, X-ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores - including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br(-) defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses. PMID:26988449

  16. X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances

    SciTech Connect

    Xia, K.; Skyllberg, U.L.; Bleam, W.F.; Helmke, P.A.; Bloom, P.R.; Nater, E.A.

    1999-01-15

    Analysis of Hg(II) complexed by a soil humic acid (HA) using synchrotron-based X-ray absorption spectroscopy (XAS) revealed the importance of reduces sulfur functional groups (thiol (R-SH) and disulfide (R-SS-R)/disulfane (R-SSH)) in humic substances in the complexation of Hg(II). A two-coordinate binding environment with one oxygen atom and one sulfur atom at distances of 2.02 and 2.38 {angstrom}, respectively, was found in the first coordination shell of Hg(II) complexed by humic acid. Model calculations show that a second coordination sphere could contain one carbon atom and a second sulfur atom at 2.78 and 2.93 {angstrom}, respectively. This suggests that in addition to thiol S, disulfide/disulfane S may be involved with the complexation of Hg(II) in soil organic matter. The appearance of carbon atom in the second coordination shell suggests that one O-containing ligand such as carboxyl and phenol ligands rather than H{sub 2}O molecule is bound to the Hg(II). The involvement of oxygen ligand in addition to the reduced S ligands in the complexation of Hg(II) is due to the low density of reduced S ligands in humic substances. The XAS results from this experiment provided direct molecular level evidence for the preference of reduced S functional groups over oxygen ligands by Hg(II) in the complexation with humic substances.

  17. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation

    NASA Astrophysics Data System (ADS)

    Ragab, Gamal H.; Amin, Alaa S.

    2004-03-01

    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 μg ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.15±1.15, 99.30±1.40, 99.60±1.50, and 99.00±1.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  18. The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study.

    PubMed

    Pollastri, Simone; D'Acapito, Francesco; Trapananti, Angela; Colantoni, Ivan; Andreozzi, Giovanni B; Gualtieri, Alessandro F

    2015-11-15

    Although asbestos represents today one of the most harmful contaminant on Earth, in 72% of the countries worldwide only amphiboles are banned while controlled use of chrysotile is allowed. Uncertainty on the potential toxicity of chrysotile is due to the fact that the mechanisms by which mineral fibres induces cyto- and geno-toxic damage are still unclear. We have recently started a long term project aimed at the systematic investigation of the crystal-chemistry, bio-interaction and toxicity of the mineral fibres. This work presents a systematic structural investigation of iron in asbestos and erionite (considered the most relevant mineral fibres of social and/or economic-industrial importance) using synchrotron X-ray absorption and Mössbauer spectroscopy. In all investigated mineral fibres, iron in the bulk structure is found in octahedral sites and can be made available at the surface via fibre dissolution. We postulate that the amount of hydroxyl radicals released by the fibers depends, among other factors, upon their dissolution rate; in relation to this, a ranking of ability of asbestos fibres to generate hydroxyl radicals, resulting from available surface iron, is advanced: amosite > crocidolite ≈ chrysotile > anthophyllite > tremolite. Erionite, with a fairly high toxicity potential, contains only octahedrally coordinated Fe(3+). Although it needs further experimental evidence, such available surface iron may be present as oxide nanoparticles coating and can be a direct cause of generation of hydroxyl radicals when such coating dissolves.

  19. Different speciation for bromine in brown and red algae, revealed by in vivo X-ray absorption spectroscopic studies.

    PubMed

    Küpper, Frithjof C; Leblanc, Catherine; Meyer-Klaucke, Wolfram; Potin, Philippe; Feiters, Martin C

    2014-08-01

    Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron-based technique, X-ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores - including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br(-) defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses.

  20. Compressed shell conditions extracted from spectroscopic analysis of Ti K-shell absorption spectra with evaluation of line self-emission

    NASA Astrophysics Data System (ADS)

    Johns, H. M.; Mancini, R. C.; Hakel, P.; Nagayama, T.; Smalyuk, V. A.; Regan, S. P.; Delettrez, J.

    2014-08-01

    Ti-doped tracer layers embedded in the shell at varying distances from the fuel-shell interface serve as a spectroscopic diagnostic for direct-drive experiments conducted at OMEGA. Detailed modeling of Ti K-shell absorption spectra produced in the tracer layer considers n = 1-2 transitions in F- through Li-like Ti ions in the 4400-4800 eV range, both including and excluding line self-emission. Testing the model on synthetic spectra generated from 1-D LILAC hydrodynamic simulations reveals that the model including self-emission best reproduces the simulation, while the model excluding self-emission overestimates electron temperature Te and density Ne to a higher degree for layers closer to the core. The prediction of the simulation that the magnitude of Te and duration of Ti absorption will be strongly tied to the distance of the layer from the core is consistent with the idea that regions of the shell close to the core are more significantly heated by thermal transport out of the hot dense core, but more distant regions are less affected by it. The simulation predicts more time variation in the observed Te, Ne conditions in the compressed shell than is observed in the experiment, analysis of which reveals conditions remain in the range Te = 400-600 eV and Ne = 3.0-10.0 × 1024 cm-3 for all but the most distant Ti-doped layer, with error bars ˜5% Te value and ˜10% Ne on average. The Te, Ne conditions of the simulation lead to a greater degree of ionization for zones close to the core than occurs experimentally, and less ionization for zones far from the core.

  1. Spectroscopic and structural characterization of reduced technetium species in acetate media

    SciTech Connect

    Mausolf, Edward; Poineau, Frederic; Droessler, Janelle; Czerwinski, Kenneth R.

    2011-11-17

    The reduction of ammonium pertechnetate by sodium borohydride in 0.1 M NaOH/glacial acetic acid has been studied. The reduction products (solids and solutions) have been characterized by UV-Visible spectroscopy, Scanning Electron Microscopy/Energy-dispersive X-ray emission spectroscopy (SEM/EDS), and X-ray absorption fine structure (XAFS) spectroscopy. UV-Visible spectra of the solution, after reduction, exhibit bands at 350 and 500 nm that have been attributed to the formation of polymeric Tc(IV) species. SEM/EDS on the solid (X-ray amorphous) indicates the absence of metallic Tc and the presence of oxygen. EXAFS measurements further indicate that the precipitate exhibits a [Tc({mu}-O){sub 2}Tc] core structure. XANES is consistent with the formation of Tc(III) and/or Tc(IV). Results infer that reduction of aqueous Tc(VII) by borohydride in the presence of acetic acid does not produce metallic Tc, but a mixture of various oxidation states of Tc near Tc(III) and Tc(IV).

  2. Infrared spectroscopic characterization of organic matter associated with microbial bioalteration textures in basaltic glass.

    PubMed

    Preston, L J; Izawa, M R M; Banerjee, N R

    2011-09-01

    Microorganisms have been found to etch volcanic glass within volcaniclastic deposits from the Ontong Java Plateau, creating micron-sized tunnels and pits. The fossil record of such bioalteration textures is interpreted to extend back ∼3.5 billion years to include meta-volcanic glass from ophiolites and Precambrian greenstone belts. Bioalteration features within glass clasts from Leg 192 of the Ocean Drilling Program were investigated through optical microscopy and Fourier transform infrared (FTIR) spectroscopy of petrographic thin sections. Extended depth of focus optical microscopic imaging was used to identify bioalteration tubules within the samples and later combined with FTIR spectroscopy to study the organic molecules present within tubule clusters. The tubule-rich areas are characterized by absorption bands indicative of aliphatic hydrocarbons, amides, esters, and carboxylic groups. FTIR analysis of the tubule-free areas in the cores of glass clasts indicated that they were free of organics. This study further constrains the nature of the carbon compounds preserved within the tubules and supports previous studies that suggest the tubules formed through microbial activity. PMID:21848422

  3. Local structural studies of the cubic Cd1–xCaxO system through Cd K-edge extended X-ray absorption spectroscopic studies

    PubMed Central

    Srihari, Velaga; Sridharan, V.; Nomura, Masaharu; Sastry, V. Sankara; Sundar, C. S

    2012-01-01

    Cd K-edge extended X-ray absorption fine-structure spectroscopic studies were carried out on Cd1–xCaxO (0 ≤ x ≤0.9) solid solutions and the first and second nearest neighbour (NN) distances and their mean square relative displacement σ2 were estimated. The first NN distance, d Cd–O(x), was found to be smaller than its expected value, a(x)/2, obtained from the X-ray diffraction measurements. It increases monotonically and non-linearly with a negative curvature, comparable with that of the a(x) value variation. The variation σ2 of the 1NN with x is consistent with a disordered solid solution model. The 2NN distances d Cd–Cd(x) and d Cd–Ca(x) are found to follow the average values obtained by X-ray diffraction with d Cd–Ca(x) > d Cd–Cd(x). From detailed analysis it is argued that the solid solution exhibits a bimodal distribution of the 1NN distances, d Cd–O(x) and d Ca–O(x), and that the system belongs to a persistent type. PMID:22713887

  4. X-ray absorption spectroscopic analyses and fluorescence emission characteristics of PbO-Bi203-Ga203 glasses doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Choi, Yong Gyu; Kim, Kyong-Hon; Chernov, Vladimir A.; Heo, Jong

    1999-12-01

    A representative of heavy metal oxide glasses, i.e., a PbO- Bi2O3-Ga2O3 glass, was investigated to identify the network structure of the glass and the electronic transition properties of rare-earth ions doped. X-ray absorption spectroscopic analyses showed that gallium forms GaO4 tetrahedral units with an average Ga-O bond length of approximately 1.87 A. Lead forms both PbO3 and PbO4 polyhedra, but the fraction of PbO4 decreases with decreasing PbO content. Bismuth in glasses constructs BiO5 and BiO6 polyhedra, which have a similar coordination scheme of the (alpha) -Bi2O3 crystal. Formation of three-coordinated oxygens is necessary to compensate shortage of oxygens to be two-fold coordinated. These glasses exhibit a relatively good thermal stability as well as the lowest phonon energy among oxide glasses, and thereby enhance numerous fluorescence emissions that are quenched in the conventional oxide glasses. Magnitudes of multiphonon relaxation are the lowest among oxide glasses and comparable to those of fluoride glasses. Fluorescence emission characteristics of Pr3+: 1.3 micrometer and Er3+: 2.7 micrometer were discussed in detail. In addition, influence of OH- on the Nd3+: 1.3 micrometer emission was analyzed. Further research efforts on impurity minimization and fiberization may realize a new oxide-based fiber-optic host.

  5. Synthesis and spectroscopic characterization of super-stable rhenium(V)porphyrins

    NASA Astrophysics Data System (ADS)

    Bichan, N. G.; Tyulyaeva, E. Yu.; Khodov, I. A.; Lomova, T. N.

    2014-03-01

    The preparation of rhenium(V) porphyrin complexes {μ-oxo-bis[(oxo)(5,10,15,20-tetraphenyl-21H,23H-porphinato)rhenium(V)] [OReTPP]2O (1), (oxo)(phenoxo)(2,3,7,8,12,13,17,18-octaethyl-5-monophenyl-21H,23H-porphinato)rhenium(V) ORe(PhO)MPOEP (2), (cloro)(oxo)(2,3,7,8,12,13,17,18-octaethyl-5,15-diphenyl-21H,23H-porphinato)rhenium(V) ORe(Cl)5,15DPOEP (4), and (oxo)(phenoxo)(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphinato)rhenium(V) ORe(PhO)OEP (5)} by the interaction of H2ReCl6 with corresponding porphyrin in boiling phenol is described. (Cloro)(oxo)(2,3,7,8,12,13,17,18-octaethyl-5-monophenyl-21H,23H-porphinato)rhenium(V) ORe(Cl)MPOEP (3) and (oxo)(chloro)(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphinato)rhenium(V) ORe(Cl)OEP (6) have been prepared by the reaction of axial-ligand substitution from (2) and (5), respectively. Compounds (2-4) were newly synthesized. Characterization of the compounds (1-6) reported herein was made mainly by UV-Visible, IR, 1Н NMR, 1H1H 2D COSY, 1H1H 2D DOSY, 1H1H 2D ROESY, 1H1H 2D TOCSY spectroscopic techniques and elemental analysis. The stability of the complexes in solutions when exposed to strong acids at the presence of atmospheric oxygen has been estimated. Compounds (2-4) and (6) show them super-stable since they do not undergo dissociation along MN bonds in concentrated H2SO4 under heating up to 363 K. Compounds (3) and (4) undergo one-electron oxidation to form stable π-cation radicals ORe(HSO)P under these conditions. The products of the reaction between all studied porphyrins and concentrated H2SO4 were isolated in CHCl3 by reprecipitation onto ice and proved to be rhenium(V) complexes ORe(HSO4)P.

  6. Crystal structure, complexation, spectroscopic characterization and antimicrobial evaluation of 3,4-dihydroxybenzylidene isonicotinyl-hydrazone

    NASA Astrophysics Data System (ADS)

    Jeragh, Bakir; Ali, Mayada S.; El-Asmy, Ahmed A.

    2015-06-01

    A single crystal of 3,4-dihydroxybenzylidene isonicotinylhydrazone, HBINH, has been grown and solved by X-ray crystallography. The VO2+, Zr4+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pd2+ complexes of HBINH have been prepared and spectroscopically characterized. The data confirmed the formulae [Co(HBINH)(H2O)Cl]Cl·H2O, [Pd(HBINH)Cl2], [Zn(HBINH)2Cl2], [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)], [Ni2(HBINH)(H2O)6Cl2]Cl2, [Cu2(HBINH-3H)(H2O)2(OAc)]·3H2O, [Zr2(HBINH-3H)Cl4]Cl, [Hg2(HBINH)Cl4] and the dimer {[Cu(HBINH)Cl]Cl}2. Most of the complexes have intense colors and high melting points and some are electrolytes in DMSO solution. The ligand behaves as a neutral bidentate in the Co(II), Cu(II), Pd(II), Zn(II) and Cd(II) complexes; dibasic tetradentate in [Ni2(HBINH)(H2O)6Cl2]Cl2 and tribasic tetradentate in [Cu2(HBINH-3H)(OAc)]·5H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Zr2(HBINH-3H)Cl4]Cl by the loss of 3H+ due to the deprotonation of the two hydroxyl groups and the enolization of the amide (Odbnd CNH) group. A tetrahedral geometry was proposed for the Co(II), Cu(II), Zn(II) and Hg(II) complexes; square-planar for the Pd(II) complex; square-pyramid for the VO2+ complex and octahedral for the Ni(II) and Cd(II) complexes. The complexes [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Cu2(HBINH-3H)-(H2O)2(OAc)]·3H2O have activities against Bacillus sp. M3010, Candida albicans, Escherichia coli, Staphylococcus aureus and Slamonella sp. PA393.

  7. Crystal structure, complexation, spectroscopic characterization and antimicrobial evaluation of 3,4-dihydroxybenzylidene isonicotinyl-hydrazone.

    PubMed

    Jeragh, Bakir; Ali, Mayada S; El-Asmy, Ahmed A

    2015-06-15

    A single crystal of 3,4-dihydroxybenzylidene isonicotinylhydrazone, HBINH, has been grown and solved by X-ray crystallography. The VO(2+), Zr(4+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Pd(2+) complexes of HBINH have been prepared and spectroscopically characterized. The data confirmed the formulae [Co(HBINH)(H2O)Cl]Cl·H2O, [Pd(HBINH)Cl2], [Zn(HBINH)2Cl2], [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)], [Ni2(HBINH)(H2O)6Cl2]Cl2, [Cu2(HBINH-3H)(H2O)2(OAc)]·3H2O, [Zr2(HBINH-3H)Cl4]Cl, [Hg2(HBINH)Cl4] and the dimer {[Cu(HBINH)Cl]Cl}2. Most of the complexes have intense colors and high melting points and some are electrolytes in DMSO solution. The ligand behaves as a neutral bidentate in the Co(II), Cu(II), Pd(II), Zn(II) and Cd(II) complexes; dibasic tetradentate in [Ni2(HBINH)(H2O)6Cl2]Cl2 and tribasic tetradentate in [Cu2(HBINH-3H)(OAc)]·5H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Zr2(HBINH-3H)Cl4]Cl by the loss of 3H(+) due to the deprotonation of the two hydroxyl groups and the enolization of the amide (OCNH) group. A tetrahedral geometry was proposed for the Co(II), Cu(II), Zn(II) and Hg(II) complexes; square-planar for the Pd(II) complex; square-pyramid for the VO(2+) complex and octahedral for the Ni(II) and Cd(II) complexes. The complexes [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Cu2(HBINH-3H)-(H2O)2(OAc)]·3H2O have activities against Bacillus sp. M3010, Candida albicans, Escherichia coli, Staphylococcus aureus and Slamonella sp. PA393. PMID:25791887

  8. Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation.

    PubMed

    Chang, Han-Wei; Lu, Ying-Rui; Chen, Jeng-Lung; Chen, Chi-Liang; Lee, Jyh-Fu; Chen, Jin-Ming; Tsai, Yu-Chen; Chang, Chien-Min; Yeh, Ping-Hung; Chou, Wu-Ching; Liou, Ya-Hsuan; Dong, Chung-Li

    2015-02-01

    The surfaces of acid- and amine-functionalized carbon nanotubes (C-CNT and N-CNT) were decorated with MnO2 nanoflakes as supercapacitors by a spontaneous redox reaction. C-CNT was found to have a lower edge plane structure and fewer defect sites than N-CNT. MnO2/C-CNT with a highly developed surface area exhibited favorable electrochemical performance. To determine the atomic/electronic structures of the MnO2/functionalized CNTs (MnO2/C-CNT and MnO/N-CNT) during the charge/discharge process, in situ X-ray absorption spectroscopy (XAS) measurements were made at the Mn K-edge. Both C-CNT and N-CNT are highly conductive. The effect of the scan rate on the capacitance behavior was also examined, revealing that the π* state of CNT and the size of the tunnels in pseudo-capacitor materials (which facilitate conduction and the transport of electrolyte ions) are critical for the capacitive performance, and their role depends on the scan rate. In the slow charge/discharge process, MnO2/N-CNT has a more symmetrical rectangular cyclic voltammetry (CV) curve. In the fast charge/discharge process, MnO2/C-CNT with a highly developed surface provides fast electronic and ionic channels that support a reversible faradaic redox reaction between MnO2 nanoflakes and the electrolyte, significantly enhancing its capacitive performance over that of MnO2/N-CNT. The MnO2/C-CNT architecture has great potential for supercapacitor applications. The information that was obtained herein helps to elucidate CNT surface modification and the design of the MnO2/functionalized CNT interface with a view for the further development of supercapacitors. This work, and especially the combination of CV with in situ XAS measurements, will be of value to readers with an interest in nanomaterial, nanotechnology and their applications in energy storage.

  9. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  10. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  11. Spectroscopic characterization of dissolved organic matter derived from different biochars and their polycylic aromatic hydrocarbons (PAHs) binding affinity.

    PubMed

    Tang, Jianfeng; Li, Xinhu; Luo, Yan; Li, Gang; Khan, Sardar

    2016-06-01

    In recent years, biochar has received a great attention due to its high application in different sectors of environment. The feasibility of biochar applications is depended on its physical and chemical properties and biochar-derived dissolved organic matter (DOM) characteristics. This study was conducted to investigate the spectroscopic characteristics of biochar-derived DOM and its binding capacity of hydrophobic organic chemicals (HOCs). DOM solutions were isolated from five different biochars prepared through pyrolysis and analyzed for dissolved organic carbon (DOC) contents. The optical analysis with UV-visible absorption and excitation-emission matrix (EEM) fluorescence spectroscopes and DOC water distribution coefficient (KDOC) were calculated in the presence of PAHs and DOM. The DOC contents and the estimated aromaticity (SUVA254) were different for selected biochars. The DOM derived from soybean straw biochar (SBBC) showed the highest DOC contents followed by rice straw biochar (RSBC). The SBBC and RSBC peak position in the fluorescence excitation/emission matrix at longer wavelength corresponded to the peak position of other three biochars indicating that SBBC and RSBC had relatively higher degree of humification. This was well correlated with the observed KDOC values, suggesting that the KDOC value(')s dominant factor was the degree of biochar-derived DOM humification. The results of this study indicate that the optical analysis may provide valuable information regarding the characteristics of biochar-derived DOM and its application as environmental amendments for minimization of toxic organic compounds. PMID:26994600

  12. Synthesis, conformational and spectroscopic characterization of monomeric styrene derivatives having pendant p-substituted benzylic ether groups

    NASA Astrophysics Data System (ADS)

    Cinar, Mehmet; Ozcan, Levent; Karabacak, Mehmet; Erol, Ibrahim

    2013-07-01

    Three derivatives of styrene monomer, 4-chlorophenyl-4-vinylbenzyl ether (I), 4-methoxyphenyl-4-vinylbenzyl ether (II) and 4-ethylphenyl-4-vinylbenzyl ether (III) were synthesized. The synthesized two novel compounds (I and III) and one with undefined structural features were identified by experimental spectroscopic techniques and density functional approach. The optimized geometrical structure, vibrational and electronic transitions along with chemical shifts of those compounds were presented in this study. The vibrational spectra of investigated compounds were recorded in solid state with FT-IR spectrometry in the range of 4000-400 cm-1. The computational vibrational wavenumbers and also ground state equilibrium conformations were carried out by using density functional method with 6-311++G(d,p) basis set. Assignments of the fundamental vibrational modes were examined on the basis of the measured data and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. Isotropic chemical shift of hydrogen and carbon nuclei were investigated via observed 1H and 13C NMR spectra in deuterated DMSO solution and predicted data applied with gauge-invariant atomic orbitals (GIAOs) method. The UV absorption spectra of monomers were observed in the range of 200-800 nm in ethanol, and time dependent DFT method was used to obtain the electronic properties. A detailed description of spectroscopic behaviors of compound was given based on the comparison of experimental measurements and theoretical computations.

  13. Synthesis, conformational and spectroscopic characterization of monomeric styrene derivatives having pendant p-substituted benzylic ether groups.

    PubMed

    Cinar, Mehmet; Ozcan, Levent; Karabacak, Mehmet; Erol, Ibrahim

    2013-07-01

    Three derivatives of styrene monomer, 4-chlorophenyl-4-vinylbenzyl ether (I), 4-methoxyphenyl-4-vinylbenzyl ether (II) and 4-ethylphenyl-4-vinylbenzyl ether (III) were synthesized. The synthesized two novel compounds (I and III) and one with undefined structural features were identified by experimental spectroscopic techniques and density functional approach. The optimized geometrical structure, vibrational and electronic transitions along with chemical shifts of those compounds were presented in this study. The vibrational spectra of investigated compounds were recorded in solid state with FT-IR spectrometry in the range of 4000-400 cm(-1). The computational vibrational wavenumbers and also ground state equilibrium conformations were carried out by using density functional method with 6-311++G(d,p) basis set. Assignments of the fundamental vibrational modes were examined on the basis of the measured data and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. Isotropic chemical shift of hydrogen and carbon nuclei were investigated via observed (1)H and (13)C NMR spectra in deuterated DMSO solution and predicted data applied with gauge-invariant atomic orbitals (GIAOs) method. The UV absorption spectra of monomers were observed in the range of 200-800 nm in ethanol, and time dependent DFT method was used to obtain the electronic properties. A detailed description of spectroscopic behaviors of compound was given based on the comparison of experimental measurements and theoretical computations. PMID:23608133

  14. New 1,2,4-triazole-based azo-azomethine dyes. Part I: Synthesis, characterization and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Khanmohammadi, Hamid; Erfantalab, Malihe

    2012-02-01

    Four new 1,2,4-triazole-based azo-azomethine dyes were synthesized via condensation of 3,5-diamino-1,2,4-triazole with azo-coupled o-vanillin precursors. The prepared dyes were characterized by IR, UV-vis and 1H NMR spectroscopic methods as well as elemental analyses. Thermal properties of the prepared dyes were examined by thermogravimetric analysis. Results indicated that the framework of the dyes was stable up to 225 °C. Also, the influence of various factors including time and mixed DMSO/EtOH solution on UV-vis spectra of the dyes were investigated.

  15. Spectroscopic Characterization and Reactivity of Triplet and Quintet Iron(IV) Oxo Complexes in the Gas Phase

    PubMed Central

    Andris, Erik; Jašík, Juraj; Gómez, Laura

    2016-01-01

    Abstract Closely structurally related triplet and quintet iron(IV) oxo complexes with a tetradentate aminopyridine ligand were generated in the gas phase, spectroscopically characterized, and their reactivities in hydrogen‐transfer and oxygen‐transfer reactions were compared. The spin states were unambiguously assigned based on helium tagging infrared photodissociation (IRPD) spectra of the mass‐selected iron complexes. It is shown that the stretching vibrations of the nitrate counterion can be used as a spectral marker of the central iron spin state. PMID:26878833

  16. Infrared spectroscopic characterization of dehydration and accompanying phase transition behaviors in NAT-topology zeolites

    SciTech Connect

    Wang, Hsiu-Wen; Bishop, David

    2012-01-01

    Relative humidity (PH2O, partial pressure of water)-dependent dehydration and accompanying phase transitions in NAT-topology zeolites (natrolite, scolecite, and mesolite) were studied under controlled temperature and known PH2O conditions by in situ diffuse-reflectance infrared Fourier transform spectroscopy and parallel X-ray powder diffraction. Dehydration was characterized by the disappearance of internal H2O vibrational modes. The loss of H2O molecules caused a sequence of structural transitions in which the host framework transformation path was coupled primarily via the thermal motion of guest Na?/Ca2? cations and H2O molecules. The observation of different interactions of H2O molecules and Na?/Ca2? cations with host aluminosilicate frameworks under highand low-PH2O conditions indicated the development of different local strain fields, arising from cation H2O interactions in NAT-type channels. These strain fields influence the Si O/Al O bond strength and tilting angles within and between tetrahedra as the dehydration temperature is approached. The newly observed infrared bands (at 2,139 cm-1 in natrolite, 2,276 cm-1 in scolecite, and 2,176 and 2,259 cm-1 in mesolite) result from strong cation H2O Al Si framework interactions in NAT-type channels, and these bands can be used to evaluate the energetic evolution of Na?/Ca2? cations before and after phase transitions, especially for scolecite and mesolite. The 2,176 and 2,259 cm-1 absorption bands in mesolite also appear to be related to Na?/Ca2? order disorder that occur when mesolite loses its Ow4 H2O molecules.

  17. Redox Chemisty of Tantalum Clusters on Silica Characterized by X-ray Absorption Spectroscopy

    SciTech Connect

    Nemana,S.; Gates, B.

    2006-01-01

    SiO{sub 2}-supported clusters of tantalum were synthesized from adsorbed Ta(CH{sub 2}Ph){sub 5} by treatment in H{sub 2} at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiOO{sub 2}-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H{sub 2} and reoxidized in O{sub 2}, the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO{sub 2} support and their chemistry in solution, as determined by the group of Cotton.

  18. Anion pairs in room temperature ionic liquids predicted by molecular dynamics simulation, verified by spectroscopic characterization

    SciTech Connect

    Schwenzer, Birgit; Kerisit, Sebastien N.; Vijayakumar, M.

    2014-01-01

    Molecular-level spectroscopic analyses of an aprotic and a protic room-temperature ionic liquid, BMIM OTf and BMIM HSO4, respectively, have been carried out with the aim of verifying molecular dynamics simulations that predict anion pair formation in these fluid structures. Fourier-transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy of various nuclei support the theoretically-determined average molecular arrangements.

  19. Synthesis, spectroscopic characterization and DNA nuclease activity of Cu(II) complexes derived from pyrazolone based NSO-donor Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Vyas, Komal M.; Joshi, Rushikesh G.; Jadeja, R. N.; Ratna Prabha, C.; Gupta, Vivek K.

    2011-12-01

    Two neutral mononuclear Cu(II) complexes have been prepared in EtOH using Schiff bases derived from 4-toluoyl pyrazolone and thiosemicarbazide. Both the ligands have been characterized on the basis of elemental analysis, IR, 1H NMR, 13C NMR and mass spectral data. The molecular geometry of one of these ligands has been determined by single crystal X-ray study. It reveals that these ligands exist in amine-one tautomeric form in the solid state. Microanalytical data, Cu-estimation, molar conductivity, magnetic measurements, IR, UV-Visible, FAB-Mass, TG-DTA data and ESR spectral studies were used to confirm the structures of the complexes. Electronic absorption and IR spectra of the complexes suggest a square-planar geometry around the central metal ion. The interaction of complexes with pET30a plasmid DNA was investigated by spectroscopic measurements. Results suggest that the copper complexes bind to DNA via an intercalative mode and can quench the fluorescence intensity of EB bound to DNA. The interaction between the complexes and DNA has also been investigated by agarose gel electrophoresis, interestingly, we found that the copper(II) complexes can cleave circular plasmid DNA to nicked and linear forms.

  20. Synthesis, spectroscopic characterization and quantum chemical computational studies of (S)-N-benzyl-1-phenyl-5-(pyridin-2-yl)-pent-4-yn-2-amine

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Atac, Ahmet; Karabacak, Mehmet; Karaca, Caglar; Eskici, Mustafa; Karanfil, Abdullah

    2012-11-01

    The synthesis and characterization of a novel compound (S)-N-benzyl-1-phenyl-5-(pyridin-2-yl)-pent-4-yn-2-amine (abbreviated as BPPPYA) was presented in this study. The spectroscopic properties of the compound were investigated by FT-IR, NMR and UV spectroscopy experimentally and theoretically. The molecular geometry and vibrational frequencies of the BPPPYA in the ground state were calculated by using density functional theory (DFT) B3LYP method invoking 6-311++G(d,p) basis set. The geometry of the BPPPYA was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The results of the energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) and CIS approach complement with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The theoretical NMR chemical shifts (1H and 13C) complement with experimentally measured ones. The dipole moment, linear polarizability and first hyperpolarizability values were also computed. The linear polarizabilities and first hyper polarizabilities of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The calculated vibrational wavenumbers, absorption wavelengths and chemical shifts showed the best agreement with the experimental results.

  1. Synthesis, spectroscopic characterization and quantum chemical computational studies of (S)-N-benzyl-1-phenyl-5-(pyridin-2-yl)-pent-4-yn-2-amine.

    PubMed

    Kose, Etem; Atac, Ahmet; Karabacak, Mehmet; Karaca, Caglar; Eskici, Mustafa; Karanfil, Abdullah

    2012-11-01

    The synthesis and characterization of a novel compound (S)-N-benzyl-1-phenyl-5-(pyridin-2-yl)-pent-4-yn-2-amine (abbreviated as BPPPYA) was presented in this study. The spectroscopic properties of the compound were investigated by FT-IR, NMR and UV spectroscopy experimentally and theoretically. The molecular geometry and vibrational frequencies of the BPPPYA in the ground state were calculated by using density functional theory (DFT) B3LYP method invoking 6-311++G(d,p) basis set. The geometry of the BPPPYA was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The results of the energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) and CIS approach complement with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The theoretical NMR chemical shifts ((1)H and (13)C) complement with experimentally measured ones. The dipole moment, linear polarizability and first hyperpolarizability values were also computed. The linear polarizabilities and first hyper polarizabilities of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The calculated vibrational wavenumbers, absorption wavelengths and chemical shifts showed the best agreement with the experimental results. PMID:22820047

  2. Chemical Synthesis and High Resolution Spectroscopic Characterization of 1-AZA-ADAMANTANE-4-ONE C_9H13NO from the Microwave to the Infrared

    NASA Astrophysics Data System (ADS)

    Pirali, Olivier; Goubet, Manuel; Boudon, Vincent; D'accolti, Lucia; Annese, Cosimo; Fusco, Caterina

    2016-06-01

    We have synthesized 1-aza-adamantane-4-one (C_9H13NO) starting from commercial 1,4-cyclohexanedionemonoethylene acetal and tosylmethylisocianide and following a procedure described in details in the literature. The high degree of sample purity was demonstrated by gas chromatography and mass spectrometric measurements, and its structure evidenced by 1H and 13C NMR spectroscopy. We present a thorough spectroscopic characterization of this molecule by gas phase vibrational and rotational spectroscopy. Accurate vibrational frequencies have been determined by infrared and far-infrared spectra. The pure rotational spectrum of the molecule has been recorded both by cavity-based Fourier-transform microwave spectroscopy in the 2-20 GHz region, by supersonically expanding the vapor pressure of the warm sample, and by room-temperature absorption spectroscopy in the 140-220 GHz range. Quantum-chemical calculations have enabled a fast analysis of the spectra. Accurate sets of rotational and centrifugal distorsion parameters of 1-aza-adamantane-4-one in its ground state and five vibrationally excited states have been derived from these measurements. Black, R. M. Synthesis, 1981, 829

  3. Electrochemical Kinetics and X-ray Absorption Spectroscopic Investigations of Oxygen Reduction on Chalcogen-Modified Ruthenium Catalysts in Alkaline Media

    SciTech Connect

    N Ramaswamy; R Allen; S Mukerjee; Y

    2011-12-31

    The oxygen reduction reaction (ORR) in alkaline media has been investigated on chalcogen-modified ruthenium nanoparticles (Ru/C, Se/Ru/C, Se/RuMo/C, S/Ru/C, S/RuMo/C) synthesized in-house via aqueous routes. In acidic medium, it is well known that modification by a chalcogen prevents the oxidation of the underlying transition-metal (Ru) surface, thereby promoting direct molecular O{sub 2} adsorption on the Ru metal. On an unmodified Ru catalyst in alkaline media, the surface oxides on Ru mediate the 2e{sup -} reduction of molecular O{sub 2} to a stable peroxide anion (HO{sub 2}{sup -}) intermediate via an outer-sphere electron-transfer mechanism. This increases the activity of HO{sub 2}{sup -} near the electrode surface and decreases the overpotential for ORR by effectively carrying out the reduction of HO{sub 2}{sup -} to OH{sup -} at the oxide-free ruthenium metal site. An increase in ORR activity of Ru is observed by modification with a chalcogen; however, the increase is not as significant as observed in acidic media. Ternary additives, such as Mo, were found to significantly improve the stability of the chalcogen-modified catalysts. Detailed investigations of the ORR activity of this class of catalyst have been carried out in alkaline media along with comparisons to acidic media wherever necessary. A combination of electrochemical and X-ray absorption spectroscopic (EXAFS, XANES, {Delta}{mu}) studies has been performed in order to understand the structure/property relationships of these catalysts within the context of ORR in alkaline electrolytes.

  4. Synthesis, structure determination, and spectroscopic/computational characterization of a series of Fe(II)-thiolate model complexes: implications for Fe-S bonding in superoxide reductases.

    PubMed

    Fiedler, Adam T; Halfen, Heather L; Halfen, Jason A; Brunold, Thomas C

    2005-02-16

    A combined synthetic/spectroscopic/computational approach has been employed to prepare and characterize a series of Fe(II)-thiolate complexes that model the square-pyramidal [Fe(II)(N(His))(4)(S(Cys))] structure of the reduced active site of superoxide reductases (SORs), a class of enzymes that detoxify superoxide in air-sensitive organisms. The high-spin (S = 2) Fe(II) complexes [(Me(4)cyclam)Fe(SC(6)H(4)-p-OMe)]OTf (2) and [FeL]PF(6) (3) (where Me(4)cyclam = 1,4,8,11-tetramethylcyclam and L is the pentadentate monoanion of 1-thioethyl-4,8,11-trimethylcyclam) were synthesized and subjected to structural, magnetic, and electrochemical characterization. X-ray crystallographic studies confirm that 2 and 3 possess an N(4)S donor set similar to that found for the SOR active site and reveal molecular geometries intermediate between square pyramidal and trigonal bipyramidal for both complexes. Electronic absorption, magnetic circular dichroism (MCD), and variable-temperature variable-field MCD (VTVH-MCD) spectroscopies were utilized, in conjunction with density functional theory (DFT) and semiemperical INDO/S-CI calculations, to probe the ground and excited states of complexes 2 and 3, as well as the previously reported Fe(II) SOR model [(L(8)py(2))Fe(SC(6)H(4)-p-Me)]BF(4) (1) (where L(8)py(2) is a tetradentate pyridyl-appended diazacyclooctane macrocycle). These studies allow for a detailed interpretation of the S-->Fe(II) charge transfer transitions observed in the absorption and MCD spectra of complexes 1-3 and provide significant insights into the nature of Fe(II)-S bonding in complexes with axial thiolate ligation. Of the three models investigated, complex 3 exhibits an absorption spectrum that is particularly similar to the one reported for the reduced SOR enzyme (SOR(red)), suggesting that this model accurately mimics key elements of the electronic structure of the enzyme active site; namely, highly covalent Fe-S pi- and sigma-interactions. These spectral

  5. Comparison of Au(III) and Ga(III) ions' binding to calf thymus DNA: spectroscopic characterization and thermal analysis.

    PubMed

    Sarioglu, Omer Faruk; Tekiner-Gursacli, Refiye; Ozdemir, Ayse; Tekinay, Turgay

    2014-09-01

    Metals have been studied as potential chemotherapeutic agents for cancer therapies due to their high reactivity toward a wide variety of substances. The characterization of metal ion-binding capacities is essential to understand the possible effects of metals on target biomolecules. In the present study, biochemical effects of Au(III) and Ga(III) ions on calf thymus DNA (ctDNA) were studied comparatively via bioanalytical, spectroscopic, and thermal methods. Briefly, UV-Vis absorbance spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy were utilized for spectroscopic characterization, and isothermal titration calorimetry (ITC) measurements were performed for thermal analysis. Our results reveal that both Au(III) and Ga(III) ions are capable of interacting with ctDNA, and Au(III) ions display a more favorable interaction and a higher binding affinity. ITC analyses indicate that the Au(III)-DNA interaction displays a binding affinity (Ka) around 1.43 × 10(6) M(-1), while a Ka around 1.17 × 10(5) M(-1) was observed for the Ga(III)-DNA binding. It was suggested that both metal ions are unlikely to change the structural B-conformation while interacting with ctDNA.

  6. Theoretical Characterization of Zinc Phthalocyanine and Porphyrin Analogs for Organic Solar Cell Absorption

    NASA Astrophysics Data System (ADS)

    Theisen, Rebekah

    The absorption spectra of metal-centered phthalocyanines (MPc's) have been investigated since the early 1960's. With improved experimental techniques to characterize this class of molecules the band assignments have advanced. The characterization remains difficult with historic disagreements. A new push for characterization came with a wave of interest in using these molecules for absorption/donor molecules in organic photovoltaics. The use of zinc phthalocyanine (ZnPc) became of particular interest, in addition to novel research being done for azaporphyrin analogs of ZnPc. A theoretical approach is taken to research the excited states of these molecules using time-dependent density functional theory (TDDFT). Most theoretical results for the first excited state in ZnPc are in only limited agreement with experiment (errors near 0.1 eV or higher). This research investigates ZnPc and 10 additional porphyrin analogs. Excited-state properties are predicted for 8 of these molecules using ab initio computational methods and symmetry breaking for accurate time- dependent self-consistent optimization. Franck-Condon analysis is used to predict the Q-band absorption spectra for all 8 of these molecules. This is the first time that Franck-Condon analysis has been reported in absolute units for any of these molecules. The first excited-state energy for ZnPc is found to be the closest to experiment thus far using a range-separated meta-GGA hybrid functional. The theoretical results are used to find a trend in the novel design of new porphyrin analog molecules.

  7. Spectroscopic characterization of the 1-substituted 3,3-diphenyl-4-(2'-hydroxyphenyl)azetidin-2-ones: Application of 13C NMR, 1H- 13C COSY NMR and mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Girija S.; Pheko, Tshepo

    2008-08-01

    The article deals with spectroscopic characterization of azetidin-2-ones. The presence of substituents like hydroxyl, fluoro, methoxy and benzhydryl, etc., on the azetidin-2-one ring significantly affects the IR absorption and 13C NMR frequencies of the carbonyl group present in these compounds. The presence of an ester carbonyl group or too many methine protons in the molecule has been observed to limit the scope of IR and 1H NMR spectroscopy in unambiguous assignment of the structure. The application of 13C NMR, 2D NMR ( 1H- 13C COSY) and mass spectroscopy in characterization of complex azetidin-2-ones is discussed. An application of the latter two techniques is described in deciding unequivocally between an azetidin-2-one ring and chroman-2-one ring structure for the product obtained by treatment of the 1-substituted 3,3-diphenyl-4-[2'-( O-diphenylacyl)hydroxyphenyl]-2-azetidinones with ethanolic sodium hydroxide at room temperature.

  8. The WO3/WS2 nanostructures: Preparation, characterization and optical absorption properties

    NASA Astrophysics Data System (ADS)

    Cao, Shixiu; Zhao, Cong; Han, Tao; Peng, Lingling

    2016-07-01

    The WO3/WS2 nanostructures were successfully prepared using a two-step hydrothermal/gas phase method. The physical properties of the nanostructures were characterized using XRD, SEM, TEM, UV-visible spectroscopy. The WO3/WS2 nanostructures obtained were coexistence of WO3 and WS2 in the same particle. The WO3/WS2 nanostructures contained a wide and intensive absorption in the UV-visible light region of 245-750 nm, which showed that the WO3/WS2 nanostructures may have a potential application as an UV-visible photocatalyst.

  9. Ghanaian cocoa bean fermentation characterized by spectroscopic and chromatographic methods and chemometrics.

    PubMed

    Aculey, Patrick C; Snitkjaer, Pia; Owusu, Margaret; Bassompiere, Marc; Takrama, Jemmy; Nørgaard, Lars; Petersen, Mikael A; Nielsen, Dennis S

    2010-08-01

    Export of cocoa beans is of great economic importance in Ghana and several other tropical countries. Raw cocoa has an astringent, unpleasant taste, and flavor, and has to be fermented, dried, and roasted to obtain the characteristic cocoa flavor and taste. In an attempt to obtain a deeper understanding of the changes in the cocoa beans during fermentation and investigate the possibility of future development of objective methods for assessing the degree of fermentation, a novel combination of methods including cut test, colorimetry, fluorescence spectroscopy, NIR spectroscopy, and GC-MS evaluated by chemometric methods was used to examine cocoa beans sampled at different durations of fermentation and samples representing fully fermented and dried beans from all cocoa growing regions of Ghana. Using colorimetry it was found that samples moved towards higher a* and b* values as fermentation progressed. Furthermore, the degree of fermentation could, in general, be well described by the spectroscopic methods used. In addition, it was possible to link analysis of volatile compounds with predictions of fermentation time. Fermented and dried cocoa beans from the Volta and the Western regions clustered separately in the score plots based on colorimetric, fluorescence, NIR, and GC-MS indicating regional differences in the composition of Ghanaian cocoa beans. The study demonstrates the potential of colorimetry and spectroscopic methods as valuable tools for determining the fermentation degree of cocoa beans. Using GC-MS it was possible to demonstrate the formation of several important aroma compounds such 2-phenylethyl acetate, propionic acid, and acetoin and the breakdown of others like diacetyl during fermentation. Practical Application: The present study demonstrates the potential of using colorimetry and spectroscopic methods as objective methods for determining cocoa bean quality along the processing chain. Development of objective methods for determining cocoa bean

  10. Multiparametric Characterization of Grade 2 Glioma Subtypes Using Magnetic Resonance Spectroscopic, Perfusion, and Diffusion Imaging1

    PubMed Central

    Bian, Wei; Khayal, Inas S; Lupo, Janine M; McGue, Colleen; Vandenberg, Scott; Lamborn, Kathleen R; Chang, Susan M; Cha, Soonmee; Nelson, Sarah J

    2009-01-01

    BACKGROUND AND PURPOSE: The purpose of this study was to derive quantitative parameters from magnetic resonance (MR) spectroscopic, perfusion, and diffusion imaging of grade 2 gliomas according to the World Health Organization and to investigate how these multiple imaging modalities can contribute to evaluating their histologic subtypes and spatial characteristics. MATERIALS AND METHODS: MR spectroscopic, perfusion, and diffusion images from 56 patients with newly diagnosed grade 2 glioma (24 oligodendrogliomas, 18 astrocytomas, and 14 oligoastrocytomas) were retrospectively studied. Metabolite intensities, relative cerebral blood volume (rCBV), and apparent diffusion coefficient (ADC) were statistically evaluated. RESULTS: The 75th percentile rCBV and median ADC were significantly different between oligodendrogliomas and astrocytomas (P < .0001) and between oligodendrogliomas and oligoastrocytomas (P < .001). Logistic regression analysis identified both 75th percentile rCBV and median ADC as significant variables in the differentiation of oligodendrogliomas from astrocytomas and oligoastrocytomas. Group differences in metabolite intensities were not significant, but there was a much larger variation in the volumes and maximum values of metabolic abnormalities for patients with oligodendroglioma compared with the other tumor subtypes. CONCLUSIONS: Perfusion and diffusion imaging provide quantitative MR parameters that can help to differentiate grade 2 oligodendrogliomas from grade 2 astrocytomas and oligoastrocytomas. The large variations in the magnitude and spatial extent of the metabolic lesions between patients and the fact that their values are not correlated with the other imaging parameters indicate that MR spectroscopic imaging may provide complementary information that is helpful in targeting therapy, evaluating residual disease, and assessing response to therapy. PMID:19956389

  11. X-ray-absorption spectroscopic investigation of alkali and alkaline earth catalysts in coal gasification. Final report, January 1987-September 1989

    SciTech Connect

    Huggins, F.E.; Shah, N.; Huffman, G.P.

    1990-04-01

    The structures of alkali and alkaline-earth metal catalyst species in lignite and polymer chars and during pyrolysis pretreatment and char gasification have been investigated using ambient and newly-developed, in situ XAFS spectroscopic techniques. The XAFS data, which were obtained at the Stanford Synchrotron Radiation Laboratory, were supplemented by char characterization and reactivity measurements made at the Pennsylvania State University. The findings of the investigation are as follows: (i) the catalytic species, as introduced to the char or lignite, is an atomically-dispersed, metal-ion-oxygen-anion complex, and remains a metal-oxygen complex throughout pyrolysis and gasification; (ii) the catalyst species transforms to a bulk oxide species during pyrolysis pretreatment; (iii) during gasification, the catalyst species rapidly transforms to bulk alkali carbonate in the case of the alkali-metal species and slowly to calcium oxide in the case of the calcium species; (iv) higher catalyst loadings results in an increased number of catalytic sites, rather than any structural variation of the catalyst site due to concentration effects; and (v) reaction of alkali with aluminosilicates (from clays) or silica is the major catalyst poisoning reaction, unless the coal is demineralized in which case the alkali may react with residual halide from HCl or HF used to clean the coal. Such poisoning reactions were not demonstrated for calcium-oxygen species.

  12. Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features.

    PubMed

    Meroni, Michele; Busetto, Lorenzo; Guanter, Luis; Cogliati, Sergio; Crosta, Giovanni Franco; Migliavacca, Mirco; Panigada, Cinzia; Rossini, Micol; Colombo, Roberto

    2010-05-20

    The accurate spectral characterization of high-resolution spectrometers is required for correctly computing, interpreting, and comparing radiance and reflectance spectra acquired at different times or by different instruments. In this paper, we describe an algorithm for the spectral characterization of field spectrometer data using sharp atmospheric or solar absorption features present in the measured data. The algorithm retrieves systematic shifts in channel position and actual full width at half-maximum (FWHM) of the instrument by comparing data acquired during standard field spectroscopy measurement operations with a reference irradiance spectrum modeled with the MODTRAN4 radiative transfer code. Measurements from four different field spectrometers with spectral resolutions ranging from 0.05 to 3.5nm are processed and the results validated against laboratory calibration. An accurate retrieval of channel position and FWHM has been achieved, with an average error smaller than the instrument spectral sampling interval.

  13. Characterization of a new modular decay total absorption gamma-ray spectrometer (DTAS) for FAIR

    SciTech Connect

    Montaner Piza, A.; Tain, J. L.; Agramunt, J.; Algora, A.; Guadilla, V.; Marin, E.; Rice, S.; Rubio, B.

    2013-06-10

    Beta-decay studies are one of the main goals of the DEcay SPECtroscopy experiment (DESPEC) to be installed at the future Facility for Antiproton and Ion Research (FAIR). DESPEC aims at the study of nuclear structure of exotic nuclei. A new modular Decay Total Absorption gamma-ray Spectrometer (DTAS) is being built at IFIC and is specially adapted to studies at fragmentation facilities such as the Super Fragment Separator (Super-FRS) at FAIR. The designed spectrometer is composed of 16 identical NaI(Tl) scintillation crystals. This work focuses on the characterization of these independent modules, as an initial step for the characterization of the full spectrometer. Monte Carlo simulations have been performed in order to understand the detector response.

  14. Probing Cu(I) in homogeneous catalysis using high-energy-resolution fluorescence-detected X-ray absorption spectroscopy.

    PubMed

    Walroth, Richard C; Uebler, Jacob W H; Lancaster, Kyle M

    2015-06-18

    Metal-to-ligand charge transfer excitations in Cu(I) X-ray absorption spectra are introduced as spectroscopic handles for the characterization of species in homogeneous catalytic reaction mixtures. Analysis is supported by correlation of a spectral library to calculations and to complementary spectroscopic parameters.

  15. Biochemical, Mechanistic, and Spectroscopic Characterization of Metallo-β-lactamase VIM-2

    PubMed Central

    2015-01-01

    This study examines metal binding to metallo-β-lactamase VIM-2, demonstrating the first successful preparation of a Co(II)-substituted VIM-2 analogue. Spectroscopic studies of the half- and fully metal loaded enzymes show that both Zn(II) and Co(II) bind cooperatively, where the major species present, regardless of stoichiometry, are apo- and di-Zn (or di-Co) enzymes. We determined the di-Zn VIM-2 structure to a resolution of 1.55 Å, and this structure supports results from spectroscopic studies. Kinetics, both steady-state and pre-steady-state, show that VIM-2 utilizes a mechanism that proceeds through a very short-lived anionic intermediate when chromacef is used as the substrate. Comparison with other B1 enzymes shows that those that bind Zn(II) cooperatively are better poised to protonate the intermediate on its formation, compared to those that bind Zn(II) non-cooperatively, which uniformly build up substantial amounts of the intermediate. PMID:25356958

  16. Biochemical, Mechanistic, and Spectroscopic Characterization of Metallo-β-lactamase VIM-2

    SciTech Connect

    Aitha, Mahesh; Marts, Amy R.; Bergstrom, Alex; Møller, Abraham Jon; Moritz, Lindsay; Turner, Lucien; Nix, Jay C.; Bonomo, Robert A.; Page, Richard C.; Tierney, David L.; Crowder, Michael W.

    2014-11-25

    Our study examines metal binding to metallo-β-lactamase VIM-2, demonstrating the first successful preparation of a Co(II)-substituted VIM-2 analogue. Spectroscopic studies of the half- and fully metal loaded enzymes show that both Zn(II) and Co(II) bind cooperatively, where the major species present, regardless of stoichiometry, are apo- and di-Zn (or di-Co) enzymes. We also determined the di-Zn VIM-2 structure to a resolution of 1.55 Å, and this structure supports results from spectroscopic studies. Kinetics, both steady-state and pre-steady-state, show that VIM-2 utilizes a mechanism that proceeds through a very short-lived anionic intermediate when chromacef is used as the substrate. Comparison with other B1 enzymes shows that those that bind Zn(II) cooperatively are better poised to protonate the intermediate on its formation, compared to those that bind Zn(II) non-cooperatively, which uniformly build up substantial amounts of the intermediate.

  17. Toward an alternative intrinsic probe for spectroscopic characterization of a protein.

    PubMed

    Goswami, Nirmal; Makhal, Abhinandan; Pal, Samir Kumar

    2010-11-25

    The intrinsic fluorescent amino acid tryptophan is the unanimous choice for the spectroscopic investigation of proteins. However, several complicacies in the interpretation of tryptophan fluorescence in a protein are inevitable and an alternative intrinsic protein probe is a longstanding demand. In this contribution, we report an electron-transfer reaction in a human transporter protein (HSA) cavity which causes the tryptophan residue (Trp214) to undergo chemical modification to form one of its metabolites kynurenine (Kyn214). Structural integrity upon modification of the native protein is confirmed by dynamic light scattering (DLS) as well as near and far circular dichroism (CD) spectroscopy. Femtosecond-resolved fluorescence transients of the modified protein describe the dynamics of solvent molecules in the protein cavity in both the native and denatured states. In order to establish general use of the probe, we have studied the dipolar interaction of Kyn214 with a surface-bound ligand (crystal violet, CV) of the protein. By using the sensitivity of FRET, we have determined the distance between Kyn214 (donor) and CV (acceptor). Our study is an attempt to explore an alternative intrinsic fluorescence probe for the spectroscopic investigation of a protein. In order to establish the efficacy of the modification technique we have converted the tryptophan residues of other proteins (bovine serum albumin, chymotrypsin and subtilisin Carlsberg) to kynurenine and confirmed their structural integrity. We have also shown that catalytic activity of the enzymes remains intact upon the modification. PMID:21028859

  18. Spectroscopic characterization of cysteine and methionine using density functional theory method

    NASA Astrophysics Data System (ADS)

    Naganathappa, Mahadevappa; Chaudhari, Ajay

    2015-05-01

    The present study reports theoretical infrared and electronic absorption spectra of neutral cysteine and methionine molecules in gas phase, their ions and in water ice. We also report infrared and electronic absorption spectra of nitrogen-substituted (in place of sulfur atom) cysteine and methionine. The geometrical parameters, dipole moments, rotational and centrifugal distortional constants for these molecules are reported at B3LYP/6-311++g(d,p) level of theory. A large change in vibrational and electronic absorption spectra has been observed upon ionization of cysteine and methionine. Calculated vibrational frequencies are compared with the available experimental frequencies for the neutral cysteine and methionine in gas phase. An influence of water ice on vibrational frequencies of neutral cysteine and methionine is studied using integral equation formalism polarizable continuum model (IEFPCM) at the same level of theory. Time Dependent Density Functional Theory (TDDFT) approach has been adapted to calculate the electronic absorption spectra of these molecules. The intense lines are suggested in order to detect these molecules in space.

  19. SEM, EDX, Infrared and Raman spectroscopic characterization of the silicate mineral yuksporite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Theiss, Frederick L.; Romano, Antônio Wilson

    2015-02-01

    The mineral yuksporite (K,Ba)NaCa2(Si,Ti)4O11(F,OH)ṡH2O has been studied using the combination of SEM with EDX and vibrational spectroscopic techniques of Raman and infrared spectroscopy. Scanning electron microscopy shows a single pure phase with cleavage fragment up to 1.0 mm. Chemical analysis gave Si, Al, K, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and REE. Raman bands are observed at 808, 871, 930, 954, 980 and 1087 cm-1 and are typical bands for a natural zeolite. Intense Raman bands are observed at 514, 643 and 668 cm-1. A very sharp band is observed at 3668 cm-1 and is attributed to the OH stretching vibration of OH units associated with Si and Ti. Raman bands resolved at 3298, 3460, 3562 and 3628 cm-1 are assigned to water stretching vibrations.

  20. Physicochemical, spectroscopic and electrochemical characterization of magnesium ion-conducting, room temperature, ternary molten electrolytes

    NASA Astrophysics Data System (ADS)

    Narayanan, N. S. Venkata; Ashok Raj, B. V.; Sampath, S.

    Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm -1 at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg 2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries.

  1. Syntheses, spectroscopic and AFM characterization of some manganese porphyrins and their hybrid silica nanomaterials.

    PubMed

    Fagadar-Cosma, Eugenia; Mirica, Marius Constantin; Balcu, Ionel; Bucovicean, Carmen; Cretu, Carmen; Armeanu, Ileana; Fagadar-Cosma, Gheorghe

    2009-01-01

    The present work is concerned with the manganese complexes of 5,10,15,20-tetraphenylporphyrin and of 5,10,15,20-tetra(3-hydroxyphenyl)porphyrin, which were prepared by metallation of the corresponding porphyrin ligands, and the study of their spectroscopic and photophysical behavior under strongly acidic and alkaline conditions. The second objective was to obtain and study some new hybrid materials, with special optoelectronic and surface properties, by impregnation of silica gels obtained by one step acid and by two steps acid-base catalysis with these Mn-porphyrins. The resulting nanomaterials exhibited interesting bathochromic and hyperchromic effects of their second band in the emission spectra in comparison with the Mn-porphyrins and also they have distinct orientation of the aggregates on surfaces, as shown by AFM images, making them useful for applications in medicine, formulation of sensors and for environmental-friendly catalysts for photodegradation of organic compounds.

  2. Spectroscopic characterization and quantitative determination of atorvastatin calcium impurities by novel HPLC method

    NASA Astrophysics Data System (ADS)

    Gupta, Lokesh Kumar

    2012-11-01

    Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.

  3. Characterizing the Interaction between tartrazine and two serum albumins by a hybrid spectroscopic approach.

    PubMed

    Pan, Xingren; Qin, Pengfei; Liu, Rutao; Wang, Jing

    2011-06-22

    Tartrazine is an artificial azo dye commonly used in food products. The present study evaluated the interaction of tartrazine with two serum albumins (SAs), human serum albumin (HSA) and bovine serum albumin (BSA), under physiological conditions by means of fluorescence, three-dimensional fluorescence, UV-vis absorption, and circular dichroism (CD) techniques. The fluorescence data showed that tartrazine could bind to the two SAs to form a complex. The binding process was a spontaneous molecular interaction procedure, in which van der Waals and hydrogen bond interactions played a major role. Additionally, as shown by the UV-vis absorption, three-dimensional fluorescence, and CD results, tartrazine could lead to conformational and some microenvironmental changes of both SAs, which may affect the physiological functions of SAs. The work provides important insight into the mechanism of toxicity of tartrazine in vivo. PMID:21591756

  4. Low-temperature and time-resolved spectroscopic characterization of the LOV2 domain of Avena sativa phototropin 1

    NASA Astrophysics Data System (ADS)

    Gauden, Magdalena; Crosson, Sean; van Stokkum, I. H. M.; van Grondelle, Rienk; Moffat, Keith; Kennis, John T. M.

    2004-09-01

    The phototropins are plant blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine residue in light, oxygen or voltage (LOV) domains. The spectroscopic properties of the LOV2 domain of phototropin 1 of Avena sativa (oat) have been investigated by means of low-temperature absorption and fluorescence spectroscopy and by time-resolved fluorescence spectroscopy. The low-temperature absorption spectrum of the LOV2 domain showed a fine structure around 473 nm, indicating heterogeneity in the flavin binding pocket. The fluorescence quantum yield of the flavin cofactor increased from 0.13 to 0.41 upon cooling the sample from room temperature to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K, allowing for an accurate positioning of the flavin triplet state in the LOV2 domain at 16900 cm-1. Fluorescence from the cryotrapped covalent adduct state was extremely weak, with a fluorescence spectrum showing a maximum at 440 nm. Time-resolved fluorescence experiments utilizing a synchroscan streak camera revealed a singlet-excited state lifetime of the LOV2 domain of 2.4 ns. FMN dissolved in aqueous solution showed a pH-dependent lifetime ranging between 2.9 ns at pH 2.0 to 4.7 ns at pH 8.0. No spectral shifting of the flavin emission was observed in the LOV2 domain nor in FMN in aqueous solution.

  5. Low-temperature and time-resolved spectroscopic characterization of the LOV2 domain of Avena sativa phototropin

    SciTech Connect

    Gauden, Magdalena; Crosson, Sean; van Stokkum, I.H.; Grondelle, Rienkvan; Moffat, Keith; Kennis, John T.

    2004-12-13

    The phototropins are plant blue-light receptors that base their light-dependent action on the reversible formation of a covalent bond between a flavin mononucleotide (FMN) cofactor and a conserved cysteine residue in light, oxygen or voltage (LOV) domains. The spectroscopic properties of the LOV2 domain of phototropin 1 of Avena sativa (oat) have been investigated by means of low-temperature absorption and fluorescence spectroscopy and by time-resolved fluorescence spectroscopy. The low-temperature absorption spectrum of the LOV2 domain showed a fine structure around 473 nm, indicating heterogeneity in the flavin binding pocket. The fluorescence quantum yield of the flavin cofactor increased from 0.13 to 0.41 upon cooling the sample from room temperature to 77 K. A pronounced phosphorescence emission around 600 nm was observed in the LOV2 domain between 77 and 120 K, allowing for an accurate positioning of the flavin triplet state in the LOV2 domain at 16900 cm{sup -1}. Fluorescence from the cryotrapped covalent adduct state was extremely weak, with a fluorescence spectrum showing a maximum at 440 nm. Time-resolved fluorescence experiments utilizing a synchroscan streak camera revealed a singlet-excited state lifetime of the LOV2 domain of 2.4 ns. FMN dissolved in aqueous solution showed a pH-dependent lifetime ranging between 2.9 ns at pH 2.0 to 4.7 ns at pH 8.0. No spectral shifting of the flavin emission was observed in the LOV2 domain nor in FMN in aqueous solution.

  6. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdallah A.; Allam, Moussa A.; Moharram, Mohamed A.

    2011-12-01

    The inorganic constituents of 5 different plants (leaves and stalks) were investigated by using Fourier transformer infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis including thermal gravimetric analysis (TGA), derivative thermogravimetry (DTG) and differential scanning calorimetry (DSC). These plants are Catha edulis (Khat), basil, mint, green tea and trifolium. The absorption bands of carbonate ions CO 32- was exhibited at 1446 cm -1, and the phosphate ions PO 43- was assigned at 1105 and 1035 cm -1. At high temperatures (600, 700 and 600 °C) further absorption bands of the phosphate ions PO 43- was assigned at the frequencies 572, 617, 962, 1043 and 1110 cm -1 and the vibrational absorption band of the carbonate ions CO 32- was assigned at 871, 1416 and 1461 cm -1. X-ray diffraction and thermal analysis confirm the obtained results of FITR. Results showed that the main inorganic constituents of C. edulis and basil leaves are hydroxyapatite whereas the hydroxyapatite content in the other plant samples is less than that in case of C. edulis and basil plant leaves.

  7. Synthesis, spectroscopic characterization and crystal structure of novel NNNN-donor μ-bis(bidentate) tetraaza acyclic Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad Hossein; Shojaee, Elahe; Nichol, Gary S.

    2012-12-01

    Novel NNNN-donor μ-bis(bidentate) tetraaza acyclic Schiff base ligands with different substituents (CF3, N(CH3)2 or OH groups) were synthesized by the condensation reaction of triethylenetetramine with 4-substituted benzaldehydes. Triethylenetetramine tris(4-trifluoromethylbenzylidene) (TTFMB), triethylenetetramine tris(4-dimethylaminobenzylidene) (TTDMB) and triethylenetetramine tris(2,4-dihydroxybenzylidene) (TTDHB) were formed as N4 donor ligands. The formation of a five-membered imidazolidine ring from the ethylenediamine backbone as a spacer-cumbridging unit gives rise to a new type of imidazolidine ligand. The structure of the TTFMB and TTDMB were determined by single crystal X-ray crystallography. The synthesized ligands have been characterized on the basis of the results of cyclic voltammetry (CV) and spectroscopic studies viz. FT-IR spectroscopy (FT-IR), mass spectroscopy (MS) and UV-Vis spectroscopy (UV-Vis).

  8. Synthesis, spectroscopic, structural and theoretical characterization of hydrogensquarate and mononuclear Au(III)-complex of dipeptide phenylalanyltyrosine

    NASA Astrophysics Data System (ADS)

    Koleva, Bojidarka B.; Kolev, Tsonko; Zareva, Sonya Y.; Spiteller, Michael

    2008-08-01

    The mononuclear Au(III)-complex ([Au(C 18H 18N 2O 4)Cl]) and hydrogensquarate ([C 22H 21N 2O 8]) of dipeptide phenylalanyltyrosine ( H-Phe-Tyr-OH) have been synthezised, characterized spectroscopically and structurally by means of solid-state linear-polarized IR-spectroscopy, 1H- and 13C-NMR, ESI-MS, HPLC-MS-MS, FAB-MS, TGS and DSC methods. The structure of the Au(III)-complex has been predicted theoretically by DFT calculations. The dipeptide coordinated in a tridentate manner via -NH 2, -COO - and N --groups. One Cl - ion is attached to the metal centre as a terminal ligand, yielding a planar AuN 2OCl chromophor. The hydrogensquarate consists in positive charged dipeptide moiety and negative one hydrogensquarate (HSq -) anion stabilizing by strong intermolecular hydrogen bonds.

  9. Synthesis, spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Saravanabhavan, Munusamy; Sathya, Krishnan; Puranik, Vedavati G.; Sekar, Marimuthu

    2014-01-01

    Carbazole picrate (CP), a new organic compound has been synthesized, characterized by various analytical and spectroscopic technique such as FT-IR, UV-Vis, 1H and 13C NMR spectroscopy. An orthorhombic geometry was proposed based on single crystal XRD study. The thermal stability of the crystal was studied by using thermo-gravimetric and differential thermal analyses and found that it was stable up to 170 °C. Further, the newly synthesized title compound was tested for its in vitro antibacterial and antifungal activity against various bacterial and fungal species. Also, the compound was tested for its binding activity with Calf thymus (CT) DNA and the results show a considerable interaction between CP and CT-DNA.

  10. Synthesis, spectroscopic characterization and crystal structure of novel NNNN-donor μ-bis(bidentate) tetraaza acyclic Schiff base ligands.

    PubMed

    Habibi, Mohammad Hossein; Shojaee, Elahe; Nichol, Gary S

    2012-12-01

    Novel NNNN-donor μ-bis(bidentate) tetraaza acyclic Schiff base ligands with different substituents (CF(3), N(CH(3))(2) or OH groups) were synthesized by the condensation reaction of triethylenetetramine with 4-substituted benzaldehydes. Triethylenetetramine tris(4-trifluoromethylbenzylidene) (TTFMB), triethylenetetramine tris(4-dimethylaminobenzylidene) (TTDMB) and triethylenetetramine tris(2,4-dihydroxybenzylidene) (TTDHB) were formed as N(4) donor ligands. The formation of a five-membered imidazolidine ring from the ethylenediamine backbone as a spacer-cumbridging unit gives rise to a new type of imidazolidine ligand. The structure of the TTFMB and TTDMB were determined by single crystal X-ray crystallography. The synthesized ligands have been characterized on the basis of the results of cyclic voltammetry (CV) and spectroscopic studies viz. FT-IR spectroscopy (FT-IR), mass spectroscopy (MS) and UV-Vis spectroscopy (UV-Vis).

  11. Potential approaches to the spectroscopic characterization of high performance polymers exposed to energetic protons and heavy ions

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1991-01-01

    A potential limitation to human activity on the lunar surface or in deep space is the exposure of the crew to unacceptably high levels of penetrating space radiations. The radiations of most concerns for such missions are high-energy protons emitted during solar flares, and galactic cosmic rays which are high-energy ions ranging from protons to iron. The development of materials for effective shielding from energetic space radiations will clearly require a greater understanding of the underlying mechanisms of radiation-induced damage in bulk materials. This can be accomplished in part by the detailed spectroscopic characterization of bulk materials that were exposed to simulated space radiations. An experimental data base thus created can then be used in conjunction with existing radiation transport codes in the design and fabrication of effective radiation shielding materials. Electron Paramagnetic Resonance Spectroscopy was proven very useful in elucidating radiation effects in polymers (high performance polymers are often an important components of structural composites).

  12. An in situ cell for characterization of solids by soft x-ray absorption

    NASA Astrophysics Data System (ADS)

    Drake, Ian J.; Liu, Teris C. N.; Gilles, Mary; Tyliszczak, Tolek; Kilcoyne, A. L. David; Shuh, David K.; Mathies, Richard A.; Bell, Alexis T.

    2004-10-01

    A cell has been designed and fabricated for in situ characterization of catalysts and environmental materials using soft x-ray absorption spectroscopy and spectromicroscopy at photon energies above 250 eV. "Lab-on-a-chip" technologies were used to fabricate the cell on a glass wafer. The sample compartment is 1.0 mm in diameter and has a gas path length of 0.8 mm to minimize x-ray absorption in the gas phase. The sample compartment can be heated to 533 K by an Al resistive heater and gas flows up to 5.0 cm3 min-1 can be supplied to the sample compartment through microchannels. The performance of the cell was tested by acquiring Cu L3-edge x-ray appearance near-edge structure (XANES) data during the reduction and oxidation of a silica-supported Cu catalyst using the beam line 11.0.2 scanning transmission x-ray microscope (STXM) at the Advanced Light Source of Lawrence Berkeley National Laboratory (Berkeley, CA). Two-dimensional images of individual catalyst particles were recorded at photon energies between 926 and 937 eV, the energy range in which the Cu(II) and Cu(I) L3 absorption edges are observed. Oxidation state specific images of the catalyst clearly show the disappearance of Cu(II) species during the exposure of the oxidized sample to 4% CO in He while increasing the temperature from 308 to 473 K. Reoxidation restores the intensity of the image associated with Cu(II). Cu L3-edge XANES spectra obtained from stacks of STXM images show that with increasing temperature the Cu(II) peak intensity decreases as the Cu(I) peak intensity increases.

  13. Characterization of personal RF electromagnetic field exposure and actual absorption for the general public.

    PubMed

    Joseph, W; Vermeeren, G; Verloock, L; Heredia, Mauricio Masache; Martens, Luc

    2008-09-01

    In this paper, personal electromagnetic field exposure of the general public due to 12 different radiofrequency sources is characterized. Twenty-eight different realistic exposure scenarios based upon time, environment, activity, and location have been defined and a relevant number of measurements were performed with a personal exposure meter. Indoor exposure in office environments can be higher than outdoor exposure: 95th percentiles of field values due to WiFi ranged from 0.36 to 0.58 V m(-1), and for DECT values of 0.33 V m(-1) were measured. The downlink signals of GSM and DCS caused the highest outdoor exposures up to 0.52 V m(-1). The highest total field exposure occurred for mobile scenarios (inside a train or bus) from uplink signals of GSM and DCS (e.g., mobile phones) due to changing environmental conditions, handovers, and higher required transmitted signals from mobile phones due to penetration through windows while moving. A method to relate the exposure to the actual whole-body absorption in the human body is proposed. An application is shown where the actual absorption in a human body model due to a GSM downlink signal is determined. Fiftieth, 95th, and 99 th percentiles of the whole-body specific absorption rate (SAR) due to this GSM signal of 0.58 microW kg(-1), 2.08 microW kg(-1), and 5.01 microW kg(-1) are obtained for a 95th percentile of 0.26 V m(-1). A practical usable function is proposed for the relation between the whole-body SAR and the electric fields. The methodology of this paper enables epidemiological studies to make an analysis in combination with both electric field and actual whole-body SAR values and to compare exposure with basic restrictions. PMID:18695413

  14. Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser

    SciTech Connect

    Lacroix, D.; Jeandel, G.; Boudot, C.

    1997-05-01

    A spectroscopic study of a laser-induced plume created during the welding of stainless steel and other materials (iron and chromium) has been carried out. A pulsed Nd:YAG laser of 1000 W average power is used. The evolutions of the electron temperature and electron density have been studied for several welding parameters. We use working powers from 300 to 900 W and pulse durations between 1.5 and 5 ms. The influence of shielding gases like nitrogen and argon has been taken into account. Temperature and density calculations are based on the observation of the relative intensities and shapes of the emission peaks. We assume that the plasma is in local thermal equilibrium. The temperature is calculated with the Boltzmann plot method and the density with the Stark broadening of an iron line. The electron temperatures vary in the range of 4500{endash}7100 K, electron density between 3{times}10{sup 22} and 6.5{times}10{sup 22} m{sup {minus}3}. The absorption of the laser beam in the plasma is calculated using the Inverse Bremsstrahlung theory. {copyright} {ital 1997 American Institute of Physics.}

  15. Silica-coated iron nanocubes: preparation, characterization and application in microwave absorption.

    PubMed

    Ni, Xiaomin; Zheng, Zhong; Hu, Xiang; Xiao, Xiukun

    2010-01-01

    Novel cubic nanocapsules consisting of metallic iron core and amorphous silica shell were fabricated through a simple chemical reduction route followed by a Stöber process. Thus-prepared Fe@SiO(2) nanocubes were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS), Fourier transform infrared spectrometer (FTIR), thermogravimetry-differential thermal analysis (TG-DTA), vibrating sample magnetometer (VSM) and scalar network analysis (SNA). Comparing with that of pure iron counterparts, silica-coated iron nanocubes exhibited improved magnetic properties, oxidation resistance and microwave absorption performance. A reflection loss (RL) exceeding -12 dB was obtained in the frequency range of 8-14 GHz for an absorber thickness of 2 mm, with an optimal RL of -18.2 dB at 9 GHz. Mechanism of the improved microwave absorption properties of the Fe@SiO(2) composite was discussed based on their magnetic properties and electromagnetic theory.

  16. Predicting X-ray absorption spectra of semiconducting polymers for electronic structure and morphology characterization

    NASA Astrophysics Data System (ADS)

    Su, Gregory; Patel, Shrayesh; Pemmaraju, C. Das; Kramer, Edward; Prendergast, David; Chabinyc, Michael

    2015-03-01

    Core-level X-ray absorption spectroscopy (XAS) reveals important information on the electronic structure of materials and plays a key role in morphology characterization. Semiconducting polymers are the active component in many organic electronics. Their electronic properties are critically linked to device performance, and a proper understanding of semiconducting polymer XAS is crucial. Techniques such as resonant X-ray scattering rely on core-level transitions to gain materials contrast and probe orientational order. However, it is difficult to identify these transitions based on experiments alone, and complementary simulations are required. We show that first-principles calculations can capture the essential features of experimental XAS of semiconducting polymers, and provide insight into which molecular model, such as oligomers or periodic boundary conditions, are best suited for XAS calculations. Simulated XAS can reveal contributions from individual atoms and be used to visualize molecular orbitals. This allows for improved characterization of molecular orientation and scattering analysis. These predictions lay the groundwork for understanding how chemical makeup is linked to electronic structure, and to properly utilize experiments to characterize semiconducting polymers.

  17. The spectroscopic characterization of newly developed emissive materials and the effects of environment on their photophysical properties

    NASA Astrophysics Data System (ADS)

    McNamara, Louis Edward, III

    The development of new materials capable of efficient charge transfer and energy storage has become increasingly important in many areas of modern chemical research. This is especially true for the development of emissive optoelectronic devices and in the field of solar to electric energy conversion. The characterization of the photophysical properties of new molecular systems for these applications has become critical in the design and development of these materials. Many molecular building blocks have been developed and understanding the properties of these molecules at a fundamental level is essential for their successful implementation and future engineering. This dissertation focuses on the characterization of some of these newly-developed molecular systems. The spectroscopic studies focus on the characterization of newly-developed molecules based on perylene and indolizine derivatives for solar to electric energy conversion, thienopyrazine derivatives for near infrared (NIR) emissive applications, an SCS pincer complex for blue emissive materials and a fluorescent probe for medical applications. The effects of noncovalent interactions are also investigated on these systems and a benchmark biological molecule trimethylamine N-oxide (TMAO).

  18. Characterization of Si (sub X)Ge (sub 1-x)/Si Heterostructures for Device Applications Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.; Tanner, M.; Wang, K. L.; Mena, R. A.; Young, P. G.

    1993-01-01

    Spectroscopic ellipsometry (SE) characterization of several complex Si (sub X)Ge (sub 1-x)/Si heterostructures prepared for device fabrication, including structures for heterojunction bipolar transistors (HBT), p-type and n-type heterostructure modulation doped field effect transistors, has been performed. We have shown that SE can simultaneously determine all active layer thicknesses, Si (sub X)Ge (sub 1-x) compositions, and the oxide overlayer thickness, with only a general knowledge of the structure topology needed a priori. The characterization of HBT material included the SE analysis of a Si (sub X)Ge (sub 1-x) layer deeply buried (600 nanometers) under the silicon emitter and cap layers. In the SE analysis of n-type heterostructures, we examined for the first time a silicon layer under tensile strain. We found that an excellent fit can be obtained using optical constants of unstrained silicon to represent the strained silicon conduction layer. We also used SE to measure lateral sample homogeneity, providing quantitative identification of the inhomogeneous layer. Surface overlayers resulting from prior sample processing were also detected and measured quantitatively. These results should allow SE to be used extensively as a non-destructive means of characterizing Si (sub X)Ge (sub 1-x)/Si heterostructures prior to device fabrication and testing.

  19. Spectroscopic characterization of 57Fe-reconstituted rubrerythrin, a non-heme iron protein with structural analogies to ribonucleotide reductase.

    PubMed

    Ravi, N; Prickril, B C; Kurtz, D M; Huynh, B H

    1993-08-24

    Rubrerythrin, a contraction of rubredoxin and hemerythrin, is the trivial name given to a non-heme iron protein isolated from Desulfovibrio vulgaris (Hildenborough). This protein, whose physiological function is unknown, was first characterized by J. LeGall et al. [(1988) Biochemistry 28, 1636] as being a homodimer of subunit M(r) = 21,900 with four Fe per homodimer distributed as two rubredoxin-type FeS4 centers and one hemerythrin-type diiron cluster. Subsequent analysis of the amino acid sequence of the rubrerythrin gene [Kurtz, D. M., Jr., & Prickril, B.C. (1991) Biochem. Biophys. Res. Commun. 181, 137] revealed an internal homology which suggested that each subunit can accommodate one diiron cluster. Here, we report a procedure for reconstitution of the as-isolated D. vulgaris rubrerythrin with 57Fe. The reconstituted protein was characterized by optical, electron paramagnetic resonance, and Mössbauer spectroscopies. The results indicate successful incorporation of 57Fe into the two types of sites and strongly suggest that each subunit of rubrerythrin can indeed accommodate one diiron cluster as well as one rubredoxin-type center. Combined with amino acid sequence analysis, the spectroscopic characterization further suggests that the rubrerythrin subunit contains a diiron site whose structure is more closely related to that in ribonucleotide reductase than to that in hemerythrin.

  20. A COMPLETE SPECTROSCOPIC CHARACTERIZATION OF SO AND ITS ISOTOPOLOGUES UP TO THE TERAHERTZ DOMAIN

    SciTech Connect

    Martin-Drumel, M. A.; Hindle, F.; Mouret, G.; Cuisset, A.; Cernicharo, J.

    2015-02-01

    In order to obtain accurate terahertz center frequencies for SO and its isotopologues, we have studied the absorption spectrum of SO, {sup 34}SO, and {sup 33}SO up to 2.5 THz using continuous-wave terahertz photomixing based on a frequency comb providing an accuracy down to 10 kHz. Sulfur monoxide was produced in a radio frequency discharge of air in a cell containing pure sulfur. Together with the strong absorption signal of the main isotopologue, transitions of {sup 34}SO ({sup 34}S: 4.21%) and {sup 33}SO ({sup 33}S: 0.75%) were observed in natural abundance. The newly observed transitions constitute an extension of the observed rotational quantum numbers of the molecule toward higher N values, allowing an improvement of the molecular parameters for the three species. An isotopically invariant fit has been performed based on pure rotational and ro-vibrational transitions of all SO isotopologues, enabling their accurate line position prediction at higher frequencies. Thanks to this new set of parameters, it is now possible to predict with very high accuracy the frequencies of the ro-vibrational lines. This should enable the research of SO in the mid-IR using ground-based IR telescopes, space-based telescope archives (Infrared Space Observatory, Spitzer), and future space missions such as the James Webb Space Telescope. This set of parameters is particularly well adapted for the detection of SO lines in O-rich evolved stars or in molecular clouds in absorption against bright IR sources.

  1. In situ characterization of few-cycle laser pulses in transient absorption spectroscopy.

    PubMed

    Blättermann, Alexander; Ott, Christian; Kaldun, Andreas; Ding, Thomas; Stooß, Veit; Laux, Martin; Rebholz, Marc; Pfeifer, Thomas

    2015-08-01

    Attosecond transient absorption spectroscopy has thus far been lacking the capability to simultaneously characterize the intense laser pulses at work within a time-resolved quantum-dynamics experiment. However, precise knowledge of these pulses is key to extracting quantitative information in strong-field highly nonlinear light-matter interactions. Here, we introduce and experimentally demonstrate an ultrafast metrology tool based on the time-delay-dependent phase shift imprinted on a strong-field-driven resonance. Since we analyze the signature of the laser pulse interacting with the absorbing spectroscopy target, the laser pulse duration and intensity are determined in situ. As we also show, this approach allows for the quantification of time-dependent bound-state dynamics in one and the same experiment. In the future, such experimental data will facilitate more precise tests of strong-field dynamics theories.

  2. Micro-spectroscopic techniques applied to characterization of varnished archeological findings

    NASA Astrophysics Data System (ADS)

    Barone, G.; Ioppolo, S.; Majolino, D.; Migliardo, P.; Ponterio, R.

    2000-04-01

    This work reports an analysis on terracotta varnished finding recovered in east Sicily area (Messina). We have performed FTIR micro-spectroscopy and electronic microscopy (SEM)measurements in order to recognize the elemental constituents of the varnished surfaces. Furthermore, for all the samples, a study on the bulk has been performed by Fourier Transform Infrared Absorption. The analyzed samples consist of a number of pottery fragments belonging to archaic and classical ages, varnished in black and red colors. The obtained data furnished useful information about composition of decorated surfaces and bulk matrixes, about baking temperature, manufacture techniques and alteration mechanisms of findings due to the long burial.

  3. Growth and spectroscopic characterization of Nd 3BWO 9 single crystal

    NASA Astrophysics Data System (ADS)

    Majchrowski, A.; Michalski, E.; Brenier, A.

    2003-01-01

    Pure and ytterbium-doped neodymium borotungstate (Nd 3BWO 9, and Nd 2.85Yb 0.15BWO 9, respectively) single crystals have been grown by means of high-temperature solution growth method from 15 mol% solution in PbO. The phase of both crystals was confirmed to be hexagonal with acentric space group P6 3. Absorption and luminescence spectra as well as decay time for 4F 3/2→ 4I 11/2 transition in neodymium borotungstate were measured and discussed. The obtained results show that Nd 3BWO 9 is suitable as high-neodymium-content laser crystal for microchip laser applications.

  4. Structural Modifications of Deoxycholic Acid to Obtain Three Known Brassinosteroid Analogues and Full NMR Spectroscopic Characterization.

    PubMed

    Herrera, Heidy; Carvajal, Rodrigo; Olea, Andrés F; Espinoza, Luis

    2016-01-01

    An improved synthesis route for obtaining known brassinosteroid analogues, i.e., methyl 2α,3α-dihydroxy-6-oxo-5α-cholan-24-oate (11), methyl 3α-hydroxy-6-oxo-7-oxa-5α-cholan-24-oate (15) and methyl 3α-hydroxy-6-oxa-7-oxo-5α-cholan-24-oate (16), from hyodeoxycholic acid (4) maintaining the native side chain is described. In the alternative procedure, the di-oxidized product 6, obtained in the oxidation of methyl hyodeoxycholate 5, was converted almost quantitatively into the target monoketone 7 by stereoselective reduction with NaBH₄, increasing the overall yield of this synthetic route to 96.8%. The complete ¹H- and (13)C-NMR assignments for all compounds synthesized in this work have been made by 1D and 2D heteronuclear correlation gs-HSQC and gs-HMBC techniques. Thus, it was possible to update the spectroscopic information of ¹H-NMR and to accomplish a complete assignment of all (13)C-NMR signals for analogues 5-16, which were previously reported only in partial form. PMID:27618889

  5. Synthesis, spectroscopic characterization and electrochemical studies of Girard's T chromone complexes

    NASA Astrophysics Data System (ADS)

    Al-Saeedi, Sameerah I.; Alaghaz, Abdel-Nasser M. A.; Ammar, Reda A.

    2016-05-01

    Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been. The elemental analyses, molar conductance, spectral, magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (OON). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.10-10.18 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using different equations. The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. The cyclic voltammograms of the Cu(II)/Co(II)/Ni(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions.

  6. Minerals from Macedonia XXIII. Spectroscopic and structural characterization of schorl and beryl cyclosilicates.

    PubMed

    Makreski, Petre; Jovanovski, Gligor

    2009-08-01

    IR and Raman spectroscopy study on two collected cyclosilicate species: schorl (from tourmaline group), Na(Fe,Mg)(3)Al(6)(BO(3))(3)Si(6)O(18)(OH,F)(4) and beryl (Be,Mg,Fe)(3)Al(2)Si(6)O(18) were carried out. Although beryl is nominally anhydrous mineral, vibrational results strongly indicate that H(2)O molecules exist in the structural channels. The number of vibrational bands and their frequencies revealed the presence of H(2)O type II, in which C(2) symmetry axis of the water molecule is parallel to the structural channel (and to the c-axis of beryl). On the other hand, it was found that observed bands in the IR and Raman OH stretching region of the other tourmaline varieties appear as a result of the cation combinations involving dominant presence of Mg and Fe cations in the Y structural sites. The strong indication derived from the vibrational spectroscopic results that the studied mineral represents a schorl variety, coincide very well with the results obtained by powder X-ray diffraction and X-ray microprobe analysis. Both minerals show IR spectral similarities in the region below 1500 cm(-1), whereas the resemblance between the Raman spectra (1500-100 cm(-1)) is less expressed confirming that these spectra are more sensitive to compositional changes and to structural disorder. The identification of both minerals was additionally supported by studying the powder X-ray diffraction diagrams. PMID:18722809

  7. Spectroscopic characterization of rovibrational temperatures in atmospheric pressure He /CH4 plasmas

    NASA Astrophysics Data System (ADS)

    Moon, Se Youn; Kim, D. B.; Gweon, B.; Choe, W.

    2008-10-01

    Atmospheric pressure of helium (He) and methane (CH4) mixture discharge characteristics are investigated using emission spectroscopic methods. Plasmas are produced in a radio frequency capacitively coupled device at atmospheric pressure in the ambient air. Without the CH4 gas introduced in the plasma, the emission spectrum exhibits typical helium discharge characteristics showing helium atomic lines with nitrogen molecular bands and oxygen atomic lines resulting from air impurities. Addition of a small amount (<1%) of CH4 to the supplied He results in the emission of CN (B2∑+-X2∑+: violet system) and CH (A2Δ-X2∏: 430nm system) molecular bands. Analyzing the CN and CH diatomic molecular emission spectra, the vibrational temperature (Tvib) and rotational temperature (Trot) are simultaneously obtained. As input power levels are raised from 20Wto200W, Tvib and Trot are increased from 4230Kto6310K and from 340K to500K, respectively. On the contrary, increasing the CH4 amount brings about the decrease of both temperatures because CH4 is harder to ionize than He. The emission intensities of CN and CH radicals, which are important in plasma processing, are also changed along with the temperature variation. From the results, the atmospheric pressure plasma shows strong nonequilibrium discharge properties, which may be effectively utilized for thermal damage free material treatments.

  8. Minerals from Macedonia XXIII. Spectroscopic and structural characterization of schorl and beryl cyclosilicates.

    PubMed

    Makreski, Petre; Jovanovski, Gligor

    2009-08-01

    IR and Raman spectroscopy study on two collected cyclosilicate species: schorl (from tourmaline group), Na(Fe,Mg)(3)Al(6)(BO(3))(3)Si(6)O(18)(OH,F)(4) and beryl (Be,Mg,Fe)(3)Al(2)Si(6)O(18) were carried out. Although beryl is nominally anhydrous mineral, vibrational results strongly indicate that H(2)O molecules exist in the structural channels. The number of vibrational bands and their frequencies revealed the presence of H(2)O type II, in which C(2) symmetry axis of the water molecule is parallel to the structural channel (and to the c-axis of beryl). On the other hand, it was found that observed bands in the IR and Raman OH stretching region of the other tourmaline varieties appear as a result of the cation combinations involving dominant presence of Mg and Fe cations in the Y structural sites. The strong indication derived from the vibrational spectroscopic results that the studied mineral represents a schorl variety, coincide very well with the results obtained by powder X-ray diffraction and X-ray microprobe analysis. Both minerals show IR spectral similarities in the region below 1500 cm(-1), whereas the resemblance between the Raman spectra (1500-100 cm(-1)) is less expressed confirming that these spectra are more sensitive to compositional changes and to structural disorder. The identification of both minerals was additionally supported by studying the powder X-ray diffraction diagrams.

  9. Spectroscopic ellipsometry for characterization of InAs/Ga1-xInxSb superlattices

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Schmitz, J.; Herres, N.; Fuchs, F.; Walther, M.

    1998-05-01

    The pseudodielectric function of InAs/Ga1-xInxSb superlattices (SLs) grown by solid-source molecular-beam epitaxy, was measured by spectroscopic ellipsometry (SE) for photon energies ranging from 1.2 to 5 eV. The width of the extrema in the SL pseudodielectric function derived from the E1 and E1+Δ1 interband transitions of the SL constituents InAs and Ga1-xInxSb, was found to depend on the structural quality of the SL. Differences in the SL quality caused by different sequences of InSb- like and GaAs-like interfaces, were easily detected by SE. The formation of the intended interface alternations was verified by Raman spectroscopy. The extrema in the SL pseudodielectric function originating from the E1 and E1+Δ1 interband transitions of Ga1-xInxSb were found to shift to lower energies with increasing In content x. Finally SE has been applied to the analysis of a complete InAs/Ga1-xInxSb SL detector structure.

  10. Applied quantum chemistry: Spectroscopic detection and characterization of the F{sub 2}BS and Cl{sub 2}BS free radicals in the gas phase

    SciTech Connect

    Jin, Bing; Clouthier, Dennis J.; Sheridan, Phillip M.

    2015-03-28

    In this and previous work [D. J. Clouthier, J. Chem. Phys. 141, 244309 (2014)], the spectroscopic signatures of the X{sub 2}BY (X = H, halogen, Y = O, S) free radicals have been predicted using high level ab initio theory. The theoretical results have been used to calculate the electronic absorption and single vibronic level (SVL) emission spectra of the radicals under typical jet-cooled conditions. Using these diagnostic predictions, the previously unknown F{sub 2}BS and Cl{sub 2}BS free radicals have been identified and characterized. The radicals were prepared in a free jet expansion by subjecting precursor mixtures of BF{sub 3} or BCl{sub 3} and CS{sub 2} vapor to an electric discharge at the exit of a pulsed molecular beam valve. The B{sup ~2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence spectra were found within 150 cm{sup −1} of their theoretically predicted positions with vibronic structure consistent with our Franck-Condon simulations. The B{sup ~2}A{sub 1} state emits down to the ground state and to the low-lying A{sup ~2}B{sub 1} excited state and the correspondence between the observed and theoretically derived SVL emission Franck-Condon profiles was used to positively identify the radicals and make assignments. Excited state Coriolis coupling effects complicate the emission spectra of both radicals. In addition, a forbidden component of the electronically allowed B{sup ~}–X{sup ~} band system of Cl{sub 2}BS is evident, as signaled by the activity in the b{sub 2} modes in the spectrum. Symmetry arguments indicate that this component gains intensity due to a vibronic interaction of the B{sup ~2}A{sub 1} state with a nearby electronic state of {sup 2}B{sub 2} symmetry.

  11. Applied quantum chemistry: Spectroscopic detection and characterization of the F2BS and Cl2BS free radicals in the gas phase.

    PubMed

    Jin, Bing; Sheridan, Phillip M; Clouthier, Dennis J

    2015-03-28

    In this and previous work [D. J. Clouthier, J. Chem. Phys. 141, 244309 (2014)], the spectroscopic signatures of the X2BY (X = H, halogen, Y = O, S) free radicals have been predicted using high level ab initio theory. The theoretical results have been used to calculate the electronic absorption and single vibronic level (SVL) emission spectra of the radicals under typical jet-cooled conditions. Using these diagnostic predictions, the previously unknown F2BS and Cl2BS free radicals have been identified and characterized. The radicals were prepared in a free jet expansion by subjecting precursor mixtures of BF3 or BCl3 and CS2 vapor to an electric discharge at the exit of a pulsed molecular beam valve. The B̃(2)A1-X̃(2)B2 laser-induced fluorescence spectra were found within 150 cm(-1) of their theoretically predicted positions with vibronic structure consistent with our Franck-Condon simulations. The B̃(2)A1 state emits down to the ground state and to the low-lying Ã(2)B1 excited state and the correspondence between the observed and theoretically derived SVL emission Franck-Condon profiles was used to positively identify the radicals and make assignments. Excited state Coriolis coupling effects complicate the emission spectra of both radicals. In addition, a forbidden component of the electronically allowed B̃-X̃ band system of Cl2BS is evident, as signaled by the activity in the b2 modes in the spectrum. Symmetry arguments indicate that this component gains intensity due to a vibronic interaction of the B̃(2)A1 state with a nearby electronic state of (2)B2 symmetry.

  12. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper(II) complexes with sulfathiazole and nimesulide

    NASA Astrophysics Data System (ADS)

    Nunes, Julia Helena Bormio; de Paiva, Raphael Enoque Ferraz; Cuin, Alexandre; da Costa Ferreira, Ana Maria; Lustri, Wilton Rogério; Corbi, Pedro Paulo

    2016-05-01

    New ternary copper(II) complexes of sulfathiazole (SFT, C9H8N3O2S2) or nimesulide (NMS, C13H11N2O5S) and 2,2‧-bipyridine (bipy) were synthesized, and characterized by chemical and spectroscopic techniques. Elemental analyses indicated a 2:1:1 sulfonamide/copper/bipy composition for both complexes. Mass spectrometric measurements permitted identifying the molecular ions [Cu(SFT)2(bipy)+H]+ and [Cu(NMS)2(bipy)+H]+ at m/z 728 and 835, respectively, confirming the proposed compositions. Crystal structure of the [Cu(SFT)2(bipy)] complex was solved by powder X-ray diffraction analysis (PXRD), attesting that the Cu(II) ion is hexacoordinated in a distorted octahedral geometry. Each SFT molecule coordinates to the metal ion by the nitrogen atoms of the SO2-N group and of the heterocyclic ring. The coordination sphere is completed by a bipyridine. Electronic paramagnetic resonance (EPR) studies were carried out for the [Cu(NMS)2(bipy)] complex, indicating a tetragonal environment around the metal ion. It was suggested that NMS coordinates to Cu(II) by the nitrogen and oxygen atoms of the SO2-N group, which was confirmed by infrared spectroscopic studies. Biological studies showed the antibacterial activity of both Cu-SFT and Cu-NMS complexes, with the minimum inhibitory concentration (MIC) values ranging from 0.10 to 0.84 mmol L-1 against Gram-negative bacteria for [Cu(SFT)2(bipy)], and from 1.50 to 3.00 mmol L-1 against Gram-positive and -negative bacteria for [Cu(NMS)2(bipy)].

  13. Theoretical Spectroscopic Characterization at Low Temperatures of Dimethyl Sulfoxide: The Role of Anharmonicity.

    PubMed

    Senent, M L; Dalbouha, S; Cuisset, A; Sadovskii, D

    2015-09-17

    The structural and spectroscopic parameters of dimethyl sulfoxide (DMSO) are predicted from CCSD(T)-F12 calculations that can help to resolve the outstanding problem of the rovibrational spectroscopy. DMSO is a near oblate top that presents a trigonal pyramidal geometry. Rotational parameters are determined at the equilibrium and in selected vibrational states. For the ground state, the rotational constants were calculated to be A0 = 7031.7237 MHz, B0 = 6920.1221 MHz, and C0 = 4223.3389 MHz, at few megahertz from the previous experimental measurements. Ab initio calculations allow us to assert that DMSO rotational constants are strongly dependent on anharmonic effects. Asymmetry increases with the vibrational energy. Harmonic frequencies, torsional parameters, and a two-dimensional potential energy surface (2D-PES) focused to describe the internal rotation of the two methyl groups are determined at the CCSD(T)-F12 level of theory. For the medium and small amplitude motions, anharmonic effects are estimated with MP2 theory getting an excellent agreement with experimental data for the ν11 and ν23 fundamentals. Torsional energies and transitions are computed variationally form the 2D-PES that denotes strong interactions between both internal tops. The vibrationally corrected V3 torsional barrier is evaluated to be 965.32 cm(-1). The torsional splitting of the ground vibrational state has been estimated to be lower than 0.01 cm(-1). Although the ν13 torsional fundamental is found at 229.837 cm(-1) in good agreement with previous assessment, there is not accord for the low intense transition ν24. A new assignment predicting ν24 to lie between 190 and 195 cm(-1) is proposed.

  14. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate.

    PubMed

    Senent, M L; Puzzarini, C; Hochlaf, M; Domínguez-Gómez, R; Carvajal, M

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH3-S-CHO (MSCHO) and O-methyl thioformate CH3-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH3-S-CHO represents the most stable structure lying 4372.2 cm(-1) below cis-CH3-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm(-1)) than for MOCHS (1963.6 cm(-1)). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V3(cis) are determined to be 139.7 cm(-1) (CH3-S-CHO) and 670.4 cm(-1) (CH3-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm(-1) for CH3-S-CHO and negligible for CH3-O-CHS.

  15. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate.

    PubMed

    Senent, M L; Puzzarini, C; Hochlaf, M; Domínguez-Gómez, R; Carvajal, M

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH3-S-CHO (MSCHO) and O-methyl thioformate CH3-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH3-S-CHO represents the most stable structure lying 4372.2 cm(-1) below cis-CH3-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm(-1)) than for MOCHS (1963.6 cm(-1)). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V3(cis) are determined to be 139.7 cm(-1) (CH3-S-CHO) and 670.4 cm(-1) (CH3-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm(-1) for CH3-S-CHO and negligible for CH3-O-CHS. PMID:25217912

  16. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    SciTech Connect

    Senent, M. L.; Puzzarini, C.; Hochlaf, M.; Domínguez-Gómez, R.; Carvajal, M.

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH{sub 3}-S-CHO (MSCHO) and O-methyl thioformate CH{sub 3}-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH{sub 3}-S-CHO represents the most stable structure lying 4372.2 cm{sup −1} below cis-CH{sub 3}-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm{sup −1}) than for MOCHS (1963.6 cm{sup −1}). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V{sub 3}(cis) are determined to be 139.7 cm{sup −1} (CH{sub 3}-S-CHO) and 670.4 cm{sup −1} (CH{sub 3}-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm{sup −1} for CH{sub 3}-S-CHO and negligible for CH{sub 3}-O-CHS.

  17. Spectroscopic Characterization of HD 95086 b with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    De Rosa, Robert J.; Rameau, Julien; Patience, Jenny; Graham, James R.; Doyon, René; Lafrenière, David; Macintosh, Bruce; Pueyo, Laurent; Rajan, Abhijith; Wang, Jason J.; Ward-Duong, Kimberly; Hung, Li-Wei; Maire, Jérôme; Nielsen, Eric L.; Ammons, S. Mark; Bulger, Joanna; Cardwell, Andrew; Chilcote, Jeffrey K.; Galvez, Ramon L.; Gerard, Benjamin L.; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Ingraham, Patrick; Johnson-Groh, Mara; Kalas, Paul; Konopacky, Quinn M.; Marchis, Franck; Marois, Christian; Metchev, Stanimir; Morzinski, Katie M.; Oppenheimer, Rebecca; Perrin, Marshall D.; Rantakyrö, Fredrik T.; Savransky, Dmitry; Thomas, Sandrine

    2016-06-01

    We present new H (1.5-1.8 μm) photometric and K 1 (1.9-2.2 μm) spectroscopic observations of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager. The H-band magnitude has been significantly improved relative to previous measurements, whereas the low-resolution K 1 (λ /δ λ ≈ 66) spectrum is featureless within the measurement uncertainties and presents a monotonically increasing pseudo-continuum consistent with a cloudy atmosphere. By combining these new measurements with literature L\\prime photometry, we compare the spectral energy distribution (SED) of the planet to other young planetary-mass companions, field brown dwarfs, and to the predictions of grids of model atmospheres. HD 95086 b is over a magnitude redder in {K}1-L\\prime color than 2MASS J12073346-3932539 b and HR 8799 c and d, despite having a similar L\\prime magnitude. Considering only the near-infrared measurements, HD 95086 b is most analogous to the brown dwarfs 2MASS J2244316+204343 and 2MASS J21481633+4003594, both of which are thought to have dusty atmospheres. Morphologically, the SED of HD 95086 b is best fit by low temperature ({T}{{eff}} = 800-1300 K), low surface gravity spectra from models which simulate high photospheric dust content. This range of effective temperatures is consistent with field L/T transition objects, but the spectral type of HD 95086 b is poorly constrained between early L and late T due to its unusual position the color-magnitude diagram, demonstrating the difficulty in spectral typing young, low surface gravity substellar objects. As one of the reddest such objects, HD 95086 b represents an important empirical benchmark against which our current understanding of the atmospheric properties of young extrasolar planets can be tested.

  18. Spectroscopic investigation and optical characterization of Eu3+ ions in K-Nb-Si glasses

    NASA Astrophysics Data System (ADS)

    Murali Mohan, M.; Rama Moorthy, L.; Ramachari, D.; Jayasankar, C. K.

    2014-01-01

    This paper reports on the effect of concentration of Eu3+ ions in K2O-Nb2O5-SiO2-Eu2O3 (KNbSiEu) glasses prepared by the melt quenching technique. By using the Judd-Ofelt (JO) theory, the intensity parameters Ωλ (λ = 2, 4, 6) have been determined from the absorption and emission spectra of Eu3+ ions under different constraints. The radiative properties of some of the excited states of Eu3+ ions have been calculated. The decay curves of 5D0 level exhibited single exponential for all the Eu3+ ions concentrations. From these results, it is suggested that the strong red emission at 616 nm corresponding to the 5D0 → 7F2 transition could be used for the development of optical display devices.

  19. Characterization of protein immobilization at silver surfaces bynear edge x-ray absorption fine structure spectroscopy

    SciTech Connect

    Liu, X.; Jang, C.-H.; Zheng, F.; J rgensen, A.; Denlinger, J.D.; Dickson, K.A.; Raines, R.T.; Abbott, N.L.; Himpsel, F.J.

    2006-06-21

    Ribonuclease A (RNase A) is immobilized on silver surfacesin oriented and random form via self-assembled monolayers (SAMs) ofalkanethiols. The immobilization process is characterized step-by-stepusing chemically selective near-edge X-ray absorption fine structurespectroscopy (NEXAFS) at the C, N, and S K-edges. Causes of imperfectimmobilization are pinpointed, such as oxidation and partial desorptionof the alkanethiol SAMs and incomplete coverage. The orientation of theprotein layer manifests itself in an 18 percent polarization dependenceof the NEXAFS signal from the N 1s to pi* transition of the peptide bond,which is not seen for a random orientation. The S 1s to C-S sigma*transition exhibits an even larger polarization dependence of 41 percent,which is reduced to 5 percent for a random orientation. A quantitativemodel is developed that explains the sign and magnitude of thepolarization dependence at both edges. The results demonstrate thatNEXAFS is able to characterize surface reactions during theimmobilization of proteins and to provide insight into their orientationson surfaces.

  20. Hafnium(IV) chloride complexes with chelating β-ketiminate ligands: Synthesis, spectroscopic characterization and volatility study.

    PubMed

    Patil, Siddappa A; Medina, Phillip A; Antic, Aleks; Ziller, Joseph W; Vohs, Jason K; Fahlman, Bradley D

    2015-09-01

    The synthesis and characterization of four new β-ketiminate hafnium(IV) chloride complexes dichloro-bis[4-(phenylamido)pent-3-en-2-one]-hafnium (4a), dichloro-bis[4-(4-methylphenylamido)pent-3-en-2-one]-hafnium (4b), dichloro-bis[4-(4-methoxyphenylamido)pent-3-en-2-one]-hafnium (4c), and dichloro-bis[4-(4-chlorophenylamido)pent-3-en-2-one]-hafnium (4d) are reported. All the complexes (4a-d) were characterized by spectroscopic methods ((1)H NMR, (13)C NMR, IR), and elemental analysis while the compound 4c was further examined by single-crystal X-ray diffraction, revealing that the complex is monomer with the hafnium center in octahedral coordination environment and oxygens of the chelating N-O ligands are trans to each other and the chloride ligands are in a cis arrangement. Volatile trends are established for four new β-ketiminate hafnium(IV) chloride complexes (4a-d). Sublimation enthalpies (ΔHsub) were calculated from thermogravimetric analysis (TGA) data, which show that, the dependence of ΔHsub on the molecular weight (4a-c) and inductive effects from chlorine (4d).

  1. Hafnium(IV) chloride complexes with chelating β-ketiminate ligands: Synthesis, spectroscopic characterization and volatility study

    NASA Astrophysics Data System (ADS)

    Patil, Siddappa A.; Medina, Phillip A.; Antic, Aleks; Ziller, Joseph W.; Vohs, Jason K.; Fahlman, Bradley D.

    2015-09-01

    The synthesis and characterization of four new β-ketiminate hafnium(IV) chloride complexes dichloro-bis[4-(phenylamido)pent-3-en-2-one]-hafnium (4a), dichloro-bis[4-(4-methylphenylamido)pent-3-en-2-one]-hafnium (4b), dichloro-bis[4-(4-methoxyphenylamido)pent-3-en-2-one]-hafnium (4c), and dichloro-bis[4-(4-chlorophenylamido)pent-3-en-2-one]-hafnium (4d) are reported. All the complexes (4a-d) were characterized by spectroscopic methods (1H NMR, 13C NMR, IR), and elemental analysis while the compound 4c was further examined by single-crystal X-ray diffraction, revealing that the complex is monomer with the hafnium center in octahedral coordination environment and oxygens of the chelating N-O ligands are trans to each other and the chloride ligands are in a cis arrangement. Volatile trends are established for four new β-ketiminate hafnium(IV) chloride complexes (4a-d). Sublimation enthalpies (ΔHsub) were calculated from thermogravimetric analysis (TGA) data, which show that, the dependence of ΔHsub on the molecular weight (4a-c) and inductive effects from chlorine (4d).

  2. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  3. Spectroscopic characterization of the chemical composition of the potent sweetener Vartamil

    NASA Astrophysics Data System (ADS)

    Kolosova, T. E.; Prokhodchenko, L. K.; Pilipenko, V. V.; Suboch, V. P.

    2008-03-01

    The chemical composition of the potent sweetener Vartamil was characterized using spectral methods. It was demonstrated that Vartamil is a mixture of saccharose chloro derivatives, the main one of which is 4,1',6'-trichloro-4,1',6'-trideoxygalactosaccharose (Sucralose).

  4. Synthesis, Characterization, Absorption Spectra, and Luminescence Properties of Organometallic Platinum(II) Terpyridine Complexes.

    PubMed

    Arena, Giuseppe; Calogero, Giuseppe; Campagna, Sebastiano; Monsù Scolaro, Luigi; Ricevuto, Vittorio; Romeo, Raffaello

    1998-06-01

    A series of new organometallic platinum(II) complexes containing terdentate polypyridine ligands has been prepared and characterized. Their absorption spectra in 4:1 (v/v) MeOH/EtOH fluid solution at room temperature and luminescence in the same matrix at 77 K have been investigated. The new species are [Pt(terpy)Ph]Cl (3, terpy = 2,2':6',2"-terpyridine, Ph = phenyl), [Pt(Ph-terpy)Cl]Cl (4, Ph-terpy = 4'-phenyl-2,2':6',2"-terpyridine), [Pt(Ph-terpy)Me]Cl (5), and [Pt(Ph-terpy)Ph]Cl (6). The results have been compared with those for [Pt(terpy)Cl]Cl (1) and [Pt(terpy)Me]Cl (2). NMR data evidence that all the complexes but 3 and 6 oligomerize in solution leading to stacked species. The absorption spectra are dominated by moderately intense metal-to-ligand charge-transfer (MLCT) bands in the visible region and by intense ligand-centered (LC) bands in the UV region. All the compounds are luminescent in a 4:1 (v/v) MeOH/EtOH rigid matrix at 77 K, exhibiting a structured emission within the range 460-600 nm. This feature is assigned to formally (3)LC excited states which receive substantial contribution from closely lying (3)MLCT levels. Complexes 1, 2, 4, and 5 also exhibit a relatively narrow and unstructured luminescence band within the range 680-800 nm, which dominates the luminescence spectrum on increasing concentration and exciting at longer wavelengths. The band is assigned to a dsigma(metal) --> pi(polypyridine) ((3)MMLCT) state, originating from metal-metal interactions occurring in head-to-tail dimers (or polymers). A third broad band is shown by 1 and 4 under all concentration conditions and by 2 and 5 only in concentrated solutions and is attributed to excimeric species originating from pi-pi interactions due to stacking between polypyridine ligands.

  5. Combined X-Ray and Raman Spectroscopic Techniques for the Characterization of Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Alpert, P. A.; Knopf, D. A.; Kilthau, W.; Bothe, D.; Charnawskas, J. C.; Gilles, M. K.; OBrien, R. E.; Moffet, R.; Radway, J.

    2014-12-01

    Sea spray aerosol along with mineral dust dominates the global mass flux of particles to the atmosphere. Marine aerosol particles are of particular interest because of their continual impact on cloud formation, precipitation, atmospheric chemical processes, and thus global climate. Here we report on the physical/chemical characteristics of sub-surface waters, aerosolized sea spray particles, and particles/organic species present in surface microlayer (SML) samples collected during oceanic field campaigns and generated during laboratory experiments, revealing a biogenic primary source of the organic fraction of airborne particles. We also report on ice nucleation experiments with aerosolized particles collected during the May 2014 WACS II North Atlantic cruise and with laboratory generated exudate material from diatom cultures with the potential to impact cirrus and mixed phase clouds. Physicochemical analyses using a multi-modal approach which includes Scanning Transmission X-ray Microscopy coupled with Near-Edge Absorption Fine Structure Spectroscopy (STXM/NEXAFS) and Raman spectroscopy confirm the presence and chemical similarity of polysaccharide-rich transparent exopolymer (TEP) material and proteins in both SML sea spray aerosol and ice forming aerosol particles, regardless of the extent of biological activity in surface waters. Our results demonstrate a direct relationship between the marine environment and composition of marine aerosol through primary particle emission.

  6. Spectroscopic Characterization of Intermediates in the Iron Catalyzed Activation of Alkanes

    SciTech Connect

    Edward M. Eyring

    2007-05-28

    The present report begins with a brief survey of recent hypervalent iron chemistry and mentions two previously reported ferrate papers funded by the DOE/BES grant. The focus is then shifted to the seven publications acknowledging support of the grant that have not been reported since the last Progress Report, DOE/ER/14340-9, was prepared. These papers deal with: (a) the successful use of an ATR element in a stopped-flow infrared spectrometer, (b) the rationalization of a depolarization of a LiClO4 solution in polyethylene oxide high polymer, (c) an analysis of several coupled ultrasonic relaxations observed in solutions of pentoses undergoing isomerization, (d) the combination of ultrasonic absorption and Raman scattering measurements to elucidate zinc thiocyanate solutions in water, (e) the use of NMR to determine stability constants when LiClO4:12-crown-4 is dissolved in acetonitrile and in methanol, (f) the possible existence of triple ions in low permittivity solutions, and (g) the properties of a high surface area ceria aerogel. Collectively, these papers illustrate advantages of bringing several modern experimental techniques to bear on complex chemical systems.

  7. Characterization of interaction of calf thymus DNA with gefitinib: spectroscopic methods and molecular docking.

    PubMed

    Shi, Jie-Hua; Liu, Ting-Ting; Jiang, Min; Chen, Jun; Wang, Qi

    2015-06-01

    The binding interaction of gefitinib with calf thymus DNA (ct-DNA) under the simulated physiological pH condition was studied employing UV absorption, fluorescence, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results revealed that gefitinib preferred to bind to the minor groove of ct-DNA with the binding constant (Kb) of 1.29 × 10(4)Lmol(-1) at 298K. Base on the signs and magnitudes of the enthalpy change (ΔH(0)=-60.4 kJ mol(-1)) and entropy change (ΔS(0)=-124.7 J mol(-1)K(-1)) in the binding process and the results of molecular docking, it can be concluded that the main interaction forces between gefitinib and ct-DNA in the binding process were van der Waals force and hydrogen bonding interaction. The results of CD experiments revealed that gefitinib did not disturb native B-conformation of ct-DNA. And, the significant change in the conformation of gefitinib in gefitinib-ct-DNA complex was observed from the molecular docking results and the change was close relation with the structure of B-DNA fragments, indicating that the flexibility of gefitinib molecule also plays an important role in the formation of the stable gefitinib-ct-DNA complex.

  8. Microscopic and spectroscopic characterization of Hg(II) immobilization by mackinawite (FeS).

    PubMed

    Jeong, Hoon Y; Sun, Kai; Hayes, Kim F

    2010-10-01

    This study investigated the solid-phase Hg formed by reacting 0.005 or 0.01 M Hg(II) with 10 g/L mackinawite (FeS) as a function of pH in 0.2 M chloride solutions using X-ray diffraction (XRD), transmission electron microscopy (TEM), and extended X-ray absorption fine structure (EXAFS) analyses. Under all experimental conditions, XRD analysis showed formation of metacinnabar (β-HgS) as a bulk-phase sorption product, in agreement with the results from high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and selected area electron diffraction (SAED) in TEM analysis. HAADF-STEM and energy dispersive X-ray (EDX) analyses also suggested formation of Hg(II) surface precipitates. EXAFS analysis indicated that metacinnabar was the dominant product under most conditions, with Hg(II) chlorosulfide-like surface precipitates having increased contribution at lower Hg(II) concentration and higher pH. This finding is consistent with the results of desorption experiments using Hg(II)-complexing ligands. Considering the low solubility and high stability of metacinnabar, our results support the potential application of mackinawite for sequestering Hg(II) in anoxic environments.

  9. Characterization of interaction of calf thymus DNA with gefitinib: spectroscopic methods and molecular docking.

    PubMed

    Shi, Jie-Hua; Liu, Ting-Ting; Jiang, Min; Chen, Jun; Wang, Qi

    2015-06-01

    The binding interaction of gefitinib with calf thymus DNA (ct-DNA) under the simulated physiological pH condition was studied employing UV absorption, fluorescence, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results revealed that gefitinib preferred to bind to the minor groove of ct-DNA with the binding constant (Kb) of 1.29 × 10(4)Lmol(-1) at 298K. Base on the signs and magnitudes of the enthalpy change (ΔH(0)=-60.4 kJ mol(-1)) and entropy change (ΔS(0)=-124.7 J mol(-1)K(-1)) in the binding process and the results of molecular docking, it can be concluded that the main interaction forces between gefitinib and ct-DNA in the binding process were van der Waals force and hydrogen bonding interaction. The results of CD experiments revealed that gefitinib did not disturb native B-conformation of ct-DNA. And, the significant change in the conformation of gefitinib in gefitinib-ct-DNA complex was observed from the molecular docking results and the change was close relation with the structure of B-DNA fragments, indicating that the flexibility of gefitinib molecule also plays an important role in the formation of the stable gefitinib-ct-DNA complex. PMID:25839749

  10. Cell-free synthesis, functional refolding, and spectroscopic characterization of bacteriorhodopsin, an integral membrane protein.

    PubMed

    Sonar, S; Patel, N; Fischer, W; Rothschild, K J

    1993-12-21

    Bacteriorhodopsin (bR) is an integral membrane protein which functions as a light-driven proton pump in Halobacterium halobium (also known as Halobacterium salinarium). The cell-free synthesis of bR in quantities sufficient for FTIR and NMR spectroscopy and the ability to selectively isotope label bR using aminoacylated suppressor tRNAs would provide a powerful approach for studying the role of specific amino acid residues. However, no integral membrane protein has yet been expressed in a cell-free system in quantities sufficient for such biophysical studies. We report the cell-free synthesis of bacterioopsin, its purification, its refolding in polar lipids from H. halobium, and its regeneration with all-trans-retinal to yield bacteriorhodopsin in a form functionally similar to bR in purple membrane. Importantly, the yields obtained from in vitro and in vivo expression are comparable. Functionality of the cell-free expressed bR is established using static and time-resolved absorption spectroscopy and FTIR difference spectroscopy.

  11. Spectroscopic techniques applied to the characterization of decorated potteries from Caltagirone (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Barilaro, D.; Barone, G.; Crupi, V.; Donato, M. G.; Majolino, D.; Messina, G.; Ponterio, R.

    2005-06-01

    The aim of the present work is the characterization of decorated pottery samples from Caltagirone (Sicily, Italy), a renowned production centre of this kind of artwork. These fragments were found during archaeological excavations and were attributed to historical periods extremely far in time from each other (from XVIII century b.C. to XVI a.C.). Therefore, we expect that the manufacture techniques result rather different over so long time. The measurements, performed by Fourier Transform-InfraRed (FT-IR) absorbance and micro-Raman scattering, allowed us a non-destructive study of so precious artefacts. Some pigments were identified, various elements of ceramic paste and glazed layer were characterized.

  12. Spectroscopic Characterization of a Monomeric, Cyclopentadienyl-Based Rhenium(V) Dioxo Complex.

    PubMed

    Raju, Suresh; Jastrzebski, Johann T B H; Lutz, Martin; Witteman, Léon; Dethlefsen, Johannes R; Fristrup, Peter; Moret, Marc-Etienne; Gebbink, Robertus J M Klein

    2015-11-16

    Mononuclear, coordinatively unsaturated rhenium(V) dioxo species of the type XReO2 (X = Me, substituted cyclopentadienyl) have long been postulated as intermediates in rhenium-catalyzed deoxydehydration, but their characterization was precluded because of aggregation into dimeric or oligomeric structures. Using the bulky 1,2,4-tri-tert-butylcyclopentadienyl (Cp(ttt)) ligand, the rhenium(V) dioxo species (Cp(ttt))ReO2 could now be observed, in equilibrium with the dimeric form [(Cp(ttt))Re(O)μ-O]2, and characterized by NMR, IR, and UV-vis spectroscopies, as well as electrospray ionization mass spectrometry. (Cp(ttt))ReO2 is shown to be the primary product of reduction of the rhenium(VII) complex (Cp(ttt))ReO3 with PPh3 and demonstrated to react with ethylene glycol significantly faster than its dimeric counterpart, supporting its role as an intermediate in rhenium-catalyzed deoxydehydration reactions.

  13. Accurate spectroscopic characterization of ethyl mercaptan and dimethyl sulfide isotopologues: a route toward their astrophysical detection

    SciTech Connect

    Puzzarini, C.; Senent, M. L.; Domínguez-Gómez, R.; Carvajal, M.; Hochlaf, M.; Al-Mogren, M. Mogren E-mail: senent@iem.cfmac.csic.es E-mail: miguel.carvajal@dfa.uhu.es E-mail: mmogren@ksu.edu.sa

    2014-11-20

    Using state-of-the-art computational methodologies, we predict a set of reliable rotational and torsional parameters for ethyl mercaptan and dimethyl sulfide monosubstituted isotopologues. This includes rotational, quartic, and sextic centrifugal-distortion constants, torsional levels, and torsional splittings. The accuracy of the present data was assessed from a comparison to the available experimental data. Generally, our computed parameters should help in the characterization and the identification of these organo-sulfur molecules in laboratory settings and in the interstellar medium.

  14. Synchronous luminescence spectroscopic characterization of blood elements of normal and patients with cervical cancer

    NASA Astrophysics Data System (ADS)

    Muthuvelu, K.; Shanmugam, Sivabalan; Koteeswaran, Dornadula; Srinivasan, S.; Venkatesan, P.; Aruna, Prakasarao; Ganesan, Singaravelu

    2011-03-01

    In this study the diagnostic potential of synchronous luminescence spectroscopy (SLS) technique for the characterization of normal and different pathological condition of cervix viz., moderately differentiated squamous cell carcinoma (MDSCC), poorly differentiated squamous cell carcinoma (PDSCC) and well differentiated squamous cell carcinoma (WDSSC). Synchronous fluorescence spectra were measured for 70 abnormal cases and 30 normal subjects. Characteristic, highly resolved peaks and significant spectral differences between normal and MDSCC, PDSCC and WDSCC cervical blood formed elements were obtained. The synchronous luminescence spectra of formed elements of normal and abnormal cervical cancer patients were subjected to statistical analysis. Synchronous luminescence spectroscopy provides 90% sensitivity and 92.6% specificity.

  15. Theoretical spectroscopic characterization at low temperatures of methyl hydroperoxide and three S-analogs

    NASA Astrophysics Data System (ADS)

    Dalbouha, S.; Senent, M. L.; Komiha, N.

    2015-02-01

    The low temperature spectra of the detectable species methyl hydroperoxide (CH3OOH) and three sulfur analogs, the two isomers of methanesulfenic acid (CH3SOH and CH3OSH) and the methyl hydrogen disulfide (CH3SSH), are predicted from highly correlated ab initio methods (CCSD(T) and CCSD(T)-F12). Rotational parameters, anharmonic frequencies, torsional energy barriers, torsional energy levels, and their splittings are provided. Our computed parameters should help for the characterization and the identification of these organic compounds in laboratory and in the interstellar medium.

  16. Theoretical spectroscopic characterization at low temperatures of methyl hydroperoxide and three S-analogs

    SciTech Connect

    Dalbouha, S. Senent, M. L.; Komiha, N.

    2015-02-21

    The low temperature spectra of the detectable species methyl hydroperoxide (CH{sub 3}OOH) and three sulfur analogs, the two isomers of methanesulfenic acid (CH{sub 3}SOH and CH{sub 3}OSH) and the methyl hydrogen disulfide (CH{sub 3}SSH), are predicted from highly correlated ab initio methods (CCSD(T) and CCSD(T)-F12). Rotational parameters, anharmonic frequencies, torsional energy barriers, torsional energy levels, and their splittings are provided. Our computed parameters should help for the characterization and the identification of these organic compounds in laboratory and in the interstellar medium.

  17. Steady state fluorescence spectroscopic characterization of normal and diabetic urine at selective excitation wavelength 280 nm

    NASA Astrophysics Data System (ADS)

    Kesavan, Anjana; Pachaiappan, Rekha; Aruna, Prakasa Rao; Ganesan, Singaravelu

    2016-03-01

    Urine is considered diagnostically important for tits native fluorophores and they vary in their distribution, concentration and physiochemical properties, depending upon the metabolic condition of the subject. In this study, we have made an attempt, to characterize the urine of normal subject and diabetic patients under medication by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed employing the multivariate statistical method linear discriminant analysis (LDA) using leave one out cross validation method. The results were promising in discriminating diabetic urine from that of normal urine. This study in future may be extended to check the feasibility in ruling out the coexisting disorders such as cancer.

  18. Polymer characterization using the time-resolved phosphorescence of singlet oxygen as a spectroscopic probe

    SciTech Connect

    Ogilby, P.R.; Kristiansen, M.; Dillon, M.P. . Dept. of Chemistry); Taylor, V.L.; Clough, R.L. )

    1990-01-01

    The lowest excited electronic state of molecular oxygen, singlet oxygen ({sup 1}{Delta}{sub g}0{sub 2}), can be produced in solid organic polymers by a variety of different methods. Once produced, singlet oxygen will return to the ground triplet state by two pathways, radiative (phosphorescence) and non-radiative decay. Although the quantum efficiency of phosphorescence is small ({minus}10{sup {minus}5}), singlet oxygen can be detected by its emission at 1270 mn in both steady-state and time-resolved experiments. The phosphorescence of singlet oxygen can be used to characterize many properties of a solid organic polymer. 2 refs., 5 figs.

  19. Solvate Structures and Computational/Spectroscopic Characterization of LiBF4 Electrolytes

    SciTech Connect

    Seo, D. M.; Boyle, Paul D.; Allen, Joshua L.; Han, Sang D.; Jonsson, Erlendur; Johansson, Patrik; Henderson, Wesley A.

    2014-07-21

    Crystal structures have been determined for both LiBF4 and HBF4 solvates—(acetonitrile)2:LiBF4, (ethylene glycol diethyl ether)1:LiBF4, (diethylene glycol diethyl ether)1:LiBF4, (tetrahydrofuran)1:LiBF4, (methyl methoxyacetate)1:LiBF4, (suc-cinonitrile)1:LiBF4, (N,N,N',N",N"-pentamethyldiethylenetriamine)1:HBF4, (N,N,N',N'-tetramethylethylenediamine)3/2:HBF4 and (phenanthroline)2:HBF4. These, as well as other known LiBF4 solvate structures, have been characterized by Raman vibrational spectroscopy to unambiguously assign the anion Raman band positions to specific forms of BF4-...Li+ cation coordination. In addition, complementary DFT calculations of BF4-...Li+ cation complexes have provided additional insight into the challenges associated with accurately interpreting the anion interactions from experimental Raman spectra. This information provides a crucial tool for the characterization of the ionic association interactions within electrolytes.

  20. Spectroscopic characterization of metal complexes of novel Schiff base. Synthesis, thermal and biological activity studies

    NASA Astrophysics Data System (ADS)

    Omar, M. M.; Mohamed, Gehad G.; Ibrahim, Amr A.

    2009-07-01

    Novel Schiff base (HL) ligand is prepared via condensation of 4-aminoantipyrine and 2-aminobenzoic acid. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analyses (TGA, DrTGA and DTA). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a uninegatively tridentate manner with NNO donor sites of the azomethine N, amino N and deprotonated caroxylic-O. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia Coli, Pseudomonas aeruginosa, Staphylococcus Pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Shciff base ligand against one or more bacterial species.

  1. State-resolved photochemistry and spectroscopic characterization of atmospherically relevant hydroperoxides

    NASA Astrophysics Data System (ADS)

    Matthews, Jamie

    This dissertation focuses on the photodissociation dynamics, thermochemistry, spectroscopy and structure of important hydroperoxide molecules which influence the oxidation capacity of the atmosphere. Since hydroperoxides such as CH 3OOH, HOCH2OOH, HO2NO2 and HOOH species serve as reservoir for the HOx (=HO2 + OH) radicals, a thorough examination of excited state and ground state photochemistry of these species is needed. In this dissertation, the photodissociation dynamics of vibrationally excited HO2NO2 molecule is examined, and its first OH-stretching state dissociation quantum yield is assessed in order to quantify its contribution to the HOx budget. An ab initio study is used to obtain bond dissociation energies, vibrational spectra and absorption cross-sections. The HOONO molecule is an important structural isomer of nitric acid. Studies of HOONO molecule have primarily focused on the vibrational structure, spectra and energetics of vibrational states in the vicinity of the first and second OH-stretching overtones. From these measurements, the heat of formation and vibrational band assignment of cis-cis HOONO are determined. Organic hydroperoxides such as CH3OOH and HOCH2OOH are fundamental systems to explore the flow of energy among different vibrational modes. In HOCH2OOH, the dissociation rates that are extracted from the third OH-stretching overtone suggest that excitation of the alcohol OH-stretch result in dissociation rates that are substantially slower than rates resulting from excitation of the peroxide OH-stretch where IVR is evidently more restricted. Non-statistical behavior is also observed in CH3OOH, where the excitation of HOO-bending mode and CH-stretching modes result in more complete IVR due to strong state-mixing compared with excitation of the OH-stretching modes; as inferred from the quantities of vibrationally excited OH product formed. Enhanced IVR mixing is also observed in HOOH molecule, suggesting mode-selective behavior is a common

  2. Spectroscopic characterization of the plasmas formed during the deposition of ZnO and Al-doped ZnO films by plasma-assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liang, Peipei; Cai, Hua; Yang, Xu; Li, Hui; Zhang, Wu; Xu, Ning; Sun, Jian; Wu, Jiada

    2016-11-01

    An oxygen-zinc plasma and an oxygen-zinc-aluminum plasma are formed by pulsed laser ablation of a Zn target or pulsed laser co-ablation of a Zn target and an Al target in an electron cyclotron resonance (ECR) discharge-generated oxygen plasma for the deposition of ZnO and Al-doped ZnO (AZO) films. The plasmas are characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy. Both the oxygen-zinc plasma and the oxygen-zinc-aluminum plasma contain excited species originally present in the working O2 gas and energetic species ablated from the targets. The optical emission of the oxygen-zinc-aluminum plasma is abundant in the emission bands of oxygen molecular ions and the emission lines of mono-atomic oxygen, zinc and aluminum atoms and atomic ions. The time-integrated spectra as well as the time-resolved spectra of the plasma emission indicate that the oxygen species in the ECR oxygen plasma experience additional excitation by the expanding ablation plumes, and the ablated species are excited frequently when traveling accompanying the plume expansion in the oxygen plasma, making the formed plasma highly excited and very reactive, which plays an important role in the reactive growth of ZnO matrix and the in-situ doping of Al into the growing ZnO matrix. The deposited ZnO and AZO films were evaluated for composition analysis by energy dispersive X-ray spectroscopy, structure characterization by X-ray diffraction and optical transmission measurement. The deposited ZnO is slightly rich in O. The Al concentration of the AZO films can be controlled and varied simply by changing the repetition rate of the laser used for Al target ablation. Both the ZnO and the AZO films are featured with hexagonal wurtzite crystal structure and exhibit high optical transparency in a wide spectral region. Al doping results in an improvement in the ultraviolet transparency, a blue shift in the absorption edge and a widening of the band gap.

  3. Meso-Scale Modeling to Characterize Moisture Absorption of 3D Woven Composite

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Zhou, Chu-wei

    2016-08-01

    For polymer-matrix composites, moisture is expected to degrade their mechanical properties due to matrix plasticization and moisture introduced micro-scale defects. In this study, the moisture absorptions of bulk epoxy, unidirectional composite (UD) and 3D woven composite (3D WC) were tested. Two-stage features have been observed for all these three materials. Moisture properties for UD and 3D WC were found not in simple direct proportion to their matrix volume fractions. The moisture approach of UD was modeled including the effect of fiber/matrix interphase which promotes the moisture uptake. Then, meso-scale FE model for 3D WC was established to characterize the inhomogeneous moisture diffusion. The moisture properties of resin-rich region and fiber bundle in 3D WC were determined from water uptake experiments of bulk epoxy and UD, respectively. Through homogenizing moisture properties of surface and interior weave structures, a simplified theoretical sandwich moisture diffusion approach was established. The moisture weight gains of 3D WC predicted by both meso-scale FE model and simplified sandwich approach were well agreed with the experimental data.

  4. Synthesis, Characterization and Microwave Absorption Properties of Polyaniline/Er-Doped Strontium Ferrite Nanocomposite.

    PubMed

    Luo, Juhua; Wang, Eryong; Xu, Yang

    2016-06-01

    Er-doped strontium ferrite nanopowders (SrEr0.3Fe11.7O19) were prepared by the sol-gel method, and then their composites of PANI/SrEr0.3Fe11.7O19 with 10 wt% and 20 wt% ferrite were prepared by an in-situ polymerization process. The characterization of obtained samples was accomplished by XRD, FT-IR, TEM, VSM, and vector network analyzer techniques. A successful conjugation of ferrite nanoparticles with polyaniline could be indicated by XRD and FT-IR analysis. TEM confirmed the formation of polyaniline packed on strontium ferrite surface. Magnetization measurements showed the substituted Er3+ of Fe3+ on basis site enhanced the magnetic property notably and the content of polyaniline also influenced the magnetic property prominently. PANI/SrEr0.3Fe11.7O19 possessed the best absorption property with the optimum matching thickness of 3 mm in the frequency of 2-18 GHz. The value of the maximum RL was -42.0 dB at 12.0 GHz with the 5.5 GHz bandwidth. PMID:27427670

  5. Synthesis, Characterization and Microwave Absorption Properties of Polyaniline/Er-Doped Strontium Ferrite Nanocomposite.

    PubMed

    Luo, Juhua; Wang, Eryong; Xu, Yang

    2016-06-01

    Er-doped strontium ferrite nanopowders (SrEr0.3Fe11.7O19) were prepared by the sol-gel method, and then their composites of PANI/SrEr0.3Fe11.7O19 with 10 wt% and 20 wt% ferrite were prepared by an in-situ polymerization process. The characterization of obtained samples was accomplished by XRD, FT-IR, TEM, VSM, and vector network analyzer techniques. A successful conjugation of ferrite nanoparticles with polyaniline could be indicated by XRD and FT-IR analysis. TEM confirmed the formation of polyaniline packed on strontium ferrite surface. Magnetization measurements showed the substituted Er3+ of Fe3+ on basis site enhanced the magnetic property notably and the content of polyaniline also influenced the magnetic property prominently. PANI/SrEr0.3Fe11.7O19 possessed the best absorption property with the optimum matching thickness of 3 mm in the frequency of 2-18 GHz. The value of the maximum RL was -42.0 dB at 12.0 GHz with the 5.5 GHz bandwidth.

  6. FTIR spectroscopic characterization of polyurethane-urea model hard segments (PUUMHS) based on three diamine chain extenders

    NASA Astrophysics Data System (ADS)

    Zhang, Shijie; Ren, Zhiyong; He, Suqing; Zhu, Yan; Zhu, Chengshen

    2007-01-01

    Six polyurethane-urea model hard segments (PUUMHS) were prepared by a solution method based, respectively, on two isocyanates: 4,4'-methylene-diphenyl-diisocyanate (MDI), 4,4'-methylene-dicyclohexyl diisocyanate (HMDI) and three amine chain extenders: ethylene diamine (EDA), methylene-bis-ortho-chloroaniline (MOCA), 2,4-diamino-3,5-dimethylsuphylchlorobenzene (DDSCB). FTIR was used to study their spectroscopic characterization. The main FTIR bands of the six samples were assigned and compared. It was found that most of N-H and C dbnd O are H-bonded in these PUUMHS. However, the N-H in three MDI based PUUMHS is all in the stronger H-bond state than that in their corresponding HMDI based while the C dbnd O in three HMDI based PUUMHS is all in the stronger H-bond state than that in their corresponding MDI based, respectively. In addition, the order of the H-bond strength in HMDI based PUUMHS is MOCA, DDSCB and EDA whether according to νN sbnd H or νC dbnd O band wavenumbers, which is, however, different from that in MDI based PUUMHS. Moreover, the HMDI based PUUMHS shows obvious double amide III bands while the MDI based has only prominent one. The results are discussed according mainly to the different characteristics of the three chain extenders as well as the structure difference between MDI and HMDI.

  7. Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Aslantaş, Mehmet; Kendi, Engin; Demir, Necmettin; Şabik, Ali E.; Tümer, Mehmet; Kertmen, Metin

    2009-10-01

    In this study, the Schiff base ligand trans-N,N'-bis[(2,4-dichlorophenyl) methylidene] cyclohexane-1,2-diamine (L) and its copper(II), nickel(II) and palladium(II) transition metal complexes were prepared and characterized by the analytical and spectroscopic methods. The 1H( 13C) NMR spectra of the ligand and its diamagnetic complexes were recorded in DMSO-d 6 solvent and obtained data confirm that the nitrogen atoms of the imine groups coordinated to the metal ions. Electrochemical properties of the ligand and its metal complexes were investigated in the DMF solvent at the 100 and 250 mV s -1 scan rates. The ligand and metal complexes showed both reversible and irreversible processes at these scan rates. The single crystal of the ligand (L) was obtained from MeOH solution, and its crystal structure was determined by X-ray diffraction. The C-H⋯Cl hydrogen bonding interactions in the molecule were seen which increase the stability of the crystal structure. The antimicrobial activity studies of the ligand and its metal complexes were carried out by using the various bacteria and fungi.

  8. Synthesis and characterization of low-OH-fluor-chlorapatite: A single-crystal XRD and NMR spectroscopic study

    SciTech Connect

    McCubbin, Francis M; Mason, Harris E; Park, Hyunsoo; Phillips, Brian L; Parise, John B; Nekvasil, Hanna; Lindsley, Donald H

    2008-12-12

    Los-OH apatite of the compositional range Ca{sub 4.99-5.06}(PO{sub 4}){sub 2.98-3.00}F{sub 0.51-0.48}Cl{sub 0.38-0.36}OH{sub 0.14-0.12} was synthesized and characterized structurally by synchrotron-based single-crystal X-ray diffraction (XRD), and multiple nuclear magnetic resonance (NMR) spectroscopic techniques. the average structure is hexagonal with space group P6{sub 3}/m. The presence of scattering in the single-crystal diffraction data set, which is incommensurate within the average hexagonal structure, suggests the presence of localized short-range monoclinic domains. Complex lineshapes in the {sup 31}P and {sup 19}F MAS NMR spectra are also consistent with the presence of an incommensurate phase. No evidence was detected for splitting of the Ca2 site into two distinct sites (as had been previously reported for hexagonal ternary apatities). Structure refinement and {sup 19}F{l_brace}{sup 35}Cl{r_brace} TRAPDOR NMR experiments verified intercolumnal neighboring of F and Cl atoms (inter-column distance of 2.62 {angstrom}) within this low-OH{sup -} apatite suggesting that long-range neighboring of F and Cl within the apatite anion channels is feasible.

  9. Ipolamiide and fulvoipolamiide from Stachytarpheta glabra (Verbenaceae): A structural and spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Viccini, Lyderson F.; Silva, Pâmela S.; Almeida, Mauro V. de; Saraiva, Maurício F.; Peixoto, Paulo Henrique P.; Salimena, Fátima Regina G.; Diniz, Renata; Rodrigues, Bernardo L.; Scowen, Ian; Edwards, Howell G. M.; Oliveira, Luiz F. C. de

    2008-03-01

    The phenylethanoid glycoside acteoside and the iridoids ipolamiide and 4-methoxycarbonyl-7-methylcyclopenta[ c]pyran (fulvoipolamiide) were isolated from the leaves of Stachytarpheta glabra. The solid state structure of fulvoipolamiide was confirmed by X-ray diffraction studies. The molecules of fulvoipolamiide are displayed in layers parallel to the crystallographic axis a. This molecule is planar with electron delocalization in the fused ring system and the pyran rings of adjacent layers in the solid state structure are involved in a π-π stacking interaction. Raman spectroscopy has also been used to characterize the most important bands present in the spectra of fulvoipolamiide and ipolamiide, and comparison made with literature allows the assignment of some key markers, specially the bands in the 1600-1700 cm -1 range.

  10. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  11. Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    2012-04-01

    A series of gallic acid and azo gallic acid complexes were prepared and characterized by elemental analysis, IR, electronic spectra and magnetic susceptibility. The complexes were of different geometries: Octahedral, Tetrahedral and Square Planar. ESR was studied for copper complexes. All of the prepared complexes were of isotropic nature. The thermal analyses of the complexes were studied by DTA and DSC techniques. The thermodynamic parameters and the thermal transitions, such as glass transitions, crystallization and melting temperatures for some ligands and their complexes were evaluated and discussed. The entropy change values, ΔS#, showed that the transition states are more ordered than the reacting complexes. The biological activities of some ligands and their complexes are tested against Gram positive and Gram negative bacteria. The results showed that some complexes have a well considerable activity against different organisms.

  12. Spectroscopic characterization of discharge products in Li-Air cells with aprotic carbonate electrolytes

    SciTech Connect

    Veith, Gabriel M; Nanda, Jagjit; Howe, Jane Y; Dudney, Nancy J

    2011-01-01

    Raman, infrared and X-ray photoelectron spectroscopies were used to characterize the thick coating of reaction products on carbon and MnO2 coated carbon cathodes produced during discharge of Li-air cells. The results show that neither Li2O2 or Li2O are major components of the insoluble discharge products; instead the products are largely composed of fluorine, lithium, and carbon, with surprisingly little oxygen. The complex reaction chemistry also appears to involve the formation of ethers or alkoxide products at the expense of the carbonate solvent molecules (ethylene carbonate and dimethylcarbonate). The irreversible discharge reaction is likely electrochemically promoted with Li-anion species and dissolved oxygen. Exactly how the molecular O2 participates in the reaction is unclear and requires further study. The addition of a conformal coating of MnO2 on the carbon lowers the cell s operating voltage, but does not alter the overall discharge chemistry.

  13. NMR spectroscopic characterization of β-cyclodextrin inclusion complex with vanillin

    NASA Astrophysics Data System (ADS)

    Pîrnau, Adrian; Bogdan, Mircea; Floare, Calin G.

    2009-08-01

    The inclusion of vanillin by β-cyclodextrin was investigated by 1H NMR. The continuous variation technique was used to evidence the formation of soluble 1:1 complex in aqueous solution. The association constant of vanillin with β-cyclodextrin has been obtained at 298 K by fitting the experimental chemical shifts differences, Δδobs = δfree - δobs of the observed guest and host protons, with a non-linear regression method. Besides the effective association constant, the fitting procedure allows a precise determination of all chemical shift parameters characterizing the pure complex. They can by used for an analysis of the geometry of the molecular complex in solution.

  14. [A new method for the preparation of potassium ferrate and spectroscopic characterization].

    PubMed

    Zheng, Huai-li; Deng, Lin-li; Ji, Fang-ying; Jiang, Shao-jie; Zhang, Peng

    2010-10-01

    Calcium hypochlorite was used as the raw material for preparation of the high purity potassium ferrate. The study includes the effects of reaction temperature, recrystallization temperature, reaction time, Ca(ClO)2 dosage, and the amount of calcium hypochlorite on the yield. It was determined that when the reaction temperature was 25 degrees C, recrystallization temperature 0 degree C and reaction time 40 min, the yield was more than 75%. The purity was detected by direct spectrophotometric method to be more than 92%. The product was characterized by infrated spectrum(IR), X-ray diffraction (XRD) and ultraviolet spectrum (UV) methods and proved to be potassium ferrate that was prepared by calcium hypochlorite as the raw material.

  15. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    SciTech Connect

    Jannotti, Phillip; Subhash, Ghatu; Zheng, James Q.; Halls, Virginia; Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K.

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  16. Synthesis and spectroscopic characterization of gold nanobipyramids prepared by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Phat Huynh, Trong; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Lam, Quang Vinh; Dat Huynh, Thanh

    2015-12-01

    Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO3 as capping agents. The product was characterized by ultraviolet-visible spectroscopy (UV-vis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 ± 9.4 nm and base length of 29.9 ± 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found.

  17. Spectroscopic characterization of a masterpiece: the Manueline foral charter of Sintra.

    PubMed

    Manso, Marta; Le Gac, Agnès; Longelin, Stéphane; Pessanha, Sofia; Frade, José Carlos; Guerra, Mauro; Candeias, António José; Carvalho, Maria Luísa

    2013-03-15

    The foral charter attributed by D. Manuel I of Portugal, in 1514, to the village of Sintra was studied using Energy Dispersive X-ray Fluorescence spectrometry, Raman and Infrared micro-spectroscopies. A complete characterization of the pictorial materials used in the production of this masterpiece allowed the identification of iron gall inks used in the written text; pigments such as malachite, azurite, lead white, cinnabar, yellow ochre, gold, silver and carbon black in the illuminations and letterings; filler and binder used in the production of coloring materials and inks. Gum and calcium carbonate were the most recurrent binder and filler identified in this study. Silvering and gilding were mostly obtained by applying ground silver and gold on parchment. PMID:23318772

  18. Spectroscopic characterization of a masterpiece: The Manueline foral charter of Sintra

    NASA Astrophysics Data System (ADS)

    Manso, Marta; Gac, Agnès Le; Longelin, Stéphane; Pessanha, Sofia; Frade, José Carlos; Guerra, Mauro; Candeias, António José; Carvalho, Maria Luísa

    2013-03-01

    The foral charter attributed by D. Manuel I of Portugal, in 1514, to the village of Sintra was studied using Energy Dispersive X-ray Fluorescence spectrometry, Raman and Infrared micro-spectroscopies. A complete characterization of the pictorial materials used in the production of this masterpiece allowed the identification of iron gall inks used in the written text; pigments such as malachite, azurite, lead white, cinnabar, yellow ochre, gold, silver and carbon black in the illuminations and letterings; filler and binder used in the production of coloring materials and inks. Gum and calcium carbonate were the most recurrent binder and filler identified in this study. Silvering and gilding were mostly obtained by applying ground silver and gold on parchment.

  19. Synthesis, characterization and multi-spectroscopic DNA interaction studies of a new platinum complex containing the drug metformin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Heidari, Leila

    2014-07-01

    A new platinum(II) complex; [Pt(Met)(DMSO)Cl]Cl in which Met = metformin and DMSO: dimethylsulfoxide, was synthesized and characterized by 1H NMR, IR, UV-Vis spectra, molar conductivity and computational methods. Binding interaction of this complex with calf thymus (CT) DNA has been investigated by using absorption, emission, circular dichroism, viscosity measurements, differential pulse voltammetry and cleavage studies by agarose gel electrophoresis. UV-Vis absorption studies showed hyperchromism. CD studies showed less perturbation on the base stacking and helicity bands in the CD spectrum of CT-DNA (B → C structural transition). In fluorimeteric studies, the Pt(II) complex can bind with DNA-NR complex and forms a new non-fluorescence adduct. The anodic peak current in the differential pulse voltammogram of the Pt(II) complex decreased gradually with the addition of DNA. Cleavage experiments showed that the Pt(II) complex does not induce any cleavage under the experimental setup. Finally all results indicated that Pt(II) complex interact with DNA via groove binding mode.

  20. Laboratory studies of spectroscopic markers for the characterization of surface erosion by plasmas

    SciTech Connect

    Manos, D.M.; Bennett, T.; Herzer, M.; Schwarzmann, J.

    1992-06-01

    The erosion rates in portions of fusion plasma devices like the ITER tokamak are sufficiently high that nearly real-time information on cumulative removal is needed for control and machine safety. We are developing a digitally--encoded scheme to indicate the depth of erosion at numerous poloidal and toroidal locations around ITER. The scheme uses materials embedded in the walls and divertors, which, when uncovered, present remotely detectable signals. This paper reports laboratory experiments on prototype markers consisting of combinations of up to 5 elements (Au,Pd,Ag,In,Ga) along with Au,Pt, and Ta pure metals. The markers were bonded to 4-D carbon-carbon composite of the type proposed for use in the ITER first wall, and placed in the lower-hybrid-driven plasma of the atomic beam facility at PPL. The paper describes this device Light emission was characterized using a 1 meter Czerny-Turner vacuum ultraviolet monochromator. The samples were characterized both before and after plasma exposure by Auger spectroscopy. We report the time-dependent behavior of the spectra of the visible and ultraviolet light emitted by the plasma when the markers are uncovered by the erosion showing emission lines of the marker elements which are easily distinguished from the background plasma lines. The dependence of the light intensity on bias voltage is compared to the known sputtering yields of the elements. The optical detection method allows exploration of the threshold dependence of these multi-element targets. An exponential dependence of yield above threshold was observed for all of the elements studied.

  1. Laboratory studies of spectroscopic markers for the characterization of surface erosion by plasmas

    SciTech Connect

    Manos, D.M.; Bennett, T.; Herzer, M.; Schwarzmann, J.

    1992-01-01

    The erosion rates in portions of fusion plasma devices like the ITER tokamak are sufficiently high that nearly real-time information on cumulative removal is needed for control and machine safety. We are developing a digitally--encoded scheme to indicate the depth of erosion at numerous poloidal and toroidal locations around ITER. The scheme uses materials embedded in the walls and divertors, which, when uncovered, present remotely detectable signals. This paper reports laboratory experiments on prototype markers consisting of combinations of up to 5 elements (Au,Pd,Ag,In,Ga) along with Au,Pt, and Ta pure metals. The markers were bonded to 4-D carbon-carbon composite of the type proposed for use in the ITER first wall, and placed in the lower-hybrid-driven plasma of the atomic beam facility at PPL. The paper describes this device Light emission was characterized using a 1 meter Czerny-Turner vacuum ultraviolet monochromator. The samples were characterized both before and after plasma exposure by Auger spectroscopy. We report the time-dependent behavior of the spectra of the visible and ultraviolet light emitted by the plasma when the markers are uncovered by the erosion showing emission lines of the marker elements which are easily distinguished from the background plasma lines. The dependence of the light intensity on bias voltage is compared to the known sputtering yields of the elements. The optical detection method allows exploration of the threshold dependence of these multi-element targets. An exponential dependence of yield above threshold was observed for all of the elements studied.

  2. Optical, laser spectroscopic, and electrical characterization of transion metal doped zinc selenide and zinc sulfide nano-and-microcrystals

    NASA Astrophysics Data System (ADS)

    Kim, Changsu

    Middle-infrared lasers operating over a "molecular fingerprint" 2-15 mum spectral range are in great demand for a variety of applications. One of the best choices for lasing in the 2-5 mum spectral range is direct oscillation from divalent transition metal ions (TM2+: Cr 2+, Fe2+, Co2+)-doped wide bandgap II-VI semiconductor crystals. There are three major objectives in this dissertation: (1) Realize and study middle-infrared electroluminescence of n and p-type, Cr doped bulk ZnSe crystals. We have demonstrated a method of ZnSe crystals thermal-diffusion doping with donor (In, Zn, and Al) and acceptor (Cu, Ag, and N through CrN) impurities resulting in n and p-type conductivity of Cr:ZnSe. We are the first to our knowledge to obtain mid-IR electroluminescence in nominally p-type Cr:Ag:ZnSe, which could prove valuable for developing of novel mid-IR laser diodes. (2) En route to low dimensional gain material, develop simple method for making microscopic laser active Cr doped ZnSe, ZnS and CdSe powders, realize and study their laser spectroscopic characteristics. We have demonstrated a simple physical method of Cr2+:ZnSe, ZnS and CdSe powder fabrication with average sizes below ˜ 10mum and ˜1mum (eliminating stage of bulk crystal growth) and demonstrated first ever mid-IR random lasing on these powders under optical excitation. In addition, we have examine suspensions and polymer films impregnated with Cr:II-VI powders for random lasing in the mid-IR. The powder, suspension and polymer samples are fabricated and characterized through the measurement of photoluminescence (PL) spectra, PL kinetics, and lasing threshold energy. (3) En route to low dimensional gain material, develop method for making laser active Cr, Co, and Fe doped ZnSe and ZnS quantum dots (QD), realize and study their laser spectroscopic characteristics. We have demonstrated a novel method of TM doped II-VI QDs fabrication based on laser ablation in liquid and Ar environment. TM doped II-VI QDs

  3. Theoretical spectroscopic characterization at low temperatures of detectable sulfur-organic compounds: ethyl mercaptan and dimethyl sulfide.

    PubMed

    Senent, M L; Puzzarini, C; Domínguez-Gómez, R; Carvajal, M; Hochlaf, M

    2014-03-28

    Highly correlated ab initio methods are used for the spectroscopic characterization of ethyl mercaptan (CH3CH2 (32)SH, ETSH) and dimethyl sulfide (CH3 (32)SCH3, DMS), considering them on the vibrational ground and excited torsional states. Since both molecules show non-rigid properties, torsional energy barriers and splittings are provided. Equilibrium geometries and the corresponding rotational constants are calculated by means of a composite scheme based on CCSD(T) calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The ground and excited states rotational constants are then determined using vibrational corrections obtained from CCSD/cc-pVTZ force-field calculations, which are also employed to determine anharmonic frequencies for all vibrational modes. CCSD(T) and CCSD force fields are employed to predict quartic and sextic centrifugal-distortion constants, respectively. Equilibrium rotational constants are also calculated using CCSD(T)-F12. The full-dimensional anharmonic analysis does not predict displacements of the lowest torsional excited states due to Fermi resonances with the remaining vibrational modes. Thus, very accurate torsional transitions are calculated by solving variationally two-dimensional Hamiltonians depending on the CH3 and SH torsional coordinates of ethyl mercaptan or on the two methyl groups torsions of dimethyl-sulfide. For this purpose, vibrationally corrected potential energy surfaces are computed at the CCSD(T)/aug-cc-pVTZ level of theory. For ethyl mercaptan, calculations show large differences between the gauche (g) and trans (t) conformer spectral features. Interactions between rotating groups are responsible for the displacements of the g-bands with respect to the t-bands that cannot therefore be described with one-dimensional models. For DMS, the CCSD(T) potential energy surface has been semi-empirically adjusted to reproduce experimental data. New assignments are

  4. Theoretical spectroscopic characterization at low temperatures of detectable sulfur-organic compounds: ethyl mercaptan and dimethyl sulfide.

    PubMed

    Senent, M L; Puzzarini, C; Domínguez-Gómez, R; Carvajal, M; Hochlaf, M

    2014-03-28

    Highly correlated ab initio methods are used for the spectroscopic characterization of ethyl mercaptan (CH3CH2 (32)SH, ETSH) and dimethyl sulfide (CH3 (32)SCH3, DMS), considering them on the vibrational ground and excited torsional states. Since both molecules show non-rigid properties, torsional energy barriers and splittings are provided. Equilibrium geometries and the corresponding rotational constants are calculated by means of a composite scheme based on CCSD(T) calculations that accounts for the extrapolation to the complete basis set limit and core-correlation effects. The ground and excited states rotational constants are then determined using vibrational corrections obtained from CCSD/cc-pVTZ force-field calculations, which are also employed to determine anharmonic frequencies for all vibrational modes. CCSD(T) and CCSD force fields are employed to predict quartic and sextic centrifugal-distortion constants, respectively. Equilibrium rotational constants are also calculated using CCSD(T)-F12. The full-dimensional anharmonic analysis does not predict displacements of the lowest torsional excited states due to Fermi resonances with the remaining vibrational modes. Thus, very accurate torsional transitions are calculated by solving variationally two-dimensional Hamiltonians depending on the CH3 and SH torsional coordinates of ethyl mercaptan or on the two methyl groups torsions of dimethyl-sulfide. For this purpose, vibrationally corrected potential energy surfaces are computed at the CCSD(T)/aug-cc-pVTZ level of theory. For ethyl mercaptan, calculations show large differences between the gauche (g) and trans (t) conformer spectral features. Interactions between rotating groups are responsible for the displacements of the g-bands with respect to the t-bands that cannot therefore be described with one-dimensional models. For DMS, the CCSD(T) potential energy surface has been semi-empirically adjusted to reproduce experimental data. New assignments are

  5. Characterization of the formaldehyde-H2O system using combined spectroscopic and mass spectrometry approaches

    NASA Astrophysics Data System (ADS)

    Oancea, A.; Hanoune, B.; Facq, S.; Focsa, C.; Chazallon, B.

    2009-04-01

    The atmosphere is a multiphase reactor in which physical exchange processes, heterogeneous reactions and photochemical reactions take place. The oxygenated organics (formaldehyde, ethanol, acetone etc.) present at trace concentrations into the atmosphere are known to play an important role in atmospheric chemistry due for example to their contribution in the production of HOx radicals, which largely determine the lifetime of pollutants [1]. Further, it has been shown that the interaction of oxygenated organics with ice particles in the atmosphere has the potential to promote heterogeneous chemistry [2]. In the polar lower troposphere, formaldehyde (H2CO) was measured in concentrations that are much higher that those predicted by chemistry models [3]. The mechanism at the origin of the formaldehyde production remains however controversial as the incorporation / partitioning of H2CO in ice crystal has to be determined first. Incorporation of formaldehyde into ice can take place according to several different physical mechanisms like co-condensation, riming, adsorption/desorption. The partitioning of formaldehyde between the gas phase, the liquid and the solid phases is an important parameter that leads to a better understanding of the incorporation mechanisms. In our work, different experimental approaches are used to characterize the partitioning between the different phases in which the H2O-H2CO system exists. Recently, we investigated by mass spectrometry and infrared diode laser spectroscopy the vapor liquid equilibrium (VLE) of formaldehyde aqueous solutions of different concentrations at room temperature. From the data collected on the vapor pressures at atmospherically relevant formaldehyde concentrations, we derived the Henry's coefficients at 295 K [4]. In this study we present first results on the solubility of formaldehyde in ice. This allows a better characterization of the partitioning of formaldehyde vapors above supercooled droplets and/or ice at low

  6. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    SciTech Connect

    Degueldre, Claude Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O₂ lattice in an irradiated (60 MW d kg⁻¹) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (~0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am³⁺ species within an [AmO₈]¹³⁻ coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix. - Graphical abstract: Americium LIII XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 μm×300 μm beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO₂ matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: • Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. • The americium redox state as determined from XAS data of irradiated fuel material was Am(III). • In the sample, the Am³⁺ face an AmO₈¹³⁻coordination environment in the (Pu,U)O₂ matrix. • The americium dioxide is reduced by the uranium dioxide matrix.

  7. Spectroscopic characterization and molecular modeling of novel palladium(II) complexes with carbazates and hydrazides

    NASA Astrophysics Data System (ADS)

    Sousa, L. M.; Corbi, P. P.; Formiga, A. L. B.; Lancellotti, Marcelo; Marzano, I. M.; Pereira-Maia, E. C.; Von Poelhsitz, G.; Guerra, W.

    2015-10-01

    Palladium(II) complexes of the type trans-[Pd(L)2Cl2], where L = 4-methoxybenzylcarbazate (4-MC), benzyl carbazate (BC), 4-fluorophenoxyacetic acid hydrazide (4-FH), 3-methoxybenzoic acid hydrazide (3-MH), ethyl carbazate (EC) and tert-butyl carbazate (TC) were synthesized by the slow addition of the ligand to K2PdCl4 previously dissolved in water or ethanol. These complexes were characterized by elemental analyses, conductivity measurements, TG/DTA, FT-IR, mass spectrometric and NMR spectroscopy (solution and solid-state). All coordination compounds exhibit a square planar coordination geometry in which the palladium(II) ion coordinates to two nitrogen atoms and two chlorine atoms. The structures of the palladium(II) complexes were optimized and theoretical data show that the trans isomer is more stable, in accordance with the experimental data. Preliminary in vitro tests of some these new palladium complexes in a chronic myelogenous leukemia cell line (k562 cells) are also reported.

  8. Synthesis, spectroscopic and computational characterization of the tautomerism of pyrazoline derivatives from chalcones.

    PubMed

    Miguel, Fábio Balbino; Dantas, Juliana Arantes; Amorim, Stefany; Andrade, Gustavo F S; Costa, Luiz Antônio Sodré; Couri, Mara Rubia Costa

    2016-01-01

    In the present study a series of novel pyrazolines derivatives has been synthesized, and their structures assigned on the basis of FT-Raman, (1)H and (13)C NMR spectral data and computational DFT calculations. A joint computational study using B3LYP/6-311G(2d,2p) density functional theory and FT-Raman investigation on the tautomerism of 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carbothioamide and 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carboxamide are presented. The structures were characterized as a minimum in the potential energy surface using DFT. The calculated Raman and NMR spectra were of such remarkable agreement to the experimental results that the equilibrium between tautomeric forms has been discussed in detail. Our study suggests the existence of tautomers, the carboxamide/carbothioamide group may tautomerize, in the solid state or in solution. Thermodynamic data calculated suggests that the R(CS)NH2 and R(CO)NH2 species are more stable than the R(CNH)SH and R(CNH)OH species. Additionally, results found for the (1)H NMR shifting, pointed out to which structure is present.

  9. Structural and spectroscopic characterizations of tetra-nuclear niobium(V) complexes of quinolinol derivatives.

    PubMed

    Amini, Mostafa M; Fazaeli, Yousef; Mohammadnezhad, Gholamhossein; Khavasi, Hamid Reza

    2015-06-01

    Reactions between niobium ethoxide and 8-hydroxy-2-methylquinoline or 5-chloro-8-hydroxyquinoline have been explored. Two new tetranuclear heteroleptic niobium complexes containing oxo, ethoxo, and quinolinate chelate rings have been synthesized and characterized by (1)H, (13)C and (93)Nb NMR, UV-Vis, and FT-IR spectroscopies, and single-crystal X-ray diffraction. The molecular structures of the niobium complexes, [Nb4(μ-O)4(μ-OEt)2(ONC10H8)2(OEt)8] (I) and [Nb4(μ-O)4(μ-OEt)2(ONC9H5Cl)2(OEt)8] (II), are composed of a pair of edge-sharing bioctahedral moieties in which connected via two almost linear oxo-bridges, with a large difference in the NbO distances. Single-crystal structures showed both complexes are centrosymmetric and contain two distinct Nb centers, and results confirmed by observation of two niobium signals in the (93)Nb NMR spectra of complexes.

  10. Raman, infrared and near-infrared spectroscopic characterization of the herderite-hydroxylherderite mineral series

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Queiroz, Camila de Siqueira; Belotti, Fernanda M.; Filho, Mauro Cândido

    2014-01-01

    Natural single-crystal specimens of the herderite-hydroxylherderite series from Brazil, with general formula CaBePO4(F,OH), were investigated by electron microprobe, Raman, infrared and near-infrared spectroscopies. The minerals occur as secondary products in granitic pegmatites. Herderite and hydroxylherderite minerals show extensive solid solution formation. The Raman spectra of hydroxylherderite are characterized by bands at around 985 and 998 cm-1, assigned to ν1 symmetric stretching mode of the HOPO33- and PO43- units. Raman bands at around 1085, 1128 and 1138 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 563, 568, 577, 598, 616 and 633 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The OH Raman stretching vibrations of hydroxylherderite were observed ranging from 3626 cm-1 to 3609 cm-1. The infrared stretching vibrations of hydroxylherderites were observed between 3606 cm-1 and 3599 cm-1. By using a Libowitzky type function, hydrogen bond distances based upon the OH stretching bands were calculated. Characteristic NIR bands at around 6961 and 7054 cm-1 were assigned to the first overtone of the fundamental, whilst NIR bands at 10,194 and 10,329 cm-1 are assigned to the second overtone of the fundamental OH stretching vibration. Insight into the structure of the herderite-hydroxylherderite series is assessed by vibrational spectroscopy.

  11. Spectroscopic Characterization of Lanthanum-Mediated Dehydrogenation and C-C Bond Coupling of Ethylene.

    PubMed

    Kumari, Sudesh; Cao, Wenjin; Zhang, Yuchen; Roudjane, Mourad; Yang, Dong-Sheng

    2016-07-01

    La(C2H2) and La(C4H6) are observed from the reaction of laser-vaporized La atoms with ethylene molecules by photoionization time-of-flight mass spectrometry and characterized by mass-analyzed threshold ionization spectroscopy. La(C2H2) is identified as a metallacyclopropene and La(C4H6) as a metallacyclopentene. The three-membered ring is formed by concerted H2 elimination and the five-membered cycle by dehydrogenation and C-C bond coupling. Both metallacycles prefer a doublet ground state with a La 6s-based unpaired electron. Ionization of the neutral doublet state of either complex produces a singlet ion state by removing the La-based electron. The ionization allows accurate measurements of the adiabatic ionization energy of the neutral doublet state and metal-ligand and ligand-based vibrational frequencies of the neutral and ionic states. Although the La atom is in a formal oxidation state of +2, the ionization energies of these metal-hydrocarbon cycles are lower than that of the neutral La atom. Deuteration has a small effect on the ionization energies of the two cyclic radicals but distinctive effects on their vibrational frequencies. PMID:27322131

  12. New copper(II) complexes with dopamine hydrochloride and vanillymandelic acid: Spectroscopic and thermal characterization

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Nour El-Dien, F. A.; El-Nahas, R. G.

    2011-10-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. The Cu(II) chelates with coupled products of dopamine hydrochloride (DO.HCl) and vanillymandelic acid (VMA) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical techniques namely IR, magnetic and UV-vis spectra are used to investigate the structure of these chelates. Cu(II) forms 1:1 (Cu:DO) and 1:2 (Cu:VMA) chelates. DO behave as a uninegative tridentate ligand in binding to the Cu(II) ion while VMA behaves as a uninegative bidentate ligand. IR spectra show that the DO is coordinated to the Cu(II) ion in a tridentate manner with ONO donor sites of the phenolic- OH, -NH and carbonyl- O, while VMA is coordinated with OO donor sites of the phenolic- OH and -NH. Magnetic moment measurements reveal the presence of Cu(II) chelates in octahedral and square planar geometries with DO and VMA, respectively. The thermal decomposition of Cu(II) complexes is studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  13. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction

    NASA Astrophysics Data System (ADS)

    Prasad, Virendra; D'Souza, Charlene; Yadav, Deepti; Shaikh, A. J.; Vigneshwaran, Nadanathangam

    2006-09-01

    Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.

  14. Spectroscopic, Structural, and Computational Characterization of Three Bispidinone Derivatives, as Ligands for Enantioselective Metal Catalyzed Reactions.

    PubMed

    Castellano, Carlo; Sacchetti, Alessandro; Meneghetti, Fiorella

    2016-04-01

    Three chiral derivatives of the alkaloid sparteine (bispidines), characterized by the 3,7-diazabicyclo[3.3.1]nonane moiety, were designed as efficient ligands in a number of enantioselective reactions due to their metal coordination properties. A full evaluation of the 3D properties of the compounds was carried out, as the geometrical features of the bicyclic framework are strictly related to the efficiency of the ligands in the asymmetric catalysis. The selected molecules have different molecular complexity for investigating the effects of different chiral groups on the bicycle conformation. We report here a thorough analysis of their molecular arrangement, by NMR spectroscopy, single crystal X-ray crystallography, and computational techniques, which put in evidence their conformational preferences and the parameters needed for the design of more efficient ligands in asymmetric synthetic routes. The results confirmed the high molecular flexibility of the compounds, and indicated how to achieve a control of the chair-chair/boat-chair conformational ratio, by adjusting the relative size of the substituents on the piperidine nitrogens.

  15. Crystal structure, spectroscopic characterization and antibacterial activities of a silver complex with sulfameter

    NASA Astrophysics Data System (ADS)

    Nakahata, Douglas H.; Lustri, Wilton R.; Cuin, Alexandre; Corbi, Pedro P.

    2016-12-01

    A silver complex with the sulfonamide sulfameter, also known as sulfamethoxydiazine (SMTR), was prepared and characterized. Chemical analyses were consistent with the [Ag(C11H11N4O3S)] composition (AgSMTR), while conductivity measurements in DMSO indicated a non-electrolyte behavior of the complex in this solvent. High-resolution ESI(+)-QTOF mass spectrometric experiments revealed the presence of the [Ag(C11H11N4O3S)+H]+ and [Ag2(C11H11N4O3S)2+H]+ species in solution. Infrared and NMR spectroscopies indicated coordination of the ligand to the metal by the nitrogen atoms of the sulfonamide group and of the pyrimidine ring. The structure of AgSMTR was solved by powder X-ray diffraction technique using the Rietveld method. The solved structure confirms the formation of a dimer, where each silver ion is coordinated by one of the nitrogen atoms of the pyrimidine ring, the nitrogen of the sulfonamide group and by an oxygen atom from the sulfonyl group. An argentophilic interaction of 2.901(1) Å is present in this dimeric structure. The AgSMTR complex was assayed over Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains, and it was found that the compound is 8 times more active over the Gram-negative bacteria in DMSO solution, with MIC values in the micromolar range.

  16. Efficient MW-Assisted Synthesis, Spectroscopic Characterization, X-ray and Antioxidant Properties of Indazole Derivatives.

    PubMed

    Polo, Efrain; Trilleras, Jorge; Ramos, Juan; Galdámez, Antonio; Quiroga, Jairo; Gutierrez, Margarita

    2016-01-01

    A small series of tetrahydroindazoles was prepared, starting from 2-acetylcyclohexanone and different hydrazines using reflux and a focused microwave reactor. Microwave irradiation (MW) favored the formation of the desired products with improved yields and shortened reaction times. This is a simple and green method for the synthesis of substituted tetrahydroindazole derivatives. The in vitro antioxidant activity was evaluated using the DPPH and ABTS methods. In these assays, 2-(4-fluorophenyl)-3-methyl-4,5,6,7-tetrahydro-2H-indazole (3f) showed moderate DPPH decoloring activity, while 3-methyl-4,5,6,7-tetrahydro-1H-indazole (3a), 3-methyl-2-phenyl-4,5,6,7-tetrahydro-2H-indazole (3b) and 2-(4-fluorophenyl)-3-methyl-4,5,6,7-tetrahydro-2H-indazole (3f) were the most active in the ABTS assay. All compounds were well characterized by IR, ¹H-, (13)C-NMR and GC-MS spectroscopy and physical data, while the structure of 4-(3-methyl-4,5,6,7-tetrahydro-2H-indazol-2-yl)benzoic acid (3e) was also determined by single crystal X-ray analysis. PMID:27409599

  17. Amino-Functionalized Layered Crystalline Zirconium Phosphonates: Synthesis, Crystal Structure, and Spectroscopic Characterization.

    PubMed

    Taddei, Marco; Sassi, Paola; Costantino, Ferdinando; Vivani, Riccardo

    2016-06-20

    Two new layered zirconium phosphonates functionalized with amino groups were synthesized starting from aminomethylphosphonic acid in the presence of different mineralizers, and their structures were solved from powder X-ray diffraction data. Their topologies are unprecedented in zirconium phosphonate chemistry: the first, of formula ZrH[F3(O3PCH2NH2)], prepared in the presence of hydrofluoric acid, features uncommon ZrO2F4 units and a remarkable thermal stability; the second, of formula Zr2H2[(C2O4)3(O3PCH2NH2)2]·2H2O, prepared in the presence of oxalic acid, is based on ZrO7 units with oxalate anions coordinated to the metal atom, which were never observed before in any zirconium phosphonate. In addition, the structure of another compound based on (2-aminoethyl)phosphonic acid is reported, which was the object of a previously published study. This compound has layered α-type structure with -NH3(+) groups located in the interlayer space. All of the reported compounds were further characterized by means of vibrational spectroscopy, which provided important information on fine structural details that cannot be deduced from the powder X-ray diffraction data. PMID:27254781

  18. Synthesis, spectroscopic and computational characterization of the tautomerism of pyrazoline derivatives from chalcones

    NASA Astrophysics Data System (ADS)

    Miguel, Fábio Balbino; Dantas, Juliana Arantes; Amorim, Stefany; Andrade, Gustavo F. S.; Costa, Luiz Antônio Sodré; Couri, Mara Rubia Costa

    2016-01-01

    In the present study a series of novel pyrazolines derivatives has been synthesized, and their structures assigned on the basis of FT-Raman, 1H and 13C NMR spectral data and computational DFT calculations. A joint computational study using B3LYP/6-311G(2d,2p) density functional theory and FT-Raman investigation on the tautomerism of 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carbothioamide and 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carboxamide are presented. The structures were characterized as a minimum in the potential energy surface using DFT. The calculated Raman and NMR spectra were of such remarkable agreement to the experimental results that the equilibrium between tautomeric forms has been discussed in detail. Our study suggests the existence of tautomers, the carboxamide/carbothioamide group may tautomerize, in the solid state or in solution. Thermodynamic data calculated suggests that the R(Cdbnd S)NH2 and R(Cdbnd O)NH2 species are more stable than the R(Cdbnd NH)SH and R(Cdbnd NH)OH species. Additionally, results found for the 1H NMR shifting, pointed out to which structure is present.

  19. Spectroscopic, scanning laser OBIC, and I-V/QE characterizations of browned EVA solar cells

    SciTech Connect

    Pern, F.J.; Eisgruber, I.L.; Micheels, R.H.

    1996-05-01

    The effects of ethylene-vinyl acetate (EVA) discoloration due to accelerated field or laboratory exposure on the encapsulated silicon (Si) solar cells or EVA/glass laminates were characterized quantitatively by using non-invasive, non-destructive ultraviolet-visible (UV-vis) spectrophotometry, spectrocolorimetry, spectrofluorometry, scanning laser OBIC (optical beam induced current) spectroscopy, and current-voltage (I-V) and quantum efficiency (QE) measurements. The results show that the yellowness index (YI) measured directly over the AR-coated solar cells under the glass superstrate increased from the range of -80 to -90 to the range of -20 to 15 as the EVA changed from clear to brown. The ratio of two fluorescence emission peak areas generally increased from 1.45 to 5.69 as browning increased, but dropped to 4.21 on a darker EVA. For a solar cell with brown EVA in the central region, small-area grating QE measurements and scanning laser OBIC analysis between the brown and clear EVA regions showed that the quantum efficiency loss at 633 nm was 42%-48% of the loss at 488 nm, due to a reduced decrease of transmittance in browned EVA at the longer wavelengths. The portion of the solar cell under the browned EVA showed a decrease of {approximately}36% in efficiency, as compared to the cell efficiency under clear EVA. Transmittance loss at 633 nm was 38% of the loss at 488 nm for a light yellow-brown EVA/glass laminate that showed a small increase of 10 in the yellowness index.

  20. A new heterometallic (Ni 2+ and Cr 3+) complex - Crystal structure and spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Jurić, Marijana; Planinić, Pavica; Žilić, Dijana; Rakvin, Boris; Prugovečki, Biserka; Matković-Čalogović, Dubravka

    2009-04-01

    A new heterometallic complex, of the composition [Ni(bpy) 3] 2[Cr(C 2O 4) 3]NO 3·10H 2O (bpy = 2,2'-bipyridine) ( 1), was synthesized and characterized by elemental and TG/DTA analyses, IR, UV/vis and EPR spectroscopy and by a single-crystal X-ray diffraction study. The compound crystallizes in the monoclinic P2 1/ c space group, with the unit cell parameters: a = 23.201(7), b = 13.562(4), c = 22.350(7) Å, β = 92.782(5)°, V = 7024(4) Å 3 and Z = 4. The molecular structure of 1 consists of two symmetry independent [Ni(bpy) 3] 2+ cations, one [Cr(C 2O 4) 3] 3- anion, one nitrate anion and 10 molecules of water. Due to the rigidity of the didentate ligands, both [Ni(bpy) 3] 2+ and [Cr(C 2O 4) 3] 3- ions possess a trigonally distorted octahedral geometry. Analysis of crystal packing revealed the existence of a specific type of supramolecular contact comprising four bipyridine ligands from two neighbouring [Ni(bpy) 3] 2+ units - a quadruple aryl embrace (QAE) contact. The electronic spectrum showed superposition of bands characteristic for both nickel(II) and chromium(III) six-coordinated ions. The X-band EPR spectra were recorded on a single crystal and on a powdered sample of 1 in the temperature range 300-5 K. From the obtained spectra, the spin-Hamiltonian parameters for Cr 3+ were deduced. Throughout the investigated temperature range, Ni 2+ was EPR silent.

  1. Raman, infrared and near-infrared spectroscopic characterization of the herderite-hydroxylherderite mineral series.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Queiroz, Camila de Siqueira; Belotti, Fernanda M; Cândido Filho, Mauro

    2014-01-24

    Natural single-crystal specimens of the herderite-hydroxylherderite series from Brazil, with general formula CaBePO4(F,OH), were investigated by electron microprobe, Raman, infrared and near-infrared spectroscopies. The minerals occur as secondary products in granitic pegmatites. Herderite and hydroxylherderite minerals show extensive solid solution formation. The Raman spectra of hydroxylherderite are characterized by bands at around 985 and 998 cm(-1), assigned to ν1 symmetric stretching mode of the HOPO3(3-) and PO4(3-) units. Raman bands at around 1085, 1128 and 1138 cm(-1) are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 563, 568, 577, 598, 616 and 633 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The OH Raman stretching vibrations of hydroxylherderite were observed ranging from 3626 cm(-1) to 3609 cm(-1). The infrared stretching vibrations of hydroxylherderites were observed between 3606 cm(-1) and 3599 cm(-1). By using a Libowitzky type function, hydrogen bond distances based upon the OH stretching bands were calculated. Characteristic NIR bands at around 6961 and 7054 cm(-1) were assigned to the first overtone of the fundamental, whilst NIR bands at 10,194 and 10,329 cm(-1) are assigned to the second overtone of the fundamental OH stretching vibration. Insight into the structure of the herderite-hydroxylherderite series is assessed by vibrational spectroscopy.

  2. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    PubMed

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  3. Spectroscopic characterization and structural modeling of prolamin from maize and pearl millet.

    PubMed

    Bugs, Milton Roque; Forato, Lucimara Aparecida; Bortoleto-Bugs, Raquel Kely; Fischer, Hannes; Mascarenhas, Yvonne Primerano; Ward, Richard John; Colnago, Luiz Alberto

    2004-07-01

    Biophysical methods and structural modeling techniques have been used to characterize the prolamins from maize ( Zea mays) and pearl millet ( Pennisetum americanum). The alcohol-soluble prolamin from maize, called zein, was extracted using a simple protocol and purified by gel filtration in a 70% ethanol solution. Two protein fractions were purified from seed extracts of pearl millet with molecular weights of 25.5 and 7 kDa, as estimated by SDS-PAGE. The high molecular weight protein corresponds to pennisetin, which has a high alpha-helical content both in solution and the solid state, as demonstrated by circular dichroism and Fourier transform infrared spectra. Fluorescence spectroscopy of both fractions indicated changes in the tryptophan microenvironments with increasing water content of the buffer. Low-resolution envelopes of both fractions were retrieved by ab initio procedures from small-angle X-ray scattering data, which yielded maximum molecular dimensions of about 14 nm and 1 nm for pennisetin and the low molecular weight protein, respectively, and similar values were observed by dynamic light scattering experiments. Furthermore, (1)H nuclear magnetic resonance spectra of zein and pennisetin do not show any signal below 0.9 ppm, which is compatible with more extended solution structures. The molecular models for zein and pennisetin in solution suggest that both proteins have an elongated molecular structure which is approximately a prolate ellipsoid composed of ribbons of folded alpha-helical segments with a length of about 14 nm, resulting in a structure that permits efficient packing within the seed endosperm.

  4. Raman, infrared and near-infrared spectroscopic characterization of the herderite-hydroxylherderite mineral series.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Queiroz, Camila de Siqueira; Belotti, Fernanda M; Cândido Filho, Mauro

    2014-01-24

    Natural single-crystal specimens of the herderite-hydroxylherderite series from Brazil, with general formula CaBePO4(F,OH), were investigated by electron microprobe, Raman, infrared and near-infrared spectroscopies. The minerals occur as secondary products in granitic pegmatites. Herderite and hydroxylherderite minerals show extensive solid solution formation. The Raman spectra of hydroxylherderite are characterized by bands at around 985 and 998 cm(-1), assigned to ν1 symmetric stretching mode of the HOPO3(3-) and PO4(3-) units. Raman bands at around 1085, 1128 and 1138 cm(-1) are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 563, 568, 577, 598, 616 and 633 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The OH Raman stretching vibrations of hydroxylherderite were observed ranging from 3626 cm(-1) to 3609 cm(-1). The infrared stretching vibrations of hydroxylherderites were observed between 3606 cm(-1) and 3599 cm(-1). By using a Libowitzky type function, hydrogen bond distances based upon the OH stretching bands were calculated. Characteristic NIR bands at around 6961 and 7054 cm(-1) were assigned to the first overtone of the fundamental, whilst NIR bands at 10,194 and 10,329 cm(-1) are assigned to the second overtone of the fundamental OH stretching vibration. Insight into the structure of the herderite-hydroxylherderite series is assessed by vibrational spectroscopy. PMID:24076459

  5. Comprehensive characterization of oil refinery effluent-derived humic substances using various spectroscopic approaches.

    PubMed

    Lingbo, Li; Song, Yan; Congbi, Han; Guangbo, Shan

    2005-07-01

    Refinery effluent-derived humic substances (HS) are important for developing refinery effluent reclamation techniques and studying the environmental chemistry of wastewater effluents. In this study, dissolved organic matter (DOM) from refinery effluent was concentrated using a portable reverse osmosis (RO) system. HS were isolated from RO retentates with XAD-8 resin. A variety of approaches such as specific UV absorbance at 254nm (SUV(254)), elemental analysis, size exclusion chromatography (SEC), solid-state cross polarization magic angle spinning (13)C nuclear magnetic resonance spectrometry ((13)C CPMAS NMR), Fourier transform infrared spectrometry (FTIR), and electrospray ionization/ion trap/mass spectrometry (ESI/ion trap/MS) were employed for characterization of HS. The portable RO system exhibited high yield and recovery of DOM for concentrating refinery effluent. The concentration of dissolved organic carbon (DOC) in the refinery effluent was 9.9mg/l, in which humic acids (HA) and fulvic acids (FA) accounted for 2.3% and 34.6%, respectively. Elemental and SUV(254) analyses indicated relative high amounts of aliphatic structures and low amounts of aromatic structures in refinery effluent-derived HS. Refinery effluent-derived HS displayed lower molecular weight than natural HS. The number-average molecular weight (M(n)) and the weight-average molecular weight (M(w)) of HA were 1069 and 2934, and those of FA were 679 and 1212 by SEC, respectively. By ESI/ion trap/MS, the M(n) and the M(w) of FA were 330 and 383. Four kinds of carbon structures (aliphatic, aromatic, heteroaliphatic, and carboxylic carbons) were found in refinery effluent-derived HS by (13)C NMR analysis. The quantitative results support the interpretation that these HS are rich in aliphatic carbons and poor in aromatic carbons. Proteinaceous materials were identified by FTIR analysis in refinery effluent-derived HS. PMID:15950039

  6. Structural and spectroscopic characterization of ettringite mineral -combined DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Scholtzová, Eva; Kucková, Lenka; Kožíšek, Jozef; Tunega, Daniel

    2015-11-01

    The structure of the ettringite mineral was studied by means of FTIR spectroscopy and single crystal X-ray diffraction method. The experimental study was combined with the first principle calculations based on density functional theory (DFT) method. Predicted structural parameters (unit cell vectors and positions of heavy atoms) are in a very good agreement with the experimental data. Moreover, calculations also enabled to refine the positions of the hydrogen atoms not determined precisely by the single crystal X-ray measurement. The detailed analysis of the hydrogen bonds in the ettringite structure was performed and several groups of the hydrogen bonds were classified. It was found that the water molecules from the coordination sphere of Ca2+ cations act as proton donors in moderate O-H···O hydrogen bonds with SO 32- anions. Further, multiple O-H···O hydrogen bonds were identified among water molecules themselves. In addition, also hydroxyl groups from the [Al(OH)6]3- octahedral units are involved in the weak O-H···O hydrogen bonding with the water molecules. The calculated vibrational spectrum showed all typical features observed in the experimental FTIR spectrum. Moreover, performing the analysis of the calculated spectrum, all vibrational modes were distinguished and assigned. Such a complete analysis of the measured IR and/or Raman spectra is not fully possible, specifically for the region below 1500 cm-1, which is characterized by a complex curve with many overlapped bands. A comparison of the vibrational spectra of ettringite and thaumasite (mineral structurally similar to ettringite) revealed the origin of the most important differences between them.

  7. Facile synthesis, spectroscopic characterization and X-ray analysis of 4-alkoxylated 2-hydroxybenzophenones

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; He, Liang

    2012-02-01

    Two 2-hydroxy-4-alkoxy-3'-nitrobenzophenones were synthesized in a facile way. Their structures were characterized with the aid of mass spectra and 1H NMR spectra analysis, as well as X-ray diffraction analysis. The 1H NMR spectra showed an intramolecular hydrogen bond formation in their structures. Compound 1 crystallizes in the monoclinic P2 (1) space group with the crystal cell parameters a = 3.9318(4) Å, b = 7.1042(9) Å, c = 22.0400(19) Å, α = 90.00°, β = 92.3140(10)°, γ = 90.00°, V = 615.13(11) Å3 and Z = 2. Compound 2 crystallizes in the monoclinic space group P2 (1)/n with the crystal cell parameters a = 3.9765(5) Å, b = 11.8286(15) Å, c = 28.867(3) Å, α = 90.00°, β = 92.8710(10)°, γ = 90.00°, V = 1356.1(3) Å3 and Z = 4. Results showed that the benzophenone skeletons are non-planar, with a large torsion to minimize their repulsive force. The substituted nitro or alkoxy groups are essentially coplanar with respect to the benzene rings to which it connected, whereas the carbonyl group in benzophenone skeleton is coplanar with the benzene ring which is substituted by alkoxy group. Classic and non-classic intra- and intermolecular hydrogen bonds, together with the π-π stacking interactions stabilize their molecular conformations. The minor variations in the alkoxy group substituent cause great difference in their intermolecular hydrogen bond formation and stacking mode.

  8. Characterization of ovalbumin absorption pathways in the rat intestine, including the effects of aspirin.

    PubMed

    Yokooji, Tomoharu; Nouma, Hitomi; Matsuo, Hiroaki

    2014-01-01

    Ingested proteins are absorbed from the intestinal lumen via the paracellular and/or transcellular pathways, depending on their physicochemical properties. In this study, we investigated the absorption pathway(s) of ovalbumin (OVA), an egg white-allergen, as well as the mechanisms of aspirin-facilitated OVA absorption in rats. In situ intestinal re-circulating perfusion experiments showed that the absorption rate of fluorescein isothiocyanate (FITC)-labeled OVA in the distal intestine was higher than that for a marker of non-specific absorption, FITC-dextran (FD-40), and that colchicine, a general endocytosis inhibitor, suppressed OVA absorption. In the distal intestine, bafiromycin A1 and phenylarsine oxide inhibited the OVA absorption rate, whereas mehyl-β-cyclodextrin exerted no significant effects. Thus, OVA is preferentially absorbed from the distal intestine via the paracellular and receptor- and clathrin-mediated endocytic pathways. Furthermore, aspirin increased OVA absorption in the presence or absence of colchicine, indicating that aspirin facilitated OVA absorption by inducing intestinal barrier disruption and paracellular permeability.

  9. Errors in spectroscopic measurements of SO/sub 2/ due to nonexponential absorption of laser radiation, with application to the remote monitoring of atmospheric pollutants

    SciTech Connect

    Brassington, D.J.; Moncrieff, T.M.; Felton, R.C.; Jolliffe, B.W.; Marx, B.R.; Rowley, W.R.C.; Woods, P.T.

    1984-02-01

    Methods of measuring the concentration of atmospheric pollutants by laser absorption spectroscopy, such as differential absorption lidar (DIAL) and integrated long-path techniques, all rely on the validity of Beer's exponential absorption law. It is shown here that departures from this law occur if the probing laser has a bandwidth larger than the wavelength scale of structure in the absorption spectrum of the pollutant. A comprehensive experimental and theoretical treatment of the errors resulting from these departures is presented for the particular case of SO/sub 2/ monitoring at approx.300 nm. It is shown that the largest error occurs where the initial calibration measurement of absorption cross section is made at low pressure, in which case errors in excess of 5% in the cross section could occur for laser bandwidths >0.01 nm. Atmospheric measurements by DIAL or long-path methods are in most cases affected less, because pressure broadening smears the spectral structure, but when measuring high concentrations errors can exceed 5%.

  10. A New, Longitudinally Resolved, Spectroscopic Characterization of Quaoar’s Surface

    NASA Astrophysics Data System (ADS)

    Dalle Ore, Cristina M.; Barucci, Maria A.; Perna, Davide; Doressoundiram, Alain; Alvarez-Candal, Alvaro; Nitschelm, Christian; Cruikshank, Dale P.

    2014-11-01

    (50000) Quaoar, one of the largest Trans-neptunian objects, is comparable in size to Pluto’s moon Charon. However, while Charon’s surface is rich almost exclusively in H2O ice, Quaoar‘s surface is characterized by ices of CH4, N2, as well as C2H6, a product of irradiation of CH4 (Dalle Ore et al. 2009). Because of its distance from the Sun, Quaoar is expected to have preserved, to a degree, its original composition, however, its relatively small size did not make it a prime candidate for presence of volatile ices in the study by Schaller and Brown (2007). Furthermore, based on the Brown et al. (2011) study its red coloration points to CH3OH as the ice which, when irradiated, might have produced the red material. We present new visible to near-infrared (0.3-2.48μm) spectro-photometric data obtained with the XSHOOTER (Vernet et al. 2011) instrument at the VLT-ESO facility at four different longitudes on the surface of Quaoar. The data are complemented by previously published photometric observations obtained in the near-infrared (3.6, 4.5μm) with the Spitzer Space Telescope, which provide an extra set of constraints in the model calculation process in spite of the different observing times that preclude establishing the spatial consistency between the two sets.For each of the four spectra we perform spectral modeling of the entire wavelength range -from 0.3 to 4.5μm- by means of a code based on the Shkuratov radiative transfer formulation of the slab model. We obtain spatially resolved compositional information for the surface of Quaoar supporting the presence of CH4 and C2H6, as previously reported, along with evidence for N2 and NH3OH. The albedo at the two Spitzer bands indicates the likely presence of CO and CO2. CH3OH, predicted on the basis of Quaoar’s coloration (Brown et al. 2011), is not found at any of the four longitudes, implying that the presence of this ice is a sufficient, but not necessary condition for reddening of TNO surfaces. Other ices

  11. Synthesis, structure, and spectroscopic characterization of three uranyl phosphates with unique structural units

    SciTech Connect

    Wylie, Ernest M.; Dawes, Colleen M.; Burns, Peter C.

    2012-12-15

    Single crystals of Zn{sub 4}(OH){sub 2}[(UO{sub 2})(PO{sub 4}){sub 2}(OH){sub 2}(H{sub 2}O)] (UZnP), Cs[(UO{sub 2})(HPO{sub 4})NO{sub 3}] (UCsP), and In{sub 3}[(UO{sub 2}){sub 2}(PO{sub 4}){sub 4}OH(H{sub 2}O){sub 6}].2H{sub 2}O (UInP) were obtained from hydrothermal reactions and have been structurally and chemically characterized. UZnP crystallizes in space group Pbcn, a=8.8817(7), b=6.6109(5), c=19.569(1) A; UCsP crystallizes in P-1, a=7.015(2), b=7.441(1), c=9.393(2) A, {alpha}=72.974(2), {beta}=74.261(2), {gamma}=79.498(2); and UInP crystallizes in P-1, a=7.9856(5), b=9.159(1), c=9.2398(6) A {alpha}=101.289(1), {beta}=114.642(1), {gamma}=99.203(2). The U{sup 6+} cations are present as (UO{sub 2}){sup 2+} uranyl ions coordinated by five O atoms to give pentagonal bipyramids. The structural unit in UZnP is a finite cluster containing a uranyl pentagonal bipyramid that shares corners with two phosphate tetrahedra. The structural unit in UCsP is composed of uranyl pentagonal bipyramids with one chelating nitrate group that are linked into chains by three bridging hydrogen phosphate tetrahedra. In UInP, the structural unit contains pairs of edge-sharing uranyl pentagonal bipyramids with two chelating phosphate tetrahedra that are linked into chains through two bridging phosphate tetrahedra. Indium octahedra link these uranyl phosphate chains into a 3-dimensional framework. All three compounds exhibit unique structural units that deviate from the typical layered structures observed in uranyl phosphate solid-state chemistry. - Graphical abstract: Three new uranyl phosphates with unique structural units are reported. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Three new uranyl phosphates have been synthesized hydrothermally. Black-Right-Pointing-Pointer Single crystal analyses reveal unique structural units. Black-Right-Pointing-Pointer The dimensionality of these compounds deviate from typical U{sup 6+} layered structures.

  12. Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA.

    PubMed

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of (Nif)IscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV-visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii(Nif)IscA, and the ability of (Nif)IscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that (Nif)IscA can rapidly and reversibly cycle between forms containing one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S](2+) clusters and O(2)-induced [4Fe-4S](2+) oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S](2+)-(Nif)IscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-(Nif)IscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions.

  13. Synthesis and microwave absorption characterization of SiO2 coated Fe3O4-MWCNT composites.

    PubMed

    Hekmatara, Hoda; Seifi, Majid; Forooraghi, Keyvan; Mirzaee, Sharareh

    2014-11-21

    This study investigated the microwave absorption properties of core-shell composites containing; iron oxide decorated carbon nanotubes (CNTs) and silica (SiO2@Fe3O4-MWCNTs) with various thicknesses of silica shells (7, 20 and 50 nm). Transmission electron microscopy (TEM) and X-ray diffraction results confirmed the formation of these core-shell structures. Microwave absorption characterization of the samples at the ranging band under consideration (the X-band) showed increased absorption and shifting of the peaks to lower frequencies compared to the uncoated sample (Fe3O4-MWCNTs). The minimum reflection loss decreased with increasing SiO2 thickness. The minimum reflection loss of the composite with an optimized thickness of the silica shell (7 nm) exceeded -41 dB at 8.7-9 GHz.

  14. Characterization of functionalized self-assembled monolayers and surface-attached interlocking molecules using near-edge X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Willey, Trevor Michael

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a "molecular riveting" step to hold the mechanically attached

  15. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Willey, Trevor M.

    2004-04-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the mechanically attached

  16. Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops

    NASA Astrophysics Data System (ADS)

    Müller, T.; Henzing, J. S.; de Leeuw, G.; Wiedensohler, A.; Alastuey, A.; Angelov, H.; Bizjak, M.; Collaud Coen, M.; Engström, J. E.; Gruening, C.; Hillamo, R.; Hoffer, A.; Imre, K.; Ivanow, P.; Jennings, G.; Sun, J. Y.; Kalivitis, N.; Karlsson, H.; Komppula, M.; Laj, P.; Li, S.-M.; Lunder, C.; Marinoni, A.; Martins Dos Santos, S.; Moerman, M.; Nowak, A.; Ogren, J. A.; Petzold, A.; Pichon, J. M.; Rodriquez, S.; Sharma, S.; Sheridan, P. J.; Teinilä, K.; Tuch, T.; Viana, M.; Virkkula, A.; Weingartner, E.; Wilhelm, R.; Wang, Y. Q.

    2010-04-01

    Absorption photometers for real time application have been available since the 1980s, but the use of filter-based instruments to derive information on aerosol properties (absorption coefficient and black carbon, BC) is still a matter of debate. Several workshops have been conducted to investigate the performance of individual instruments over the intervening years. Two workshops with large sets of aerosol absorption photometers were conducted in 2005 and 2007. The data from these instruments were corrected using existing methods before further analysis. The inter-comparison shows a large variation between the responses to absorbing aerosol particles for different types of instruments. The unit to unit variability between instruments can be up to 30% for Particle Soot Absorption Photometers (PSAPs) and Aethalometers. Multi Angle Absorption Photometers (MAAPs) showed a variability of less than 5%. Reasons for the high variability were identified to be variations in sample flow and spot size. It was observed that different flow rates influence system performance with respect to response to absorption and instrumental noise. Measurements with non absorbing particles showed that the current corrections of a cross sensitivity to particle scattering are not sufficient. Remaining cross sensitivities were found to be a function of the total particle load on the filter. The large variation between the response to absorbing aerosol particles for different types of instruments indicates that current correction functions for absorption photometers are not adequate.

  17. Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops

    NASA Astrophysics Data System (ADS)

    Müller, T.; Henzing, J. S.; de Leeuw, G.; Wiedensohler, A.; Alastuey, A.; Angelov, H.; Bizjak, M.; Collaud Coen, M.; Engström, J. E.; Gruening, C.; Hillamo, R.; Hoffer, A.; Imre, K.; Ivanow, P.; Jennings, G.; Sun, J. Y.; Kalivitis, N.; Karlsson, H.; Komppula, M.; Laj, P.; Li, S.-M.; Lunder, C.; Marinoni, A.; Martins Dos Santos, S.; Moerman, M.; Nowak, A.; Ogren, J. A.; Petzold, A.; Pichon, J. M.; Rodriquez, S.; Sharma, S.; Sheridan, P. J.; Teinilä, K.; Tuch, T.; Viana, M.; Virkkula, A.; Weingartner, E.; Wilhelm, R.; Wang, Y. Q.

    2011-02-01

    Absorption photometers for real time application have been available since the 1980s, but the use of filter-based instruments to derive information on aerosol properties (absorption coefficient and black carbon, BC) is still a matter of debate. Several workshops have been conducted to investigate the performance of individual instruments over the intervening years. Two workshops with large sets of aerosol absorption photometers were conducted in 2005 and 2007. The data from these instruments were corrected using existing methods before further analysis. The inter-comparison shows a large variation between the responses to absorbing aerosol particles for different types of instruments. The unit to unit variability between instruments can be up to 30% for Particle Soot Absorption Photometers (PSAPs) and Aethalometers. Multi Angle Absorption Photometers (MAAPs) showed a variability of less than 5%. Reasons for the high variability were identified to be variations in sample flow and spot size. It was observed that different flow rates influence system performance with respect to response to absorption and instrumental noise. Measurements with non absorbing particles showed that the current corrections of a cross sensitivity to particle scattering are not sufficient. Remaining cross sensitivities were found to be a function of the total particle load on the filter. The large variation between the response to absorbing aerosol particles for different types of instruments indicates that current correction functions for absorption photometers are not adequate.

  18. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  19. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  20. Room-Temperature Absorption Edge of InGaN/GaN Quantum Wells Characterized by Photoacoustic Measurement

    NASA Astrophysics Data System (ADS)

    Takeda, Yosuke; Takagi, Daigo; Sano, Tatsuji; Tabata, Shin; Kobayashi, Naoki; Shen, Qing; Toyoda, Taro; Yamamoto, Jun; Ban, Yuzaburo; Matsumoto, Kou

    2008-12-01

    The absorption edges of five periods of InxGa1-xN (3 nm)/GaN (15 nm) (x=0.07-0.23) quantum wells (QWs) are characterized by photoacoustic (PA) measurement at room temperature. The absorption edge is determined by differentiating the PA signal curve to obtain the inflection point on the assumption that the signal curve consists of Urbach tail in the low-energy region and Elliott's equation in the high-energy region. The constant absorption edge of GaN is observed at 3.4 eV and an absorption edge redshift with increasing In composition is observed for InGaN QWs. As a result, the Stokes shift increases with In composition and the highest shift of 435 meV is observed at x=0.23. From the energy calculation of optical transition in the InGaN/GaN QWs under an internal polarization field, the transition between the ground states confined in the well with a triangular potential causes a low-energy shift in the photoluminescence peak from the bulk band-gap energy, and the excited bound states whose wave functions are confined by the step-linear potential extending over the GaN barrier lead to the high-energy shift in the absorption edge.

  1. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  2. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas) metal content and spectroscopic characterization.

    PubMed

    Durmus, A; Eicken, C; Sift, B H; Kratel, A; Kappl, R; Hüttermann, J; Krebs, B

    1999-03-01

    Purple acid phosphatase from sweet potatoes Ipomoea batatas (spPAP) has been purified to homogeneity and characterized using spectroscopic investigations. Matrix-assisted laser desorption/ionization mass spectrometry analysis revealed a molecular mass of approximately 112 kDa. The metal content was determined by X-ray fluorescence using synchrotron radiation. In contrast to previous studies it is shown that spPAP contains a Fe(III)-Zn(II) center in the active site as previously determined for the purple acid phosphatase from red kidney bean (kbPAP). Moreover, an alignment of the amino acid sequences suggests that the residues involved in metal-binding are identical in both plant PAPs. Tyrosine functions as one of the ligands for the chromophoric Fe(III). Low temperature EPR spectra of spPAP show a signal near g = 4.3, characteristic for high-spin Fe(III) in a rhombic environment. The Tyr-Fe(III) charge transfer transition and the EPR signal are both very sensitive to changes in pH. The pH dependency strongly suggests the presence of an ionizable group with a pKa of 4.7, arising from an aquo ligand coordinated to Fe(III). EPR and UV/visible studies of spPAP in the presence of the inhibitors phosphate or arsenate suggest that both anions bind to Fe(III) in the binuclear center replacing the coordinated water or hydroxide ligand necessary for hydrolysis. The conserved histidine residues of spPAP corresponding to His202 and His296 in kbPAP probably interact in catalysis. PMID:10102999

  3. Structures and spectroscopic characterization of calcium chloride-nicotinamide, -isonicotinamide, -picolinamide and praseodymium bromide-nicotinamide complexes

    NASA Astrophysics Data System (ADS)

    Xue, Junhui; Jiang, Ye; Li, Weihong; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Zhang, Gaohui; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2015-02-01

    The coordination structures formed by calcium complexes with nicotinamide (na), isonicotinamide (ina) and picolinamide (pa) and praseodymium bromide-na are reported. The structures of CaCl2·(C6H6N2O)2·2H2O (Ca-na), CaCl2·(C6H6N2O)2·4H2O (Ca-ina), CaCl2·(C6H6N2O)2·5H2O (Ca-pa) and PrBr3·(C6H6N2O)2·6H2O (PrBr-na) in the solid state have been characterized by X-ray single crystal diffraction, FTIR, FIR, THz and Raman spectroscopies. Carbonyl oxygen of nicotinamide is coordinated to Ca2+, but it is O-monodentate (carbonyl oxygen) and N,O-bidentate ligand (pyridyl nitrogen and carbonyl oxygen) for Pr3+ to form a chain structure in PrBr-na. For isonicotinamide, only carbonyl oxygen atom is coordinated to Ca2+. Pyridyl nitrogen and carbonyl oxygen of picolinamide are coordinated to Ca2+ to form a five-membered ring structure. The crystal structure and spectroscopic results indicate the differences of the coordination of Ca and Pr ions, the changes of hydrogen bonds and conformation of the ligands induced by complexation. Unlike transition metal ions, Sr2+ or lanthanide ions, Ca2+ is inclined to coordinate to carbonyl oxygen atoms of the ligands.

  4. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas) metal content and spectroscopic characterization.

    PubMed

    Durmus, A; Eicken, C; Sift, B H; Kratel, A; Kappl, R; Hüttermann, J; Krebs, B

    1999-03-01

    Purple acid phosphatase from sweet potatoes Ipomoea batatas (spPAP) has been purified to homogeneity and characterized using spectroscopic investigations. Matrix-assisted laser desorption/ionization mass spectrometry analysis revealed a molecular mass of approximately 112 kDa. The metal content was determined by X-ray fluorescence using synchrotron radiation. In contrast to previous studies it is shown that spPAP contains a Fe(III)-Zn(II) center in the active site as previously determined for the purple acid phosphatase from red kidney bean (kbPAP). Moreover, an alignment of the amino acid sequences suggests that the residues involved in metal-binding are identical in both plant PAPs. Tyrosine functions as one of the ligands for the chromophoric Fe(III). Low temperature EPR spectra of spPAP show a signal near g = 4.3, characteristic for high-spin Fe(III) in a rhombic environment. The Tyr-Fe(III) charge transfer transition and the EPR signal are both very sensitive to changes in pH. The pH dependency strongly suggests the presence of an ionizable group with a pKa of 4.7, arising from an aquo ligand coordinated to Fe(III). EPR and UV/visible studies of spPAP in the presence of the inhibitors phosphate or arsenate suggest that both anions bind to Fe(III) in the binuclear center replacing the coordinated water or hydroxide ligand necessary for hydrolysis. The conserved histidine residues of spPAP corresponding to His202 and His296 in kbPAP probably interact in catalysis.

  5. Structures and spectroscopic characterization of calcium chloride-nicotinamide, -isonicotinamide, -picolinamide and praseodymium bromide-nicotinamide complexes.

    PubMed

    Xue, Junhui; Jiang, Ye; Li, Weihong; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Zhang, Gaohui; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2015-02-25

    The coordination structures formed by calcium complexes with nicotinamide (na), isonicotinamide (ina) and picolinamide (pa) and praseodymium bromide-na are reported. The structures of CaCl2·(C6H6N2O)2·2H2O (Ca-na), CaCl2·(C6H6N2O)2·4H2O (Ca-ina), CaCl2·(C6H6N2O)2·5H2O (Ca-pa) and PrBr3·(C6H6N2O)2·6H2O (PrBr-na) in the solid state have been characterized by X-ray single crystal diffraction, FTIR, FIR, THz and Raman spectroscopies. Carbonyl oxygen of nicotinamide is coordinated to Ca(2+), but it is O-monodentate (carbonyl oxygen) and N,O-bidentate ligand (pyridyl nitrogen and carbonyl oxygen) for Pr(3+) to form a chain structure in PrBr-na. For isonicotinamide, only carbonyl oxygen atom is coordinated to Ca(2+). Pyridyl nitrogen and carbonyl oxygen of picolinamide are coordinated to Ca(2+) to form a five-membered ring structure. The crystal structure and spectroscopic results indicate the differences of the coordination of Ca and Pr ions, the changes of hydrogen bonds and conformation of the ligands induced by complexation. Unlike transition metal ions, Sr(2+) or lanthanide ions, Ca(2+) is inclined to coordinate to carbonyl oxygen atoms of the ligands.

  6. Structures and spectroscopic characterization of calcium chloride-nicotinamide, -isonicotinamide, -picolinamide and praseodymium bromide-nicotinamide complexes.

    PubMed

    Xue, Junhui; Jiang, Ye; Li, Weihong; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Zhang, Gaohui; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2015-02-25

    The coordination structures formed by calcium complexes with nicotinamide (na), isonicotinamide (ina) and picolinamide (pa) and praseodymium bromide-na are reported. The structures of CaCl2·(C6H6N2O)2·2H2O (Ca-na), CaCl2·(C6H6N2O)2·4H2O (Ca-ina), CaCl2·(C6H6N2O)2·5H2O (Ca-pa) and PrBr3·(C6H6N2O)2·6H2O (PrBr-na) in the solid state have been characterized by X-ray single crystal diffraction, FTIR, FIR, THz and Raman spectroscopies. Carbonyl oxygen of nicotinamide is coordinated to Ca(2+), but it is O-monodentate (carbonyl oxygen) and N,O-bidentate ligand (pyridyl nitrogen and carbonyl oxygen) for Pr(3+) to form a chain structure in PrBr-na. For isonicotinamide, only carbonyl oxygen atom is coordinated to Ca(2+). Pyridyl nitrogen and carbonyl oxygen of picolinamide are coordinated to Ca(2+) to form a five-membered ring structure. The crystal structure and spectroscopic results indicate the differences of the coordination of Ca and Pr ions, the changes of hydrogen bonds and conformation of the ligands induced by complexation. Unlike transition metal ions, Sr(2+) or lanthanide ions, Ca(2+) is inclined to coordinate to carbonyl oxygen atoms of the ligands. PMID:25280333

  7. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  8. The crystalline nanocluster phase as a medium for structural and spectroscopic studies of light absorption of photosensitizer dyes on semiconductor surfaces.

    PubMed

    Benedict, Jason B; Coppens, Philip

    2010-03-10

    The crystalline nanocluster phase, in which nanoscale metal oxide clusters are self-assembled in three-dimensional periodic arrays, is described. The crystalline assembly of nanoparticles functionalized with technologically relevant ligands offers the opportunity to obtain unambiguous structural information that can be combined with theoretical calculations based on the known geometry and used to interpret spectroscopic and other information. A series of Ti/O clusters up to approximately 2.0 nm in diameter have been synthesized and functionalized with the adsorbents catechol and isonicotinic acid. Whereas the isonicotinate is always adsorbed in a bridging monodentate mode, four different adsorption modes of catechol have been identified. The particles show a significantly larger variation of the Ti-O distances than observed in the known TiO(2) phases and exhibit both sevenfold overcoordination and five- and fourfold undercoordination of the Ti atoms. Theoretical calculations show only a moderate dependence of the catecholate net charge on the geometry of adsorption. All of the catechol-functionalized clusters have a deep-red color due to penetration of the highest occupied catechol levels into the band gap of the Ti/O particles. Spectroscopic measurements of the band gap of the Ti(17) cluster are in good agreement with the theoretical values and show a blue shift of approximately 0.22 eV relative to those reported for anatase nanoparticles.

  9. Description of the Role of Shot Noise in Spectroscopic Absorption and Emission Measurements with Photodiode and Photomultiplier Tube Detectors: Information for an Instrumental Analysis Course

    ERIC Educational Resources Information Center

    McClain, Robert L.; Wright, John C.

    2014-01-01

    A description of shot noise and the role it plays in absorption and emission measurements using photodiode and photomultiplier tube detection systems is presented. This description includes derivations of useful forms of the shot noise equation based on Poisson counting statistics. This approach can deepen student understanding of a fundamental…

  10. Generation, characterization and spectroscopic use of ultrashort pulses fully tunable from the deep UV to the MIR

    NASA Astrophysics Data System (ADS)

    Riedle, Eberhard

    2011-03-01

    The impressive work of Ian Walmsley has brought us invaluable new possibilities for the full characterization of ultrashort pulses. Spectroscopy of physical, chemical and biological relevance does, however, need pulses far from the 800 nm Ti:sapphire wavelength used for testing SPIDER and its advanced versions. Fortunately, optical parametric amplification (OPA) allows for easy generation of fully tunable pulses. I will review our efforts, highlighting noncollinear OPA, i.e. NOPA, for visible pulses shorter than 10 fs, mixing into the UV down to below 200 nm at 20 fs duration and novel hybrid schemes to efficiently reach the middle IR. I will show that these schemes can be used equally well from kHz to MHz repetition rates. The tunable ultrafast pulses in turn also demand improvements in characterization. The UV range led us to use difference frequency generation instead of the sum frequency mixing employed in the original SPIDER. The lack of proper beam splitters and auto-referencing led us to the use of two auxiliary pulses and the avoidance of any additional chirp added to the test pulse. We termed this zero-additional-phase SPIDER, i.e. ZAP-SPIDER. Lately, with increased use of UV pulses, we came to the conclusion, that the ubiquitous two-photon-absorption can well serve as nonlinearity, at least in UV autocorrelation measurement. How do we use this for full characterization? Hopefully, Ian will tell us! Since the proof is known to be in the eating, I will demonstrate the success of our technical efforts with examples taken from ultrafast molecular dynamics. Highly pronounced vibronic wavepackets in the product of ultrafast excited state proton transfer and the very primary processes leading to homolytic and heterolytic bond cleavage will serve as easy to comprehend illustrations.

  11. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  12. ACCURATE SPECTROSCOPIC CHARACTERIZATION OF OXIRANE: A VALUABLE ROUTE TO ITS IDENTIFICATION IN TITAN’S ATMOSPHERE AND THE ASSIGNMENT OF UNIDENTIFIED INFRARED BANDS

    PubMed Central

    Puzzarini, Cristina; Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo

    2015-01-01

    In an effort to provide an accurate spectroscopic characterization of oxirane, state-of-the-art computational methods and approaches have been employed to determine highly accurate fundamental vibrational frequencies and rotational parameters. Available experimental data were used to assess the reliability of our computations, and an accuracy on average of 10 cm−1 for fundamental transitions as well as overtones and combination bands has been pointed out. Moving to rotational spectroscopy, relative discrepancies of 0.1%, 2%–3%, and 3%–4% were observed for rotational, quartic, and sextic centrifugal-distortion constants, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for identification of oxirane in Titan’s atmosphere and the assignment of unidentified infrared bands. Since oxirane was already observed in the interstellar medium and some astronomical objects are characterized by very high D/H ratios, we also considered the accurate determination of the spectroscopic parameters for the mono-deuterated species, oxirane-d1. For the latter, an empirical scaling procedure allowed us to improve our computed data and to provide predictions for rotational transitions with a relative accuracy of about 0.02% (i.e., an uncertainty of about 40 MHz for a transition lying at 200 GHz). PMID:26543240

  13. Spectroscopic evidence for the formation of singlet molecular oxygen (/sup 1/. delta. /sub g/O/sub 2/) upon irradiation of a solvent-oxygen (/sup 3/Sigma/sub g//sup -/O/sub 2/) cooperative absorption band

    SciTech Connect

    Scurlock, R.D.; Ogilby, P.R.

    1988-01-20

    It is well-known that the presence of molecular oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/) in a variety of organic solvents causes an often substantial red shift in the solvent absorption spectrum. This extra, broad absorption feature is reversibly removed by purging the solvent with nitrogen gas. Mulliken and Tsubomura assigned the oxygen-dependent absorption band to a transition from a ground state solvent-oxygen complex to a solvent-oxygen charge transfer (CT) state (sol/sup .+/O/sub 2//sup .-/). In addition to the broad Mulliken CT band, there are, often in the same spectral region, distinct singlet-triplet transitions (T/sub 1/ reverse arrow S/sub 0/) which are enhanced by molecular oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/). Since both of these solvent-oxygen cooperative transitions may result in the formation of reactive oxygenating species, singlet molecular oxygen (/sup 1/..delta../sub g/O/sub 2/) and/or the superoxide ion (O/sub 2//sup .-/), it follows that recent studies have focused on unsaturated hydrocarbon oxygenation subsequent to the irradiation of the oxygen-induced absorption bands in both the solution phase and cryogenic (10 K) glasses. In these particular experiments, oxygenated products characteristic of both /sup 1/..delta../sub g/O/sub 2/ and O/sub 2//sub .-/ were obtained, although the systems studied appeared to involve the participation of one intermediate at the exclusion of the other. In this communication, the authors provide, for the first time, direct spectroscopic evidence for the formation of /sup 1/..delta../sub g/O/sub 2/ following a solvent-oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/) cooperative absorption. They have observed, in a time-resolved experiment, a near-IR luminescence subsequent to laser excitation of the oxygen-induced absorption bands of mesitylene, p-xylene, o-xylene, toluene, and benzene at 355 nm and 1,4-dioxane at 266 nm. They suggest that this signal is due to /sup 1/..delta../sub g/O/sub 2

  14. X-Ray Absorption And EPR Spectroscopic Studies of the Biotransformations of Chromium(Vi) in Mammalian Cells. Is Chromodulin An Artifact of Isolation Methods?

    SciTech Connect

    Levina, A.; Harris, H.H.; Lay, P.A.; /Sydney U.

    2007-07-10

    Very different biological activities are usually ascribed to Cr(VI) (a toxin and carcinogen) and Cr(III) (an antidiabetic agent), although recent evidence suggests that both these types of actions are likely to arise from cellular uptake of varying concentrations of Cr(VI). The first systematic study of XANES spectra of Cr(III) complexes formed in Cr(VI)-treated mammalian cells (A549, HepG2, V79, and C2C12 cell lines), and in subcellular fractions of A549 cells, has been performed using a library of XANES spectra of model Cr(III) complexes. The results of multiple linear regression analyses of XANES spectra, in combination with multiple-scattering fits of XAFS spectra, indicate that Cr(III) formed in Cr(VI)-treated cells is most likely to bind to carboxylato, amine, and imidazole residues of amino acids, and to a lesser extent to hydroxo or aqua ligands. A combination of XANES and EPR spectroscopic data for Cr(VI)-treated cells indicates that the main component of Cr(III) formed in such cells is bound to high-molecular-mass ligands (>30 kDa, probably proteins), but significant redistribution of Cr(III) occurs during the cell lysis, which leads to the formation of a low-molecular-mass (<30 kDa) Cr(III)-containing fraction. The spectroscopic (XANES, XAFS, and EPR) properties of this fraction were strikingly similar to those of the purported natural Cr(III)-containing factor, chromodulin, that was reported to be isolated from the reaction of Cr(VI) with liver. These data support the hypothesis that a chromodulin-like species, which is formed from such a reaction, is an artifact of the reported isolation procedure.

  15. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions

    NASA Astrophysics Data System (ADS)

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-01

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, 13C and 1H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data.

  16. Identification and Characterization of Visible Absorption Components in Aqueous Methylglyoxal-Ammonium Sulfate Mixtures

    NASA Astrophysics Data System (ADS)

    McGivern, W. S.; Allison, T. C.; Radney, J. G.; Zangmeister, C. D.

    2014-12-01

    The aqueous reaction of methylglyoxal (MG) with ammonium sulfate has been suggested as a source of atmospheric ``brown carbon.'' We have utilized high-performance liquid chromatography coupled to ultraviolet-visible spectroscopy and tandem mass spectrometry to study the products of this reaction at high concentrations. The overall product spectrum shows a large number of distinct components; however, the visible absorption from this mixture is derived a very small number of components. The largest contributor is an imine-substituted (C=N-H) product of aldol condensation/facile dehydration reaction between the parent MG and a hydrated product of the MG + ammonia reaction. The asymmetric nature of this compound relative to the aldol condensation of two MG results in a sufficiently large redshift of the UV absorption spectrum that absorption of visible radiation can occur in the long-wavelength tail. The simplicity of the imine products is a result of a strong bias toward ketimine products due to the extensive hydration of the aldehydic moiety in the parent in aqueous solution. In addition, a strong pH dependence of the absorption cross section was observed with significantly greater absorption under more basic conditions. We have performed time-dependent density functional theory calculations to evaluate the absorption spectra of all of the possible condensation products and their respective ions, and the results are consistent with the experimental observations. We have also observed smaller concentrations of other condensation products of the imine-substituted parent species that do not contribute significantly to the visible absorption but have not been previously discussed.

  17. Absorption and fluorescence emission spectroscopic characters of naphtho-homologated yy-DNA bases and effect of methanol solution and base pairing.

    PubMed

    Zhang, Laibin; Li, Huifang; Li, Jilai; Chen, Xiaohua; Bu, Yuxiang

    2010-03-01

    A comprehensive theoretical study of electronic transitions of naphtho-homologated base analogs, namely, yy-T, yy-C, yy-A, and yy-G, was performed. The nature of the low-lying excited states is discussed, and the results are compared with those from experiment and also with those of y-bases. Geometrical characteristics of the lowest excited singlet pipi* and npi* states were explored using the CIS method, and the effects of methanol solution and paring with their complementary natural bases on the relevant absorption and emission spectra of these modified bases were examined. The calculated excitation and emission energies agree well with the measured data, where experimental results are available. In methanol solution, the fluorescence from yy-A and yy-G would be expected to occur around 539 and 562 nm, respectively, suggesting that yy-A is a green-colored fluorophore, whereas yy-G is a yellow-colored fluorophore. The methanol solution was found to red-shift both the absorption and emission maxima of yy-A, yy-T, and yy-C, but blue-shift those for yy-G. Generally, though base pairing has no significant effects on the absorption and fluorescence maxima of yy-A, yy-C, and yy-T, it blue-shifts those for yy-G.

  18. Ultra-violet and visible absorption characterization of explosives by differential reflectometry

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E.

    2013-03-01

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R2 > 0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials.

  19. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    PubMed

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials.

  20. Synthesis, spectroscopic characterization and DFT calculations of N-Methyl-2-(2ʹ-hydroxyphenyl)benzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Saral, Hasan; Özdamar, Özgür; Uçar, İbrahim; Bekdemir, Yunus; Aygün, Muhittin

    2016-01-01

    1-Methyl-2-(2ʹ-hydroxyphenyl)benzimidazole (1) and 1-Methyl-2-(2ʹ-hydroxy-4ʹ-methylphenyl)benzimidazole (2) compounds have been synthesized and characterized by XRD, IE-MS, FT-IR, UV-Vis and 1H, 13C NMR techniques. The crystal structure of both compounds is stabilized with very strong O-H … N hydrogen-bond and π-π interactions. In the compound 1, an infinite chain structure with a trans-zigzag type was formed along the crystallographic [101] direction. Quantum mechanical calculations of energies, geometries, vibrational wavenumbers, NMR and electronic transitions were carried out by DFT using B3LYP functional combined with 6.31G(d,p) basis set. Calculated bond lengths, bond angles and dihedral angles were only slightly different from the experimental ones. The vibrational study was interpreted by means of potential energy distribution (PED). The electronic absorption spectra of the both compounds were predicted by using the time-dependent DFT methods and good agreement was found between the computational and the experimental values. The chemical shifts (1H and 13C NMR) and isotropic shielding values were calculated by using the gauge-invariant atomic orbital (GIAO) method. The analyses of HOMO and LUMO have been used to explain the charge transfer within the molecule.

  1. Development of a Tandem Electrodynamic Trap Apparatus for Merging Charged Droplets and Spectroscopic Characterization of Resultant Dried Particles.

    PubMed

    Kohno, Jun-Ya; Higashiura, Tetsu; Eguchi, Takaaki; Miura, Shumpei; Ogawa, Masato

    2016-08-11

    Materials work in multicomponent forms. A wide range of compositions must be tested to obtain the optimum composition for a specific application. We propose optimization using a series of small levitated single particles. We describe a tandem-trap apparatus for merging liquid droplets and analyzing the merged droplets and/or dried particles that are produced from the merged droplets under levitation conditions. Droplet merging was confirmed by Raman spectroscopic studies of the levitated particles. The tandem-trap apparatus enables the synthesis of a particle and spectroscopic investigation of its properties. This provides a basis for future investigation of the properties of levitated single particles. PMID:27438227

  2. Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385

    NASA Astrophysics Data System (ADS)

    Deheuvels, S.; Bruntt, H.; Michel, E.; Barban, C.; Verner, G.; Régulo, C.; Mosser, B.; Mathur, S.; Gaulme, P.; Garcia, R. A.; Boumier, P.; Appourchaux, T.; Samadi, R.; Catala, C.; Baudin, F.; Baglin, A.; Auvergne, M.; Roxburgh, I. W.; Pérez Hernández, F.

    2010-06-01

    Context. The star HD 49385 is the first G-type solar-like pulsator observed in the seismology field of the space telescope CoRoT. The satellite collected 137 days of high-precision photometric data on this star, confirming that it presents solar-like oscillations. HD 49385 was also observed in spectroscopy with the NARVAL spectrograph in January 2009. Aims: Our goal is to characterize HD 49385 using both spectroscopic and seismic data. Methods: The fundamental stellar parameters of HD 49385 are derived with the semi-automatic software VWA, and the projected rotational velocity is estimated by fitting synthetic profiles to isolated lines in the observed spectrum. A maximum likelihood estimation is used to determine the parameters of the observed p modes. We perform a global fit, in which modes are fitted simultaneously over nine radial orders, with degrees ranging from ℓ = 0 to ℓ = 3 (36 individual modes). Results: Precise estimates of the atmospheric parameters (Teff, [M/H], log g) and of the ν sin i of HD 49385 are obtained. The seismic analysis of the star leads to a clear identification of the modes for degrees ℓ = 0,1,2. Around the maximum of the signal (ν ≃ 1013 μHz), some peaks are found significant and compatible with the expected characteristics of ℓ = 3 modes. Our fit yields robust estimates of the frequencies, linewidths and amplitudes of the modes. We find amplitudes of ~5.6 ± 0.8 ppm for radial modes at the maximum of the signal. The lifetimes of the modes range from one day (at high frequency) to a bit more than two days (at low frequency). Significant peaks are found outside the identified ridges and are fitted. They are attributed to mixed modes. Based on data obtained from the CoRoT (Convection, Rotation and planetary Transits) space mission, developed by the French Space agency CNES in collaboration with the Science Programs of ESA, Austria, Belgium, Brazil, Germany and Spain.Based on data obtained using the Télescope Bernard Lyot at

  3. Synthesis, characterization and in situ intestinal absorption of different molecular weight scutellarin-PEG conjugates.

    PubMed

    Zhou, Qingsong; Jiang, Xuehua; Li, Kejia; Fan, Xingxing

    2006-08-01

    Highly water soluble esters of scutellarin with different molecular weight polyethylene glycol (PEG) were synthesized. The physicochemical properties, the stabilities under different conditions and the in situ intestinal absorption of the conjugates in rats were investigated. By PEG modification, greatly increased water solubility and a desirable partition coefficient were obtained. These compounds act as prodrugs i.e. breakdown occurrs in a predictable fashion: in vitro, the t1/2 of them in PBS buffer at pH 7.4 was above 12 h (37 degrees C), while in plasma a more rapid breakdown was observed (t1/2 1.5-3 h). PEGylation could enhance the absorption of scutellarin in rat intestine, and scutellarin, its PEG conjugates are absorbed through intestine mainly via passive transport. When the molecular weight of PEG increased from 200 to 1000 Da, the absorption of the conjugates decreased accordingly. The range of PEG molecular weight used for the PEGylation of scutellarin was about 400-1000 Da based on considerations of the yield, the stability and the absorption.

  4. Characterization of the X-ray absorption in the Galactic ISM

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; García, J.; Kallman, T.; Mendoza, C.

    2016-06-01

    The physical conditions of the Galactic interstellar medium (ISM) can be studied in detail through the high-resolution X-ray spectroscopy provided by the grating instruments in both Chandra and XMM-Newton. Using an X-ray source, which acts as a lamp, one can analyze the absorption features that are imprinted in the spectra by the gas located between the observer and the X-ray source, which offers the opportunity to study physical properties of the ISM such as ionization degree, column densities, and elemental abundances. We present a detailed analysis of the H, O, Ne, and Fe absorption in the X-ray spectra of 24 bright galactic sources obtained with the Chandra and XMM-Newton observatories. Implementing our new absorption model ISMabs, we have measured column densities, ionization fractions, and abundances for H, O, Ne, and Fe in the direction of each source. We find that the column densities tend to increase with source distance and decrease with galactic latitude, while the ionization fractions and abundances are mostly constant along every line of sight. Finally, we found that molecules and grains are not a major contributor to the absorption features in the O K-edge wavelength region.

  5. Structure of the dinuclear active site of urease. X-ray absorption spectroscopic study of native and 2-mercaptoethanol-inhibited bacterial and plant enzymes

    SciTech Connect

    Wang, Shengke; Scott, R.A. ); Lee, M.H.; Hausinger, R.P. ); Clark, P.A.; Wilcox, D.E. )

    1994-04-13

    The structures of the dinuclear Ni(II) active sites of urease from jack bean and Klebsiella aerogenes are compared with and without the addition of the inhibitor 2-mercaptoethanol (2-ME). No significant differences are observed by nickel K-edge X-ray absorption spectroscopy between the plant and bacterial enzymes. The Ni X-ray absorption edge spectra display an 8332-eV 1s[yields]3d peak intensity similar to that observed for five-coordinate Ni(II) compounds[sup 1] for both native and 2-ME-bound derivatives. Curve-fitting of Ni EXAFS data indicates that the average Ni(II) coordination environment in native urease can be described as Ni(imidazole)[sub x](N,O)[sub 5[minus]x], with x = 2 or 3. Addition of 2-ME results in replacement of one of the non-imidazole (N,O) ligands with (S,Cl) (most likely the thiolate sulfur of 2-ME) and results in the appearance of a new peak in the Fourier transforms that can only be fit with a Ni[center dot][center dot][center dot]Ni scattering component at a Ni-Ni distance of [approximately]3.26 [angstrom]. A structure for this 2-ME-bound dinuclear site is proposed to contain the two Ni(II) ions bridged by the thiolate sulfur of 2-ME.

  6. A femtosecond transient absorption spectroscopic study on a carbonyl-containing carotenoid analogue, 2-(all-trans-retinylidene)-indan-1,3-dione

    PubMed Central

    Kusumoto, Toshiyuki; Kosumi, Daisuke; Uragami, Chiasa; Frank, Harry A.; Birge, Robert R.; Cogdell, Richard J.; Hashimoto, Hideki

    2011-01-01

    The photophysical properties of a carbonyl-containing carotenoid analogue in an s-cis configuration, relative to the conjugated π system, 2-(all-trans-retinylidene)-indan-1,3-dione (C20Ind), were investigated by femtosecond time-resolved spectroscopy in various solvents. The lifetime of the optically forbidden S1 state of C20Ind becomes long as solvent polarity increases. This trend is completely opposite to the situation of S1-ICT dynamics of carbonyl-containing carotenoids, such as peridinin and fucoxanthin. Excitation energy dependence of the transient absorption measurements shows that the transient absorption spectra in non-polar solvents were originated from two distinct transient species, while those in polar and protic solvents are due to a single transient species. By referring to the results of MNDO-PSDCI (modified neglect of differential overlap with partial single- and double-configuration interaction) calculations, we conclude: (1) In polar and protic solvents, the S1 state is generated following excitation up to the S2 state; (2) In non-polar solvents, however, both the S1 and 1nπ* states are generated; and (3) C20Ind does not generate the S1-ICT state, despite the fact that it has two conjugated carbonyl groups. PMID:21361262

  7. Synthesis, characterization and femtosecond nonlinear saturable absorption behavior of copper phthalocyanine nanocrystals doped-PMMA polymer thin films

    NASA Astrophysics Data System (ADS)

    Zongo, S.; Dhlamini, M. S.; Neethling, P. H.; Yao, A.; Maaza, M.; Sahraoui, B.

    2015-12-01

    In this work, we report the femtosecond nonlinear saturable absorption response of synthesized copper phthalocyanine nanocrystals (CPc-NCs)-doped PMMA polymer thin films. The samples were initially characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-Vis and scanning electron microscopy (SEM) techniques. The crystalline phase and morphological analysis revealed nanocrystals of monoclinic structure with an average crystallite size between 31.38 nm and 42.5 nm. The femtosecond Z-scan study at 800 nm central wavelength indicated a saturable absorption behavior of which the mechanism is closely related to the surface plasmon resonance (SPR) of the particles. This nonlinear effect could potentially make the CPc-NCs useful in nonlinear optical devices.

  8. Characterization of selenium in UO2 spent nuclear fuel by micro X-ray absorption spectroscopy and its thermodynamic stability.

    PubMed

    Curti, E; Puranen, A; Grolimund, D; Jädernas, D; Sheptyakov, D; Mesbah, A

    2015-10-01

    Direct disposal of spent nuclear fuel (SNF) in deep geological formations is the preferred option for the final storage of nuclear waste in many countries. In order to assess to which extent radionuclides could be released to the environment, it is of great importance to understand how they are chemically bound in the waste matrix. This is particularly important for long-lived radionuclides such as (79)Se, (129)I, (14)C or (36)Cl, which form poorly sorbing anionic species in water and therefore migrate without significant retardation through argillaceous repository materials and host rocks. We present here X-ray absorption spectroscopic data providing evidence that in the investigated SNF samples selenium is directly bound to U atoms as Se(-II) (selenide) ion, probably replacing oxygen in the cubic UO2 lattice. This result is corroborated by a simple thermodynamic analysis, showing that selenide is the stable form of Se under reactor operation conditions. Because selenide is almost insoluble in water, our data indirectly explain the unexpectedly low release of Se in short-term aqueous leaching experiments, compared to iodine or cesium. These results have a direct impact on safety analyses for potential nuclear waste repository sites, as they justify assuming a small fractional release of selenium in performance assessment calculations.

  9. Characterization of selenium in UO2 spent nuclear fuel by micro X-ray absorption spectroscopy and its thermodynamic stability.

    PubMed

    Curti, E; Puranen, A; Grolimund, D; Jädernas, D; Sheptyakov, D; Mesbah, A

    2015-10-01

    Direct disposal of spent nuclear fuel (SNF) in deep geological formations is the preferred option for the final storage of nuclear waste in many countries. In order to assess to which extent radionuclides could be released to the environment, it is of great importance to understand how they are chemically bound in the waste matrix. This is particularly important for long-lived radionuclides such as (79)Se, (129)I, (14)C or (36)Cl, which form poorly sorbing anionic species in water and therefore migrate without significant retardation through argillaceous repository materials and host rocks. We present here X-ray absorption spectroscopic data providing evidence that in the investigated SNF samples selenium is directly bound to U atoms as Se(-II) (selenide) ion, probably replacing oxygen in the cubic UO2 lattice. This result is corroborated by a simple thermodynamic analysis, showing that selenide is the stable form of Se under reactor operation conditions. Because selenide is almost insoluble in water, our data indirectly explain the unexpectedly low release of Se in short-term aqueous leaching experiments, compared to iodine or cesium. These results have a direct impact on safety analyses for potential nuclear waste repository sites, as they justify assuming a small fractional release of selenium in performance assessment calculations. PMID:26365814

  10. A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags

    NASA Astrophysics Data System (ADS)

    Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.

    2016-03-01

    Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.

  11. The X-ray absorption spectroscopic model of the copper(II) imidazole complex ion in liquid aqueous solution: a strongly solvated square pyramid.

    PubMed

    Frank, Patrick; Benfatto, Maurizio; Hedman, Britt; Hodgson, Keith O

    2012-02-20

    Cu K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near-edge structure (MXAN) analyses were combined to evaluate the structure of the copper(II) imidazole complex ion in liquid aqueous solution. Both methods converged to the same square-pyramidal inner coordination sphere [Cu(Im)(4)L(ax)](2+) (L(ax) indeterminate) with four equatorial nitrogen atoms at EXAFS, 2.02 ± 0.01 Å, and MXAN, 1.99 ± 0.03 Å. A short-axial N/O scatterer (L(ax)) was found at 2.12 ± 0.02 Å (EXAFS) or 2.14 ± 0.06 Å (MXAN). A second but very weak axial Cu-N/O interaction was found at 2.9 ± 0.1 Å (EXAFS) or 3.0 ± 0.1 Å (MXAN). In the MXAN fits, only a square-pyramidal structural model successfully reproduced the doubled maximum of the rising K-edge X-ray absorption spectrum, specifically excluding an octahedral model. Both EXAFS and MXAN also found eight outlying oxygen scatterers at 4.2 ± 0.3 Å that contributed significant intensity over the entire spectral energy range. Two prominent rising K-edge shoulders at 8987.1 and 8990.5 eV were found to reflect multiple scattering from the 3.0 Å axial scatterer and the imidazole rings, respectively. In the MXAN fits, the imidazole rings took in-plane rotationally staggered positions about copper. The combined (EXAFS and MXAN) model for the unconstrained cupric imidazole complex ion in liquid aqueous solution is an axially elongated square-pyramidal core, with a weak nonbonded interaction at the second axial coordination position and a solvation shell of eight nearest-neighbor water molecules. This core square-pyramidal motif has persisted through [Cu(H(2)O)(5)](2+), [Cu(NH(3))(4)(NH(3),H(2)O)](2+), (1, 2) and now [Cu(Im)(4)L(ax))](2+) and appears to be the geometry preferred by unconstrained aqueous-phase copper(II) complex ions. PMID:22316238

  12. Vibrational, 1H-NMR spectroscopic, and thermal characterization of gladiolus root exudates in relation to Fusarium oxysporum f. sp. gladioli resistance.

    PubMed

    Taddei, P; Tugnoli, V; Bottura, G; Dallavalle, E; Zechini D'Aulerio, A

    2002-01-01

    Fourier transform Raman (FT Raman) and IR (FTIR) and (1)H-NMR spectroscopies coupled with differential scanning calorimetry (DSC) were applied to the characterization of root exudates from two cultivars of gladiolus (Spic Span and White Prosperity) with different degrees of resistance and susceptibility to Fusarium oxysporum gladioli, the main pathogen of gladiolus. This work was aimed at correlating the composition of root exudates with the varietal resistance to the pathogen. Spectroscopic analysis showed that White Prosperity root exudate differs from Spic Span root exudate by a higher relative amount of the aromatic-phenolic and sugarlike components and a lower relative amount of carbonylic and aliphatic compounds. DSC analysis confirmed the spectroscopic results and showed that White Prosperity root exudate is characterized by an aromatic component that is present in a higher amount than in the Spic Span root exudate. The results are discussed in relation to the spore germination tests showing that White Prosperity, which is characterized by a remarkable resistance toward F. oxysporum gladioli, exudes substances having a negative influence on microconidial germination of the pathogen; root exudates from Spic Span, one of the most susceptible cultivars to F. oxysporum gladioli, proved to have no effect. White Prosperity's ability to inhibit conidial germination of F. oxysporum gladioli can be mainly related to the presence of a higher relative amount of aromatic-phenolic compounds.

  13. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW—A Mononuclear Iron-Dependent DMSP Lyase

    PubMed Central

    Brummett, Adam E.; Schnicker, Nicholas J.; Crider, Alexander; Todd, Jonathan D.; Dey, Mishtu

    2015-01-01

    The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW. PMID:25993446

  14. Spectroscopic Characterization of AN Alkyl-Substituted Criegee Intermediate CH_{3}CHOO and its OH Radical Products

    NASA Astrophysics Data System (ADS)

    Beames, Joseph M.; Liu, Fang; Lu, Lu; Lester, Marsha I.

    2013-06-01

    In the atmosphere, cycloaddition of ozone to the double bond of alkenes produces energized Criegee intermediates, which undergo subsequent decay processes to yield OH radicals. In this laboratory, a simple alkyl-substituted Criegee intermediate CH_{3}CHOO is produced by 248 nm photolysis of CH_{3}CHI_{2} and subsequent reaction of CH_{3}CHI with O_{2} in a quartz capillary tube reactor, following the same approach utilized for CH_{2}OO. The CH_{3}CHOO intermediate (m/z=60) and other products are detected following supersonic expansion using 118 nm VUV ionization in a time-of-flight mass spectrometer. The OH radical products from decomposition of the CH_{3}CHOO intermediate are also directly detected at m/z=17 using a new UV+VUV ionization scheme, combining UV excitation on the OH A ^2Σ^+-X ^2Π (1,0) transition with fixed-frequency VUV at 118 nm, or alternatively by UV laser-induced fluorescence on the OH A-X transition; OH products are also observed from CH_{2}OO. The CH_{3}CHOO intermediate is characterized by a strong B ^1A'-X ^1A' electronic transition, in which UV excitation near the peak of a broad absorption profile centered at 320 nm results in significant depletion of the CH_{3}CHOO photoionization signal. The mechanism proposed for OH generation from energized CH_{3}CHOO and many larger Criegee intermediates is a 1,4 H-atom shift to form vinylhydroperoxide species that decay to produce OH. This reaction scheme provides a non-photolytic source of OH radicals in the atmosphere during night and winter times. J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. {134}, 20045 (2012). J. M. Beames, F. Liu, M. I. Lester and C. Murray, J. Chem. Phys. {134}, 241102 (2011).

  15. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    SciTech Connect

    DeWitt, J.G.

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 {Angstrom}. The Fe-Fe distance was determined to be 3.4 {Angstrom}. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  16. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    SciTech Connect

    DeWitt, J.G.

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 [Angstrom]. The Fe-Fe distance was determined to be 3.4 [Angstrom]. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  17. Characterization of absorption and nonlinear effects in infrasound propagation using an augmented Burgers' equation

    NASA Astrophysics Data System (ADS)

    Sabatini, R.; Bailly, C.; Marsden, O.; Gainville, O.

    2016-09-01

    The long-range atmospheric propagation of explosion-like waves of frequency in the infrasound range is investigated using nonlinear ray theory. Simulations are performed for sources of increasing amplitude on rays up to the lower thermosphere and for distances of hundreds of kilometres. A study of the attenuation of the waveforms observed at ground level induced by both the classical mechanisms and the vibrational relaxation of the molecules comprising the atmospheric gas is carried out. The relative importance of classical absorption and vibrational relaxation along the typical atmospheric propagation trajectories is assessed. Nonlinear effects are highlighted as well and particular emphasis is placed on their strong interaction with absorption phenomena. A detailed description of the propagation model and of the numerical algorithm used in the present work is first reported. Results are then discussed and the importance of the different mechanisms is clarified.

  18. The spectroscopic foundation of radiative forcing of climate by carbon dioxide

    NASA Astrophysics Data System (ADS)

    Mlynczak, Martin G.; Daniels, Taumi S.; Kratz, David P.; Feldman, Daniel R.; Collins, William D.; Mlawer, Eli J.; Alvarado, Matthew J.; Lawler, James E.; Anderson, L. W.; Fahey, David W.; Hunt, Linda A.; Mast, Jeffrey C.

    2016-05-01

    The radiative forcing (RF) of carbon dioxide (CO2) is the leading contribution to climate change from anthropogenic activities. Calculating CO2 RF requires detailed knowledge of spectral line parameters for thousands of infrared absorption lines. A reliable spectroscopic characterization of CO2 forcing is critical to scientific and policy assessments of present climate and climate change. Our results show that CO2 RF in a variety of atmospheres is remarkably insensitive to known uncertainties in the three main CO2 spectroscopic parameters: the line shapes, line strengths, and half widths. We specifically examine uncertainty in RF due to line mixing as this process is critical in determining line shapes in the far wings of CO2 absorption lines. RF computed with a Voigt line shape is also examined. Overall, the spectroscopic uncertainty in present-day CO2 RF is less than 1%, indicating a robust foundation in our understanding of how rising CO2 warms the climate system.

  19. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  20. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary. PMID:24245312

  1. Electronic absorption and luminescence spectroscopic studies of kyanite single crystals: differentiation between excitation of FeTi charge transfer and Cr3+ dd transitions

    NASA Astrophysics Data System (ADS)

    Platonov, A. N.; Tarashchan, A. N.; Langer, K.; Andrut, M.; Partzsch, G.; Matsyuk, S. S.

    A selected set of five different kyanite samples was analysed by electron microprobe and found to contain chromium between <0.001 and 0.055 per formula unit (pfu). Polarized electronic absorption spectroscopy on oriented single crystals, R1, R2-sharp line luminescence and spectra of excitation of λ3- and λ4-components of R1-line of Cr3+-emission had the following results: (1) The Fe2+-Ti4+ charge transfer in c-parallel chains of edge connected M(1) and M(2) octahedra shows up in the electronic absorption spectra as an almost exclusively c(||Z')-polarized, very strong and broad band at 16000 cm-1 if < , in this case the only band in the spectrum, and at an invariably lower energy of 15400 cm-1 in crystals with >= . The energy difference is explained by an expansion of the Of-Ok, and Ob-Om edges, by which the M(1) and M(2) octahedra are interconnected (Burnham 1963), when Cr3+ substitutes for Al compared to the chromium-free case. (2) The Cr3+ is proven in two greatly differing crystal fields a and b, giving rise to two sets of bands, derived from the well known dd transitions of Cr3+4A2g-->4T2g(F)(I), -->4T1g(F)(II), and -->4T1g(P)(III). Band energies in the two sets a and b, as obtained by absorption, A, and excitation, E, agree well: I: 17300(a,A), 17200(a,E), 16000(b,A), 16200(b,E) II: 24800(a,A), 24400(a,E) 22300(b,A), 22200(b,E) III: 28800(b,A) cm-1. Evaluation of crystal field parameters from the bands in the electronic spectra yield Dq(a)=1730 cm-1, Dq(b)=1600 cm-1, B(a)=790 cm-1, B(b)=620 cm-1 (errors ca. +/-10 cm-1), again in agreement with values extracted from the λ3,λ4 excitation spectra. The CF-values of set a are close to those typical of Cr3+ substituting for Al in octahedra of other silicate minerals without constitutional OH- as for sapphirine, mantle garnets or beryl, and are, therefore, interpreted as caused by Cr3+ substituting for Al in some or all of the M(1) to M(4) octaheda of the kyanite structure, which are crystallographically

  2. X-ray Spectroscopic Characterization of Co(IV) and Metal-Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction.

    PubMed

    Hadt, Ryan G; Hayes, Dugan; Brodsky, Casey N; Ullman, Andrew M; Casa, Diego M; Upton, Mary H; Nocera, Daniel G; Chen, Lin X

    2016-08-31

    The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co(III)4O4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allows Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the t2g-based redox-active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co4O4. Guided by the data, calculations show that electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contributions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E(0) over hundreds of millivolts. Additionally, redox-inactive metal substitution can also switch the ground state and modify metal-metal and antibonding interactions across the cluster. PMID:27515121

  3. X-ray Spectroscopic Characterization of Co(IV) and Metal-Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction.

    PubMed

    Hadt, Ryan G; Hayes, Dugan; Brodsky, Casey N; Ullman, Andrew M; Casa, Diego M; Upton, Mary H; Nocera, Daniel G; Chen, Lin X

    2016-08-31

    The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co(III)4O4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allows Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the t2g-based redox-active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co4O4. Guided by the data, calculations show that electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contributions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E(0) over hundreds of millivolts. Additionally, redox-inactive metal substitution can also switch the ground state and modify metal-metal and antibonding interactions across the cluster.

  4. Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    NASA Astrophysics Data System (ADS)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-09-01

    The absorption cross section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in (Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 + BrONO2 + HNO3) photochemistry and a non-linear least square fitting of the model result to the NO2 observations. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  5. New heterocyclic green, blue and orange dyes from indazole: Synthesis, tautomerism, alkylation studies, spectroscopic characterization and DFT/TD-DFT calculations

    NASA Astrophysics Data System (ADS)

    Poorhaji, Soodabeh; Pordel, Mehdi; Ramezani, Shirin

    2016-09-01

    Tautomerism and alkylation studies on the green intermediate 2-(5-hydroxyimino-1-methyl-4,5-dihydro-1H-4-indazolyliden)-2-phenylacetonitrile led to the synthesis of new heterocyclic green, blue and orange dyes in high yields. The structures of all newly synthesized compounds were confirmed by spectral and analytical data. The optical properties of the dyes were spectrally characterized by using a UV-vis spectrophotometer and results show that they exhibited interesting photophysical properties. Solvent effects on the absorption spectra of these dyes have been studied and the absorption band in polar solvents undergoes a red shift. Density functional theory calculations of the dyes were performed to provide the optimized geometries and relevant frontier orbitals. Calculated electronic absorption spectra were also obtained by time-dependent density functional theory method.

  6. A spectroscopic proton-exchange membrane fuel cell test setup allowing fluorescence x-ray absorption spectroscopy measurements during state-of-the-art cell tests

    NASA Astrophysics Data System (ADS)

    Petrova, Olga; Kulp, Christian; van den Berg, Maurits W. E.; Klementiev, Konstantin V.; Otto, Bruno; Otto, Horst; Lopez, Marco; Bron, Michael; Grünert, Wolfgang

    2011-04-01

    A test setup for membrane-electrode-assemblies (MEAs) of proton exchange membrane fuel cells which allows in situ fluorescence x-ray absorption spectroscopy studies of one electrode with safe exclusion of contributions from the counter electrode is described. Interference by the counter electrode is excluded by a geometry including a small angle of incidence (< 6°) between primary beam and electrode layer. The cell has been constructed by introducing just minor modifications to an electrochemical state-of-the-art MEA test setup, which ensures realistic electrochemical test conditions. This is at the expense of significant intensity losses in the path of the incident beam, which calls for the brilliance of third-generation synchrotrons to provide meaningful data. In measurements on Pt/C and Pt-Co/C cathodes combined with Pt-C anodes (H2/O2 feed), good data quality was demonstrated both for the majority element Pt as well as for Co despite of a low areal Co density in the order of 0.02 mg/cm2.

  7. [X-ray absorption spectroscopic evidence for the formation of Pb(II) inner-sphere adsorption complexes and precipitates at the alkaline soil-water interface].

    PubMed

    Hu, Ning-Jing; Luo, Yong-Ming; Huang, Peng; Hu, Tian-Dou; Xie, Ya-Ning; Wu, Zi-Yu; Shi, Xue-Fa

    2011-02-01

    Adsorption mechanisms of Pb on soil with high CaCO3 content were investigated by combined batch sorption and X-ray absorption fine structure (XAFS). Date from the batch equilibrium studies showed that Pb sorption was nonlinear and was well fitted to Langmiur isotherm. The XAFS data indicated that Pb could be adsorbed via the inner-sphere complex, the precipitation of calcium carbonate containing Pb (PbCaCO3), and outer-sphere Pb sorption complex. The formations of inner-sphere complexes and PbCaCO3 implied strong metal interactions with the surfaces the mechanistic reason for the affinity of Pb for CaCO3 as observed in macroscopic studies. At low metal concentration, 500 mg x L(-1) of initial Pb, radial distance of the first-shell Pb-O (R1) was 0.169 2 nm, however, at 1 000 mg x L(-1) of initial Pb, the R1 was 0.166 8 nm. These revealed that the percentage of inner-sphere complexes increased when the initial Pb was increased from 500 to 1 000 mg x L(-1). PMID:21510427

  8. A novel surface-sensitive X-ray absorption spectroscopic detector to study the thermal decomposition of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nonaka, Takamasa; Okuda, Chikaaki; Oka, Hideaki; Nishimura, Yusaku F.; Makimura, Yoshinari; Kondo, Yasuhito; Dohmae, Kazuhiko; Takeuchi, Yoji

    2016-09-01

    A surface-sensitive conversion-electron-yield X-ray absorption fine structure (CEY-XAFS) detector that operates at elevated temperatures is developed to investigate the thermal decomposition of cathode materials for Li-ion batteries. The detector enables measurements with the sample temperature controlled from room temperature up to 450 °C. The detector is applied to the LiNi0.75Co0.15Al0.05Mg0.05O2 cathode material at 0% state of charge (SOC) and 50% SOC to examine the chemical changes that occur during heating in the absence of an electrolyte. The combination of surface-sensitive CEY-XAFS and bulk-sensitive transmission-mode XAFS shows that the reduction of Ni and Co ions begins at the surface of the cathode particles at around 150 °C, and propagates inside the particle upon further heating. These changes with heating are irreversible and are more obvious at 50% SOC than at 0% SOC. The fraction of reduced Ni ions is larger than that of reduced Co ions. These results demonstrate the capability of the developed detector to obtain important information for the safe employment of this cathode material in Li-ion batteries.

  9. Synthesis, Characterization, and Microwave Absorption Property of the SnO2 Nanowire/Paraffin Composites

    NASA Astrophysics Data System (ADS)

    Feng, H. T.; Zhuo, R. F.; Chen, J. T.; Yan, D.; Feng, J. J.; Li, H. J.; Cheng, S.; Wu, Z. G.; Wang, J.; Yan, P. X.

    2009-12-01

    In this article, SnO2 nanowires (NWs) have been prepared and their microwave absorption properties have been investigated in detail. Complex permittivity and permeability of the SnO2 NWs/paraffin composites have been measured in a frequency range of 0.1-18 GHz, and the measured results are compared with that calculated from effective medium theory. The value of maximum reflection loss for the composites with 20 vol.% SnO2 NWs is approximately -32.5 dB at 14 GHz with a thickness of 5.0 mm.

  10. X-ray absorption and photoelectron spectroscopic study of the association of As(III) with nanoparticulate FeS and FeS-coated sand.

    PubMed

    Han, Young-Soo; Jeong, Hoon Y; Demond, Avery H; Hayes, Kim F

    2011-11-01

    Iron sulfide (FeS) has been demonstrated to have a high removal capacity for arsenic (As) in reducing environments. However, FeS may be present as a coating, rather than in nanoparticulate form, in both natural and engineered systems. Frequently, the removal capacity of coatings may be different than that of nanoparticulates in batch systems. To assess the differences in removal mechanisms between nanoparticulate FeS and FeS present as a coating, the solid phase products from the reaction of As(III) with FeS-coated sand and with suspensions of nanoparticulate (NP) FeS were determined using x-ray absorption spectroscopy and x-ray photoelectron spectroscopy. In reaction with NP FeS at pH 5, As(III) was reduced to As(II) to form realgar (AsS), while at pH 9, As(III) adsorbed as an As(III) thioarsenite species. In contrast, in the FeS-coated sand system, As(III) formed the solid phase orpiment (As(2)S(3)) at pH 5, but adsorbed as an As(III) arsenite species at pH 9. These different solid reaction products are attributed to differences in FeS concentration and the resultant redox (pe) differences in the FeS-coated sand system versus suspensions of NP FeS. These results point to the importance of accounting for differences in concentration and redox when making inferences for coatings based on batch suspension studies.

  11. Constraining the N2O5 UV absorption cross-section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    NASA Astrophysics Data System (ADS)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-02-01

    The absorption cross-section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in JPL-2011, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 +BrONO2 + HNO3) photochemistry. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding-Balloon) observations in similar air masses at nighttime, and all other relevant species from simulations of the SLIMCAT chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. In consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5 (λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  12. Spectroscopic analysis of small organic molecules: A comprehensive near-edge x-ray-absorption fine-structure study of C{sub 6}-ring-containing molecules

    SciTech Connect

    Kolczewski, C.; Puettner, R.; Martins, M.; Schlachter, A.S.; Snell, G.; Sant'Anna, M.M.; Hermann, K.; Kaindl, G.

    2006-01-21

    We report high-resolution C 1s near-edge x-ray-absorption fine-structure (NEXAFS) spectra of the C{sub 6}-ring-containing molecules benzene (C{sub 6}H{sub 6}), 1,3- and 1,4-cyclohexadiene (C{sub 6}H{sub 8}), cyclohexene (C{sub 6}H{sub 10}), cyclohexane (C{sub 6}H{sub 12}), styrene (C{sub 8}H{sub 8}), and ethylbenzene (C{sub 8}H{sub 10}) which allow us to examine the gradual development of delocalization of the corresponding {pi} electron systems. Due to the high experimental resolution, vibrational progressions can be partly resolved in the spectra. The experimental spectra are compared with theoretical NEXAFS spectra obtained from density-functional theory calculations where electronic final-state relaxation is accounted for. The comparison yields very good agreement between theoretical spectra and experimental results. In all cases, the spectra can be described by excitations to {pi}*- and {sigma}*-type final-state orbitals with valence character, while final-state orbitals of Rydberg character make only minor contributions. The lowest C 1s{yields}1{pi}* excitation energy is found to agree in the (experimental and theoretical) spectra of all molecules except for 1,3-cyclohexadiene (C{sub 6}H{sub 8}) where an energy smaller by about 0.6 eV is obtained. The theoretical analysis can explain this result by different binding properties of this molecule compared to the others.

  13. Nuclear magnetic resonance and optical absorption spectroscopic studies on paramagnetic praseodymium(III) complexes with beta-diketone and heterocyclic amines.

    PubMed

    Ansari, A A; Ahmed, Zubair; Iftikhar, K

    2007-09-01

    The optical absorption spectra of [Pr(acac)(3)(H(2)O)(2)].H(2)O, [Pr(acac)(3)phen.H(2)O] and [Pr(acac)(3)bpy] (where acac is the anion of acetylacetone, phen is 1,10-phenanthroline and bpy is 2,2'-bipyridyl) have been analyzed in the visible region in a series of non-aqueous solvents (methanol, ethanol, isopropanol, chloroform, acetonitrile and pyridine). The complexes display four non-hypersensitive 4f-4f transitions ((3)P(2), (3)P(1)+(1)I(6), (3)P(0) and (1)D(2)) from the (3)H(4) ground state. The band shape of the transitions shows remarkable changes upon dissolving in different solvents. Distinctively different band shapes have been observed for phen and bpy complexes. The phen is more effective in producing changes and the splitting of the bands is more pronounced in phen complex since it is a stronger ligand and leads to stronger Pr-N(phen) bond. The splitting of the bands is indicative of partaking of f-orbitals in bonding. The NMR signals of heterocyclic amines have been shifted to high fields while the resonances due to acetylacetone moiety have moved to low fields which is the consequence of change in geometry of the complexes upon coordination of the heterocyclic amines and reflects the importance of geometric factor (3cos(2)theta-1) in changing sign of the shift and to a good approximation the shifts arise predominantly from the dipolar mechanism. The phen complexes have narrower line width than bpy complexes. The line broadening in the case of bpy complexes is suggestive of exchange between inter-converting forms. The bpy possesses some degree of rotational freedom about C(6)-C(6') bond and the two pyridine rings undergo scissoring motion with respect to each other.

  14. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites.

    PubMed

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-12-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials. PMID:26969594

  15. Facile preparation and characterization of modified magnetic silica nanocomposite particles for oil absorption

    NASA Astrophysics Data System (ADS)

    Yu, Liuhua; Hao, Gazi; Liang, Qianqian; Zhou, Shuai; Zhang, Ning; Jiang, Wei

    2015-12-01

    In this study, a novel environmental-friendly and superhydrophobic oil absorbent was fabricated by modifying magnetic silica nanocomposites. It was demonstrated that the modified rough magnetic silica nanocomposite particles possessed a number of superior features such as superhydrophobicity, superoleophilicity, and high oil-water separation efficiency etc. Moreover, the as-obtained material could be used as excellent absorbents for high density oils such as toluene and many organic liquids including viscous oils e.g. lubricating oil. The lubricating oil intake capacity for the nanocomposites was 7.15 times of its own weight. Importantly, the oil-absorption process of the nanocomposites was selective, fast and efficient when they were used in the purification of oil-contaminated water. Notably, the oil-absorbed nanocomposites could be renewed after suitable absolute ethanol washing and natural drying. In addition, the renewed nanocomposites still remained high oil-absorption capacity after the 20th cycle. These inspiring results show that the oil-absorbent material has good prospects for selection removal of oils and organic solvents on water surface. It is believed that the present work may have provided a novel and facile way for preparing environmental-friendly materials with ideal properties.

  16. Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/Strontium Ferrite/Polyaniline Nanocomposites.

    PubMed

    Luo, Juhua; Shen, Pan; Yao, Wei; Jiang, Cuifeng; Xu, Jianguang

    2016-12-01

    Strontium ferrite nanoparticles were prepared by a coprecipitation method, and reduced graphene oxide/strontium ferrite/polyaniline (R-GO/SF/PANI) ternary nanocomposites were prepared by in situ polymerization method. The morphology, structure, and magnetic properties of the ternary nanocomposites were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), TEM, Raman, and VSM. The microwave-absorbing properties of the composites were measured by a vector network analyzer. The XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. TEM photographs reveal that strontium ferrite nanoparticles are uniformly dispersed on the surfaces of R-GO sheets. The R-GO/SF/PANI nanocomposite exhibited the best absorption property with the optimum matching thickness of 1.5 mm in the frequency of 2-18 GHz. The value of the maximum RL was -45.00 dB at 16.08 GHz with the 5.48-GHz bandwidth. The excellent absorption properties of R-GO/SF/PANI nanocomposites indicated their great potential as microwave-absorbing materials.

  17. Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 1. system setup and characterization.

    PubMed

    Müller, Thomas; Müller, Detlef; Dubois, René

    2005-03-20

    We describe an instrument for measuring the particle extinction coefficient at ambient conditions in the spectral range from 270 to 1000 nm. It is based on a differential optical absorption spectroscopy (DOAS) system, which was originally used for measuring trace-gas concentrations of atmospheric absorbers in the ultraviolet-visible wavelength range. One obtains the particle extinction spectrum by measuring the total atmospheric extinction and subtracting trace-gas absorption and Rayleigh scattering. The instrument consists of two nested Newton-type telescopes, which are simultaneously used for emitting and detecting light, and two arrays of retroreflectors at the ends of the two light paths. The design of this new instrument solves crucial problems usually encountered in the design of such instruments. The telescope is actively repositioned during the measurement cycle. Particle extinction is simultaneously measured at several wavelengths by the use of two grating spectrometers. Optical turbulence causes lateral movement of the spot of light in the receiver telescope. Monitoring of the return signals with a diode permits correction for this effect. Phase-sensitive detection efficiently suppresses background signals from the atmosphere as well as from the instrument itself. The performance of the instrument was tested during a measurement period of 3 months from January to March 2000. The instrument ran without significant interruption during that period. A mean accuracy of 0.032 km(-1) was found for the extinction coefficient for an 11-day period in March. PMID:15813269

  18. Reactivity-activity relationships of oral anti-diabetic vanadium complexes in gastrointestinal media: an X-ray absorption spectroscopic study.

    PubMed

    Levina, Aviva; McLeod, Andrew I; Kremer, Lauren E; Aitken, Jade B; Glover, Christopher J; Johannessen, Bernt; Lay, Peter A

    2014-10-01

    The reactions of oral V(V/IV) anti-diabetic drugs within the gastrointestinal environment (particularly in the presence of food) are a crucial factor that affects their biological activities, but to date these have been poorly understood. In order to build up reactivity-activity relationships, the first detailed study of the reactivities of typical V-based anti-diabetics, Na3V(V)O4 (A), [V(IV)O(OH2)5](SO4) (B), [V(IV)O(ma)2] (C, ma = maltolato(-)) and (NH4)[V(V)(O)2(dipic)] (D, dipic = pyridine-2,5-dicarboxylato(2-)) with simulated gastrointestinal (GI) media in the presence or absence of food components has been performed by the use of XANES (X-ray absorption near edge structure) spectroscopy. Changes in speciation under conditions that simulate interactions in the GI tract have been discerned using correlations of XANES parameters that were based on a library of model V(V), V(IV), and V(III) complexes for preliminary assessment of the oxidation states and coordination numbers. More detailed speciation analyses were performed using multiple linear regression fits of XANES from the model complexes to XANES obtained from the reaction products from interactions with the GI media. Compounds B and D were relatively stable in the gastric environment (pH ∼ 2) in the absence of food, while C was mostly dissociated, and A was converted to [V10O28](6-). Sequential gastric and intestinal digestion in the absence of food converted A, B and D to poorly absorbed tetrahedral vanadates, while C formed five- or six-coordinate V(V) species where the maltolato ligands were likely to be partially retained. XANES obtained from gastric digestion of A-D in the presence of typical food components converged to that of a mixture of V(IV)-aqua, V(IV)-amino acid and V(III)-aqua complexes. Subsequent intestinal digestion led predominantly to V(IV) complexes that were assigned as citrato or complexes with 2-hydroxyacidato donor groups from other organic compounds, including certain

  19. Reactivity-activity relationships of oral anti-diabetic vanadium complexes in gastrointestinal media: an X-ray absorption spectroscopic study.

    PubMed

    Levina, Aviva; McLeod, Andrew I; Kremer, Lauren E; Aitken, Jade B; Glover, Christopher J; Johannessen, Bernt; Lay, Peter A

    2014-10-01

    The reactions of oral V(V/IV) anti-diabetic drugs within the gastrointestinal environment (particularly in the presence of food) are a crucial factor that affects their biological activities, but to date these have been poorly understood. In order to build up reactivity-activity relationships, the first detailed study of the reactivities of typical V-based anti-diabetics, Na3V(V)O4 (A), [V(IV)O(OH2)5](SO4) (B), [V(IV)O(ma)2] (C, ma = maltolato(-)) and (NH4)[V(V)(O)2(dipic)] (D, dipic = pyridine-2,5-dicarboxylato(2-)) with simulated gastrointestinal (GI) media in the presence or absence of food components has been performed by the use of XANES (X-ray absorption near edge structure) spectroscopy. Changes in speciation under conditions that simulate interactions in the GI tract have been discerned using correlations of XANES parameters that were based on a library of model V(V), V(IV), and V(III) complexes for preliminary assessment of the oxidation states and coordination numbers. More detailed speciation analyses were performed using multiple linear regression fits of XANES from the model complexes to XANES obtained from the reaction products from interactions with the GI media. Compounds B and D were relatively stable in the gastric environment (pH ∼ 2) in the absence of food, while C was mostly dissociated, and A was converted to [V10O28](6-). Sequential gastric and intestinal digestion in the absence of food converted A, B and D to poorly absorbed tetrahedral vanadates, while C formed five- or six-coordinate V(V) species where the maltolato ligands were likely to be partially retained. XANES obtained from gastric digestion of A-D in the presence of typical food components converged to that of a mixture of V(IV)-aqua, V(IV)-amino acid and V(III)-aqua complexes. Subsequent intestinal digestion led predominantly to V(IV) complexes that were assigned as citrato or complexes with 2-hydroxyacidato donor groups from other organic compounds, including certain

  20. Characterizing Quasar Outflows IV: Regulating Outflows Through X-ray and EUV Absorption

    NASA Astrophysics Data System (ADS)

    Derseweh, Jeffrey; Ganguly, R.; Richmond, J. M.; Stark, M. A.; Christenson, D. H.; Robbins, J. M.; Townsend, S. L.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). For this purpose, we are examining a sample of 11000 z=1.7-2.0 quasars from the Sloan Digital Sky Survey. This redshift range permits the following from the SDSS spectra: (1) separation of objects that do and do not exhibit outflows; (2) classification/measurement of outflow properties (ionization, velocity, velocity width); and (3) measurements of UV emission line and continuum parameters. In this poster, we add photometry from the GALEX All-sky imaging survey, as well as the Chandra and ROSAT archives. These provide coverage of the rest-frame extreme ultraviolet, and soft X-ray bands. In an accompanying poster, we have subjectively divided these quasars into four categories: broad absorption-line quasars (2700 objects), associated absorption-line quasars (1700 objects), reddened quasars (160 objects), and unabsorbed/unreddened quasars (6300 objects). We are interested in testing the radiative-driving hypothesis that requires a suppression of X-ray flux in order to transfer momentum efficiently to the UV-absorbing gas. Hence, we explore how absorption in both the extreme ultraviolet and the soft X-ray bands correlate with properties of the UV outflows, quasar property, and changes in SED shape. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program and by Chandra

  1. Multi-steps infrared spectroscopic characterization of the effect of flowering on medicinal value of Cistanche tubulosa

    NASA Astrophysics Data System (ADS)

    Lai, Zuliang; Xu, Peng; Wu, Peiyi

    2009-01-01

    Multi-steps infrared spectroscopic methods, including conventional Fourier transform infrared spectroscopy (FT-IR), second derivative spectroscopy and two-dimensional infrared (2D-IR) correlation spectroscopy, have been proved to be effective methods to examine complicated mixture system such as Chinese herbal medicine. The focus of this paper is the investigation on the effect of flowering on the pharmaceutical components of Cistanche tubulosa by using the Multi-steps infrared spectroscopic method. Power-spectrum analysis is applied to improve the resolution of 2D-IR contour maps and much more details of overlapped peaks are detected. According to the results of FT-IR and second derivative spectra, the peak at 1732 cm -1 assigned to C dbnd O is stronger before flowering than that after flowering in the stem, while more C dbnd O groups are found in the top after flowering. The spectra of root change a lot in the process of flowering for the reason that many peaks shift and disappear after flowering. Seven peaks in the spectra of stem, which are assigned to different kinds of glycoside components, are distinguished by Power-spectra in the range of 900-1200 cm -1. The results provide a scientific explanation to the traditional experience that flowering consumes the pharmaceutical components in stem and the seeds absorb some nutrients of stem after flowering. In conclusion, the Multi-steps infrared spectroscopic method combined with Power-spectra is a promising method to investigate the flowering process of C. tubulosa and discriminate various parts of the herbal medicine.

  2. Spectroscopic characterization of SC-NTR: a subsidiary dye of allura red AC dye (FD&C red no. 40).

    PubMed

    Takeda, Y; Goda, Y; Noguchi, H; Yamada, T; Yoshihira, K; Takeda, M

    1994-01-01

    A major subsidiary dye in US certified Allura Red AC dye (FD&C Red No. 40) has been isolated by preparative high performance liquid chromatography. The paper chromatographic properties of the isolated dye indicate that it is the dye designated as SC-NTR in a previous paper (Marmion 1971). Spectroscopic analysis of the isolated dye is consistent with the disodium salt of 6-hydroxy-5-(2-methoxy-5-methyl-3-sulphophenylazo)-2-naphthalen esulphonic acid, which is an azo-coupling product between the meta-isomer of cresidine-p-sulphonic acid (CSA) and Schaeffer's salt (SS).

  3. Spectroscopic Low Coherence Interferometry

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; van Leeuwen, T. G.; Aalders, Maurice C.; Hermann, Boris; Drexler, Wolfgang; Faber, Dirk J.

    Low-coherence interferometry (LCI) allows high-resolution volumetric imaging of tissue morphology and provides localized optical properties that can be related to the physiological status of tissue. This chapter discusses the combination of spatial and spectroscopic information by means of spectroscopic OCT (sOCT) and low-coherence spectroscopy (LCS). We describe the theory behind these modalities for the assessment of spatially resolved optical absorption and (back)scattering coefficient spectra. These spectra can be used for the highly localized quantification of chromophore concentrations and assessment of tissue organization on (sub)cellular scales. This leads to a wealth of potential clinical applications, ranging from neonatology for the determination of billibrubin concentrations, to oncology for the optical assessment of the aggressiveness of a cancerous lesion.

  4. Conjugated polymers with pyrrole as the conjugated bridge: synthesis, characterization, and two-photon absorption properties.

    PubMed

    Li, Qianqian; Zhong, Cheng; Huang, Jing; Huang, Zhenli; Pei, Zhiguo; Liu, Jun; Qin, Jingui; Li, Zhen

    2011-07-14

    The synthesis, one- and two-photon absorption (2PA) and emission properties of two novel pyrrole-based conjugated polymers (P1 and P2) are reported. They emitted strong yellow-green and orange fluorescence with fluorescent quantum yields (Φ) of 46 and 33%, respectively. Their maximal 2PA cross sections (δ) measured by the two-photon-induced fluorescence method using femtosecond laser pulses in THF were 2392 and 1938 GM per repeating unit, respectively, indicating that the 2PA chromophores consisting of the triphenylamine with nonplanar structure as the donor and electron-rich pyrrole as the conjugated bridge could be the effective repeating units to enhance the δ values.

  5. Grazing incidence X-ray absorption characterization of amorphous Zn-Sn-O thin film

    NASA Astrophysics Data System (ADS)

    Moffitt, S. L.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2016-05-01

    We report a surface structure study of an amorphous Zn-Sn-O (a-ZTO) transparent conducting film using the grazing incidence X-ray absorption spectroscopy technique. By setting the measuring angles far below the critical angle at which the total external reflection occurs, the details of the surface structure of a film or bulk can be successfully accessed. The results show that unlike in the film where Zn is severely under coordinated (N < 4), it is fully coordinated (N = 4) near the surface while the coordination number around Sn is slightly smaller near the surface than in the film. Despite a 30% Zn doping, the local structure in the film is rutile-like.

  6. Chemical modification of TiO2 surfaces with methylsilanes and characterization by infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Finklea, H. O.; Vithanage, R.

    1982-01-01

    Infrared absorption spectra of methylsilanes bonded to a TiO2 powder were obtained. The reacting silanes include Me sub (4-n)SiX sub n (n=1-4; X=Cl, OMe) and hexamethyldisilazane (HMDS). Reactions were performed on hydroxylated-but-anhydrous TiO2 surfaces in the gas phase. IR spectra confirm the presence of a bonded silane layer. Terminal surface OH groups are found to react more readily than bridging OH groups. By-products of the modification adsorp tenaciously to the surface. The various silanes show only small differences in their ability to sequester surface OH groups. Following hydrolysis in moist air, Si-OH groups are observed only for the tetrafunctional silanes.

  7. Optical characterization of the nematic lyotropic chromonic liquid crystals: light absorption, birefringence, and scalar order parameter.

    PubMed

    Nastishin, Yu A; Liu, H; Schneider, T; Nazarenko, V; Vasyuta, R; Shiyanovskii, S V; Lavrentovich, O D

    2005-10-01

    We report on the optical properties of the nematic (N) phase formed by lyotropic chromonic liquid crystals (LCLCs) in well aligned planar samples. LCLCs belong to a broad class of materials formed by one-dimensional molecular self-assembly and are similar to other systems such as "living polymers" and "wormlike micelles." We study three water soluble LCLC forming materials: disodium chromoglycate, a derivative of indanthrone called Blue 27, and a derivative of perylene called Violet 20. The individual molecules have a planklike shape and assemble into rodlike aggregates that form the phase once the concentration exceeds about 0.1 M. The uniform surface alignment of the N phase is achieved by buffed polyimide layers. According to the light absorption anisotropy data, the molecular planes are on average perpendicular to the aggregate axes and thus to the nematic director. We determined the birefringence of these materials in the N and biphasic N-isotropic (I) regions and found it to be negative and significantly lower in the absolute value as compared to the birefringence of typical thermotropic low-molecular-weight nematic materials. In the absorbing materials Blue 27 and Violet 20, the wavelength dependence of birefringence is nonmonotonic because of the effect of anomalous dispersion near the absorption bands. We describe positive and negative tactoids formed as the nuclei of the new phase in the biphasic N-I region (which is wide in all three materials studied). Finally, we determined the scalar order parameter of the phase of Blue 27 and found it to be relatively high, in the range 0.72-0.79, which puts the finding into the domain of general validity of the Onsager model. However, the observed temperature dependence of the scalar order parameter points to the importance of factors not accounted for in the athermal Onsager model, such as interaggregate interactions and the temperature dependence of the aggregate length.

  8. Characterization of metalloproteins by high-throughput X-ray absorption spectroscopy.

    PubMed

    Shi, Wuxian; Punta, Marco; Bohon, Jen; Sauder, J Michael; D'Mello, Rhijuta; Sullivan, Mike; Toomey, John; Abel, Don; Lippi, Marco; Passerini, Andrea; Frasconi, Paolo; Burley, Stephen K; Rost, Burkhard; Chance, Mark R

    2011-06-01

    High-throughput X-ray absorption spectroscopy was used to measure transition metal content based on quantitative detection of X-ray fluorescence signals for 3879 purified proteins from several hundred different protein families generated by the New York SGX Research Center for Structural Genomics. Approximately 9% of the proteins analyzed showed the presence of transition metal atoms (Zn, Cu, Ni, Co, Fe, or Mn) in stoichiometric amounts. The method is highly automated and highly reliable based on comparison of the results to crystal structure data derived from the same protein set. To leverage the experimental metalloprotein annotations, we used a sequence-based de novo prediction method, MetalDetector, to identify Cys and His residues that bind to transition metals for the redundancy reduced subset of 2411 sequences sharing <70% sequence identity and having at least one His or Cys. As the HT-XAS identifies metal type and protein binding, while the bioinformatics analysis identifies metal- binding residues, the results were combined to identify putative metal-binding sites in the proteins and their associated families. We explored the combination of this data with homology models to generate detailed structure models of metal-binding sites for representative proteins. Finally, we used extended X-ray absorption fine structure data from two of the purified Zn metalloproteins to validate predicted metalloprotein binding site structures. This combination of experimental and bioinformatics approaches provides comprehensive active site analysis on the genome scale for metalloproteins as a class, revealing new insights into metalloprotein structure and function.

  9. Characterization of Metalloproteins by High-throughput X-ray Absorption Spectroscopy

    SciTech Connect

    W Shi; M Punta; J Bohon; J Sauder; R DMello; M Sullivan; J Toomey; D Abel; M Lippi; et al.

    2011-12-31

    High-throughput X-ray absorption spectroscopy was used to measure transition metal content based on quantitative detection of X-ray fluorescence signals for 3879 purified proteins from several hundred different protein families generated by the New York SGX Research Center for Structural Genomics. Approximately 9% of the proteins analyzed showed the presence of transition metal atoms (Zn, Cu, Ni, Co, Fe, or Mn) in stoichiometric amounts. The method is highly automated and highly reliable based on comparison of the results to crystal structure data derived from the same protein set. To leverage the experimental metalloprotein annotations, we used a sequence-based de novo prediction method, MetalDetector, to identify Cys and His residues that bind to transition metals for the redundancy reduced subset of 2411 sequences sharing <70% sequence identity and having at least one His or Cys. As the HT-XAS identifies metal type and protein binding, while the bioinformatics analysis identifies metal-binding residues, the results were combined to identify putative metal-binding sites in the proteins and their associated families. We explored the combination of this data with homology models to generate detailed structure models of metal-binding sites for representative proteins. Finally, we used extended X-ray absorption fine structure data from two of the purified Zn metalloproteins to validate predicted metalloprotein binding site structures. This combination of experimental and bioinformatics approaches provides comprehensive active site analysis on the genome scale for metalloproteins as a class, revealing new insights into metalloprotein structure and function.

  10. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.

    2000-01-01

    Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis

  11. Glutamine/Glutamate Metabolism Studied with Magnetic Resonance Spectroscopic Imaging for the Characterization of Adrenal Nodules and Masses

    PubMed Central

    Goldman, Suzan M.; Nunes, Thiago F.; Melo, Homero J. F.; Dalavia, Claudio; Szejnfeld, Denis; Kater, Claudio; Andreoni, Cassio; Szejnfeld, Jacob; Ajzen, Sergio A.

    2013-01-01

    Purpose. To assess glutamine/glutamate (Glx) and lactate (Lac) metabolism using proton magnetic resonance spectroscopic imaging (1H-MRS) in order to differentiate between adrenal gland nodules and masses (adenomas, pheochromocytomas, carcinomas, and metastases). Materials and Methods. Institutional review board approval and informed consent were obtained. A total of 130 patients (47 men) with 132 adrenal nodules/masses were prospectively assessed (54 ± 14.8 years). A multivoxel system was used with a two-dimensional point-resolved spectroscopy/chemical-shift imaging sequence. Spectroscopic data were interpreted by visual inspection and peak amplitudes of lipids (Lip), choline (Cho), creatine (Cr), Lac, and Glx. Lac/Cr and Glx/Cr were calculated. Glx/Cr was assessed in relation to lesion size. Results. Statistically significant differences were observed in Glx/Cr results between adenomas and pheochromocytomas (P < 0.05), however, with a low positive predictive value (PPV). Glx levels were directly proportional to lesion size in carcinomas. A cutoff point of 1.44 was established for the differentiation between carcinomas larger versus smaller than 4 cm, with 75% sensitivity, 100% specificity, 100% PPV, and 80% accuracy. Lac/Cr results showed no differences across lesions. A cutoff point of −6.5 for Lac/Cr was established for carcinoma diagnosis. Conclusion. Glx levels are directly proportional to lesion size in carcinomas. A cutoff point of −6.5 Lac/Cr differentiates carcinomas from noncarcinomas. PMID:24199200

  12. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: Detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada

    2014-01-01

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  13. Spectroscopic characterization of co-precipitated arsenic- and iron-bearing sulfide phases at circum-neutral pH

    NASA Astrophysics Data System (ADS)

    Illera, V.; Rivera, N. A.; O'Day, P. A.

    2009-12-01

    Precipitation of arsenic- and iron-sulfide phases from porewaters is an important mechanism for removing arsenic and other contaminant metals from solution, thus reducing their bioaccessibility and potential toxicity. Although sulfide phases form readily at low pH, the identity, crystallinity, and local structure of arsenic and iron co-precipitated phases that form at circum-neutral pH are less well known. In this study, co-precipitated As+Fe sulfide phases and end-member As-sulfides and Fe-sulfides were synthesized in batch experiments and in a gas-tight reaction vessel at 25°C. Reduced conditions were maintained by keeping a constant flow of a 95%N2 /5%H2 mixture gas. Fresh saturated solutions of 0.3 M Fe(II) or Fe(III), 0.3 M S2- and 0.2 M As(III) ions were mixed and pH was maintained at pH 4, 6 and 8 by small additions of concentrated HCl or NaOH. At different time intervals, aliquots were extracted from suspensions aged from hours to 1 month and analyzed for total iron, arsenic and sulfur (by ICP-OES and ICP-MS). The Fe-S-As precipitates were characterized by X-ray diffraction (XRD) and synchrotron X-ray absorption spectroscopy (XAS). X-ray diffraction and Fe k-edge EXAFS showed the precipitation of amorphous to poorly crystalline iron sulfide when Fe(II) was co-precipitated with sulfide (no arsenic) at pH 4, 6, and 8. The precipitate that formed in ~1-4 h was nanoparticle-sized and disordered mackinawite (FeS), which showed a characteristic broad, low-intensity Bragg peaks in the XRD patterns. After aging for ~7 d, XRD patterns showed a change to more crystalline mackinawite. In contrast, co-precipitation of As(III) with Fe(II) and sulfide resulted in x-ray amorphous (both synchrotron and laboratory XRD) precipitates for all pH and aging times (~4 h to 1 m). Arsenic and iron XANES and EXAFS spectra of precipitates at pH 4 showed a mixture of amorphous orpiment-type (As2S3) and mackinawite-type (FeS) phases. At pH 6 and 8, XANES showed As sulfide and a

  14. Characterization of the Electronic Structure of Silicon Nanoparticles Using X-ray Absorption and Emission

    SciTech Connect

    Vaverka, April Susan Montoya

    2008-01-01

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 nm are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  15. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia

    PubMed Central

    Chen, Jeng-Haur; Stoltz, David A.; Karp, Philip H.; Ernst, Sarah E.; Pezzulo, Alejandro A.; Moninger, Thomas O.; Rector, Michael V.; Reznikov, Leah R.; Launspach, Janice L.; Chaloner, Kathryn; Zabner, Joseph; Welsh, Michael J.

    2011-01-01

    SUMMARY Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR−/− pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissue, cultures, and in vivo. CFTR−/− epithelia showed markedly reduced Cl− and HCO3− transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na+ or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR−/− pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl− conductance caused the change, not increased Na+ transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl− and HCO3− in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease. PMID:21145458

  16. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  17. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    DOE PAGES

    Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; Feng, Bingmei; Liu, Yi-Sheng; Marcus, Matthew A.; Feng, Jun; Cairns, Elton J.; Guo, Jinghua; Zhu, Junfa

    2016-01-11

    The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br₋) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface duringmore » the charge/discharge processes make the capacity decay. Lastly, a modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.« less

  18. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    SciTech Connect

    Laroche, G.; Vallade, J.; Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F.; Nijnatten, P. van

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  19. Characterizing the spatio-temporal and energy-dependent response of riometer absorption to particle precipitation

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Makarevich, Roman; Spanswick, Emma; Donovan, Eric; Shprits, Yuri

    2016-07-01

    Energetic electrons in the 10's of keV range precipitate to the upper D- and lower E-region ionosphere, and are responsible for enhanced ionization. The same particles are important in the inner magnetosphere, as they provide a source of energy for waves, and thus relate to relativistic electron enhancements in Earth's radiation belts.In situ observations of plasma populations and waves are usually limited to a single point, which complicates temporal and spatial analysis. Also, the lifespan of satellite missions is often limited to several years which does not allow one to infer long-term climatology of particle precipitation, important for affecting ionospheric conditions at high latitudes. Multi-point remote sensing of the ionospheric plasma conditions can provide a global view of both ionospheric and magnetospheric conditions, and the coupling between magnetospheric and ionospheric phenomena can be examined on time-scales that allow comprehensive statistical analysis. In this study we utilize multi-point riometer measurements in conjunction with in situ satellite data, and physics-based modeling to investigate the spatio-temporal and energy-dependent response of riometer absorption. Quantifying this relationship may be a key to future advancements in our understanding of the complex D-region ionosphere, and may lead to enhanced specification of auroral precipitation both during individual events and over climatological time-scales.

  20. Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets

    SciTech Connect

    Saykally, Richard J; Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2008-01-08

    We describe an approach for characterizing selective binding between oppositely charged ionic functional groups under biologically relevant conditions. Relative shifts in K-shell x-ray absorption spectra of aqueous cations and carboxylate anions indicate the corresponding binding strengths via perturbations of carbonyl antibonding orbitals. XAS spectra measured for aqueous formate and acetate solutions containing lithium, sodium, and potassium cations reveal monotonically stronger binding of the lighter metals, supporting recent results from simulations and other experiments. The carbon K-edge spectra of the acetate carbonyl feature centered near 290 eV clearly indicate a preferential interaction of sodium versus potassium, which was less apparent with formate. These results are in accord with the Law of Matching Water Affinities, relating relative hydration strengths of ions to their respective tendencies to form contact ion pairs. Density functional theory calculations of K-shell spectra support the experimental findings.

  1. Observation of x-ray absorption magnetic circular dichroism in well-characterized iron-cobalt-platinum multilayers

    SciTech Connect

    Jankowski, A.F.; Waddill, G.D.; Tobin, J.G.

    1993-04-01

    Magnetic circular dichroism in the Fe 2p x-ray absorption is observed in multilayers of(Fe9.5{Angstrom}/Pt9.5{Angstrom}){sub 92}. The magnetization and helicity are both in the plane of this multilayer which is prepared by magnetron sputter deposition. This sample is part of a study to examine magnetization in the ternary multilayer system of FeCo/Pt. Lattice and layer pair spacings are measured using x-ray scattering. The atomic concentration profiles of the multilayer films are characterized using Auger electron spectroscopy coupled with depth profiling. Conventional and high resolution transmission electron microscopy are used to examine the thin film, growth morphology and atomic structure.

  2. 1H NMR spectroscopic characterization of inclusion complexes of tolfenamic and flufenamic acids with β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Floare, C. G.; Pirnau, A.; Bogdan, M.

    2013-07-01

    The complexation between the anionic forms of tolfenamic acid and flufenamic acid with β-cyclodextrin was investigated in solution by 1D and 2D proton NMR spectroscopy. The stoichiometry of the complexes was determined by the method of continuous variation using the chemical induced shifts of both the host and guest protons. An analysis of the spectroscopic data revealed that simultaneous inclusion of both rings of tolfenamic and flufenamic acids occur, giving rise each to two isomeric 1:1 complexes. The view of a bimodal binding between these two drugs and β-cyclodextrin was also supported by ROESY experiments. Using a rough approximation, we have estimated the association constants order of magnitude of the 1:1 complexes.

  3. The PtAl{sup −} and PtAl{sub 2}{sup −} anions: Theoretical and photoelectron spectroscopic characterization

    SciTech Connect

    Zhang, Xinxing; Ganteför, Gerd; Bowen, Kit H. E-mail: ana@chem.ucla.edu; Alexandrova, Anastassia N. E-mail: ana@chem.ucla.edu

    2014-04-28

    We report a joint photoelectron spectroscopic and theoretical study of the PtAl{sup −} and PtAl{sub 2}{sup −} anions. The ground state structures and electronic configurations of these species were identified to be C{sub ∞v}, {sup 1}Σ{sup +} for PtAl{sup −}, and C{sub 2v}, {sup 2}B{sub 1} for PtAl{sub 2}{sup −}. Structured anion photoelectron spectra of these clusters were recorded and interpreted using ab initio calculations. Good agreement between theory and experiment was found. All experimental features were successfully assigned to one-electron transitions from the ground state of the anions to the ground or excited states of the corresponding neutral species.

  4. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  5. Synthesis, spectroscopic characterization and magnetic properties of homo- and heterodinuclear complexes of transition and non-transition metal ions with a new Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Sarkar, Saikat; Biswas, Susobhan; Dey, Kamalendu

    2008-12-01

    Four homodinuclear complexes of Ni(II)-Ni(II), Cu(II)-Cu(II), Co(II)-Co(II) and Co(III)-Co(II) and five heterodinuclear complexes of Co(III)-Zn(II), Co(III)-Cu(II), Co(III)-Ni(II), Cu(II)-Zn(II) and Zn(II)-Cu(II) with the octadentate Schiff base compartmental ligand 1,8- N-bis(3-carboxy)disalicylidene-3,6-diazaoctane-1,8-diamine (H 4fsatrien) have been synthesized. The complexes have been characterized with the help of elemental analyses, molecular weights, molar conductances, magnetic susceptibilities and spectroscopic (UV-vis, IR, ESR) data. Cryomagnetic data also helped to elucidate the structural features of the Cu(II) complexes.

  6. Monitoring and characterization of compost obtained from household waste and pine sawdust in a facultative reactor by conventional and spectroscopic analyses.

    PubMed

    de Campos, Sandro Xavier; Resseti, Rolan Roney; Zittel, Rosimara

    2014-12-01

    This study proposes a new facultative reactor configuration for the treatment of organic household waste and pine sawdust. The process was monitored and the compost characterized by conventional (temperature, moisture, pH, ash content and ratio C/N) conjugated with spectroscopic analyses (ultraviolet (UV)/visible (Vis) and infrared (IR)) and germination index. The spectroscopy results revealed enrichment of carbon-carbon unsaturation structures and a degradation of the aliphatic structures. The results showed that stability of the final product was reached after 90 days and that the compost obtained presents substantial richness of stabilized organic matter and an absence of toxicity, so it may be considered as an organic fertilizer. Finally, this study led to the conclusion that the reactor proposed can be a promising technology for the management of organic household waste and sawdust. PMID:25106532

  7. Preformulation characterization and in vivo absorption in beagle dogs of JFD, a novel anti-obesity drug for oral delivery.

    PubMed

    Fan, Yunzhou; Yang, Meiyan; Wang, Yuli; Li, Yanyou; Zhou, Yuanda; Chen, Xiaoping; Shan, Li; Wei, Jun; Gao, Chunsheng

    2015-05-01

    JFD (N-isoleucyl-4-methyl-1,1-cyclopropyl-1-(4-chlorine)phenyl-2-amylamine·HCl) is a novel investigational anti-obesity drug without obvious cardiotoxicity. The objective of this study was to characterize the key physicochemical properties of JFD, including solution-state characterization (ionization constant, partition coefficient, aqueous and pH-solubility profile), solid-state characterization (particle size, thermal analysis, crystallinity and hygroscopicity) and drug-excipient chemical compatibility. A supporting in vivo absorption study was also carried out in beagle dogs. JFD bulk powders are prismatic crystals with a low degree of crystallinity, particle sizes of which are within 2-10 μm. JFD is highly hygroscopic, easily deliquesces to an amorphous glass solid and changes subsequently to another crystal form under an elevated moisture/temperature condition. Similar physical instability was also observed in real-time CheqSol solubility assay. pK(a) (7.49 ± 0.01), log P (5.10 ± 0.02) and intrinsic solubility (S0) (1.75 μg/ml) at 37 °C of JFD were obtained using potentiometric titration method. Based on these solution-state properties, JFD was estimated to be classified as BCS II, thus its dissolution rate may be an absorption-limiting step. Moreover, JFD was more chemically compatible with dibasic calcium phosphate, mannitol, hypromellose and colloidal silicon dioxide than with lactose and magnesium stearate. Further, JFD exhibited an acceptable pharmacokinetic profiling in beagle dogs and the pharmacokinetic parameters T(max), C(max), AUC(0-t) and absolute bioavailability were 1.60 ± 0.81 h, 0.78 ± 0.47 μg/ml, 3.77 ± 1.85 μg·h/ml and 52.30 ± 19.39%, respectively. The preformulation characterization provides valuable information for further development of oral administration of JFD. PMID:24694186

  8. Preformulation characterization and in vivo absorption in beagle dogs of JFD, a novel anti-obesity drug for oral delivery.

    PubMed

    Fan, Yunzhou; Yang, Meiyan; Wang, Yuli; Li, Yanyou; Zhou, Yuanda; Chen, Xiaoping; Shan, Li; Wei, Jun; Gao, Chunsheng

    2015-05-01

    JFD (N-isoleucyl-4-methyl-1,1-cyclopropyl-1-(4-chlorine)phenyl-2-amylamine·HCl) is a novel investigational anti-obesity drug without obvious cardiotoxicity. The objective of this study was to characterize the key physicochemical properties of JFD, including solution-state characterization (ionization constant, partition coefficient, aqueous and pH-solubility profile), solid-state characterization (particle size, thermal analysis, crystallinity and hygroscopicity) and drug-excipient chemical compatibility. A supporting in vivo absorption study was also carried out in beagle dogs. JFD bulk powders are prismatic crystals with a low degree of crystallinity, particle sizes of which are within 2-10 μm. JFD is highly hygroscopic, easily deliquesces to an amorphous glass solid and changes subsequently to another crystal form under an elevated moisture/temperature condition. Similar physical instability was also observed in real-time CheqSol solubility assay. pK(a) (7.49 ± 0.01), log P (5.10 ± 0.02) and intrinsic solubility (S0) (1.75 μg/ml) at 37 °C of JFD were obtained using potentiometric titration method. Based on these solution-state properties, JFD was estimated to be classified as BCS II, thus its dissolution rate may be an absorption-limiting step. Moreover, JFD was more chemically compatible with dibasic calcium phosphate, mannitol, hypromellose and colloidal silicon dioxide than with lactose and magnesium stearate. Further, JFD exhibited an acceptable pharmacokinetic profiling in beagle dogs and the pharmacokinetic parameters T(max), C(max), AUC(0-t) and absolute bioavailability were 1.60 ± 0.81 h, 0.78 ± 0.47 μg/ml, 3.77 ± 1.85 μg·h/ml and 52.30 ± 19.39%, respectively. The preformulation characterization provides valuable information for further development of oral administration of JFD.

  9. X-ray Absorption and Emission Spectroscopic Studies of [L2Fe2S2](n) Model Complexes: Implications for the Experimental Evaluation of Redox States in Iron-Sulfur Clusters.

    PubMed

    Kowalska, Joanna K; Hahn, Anselm W; Albers, Antonia; Schiewer, Christine E; Bjornsson, Ragnar; Lima, Frederico A; Meyer, Franc; DeBeer, Serena

    2016-05-01

    Herein, a systematic study of [L2Fe2S2](n) model complexes (where L = bis(benzimidazolato) and n = 2-, 3-, 4-) has been carried out using iron and sulfur K-edge X-ray absorption (XAS) and iron Kβ and valence-to-core X-ray emission spectroscopies (XES). These data are used as a test set to evaluate the relative strengths and weaknesses of X-ray core level spectroscopies in assessing redox changes in iron-sulfur clusters. The results are correlated to density functional theory (DFT) calculations of the spectra in order to further support the quantitative information that can be extracted from the experimental data. It is demonstrated that due to canceling effects of covalency and spin state, the information that can be extracted from Fe Kβ XES mainlines is limited. However, a careful analysis of the Fe K-edge XAS data shows that localized valence vs delocalized valence species may be differentiated on the basis of the pre-edge and K-edge energies. These findings are then applied to existing literature Fe K-edge XAS data on the iron protein, P-cluster, and FeMoco sites of nitrogenase. The ability to assess the extent of delocalization in the iron protein vs the P-cluster is highlighted. In addition, possible charge states for FeMoco on the basis of Fe K-edge XAS data are discussed. This study provides an important reference for future X-ray spectroscopic studies of iron-sulfur clusters.

  10. Quest for Environmentally-Benign Ligands for Actinide Separations: Thermodynamic, Spectroscopic, and Structural Characterization of U(VI) Complexes with Oxa-Diamide and Related Ligands

    SciTech Connect

    Advanced Light Source; Tian, Guoxin; Rao, Linfeng; Teat, Simon J.; Liu, Guokui

    2009-01-05

    Complexation of U(VI) with N,N,N{prime},N{prime}-tetramethyl-3-oxa-glutaramide (TMOGA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) was studied in comparison with their dicarboxylate analog, oxydiacetic acid (ODA). Thermodynamic parameters, including stability constants, enthalpy and entropy of complexation, were determined by spectrophotometry, potentiometry and calorimetry. Single-crystal X-ray diffractometry, EXAFS spectroscopy, FT-IR absorption and laser-induced luminescence spectroscopy were used to obtain structural information on the U(VI) complexes. Like ODA, TMOGA and DMOGA form tridentate U(VI) complexes, with three oxygen atoms (the amide, ether and/or carboxylate oxygen) coordinating to the linear UO{sub 2}{sup 2+} cation via the equatorial plane. The stability constants, enthalpy and entropy of complexation all decrease in the order ODA > DMOGA > TMOGA, showing that the complexation is entropy driven and the substitution of a carboxylate group with an amide group reduces the strength of complexation with U(VI) due to the decrease in the entropy of complexation. The trend in the thermodynamic stability of the complexes correlates very well with the structural and spectroscopic data obtained by single crystal XRD, FT-IR and laser-induced luminescence spectroscopy.

  11. The Time Domain Spectroscopic Survey: Spectroscopic Variability Investigations Within SDSS-IV/eBOSS

    NASA Astrophysics Data System (ADS)

    Green, Paul J.; Anderson, Scott F.; Morganson, Eric; Eracleous, Michael; Shen, Yue; Brandt, W. Niel; Ruan, John J.; Schmidt, Sarah J.; Badenes, Carles; West, Andrew A.; Ju, Wenhua; Greene, Jenny E.; Tdss, Panstarrs-1, Sdss-Iv

    2015-01-01

    The Time Domain Spectroscopic Survey (TDSS) is an SDSS-IV subproject that began summer 2014 and will continue for 4-6 years. Besides its main program to obtain initial characterization spectra of about 220,000 optical variables selected from PanSTARRS-1, the TDSS includes 9 separate smaller programs to study spectroscopic variability. We describe each of these Few-Epoch Spectroscopy (FES) programs, which target objects with existing SDSS spectroscopy amongst classes of quasars and stars of particular astrophysical interest. These include, in approximate order of decreasing sample size: Broad Absorption Line Quasars (BALQSOs), the most photometrically variable ("HyperVariable") quasars, high S/N normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, Hypervariable stars, active ultracool (late-M and L-type) dwarf stars with Halpha emission, dwarf carbon stars, white dwarf/M dwarf spectroscopic binaries with Halpha emission, and binary supermassive black hole candidates from MgII broad line velocity shift analysis. We summarize herein the unique and diverse astrophysical investigations facilitated by these TDSS FES programs.

  12. One-dimensional WO{sub 3} and its hydrate: One-step synthesis, structural and spectroscopic characterization

    SciTech Connect

    Iwu, Kingsley O.; Galeckas, Augustinas; Rauwel, Protima; Kuznetsov, Andrej Y.; Norby, Truls

    2012-01-15

    We report on a one-step hydrothermal growth of one-dimensional (1D) WO{sub 3} nanostructures, using urea as 1D growth-directing agent and a precursor free of metals other than tungsten. By decreasing the pH of the starting solution, the size of the nanostructures was reduced significantly, this development being accompanied by the realization of phase pure hexagonal WO{sub 3} nanorods (elimination of monoclinic impurity phase) and a red shift in optical absorption edge. Surface analyses indicated the presence of reduced tungsten species in the WO{sub 3} nanostructures, which increased two-fold in a hydrated WO{sub 3} phase obtained with further decrease in pH. We suggest that oxygen vacancies are responsible for this defect state in WO{sub 3}, while protons are responsible or contribute significantly to the same in the hydrated phase. - Graphical abstract: The figure illustrates the role of pH in morphological and absorption edge evolution of WO{sub 3} (hydrate) as well as the variation in the concentration of defect electrons between anhydrous and hydrated WO{sub 3}. Highlights: Black-Right-Pointing-Pointer WO{sub 3} nanorods prepared in a one step procedure. Black-Right-Pointing-Pointer HCl (aq) enables phase pure WO{sub 3} nanorods. Black-Right-Pointing-Pointer HCl (aq) induces significant reduction in dimension of and red shift in absorption edge of nanorods. Black-Right-Pointing-Pointer W{sup 5+} detected in hydrothermal WO{sub 3} phase, the concentration of which increases in the hydrated phase. Black-Right-Pointing-Pointer W{sup 5+} from the two phases due to different positive defects.

  13. Spectroscopic characterization of phenazinium dye aggregates in water and acetonitrile media: effect of methyl substitution on the aggregation phenomenon.

    PubMed

    Sarkar, Deboleena; Das, Paramita; Girigoswami, Agnishwar; Chattopadhyay, Nitin

    2008-10-01

    Absorption, fluorescence, and fluorescence excitation spectral studies of two planar, cationic phenazinium dyes, namely, phenosafranin (PSF) and safranin-T (ST), have been performed in protic and aprotic polar solvents. The studies reveal the formation of both J- and H-aggregates in concentrated solutions. The planarity of the phenazinium skeleton and the presence of a positive charge are attributed to be the driving force for this aggregation behavior. The aggregates are established to be dimers only. The positive inductive effect of the methyl substituents in safranin-T augments the aggregation process. The experiments reveal that for both dyes, the polar protic solvent favors the aggregation process more than the aprotic solvent.

  14. Spectroscopically Unlocking Exoplanet Characteristics

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole

    2016-05-01

    Spectroscopy plays a critical role in a number of areas of exoplanet research. The first exoplanets were detected by precisely measuring Doppler shifts in high resolution (R ~ 100,000) stellar spectra, a technique that has become known as the Radial Velocity (RV) method. The RV method provides critical constraints on exoplanet masses, but is currently limited to some degree by robust line shape predictions. Beyond the RV method, spectroscopy plays a critical role in the characterization of exoplanets beyond their mass and radius. The Hubble Space Telescope has spectroscopically observed the atmospheres of exoplanets that transit their host stars as seen from Earth giving us key insights into atmospheric abundances of key atomic and molecular species as well as cloud optical properties. Similar spectroscopic characterization of exoplanet atmospheres will be carried out at higher resolution (R ~ 100-3000) and with broader wavelength coverage with the James Webb Space Telescope. Future missions such as WFIRST that seek to the pave the way toward the detection and characterization of potentially habitable planets will have the capability of directly measuring the spectra of exoplanet atmospheres and potentially surfaces. Our ability to plan for and interpret spectra from exoplanets relies heavily on the fidelity of the spectroscopic databases available and would greatly benefit from further laboratory and theoretical work aimed at optical properties of atomic, molecular, and cloud/haze species in the pressure and temperature regimes relevant to exoplanet atmospheres.

  15. Fourier Transform Infrared Spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales.

    PubMed

    Nadeem, Raziya; Ansari, Tariq Mahmood; Khalid, Ahmad Mukhtar

    2008-08-15

    The present study reports the use of locally available fish (Labeo rohita) scales for Pb(II) removal from aqueous solutions under different experimental conditions. Maximum Pb(II) adsorption (196.8 mg g(-1)) occurred at pH 3.5. Pb(II) sorption was found to be pH, dose, initial metal concentration, contact time and shaking speed dependent while particle size and temperature independent. Experimental data of Pb(II) biosorption onto fish scales fitted well to Freundlich isotherm model in comparison to the model of Langmuir. The fast adsorption process in first 30 min followed by subsequent slow adsorption rate was suitably described by pseudo-second order model. In addition, this study was designed to evaluate the effect of physical and chemical pretreatments on surface properties of fish scales by the application of Fourier Transform Infrared (FTIR) Spectroscopic analysis. Physical pretreatments resulted in partial degradation of some functional groups. Alkaline pretreatments of fish scales did not have any significant influence on the nature of functional groups responsible for Pb(II) uptake, while acidic pretreatments resulted in degeneration of the most of functional groups on biosorbent cell wall. FTIR analysis confirmed the involvement of amino, carboxylic, phosphate and carbonyl groups in Pb(II) biosorption by fish scales.

  16. Complex of manganese (II) with curcumin: Spectroscopic characterization, DFT study, model-based analysis and antiradical activity

    NASA Astrophysics Data System (ADS)

    Gorgannezhad, Lena; Dehghan, Gholamreza; Ebrahimipour, S. Yousef; Naseri, Abdolhossein; Nazhad Dolatabadi, Jafar Ezzati

    2016-04-01

    The complex formation between curcumin (Cur) and Manganese (II) chloride tetrahydrate (MnCl2.4H2O) was studied by UV-Vis and IR spectroscopy. Spectroscopic data suggest that Cur can chelate Manganese cations. A simple multi-wavelength model-based method was used to define stability constant for complexation reaction regardless of the spectra overlapping of components. Also, pure spectra and concentration profiles of all components were extracted using this method. Density functional theory (DFT) was also used to view insight into complexation mechanism. Antioxidant activity of Cur and Cur-Mn(II) complex was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging method. Bond dissociation energy (BDE), the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) and Molecular electrostatic potential (MEP) of Cur and the complex also were calculated at PW91/TZ2P level of theory using ADF 2009.01 package. The experimental results show that Cur has a higher DPPH radical scavenging activity than Cur-Mn(II). This observation is theoretically justified by means of lower BDE and higher HOMO and LUMO energy values of Cur ligand as compared with those of Cur-Mn(II) complex.

  17. Characterization of polarization phenomenon in Al-Schottky CdTe detectors using a spectroscopic analysis method

    NASA Astrophysics Data System (ADS)

    Meuris, Aline; Limousin, Olivier; Blondel, Claire

    2011-10-01

    CdTe radiation detectors equipped with Schottky contacts are known to show spectral response degradation over time under biasing. Nevertheless, they can be used as high-resolution spectrometers for X-rays and gamma-rays with moderate cooling and high voltage. Spectroscopic long-term measurements have been performed with Al/CdTe/Pt pixel detectors of 0.5, 1 and 2 mm thicknesses and 241Am source from -13 to +16 °C to evaluate how long they can be operated. Experimental results are confronted to simulations using the charge accumulation model for electric field. Activation energy for collection efficiency stability and peak shift was measured at 1.0-1.2 eV although deep acceptor levels responsible for hole detrapping during polarization were evaluated by other methods at EV +0.6-0.8 eV. The difference is probably due to a thermal effect of pre-polarization before biasing the detector.

  18. Characterization of the binding of shikonin to human immunoglobulin using scanning electron microscope, molecular modeling and multi-spectroscopic methods.

    PubMed

    He, Wenying; Ye, Xinyu; Yao, Xiaojun; Wu, Xiuli; Lin, Qiang; Huang, Guolei; Hua, Yingjie; Hui, Yang

    2015-11-01

    Shikonin, one of the active components isolated from the root of Arnebia euchroma (Royle) Johnst, have anti-tumor, anti-bacterial and anti-inflammatory activities and has been used clinically in phlebitis and vascular purpura. In the present work, the interaction of human immunoglobulin (HIg) with shikonin has been investigated by using scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, fluorescence polarization, synchronous and 3D fluorescence spectroscopy in combination with molecular modeling techniques under physiological conditions with drug concentrations of 3.33-36.67 μM. The results of SEM exhibited visually the special effect on aggregation behavior of the complex formed between HIg and shikonin. The fluorescence polarization values indicated that shikonin molecules were found in a motionally unrestricted environment introduced by HIg. Molecular docking showed the shikonin moiety bound to the hydrophobic cavity of HIg, and there are four hydrogen-bonding interactions between shikonin and the residues of protein. The synchronous and 3D fluorescence spectra confirmed that shikonin could quench the intrinsic fluorescence of HIg and has an effect on the microenvironment around HIg in aqueous solution. The changes in the secondary structure of HIg were estimated by qualitative and quantitative FT-IR spectroscopic analysis. The binding constants and thermodynamic parameters for shikonin-HIg systems were obtained under different temperatures (300 K, 310 K and 320 K). The above results revealed the binding mechanism of shikonin and HIg at the ultrastructure and molecular level.

  19. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting. PMID:26995929

  20. Binary iron-chromium oxide as negative electrode for lithium-ion micro-batteries - spectroscopic and microscopic characterization

    NASA Astrophysics Data System (ADS)

    Tian, Bingbing; Światowska, Jolanta; Maurice, Vincent; Zanna, Sandrine; Seyeux, Antoine; Marcus, Philippe

    2015-10-01

    (Fe,Cr)-binary oxide thin film electrodes were prepared as negative electrode material for lithium-ion micro-batteries by thermal growth on a stainless steel (AISI 410, FeCr12.5) current collector. The mechanisms of lithiation/delithiation were investigated by means of electrochemical (CV, galvanostatic cycling), spectroscopic (XPS, ToF-SIMS) and microscopic (SEM, AFM) analytical techniques. The as-prepared (Fe, Cr)-binary oxide electrodes exhibit a good cycling performance except the first discharge/charge cycle where a high irreversible capacity is observed due to formation of a solid electrolyte interphase (SEI) layer. The influence of substituting an oxidized iron by an oxidized chromium (CrxFe2-xO3 phase) was evaluated. The data show that the inferior electrochemical conversion activity of substituted oxidized chromium results in hindering lithium transport in the bulk thin film electrode. It was observed that the irreversible morphology modifications together with SEI evolution are critical to capacity degradation while retaining good coulombic efficiency.

  1. One protein, two chromophores: comparative spectroscopic characterization of 6,7-dimethyl-8-ribityllumazine and riboflavin bound to lumazine protein.

    PubMed

    Paulus, Bernd; Illarionov, Boris; Nohr, Daniel; Roellinger, Guillaume; Kacprzak, Sylwia; Fischer, Markus; Weber, Stefan; Bacher, Adelbert; Schleicher, Erik

    2014-11-20

    We investigated the lumazine protein from Photobacterium leiognathi in complex with its biologically active cofactor, 6,7-dimethyl-8-ribityllumazine, at different redox states and compared the results with samples containing a riboflavin cofactor. Using anaerobic photoreduction, we were able to record optical absorption kinetics from both cofactors in similar protein environments. It could be demonstrated that the protein is able to stabilize a neutral ribolumazine radical with ∼35% yield. The ribolumazine radical state was further investigated by W-band continuous-wave EPR and X-band pulsed ENDOR spectroscopy. Here, both the principal values of the g-tensor and an almost complete mapping of the proton hyperfine couplings (hfcs) could be obtained. Remarkably, the g-tensor's principal components are similar to those of the respective riboflavin-containing protein; however, the proton hfcs show noticeable differences. Comparing time-resolved optical absorption and fluorescence data from ribolumazine-containing samples, solely fluorescence but no signs of any intermediate radical or a triplet state could be identified. This is in contrast to lumazine protein samples containing the riboflavin cofactor, for which a high yield of the photogenerated triplet state and some excited flavin radical could be detected using time-resolved spectroscopy. These results clearly demonstrate that ribolumazine is a redox-active molecule and could, in principle, be employed as a cofactor in other enzymatic reactions.

  2. The spectroscopic foundation of CO2 climate forcing

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Daniels, T.; Kratz, D. P.; Collins, W.; Feldman, D.; Lawler, J. E.; Anderson, L. W.; Fahey, D. W.; Hunt, L. A.

    2015-12-01

    The radiative forcing (RF) of carbon dioxide (CO2) is the leading contribution to climate change from anthropogenic activities. Calculating CO2 RF requires detailed knowledge of spectral line parameters and lineshape functions for thousands of infrared absorption lines. A reliable spectroscopic characterization of CO2 forcing is therefore a critical input to scientific and policy-oriented assessments of present climate and future climate change. Our study is partly motivated by a recent assertion that CO2 RF values, and hence predictions of climate sensitivity to elevated CO2, have a significant high bias because the CO2 spectroscopic parameters being used are incorrect. Our results show that CO2 RF in a variety of atmospheres is remarkably insensitive to known uncertainties in the three main CO2 spectroscopic parameters: the line strengths, half widths, and line shapes. We demonstrate that this is due largely to the definition of CO2 RF, which is the difference between the CO2 longwave net flux at the tropopause for doubled CO2 concentrations from the preindustrial era. We also assess the effects of sub-Lorentzian wings of CO2 lines and find that the computed RF is largely insensitive to the spectral lineshape function. Overall, the spectroscopic uncertainty in present-day CO2 RF is less than a few percent. Our study highlights the basics and subtleties of RF calculations, addressing interests of the expert and non-expert.

  3. Monothiol Glutaredoxins Can Bind Linear [Fe3S4]+ and [Fe4S4]2+ Clusters in Addition to [Fe2S2]2+ Clusters: Spectroscopic Characterization and Functional Implications

    PubMed Central

    Zhang, Bo; Bandyopadhyay, Sibali; Shakamuri, Priyanka; Naik, Sunil G.; Huynh, Boi Hanh; Couturier, Jérémy; Rouhier, Nicolas; Johnson, Michael K.

    2013-01-01

    Saccharomyces cerevisiae mitochondrial glutaredoxin 5 (Grx5) is the archetypical member of a ubiquitous class of monothiol glutaredoxins with a strictly conserved CGFS active-site sequence that has been shown to function in biological [Fe2S2]2+ cluster trafficking. In this work, we show that recombinant S. cerevisiae Grx5 purified aerobically after prolonged exposure of the cell-free extract to air or after anaerobic reconstitution in the presence of glutathione, predominantly contains a linear [Fe3S4]+ cluster. The excited state electronic properties and ground state electronic and vibrational properties of the linear [Fe3S4]+ cluster have been characterized using UV-visible absorption/CD/MCD, EPR, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic S = 5/2 linear [Fe3S4]+ cluster with properties similar to those reported for synthetic linear [Fe3S4]+ clusters and the linear [Fe3S4]+ clusters in purple aconitase. Moreover, the results indicate that the Fe-S cluster content previously reported for many monothiol Grxs has been misinterpreted exclusively in terms of [Fe2S2]2+ clusters, rather than linear [Fe3S4]+ clusters or mixtures of linear [Fe3S4]+ and [Fe2S2]2+ clusters. In the absence of GSH, anaerobic reconstitution of Grx5 yields a dimeric form containing one [Fe4S4]2+ cluster that competent for in vitro activation of apo-aconitase, via intact cluster transfer. The ligation of the linear [Fe3S4]+ and [Fe4S4]2+ clusters in Grx5 has been assessed by spectroscopic, mutational and analytical studies. Potential roles for monothiol Grx5 in scavenging and recycling linear [Fe3S4]+ clusters released during protein unfolding under oxidative stress conditions and in maturation of [Fe4S4]2+ cluster-containing proteins are discussed in light of these results. PMID:24032439

  4. Structural characterization of C-S-H and C-A-S-H samples-Part II: Local environment investigated by spectroscopic analyses

    SciTech Connect

    Renaudin, Guillaume; Russias, Julie; Leroux, Fabrice; Cau-dit-Coumes, Celine; Frizon, Fabien

    2009-12-15

    Spectroscopic studies ({sup 1}H, {sup 23}Na and {sup 27}Al MAS NMR and Raman spectroscopy) have been used to characterize three series of C-S-H samples (0.8Spectroscopic investigations indicate that the main part of the Al atoms is readily incorporated into the interlayer region of the C-S-H structure. Al atoms are mainly inserted as four-fold coordinated aluminates in the dreierketten silicate chain (either in bridging or paired tetrahedra) at low Ca/Si ratio. Four-fold aluminates are progressively replaced by six-fold coordinated aluminates located into the interlayer region of the C-S-H structure and bonded to silicate chains. Investigation of the hydrogen bonding in C-S-H indicates that the main part of the hydrogen bonds is intra-main layer, and thus explains the low stacking cohesion of the C-S-H structure leading to its nanometric crystal size and the OD character of the tobermorite like structures. - Graphical abstract: The insertion of aluminum atoms into the C-S-H structure has been investigated by spectroscopic analyses ({sup 27}Al and {sup 1}H MAS NMR and Raman). The previously determined structural continuity, when increasing the C/S ratio from the C-S-H(I) type to the C-S-H(II) type, has been confirmed even in the presence of aluminum.

  5. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-06-27

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  6. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-01-01

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity. PMID:27355940

  7. Spectroscopic characterization of enzymatic flax retting: Factor analysis of FT-IR and FT-Raman data

    NASA Astrophysics Data System (ADS)

    Archibald, D. D.; Henrikssen, G.; Akin, D. E.; Barton, F. E.

    1998-06-01

    Flax retting is a chemical, microbial or enzymatic process which releases the bast fibers from the stem matrix so they can be suitable for mechanical processing before spinning into linen yarn. This study aims to determine the vibrational spectral features and sampling methods which can be used to evaluate the retting process. Flax stems were retted on a small scale using an enzyme mixture known to yield good retted flax. Processed stems were harvested at various time points in the process and the retting was evaluated by conventional methods including weight loss, color difference and Fried's test, a visual ranking of how the stems disintegrate in hot water. Spectroscopic measurements were performed on either whole stems or powders of the fibers that were mechanically extracted from the stems. Selected regions of spectra were baseline and amplitude corrected using a variant of the multiplicative signal correction method. Principal component regression and partial least-squares regression with full cross-validation were used to determine the spectral features and rate of spectral transformation by regressing the spectra against the retting time in hours. FT-Raman of fiber powders and FT-IR reflectance of whole stems were the simplest and most precise methods for monitoring the retting transformation. Raman tracks the retting by measuring the decrease in aromatic signal and subtle changes in the C-H stretching vibrations. The IR method uses complex spectral features in the fingerprint and carbonyl region, many of which are due to polysaccharide components. Both spectral techniques monitor the retting process with greater precision than the reference method.

  8. A combined spectroscopic and molecular docking approach to characterize binding interaction of megestrol acetate with bovine serum albumin.

    PubMed

    Shi, Jie-hua; Zhu, Ying-yao; Wang, Jing; Chen, Jun

    2015-02-01

    The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA-BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb ) and number of binding sites (n) for MA binding to BSA were 2.8 × 10(5)  L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G(0) in the binding process. The enthalpy change (∆H(0) ) and entropy change (∆S(0) ) were - 124.0 kJ/mol and -295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA-BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA. PMID:24852109

  9. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE AGNs. I. SPECTROSCOPIC PROPERTIES AND SERENDIPITOUS DISCOVERY OF NEW DUAL AGNs

    SciTech Connect

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena; Mendez-Abreu, Jairo; Lopez-Martin, Luis; Fuentes-Carrera, Isaura; Leon-Tavares, Jonathan; Chavushyan, Vahram H.

    2013-01-20

    A sample of 10 nearby intermediate-type active galactic nuclei (AGNs) drawn from the Sloan Digital Sky Survey is presented. The aim of this work is to provide estimations of the black hole (BH) mass for the sample galaxies from the dynamics of the broad-line region. For this purpose, a detailed spectroscopic analysis of the objects was done. Using Baldwin-Phillips-Terlevich diagnostic diagrams, we have carefully classified the objects as true intermediate-type AGNs and found that 80%{sup +7.2%} {sub -17.3%} are composite AGNs. The BH mass estimated for the sample is within 6.54 {+-} 0.16 < log M {sub BH} < 7.81 {+-} 0.14. Profile analysis shows that five objects (J120655.63+501737.1, J121607.08+504930.0, J141238.14+391836.5, J143031.18+524225.8, and J162952.88+242638.3) have narrow double-peaked emission lines in both the red (H{alpha}, [N II] {lambda}{lambda}6548,6583 and [S II] {lambda}{lambda}6716, 6731) and the blue (H{beta} and [O III] {lambda}{lambda}4959, 5007) regions of the spectra, with velocity differences ({Delta}V) between the double peaks within 114 km s{sup -1} < {Delta}V < 256 km s{sup -1}. Two of them, J121607.08+504930.0 and J141238.14+391836.5, are candidates for dual AGNs since their double-peaked emission lines are dominated by AGN activity. In searches of dual AGNs, type 1, type II, and intermediate-type AGNs should be carefully separated, due to the high serendipitous number of narrow double-peaked sources (50% {+-} 14.4%) found in our sample.

  10. Portuguese tin-glazed earthenware from the 16th century: A spectroscopic characterization of pigments, glazes and pastes

    NASA Astrophysics Data System (ADS)

    Vieira Ferreira, L. F.; Ferreira Machado, I.; Ferraria, A. M.; Casimiro, T. M.; Colomban, Ph.

    2013-11-01

    Sherds representative of the Portuguese faience production of the early-16th century from the "Mata da Machada" kiln and from an archaeological excavation on a small urban site in the city of Aveiro (from late 15th to early 16th century) were studied with the use of non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE). These results were compared with the ones obtained for two Spanish productions, from Valencia and Seville, both from same period (late 15th century and 16th century), since it is well know that Portugal imported significant quantities of those goods from Spain at that time.

  11. Spectroscopic and Thermogravimetric Characterization of Pb(II) Dinonyldithiophosphate: Removal of Pb(II) from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Gümgüm, H. B.; Biricik, N.

    2015-07-01

    Dinonyldithiophosphoric acid (DNDTPA) was prepared by adding phosphorus pentasulfide to nonyl alcohol. The lead dinonyl dithiophosphate complex Pb(DNDTP) 2 was prepared by mixing a solution of lead(II) with a solution of DNDTPA in ethanol at room temperature. The recovered Pb(DNDTP) 2 was crystallized in ethanol, and fi ne colorless needles were obtained. The complex was characterised by elemental analysis and IR, UV-vis and atomic absorption spectroscopy. The thermal behavior of Pb(DNDTP) 2 was investigated by thermogravimetric analysis under a nitrogen atmosphere. Removal of Pb(II) from aqueous media by DNDTPA solutions was investigated. The optimum conditions for extraction, such as the organic solvent, pH of the aqueous phase, time of equilibration, concentration, and effect of anions, were investigated. It was found that DNDTPA is an effective substance for removing Pb(II) from aqueous solution.

  12. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Wang, Xiou-Xiou; Liu, Ting-Ting; Jiang, Min; Wang, Qi

    2016-09-01

    Artemether (AMT), a peroxide sesquiterpenoides, has been widely used as an antimalarial for the treatment of multiple drug-resistant strains of plasmodium falciparum malaria. In this work, the binding interaction of AMT with bovine serum albumin (BSA) under the imitated physiological conditions (pH7.4) was investigated by UV spectroscopy, fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD), three-dimensional fluorescence spectroscopy and molecular docking methods. The experimental results indicated that there was a change in UV absorption of BSA along with a slight red shift of absorption wavelength, indicating that the interaction of AMT with BSA occurred. The intrinsic fluorescence of BSA was quenched by AMT due to the formation of AMT-BSA complex. The number of binding sites (n) and binding constant of AMT-BSA complex were about 1 and 2.63×10(3)M(-1) at 298K, respectively, suggesting that there was stronger binding interaction of AMT with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be concluded that the binding of AMT with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°|. The results of experiment and molecular docking confirmed the main interaction forces between AMT and BSA were van der Waals force. And, there was a slight change in the BSA conformation after binding AMT but BSA still retains its secondary structure α-helicity. However, it had been confirmed that AMT binds on the interface between sub-domain IIA and IIB of BSA.

  13. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Wang, Xiou-Xiou; Liu, Ting-Ting; Jiang, Min; Wang, Qi

    2016-09-01

    Artemether (AMT), a peroxide sesquiterpenoides, has been widely used as an antimalarial for the treatment of multiple drug-resistant strains of plasmodium falciparum malaria. In this work, the binding interaction of AMT with bovine serum albumin (BSA) under the imitated physiological conditions (pH7.4) was investigated by UV spectroscopy, fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD), three-dimensional fluorescence spectroscopy and molecular docking methods. The experimental results indicated that there was a change in UV absorption of BSA along with a slight red shift of absorption wavelength, indicating that the interaction of AMT with BSA occurred. The intrinsic fluorescence of BSA was quenched by AMT due to the formation of AMT-BSA complex. The number of binding sites (n) and binding constant of AMT-BSA complex were about 1 and 2.63×10(3)M(-1) at 298K, respectively, suggesting that there was stronger binding interaction of AMT with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be concluded that the binding of AMT with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°|. The results of experiment and molecular docking confirmed the main interaction forces between AMT and BSA were van der Waals force. And, there was a slight change in the BSA conformation after binding AMT but BSA still retains its secondary structure α-helicity. However, it had been confirmed that AMT binds on the interface between sub-domain IIA and IIB of BSA. PMID:27327124

  14. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of manganese (II) complex of picolinate: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Tamer, Ömer; Avcı, Davut; Atalay, Yusuf; Çoşut, Bünyemin; Zorlu, Yunus; Erkovan, Mustafa; Yerli, Yusuf

    2016-02-01

    A novel manganese (II) complex with picolinic acid (pyridine 2-carboxylic acid, Hpic), namely, [Mn(pic)2(H2O)2] was prepared and its crystal structure was fully characterized by using single crystal X-ray diffraction. Picolinate (pic) ligands were coordinated to the central manganese(II) ion as bidentate N,O-donors through the nitrogen atoms of pyridine rings and the oxygen atoms of carboxylate groups forming five-membered chelate rings. The spectroscopic characterization of Mn(II) complex was performed by the applications of FT-IR, Raman, UV-vis and EPR techniques. In order to support these studies, density functional theory (DFT) calculations were carried out by using B3LYP level. IR and Raman spectra were simulated at B3LYP level, and obtained results indicated that DFT calculations generally give compatible results to the experimental ones. The electronic structure of the Mn(II) complex was predicted using time dependent DFT (TD-DFT) method with polarizable continuum model (PCM). Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength were investigated by applying natural bond orbital (NBO) analysis. Nonlinear optical properties of Mn(II) complex were investigated by the determining of molecular polarizability (α) and hyperpolarizability (β) parameters.

  15. Biochemical and spectroscopic characterization of a new oxygen-evolving photosystem II core complex from the cyanobacterium Synechocystis PCC 6803.

    PubMed

    Tang, X S; Diner, B A

    1994-04-19

    for oxygen evolution. As Synechocystis 6803 is being used extensively for site-directed mutagenesis of PSII, this preparation is particularly valuable for spectroscopic and biochemical analyses of PSII from wild-type and from site-directed mutants.

  16. p-Tolylimido rhenium(V) complexes - synthesis, X-ray studies, spectroscopic characterization, DFT calculations