Science.gov

Sample records for absorption spectroscopy fourier

  1. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    PubMed

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  2. Time-resolved air monitoring using Fourier absorption spectroscopy

    SciTech Connect

    Biermann, H.W.

    1995-12-31

    Two categories where spectroscopic techniques excel are the capabilities to perform air analyses in situ and to obtain data at very high time resolutions. Because of these features, the Department of Pesticide Regulation augmented its extensive air monitoring capabilities with a Fourier transform infrared (FTIR) spectrometer using open-path optical systems for time resolved ambient air monitoring. A description of the instrumentation and the data analysis procedures will be presented based on two data sets obtained with this FTIR system. In one case, a 100 m folded optical path was used to measure methyl bromide concentrations after fumigation in a warehouse with a time resolution of 15 min and a detection limit of 0.2 ppm. And trying to assess the capability of this FTIR spectrometer to determine flux, water vapor concentrations were measured with a four-meter path length at a time resolution of 0.6 seconds.

  3. Development of Fourier transform spectrometry for UV-visible differential optical absorption spectroscopy measurements of tropospheric minor constituents.

    PubMed

    Vandaele, A C; Carleer, M

    1999-04-20

    Concentration measurements of trace gases in the atmosphere require the use of highly sensitive and precise techniques. The UV-visible differential optical absorption spectroscopy technique is one that is heavily used for tropospheric measurements. To assess the advantages and drawbacks of using a Fourier transform spectrometer, we built a differential optical absorption spectroscopy optical setup based on a Bruker IFS 120M spectrometer. The characteristics and the capabilities of this setup have been studied and compared with those of the more conventional grating-based instruments. Two of the main advantages of the Fourier transform spectrometer are (1) the existence of a reproducible and precise wave-number scale, which greatly simplifies the algorithms used to analyze the atmospheric spectra, and (2) the possibility of recording large spectral regions at relatively high resolution, enabling the simultaneous detection of numerous chemical species with better discriminating properties. The main drawback, on the other hand, is due to the fact that a Fourier transform spectrometer is a scanning device for which the scanning time is small compared with the total measurement time. It does not have the signal integration capabilities of the CCD or photodiode array-based grating spectrographs. The Fourier transform spectrometer therefore needs fairly large amounts of light and is limited to short to medium absorption path lengths when working in the UV.

  4. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    PubMed

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  5. Fourier transform infrared spectroscopy

    SciTech Connect

    Ferraro, J.R.; Basile, L.J.

    1985-01-01

    The final and largest volume to complete this four-volume treatise is published in response to the intense commercial and research interest in Fourier Transform Interferometry. Volume 4 introduces new information on, for example, applications of Diffuse Reflectance Spectroscopy in the Far-infrared Region. The editors place emphasis on surface studies and address advances in Capillary Gas Chromatography-Fourier Transform Interferometry.

  6. Excited electronic structure of methylcyanoacetylene probed by VUV Fourier-transform absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lamarre, N.; Gans, B.; Vieira Mendes, L. A.; Gronowski, M.; Guillemin, J.-C.; De Oliveira, N.; Douin, S.; Chevalier, M.; Crépin, C.; Kołos, R.; Boyé-Péronne, S.

    2016-10-01

    High resolution photoabsorption spectrum of gas-phase methylcyanoacetylene (CH3C3 N) has been recorded from 44 500 to 130 000 cm-1 at room temperature with a vacuum ultraviolet Fourier-transform spectrometer on the DESIRS synchrotron beamline (SOLEIL). The absolute photoabsorption cross section in this range is reported for the first time. Valence shell transitions and Rydberg series converging to the ground state X˜+2E of the cation as well as series converging to electronically excited states (A˜+A21 and C˜+) are observed and assigned. Time-dependent density-functional-theory calculations have been performed to support the assignment of the experimental spectrum in the low energy range. A tentative scaling of the previously measured CH3C3N+ ion yield by Lamarre et al. [17] is proposed, based on the comparison of the absorption data above the first ionization potential with the observed autoionization structures.

  7. Infrared absorption of CH3OSO detected with time-resolved Fourier-transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jin-Dah; Lee, Yuan-Pern

    2011-03-01

    A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH3OSO produced upon irradiation of a flowing gaseous mixture of CH3OS(O)Cl in N2 or CO2 at 248 nm. Two intense transient features with origins near 1152 and 994 cm-1 are assigned to syn-CH3OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm-1, assigned to the S=O stretching mixed with CH3 rocking (ν8) and the S=O stretching mixed with CH3 wagging (ν9) modes, respectively, and the latter to the C-O stretching (ν10) mode at 994 ± 6 cm-1. Two weak bands at 2991 ± 6 and 2956 ± 3 cm-1 are assigned as the CH3 antisymmetric stretching (ν2) and symmetric stretching (ν3) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86/aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH3OSO near 1164 cm-1 likely makes a small contribution to the observed band near 1152 cm-1. A simple kinetic model of self-reaction is employed to account for the decay of CH3OSO and yields a second-order rate coefficient k = (4 ± 2)×10-10 cm3 molecule-1 s-1.

  8. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    SciTech Connect

    Laroche, G.; Vallade, J.; Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F.; Nijnatten, P. van

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  9. Submillimeter Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Serabyn, Eugene

    1998-07-01

    At submillimeter wavelengths, broadband spectroscopy is currently possible only with a Fourier transform spectrometer (FTS). As a result, FTSes are quite useful for observations of objects in which spectral lines either cover a large frequency range, or where lines are broadened either by pressure or kinematics. Sources matching these descriptions include galaxies, hot, dense cores in interstellar molecular clouds, and planetary atmospheres. In the following, a tour of the classes of observations enabled by broadband spectroscopy is presented. As meaningful results call for attention to calibration, relevant calibration issues are discussed in the context of these observations.

  10. Comparison of Fourier Transform Infrared Spectroscopy (FTIR) and Tunable Diode Laser Absorption Spectroscopy (TDLAS) Methods for Determining Stable Isotope Ratios of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Ubierna Lopez, N.; Cambaliza, M. L.; Griffith, D. W.; Mount, G. H.; Cousins, A. B.

    2011-12-01

    Worldwide, biosphere-atmosphere carbon exchange and net ecosystem exchange (NEE) are determined using eddy-covariance methods. Information from isotopic CO2 measurements provides valuable constraints to partition NEE into its component fluxes. Stable isotope measurements have traditionally been constrained in frequency by the need to collect and analyze field samples in a laboratory using isotope ratio mass spectrometry (MS). New techniques based on absorption spectroscopy allow for high temporal sampling resolution in the field, but with concerns about precision and accuracy of the isotope-ratios. We tested two absorption spectroscopy systems, a Fourier transformed infrared analyzer (FTIR, Vector 22, Bruker Optics, Ettlingen, Germany) and a tunable diode laser absorption spectrometer (TDLAS, model TGA 100, Campbell Scientific, Inc. Logan, UT, USA), by comparing them with continuous-flow MS (Delta plus XP IRMS, ThermoFinnigan, Bremen, Germany). We conducted a laboratory comparison of gases mixed with various CO2 concentrations and isotopic signatures as well as field-collected samples. The mixed tanks were balanced in ultra-zero air with CO2 concentrations ranging from 353 to 553 ppm, and isotopic compositions (δ13C) between -11.7% to -39.3%. The field samples were collected at four different locations (forest, wheat field, dairy farm, and paper mill) by pumping ambient air into 44- L tanks. Gas from each sample tank was simultaneously delivered to the FTIR and TDLAS systems and subsequently analyzed with continuous-flow MS. The [CO2] determined with the TDLAS or FTIR differed by <1 ppm for CO2-tanks and <2.4 ppm for ambient air samples. The δ13C offset of the CO2 tanks between the MS and the TDLAS and FTIR were on average 0.1% and 0.3%, respectively. However, the offset in TDLAS δ13C values increased for ambient air samples to values of 0.4%, with a maximum of 0.9% for the dairy farm and paper mill samples. Ambient air samples analyzed with the FTIR were on

  11. Fourier spectroscopy and planetary research

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.; Kunde, V. G.

    1974-01-01

    The application of Fourier Transform Spectroscopy (FTS) to planetary research is reviewed. The survey includes FTS observations of the sun, all the planets except Uranus and Pluto, the Galilean satellites and Saturn's rings. Instrumentation and scientific results are considered and the prospects and limitations of FTS for planetary research in the forthcoming years are discussed.

  12. Photothermal absorption correlation spectroscopy.

    PubMed

    Octeau, Vivien; Cognet, Laurent; Duchesne, Laurence; Lasne, David; Schaeffer, Nicolas; Fernig, David G; Lounis, Brahim

    2009-02-24

    Fluorescence correlation spectroscopy (FCS) is a popular technique, complementary to cell imaging for the investigation of dynamic processes in living cells. Based on fluorescence, this single molecule method suffers from artifacts originating from the poor fluorophore photophysics: photobleaching, blinking, and saturation. To circumvent these limitations we present here a new correlation method called photothermal absorption correlation spectroscopy (PhACS) which relies on the absorption properties of tiny nano-objects. PhACS is based on the photothermal heterodyne detection technique and measures akin FCS, the time correlation function of the detected signals. Application of this technique to the precise determination of the hydrodynamic sizes of different functionalized gold nanoparticles are presented, highlighting the potential of this method. PMID:19236070

  13. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  14. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  15. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    NASA Astrophysics Data System (ADS)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  16. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  17. Fourier spectroscopy, past, present, and future.

    PubMed

    Mertz, L

    1971-02-01

    Several comments concerning the analytical relationship between measured interferograms and spectra serve to clarify some common misconceptions. A brief history traces fourier spectroscopy, beginning with Fellgett's thesis and culminating with the Connes' measurements. Special note is made of the fact that astronomy has served as the challenge and motivation for almost all the progress. The discussion of the present situation mentions both the commercial tangle and the general clouds that now hang over science. A simple pedantic experiment, which is described in some detail, may prove helpful in diminishing the hesitations of future scientists. The applications of fourier spectrometry in the infrared, both near and far, are already well in hand. Further application at shorter wavelengths, both visible and ultraviolet, will also be fruitful. Even though Fellgett's advantage is not applicable, the Jacquinot and Connes advantages will prove most important. In particular, capabilities surpassing those of the conventional coudé spectrograph present an intermediate step on the path to the eventual consummation of a giant flux collector worthy of fourier spectrometry.

  18. Surface Inspection using fourier transform infrared spectroscopy

    SciTech Connect

    Powell, G.L.; Smyrl, N.R.; Williams, D.M.; Meyers, H.M. III; Barber, T.E.; Marrero-Rivera, M.

    1994-08-08

    The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface inspection is described. Laboratory instruments and portable instruments can support remote sensing probes that can map chemical contaminants on surfaces. Detection limits under the best of conditions are in the subnanometer range (i.e., near absolute cleanliness), excellent performance is obtained in the submicrometer range, and useful performance may exist for films tens of microns thick. Identifying and quantifying contamination such as mineral oils and greases, vegetable oils, and silicone oils on aluminum foil, galvanized sheet steel, smooth aluminum tubing, and gritblasted 7075 aluminum alloy and D6AC steel are described. The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques for quantitatively applying oils to metals, subsequently verifying the application, and nonlinear relationships between reflectance and the quantity of oil are discussed.

  19. Fourier transform infrared spectroscopy for Mars science

    NASA Astrophysics Data System (ADS)

    Anderson, Mark S.; Andringa, Jason M.; Carlson, Robert W.; Conrad, Pamela; Hartford, Wayne; Shafer, Michael; Soto, Alejandro; Tsapin, Alexandre I.; Dybwad, Jens Peter; Wadsworth, Winthrop; Hand, Kevin

    2005-03-01

    Presented here is a Fourier transform infrared spectrometer (FTIR) for field studies that serves as a prototype for future Mars science applications. Infrared spectroscopy provides chemical information that is relevant to a number of Mars science questions. This includes mineralogical analysis, nitrogen compound recognition, truth testing of remote sensing measurements, and the ability to detect organic compounds. The challenges and scientific opportunities are given for the in situ FTIR analysis of Mars soil and rock samples. Various FTIR sampling techniques are assessed and compared to other analytical instrumentation. The prototype instrument presented is capable of providing field analysis in a Mars analog Antarctic environment. FTIR analysis of endolithic microbial communities in Antarctic rocks and a Mars meteor are given as analytical examples.

  20. Absorption mode Fourier transform electrostatic linear ion trap mass spectrometry.

    PubMed

    Hilger, Ryan T; Wyss, Phillip J; Santini, Robert E; McLuckey, Scott A

    2013-09-01

    In Fourier transform mass spectrometry, it is well-known that plotting the spectrum in absorption mode rather than magnitude mode has several advantages. However, magnitude spectra remain commonplace due to difficulties associated with determining the phase of each frequency at the onset of data acquisition, which is required for generating absorption spectra. The phasing problem for electrostatic traps is much simpler than for Fourier transform ion cyclotron resonance (FTICR) instruments, which greatly simplifies the generation of absorption spectra. Here, we present a simple method for generating absorption spectra from a Fourier transform electrostatic linear ion trap mass spectrometer. The method involves time shifting the data prior to Fourier transformation in order to synchronize the onset of data acquisition with the moment of ion acceleration into the electrostatic trap. Under these conditions, the initial phase of each frequency at the onset of data acquisition is zero. We demonstrate that absorption mode provides a 1.7-fold increase in resolution (full width at half maximum, fwhm) as well as reduced peak tailing. We also discuss methodology that may be applied to unsynchronized data in order to determine the time shift required to generate an absorption spectrum.

  1. Concentration-modulated absorption spectroscopy.

    PubMed

    Langley, A J; Beaman, R A; Baran, J; Davies, A N; Jones, W J

    1985-07-01

    Concentration modulation is demonstrated to be a technique capable of markedly extending sensitivity limits in absorption spectroscopy. The gain generated relates in such a manner to sample transmittance that for the first reported time direct spectroscopic concentration measurements become possible. When concentration modulation is used with picosecond lasers, state lifetimes can be determined to a limit of approximately 20 psec.

  2. Dual Comb Fourier Transform Spectroscopy in the Green Region

    NASA Astrophysics Data System (ADS)

    Knize, R. J.; Bernhardt, B.; Picqué, N.; Hänsch, T. W.

    2010-06-01

    Laser combs in combination with other advancing tools of laser science, nonlinear optics, photonics, and electronic signal processing have the potential to vastly enhance the range and capabilities of molecular laser spectroscopy. The high versatility of frequency comb sources can indeed harness new techniques for ultra-rapid and ultra-sensitive recording of complex molecular spectra. The recent proof-of-principle demonstrations of dual comb Fourier transform spectroscopy have mostly been carried out in the near-infrared region, around 1.0 and 1.5 μm. The mode-locked ytterbium- or erbium-doped fiber femtosecond laser systems emitting in this range indeed require few adjustment thanks to their guided light and permit reliable unattended operation. With expanded wavelength coverage and continued improvements in speed and sensitivity, dual comb spectroscopy should find use as a novel, time-domain spectroscopic analytical tool. As far as molecular spectroscopy is concerned, the mid-infrared and visible-ultraviolet wavelength regions show both the potential for specificity and sensitivity for tracing molecules. In particular, the visible-ultraviolet region complements the mid-infrared molecular fingerprint range, as it provides access to many electronic transitions, in particular belonging to reactive species. In this contribution, we report on our progress in the implementation of dual comb spectroscopy in the 520 nm green region. We present preliminary results on a powerful new sensitive ultra-rapid tool for linear rovibronic absorption spectroscopy, based on frequency-doubled ytterbium-doped fiber lasers and we discuss its intriguing prospects for spectroscopy of short lived transient species.

  3. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    PubMed

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications.

  4. Fourier transform infrared spectroscopy of deuterated proteins

    NASA Astrophysics Data System (ADS)

    Marcano O., A.; Markushin, Y.; Melikechi, N.; Connolly, D.

    2008-08-01

    We report on Fourier transform spectra of deuterated proteins: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor II, monoclonal antibody to ovarian cancer antigen CA125 and Osteopontin. The spectra exhibit changes in the relative amplitude and spectral width of certain peaks. New peaks not present in the non-deuterated sample are also observed. Ways for improving the deuteration of proteins by varying the temperature and dilution time are discussed. We propose the use of deuterated proteins to increase the sensitivity of immunoassays aimed for early diagnostic of diseases most notably cancer.

  5. Graphene intracavity spaser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Nechepurenko, I. A.; Dorofeenko, A. V.

    2016-09-01

    We propose an intracavity plasmon absorption spectroscopy method based on graphene active plasmonics. It is shown that the plasmonic cavity contribution to the sensitivity is proportional to the quality factor Q of the graphene plasmonic cavity and reaches two orders of magnitude. The addition of gain medium into the cavity increases the sensitivity of method. Maximum sensitivity is reached in the vicinity of the plasmon generation threshold. The gain contribution to the sensitivity is proportional to Q1/2. The giant amplification of sensitivity in the graphene plasmon generator is associated with a huge path length, limited only by the decoherence processes. An analytical estimation of the sensitivity to loss caused by analyzed particles (molecules, nanoparticles, etc.) normalized by the single pass plasmon scheme is derived. Usage of graphene nanoflakes as plasmonic cavity allows a high spatial resolution to be reached, in addition to high sensitivity.

  6. Fourier Transform Infrared Spectroscopy Part III. Applications.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  7. Fourier transform stimulated emission pumping spectroscopy

    NASA Astrophysics Data System (ADS)

    Felker, P. M.; Henson, B. F.; Corcoran, T. C.; Connell, L. L.; Hartland, G. V.

    1987-12-01

    Theoretical and experimental results that demonstrate a new technique of non-linear interferometry based on stimulated emission pumping spectroscopy (SEPS) are presented. It is shown that splittings between the initial and final states in SEP processes can be measured by the method. Advantages and disadvantages of the technique relative to spectral domain SEPS are discussed.

  8. Air quality monitoring based on Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Yan; Wang, Rui

    2006-09-01

    The use of optical techniques to identify and quantify atmospheric pollutants has been focused within the past two decades. Fourier Transform Infrared (FTIR) spectroscopy has proven to be a powerful tool for multi-component analysis of air quality monitoring. The technique has been used for gaseous samples by extractive sampling as well as in the open-path configuration. The present contribution has described the application of FTIR to analyze gaseous pollutants in ambient air in detail. The study for the detection limits of the interested gas, the design of the multipass White mirror system, and the experimental results are described. The White cell is employed to increase the absorbance relative to noise in the absorbance spectrum by increasing the path length without proportional loss of signal. A classical least squares (CLS) fit is used to match the scaled standards or previously measured absorption profiles to those of the observed spectrum in the specified spectral analysis regions for simultaneous quantification of the compounds of interest, plus several other ambient air constituents. The regions were chosen carefully to provide optimum detection of the compounds of interest with minimum interference by other compounds. Specially, spectrum subtraction and differential absorption concepts are introduced into FTIR data analysis. The optimal window for CO, S0 II, NO II, NO and CO II would be the region at 2250-2020 cm -1, 1230-1070 cm -1, 2940-2840 cm -1, 1965-1775 cm -1, and around 668.24 cm -1 respectively. Deviations from traditional measured results for all approaches are in 10%.

  9. Bird sexing by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Steiner, Gerald; Bartels, Thomas; Krautwald-Junghanns, Maria-Elisabeth; Koch, Edmund

    2010-02-01

    Birds are traditionally classified as male or female based on their anatomy and plumage color as judged by the human eye. Knowledge of a bird's gender is important for the veterinary practitioner, the owner and the breeder. The accurate gender determination is essential for proper pairing of birds, and knowing the gender of a bird will allow the veterinarian to rule in or out gender-specific diseases. Several biochemical methods of gender determination have been developed for avian species where otherwise the gender of the birds cannot be determined by their physical appearances or characteristics. In this contribution, we demonstrate that FT-IR spectroscopy is a suitable tool for a quick and objective determination of the bird's gender. The method is based on differences in chromosome size. Male birds have two Z chromosomes and female birds have a W-chromosome and a Z-chromosome. Each Z-chromosome has approx. 75.000.000 bps whereas the W-chromosome has approx. 260.00 bps. This difference can be detected by FT-IR spectroscopy. Spectra were recorded from germ cells obtained from the feather pulp of chicks as well as from the germinal disk of fertilized but non-bred eggs. Significant changes between cells of male and female birds occur in the region of phosphate vibrations around 1080 and 1120 cm-1.

  10. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  11. Broadband Mid-Infrared Comb-Resolved Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Mills, Andrew; Mohr, Christian; Jiang, Jie; Fermann, Martin; Maslowski, Piotr

    2014-06-01

    We report on a comb-resolved, broadband, direct-comb spectroscopy system in the mid-IR and its application to the detection of trace gases and molecular line shape analysis. By coupling an optical parametric oscillator (OPO), a 100 m multipass cell, and a high-resolution Fourier transform spectrometer (FTS), sensitive, comb-resolved broadband spectroscopy of dilute gases is possible. The OPO has radiation output at 3.1-3.7 and 4.5-5.5 μm. The laser repetition rate is scanned to arbitrary values with 1 Hz accuracy around 417 MHz. The comb-resolved spectrum is produced with an absolute frequency axis depending only on the RF reference (in this case a GPS disciplined oscillator), stable to 1 part in 10^9. The minimum detectable absorption is 1.6x10-6 wn Hz-1/2. The operating range of the experimental setup enables access to strong fundamental transitions of numerous molecular species for applications based on trace gas detection such as environmental monitoring, industrial gas calibration or medical application of human breath analysis. In addition to these capabilities, we show the application for careful line shape analysis of argon-broadened CO band spectra around 4.7 μm. Fits of the obtained spectra clearly illustrate the discrepancy between the measured spectra and the Voigt profile (VP), indicating the need to include effects such as Dicke narrowing and the speed-dependence of the collisional width and shift in the line shape model, as was shown in previous cw-laser studies. In contrast to cw-laser based experiments, in this case the entire spectrum (˜ 250 wn) covering the whole P and R branches can be measured in 16 s with 417 MHz resolution, decreasing the acquisition time by orders of magnitude. The parallel acquisition allows collection of multiple lines simultaneously, removing the correlation of possible temperature and pressure drifts. While cw-systems are capable of measuring spectra with higher precision, this demonstration opens the door for fast

  12. Fourier spectroscopy with a one-million-point transformation

    NASA Technical Reports Server (NTRS)

    Connes, J.; Delouis, H.; Connes, P.; Guelachvili, G.; Maillard, J.; Michel, G.

    1972-01-01

    A new type of interferometer for use in Fourier spectroscopy has been devised at the Aime Cotton Laboratory of the National Center for Scientific Research (CNRS), Orsay, France. With this interferometer and newly developed computational techniques, interferograms comprising as many as one million samples can now be transformed. The techniques are described, and examples of spectra of thorium and holmium, derived from one million-point interferograms, are presented.

  13. Two-beam interferometer for fourier spectroscopy with rigid pendulum

    SciTech Connect

    Burkert, P.

    1983-05-17

    A two-beam interferometer for fourier spectroscopy includes a rigid pendulum structure mounting at least one of the movable retroreflectors in a fully compensated optical system immune to tilt and lateral movement distortions. The swing of the rotatably journaled pendulum accurately confines the retroreflector(s) to movement in a single plane during scanning and, due to the low heat generated in the pendulum bearings, the simple and compact structure is well adapted to be housed in a cryostat aboard a spacecraft.

  14. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  15. Infrared absorption of gaseous CH2BrOO detected with a step-scan Fourier-transform absorption spectrometer.

    PubMed

    Huang, Yu-Hsuan; Lee, Yuan-Pern

    2014-10-28

    CH2BrOO radicals were produced upon irradiation, with an excimer laser at 248 nm, of a flowing mixture of CH2Br2 and O2. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved infrared (IR) absorption spectra of reaction intermediates. Transient absorption with origins at 1276.1, 1088.3, 961.0, and 884.9 cm(-1) are assigned to ν4 (CH2-wagging), ν6 (O-O stretching), ν7 (CH2-rocking mixed with C-O stretching), and ν8 (C-O stretching mixed with CH2-rocking) modes of syn-CH2BrOO, respectively. The assignments were made according to the expected photochemistry and a comparison of observed vibrational wavenumbers, relative IR intensities, and rotational contours with those predicted with the B3LYP/aug-cc-pVTZ method. The rotational contours of ν7 and ν8 indicate that hot bands involving the torsional (ν12) mode are also present, with transitions 7(0)(1)12(v)(v) and 8(0)(1)12(v)(v), v = 1-10. The most intense band (ν4) of anti-CH2BrOO near 1277 cm(-1) might have a small contribution to the observed spectra. Our work provides information for directly probing gaseous CH2BrOO with IR spectroscopy, in either the atmosphere or laboratory experiments.

  16. Ultrafast and versatile spectroscopy by temporal Fourier transform.

    PubMed

    Zhang, Chi; Wei, Xiaoming; Marhic, Michel E; Wong, Kenneth K Y

    2014-06-18

    One of the most remarkable and useful properties of a spatially converging lens system is its inherent ability to perform the Fourier transform; the same applies for the time-lens system. At the back focal plane of the time-lens, the spectral information can be instantaneously obtained in the time axis. By implementing temporal Fourier transform for spectroscopy applications, this time-lens-based architecture can provide orders of magnitude improvement over the state-of-art spatial-dispersion-based spectroscopy in terms of the frame rate. On the other hand, in addition to the single-lens structure, the multi-lens structures (e.g. telescope or wide-angle scope) will provide very versatile operating conditions. Leveraging the merit of instantaneous response, as well as the flexible lens structure, here we present a 100-MHz frame rate spectroscopy system - the parametric spectro-temporal analyzer (PASTA), which achieves 17 times zoom in/out ratio for different observation ranges.

  17. Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.

  18. Fourier Spectroscopy of a Spin-Orbit Coupled Bose Gas

    NASA Astrophysics Data System (ADS)

    Valdes-Curiel, Ana; Trypogeorgos, Dimitris; Marshall, Erin; Spielman, Ian

    2016-05-01

    We generate spin-orbit coupling in a spin-1 Bose-Einstein condensate using Raman transitions. We are able to measure the system's spin and momentum dependent energy spectrum by looking at the time evolution of the three spin states. We drive transitions at different detunings from Raman resonance and extract the Fourier components of the time dependent evolution to reconstruct the spectrum. We also add a periodic modulation to one Raman field which allows us to have a fully tunable spin-orbit coupling dispersion that we can directly measure using our spectroscopy technique.

  19. Quantum control in two-dimensional Fourier-transform spectroscopy

    SciTech Connect

    Lim, Jongseok; Lee, Han-gyeol; Lee, Sangkyung; Ahn, Jaewook

    2011-07-15

    We present a method that harnesses coherent control capability to two-dimensional Fourier-transform optical spectroscopy. For this, three ultrashort laser pulses are individually shaped to prepare and control the quantum interference involved in two-photon interexcited-state transitions of a V-type quantum system. In experiments performed with atomic rubidium, quantum control for the enhancement and reduction of the 5P{sub 1/2}{yields} 5P{sub 3/2} transition was successfully tested in which the engineered transitions were distinguishably extracted in the presence of dominant one-photon transitions.

  20. Use of absorption spectroscopy for refined petroleum product discrimination

    NASA Astrophysics Data System (ADS)

    Short, Michael

    1991-07-01

    On-line discrimination between arbitrary petroleum products is necessary for optimal control of petroleum refinery and pipeline operation and process control involving petroleum distillates. There are a number of techniques by which petroleum products can be distinguished from one another. Among these, optical measurements offer fast, non-intrusive, real-time characterization. The application examined here involves optically monitoring the interface between dissimilar batches of fluids in a gasoline pipeline. After examination of near- infrared and mid-infrared absorption spectroscopy and Raman spectroscopy, Fourier transform mid-infrared (FTIR) spectroscopy was chosen as the best candidate for implementation. On- line FTIR data is presented, verifying the applicability of the technique for batch interface detection.

  1. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  2. Preliminary study on diffuse axonal injury by Fourier transform infrared spectroscopy histopathology imaging.

    PubMed

    Yang, Tiantong; He, Guanglong; Zhang, Xiang; Chang, Lin; Zhang, Haidong; Ripple, Mary G; Fowler, David R; Li, Ling

    2014-01-01

    The objective of this study was to evaluate the application of Fourier transform infrared (FTIR) spectroscopy for detecting diffuse axonal injury (DAI) in a mouse model. Brain tissues from DAI mouse model were prepared with H&E, silver, and β-amyloid precursor protein (β-APP) immunohistochemistry stains and were also studied with FTIR. The infrared spectrum images showed high absorption of amide II in the subcortical white matter of the experimental mouse brain, while there was no obvious expression of amide II in the control mouse brain. The areas with high absorption of amide II were in the same distribution as the DAI region confirmed by the silver and β-APP studies. The result suggests that high absorption of amide II correlates with axonal injury. The use of FTIR imaging allows the biochemical changes associated with DAI pathologies to be detected in the tissues, thus providing an important adjunct method to the current conventional pathological diagnostic techniques.

  3. Absorption spectroscopy: technique provides extremely high sensitivity.

    PubMed

    Provencal, R A; Paul, J B; Michael, E; Saykally, R J

    1998-06-01

    Technology associated with cavity ringdown laser absorption spectroscopy is reviewed. The technique is used to study general trace analysis, free radicals in flames and chemical reactors, molecular ions in electrical discharges, biological molecules and water clusters in supersonic jets, and vibrational overtones of stable molecules. Its specific enough to detect about 1-ppm fractional absorption by a gaseous sample in about 10 microseconds. The use of mirrors in ringdown sepctroscopy is explained. Other topics include the generation of pulsed infrared rays and the adaptation of ringdown spectroscopy for use with narrow-bandwidth continuous-wave lasers. PMID:11541906

  4. Pentachlorodibenzo-p-dioxin isomer differentiation by capillary gas chromatography fourier transform infrared spectroscopy

    SciTech Connect

    Grainger, J.; Reddy, V.V.; Patterson, D.G. Jr. )

    1988-09-01

    Analysis of polychlorinated dibenzo-p-dioxin (PCDD) isomers has been the focus of a number of recent investigations due to the extreme toxicities of specific laterally tetrachlorinated isomers. These investigations have primarily been directed toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), the most toxic PCDD isomer and toward isomer differentiation of TCDD isomers as a group. With the exception of pentachlorodibenzo-p-dioxin (PnCDD) isomer specific determinations based on calculated retention indices, isomer differentiation of the 14 PnCDD isomers has not been reported although 1,2,3,7,8-PnCDD is nearly as toxic as 2,3,7,8-TCDD. Chromatographically independent methods for PCDD isomer assignment have been reported by x-ray powder diffraction, proton nuclear magnetic resonance ({sup 1}H NMR), gas chromatography/matrix isolation Fourier transform infrared (MI/FTIR) spectroscopy, diffuse reflectance infrared Fourier transformation (DRIFT) spectroscopy and gas chromatography/Fourier transform infrared (GC/FTIR) spectroscopy. Although TCDD isomer assignments by the various methods are substantially in agreement, some differences are yet to be resolved. Vapor-phase reference infrared spectra are presented for the 14 PnCDD isomers. These spectra were recorded from low (< 10) microgram quantities for each isomer. The spectrum of each isomer is unique, allowing for positive isomer identification and individual group frequency absorption characteristics as a function of isomer structure.

  5. Discrimination of different Chrysanthemums with Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hong-xia; Zhou, Qun; Sun, Su-qin; Bao, Hong-juan

    2008-07-01

    Use Fourier transform infrared spectroscopy (FT-IR) to analyze simultaneously the main chemical constituents in different solvent extracts of seven kinds of Chrysanthemum samples of different regions. The findings indicate that different Chrysanthemum samples have dissimilar fingerprint characters in FT-IR spectra. Such spectral technique can provide substance structural information of the complicated test samples. According to these spectral fingerprint features, we cannot only identify the main components of different extracts, but also distinguish the origins of the Chrysanthemum samples from different regions easily, which is a troublesome work by existing analytical methods. FT-IR, with the characters of speediness, good repeatability and easy operation, can be used as an effective analytical means to study the complicated system, in our research, the tradition Chinese medicines.

  6. A rheumatoid arthritis study by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro

    2012-01-01

    Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.

  7. Molecular Structure and Chirality Detection by Fourier Transform Microwave Spectroscopy.

    PubMed

    Lobsiger, Simon; Perez, Cristobal; Evangelisti, Luca; Lehmann, Kevin K; Pate, Brooks H

    2015-01-01

    We describe a three-wave mixing experiment using time-separated microwave pulses to detect the enantiomer-specific emission signal of the chiral molecule using Fourier transform microwave (FTMW) spectroscopy. A chirped-pulse FTMW spectrometer operating in the 2-8 GHz frequency range is used to determine the heavy-atom substitution structure of solketal (2,2-dimethyl-1,3-dioxolan-4-yl-methanol) through analysis of the singly substituted (13)C and (18)O isotopologue rotational spectra in natural abundance. A second set of microwave horn antennas is added to the instrument design to permit three-wave mixing experiments where an enantiomer-specific phase of the signal is observed. Using samples of R-, S-, and racemic solketal, the properties of the three-wave mixing experiment are presented, including the measurement of the corresponding nutation curves to demonstrate the optimal pulse sequence.

  8. X-ray absorption spectroscopy of metalloproteins.

    PubMed

    Ward, Jesse; Ollmann, Emily; Maxey, Evan; Finney, Lydia A

    2014-01-01

    Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.

  9. Triplet absorption spectroscopy and electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  10. Terahertz time-domain and Fourier-transform infrared spectroscopy of traditional Korean pigments

    NASA Astrophysics Data System (ADS)

    Hong, Taeyoon; Choi, Kyujin; Ha, Taewoo; Park, Byung Cheol; Sim, Kyung Ik; Kim, Jong Hyeon; Kim, Jae Hoon; Kwon, Jy Eun; Lee, Sanghyun; Kang, Dai Ill; Lee, Han Hyoung

    2014-03-01

    Representative traditional Korean pigments (oyster shell white [hobun], massicot [miltaseung], indigo [jjok], azurite [seokcheong], malachite [seokrok], and red lead [yeondan]) have been studied with terahertz time-domain spectroscopy (THz-TDS) and Fourier-transform infrared spectroscopy (FTIRS) over the spectral region of 0.1-7.5 THz. Both the refractive index n and the extinction coefficient k were simultaneously and independently determined in the terahertz region without a Kramers-Kronig analysis while the absoprtion coefficient spectra were acquired in the infrared region. All pigments studied in the present work exhibited a set of characteristic absorption peaks unique to the pigment species in addition to a background that increased with increasing frequency. Our study demonstrates that terahertz and infrared techniques can be useful identification and diagnostic tools for the traditional Korean pigments used in heritage buildings and artworks.

  11. Reducing inter-replicate variation in fourier transform infrared spectroscopy by extended multiplicative signal correction.

    PubMed

    Kohler, A; Böcker, U; Warringer, J; Blomberg, A; Omholt, S W; Stark, E; Martens, H

    2009-03-01

    Fourier transform infrared (FT-IR) spectroscopy is a powerful tool for characterizing biological tissues and organisms, but it is plagued by replicate variation of various sources. Here, a method for estimating and correcting unwanted replicate variation in multivariate measurement signals, based on extended multiplicative signal correction (EMSC), is presented. Systematic patterns of unwanted methodological variations are estimated from replicate spectra, modeled by a linear subspace model, and implemented into EMSC. The method is applied to FT-IR spectra of two different sets of microorganisms (different double gene knockout strains of Saccharomyces cerevisiae and different species of Listeria) and compared to other preprocessing methods used in FT-IR absorption spectroscopy of microorganisms. The EMSC replicate correction turns out to perform best among the compared methods.

  12. Two-dimensional chirped-pulse Fourier transform microwave spectroscopy.

    PubMed

    Wilcox, David S; Hotopp, Kelly M; Dian, Brian C

    2011-08-18

    Two-dimensional (2D) correlation techniques are developed for chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The broadband nature of the spectrometer coupled with fast digital electronics permits the generation of arbitrary pulse sequences and simultaneous detection of the 8-18 GHz region of the microwave spectrum. This significantly increases the number of rotation transitions that can be simultaneously probed, as well as the bandwidth in both frequency dimensions. We theoretically and experimentally evaluate coherence transfer of three- and four-level systems to relate the method with previous studies. We then extend the principles of single-quantum and autocorrelation to incorporate broadband excitation and detection. Global connectivity of the rotational energy level structure is demonstrated through the transfer of multiple coherences in a single 2D experiment. Additionally, open-system effects are observed from irradiating many-level systems. Quadrature detection in the indirectly measured frequency dimension and phase cycling are also adapted for 2D CP-FTMW spectroscopy.

  13. Large Molecule Structures by Broadband Fourier Transform Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Fourier transform molecular rotational resonance spectroscopy (FT-MRR) using pulsed jet molecular beam sources is a high-resolution spectroscopy technique that can be used for chiral analysis of molecules with multiple chiral centers. The sensitivity of the molecular rotational spectrum pattern to small changes in the three dimensional structure makes it possible to identify diastereomers without prior chemical separation. For larger molecules, there is the additional challenge that different conformations of each diastereomer may be present and these need to be differentiated from the diastereomers in the spectral analysis. Broadband rotational spectra of several larger molecules have been measured using a chirped-pulse FT-MRR spectrometer. Measurements of nootkatone (C15H22O), cedrol (C15H26O), ambroxide (C16H28O) and sclareolide (C16H26O2) are presented. These spectra are measured with high sensitivity (signal-to-noise ratio near 1,000:1) and permit structure determination of the most populated isomers using isotopic analysis of the 13C and 18O isotopologues in natural abundance. The accuracy of quantum chemistry calculations to identify diastereomers and conformers and to predict the dipole moment properties needed for three wave mixing measurements is examined.

  14. Absorption spectroscopy with quantum cascade lasers

    NASA Technical Reports Server (NTRS)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    2001-01-01

    Novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers operating near lambda=8 micrometers were used for detection and quantification of trace gases in ambient air by means of sensitive absorption spectroscopy. N2O, 12CH4, 13CH4, and different isotopic species of H2O were detected. Also, a highly selective detection of ethanol vapor in air with a sensitivity of 125 parts per billion by volume (ppb) was demonstrated.

  15. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  16. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  17. Imaging Fourier Transform Spectroscopy from a Space Based Platform -- The Herschel/SPIRE Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Spencer, Locke Dean

    The Herschel Space Observatory (Herschel), a flagship mission of the European Space Agency (ESA), is comprised of three cryogenically cooled instruments commissioned to explore the far-infrared/submillimetre universe. Herschel's remote orbit at the second Lagrangian point (L2) of the Sun-Earth system, and its cryogenic payload, impose a need for thorough instrument characterization and rigorous testing as there will be no possibility for any servicing after launch. The Spectral and Photometric Imaging Receiver (SPIRE) is one of the instrument payloads aboard Herschel and consists of a three band imaging photometer and a two band imaging spectrometer. The imaging spectrometer on SPIRE consists of a Mach-Zehnder (MZ)-Fourier transform spectrometer (FTS) coupled with bolometric detector arrays to form an imaging FTS (IFTS). This thesis presents experiments conducted to verify the performance of an IFTS system from a space based platform, Le. the use of the SPIRE IFTS within the Herschel space observatory. Prior to launch, the SPIRE instrument has undergone a series of performance verification tests conducted at the Rutherford Appleton Laboratory (RAL) near Oxford, UK. Canada is involved in the SPIRE project through provision of instrument development hardware and software, mission flight software, and support personnel. Through this thesis project I have been stationed at RAL for a period spanning fifteen months to participate in the development, performance verification, and characterization of both the SPIRE FTS and photometer instruments. This thesis discusses Fourier transform spectroscopy and related FTS data processing (Chapter 2). Detailed discussions are included on the spectral phase related to the FTS beamsplitter (Chapter 3), the imaging aspects of the SPIRE IFTS instrument (Chapter 4), and the noise characteristics of the SPIRE bolometer detector arrays as measured using the SPIRE IFTS (Chapter 5). This thesis presents results from experiments performed

  18. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    PubMed

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  20. Picolinic and isonicotinic acids: a Fourier transform microwave spectroscopy study.

    PubMed

    Peña, Isabel; Varela, Marcelino; Franco, Vanina G; López, Juan C; Cabezas, Carlos; Alonso, José L

    2014-12-01

    The rotational spectra of laser ablated picolinic and isonicotinic acids have been studied using broadband chirped pulse (CP-FTMW) and narrowband molecular beam (MB-FTMW) Fourier transform microwave spectroscopies. Two conformers of picolinic acid, s-cis-I and s-cis-II, and one conformer of isonicotinic acid have been identified through the analysis of their rotational spectra. The values of the inertial defect and the quadrupole coupling constants obtained for the most stable s-cis-I conformer of picolinic acid, evidence the formation of an O-H···N hydrogen bond between the acid group and the endocyclic N atom. The stabilization provided by this hydrogen bond compensates the destabilization energy due to the adoption of a -COOH trans configuration in this conformer. Its rs structure has been derived from the rotational spectra of several (13)C, (15)N, and (18)O species observed in their natural abundances. Mesomeric effects have been revealed by comparing the experimental values of the (14)N nuclear quadrupole coupling constants in the isomeric series of picolinic, isonicotinic, and nicotinic acids.

  1. Understanding coal using thermal decomposition and fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Solomon, P. R.; Hamblen, D. G.

    1981-02-01

    Fourier Transform Infrared Spectroscopy (FTIR) is being used to provide understanding of the organic structure of coals and coal thermal decomposition products. The research has developed a relationship between the coal organic structure and the products of thermal decomposition. The work has also led to the discovery that many of the coal structural elements are preserved in the heavy molecular weight products (tar) released in thermal decomposition and that careful analysis of these products in relation to the parent coal can supply clues to the original structure. Quantitative FTIR spectra for coals, tars and chars are used to determine concentrations of the hydroxyl, aliphatic and aromatic hydrogen. Concentrations of aliphatic carbon are computed using an assumed aliphatic stoichiometry; aromatic carbon concentrations are determined by difference. The values are in good agreement with date determined by 13C and proton NMR. Analysis of the solid produ ts produced by successive stages in the thermal decomposition provides information on the changes in the chemical bonds occurring during the process. Time resolved infrared scans (129 msec/scan) taken during the thermal decomposition provide data on the amount, composition and rate of evolution of light gas species. The relationship between the evolved light species and their sources in the coal is developed by comparing the rate of evolution with the rate of change in the chemical bonds. With the application of these techniques, a general kinetic model has been developed which relates the products of thermal decomposition to the organic structure of the parent coal.

  2. Fourier transform infrared spectroscopy (FTIR) of laser-irradiated cementum

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; White, Joel M.; Cecchini, Silvia C. M.; Hennig, Thomas

    2003-06-01

    Utilizing Fourier Transform Infrared Spectroscopy (FTIR) in specular reflectance mode chemical changes of root cement surfaces due to laser radiation were investigated. A total of 18 samples of root cement were analyzed, six served as controls. In this study laser energies were set to those known for removal of calculus or for disinfection of periodontal pockets. Major changes in organic as well as inorganic components of the cementum were observed following Nd:YAG laser irradiation (wavelength 1064 nm, pulse duration 250 μs, free running, pulse repetition rate 20 Hz, fiber diameter 320 μm, contact mode; Iskra Twinlight, Fontona, Slovenia). Er:YAG laser irradiation (wavelength 2.94 μm, pulse duration 250 μs, free running, pulse repetition rate 6 Hz, focus diameter 620 μm, air water cooling 30 ml/min; Iskra Twinlight, Fontona, Slovenia) significantly reduced the Amid bands due to changes in the organic components. After irradiation with a frequency doubled Alexandrite laser (wavelength 377 nm, pulse duration 200 ns, q-switched, pulse repetition rate 20 Hz, beam diameter 800 μm, contact mode, water cooling 30 ml/min; laboratory prototype) only minimal reductions in the peak intensity of the Amide-II band were detected.

  3. Quantitative analysis of polyethylene blends by Fourier transform infrared spectroscopy.

    PubMed

    Cran, Marlene J; Bigger, Stephen W

    2003-08-01

    The quantitative analysis of binary polyethylene (PE) blends by Fourier transform infrared (FT-IR) spectroscopy has been achieved based on the ratio of two absorbance peaks in an FT-IR spectrum. The frequencies for the absorbance ratio are selected based on structural entities of the PE components in the blend. A linear relationship between the absorbance ratio and the blend composition was found to exist if one of the absorbance peaks is distinct to one of the components and the other peak is common to both components. It was also found that any peak resulting from short-chain branching in copolymers (such as linear low-density polyethylene (LLDPE) or metallocene-catalyzed LLDPE (mLLDPE)), is suitable for use as the peak that is designated as being distinct to that component. In order to optimize the linearity of the equation, however, the selection of the second common peak is the most important and depends on the blend system studied. Indeed, under certain circumstances peaks that are not spectrally distinct can be used successfully to apply the method. The method exhibits potential for the routine analysis of PE blends that have been calibrated prior to its application.

  4. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  5. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  6. Rapid Bacterial Identification Using Fourier Transform Infrared Spectroscopy

    SciTech Connect

    Valentine, Nancy B.; Johnson, Timothy J.; Su, Yin-Fong; Forrester, Joel B.

    2007-02-01

    Recent studies at Pacific Northwest National Laboratory (PNNL) using infrared spectroscopy combined with statistical analysis have shown the ability to identify and discriminate vegetative bacteria, bacterial spores and background interferents from one another. Since the anthrax releases in 2001, rapid identification of unknown powders has become a necessity. Bacterial endospores are formed by some Bacillus species as a result of the vegetative bacteria undergoing environmental stress, e.g. a lack of nutrients. Endospores are formed as a survival mechanism and are extremely resistant to heat, cold, sunlight and some chemicals. They become airborne easily and are thus readily dispersed which was demonstrated in the Hart building. Fourier Transform Infrared (FTIR) spectroscopy is one of several rapid analytical methods used for bacterial endospore identification. The most common means of bacterial identification is culturing, but this is a time-consuming process, taking hours to days. It is difficult to rapidly identify potentially harmful bacterial agents in a highly reproducible way. Various analytical methods, including FTIR, Raman, photoacoustic FTIR and Matrix Assisted Laser Desorption/Ionization (MALDI) have been used to identify vegetative bacteria and bacterial endospores. Each has shown certain areas of promise, but each has shortcomings in terms of sensitivity, measurement time or portability. IR spectroscopy has been successfully used to distinguish between the sporulated and vegetative state. [1,2] It has also shown its utility at distinguishing between the spores of different species. [2-4] There are several Bacillus species that occur commonly in nature, so it is important to be able to distinguish between the many different species versus those that present an imminent health threat. The spectra of the different sporulated species are all quite similar, though there are some subtle yet reproducible spectroscopic differences. Thus, a more robust and

  7. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  8. Search for molecular absorptions with the Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Knacke, Roger F.

    1995-01-01

    The objective of this research was a search for water molecules in the gas phase in molecular clouds. Water should be among the most abundant gases in the clouds and is of fundamental importance in gas chemistry, cloud cooling, shock wave chemistry, and gas-grain interactions of interstellar dust. Detection of water in Comet Halley in the 2.7 micron v(3) band in 1986 had shown that airborne H2O observations are feasible (ground-based observations of H2O are impossible because of the massive water content of the atmosphere). We planned to observe the v(3) band in interstellar clouds where a number of lines of this band should be in absorption. The search for H2O commenced in 1988 with a two flight program on the KAO. this resulted in a detection of interstellar H2O with S/N of 2-4 in the v(3) 1(01)-2(02) line at 3801.42/cm. A subsequent flight series of two flights in 1989 resulted in confirmation to the 3801.42/cm line detection and the detection of altogether four strong lines in the 000-001 v(3) vibration-rotation band of H2O.

  9. Differentiation of neotropical fish species with statistical analysis of fourier transform infrared photoacoustic spectroscopy data.

    PubMed

    Almeida, Francylaine S; Lima, Sandro M; Andrade, Luis H C; Súarez, Yzel R

    2012-07-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was applied to nineteen fish species in Brazil's Upper Paraná River basin to identify differences in the structural composition of their scales. To differentiate the species, a canonical discriminant analysis was used to indicate the most important absorption peaks in the mid-infrared region. Significant differences were found in the chemical composition of scales among the studied fish species, with Wilk's lambda = 5.2 × 10(-6), F((13,18,394)) = 37.57, and P < 0.001, indicating that O-CH(2) wag at 1396 cm(-1) can be used as a biomarker of this species group. The species could be categorized into four groups according to phylogenetic similarity, suggesting that the O-CH(2) 1396 cm(-1) absorbance is related to the biological traits of each species. This procedure can also be used to complement evolutionary studies.

  10. Fourier transform microwave and millimeter wave spectroscopy of quinazoline, quinoxaline, and phthalazine

    NASA Astrophysics Data System (ADS)

    McNaughton, Don; Godfrey, Peter D.; Jahn, Michaela K.; Dewald, David A.; Grabow, Jens-Uwe

    2011-04-01

    The pure rotational spectra of the bicyclic aromatic nitrogen heterocycle molecules, quinazoline, quinoxaline, and phthalazine, have been recorded and assigned in the region 13-87 GHz. An analysis, guided by ab initio molecular orbital predictions, of frequency-scanned Stark modulated, jet-cooled millimeter wave absorption spectra (48-87 GHz) yielded a preliminary set of rotational and centrifugal distortion constants. Subsequent spectral analysis at higher resolution was carried out with Fourier transform microwave (FT-MW) spectroscopy (13-18 GHz) of a supersonic rotationally cold molecular beam. The high spectral resolution of the FT-MW instrument provided an improved set of rotational and centrifugal distortion constants together with nitrogen quadrupole coupling constants for all three species. Density functional theory calculations at the B3LYP/6-311+G** level of theory closely predict rotational constants and are useful in predicting quadrupole coupling constants and dipole moments for such species.

  11. Two-dimensional Fourier transform spectroscopy of primary excitations, in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Gundogdu, Kenan; Mai, Cong; Barrette, Andrew; Younts, Robert; McAfee, Terry; Ade, Harald

    2013-03-01

    Conjugated polymers have tremendous potential for use in cheap, flexible, lightweight, energy efficient opto-electronic applications, Despite years of work, critical fundamental aspects about their optical and electronic properties are still poorly understood. Photo absorption in pure semi-conducting polymer thin films eventually results in both free charges and bound excitons with varying branching ratios. However the identification of the nature of early excitations and charge generation is an unresolved problem. There has been no direct observation of initial excitons or free electron-hole pairs, and competing views persist. Here we use 2D Fourier transform spectroscopy methods to separate the spectral signatures of various processes in the photoabsorption process in a homopolymer and show that initial excitation results in an intrachain electronic coherence that persists more than 200 fs. As these coherences evolve they collapse to transient population states i.e excitons, polarons and bipolarons.

  12. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  13. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  14. Precision Saturated Absorption Spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong

    2016-06-01

    In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).

  15. Modulated Fourier Transform Raman Fiber-Optic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)

    2000-01-01

    A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.

  16. A new approach proposed to Fourier transform spectroscopy using a broad-band laser source

    NASA Astrophysics Data System (ADS)

    Sung, K.; Chen, P.; Crawford, T. J.

    2010-12-01

    Photon flux with conventional infrared sources (e.g., Globar, Tungsten lamp) has been one of the limiting factors to high-resolution Fourier-transform infrared spectroscopy (FT-IR). This is particularly problematic for weak transitions requiring very long absorption path lengths of a few hundred meters or longer. Much brighter source is required to fully utilize the advantages of the FTS (e.g, a broad coverage in frequency and in species), for which a broad-band frequency comb laser source is an innovative solution. As part of the laboratory validation of the new approach, we report the implementation of a frequency comb laser with the Bruker 125 HR Fourier transform spectrometer at JPL. The laser (PolarOnyx, Model: Mercury 1000-100-100) generates a frequency comb spanning the 6200 - 6600 cm-1 spectral range, with a tooth spacing of 0.0015 cm-1 and average output power of 120 mW. The output was attenuated and coupled into the spectrometer via single-mode optical fibers. Instrumental line shape function (ILS) has been investigated with the nominal aperture diameter of 0.1 mm, and compares well against the ILS for a conventional continuum light source. Preliminary results from this exploratory work are presented along with discussion on potential applications for atmospheric in-situ instrumentation as well as laboratory spectroscopy for transient molecules. Acknowledgements: The research at the Jet Propulsion Laboratory, California Institute of Technology was performed under contracts and grants with National Aeronautics and Space Administration. In particular, we acknowledge the NASA Planetary Instrument Definition and Development program.

  17. Cation Occupancy Determination in Manganese Zinc Ferrites using Fourier Transform Infrared Spectroscopy

    SciTech Connect

    Shultz,M.; Carpenter, E.; Morrison, S.; Calvin, S.

    2006-01-01

    The magnetic and electric properties of ferrites are influenced by the cation distribution within the crystalline spinel lattice. Methods such as extended x-ray-absorption fine structure (EXAFS) have been used to determine cation occupancies within the crystalline structure of materials such as manganese zinc ferrite (MZFO); however, it is not practical to be used for daily analysis. Fourier transform infrared (FTIR) spectroscopy is another technique which has the potential to determine cation occupancy while offering speed and convenience. In the literature it has been demonstrated that in ferrite systems FTIR data can be correlated to cation percentages when comparing tetrahedral (Td) and octahedral (Oh) sites. FTIR spectra were collected on a series of MZFO nanoparticles in the range from 200 to 600 cm-1 and two absorbance peaks were observed. The first absorption region shifted with changing sample composition as calculated from transmission EXAFS experiments and elemental analysis. The data was normalized to the maximum of the peak of interest and the shifts were correlated to cation occupancy.

  18. Use of an endoscope-compatible probe to detect colonic dysplasia with Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Hargrove, John; Wolters, Rolf; Du, Christine B.; Friedland, Shai; Soetikno, Roy M.; Contag, Christopher H.; Arroyo, May R.; Crawford, James M.; Wang, Thomas D.

    2009-07-01

    Fourier transform infrared (FTIR) spectroscopy is sensitive to the molecular composition of tissue and has the potential to identify premalignant tissue (dysplasia) as an adjunct to endoscopy. We demonstrate collection of mid-infrared absorption spectra with a silver halide (AgCl0.4Br0.6) optical fiber and use spectral preprocessing to identify optimal subranges that classify colonic mucosa as normal, hyperplasia, or dysplasia. We collected spectra (n=83) in the 950 to 1800 cm-1 regime on biopsy specimens obtained from human subjects (n=37). Subtle differences in the magnitude of the absorbance peaks at specific wave numbers were observed. The best double binary algorithm for distinguishing normal-versus-dysplasia and hyperplasia-versus-dysplasia was determined from an exhaustive search of spectral intervals and preprocessing techniques. Partial least squares discriminant analysis was used to classify the spectra using a leave-one-subject-out cross-validation strategy. The results were compared with histology reviewed independently by two gastrointestinal pathologists. The optimal thresholds identified resulted in an overall sensitivity, specificity, accuracy, and positive predictive value of 96%, 92%, 93%, and 82%, respectively. These results indicated that mid-infrared absorption spectra collected remotely with an optical fiber can be used to identify colonic dysplasia with high accuracy, suggesting that continued development of this technique for the early detection of cancer is promising.

  19. Detection of urban O3, NO2, H2CO, and SO2 using Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Vandaele, Ann Carine; Carleer, M.; Colin, R.; Simon, Paul C.

    1993-02-01

    Concentrations of SO2, NO2, H2CO, and O3 have been measured regularly since October 1990 at the urban site of the Campus of the Universite Libre de Bruxelles, using the differential optical absorption spectroscopy (DOAS) technique associated with a Fourier Transform Spectrometer. The experimental set up has already been described elsewhere (Vandaele et al., 1992). It consists of a source (either a high pressure xenon lamp or a tungsten filament) and an 800 m long path system. The spectra are recorded in the 26,000 - 38,000 cm-1 and 14,000 - 30,000 cm-1 spectral regions, at the dispersion of 7.7 cm-1. The analytical method of the DOAS technique is based on the fact that in atmospheric measurements, it is impossible to obtain an experimental blank spectrum. Therefore, the Beer-Lambert law has to be rewritten as: I equals I'oen(Delta (sigma) d) where I is the measured intensity, Io the measured intensity from which all absorption structures have been removed, n the concentration, d the optical path length, and (Delta) (sigma) the differential absorption cross section of the molecule. Numerous methods for determining I'o exist. Fourier transform filtering has been used in this work. This method defines I'o as the inverse Fourier transform of the lower frequencies portion of the power spectrum of the experimental data. A least squares procedure is then applied in order to determine the concentration of the desired molecules.

  20. Transient absorption spectroscopy of laser shocked explosives

    SciTech Connect

    Mcgrane, Shawn D; Dang, Nhan C; Whitley, Von H; Bolome, Cindy A; Moore, D S

    2010-01-01

    Transient absorption spectra from 390-890 nm of laser shocked RDX, PETN, sapphire, and polyvinylnitrate (PVN) at sub-nanosecond time scales are reported. RDX shows a nearly linear increase in absorption with time after shock at {approx}23 GPa. PETN is similar, but with smaller total absorption. A broad visible absorption in sapphire begins nearly immediately upon shock loading but does not build over time. PVN exhibits thin film interference in the absorption spectra along with increased absorption with time. The absorptions in RDX and PETN are suggested to originate in chemical reactions happening on picosecond time scales at these shock stresses, although further diagnostics are required to prove this interpretation.

  1. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  2. Applications of Absorption Spectroscopy Using Quantum Cascade Lasers.

    PubMed

    2014-10-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  3. [Identification of different Citrus sinensis (L.) Osbeck trees varieties using Fourier transform infrared spectroscopy and hierarchical cluster analysis].

    PubMed

    Yi, Shi-Lai; Deng, Lie; He, Shao-Lan; Shi, You-Ming; Zheng, Yong-Qiang; Lu, Qiang; Xie, Rang-Jin; Wei, Xian-Guoi; Li, Song-Wei; Jian, Shui-Xian

    2012-11-01

    Researched on diversity of the spring leaf samples of seven different Citrus sinensis (L.) Osbeck varieties by Fourier transform infrared (FTIR) spectroscopy technology, the results showed that the Fourier transform infrared spectra of seven varieties leaves was composited by the absorption band of cellulose and polysaccharide mainly, the wave number of characteristics absorption peaks were similar at their FTIR spectra. However, there were some differences in shape of peaks and relatively absorption intensity. The conspicuous difference was presented at the region between 1 500 and 700 cm(-1) by second derivative spectra. Through the hierarchical cluster analysis (HCA) of second derivative spectra between 1 500 and 700 cm(-1), the results showed that the clustering of the different varieties of Citrus sinensis (L.) Osbeck varieties was classification according to genetic relationship. The results showed that FTIR spectroscopy combined with hierarchical cluster analysis could be used to identify and classify of citrus varieties rapidly, it was an extension method to study on early leaves of varieties orange seedlings.

  4. Application of Fourier-transform infrared (FT-ir) spectroscopy to in-situ studies of coal combustion

    SciTech Connect

    Ottesen, D K; Thorne, L R

    1982-04-01

    The feasibility of using Fourier-transform infrared (FT-ir) spectroscopy for in situ measurement of gas phase species concentrations and temperature during coal combustion is examined. This technique is evaluated in terms of its potential ability to monitor several important chemical and physical processes which occur in pulverized coal combustion. FT-ir absorption measurements of highly sooting, gaseous hydrocarbon/air flames are presented to demonstrate the fundamental usefulness of the technique for in situ detection of gas phase temperatures and species concentrations in high temperature combustion environments containing coal, char, mineral matter and soot particles. Preliminary results for coal/gaseous fuel/air flames are given.

  5. Fiber-optic thermometer using Fourier transform spectroscopy

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Sotomayor, Jorge L.; Flatico, Joseph M.; Azar, Massood T.

    1991-01-01

    An integrated-optic Mach-Zender interferometer is used as a Fourier transform spectrometer to analyze the input and output spectra of a temperature-sensing thin-film etalon. This configuration provides a high degree of immunity to the effects of changes in the source spectrum, and it readily permits the interrogation of a number of different sensors using a single spectrometer. In addition, this system has a potentially low cost because it uses optical communications hardware that may in the future be manufactured in large quantities.

  6. Selectivity of the optical-absorption method based on an instrumental pick out of Fourier components in the absorption spectrum

    NASA Astrophysics Data System (ADS)

    Pisarevsky, Yu. V.; Kolesnikov, S. A.; Kolesnikova, E. S.; Turutin, Yu. A.; Konopelko, L. A.; Shor, N. B.

    2016-06-01

    The introduction of interference-polarization filters (IPFs) in the structure of an optical-absorption analyzer makes it possible to pick out a harmonic (a Fourier component of the absorption spectrum) providing measurement with the highest sensitivity. The selectivity of such a method of analysis is determined by overlapping the oscillations of the measured and interfering components. By the example of measurement in benzene in the presence of an interfering component (toluene), the possibility is considered for the optimization of selectivity due to the variation of the path-difference dispersion for ordinary and extraordinary interfering rays. The metrological characteristics of the interference-polarization analyzer of C6H6 confirming the results of calculations are given.

  7. Combined use of synchrotron radiation based micro-X-ray fluorescence, micro-X-ray diffraction, micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh.

    PubMed

    Van der Snickt, Geert; Janssens, Koen; Dik, Joris; De Nolf, Wout; Vanmeert, Frederik; Jaroszewicz, Jacub; Cotte, Marine; Falkenberg, Gerald; Van der Loeff, Luuk

    2012-12-01

    Over the past years a number of studies have described the instability of the pigment cadmium yellow (CdS). In a previous paper we have shown how cadmium sulfide on paintings by James Ensor oxidizes to CdSO(4)·H(2)O. The degradation process gives rise to the fading of the bright yellow color and the formation of disfiguring white crystals that are present on the paint surface in approximately 50 μm sized globular agglomerations. Here, we study cadmium yellow in the painting "Flowers in a blue vase" by Vincent van Gogh. This painting differs from the Ensor case in the fact that (a) a varnish was superimposed onto the degraded paint surface and (b) the CdS paint area is entirely covered with an opaque crust. The latter obscures the yellow color completely and thus presents a seemingly more advanced state of degradation. Analysis of a cross-sectioned and a crushed sample by combining scanning microscopic X-ray diffraction (μ-XRD), microscopic X-ray absorption near-edge spectroscopy (μ-XANES), microscopic X-ray fluorescence (μ-XRF) based chemical state mapping and scanning microscopic Fourier transform infrared (μ-FT-IR) spectrometry allowed unravelling the complex alteration pathway. Although no crystalline CdSO(4) compounds were identified on the Van Gogh paint samples, we conclude that the observed degradation was initially caused by oxidation of the original CdS pigment, similar as for the previous Ensor case. However, due to the presence of an overlying varnish containing lead-based driers and oxalate ions, secondary reactions took place. In particular, it appears that upon the photoinduced oxidation of its sulfidic counterion, the Cd(2+) ions reprecipitated at the paint/varnish interface after having formed a complex with oxalate ions that themselves are considered to be degradation products of the resin and/or oil in the varnish. The SO(4)(2-) anions, for their part, found a suitable reaction partner in Pb(2+) ions stemming from a dissolved lead

  8. Combined use of synchrotron radiation based micro-X-ray fluorescence, micro-X-ray diffraction, micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh.

    PubMed

    Van der Snickt, Geert; Janssens, Koen; Dik, Joris; De Nolf, Wout; Vanmeert, Frederik; Jaroszewicz, Jacub; Cotte, Marine; Falkenberg, Gerald; Van der Loeff, Luuk

    2012-12-01

    Over the past years a number of studies have described the instability of the pigment cadmium yellow (CdS). In a previous paper we have shown how cadmium sulfide on paintings by James Ensor oxidizes to CdSO(4)·H(2)O. The degradation process gives rise to the fading of the bright yellow color and the formation of disfiguring white crystals that are present on the paint surface in approximately 50 μm sized globular agglomerations. Here, we study cadmium yellow in the painting "Flowers in a blue vase" by Vincent van Gogh. This painting differs from the Ensor case in the fact that (a) a varnish was superimposed onto the degraded paint surface and (b) the CdS paint area is entirely covered with an opaque crust. The latter obscures the yellow color completely and thus presents a seemingly more advanced state of degradation. Analysis of a cross-sectioned and a crushed sample by combining scanning microscopic X-ray diffraction (μ-XRD), microscopic X-ray absorption near-edge spectroscopy (μ-XANES), microscopic X-ray fluorescence (μ-XRF) based chemical state mapping and scanning microscopic Fourier transform infrared (μ-FT-IR) spectrometry allowed unravelling the complex alteration pathway. Although no crystalline CdSO(4) compounds were identified on the Van Gogh paint samples, we conclude that the observed degradation was initially caused by oxidation of the original CdS pigment, similar as for the previous Ensor case. However, due to the presence of an overlying varnish containing lead-based driers and oxalate ions, secondary reactions took place. In particular, it appears that upon the photoinduced oxidation of its sulfidic counterion, the Cd(2+) ions reprecipitated at the paint/varnish interface after having formed a complex with oxalate ions that themselves are considered to be degradation products of the resin and/or oil in the varnish. The SO(4)(2-) anions, for their part, found a suitable reaction partner in Pb(2+) ions stemming from a dissolved lead

  9. Predicting cotton stelometer fiber strength by fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The strength of cotton fibers is one of several important end-use characteristics. In routine programs, it has been mostly assessed by automation-oriented high volume instrument (HVI) system. An alternative method for cotton strength is near infrared (NIR) spectroscopy. Although previous NIR models ...

  10. 3-D Printed Slit Nozzles for Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dewberry, Chris; Mackenzie, Becca; Green, Susan; Leopold, Ken

    2015-06-01

    3-D printing is a new technology whose applications are only beginning to be explored. In this report, we describe the application of 3-D printing to the facile design and construction of supersonic nozzles. The efficacy of a variety of designs is assessed by examining rotational spectra OCS and Ar-OCS using a Fourier transform microwave spectrometer with tandem cavity and chirped-pulse capabilities. This work focuses primarily on the use of slit nozzles but other designs have been tested as well. New nozzles can be created for 0.50 or less each, and the ease and low cost should facilitate the optimization of nozzle performance (e.g., jet temperature or cluster size distribution) for the needs of any particular experiment.

  11. Fourier-transform spectroscopy: new methods and applications: introduction by the feature editors.

    PubMed

    Traub, W A; Winkel, R J; Goldman, A

    1996-06-01

    We are pleased to introduce this special issue of papers on Fourier-transform spectroscopy, which grew out of a recent topical meeting sponsored by the Optical Society of America. The topical meeting welcomed all researchers who practice the art of Fourier-transform spectroscopy in the laboratory, in the atmosphere, and in space. The power and the wide applicability of Fourier-transform spectroscopy unite these fields with a common mathematical and instrumental bond. The meeting probed each of these areas in depth, bringing out new ideas for instrumentation, analysis, and applications. There was a strong sentiment at the meeting that the quality of papers and posters was exceptionally high and that it would be important for future progress in the field to have the results of this meeting captured in print. This special issue is the fruit of that effort.

  12. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  13. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum. PMID:26601381

  14. Fourier transform infrared spectroscopy studies of water-polymer interactions in chemically amplified photoresists

    SciTech Connect

    McDonough, Laurie A.; Chikan, Viktor; Kim, Zee Hwan; Leone, Stephen R.; Hinsberg, William D.

    2004-12-08

    Fourier-Transform Infrared (FTIR) absorption spectroscopy is implemented to measure the infrared spectrum of water absorbed by the Poly(t-butoxycarbonylstyrene) (tBOC) and the ketal-protected Poly(hydroxystyrene) (KRS-XE) polymer photoresists. The shape and intensity of the OH stretching band of the water spectrum is monitored in a variety of humidity conditions in order to obtain information on the hydrogen-bonding interactions between the water and the polymer chains. The band is deconvoluted into four sub-bands, which represent four types of water molecules in different environments. Because of the hydrophilicity of the polymers studied, a large portion of the sorbed water molecules is believed to be strongly bound to the polar sites of the polymer. The ratios of each type of water are found to be dependent on the humidity conditions to which the sample was exposed. At higher humidities, there is an increase in the fraction of free and weakly-bound water molecules. These findings are used to explain the humidity dependence of the deprotection reaction rates, since certain types of water may slow transport of reactive species within the polymer network.

  15. In situ CF3 Detection in Low Pressure Inductive Discharges by Fourier Transform Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.

  16. Fourier transform infrared spectroscopy and near infrared spectroscopy for the quantification of defects in roasted coffees.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Oliveira, Leandro S; Irudayaraj, Joseph; Ileleji, Klein

    2015-03-01

    The coffee strip-picking harvesting method, preferred in Brazil, results in high percentages of immature and overripe beans, as the fruits in a single tree branch do not reach ripeness at the same time. This practice, together with inappropriate processing and storage conditions, contribute to the production of high amounts of defective coffee beans in Brazil, which upon roasting will impart negative sensory aspects to the beverage. Therefore, the development of analytical methodologies that will enable the discrimination and quantification of defective and non-defective coffees after roasting is rather desirable. Given that infrared spectroscopy has been successfully applied to coffee analysis, the objective of this work was to evaluate and to compare the performances of Fourier transform infrared (FTIR) and near infrared (NIR) spectroscopies for the quantification of defective beans in roasted coffees. Defective and non-defective Arabica coffee beans were manually selected, roasted, ground and sieved. Mixtures of defective and non-defective roasted and ground coffees were produced and analyzed, with % defects ranging from 0% to 30%. FTIR and NIR spectra were recorded, respectively, within a range of 3100-800 cm(-1) and 1200-2400 nm and submitted to mathematical processing. Quantitative models were developed by partial least squares regression (PLSR). Excellent predictive results were obtained indicating that defective coffees could be satisfactorily quantified. The correlation coefficients and the root mean squared errors of validation for the FTIR and NIR models developed to quantify the amount of defective roasted coffees mixed with non-defective ones were, respectively, as high as 0.891 and as low as 0.032, and as high as 0.953 and as low as 0.026. A comparison between the two techniques indicated that NIR provided more robust models. PMID:25618683

  17. Ribosomal DNA nanoprobes studied by Fourier transform infrared spectroscopy.

    PubMed

    Fagundes, Jaciara; Castilho, Maiara L; Téllez Soto, Claudio A; Vieira, Laís de Souza; Canevari, Renata A; Fávero, Priscila P; Martin, Airton A; Raniero, Leandro

    2014-01-24

    Paracoccidioides brasiliensis (P. brasiliensis) is a thermo-dimorphic fungus that causes paracoccidioidomycosis. Brazil epidemiological data shows that endemic areas are the subtropical regions, especially where agricultural activities predominate such as the Southeast, South, and Midwest. There are several tests to diagnose paracoccidioidomycosis, but they have many limitations such as low sensitivity, high cost, and a cross-reacting problem. In this work, gold nanoprobes were used to identify P. brasiliensis as an alternative diagnostic technique, which is easier to apply, costs less, and has great potential for application. The specific Ribosomal sequence of P. brasiliensis DNA was amplified and used to design the nanoprobes using a thiol-modified oligonucleotide. The results of positive and negative tests were done by UV-visible and Fourier Transform Infrared (FT-IR) measurements. The deconvolution of FT-IR sample spectra showed differences in the vibrational modes from the hydrogen bridge NHN and NHO bands that form the double helix DNA for samples matching the DNA sequence of nanoprobes that could be used to classify the samples.

  18. Discrimination of Astyanax altiparanae (Characiformes, Characidae) populations by applying Fourier transform-infrared photoacoustic spectroscopy in the fish scales

    NASA Astrophysics Data System (ADS)

    de Almeida, F. S.; Santana, C. A.; Lima, D. M. V.; Andrade, L. H. C.; Súarez, Y. R.; Lima, S. M.

    2016-05-01

    Astyanax altiparanae fish species is considered very generalist and opportunist, occupying different types and sizes of environments. This characteristic turns it very appropriate as bioindicator or biomarked. Therefore, in this work, A. altiparanae fish species was used to identify populations by using the Fourier transform infrared spectroscopy directly in its scales. The discriminant analysis applied in the infrared spectra demonstrated a significant differentiation among the analyzed populations, with the first and second canonical roots explain together 100% of the data variation. The obtained results were correlated with environmental descriptors and diet of fishes, and a better agreement was obtained when spectroscopic data were compared with the composition of food present in the fish stomachs. However, this study indicates that the combination of infrared absorption spectroscopy with discriminant analysis is a very appropriate methodology to be used in fish scales as bioindicator for intraspecific study.

  19. Terahertz spectroscopy with a holographic Fourier transform spectrometer plus array detector using coherent synchrotron radiation

    SciTech Connect

    Nikolay I. Agladz, John Klopf, Gwyn Williams, Albert J. Sievers

    2010-06-01

    By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector.

  20. Long open path Fourier transform spectroscopy measurements of greenhouse gases in the near infrared

    NASA Astrophysics Data System (ADS)

    Griffith, David; Pöhler, Denis; Schmidt, Stefan; Hammer, Samuel; Vardag, Sanam; Levin, Ingeborg; Platt, Ulrich

    2015-04-01

    Atmospheric composition measurements are an important tool to quantify local and regional emissions and sinks of greenhouse gases. But how representative are in situ measurements at one point in an inhomogeneous environment? Open path Fourier Transform Spectroscopy (FTS) measurements potentially offer spatial averaging and continuous measurements of several trace gases (including CO2, CH4, CO and N2O) simultaneously in the same airmass. Spatial averaging over kilometre scales is a better fit to the finest scale atmospheric models becoming available, and helps bridge the gap between models and in situ measurements. With what precision, accuracy and reliability can such measurements be made? Building on our pooled experience in ground-level open path Fourier transform spectroscopy and TCCON solar FTS in the infrared (Wollongong) and long path DOAS techniques in the UV-visible (Heidelberg), we set up a new type of open path measurement system across a 1.5 km one-way path in urban Heidelberg, Germany, using FTS in the near infrared. Direct open-atmosphere measurements of trace gases CO2, CH4, CO and N2O as well as O2 were retrieved from several absorption bands between 4000 and 8000 cm-1 (2.5 - 1.25 micron). At one end of the path an in situ FTIR analyser simultaneously collected well calibrated measurements of the same species for comparison with the open path-integrated measurements. The measurements ran continuously from June - November 2014. We introduce the open path FTS measurement system and present an analysis of the results, including assessment of precision, accuracy relative to co-incident in situ measurements, reliability, and avenues for further improvements and extensions. Short term precision of the open path measurement of CO2 was better than 1 ppm for 5 minute averages and thus sufficient for studies in urban and other non-background environments. Measurement bias relative to calibrated in situ measurements was stable across the measurement period. The

  1. Remote monitoring of volcanic gases using passive Fourier transform spectroscopy

    SciTech Connect

    Love, S.P.; Goff, F.; Counce, D.; Schmidt, S.C.; Siebe, C.; Delgado, H.

    1999-06-01

    Volcanic gases provide important insights on the internal workings of volcanoes and changes in their composition and total flux can warn of impending changes in a volcano`s eruptive state. In addition, volcanoes are important contributors to the earth`s atmosphere, and understanding this volcanic contribution is crucial for unraveling the effect of anthropogenic gases on the global climate. Studies of volcanic gases have long relied upon direct in situ sampling, which requires volcanologists to work on-site within a volcanic crater. In recent years, spectroscopic techniques have increasingly been employed to obtain information on volcanic gases from greater distances and thus at reduced risk. These techniques have included UV correlation spectroscopy (Cospec) for SO{sub 2} monitoring, the most widely-used technique, and infrared spectroscopy in a variety of configurations, both open- and closed-path. Francis et al. have demonstrated good results using the sun as the IR source. This solar occultation technique is quite useful, but puts rather strong restrictions on the location of instrument and is thus best suited to more accessible volcanoes. In order to maximize the flexibility and range of FTIR measurements at volcanoes, work over the last few years has emphasized techniques which utilize the strong radiance contrast between the volcanic gas plume and the sky. The authors have successfully employed these techniques at several volcanoes, including the White Island and Ruapehu volcanoes in New Zealand, the Kilauea volcano on Hawaii, and Mt. Etna in Italy. But Popocatepetl (5452 m), the recently re-awakened volcano 70 km southeast of downtown Mexico City, has provided perhaps the best examples to date of the usefulness of these techniques.

  2. Properly used ''aliasing'' can give better resolution from fewer points in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Astous, Y.; Blanchard, M.

    1982-05-01

    In the past years, the Journal has published a number of articles1-5 devoted to the introduction of Fourier transform spectroscopy in the undergraduate labs. In most papers, the proposed experimental setup consists of a Michelson interferometer, a light source, a light detector, and a chart recorder. The student uses this setup to record an interferogram which is then Fourier transformed to obtain the spectrogram of the light source. Although attempts have been made to ease the task of performing the required Fourier transform,6 the use of computers and Cooley-Tukey's fast Fourier transform (FFT) algorithm7 is by far the simplest method to use. However, to be able to use FFT, one has to get a number of samples of the interferogram, a tedious job which should be kept to a minimum. (AIP)

  3. Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet.

    PubMed

    Tseng, Chien-hung; Matsika, Spiridoula; Weinacht, Thomas C

    2009-10-12

    We demonstrate two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet (approximately 260 nm) using an acousto-optic modulator based pulse shaper. The use of a pulse shaper in the ultraviolet allows for rapid scanning, high phase (time) stability (approximately 0.017 rad) and phase cycling. We present measurements on the DNA nucleobase Adenine.

  4. Topics in Chemical Instrumentation: Fourier Transform-Infrared Spectroscopy: Part I. Instrumentation.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1986-01-01

    Discusses: (1) the design of the Fourier Transform-Infrared Spectroscopy (FT-IR) spectrometer; (2) the computation of the spectrum from the interferogram; and (3) the use of apodization. (Part II will discuss advantages of FT-IR over dispersive techniques and show applications of FT-IR to difficult spectroscopic measurements.) (JN)

  5. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  6. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  7. PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...

  8. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Maity, Jyoti Prakash; Kar, Sandeep; Lin, Chao-Ming; Chen, Chen-Yen; Chang, Young-Fo; Jean, Jiin-Shuh; Kulp, Thomas R.

    2013-12-01

    Bacterial spectra were obtained in the wavenumber range of 4000-600 cm-1 using FTIR spectroscopy. FTIR spectral patterns were analyzed and matched with 16S-rRNA signatures of bacterial strains OS1 and OS2, isolated from oil sludge. Specific spectral bands obtained from OS1 (FJ226761), reference strain Bacillus flexus (ATCC 49095), OS2 (FJ215874) and reference strain Stenotrophomonas maltophilia (ATCC 19861) respectively, suggested that OS1 and ATCC 49095 were closely related whereas OS2 was different. The bands probably represent groups of proteins and lipids of specific bacteria. Separate peaks found in B. flexus were similar to those of OS1. The S. maltophilia (ATCC 19861) and OS2 exhibited a similar peak at 3272 cm-1. Amide bands (I, II and III) exhibited that OS1 and B. flexus were closely related, but were different from OS2. In the fingerprint region, peak at 1096 cm-1 and 1360 cm-1 exhibited the specific fingerprints of OS2 and reference strain S. maltophilia (ATCC 19861), respectively. The specific fingerprint signature was found at 1339 cm-1 for OS1 and at 1382 cm-1 for B. flexus ATCC 49095, allowing these two strains of B. flexus to be differentiated. This spectral signature originated from phospholipid and RNA components of the cell. Principle components analysis (PCA) of spectral regions exhibited with distinct sample clusters between Bacillus flexus (ATCC 49095), S. maltophilia (ATCC 19861), OS1 and OS2 in amide and fingerprint region.

  9. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy.

    PubMed

    Maity, Jyoti Prakash; Kar, Sandeep; Lin, Chao-Ming; Chen, Chen-Yen; Chang, Young-Fo; Jean, Jiin-Shuh; Kulp, Thomas R

    2013-12-01

    Bacterial spectra were obtained in the wavenumber range of 4000-600 cm(-1) using FTIR spectroscopy. FTIR spectral patterns were analyzed and matched with 16S-rRNA signatures of bacterial strains OS1 and OS2, isolated from oil sludge. Specific spectral bands obtained from OS1 (FJ226761), reference strain Bacillus flexus (ATCC 49095), OS2 (FJ215874) and reference strain Stenotrophomonas maltophilia (ATCC 19861) respectively, suggested that OS1 and ATCC 49095 were closely related whereas OS2 was different. The bands probably represent groups of proteins and lipids of specific bacteria. Separate peaks found in B. flexus were similar to those of OS1. The S. maltophilia (ATCC 19861) and OS2 exhibited a similar peak at 3272 cm(-1). Amide bands (I, II and III) exhibited that OS1 and B. flexus were closely related, but were different from OS2. In the fingerprint region, peak at 1096 cm(-1) and 1360 cm(-1) exhibited the specific fingerprints of OS2 and reference strain S. maltophilia (ATCC 19861), respectively. The specific fingerprint signature was found at 1339 cm(-1) for OS1 and at 1382 cm(-1) for B. flexus ATCC 49095, allowing these two strains of B. flexus to be differentiated. This spectral signature originated from phospholipid and RNA components of the cell. Principle components analysis (PCA) of spectral regions exhibited with distinct sample clusters between Bacillus flexus (ATCC 49095), S. maltophilia (ATCC 19861), OS1 and OS2 in amide and fingerprint region.

  10. Progress Towards Chirped-Pulse Fourier Transform Thz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Douglass, Kevin O.; Plusquellic, David F.; Gerecht, Eyal

    2010-06-01

    New opportunities are provided by the development of higher power THz frequency multiplier sources, the development of a broadband Chirped-Pulse FTMW spectroscopy technique at microwave and mm Wave frequencies, and recently demonstrated heterodyne hot electron bolometer detection technology in the THz frequency region with near quantum noise-limited performance and high spectral resolution. Combining these three technologies and extending the chirped-pulse technique to 0.85 THz enables a host of new applications. NIST is currently pursing applications as a point sensor for greenhouse gases, volatile organic compounds, and potentially human breath. The generation and detection of phase stable chirped pulses at 850 GHz will be demonstrated. A description of the experimental setup and preliminary data will be presented for nitrous oxide. G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S. Shipman and B.H. Pate, Rev.Sci.Instrum. 79 (2008) 053103. E. Gerecht, D. Gu, L. You, K.S. Yngvesson, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. 56, (2008) 1083.

  11. Absorption and fluorescence spectroscopy on a smartphone

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    A self-powered smartphone-based field-portable "dual" spectrometer has been developed for both absorption and fluorescence measurements. The smartphone's existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.

  12. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis. PMID:25239063

  13. Using Fourier transform IR spectroscopy to analyze biological materials

    PubMed Central

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  14. Direct chemical characterization of natural wood resins by temperature-resolved and space-resolved Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jian-bo; Zhou, Qun; Sun, Su-qin

    2016-07-01

    Wood resins are valuable natural products with wide utilizations. Either in the form of resin exudates or in the form of resin-containing woods, natural wood resins are usually complex mixtures consisting of various compounds. Therefore, effective chemical characterization methods are necessary for the research and quality control of natural wood resins. No need for separation or labeling, wood resin samples can be measured directly by Fourier transform infrared (FT-IR) spectroscopy, which reduces the testing costs and avoids the possible distortions caused by the pretreatments. However, the absorption bands of various compositions in the resin sample are assembled in a single spectrum by the separation-free measurement, which makes it difficult to identify the compounds of interest and decreases the limits of detection. In this research, the temperature-resolved and space-resolved FT-IR techniques are proposed to resolve the overlapped signals for the direct, selective, and sensitive characterization of natural wood resins. For resin exudates, the temperature-resolved FT-IR spectroscopy and two-dimensional correlation analysis can resolve the absorption bands of different compounds according to their responses to the thermal perturbations. For resin-containing woods, the FT-IR microspectroscopic imaging and principal component analysis can resolve the absorption bands of different compounds according to their positions. The study of six kinds of wood resins proves the feasibility of temperature-resolved and space-resolved FT-IR techniques for the direct, selective, and sensitive chemical characterization of natural wood resins.

  15. [Study of retrieving formaldehyde with differential optical absorption spectroscopy].

    PubMed

    Li, Yu-Jin; Xie, Pin-Hua; Qin, Min; Qu, Xiao-Ying; Hu, Lin

    2009-01-01

    The present paper introduces the method of retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS). The authors measured ambient HCHO in Beijing region with the help of differential optical absorption spectroscopy instrument made by ourself, and discussed numerous factors in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), especially, the choice of HCHO wave band, how to avoid absorption of ambient SO2, NO2 and O3, and the influence of the Xenon lamp spectrum structure on the absorption of ambient HCHO. The authors achieved the HCHO concentration by simultaneously retrieving the concentrations of HCHO, SO2, NO2 and O3 with non-linear least square fitting method, avoiding the effect of choosing narrow wave of HCHO and the residual of SO2, NO2, O3 and the Xenon lamp spectrum structure in retrieving process to attain the concentration of HCHO, Finally the authors analyzed the origin of error in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), and the total error is within 13.7% in this method. PMID:19385238

  16. Atomic absorption spectroscopy with high temperature flames.

    PubMed

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed.

  17. Logarithmic conversion of absorption detection in wavelength modulation spectroscopy with a current-modulated diode laser.

    PubMed

    Wang, Yuntao; Cai, Haiwen; Geng, Jianxin; Fang, Zujie

    2009-07-20

    Logarithmic-conversion data processing used in wavelength modulation spectroscopy (WMS) with a current-modulated diode laser as its source is analyzed and compared with second-to-first ratio detection. Analytic Fourier coefficients of logarithmic-converted residual amplitude modulation (RAM) of a light source are given. An experimental setup for methane absorption detection at 1650 nm is described. It is shown theoretically and experimentally that logarithmic-converted WMS cannot only eliminate the fluctuation of received light power, but also improve the signal-to-noise ratio significantly. PMID:19623220

  18. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    NASA Astrophysics Data System (ADS)

    Ridder, T.; Warneke, T.; Notholt, J.

    2011-06-01

    The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm-1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  19. Diode laser absorption spectroscopy of lithium isotopes

    NASA Astrophysics Data System (ADS)

    Olivares, Ignacio E.; González, Iván A.

    2016-10-01

    We study Doppler-limited laser intensity absorption, in a thermal lithium vapor containing 7Li and 6Li atoms in a 9 to 1 ratio, using a narrow-linewidth single-longitudinal-mode tunable external cavity diode laser at the wavelength of 670.8 nm. The lithium vapor was embedded in helium or argon buffer gas. The spectral lineshapes were rigorously predicted for D_1 and D_2 for the lithium 6 and 7 isotope lines using reduced optical Bloch equations, specifically derived, from a density matrix analysis. Here, a detailed comparison is provided of the predicted lineshapes with the measured 7Li-D_2, 7Li-D_1, 6Li-D_2 and 6Li-D_1 lines, in the case of high vapor density and with intensity above the saturation intensity. To our knowledge, this is the first time that such detailed comparison is reported in the open literature. The calculations were also extended to saturated absorption spectra and compared to measured Doppler-free 7Li-D_2 and 6Li-D_2 hyperfine lines.

  20. Vibrational spectroscopy of a transient species through time-resolved Fourier transform infrared emission spectroscopy: The vinyl radical

    SciTech Connect

    Letendre, Laura; Liu, Dean-Kuo; Pibel, Charles D.; Halpern, Joshua B.; Dai, Hai-Lung

    2000-06-01

    An approach for detecting the vibrational spectrum of transient species is demonstrated on the vinyl radical. Photodissociation of carefully chosen precursors at selected photolysis wavelengths produce highly vibrationally excited radicals. Infrared (IR) emission from these radicals is then measured by time-resolved Fourier transform spectroscopy with nanosecond time resolution. All nine vibrational bands of the vinyl radical, generated from four different precursors, are obtained and reported here for the first time. (c) 2000 American Institute of Physics.

  1. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, G. Barratt; Field, Robert W.

    2016-05-01

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  2. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy.

    PubMed

    Park, G Barratt; Field, Robert W

    2016-05-28

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  3. Molecular shock response of explosives: electronic absorption spectroscopy

    SciTech Connect

    Mcgrne, Shawn D; Moore, David S; Whitley, Von H; Bolme, Cindy A; Eakins, Daniel E

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  4. Lime kiln source characterization: Lime manufacturing industry Fourier transform infrared spectroscopy. Final report

    SciTech Connect

    Toney, M.L.

    1999-07-01

    The purpose of this testing program is to obtain uncontrolled and controlled hydrogen chloride (HCl) and speciated hydrocarbon Hazardous Air Pollutants (HAPs) emissions data from lime production plants to support a national emission standard for hazardous air pollutants (NESHAP). This report presents data from the Fourier Transform Infrared Spectroscopy (FTIR) measurements. FTIR source testing was conducted for the following purposes: Quantify HCl emission levels; and Gather screening (i.e., qualitative) data on other HAP emissions.

  5. Metabolic fingerprinting of lichen Usnea baileyi by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakar, Siti Zaharah Abu; Latip, Jalifah; bin Din, Laily; Samsuddin, Mohd Wahid

    2014-09-01

    The lichen Usnea baileyi collected from different environments was characterised using Fourier transform infrared spectroscopy. This preliminary study was done to determine the effects of different environment populations on U. baileyi chemical composition. Results showed that the absorbance peaks of Golf Course 2 (GCU2) are more intense compared to Taman Awana (TA), Jalan Awana (JA) and Jalan Gohtong (JG). U. baileyi contains of dibenzofurans, depsides, depsidones, xanthones and terpenoids.

  6. Raman spectroscopy of gases with a Fourier transform spectrometer - The spectrum of D2

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Weber, A.; Brault, J. W.

    1986-01-01

    Fourier transform spectrometry (FTS) is presently used to record the spontaneous incoherent laser Raman spectra of gases. The high resolution, sensitivity, calibration accuracy and spectral coverage achieved demonstrate the viability of FTS for Raman spectroscopy. Attention is given to the coefficients obtained by fitting measurements obtained from the spectrum of D2, containing both v = 0-0 and 1-0 transitions, to the Dunham (1932) expansion of the vibration-rotation energy levels.

  7. Fourier spectroscopy of individual nitrogen impurity centers in GaAs

    SciTech Connect

    Ikezawa, Michio; Zhang, Liao; Mori, Tatsuya; Masumoto, Yasuaki; Sakuma, Yoshiki; Sakoda, Kazuaki

    2013-12-04

    We report on the measurement of the exciton homogeneous linewidth in nitrogen impurity centers in GaAs:N. Fourier spectroscopy on a single center revealed a long coherence time over 300 ps at low temperature. The narrowest linewidth obtained at liquid helium temperature is 3.5 μeV, which is comparable with that of semiconductor quantum dots. The linewidth increases with increasing temperature, showing a thermally activated behavior with activation energies of 2∼5 meV.

  8. Fourier transform and Vernier spectroscopy using an optical frequency comb at 3-5.4  μm.

    PubMed

    Khodabakhsh, Amir; Ramaiah-Badarla, Venkata; Rutkowski, Lucile; Johansson, Alexandra C; Lee, Kevin F; Jiang, Jie; Mohr, Christian; Fermann, Martin E; Foltynowicz, Aleksandra

    2016-06-01

    We present a versatile mid-infrared frequency comb spectroscopy system based on a doubly resonant optical parametric oscillator tunable in the 3-5.4 μm range and two detection methods: a Fourier transform spectrometer (FTS) and a continuous-filtering Vernier spectrometer (CF-VS). Using the FTS with a multipass cell, we measure high precision broadband absorption spectra of CH4 at 3.3 μm and NO at 5.25 μm, the latter for the first time with comb spectroscopy, and we detect atmospheric species (CH4, CO, CO2, and H2O) in air in the signal and idler ranges. Multiline fitting yields minimum detectable concentrations of 10-20  ppb Hz-1/2 for CH4, NO, and CO. For the first time in the mid-infrared, we perform CF-VS using an enhancement cavity, a grating, and a single detector, and we measure the absorption spectrum of CH4 and H2O in ambient air at ∼3.3  μm, reaching a 40 ppb concentration detection limit for CH4 in 2 ms.

  9. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    PubMed

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines. PMID:26439523

  10. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-01

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  11. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    PubMed

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  12. Identification of Trueperella pyogenes Isolated from Bovine Mastitis by Fourier Transform Infrared Spectroscopy

    PubMed Central

    Nagib, Samy; Rau, Jörg; Sammra, Osama; Lämmler, Christoph; Schlez, Karen; Zschöck, Michael; Prenger-Berninghoff, Ellen; Klein, Guenter; Abdulmawjood, Amir

    2014-01-01

    The present study was designed to investigate the potential of Fourier transform infrared (FT-IR) spectroscopy to identify Trueperella (T.) pyogenes isolated from bovine clinical mastitis. FT-IR spectroscopy was applied to 57 isolates obtained from 55 cows in a period from 2009 to 2012. Prior to FT-IR spectroscopy these isolates were identified by phenotypic and genotypic properties, also including the determination of seven potential virulence factor encoding genes. The FT-IR analysis revealed a reliable identification of all 57 isolates as T. pyogenes and a clear separation of this species from the other species of genus Trueperella and from species of genus Arcanobacterium and Actinomyces. The results showed that all 57 isolates were assigned to the correct species indicating that FT-IR spectroscopy could also be efficiently used for identification of this bacterial pathogen. PMID:25133407

  13. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy.

    PubMed

    Johler, Sophia; Stephan, Roger; Althaus, Denise; Ehling-Schulz, Monika; Grunert, Tom

    2016-05-01

    Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing. PMID:27021524

  14. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  15. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  16. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  17. Laser photothermal spectroscopy of light-induced absorption

    SciTech Connect

    Skvortsov, L A

    2013-01-31

    Basic methods of laser photothermal spectroscopy, which are used to study photoinduced absorption in various media, are briefly considered. Comparative analysis of these methods is performed and the latest results obtained in this field are discussed. Different schemes and examples of their practical implementation are considered. (review)

  18. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  19. Identification of geographical origin of Lignosus samples using Fourier transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Choong, Yew-Keong; Xu, Chang-Hua; Lan, Jin; Chen, Xiang-Dong; Jamal, Jamia Azdina

    2014-07-01

    Lignosus spp. is a medicinal mushroom that has been used as a folk remedy for ‘clearing heat’, eliminating phlegm, ‘moistening the lungs’ and as an anti-breast cancer agent. The objective of this study was to identify the active chemical constituents of the mushroom limited number of sample by using Fourier transform infrared (FTIR) and two-dimensional correlation Fourier transform infrared spectroscopy (2DIR). The sample M26/08 was purchased from a Chinese medicine shop in Kuala Lumpur, while M49/07 and M23/08 were collected from Semenyih and Kuala Lipis respectively. The three samples have strong absorption peaks corresponding to the stretching vibration of conjugated carbonyl Cdbnd O group. Both fresh sample M49/07 and M23/08 showed an identical peak of 1655 cm-1, whereby M26/08 contained stretching vibration of 1648 cm-1. The peaks from 1260 cm-1 onwards were assignation of carbohydrate content including saccharides. Spectrum of M26/08 showed region from 1260 cm-1 to 950 cm-1 which was 99.4% similar to M23/08. The chemical constitutes of M26/08 and M23/08 were closely correlated (r = 0.97), whereas the correlation coefficient of M26/08 and M49/07 was 0.94. The use of second derivative and 2DIR spectroscopy enhanced the distinct differences to a more significant level. Although the geographical origin of M26/08 was unknown, its origin was determined by comparing with M49/07 and M23/08. The visual and colorful 2DIR spectra provided dynamic structural information of the chemical components analyzed and demonstrated a powerful and useful approach using the spectroscopy of different samples.

  20. High-pressure-low-temperature cryostat designed for use with fourier transform infrared spectrometers and time-resolved infrared spectroscopy.

    PubMed

    Calladine, James A; Love, Ashley; Fields, Peter A; Wilson, Richard G M; George, Michael W

    2014-01-01

    The design for a new high-pressure-low-temperature infrared (IR) cell for performing experiments using conventional Fourier transform infrared or fast laser-based time-resolved infrared spectroscopy, in a range of solvents, is described. The design builds upon a commercially available compressor and cold end (Polycold PCC(®) and CryoTiger(®)), which enables almost vibration-free operation, ideal for use with sensitive instrumentation. The design of our cell and cryostat allows for the study of systems at temperatures from 77 to 310 K and at pressures up to 250 bar. The CaF2 windows pass light from the mid-IR to the ultraviolet (UV), enabling a number of experiments to be performed, such as Raman, UV-visible absorption spectroscopy, and time-resolved techniques where sample excitation/probing using continuous wave or pulsed lasers is required. We demonstrate the capabilities of this cell by detailing two different applications: (i) the reactivity of a range of Group V-VII organometallic alkane complexes using time-resolved spectroscopy on the millisecond timescale and (ii) the gas-to-liquid phase transition of CO2 at low temperature, which is applicable to measurements associated with transportation issues related to carbon capture and storage.

  1. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  2. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    NASA Astrophysics Data System (ADS)

    Drescher, L.; Galbraith, M. C. E.; Reitsma, G.; Dura, J.; Zhavoronkov, N.; Patchkovskii, S.; Vrakking, M. J. J.; Mikosch, J.

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  3. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  4. Geographical traceability of Marsdenia tenacissima by Fourier transform infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Li, Chao; Yang, Sheng-Chao; Guo, Qiao-Sheng; Zheng, Kai-Yan; Wang, Ping-Li; Meng, Zhen-Gui

    2016-01-01

    A combination of Fourier transform infrared spectroscopy with chemometrics tools provided an approach for studying Marsdenia tenacissima according to its geographical origin. A total of 128 M. tenacissima samples from four provinces in China were analyzed with FTIR spectroscopy. Six pattern recognition methods were used to construct the discrimination models: support vector machine-genetic algorithms, support vector machine-particle swarm optimization, K-nearest neighbors, radial basis function neural network, random forest and support vector machine-grid search. Experimental results showed that K-nearest neighbors was superior to other mathematical algorithms after data were preprocessed with wavelet de-noising, with a discrimination rate of 100% in both the training and prediction sets. This study demonstrated that FTIR spectroscopy coupled with K-nearest neighbors could be successfully applied to determine the geographical origins of M. tenacissima samples, thereby providing reliable authentication in a rapid, cheap and noninvasive way.

  5. Interferometric broadband Fourier spectroscopy with a partially coherent gas-discharge extreme ultraviolet light source.

    PubMed

    Rudolf, Denis; Bußmann, Jan; Odstrčil, Michal; Dong, Minjie; Bergmann, Klaus; Danylyuk, Serhiy; Juschkin, Larissa

    2015-06-15

    Extreme ultraviolet (EUV) spectroscopy is a powerful tool for studying fundamental processes in plasmas as well as for spectral characterization of EUV light sources and EUV optics. However, a simultaneous measurement covering a broadband spectral range is difficult to realize. Here, we propose a method for interferometric broadband Fourier spectroscopy connecting soft x ray and visible spectral ranges with moderate spectral resolution. We present an analytical model to recover the spectrum from a double-slit interferogram. We apply our model for spectral characterization of a partially coherent gas-discharge EUV light source operated with different gases in the spectral range between 10 and 110 nm wavelengths. Our approach allows a simple and fast broadband spectroscopy with fully or partially spatially coherent light sources, for instance, to characterize out-of-band radiation in EUV lithography applications. PMID:26076270

  6. Studies of Photosynthetic Energy and Charge Transfer by Two-dimensional Fourier transform electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogilvie, Jennifer

    2010-03-01

    Two-dimensional (2D) Fourier transform electronic spectroscopy has recently emerged as a powerful tool for the study of energy transfer in complex condensed-phase systems. Its experimental implementation is challenging but can be greatly simplified by implementing a pump-probe geometry, where the two phase-stable collinear pump pulses are created with an acousto-optic pulse-shaper. This approach also allows the use of a continuum probe pulse, expanding the available frequency range of the detection axis and allowing studies of energy transfer and electronic coupling over a broad range of frequencies. We discuss several benefits of 2D electronic spectroscopy and present 2D data on the D1-D2 reaction center complex of Photosystem II from spinach. We discuss the ability of 2D spectroscopy to distinguish between current models of energy and charge transfer in this system.

  7. Fourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts

    PubMed Central

    2014-01-01

    Background Oleaginous microorganisms, such as different yeast and algal species, can represent a sustainable alternative to plant oil for the production of biodiesel. They can accumulate fatty acids (FA) up to 70% of their dry weight with a predominance of (mono)unsaturated species, similarly to what plants do, but differently from animals. In addition, their growth is not in competition either with food, feed crops, or with agricultural land. Despite these advantages, the exploitation of the single cell oil system is still at an early developmental stage. Cultivation mode and conditions, as well as lipid extraction technologies, represent the main limitations. The monitoring of lipid accumulation in oleaginous microorganisms is consequently crucial to develop and validate new approaches, but at present the majority of the available techniques is time consuming, invasive and, when relying on lipid extraction, can be affected by FA degradation. Results In this work the fatty acid accumulation of the oleaginous yeasts Cryptococcus curvatus and Rhodosporidium toruloides and of the non-oleaginous yeast Saccharomyces cerevisiae (as a negative control) was monitored in situ by Fourier Transform Infrared Spectroscopy (FTIR). Indeed, this spectroscopic tool can provide complementary information to those obtained by classical techniques, such as microscopy, flow cytometry and gas chromatography. As shown in this work, through the analysis of the absorption spectra of intact oleaginous microorganisms it is possible not only to monitor the progression of FA accumulation but also to identify the most represented classes of the produced lipids. Conclusions Here we propose FTIR microspectroscopy - supported by multivariate analysis - as a fast, reliable and non invasive method to monitor and analyze FA accumulation in intact oleaginous yeasts. The results obtained by the FTIR approach were in agreement with those obtained by the other classical methods like flow cytometry and

  8. Biological X-ray absorption spectroscopy and metalloproteomics.

    PubMed

    Ascone, Isabella; Strange, Richard

    2009-05-01

    In the past seven years the size of the known protein sequence universe has been rapidly expanding. At present, more then five million entries are included in the UniProtKB/TrEMBL protein database. In this context, a retrospective evaluation of recent X-ray absorption studies is undertaken to assess its potential role in metalloproteomics. Metalloproteomics is the structural and functional characterization of metal-binding proteins. This is a new area of active research which has particular relevance to biology and for which X-ray absorption spectroscopy is ideally suited. In the last three years, biological X-ray absorption spectroscopy (BioXAS) has been included among the techniques used in post-genomics initiatives for metalloprotein characterization. The emphasis of this review is on the progress in BioXAS that has emerged from recent meetings in 2007-2008. Developments required to enable BioXAS studies to better contribute to metalloproteomics throughput are also discussed. Overall, this paper suggests that X-ray absorption spectroscopy could have a higher impact on metalloproteomics, contributing significantly to the understanding of metal site structures and of reaction mechanisms for metalloproteins. PMID:19395808

  9. The Fourier transform absorption spectrum of acetylene between 8280 and 8700 cm-1

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Vander Auwera, J.; Campargue, A.

    2016-07-01

    High resolution (0.011 cm-1) room temperature (295 K) Fourier transform absorption spectra (FTS) of acetylene have been analyzed in the 8280-8700 cm-1 range dominated by the ν1+ν2+ν3 band at 8512 cm-1. Line positions and intensities were retrieved from FTS spectra recorded at 3.84 and 56.6 hPa. As a result, a list of 1001 lines was constructed with intensities ranging between about 2×10-26 and 10-22 cm/molecule. Comparison with accurate predictions provided by a global effective operator model led to the assignment of 629 12C2H2 lines. In addition, 114 lines of the 13C12CH2 isotopologue were assigned using information available in the literature. The 12C2H2 lines belong to thirteen bands, nine of which being newly reported. The 13C12CH2 lines belong to three bands, the intensities of which being reported for the first time. Spectroscopic parameters of the 12C2H2 upper vibrational levels were derived from band-by-band analyses of the line positions (typical rms are on the order of 0.002 cm-1). Three of the analyzed bands were found to be affected by rovibrational perturbations, which are discussed in the frame of a global effective Hamiltonian. The obtained line parameters are compared with those of the two bands included in the HITRAN 2012 database.

  10. Structure and dynamics of fluorescently labeled complex fluids by fourier imaging correlation spectroscopy

    PubMed

    Grassman; Knowles; Marcus

    2000-12-01

    We present a method of Fourier imaging correlation spectroscopy (FICS) that performs phase-sensitive measurements of modulated optical signals from fluorescently labeled complex fluids. FICS experiments probe the time-dependent trajectory of a spatial Fourier component of the fluid particle density at a specified wave number k, and provide a direct route to the intermediate scattering function. The FICS approach overcomes signal sensitivity problems associated with dynamic light scattering, while offering a means to acquire time-dependent information about spatial distributions of fluorescent particles, superior in efficiency to direct imaging methods. We describe the instrumental setup necessary to perform FICS experiments, and outline the theory that establishes the connection between FICS observables and statistical mechanical quantities describing liquid state dynamics. Test measurements on monolayer suspensions of rhodamine labeled polystyrene spheres are detailed.

  11. Electron Wavepacket Interference Observed by Attosecond Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gallmann, L.; Holler, M.; Schapper, F.; Keller, U.

    Attosecond time-resolved transient absorption spectroscopy is performed in a dense helium target by superimposing an attosecond pulse train (APT) with a moderately strong infrared field. We observe rapid oscillations of the absorption of the individual harmonics as a function of time-delay between the APT and IR field even for harmonic energies well below the ionization threshold. The phase dependence of these modulations on atto-chirp and IR intensity yields direct evidence for the interference of transiently bound electronic wavepackets as the underlying mechanism.

  12. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  13. Multiphoton cascade absorption in single molecule fluorescence saturation spectroscopy.

    PubMed

    Winckler, Pascale; Jaffiol, Rodolphe

    2013-05-01

    Saturation spectroscopy is a relevant method to investigate photophysical parameters of single fluorescent molecules. Nevertheless, the impact of a gradual increase, over a broad range, of the laser excitation on the intramolecular dynamics is not completely understood, particularly concerning their fluorescence emission (the so-called brightness). Thus, we propose a comprehensive theoretical and experimental study to interpret the unexpected evolution of the brightness with the laser power taking into account the cascade absorption of two and three photons. Furthermore, we highlight the key role played by the confocal observation volume in fluorescence saturation spectroscopy of single molecules in solution.

  14. Beta-decay studies using total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    GSI-TAS Collaboration; LUCRECIA-TAgS Collaboration; Algora, A.; Batist, L.; Borge, M. J. G.; Cano-Ott, D.; Collatz, R.; Courtin, S.; Dessagne, Ph; Fraile, L. M.; Gadea, A.; Gelletly, W.; Hellström, M.; Janas, Z.; Jungclaus, A.; Kirchner, R.; Karny, M.; Le Scornet, G.; Miehé, Ch; Maréchal, F.; Moroz, F.; Nácher, E.; Poirier, E.; Roeckl, E.; Rubio, B.; Rykaczewski, K.; Tain, J. L.; Tengblad, O.; Wittmann, V.

    2003-04-01

    . Beta-decay experiments are a primary source of information for nuclear-structure studies and at the same time complementary to in-beam investigations of nuclei far from stability. Although both types of experiment are mainly based on γ -ray spectroscopy, they face different experimental problems. The so-called Pandemonium effect is a critical problem in β -decay if we are to test theoretically calculated transition probabilities. In this contribution we will present a solution to this problem using total absorption spectroscopy methods. We will also present some examples of experiments carried out with the Total Absorption Spectrometer (TAS) at GSI an describe a new device LUCRECIA recently installed at CERN.

  15. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: reliable techniques for analysis of Parthenium mediated vermicompost.

    PubMed

    Rajiv, P; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  16. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost

    NASA Astrophysics Data System (ADS)

    Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  17. Two-dimensional Fourier transform spectroscopy of exciton-polaritons and their interactions

    NASA Astrophysics Data System (ADS)

    Takemura, N.; Trebaol, S.; Anderson, M. D.; Kohnle, V.; Léger, Y.; Oberli, D. Y.; Portella-Oberli, M. T.; Deveaud, B.

    2015-09-01

    We investigate polariton-polariton interactions in a semiconductor microcavity through two-dimensional Fourier transform (2DFT) spectroscopy. We observe, in addition to the lower-lower and the upper-upper polariton self-interactions, a lower-upper cross interaction. This appears as separated peaks in the on-diagonal and off-diagonal parts of 2DFT spectra. Moreover, we elucidate the role of the polariton dispersion through a fine structure in the 2DFT spectrum. Simulations, based on lower-upper polariton basis Gross-Pitaevskii equations including both self- and cross interactions, result in a 2DFT spectra in qualitative agreement with experiments.

  18. Preliminary Method for Direct Quantification of Colistin Methanesulfonate by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    PubMed Central

    Niece, Krista L.

    2015-01-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). PMID:26124160

  19. Quantitative analysis of oils and fats by Fourier transform Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sadeghi-Jorabchi, H.; Wilson, R. H.; Belton, P. S.; Edwards-Webb, J. D.; Coxon, D. T.

    The rapid analysis of fats and oils is of great importance in the food industry. It is shown that Fourier transform Raman spectroscopy may be used for this purpose. Good quality spectra, free of fluorescence, may be obtained and the spectra may be interpreted in terms of changes in total unsaturation, cis/trans isomer ratios and the number of double bonds in the hydrocarbon chains. Quantitative analysis of total unsaturation and cis/trans is possible and offers considerable improvements in speed when compared with conventional methods.

  20. Preliminary method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Niece, Krista L; Akers, Kevin S

    2015-09-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR).

  1. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy.

    PubMed

    Zhu, Ying; Tan, Tuck Lee

    2016-04-15

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects. PMID:26827180

  2. Application of attenuated total reflectance Fourier transform infrared spectroscopy in the mineralogical study of a landslide area, Hungary

    NASA Astrophysics Data System (ADS)

    Udvardi, Beatrix; Kovács, István János; Kónya, Péter; Földvári, Mária; Füri, Judit; Budai, Ferenc; Falus, György; Fancsik, Tamás; Szabó, Csaba; Szalai, Zoltán; Mihály, Judith

    2014-11-01

    This study demonstrates that the unpolarized attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) is a practical and quick tool to distinguish different types of sediments in landslide-affected areas, and potentially other types of physical environments too. Identification and quantification of minerals by ATR FTIR is implemented on a set of powdered natural sediments from a loess landslide (Kulcs, Hungary). A protocol including sample preparation, analytical conditions and evaluation of sediment ATR spectra is outlined in order to identify and estimate major minerals in sediments. The comparison of the defined FTIR parameters against qualitative and quantitative results of X-ray diffraction and thermal analysis was used to validate the use of ATR FTIR spectroscopy for the considered sediments. The infrared band areas and their ratios (water/carbonates; silicates/carbonates; kaolinite) appear to be the most sensitive parameters to identify strongly weathered sediments such as paleosols and red clays which most likely facilitate sliding and could form sliding zones. The effect of grain size and orientation of anisotropic minerals on the wave number and intensity of some major absorption bands is also discussed.

  3. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy.

    PubMed

    Zhu, Ying; Tan, Tuck Lee

    2016-04-15

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.

  4. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Tan, Tuck Lee

    2016-04-01

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.

  5. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  6. Terahertz vibrational absorption spectroscopy using microstrip-line waveguides

    NASA Astrophysics Data System (ADS)

    Byrne, M. B.; Cunningham, J.; Tych, K.; Burnett, A. D.; Stringer, M. R.; Wood, C. D.; Dazhang, L.; Lachab, M.; Linfield, E. H.; Davies, A. G.

    2008-11-01

    We demonstrate that terahertz microstrip-line waveguides can be used to measure absorption spectra of polycrystalline materials with a high frequency resolution (˜2 GHz) and with a spatial resolution that is determined by the microstrip-line dimensions, rather than the free-space wavelength. The evanescent terahertz-bandwidth electric field extending above the microstrip line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. As an example, the terahertz absorption spectrum of polycrystalline lactose monohydrate was investigated; the lowest lying mode was observed at 534(±2) GHz, in excellent agreement with free-space measurements. This microstrip technique offers both a higher spatial and frequency resolution than free-space terahertz time-domain spectroscopy and requires no contact between the waveguide and sample.

  7. High Speed H2O Concentration Measurements Using Absorption Spectroscopy to Monitor Exhaust Gas

    SciTech Connect

    Kranendonk, Laura; Parks, II, James E; Prikhodko, Vitaly Y; Partridge Jr, William P

    2008-01-01

    This paper demonstrates the potential for fast absorption spectroscopy measurements in diesel-engine exhaust to track H2O concentration transients. Wavelength-agile absorption spectroscopy is an optical technique that measures broadband absorption spectra between 10kHz and 100 MHz. From these measured spectra, gas temperature and absorber concentration can be determined. The Fourier-domain mode-locking (FDML) laser is becoming recognized as one of the most robust and reliable wavelength-agile sources available. H2O concentration measurements during combustion events at crank angle resolved speeds are beneficial for a wide variety of applications, such as product improvements for industry, control and reliability checks for experimental researchers, and measures of fit for numerical simulations. The difficulties associated with measuring diesel exhaust compared to in-cylinder measurements are discussed. A full description of the experimental configuration and data processing is explained. Measurements of engine exhaust H2O transients with 10- s temporal resolution are presented for a range of engine conditions.

  8. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  9. Authentication of canned fish packing oils by means of Fourier transform infrared spectroscopy.

    PubMed

    Dominguez-Vidal, Ana; Pantoja-de la Rosa, Jaime; Cuadros-Rodríguez, Luis; Ayora-Cañada, María José

    2016-01-01

    The authentication of packing oil from commercial canned tuna and other tuna-like fish species was examined by means of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and chemometrics. Using partial least squares discriminant analysis (PLS-DA), it was possible to differentiate olive oil from seed oils. Discrimination of olive oil from high-oleic sunflower oil was possible, despite the latter having a degree of unsaturation more similar to olive oil than to sunflower oil. However, in the samples analyzed, sunflower oil could not be differentiated clearly from those labeled with the generic term "vegetable oil". Furthermore, the authentication of extra virgin olive oil, although more difficult, could be achieved using ATR-FTIR spectroscopy. The method could be applied regardless of fish type, without interference from fish lipids.

  10. Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of plant cell walls

    PubMed Central

    Largo-Gosens, Asier; Hernández-Altamirano, Mabel; García-Calvo, Laura; Alonso-Simón, Ana; Álvarez, Jesús; Acebes, José L.

    2014-01-01

    Fourier transform mid-infrared (FT-MIR) spectroscopy has been extensively used as a potent, fast and non-destructive procedure for analyzing cell wall architectures, with the capacity to provide abundant information about their polymers, functional groups, and in muro entanglement. In conjunction with multivariate analyses, this method has proved to be a valuable tool for tracking alterations in cell walls. The present review examines recent progress in the use of FT-MIR spectroscopy to monitor cell wall changes occurring in muro as a result of various factors, such as growth and development processes, genetic modifications, exposition or habituation to cellulose biosynthesis inhibitors and responses to other abiotic or biotic stresses, as well as its biotechnological applications. PMID:25071791

  11. Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, fourier transform infrared, and raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Titus, E.; Ali, N.; Cabral, G.; Gracio, J.; Ramesh Babu, P.; Jackson, M. J.

    2006-04-01

    This article reports key findings on the chemical functionalization of carbon nanotubes (CNT). The functionalization of chemical vapor-deposited CNT was carried out by treating tubes with polyvinyl alcohol through ultrasonication in water with the aid of a surfactant. The surfactant is expected to promote the unbundling of aggregated CNT. The characterization of functionalized samples using thermogravimetric analysis, Fourier transform infrared spectroscopy, and Raman spectroscopy revealed that the CNT were functionalized by the interaction of carboxylic acid and hydroxyl groups. From the characterization studies, it is apparent that there is a strong interaction between these functional groups and the covalently bonded carbon in the CNT network. The functionalization process enabled good CNT dispersion in the solution, and the CNT remained in suspension for many days. To support the effective functionalization of the tubes, the interaction of functionalized CNT with Ni ions is also demonstrated.

  12. Rapid detection of foodborne microorganisms on food surface using Fourier transform Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Hong; Irudayaraj, Joseph

    2003-02-01

    Fourier transform (FT) Raman spectroscopy was used for non-destructive characterization and differentiation of six different microorganisms including the pathogen Escherichia coli O157:H7 on whole apples. Mahalanobis distance metric was used to evaluate and quantify the statistical differences between the spectra of six different microorganisms. The same procedure was extended to discriminate six different strains of E. coli. The FT-Raman procedure was not only successful in discriminating the different E. coli strain but also accurately differentiated the pathogen from non-pathogens. Results demonstrate that FT-Raman spectroscopy can be an excellent tool for rapid examination of food surfaces for microorganism contamination and for the classification of microbial cultures.

  13. A Study of Two Dimensional Electron Gas Using 2D Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    McIntyre, Carl; Paul, Jagannath; Karaiskaj, Denis

    2015-03-01

    The dephasing of FES was measured in a symmetrically modulation doped 12 nm single quantum well GaAs/AlGaAs two dimensional electron gas system using time integrated four wave mixing (TIFWM) and a two dimensional Fourier transform spectroscopy (2DFTS). At high in-well carrier densities of ~4 x 1011 cm-2, many body effects that are prevalent and measurable with non-linear optical spectroscopy. Effects of exciton-exciton and exciton-phonon scattering events, exciton populations, and biexciton formation are detectable at these carrier concentrations. Homogeneous linewidths obtained from 2DFT and TIFWM yield a zero Kelvin linewidth of 1.42 meV and an acoustic phonon scattering coefficient of 158 μ eV/K. These observations indicate a rapid increase in homogeneous linewidth with increased temperature. NSF REU Grant # DMR-1263066: REU Site in Applied Physics at USF.

  14. Fourier Transform Infrared Spectroscopy of Low-k Dielectric Material on Patterned Wafers

    NASA Astrophysics Data System (ADS)

    Lam, Jeffrey Chorkeung; Tan, Hao; Huang, Maggie Yamin; Zhang, Fan; Sun, Handong; Shen, Zexiang; Mai, Zhihong

    2012-11-01

    With many of research on Fourier transform IR (FTIR) on low-k materials, our experiments extended the FTIR spectroscopy application to characterization and analysis of the low-k dielectric thin film properties on patterned wafers. FTIR spectra on low-k materials were successfully captured under three sampling modes: reflection, attenuated total reflectance (ATR), and mapping mode. ATR mode is more suitable for CHx band than reflection mode due to its higher sensitivity in this range. FTIR spectroscopy signal analysis on mixed structures (metal and low-k dielectric material) on patterned wafers was also investigated with mapping mode. Based on our investigation, FTIR can be used for low-k material studies on patterned wafer.

  15. Automated cervical precancerous cells screening system based on Fourier transform infrared spectroscopy features

    NASA Astrophysics Data System (ADS)

    Jusman, Yessi; Mat Isa, Nor Ashidi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Abu Osman, Noor Azuan

    2016-07-01

    Fourier transform infrared (FTIR) spectroscopy technique can detect the abnormality of a cervical cell that occurs before the morphological change could be observed under the light microscope as employed in conventional techniques. This paper presents developed features extraction for an automated screening system for cervical precancerous cell based on the FTIR spectroscopy as a second opinion to pathologists. The automated system generally consists of the developed features extraction and classification stages. Signal processing techniques are used in the features extraction stage. Then, discriminant analysis and principal component analysis are employed to select dominant features for the classification process. The datasets of the cervical precancerous cells obtained from the feature selection process are classified using a hybrid multilayered perceptron network. The proposed system achieved 92% accuracy.

  16. Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ivashchenko, Olena; Jurga-Stopa, Justyna; Coy, Emerson; Peplinska, Barbara; Pietralik, Zuzanna; Jurga, Stefan

    2016-02-01

    This article presents a study on the detection of antibiotics in magnetite/Ag/antibiotic nanocomposites using Fourier transform infrared (FTIR) and Raman spectroscopy. Antibiotics with different spectra of antimicrobial activities, including rifampicin, doxycycline, cefotaxime, and ceftriaxone, were studied. Mechanical mixtures of antibiotics and magnetite/Ag nanocomposites, as well as antibiotics and magnetite nanopowder, were investigated in order to identify the origin of FTIR bands. FTIR spectroscopy was found to be an appropriate technique for this task. The spectra of the magnetite/Ag/antibiotic nanocomposites exhibited very weak (for doxycycline, cefotaxime, and ceftriaxone) or even no (for rifampicin) antibiotic bands. This FTIR "invisibility" of antibiotics is ascribed to their adsorbed state. FTIR and Raman measurements show altered Csbnd O, Cdbnd O, and Csbnd S bonds, indicating adsorption of the antibiotic molecules on the magnetite/Ag nanocomposite structure. In addition, a potential mechanism through which antibiotic molecules interact with magnetite/Ag nanoparticle surfaces is proposed.

  17. Authentication of canned fish packing oils by means of Fourier transform infrared spectroscopy.

    PubMed

    Dominguez-Vidal, Ana; Pantoja-de la Rosa, Jaime; Cuadros-Rodríguez, Luis; Ayora-Cañada, María José

    2016-01-01

    The authentication of packing oil from commercial canned tuna and other tuna-like fish species was examined by means of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and chemometrics. Using partial least squares discriminant analysis (PLS-DA), it was possible to differentiate olive oil from seed oils. Discrimination of olive oil from high-oleic sunflower oil was possible, despite the latter having a degree of unsaturation more similar to olive oil than to sunflower oil. However, in the samples analyzed, sunflower oil could not be differentiated clearly from those labeled with the generic term "vegetable oil". Furthermore, the authentication of extra virgin olive oil, although more difficult, could be achieved using ATR-FTIR spectroscopy. The method could be applied regardless of fish type, without interference from fish lipids. PMID:26212950

  18. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Irudayaraj, Joseph; Yang, Hong; Sakhamuri, Sivakesava

    2002-03-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to differentiate and identify microorganisms on a food (apple) surface. Microorganisms considered include bacteria ( Lactobacillus casei, Bacillus cereus, and Escherichia coli), yeast ( Saccharomyces cerevisiae), and fungi ( Aspergillus niger and Fusarium verticilliodes). Discriminant analysis was used to differentiate apples contaminated with the different microorganisms from uncontaminated apple. Mahalanobis distances were calculated to quantify the differences. The higher the value of the Mahalanobis distance metric between different microorganisms, the greater is their difference. Additionally, pathogenic (O157:H7) E. coli was successfully differentiated from non-pathogenic strains. Results demonstrate that FTIR-PAS spectroscopy has the potential to become a non-destructive analysis tool in food safety related research.

  19. a Study of 4,4-DIMETHYLAMINOBEZONITRILE by Chirped-Pulsed Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bird, Ryan G.; Alstadt, Valerie J.; Pratt, David W.; Neill, Justin L.; Pate, Brooks H.

    2010-06-01

    The ground state rotational spectrum of 4,4-dimethylaminobenzonitrile (DMABN) was studied using chirped-pulsed Fourier transform microwave spectroscopy (CP-FTMW). The rotational spectrum from 6.5 to 18 GHz was collected using a compilation of 250 MHz chirped pulses and pieced together. DMABN is widely known as an important model for excited state twisted intramolecular charge transfer dynamics. It has been previously studied in our group using high resolution electronic spectroscopy, in which a strong coupling between methyl group internal rotation and overall rotation was discovered. We have recently determined that these couplings are not present in the ground state spectrum. The ground state structure and nuclear quadrupole coupling terms will also be discussed.

  20. Noninvasive biochemical monitoring of physiological stress by Fourier transform infrared saliva spectroscopy.

    PubMed

    Khaustova, Svetlana; Shkurnikov, Maxim; Tonevitsky, Evgeny; Artyushenko, Viacheslav; Tonevitsky, Alexander

    2010-12-01

    Physical stress affects the immune system, activates the sympathetic (SNS) and parasympathetic (PNS) subsystems of autonomic nervous system (ANS), and increases the activity of the hypothalamic-pituitary-adrenal axis (HPA). The specific response of the major regulatory systems depends on the human functional state. Saliva is a unique diagnostic fluid, the composition of which immediately reflects the SNS, PNS, HPA and immune system response to stress. A new method of saliva biomarker determination by Attenuated Total Reflection Fourier-Transform Infrared (ATR FTIR) spectroscopy has been developed to monitor the exercise induced metabolic changes in saliva from male endurance athletes. The method has been tested using a group of professional athletes by analysing saliva samples collected before and after the exercise, and the saliva composition monitoring by ATR FTIR spectroscopy was shown to be suitable for real-time checking of response to stress.

  1. Source brightness fluctuation correction of solar absorption Fourier Transform mid infrared spectra

    NASA Astrophysics Data System (ADS)

    Ridder, T.; Warneke, T.; Notholt, J.

    2011-01-01

    Solar absorption Fourier Transform infrared spectrometry is considered a precise and accurate method for the observation of trace gases in the atmosphere. The precision and accuracy of such measurements are dependent on the stability of the light source. Fluctuations in the source brightness reduce the precision and accuracy of the trace gas concentrations, but cannot always be avoided. Thus, a strong effort is made within the community to reduce the impact of source brightness fluctuations by applying a correction on the spectra following the measurements. So far, it could be shown that the precision and accuracy of CO2 total column concentrations could be improved by applying a source brightness fluctuation correction to spectra in the near infrared spectral region. The analysis of trace gas concentrations obtained from spectra in the mid infrared spectral region is fundamental. However, spectra below 2000 cm-1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents a source brightness fluctuation correction. Here, we show a method of source brightness fluctuation correction, which can be applied on spectra in the whole infrared spectral region including spectra measured with a MCT detector. We present a solution to remove the unknown offset in MCT interferograms allowing MCT spectra for an application of source brightness fluctuation correction. This gives an improvement in the quality of MCT spectra and we demonstrate an improvement in the retrieval of O3 profiles and total column concentrations. For a comparison with previous studies, we apply our source brightness fluctuation correction method on spectra in the near infrared spectral region and show an improvement in the retrieval of CO2 total column concentrations.

  2. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  3. Characterization of Xenorhabdus and Photorhabdus bacteria by Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR).

    PubMed

    San-Blas, Ernesto; Cubillán, Néstor; Guerra, Mayamarú; Portillo, Edgar; Esteves, Iván

    2012-07-01

    The use of Fourier transform mid-infrared spectroscopy with attenuated total reflection for characterizing entomopathogenic bacteria from genera Xenorhabdus and Photorhabdus is evaluated for the first time. The resulting spectra of Xenorhabdus poinarii and Photorhabdus luminiscens were compared with the spectrum of Escherichia coli samples. The absorption spectra generated by the bacteria samples, were very different at the region below 1400cm(-1) which represents the stretching vibrations of phosphate and carbohydrates. Star diagrams of the fingerprint section of nematodes spectra (between 1,350 and 1,650 cm(-1)) for separation between spectra was used and showed to be a useful tool for classification purposes.

  4. Comparative study of the cuticular hydrocarbon in queens, workers and males of Ectatomma vizottoi (Hymenoptera, Formicidae) by Fourier transform-infrared photoacoustic spectroscopy.

    PubMed

    Antonialli, W F; Lima, S M; Andrade, L H C; Súarez, Y R

    2007-01-01

    Fourier transform-infrared photoacoustic spectroscopy was applied for the first time, to our knowledge, to distinguish different castes of an ant species. The method was applied directly to the abdomen of queens, workers and males of Ectatomma vizottoi ants, without any special sample preparation. The absorption bands of secondary amide and hydrocarbons were identified; using these as variables in a canonical discriminant analysis we found significant differences between the castes. Queens have a greater hydrocarbon content than do workers and males, which is related to their function in the colony. This technique can be used to analyze and distinguish small chemical differences in biological systems, even in opaque samples. PMID:17985301

  5. First direct body fat content measurement during pregnancy using Fourier transform near-infrared spectroscopy.

    PubMed

    Azizian, Hormoz; Kramer, John K G; Phillips, Stuart M

    2014-01-01

    Currently, there are no direct and reliable methods to measure the body fat content of women during pregnancy. Estimates of fat accretion can significantly affect calculations of energy requirements. We report here the first direct measurement of determining the body fat content of two women during pregnancy using the Fourier transform near-infrared spectroscopy (FT-NIR) method. Fourier transform near-infrared spectroscopy was shown to provide comparable results to dual-energy X-ray absorptiometry and magnetic resonance imaging. These latter methods, even though very reliable to measure body fat levels, cannot be used to measure the body fat of women during pregnancy because of health concerns, while FT-NIR poses no health risk. The FT-NIR results showed the percent body fat remained relatively constant throughout pregnancy, but fat mass and fat free mass increased. Fat mass followed an S curve with a maximum increase between 15 to 25 weeks of gestation that was only detected by repeated measurements using the FT-NIR technique. These results demonstrate the value of the FT-NIR method to directly measure the fat content of pregnant women in minutes instead of relying on indirect calculations or taking measurements before and after pregnancy to track gestational fat mass accretion.

  6. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  7. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    SciTech Connect

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  8. Absorption spectroscopy with sub-angstrom beams: ELS in STEM

    NASA Astrophysics Data System (ADS)

    Spence, John C. H.

    2006-03-01

    Electron-energy loss spectroscopy (EELS) performed using a modern transmission scanning electron microscope (STEM) now offers sub-nanometre spatial resolution and an energy resolution down to 200 meV or less, in favourable cases. The absorption spectra, which probe empty states, cover the soft x-ray region and may be obtained under conditions of well-defined momentum transfer (angle-resolved), providing a double projection onto crystallographic site and symmetry within the density of states. By combining the very high brightness of field-emission electron sources (brighter than a synchrotron) with the high cross-section of electron scattering, together with parallel detection (not possible with scanning x-ray absorption spectroscopy), a form of spectroscopy ideally suited to the study of nanostructures, interfacial states and defects in materials is obtained with uniquely high spatial resolution. We review the basic theory, the relationship of EELS to optical properties and the dielectric response function, the removal of multiple scattering artefacts and channelling effects. We consider applications in the light of recent developments in aberration corrector and electron monochromator design. Examples are cited of inner-shell spectra obtained from individual atoms within thin crystals, of the detection of interfacial electronic states in semiconductors, of inner-shell near edge structure mapped with sub-nanometre spatial resolution in glasses and of spectra obtained from individual carbon nanotubes, amongst many others.

  9. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  10. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.

    PubMed

    Lambrecht, Armin; Pfeifer, Marcel; Konz, Werner; Herbst, Johannes; Axtmann, Felix

    2014-05-01

    Laser spectroscopy is a powerful tool for analyzing small molecules, i.e. in the gas phase. In the mid-infrared spectral region quantum cascade lasers (QCLs) have been established as the most frequently used laser radiation source. Spectroscopy of larger molecules in the gas phase, of complex mixtures, and analysis in the liquid phase requires a broader tuning range and is thus still the domain of Fourier transform infrared (FTIR) spectroscopy. However, the development of tunable external cavity (EC) QCLs is starting to change this situation. The main advantage of QCLs is their high spectral emission power that is enhanced by a factor of 10(4) compared with thermal light sources. Obviously, transmission measurements with EC-QCLs in strongly absorbing samples are feasible, which can hardly be measured by FTIR due to detector noise limitations. We show that the high power of EC-QCLs facilitates spectroscopy beyond simple absorption measurements. Starting from QCL experiments with liquid samples, we show results of fiber evanescent field analysis (FEFA) to detect pesticides in drinking water. FEFA is a special case of attenuated total reflection spectroscopy. Furthermore, powerful CW EC-QCLs enable fast vibrational circular dichroism (VCD) spectroscopy of chiral molecules in the liquid phase - a technique which is very time consuming with standard FTIR equipment. We present results obtained for the chiral compound 1,1'-bi-2-naphthol (BINOL). Finally, powerful CW EC-QCLs enable the application of laser photothermal emission spectroscopy (LPTES). We demonstrate this for a narrowband and broadband absorber in the gas phase. All three techniques have great potential for MIR process analytical applications.

  11. X-ray absorption spectroscopy of liquid surface

    NASA Astrophysics Data System (ADS)

    Watanabe, Iwao; Tanida, Hajime; Kawauchi, Sigehiro; Harada, Makoto; Nomura, Masaharu

    1997-09-01

    An apparatus has been constructed for x-ray absorption spectroscopy of elements at air/aqueous solution interface. Its surface sensitivity is gained from glancing incidence of synchrotron radiation under total reflection condition. The absorption is detected by total conversion He ion-yield method. This apparatus was operated at the beam line 7C of Photon Factory, where the incident photon beam comes from a sagittal focus double-crystal monochromator via a 70-cm-long bent mirror. The mirror focuses the beam vertically and changes the beam direction downward by 1 mrad to irradiate solution surface. The essential requirement of this technique, ripple-free liquid surface at accurate position, was attained by introducing a trough on a floating boat, continuous surface level monitoring, and an automatic Z-stage control. The x-ray absorption edge jump demonstrated that surface concentration of bromide ion follows the Langmuir type adsorption for tetraalkylammonuim bromide solution. By comparing the jump values for surface-active and -inactive bromide salt solutions, the detecting depth of the present technique was determined to be 8.8 nm. An extended x-ray absorption fine structure analysis of bromide ion segregated to the surface by stearyltrimethylammonium cation indicated that its solvation structure is different from that of bulk.

  12. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  13. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  14. Spatially resolved concentration measurements based on backscatter absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Sanders, Scott T.; Robinson, Michael A.

    2016-06-01

    We demonstrate the feasibility of spatially resolved measurements of gas properties using direct absorption spectroscopy in conjunction with backscattered signals. We report a 1-D distribution of H2O mole fraction with a spatial resolution of 5 mm. The peak and average discrepancy between the measured and expected mole fraction are 21.1 and 8.0 %, respectively. The demonstration experiment is related to a diesel aftertreatment system; a selective catalytic reduction brick made of cordierite is used. The brick causes volume scattering interference; advanced baseline fitting based on a genetic algorithm is used to reduce the effects of this interference by a factor of 2.3.

  15. Atmospheric absorption spectroscopy using Tm: fiber sources around two microns

    NASA Astrophysics Data System (ADS)

    Kadwani, Pankaj; Chia, Jeffrey; Altal, Faleh; Sims, Robert A.; Willis, Christina; Shah, Lawrence; Killinger, Dennis; Richardson, Martin C.

    2011-03-01

    We report on a thulium doped silica fiber ASE source for absorption spectroscopy of CO2. The average spectral power of this source was 2.3-6.1 μW/nm. This low spectral power of this source posed limitation in the sensitivity of the system which was overcome by using an ultrashort pulsed Raman amplifier system with 50-125 μW/nm average spectral power. This system produced CO2 sensitivity better than 300 ppm making measurement of CO2 possible at standard atmospheric concentrations.

  16. Piezo-locking a diode laser with saturated absorption spectroscopy

    SciTech Connect

    Debs, J. E.; Robins, N. P.; Lance, A.; Kruger, M. B.; Close, J. D

    2008-10-01

    We demonstrate modulation-based frequency locking of an external cavity diode laser, utilizing a piezo-electrically actuated mirror, external to the laser cavity, to create an error signal from saturated absorption spectroscopy. With this method, a laser stabilized to a rubidium hyperfine transition has a FWHM of 130 kHz over seconds, making the locked laser suitable for experiments in atomic physics, such as creating and manipulating Bose-Einstein condensates. This technique combines the advantages of low-amplitude modulation, simplicity, performance, and price, factors that are usually considered to be mutually exclusive.

  17. Laser absorption spectroscopy system for vaporization process characterization and control

    NASA Astrophysics Data System (ADS)

    Galkowski, Joseph J.; Hagans, Karla G.

    1994-03-01

    In support of the Lawrence Livermore National Laboratory's (LLNL's) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multilaser system is capable of simultaneously measuring the line densities of 238U ground and metastable states, 235U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL's LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode- lasers has capabilities far beyond the requirements of its primary mission.

  18. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  19. The Spectrum and Term Analysis of Co III Measured Using Fourier Transform and Grating Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smillie, D. G.; Pickering, J. C.; Nave, G.; Smith, P. L.

    2016-03-01

    The spectrum of Co iii has been recorded in the region 1562-2564 Å (64,000 cm-1-39,000 cm-1) by Fourier transform (FT) spectroscopy, and in the region 1317-2500 Å (164,000 cm-1-40,000 cm-1) using a 10.7 m grating spectrograph with phosphor image plate detectors. The spectrum was excited in a cobalt-neon Penning discharge lamp. We classified 514 Co iii lines measured using FT spectroscopy, the strongest having wavenumber uncertainties approaching 0.004 cm-1 (approximately 0.2 mÅ at 2000 Å, or 1 part in 107), and 240 lines measured with grating spectroscopy with uncertainties between 5 and 10 mÅ. The wavelength calibration of 790 lines of Raassen & Ortí Ortin and 87 lines from Shenstone has been revised and combined with our measurements to optimize the values of all but one of the 288 previously reported energy levels. Order of magnitude reductions in uncertainty for almost two-thirds of the 3d64s and almost half of the 3d64p revised energy levels are obtained. Ritz wavelengths have been calculated for an additional 100 forbidden lines. Eigenvector percentage compositions for the energy levels and predicted oscillator strengths have been calculated using the Cowan code.

  20. Absorption-Mode Fourier Transform Mass Spectrometry: The Effects of Apodization and Phasing on Modified Protein Spectra

    NASA Astrophysics Data System (ADS)

    Qi, Yulin; Li, Huilin; Wills, Rebecca H.; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David P. A.; Barrow, Mark P.; Lin, Cheng; O'Connor, Peter B.

    2013-06-01

    The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.

  1. Absorption-mode Fourier transform mass spectrometry: the effects of apodization and phasing on modified protein spectra.

    PubMed

    Qi, Yulin; Li, Huilin; Wills, Rebecca H; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David P A; Barrow, Mark P; Lin, Cheng; O'Connor, Peter B

    2013-06-01

    The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.

  2. Translational Diffusion of Fluorescent Proteins by Molecular Fourier Imaging Correlation Spectroscopy

    PubMed Central

    Fink, Michael C.; Adair, Kenneth V.; Guenza, Marina G.; Marcus, Andrew H.

    2006-01-01

    The ability to noninvasively observe translational diffusion of proteins and protein complexes is important to many biophysical problems. We report high signal/noise (≥250) measurements of the translational diffusion in viscous solution of the fluorescent protein, DsRed. This is carried out using a new technique: molecular Fourier imaging correlation spectroscopy (M-FICS). M-FICS is an interferometric method that detects a collective Fourier component of the fluctuating density of a small population of fluorescent molecules, and provides information about the distribution of molecular diffusivities. A theoretical analysis is presented that expresses the detected signal fluctuations in terms of the relevant time-correlation functions for molecular translational diffusion. Furthermore, the role played by optical orientational degrees of freedom is established. We report Fickian self-diffusion of the DsRed tetramer at short timescales. The long-time deviation of our data from Fickian behavior is used to determine the variance of the distribution of the protein self-diffusion coefficient. We compare our results to the expected outcomes for 1), a bi-disperse distribution of protein species, and 2), dynamic disorder of the host solvent. PMID:16920833

  3. [The study of photo-elastic modulator-based Fourier transform spectroscopy].

    PubMed

    Chen, You-hua; Wang, Zhao-ba; Wang, Zhi-bin; Wang, Yan-chao; Li, Yong-shuai; Zhang, Yu-han

    2014-06-01

    In order to enhance the spectrum resolution of current photo-elastic modulator-based Fourier transform spectrometer, a multi-reflected photo-elastic modulator-based interferometer structure was proposed in the present paper. Through coating reflecting film alternatingly on the photo-elastic crystal and light oblique incidence, and allowing the incident ray to have the multi-reflection in the crystal and exit from the other side of the crystal, the authors increased the light propagation distance in the crystal and enhanced the optical path difference at last. Based on this, the function of interference-spectrum retrieval was established, the optical system matched to the multi-reflected PEM-based interferometer was designed, and finally, the experimental system of multi-reflected PEM-based Fourier transform spectroscopy for telemetry was established. The principle of verification tests by using 671 nm laser and xenon lamp shows that the interferogram was clear and stable, and the feasibility of the principle of the system was verified. The expected result shows that the spectrum resolution of the designed PEM-FTs with multi-reflection achieved 13 cm(-1), and its luminous flux just didn't reduce too much, which ensured the SNR. Through spectral inversion of the interference fringes, the technical feasibility of the spectrum system developed was verified. This work established the basic condition of prototype fabrication, radiation precise calibration, spectral calibration and instrument signal-to-noise ratio test and so on.

  4. Identification of Propionibacteria to the species level using Fourier transform infrared spectroscopy and artificial neural networks.

    PubMed

    Dziuba, B

    2013-01-01

    Fourier transform infrared spectroscopy (FTIR) and artificial neural networks (ANN's) were used to identify species of Propionibacteria strains. The aim of the study was to improve the methodology to identify species of Propionibacteria strains, in which the differentiation index D, calculated based on Pearson's correlation and cluster analyses were used to describe the correlation between the Fourier transform infrared spectra and bacteria as molecular systems brought unsatisfactory results. More advanced statistical methods of identification of the FTIR spectra with application of artificial neural networks (ANN's) were used. In this experiment, the FTIR spectra of Propionibacteria strains stored in the library were used to develop artificial neural networks for their identification. Several multilayer perceptrons (MLP) and probabilistic neural networks (PNN) were tested. The practical value of selected artificial neural networks was assessed based on identification results of spectra of 9 reference strains and 28 isolates. To verify results of isolates identification, the PCR based method with the pairs of species-specific primers was used. The use of artificial neural networks in FTIR spectral analyses as the most advanced chemometric method supported correct identification of 93% bacteria of the genus Propionibacterium to the species level.

  5. Biochemical differentiation of mycelium and yeast forms of Paracoccidioides brasiliensis by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Castilho, Maiara L.; Campos, Claudia B. L.; Matos, Tatiana G. F.; de Abreu, Geraldo M. A.; Martin, Airton A.; Raniero, Leandro

    2012-01-01

    Paracoccidioides brasiliensis the etiological agent of paracoccidioidomycosis, is a dimorphic fungus existing as mycelia in the environment (or at 25 °C in vitro) and as yeast cells in the human host (or at 37°C in vitro). The most prominent difference between both forms is probably the cell wall polysaccharide, being 1,3-β-glucan usually found in mycelia and 1,3-α-glucan found in yeasts, but a plethora of other differences have already been described. In this work, we performed a Fourier Transform Infrared Spectroscopy analysis to compare the yeast and mycelia forms of P. brasiliensis and found additional biochemical differences. The analysis of the spectra showed that differences were distributed in chemical bonds of proteins, lipids and carbohydrates.

  6. Quantitative analysis of virgin coconut oil in cream cosmetics preparations using fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Rohman, A; Man, Yb Che; Sismindari

    2009-10-01

    Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.

  7. Detection of sugar adulterants in apple juice using fourier transform infrared spectroscopy and chemometrics.

    PubMed

    Kelly, J F Daniel; Downey, Gerard

    2005-05-01

    Fourier transform infrared spectroscopy and attenuated total reflection sampling have been used to detect adulteration of single strength apple juice samples. The sample set comprised 224 authentic apple juices and 480 adulterated samples. Adulterants used included partially inverted cane syrup (PICS), beet sucrose (BS), high fructose corn syrup (HFCS), and a synthetic solution of fructose, glucose, and sucrose (FGS). Adulteration was carried out on individual apple juice samples at levels of 10, 20, 30, and 40% w/w. Spectral data were compressed by principal component analysis and analyzed using k-nearest neighbors and partial least squares regression techniques. Prediction results for the best classification models achieved an overall (authentic plus adulterated) correct classification rate of 96.5, 93.9, 92.2, and 82.4% for PICS, BS, HFCS, and FGS adulterants, respectively. This method shows promise as a rapid screening technique for the detection of a broad range of potential adulterants in apple juice.

  8. Diamond cell Fourier transform infrared spectroscopy transmittance analysis of black toners on questioned documents.

    PubMed

    Assis, A C Almeida; Barbosa, M F; Nabais, J M Valente; Custódio, A F; Tropecelo, P

    2012-01-10

    This paper describes the use of a diamond cell Fourier transform infrared (FTIR) spectroscopy methodology for the analysis of black toners commercialised in Portugal. A total of one hundred and thirty-eight samples from eighteen manufacturers were analysed in transmittance mode through a diamond cell. This methodology was considered to be non-destructive as it allows the forensic analysis of the questioned documents while preserving their integrity. The questioned documents' substrate (paper sheets) has no influence on the final result. This technique shows high repeatability and intermediate precision. Spectra were organized in twenty distinct groups based on their main chemical characteristics and relative peak intensity; and a black toner infrared spectral library was developed. Spectral matches between forty-five blind samples and the database resulted in a 100% positive identification to the correct group. PMID:21831548

  9. Protein conformational stability in the hydrofluoroalkane propellants tetrafluoroethane and heptafluoropropane analysed by Fourier transform Raman spectroscopy.

    PubMed

    Quinn, E A; Forbes, R T; Williams, A C; Oliver, M J; McKenzie, L; Purewal, T S

    1999-09-10

    Due to the inherent structural instability of proteins, development of chlorofluorocarbon (CFC) free metered dose inhalers (MDIs) containing these biomolecules is beset with numerous challenges. In assessing the conformation of proteins in any medium, both secondary and tertiary structures need to be elucidated. This study uses Fourier transform (FT-) Raman spectroscopy to probe protein conformational stability in hydrofluoroalkane (HFA) propellants. Assignments of molecular modes for lysozyme as a solid and in aqueous solution, and for the first time, HFAs tetrafluoroethane (HFA 134a) and heptafluoropropane (HFA 227) are given. The Raman spectra provided molecular structural information on the peptide backbone, disulfide bonds and C-C stretching vibrations of hen egg lysozyme, enabling the secondary conformation of protein in HFA propellants to be determined; structural integrity of this robust model protein was maintained in both propellants. These results demonstrate that FT-Raman may be a useful tool for the optimisation of protein MDI formulations.

  10. Near-IR Fourier transform Raman spectroscopy in surgery and medicine: ophthalmic applications

    NASA Astrophysics Data System (ADS)

    Nie, Shuming; Yu, Nai-Teng; Ren, Qiushi

    1992-08-01

    This report describes the application of a recently developed spectroscopic technique, near- infrared-excited Fourier transform Raman scattering (abbreviated as near-IR FT-Raman) in the molecular-level characterization of normal and pathological human ocular tissues. The near-IR FT-Raman technique was shown to be particularly well-suited for the noninvasive analysis of intact ophthalmic samples because it exhibits such attractive features as complete fluorescence elimination, great sampling flexibility, high data acquisition speed, and measurement accuracy. For both intact human lenses and corneas, systematic FT-Raman studies were carried out in order to probe detailed molecular changes involved in cataract formation and cornea diseases. FT-Raman measurement was also made for synthetic biomaterials that can be attached to the corneal surface for laser refractive surgery. The technique of near-IR FT- Raman spectroscopy is potentially a nondestructive, non-invasive fingerprinting modality for monitoring lens aging, cataract formation, and corneal disease development.

  11. Use of in situ Fourier transform infrared spectroscopy to study freezing and drying of cells.

    PubMed

    Wolkers, Willem F; Oldenhof, Harriëtte

    2015-01-01

    An infrared spectrum gives information about characteristic molecular vibrations of specific groups in molecules. Fourier transform infrared spectroscopy can be applied to study lipids and proteins in cells or tissues. Spectra can be collected during cooling, heating, or dehydration of a sample using a temperature-controlled sample holder or a sample holder for controlled dehydration. In the current chapter, acquisition and analysis of infrared spectra during cooling, warming, or dehydration is described. Spectra analysis involving assessment of specific band positions, areas, or ratios is described. Special emphasis is given on studying membrane phase behavior and protein denaturation in cells or tissues. In addition, methods are presented to determine the water-to-ice phase change during freezing, dehydration kinetics, and the glass transition temperature of amorphous systems.

  12. Estimation of blood alcohol concentration by horizontal attenuated total reflectance-Fourier transform infrared spectroscopy.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2010-06-01

    Numerous methods like distillation followed by iodometric titrations, gas chromatograph (GC)-flame ionization detector, gas chromatograph-mass spectrophotometer, GC-Headspace, Breath analyzer, and biosensors including alcohol dehydrogenase (enzymatic) have been used to determine blood alcohol concentration (BAC). In the present study, horizontal attenuated total reflectance-Fourier transform infrared spectroscopy had been used to determine BAC in whole blood. The asymmetric stretching frequency of C-C-O group of ethanol in water (1,045 cm(-1)) had been used to calculate BAC using Beer's Law. A seven-point calibration curve of ethanol was drawn in the concentration range 24-790 mg dL(-1). The curve showed good linearity over the concentration range used (r(2)=0.999, standard deviation=0.0023). The method is accurate, reproducible, rapid, simple, and nondestructive in nature. PMID:20541351

  13. United States Environmental Protection Agency Fourier transform infrared spectroscopy test program for emissions measurement

    SciTech Connect

    Lay, L.T.

    1994-12-31

    The US Environmental Protection Agency (EPA) published amendments to the Clean Air Act (CAA) November 15, 1990. Title 3 of the CAA amendments included a list of 189 hazardous air pollutants (HAPs) for which emission test procedures must be established. An extractive emission test method, using Fourier Transform Infrared (FTIR) spectroscopy, is being developed for measuring HAP compounds. The FTIR procedure has the potential to detect over 100 of the listed compounds plus additional compounds such as criteria pollutants. This procedure has the ability to detect multiple compounds simultaneously and will provide near real-time data. Since the development of the extractive FTIR procedure, many source categories have been screened for HAP emissions using this technique. Modifications to the procedure have been made and validation testing has been performed. Currently, this technique is being used to collect data for maximum achievable control technology (MACT) standard development.

  14. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    SciTech Connect

    Paul, J.; Dey, P.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of the 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.

  15. Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy

    NASA Astrophysics Data System (ADS)

    Hillman, Timothy R.; Alexandrov, Sergey A.; Gutzler, Thomas; Sampson, David D.

    2006-11-01

    We utilize Fourier-holographic light scattering angular spectroscopy to record the spatially resolved complex angular scattering spectra of samples over wide fields of view in a single or few image captures. Without resolving individual scatterers, we are able to generate spatially-resolved particle size maps for samples composed of spherical scatterers, by comparing generated spectra with Mie-theory predictions. We present a theoretical discussion of the fundamental principles of our technique and, in addition to the sphere samples, apply it experimentally to a biological sample which comprises red blood cells. Our method could possibly represent an efficient alternative to the time-consuming and laborious conventional procedure in light microscopy of image tiling and inspection, for the characterization of microscopic morphology over wide fields of view.

  16. Phase cycling for optical two-dimensional Fourier-transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Autry, Travis; Moody, Galan; Li, Hebin; Siemens, Mark; Cundiff, Steven

    2011-03-01

    Phase-cycling has been implemented in optical two-dimensional Fourier-transform spectroscopy to extract signals from quantum wells and quantum dots and to eliminate noise such as pump scatter co-propagating with the four-wave mixing signal. Experiments using actively phase-stabilized interferometers to cycle the excitation pulse optical phases suffer from partial noise cancellation because excitation and phase-control laser wavelengths are incommensurate. To obtain full noise elimination, we have incorporated liquid crystal variable retarders capable of imposing a π phase shift for wavelengths 650-950 nm. We present non-rephasing spectra of potassium vapor contained in a ~ 20 μ m transmission cell and show that this phase cycling method removes all noise from pump scatter while drastically reducing the data acquisition time compared to mechanical phase-delay techniques. This work was supported by an NSF-REU grant at the University of Colorado- Boulder.

  17. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    DOE PAGES

    Paul, J.; Dey, P.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of themore » 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.« less

  18. [Myanmar jadeitite low-temperature metamorphic water-rock reaction: eveidence from microscopic fourier transform infrared spectroscopy].

    PubMed

    Yan, Ruo-Gu; Qiu, Zhi-Li; Feng, Ming; Jin, Chun-Mei; Li, Liu-Fen; Shi, Gui-Yong; Wang, Ping

    2014-09-01

    Weathering & transporting and depositing processes may improve the quality of some natural low-quality jadeite through reaction with surrounding water fluids. But the mechanism of such water-rock reaction has not been known clearly to date. Applying microscopic Fourier transform infrared spectroscopy (Micro-FTIR), this paper carried out comparatively in-situ research of jadeites' mineral composition before and after water-rock reaction. The results show that water-rock reaction cannot impact jadeites in their major and minor element composition, but greatly change their water content. Jadeites became richer, with even several times increase, in water content, after experiencing water-rock reaction, and hence show a shift of absorption peak at 3 550 cm(-1) to higher frequency. The mineral crystals of these jadeites showed reglar variation in water content from core to edge, and these jadeites have more water in marginal area than in center area, being opposite to the change in water content in jadeite during high temperature and pressure metamorphic process, hence implying that there are different mechanism and shift direction for H+/OH of jadeite between high pressure metamorphic process and low temperature water-rock reaction. We think that this finding may contribute to understanding the behavior of water in jadeite during metamorphic process and the mechanism of jadeite quality improvement. PMID:25532333

  19. [Myanmar jadeitite low-temperature metamorphic water-rock reaction: eveidence from microscopic fourier transform infrared spectroscopy].

    PubMed

    Yan, Ruo-Gu; Qiu, Zhi-Li; Feng, Ming; Jin, Chun-Mei; Li, Liu-Fen; Shi, Gui-Yong; Wang, Ping

    2014-09-01

    Weathering & transporting and depositing processes may improve the quality of some natural low-quality jadeite through reaction with surrounding water fluids. But the mechanism of such water-rock reaction has not been known clearly to date. Applying microscopic Fourier transform infrared spectroscopy (Micro-FTIR), this paper carried out comparatively in-situ research of jadeites' mineral composition before and after water-rock reaction. The results show that water-rock reaction cannot impact jadeites in their major and minor element composition, but greatly change their water content. Jadeites became richer, with even several times increase, in water content, after experiencing water-rock reaction, and hence show a shift of absorption peak at 3 550 cm(-1) to higher frequency. The mineral crystals of these jadeites showed reglar variation in water content from core to edge, and these jadeites have more water in marginal area than in center area, being opposite to the change in water content in jadeite during high temperature and pressure metamorphic process, hence implying that there are different mechanism and shift direction for H+/OH of jadeite between high pressure metamorphic process and low temperature water-rock reaction. We think that this finding may contribute to understanding the behavior of water in jadeite during metamorphic process and the mechanism of jadeite quality improvement.

  20. Application of Fourier transform infrared spectroscopy to silica diagenesis: The opal-A to opal-CT transformation

    SciTech Connect

    Rice, S.B.; Freund, H.; Huang, W.L.; Clouse, J.A.; Isaacs, C.M.

    1995-10-02

    An important goal in silica diagenesis research is to understand the kinetics of opal transformation from noncrystalline opal-A to the disordered silica polymorph opal-CT. Because the conventional technique for monitoring the transformation, powder X-ray diffraction (XRD), is applicable only to phases with long-range order, the authors used Fourier transform infrared spectroscopy (FTIR) to monitor the transformation. They applied this technique, combined with XRD and TEM, to experimental run products and natural opals from the Monterey Formation and from siliceous deposits in the western Pacific Ocean. Using a ratio of two infrared absorption intensities ({omega} = I{sub 472 cm{sup {minus}1}}/I{sub 500 cm{sup {minus}1}}), the relative proportions of opal-A and opal-CT can be determined. The progress of the transformation is marked by changes in slope of {omega} vs. depth or time when a sufficient stratigraphic profile is available. There are three stages in the opal-A to opal-CT reaction: (1) opal-A dissolution; (2) opal-CT precipitation, whose end point is marked by completion of opal-A dissolution; and (3) opal-CT ordering, during which tridymite stacking is eliminated in favor of crystobalite stacking.

  1. Structural control of surface layer proteins at electrified interfaces investigated by in situ Fourier transform infrared spectroscopy.

    PubMed

    Zafiu, Christian; Trettenhahn, Günter; Pum, Dietmar; Sleytr, Uwe Bernd; Kautek, Wolfgang

    2011-08-01

    In situ Fourier Transform Infrared (FTIR) Spectroscopy complemented by Electrochemical Quartz Microbalance (EQMB) investigations allowed a detailed insight into the influence of the electrode potential on competing adsorption processes and bonding mechanisms of buffer ions and S-layer protein molecules of Lysinibacillus sphaericus CCM2177 at an electrified liquid/gold interface. The S-layer proteins adsorb on gold polarized positively of the point of zero charge by displacing perchlorate anions in the Helmholtz plane by their carboxylate groups. This is indicated by an increase of the peptide and carboxylate infrared absorption signals accompanied by a decrease of the perchlorate signal. S-layers interlinked laterally with Ca(2+) ions, positive of the point of zero charge, resulted in the formation of a crystalline layer participating in the Helmholtz layer. In contrast to the absence of the Ca(2+)-linkers, S-layers remain structurally intact also in the negative polarization domain where the Helmholtz layer is solely sustained by mainly solvated cations without participation of the negatively charged protein carboxylate functions.

  2. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate

    PubMed Central

    Lee, Keunwoo; Lee, Joohyung; Jang, Yoon-Soo; Han, Seongheum; Jang, Heesuk; Kim, Young-Jin; Kim, Seung-Woo

    2015-01-01

    Femtosecond lasers allow for simultaneous detection of multiple absorption lines of a specimen over a broad spectral range of infrared or visible light with a single spectroscopic measurement. Here, we present an 8-THz bandwidth, 0.5-GHz resolution scheme of Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser. A resolving power of 1.6 × 104 about a 1560-nm center wavelength is achieved by sweeping the pulse repetition rate of the light source on a fiber Mach-Zehnder interferometer configured to capture interferograms with a 0.02-fs temporal sampling accuracy through a well-stabilized 60-m unbalance arm length. A dual-servo mechanism is realized by combining a mechanical linear stage with an electro-optic modulator (EOM) within the fiber laser cavity, enabling stable sweeping control of the pulse repetition rate over a 1.0-MHz scan range with 0.4-Hz steps with reference to the Rb clock. Experimental results demonstrate that the P-branch lines of the H13CN reference cell can be observed with a signal-to-noise ratio reaching 350 for the most intense line. PMID:26503257

  3. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  4. Mathematical Investigation of Gamma Ray and Neutron Absorption Grid Patterns for Homeland Defense Related Fourier Imaging Systems

    NASA Technical Reports Server (NTRS)

    Boccio, Dona

    2003-01-01

    Terrorist suitcase nuclear devices typically using converted Soviet tactical nuclear warheads contain several kilograms of plutonium. This quantity of plutonium emits a significant number of gamma rays and neutrons as it undergoes radioactive decay. These gamma rays and neutrons normally penetrate ordinary matter to a significant distance. Unfortunately this penetrating quality of the radiation makes imaging with classical optics impractical. However, this radiation signature emitted by the nuclear source may be sufficient to be imaged from low-flying aerial platforms carrying Fourier imaging systems. The Fourier imaging system uses a pair of co-aligned absorption grids to measure a selected range of spatial frequencies from an object. These grids typically measure the spatial frequency in only one direction at a time. A grid pair that looks in all directions simultaneously would be an improvement over existing technology. A number of grid pairs governed by various parameters were investigated to solve this problem. By examining numerous configurations, it became apparent that an appropriate spiral pattern could be made to work. A set of equations was found to describe a grid pattern that produces straight fringes. Straight fringes represent a Fourier transform of a point source at infinity. An inverse Fourier transform of this fringe pattern would provide an accurate image (location and intensity) of a point source.

  5. Probing Chemical Dynamics with High Resolution Spectroscopy: Chirped-Pulse Fourier-Transform Microwave Spectroscopy Coupled with a Hyperthermal Source

    NASA Astrophysics Data System (ADS)

    Kidwell, Nathanael M.; Vara, Vanesa Vaquero; Mehta-Hurt, Deepali N.; Korn, Joseph A.; Dian, Brian C.; Zwier, Timothy S.

    2013-06-01

    Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy has proven to be a well-suited technique for the rapid study and spectral identification of molecular species due to its ultra-broadband capability and excellent specificity to molecular structure from high-resolution rotational transitions. This talk will describe initial results from combining CP-FTMW detection with a hyperthermal nozzle source. This source has the advantage of producing traditionally high thermal product densities in a pulsed supersonic expansion with a short contact time compared to conventional pyrolysis. Used in tandem, CP-FTMW spectroscopy and the hyperthermal nozzle in a supersonic expansion is a powerful method that can produce and detect changes in conformation and isomer populations, and characterize important intermediates on the reaction surface of a precursor. In particular, we show its utility to provide insight into the unimolecular decomposition pathways of model lignin compounds and alternative biofuels. Preliminary results will be discussed including spectroscopic evidence for formation of cyclopentadienone in the pyrolysis of a lignin derivative guaiacol (o-methoxyphenol).

  6. Enzymatic transesterification monitored by an easy-to-use Fourier transform infrared spectroscopy method.

    PubMed

    Natalello, Antonino; Sasso, Francesco; Secundo, Francesco

    2013-01-01

    Transesterification of triglycerides with short chain alcohols is the key reaction in biodiesel production, in addition to other applications in chemical synthesis. However, it is crucial to optimize reaction conditions to make enzymatic transesterification a cost-effective and competitive process. In this work, a new, easy Fourier transform infrared (FTIR) spectroscopic approach for monitoring the transesterification reaction is reported and compared with a gas-chromatographic method. The concentration of the total methyl esters in the reaction mixture is determined from the peak intensity at ∼1435 cm(-1) in the second derivatives of the FTIR absorption spectra using a linear regression calibration. Interestingly, we found that the use of second derivatives allows an accurate determination of the methyl esters without the interference of free fatty acids. Moreover, information on substrate hydrolysis can be obtained within the same measurement by the infrared absorption at ∼1709 cm(-1) . We applied this approach to monitor methanolysis and hydrolysis reactions catalyzed by different commercial lipases, which displayed different sensitivities to methanol inhibition. Therefore, the FTIR approach reported in this work represents a rapid, inexpensive, and accurate method to monitor enzymatic transesterification, requiring very limited sample preparation and a simple statistical analysis of the spectroscopic data.

  7. Fourier Transform Infrared (FT-IR) Spectroscopy of Atmospheric Trace Gases HCl, NO and SO2

    NASA Technical Reports Server (NTRS)

    Haridass, C.; Aw-Musse, A.; Dowdye, E.; Bandyopadhyay, C.; Misra, P.; Okabe, H.

    1998-01-01

    Fourier Transform Infrared (FT-IR) spectral data have been recorded in the spectral region 400-4000/cm of hydrogen chloride and sulfur dioxide with I/cm resolution and of nitric oxide with 0.25 cm-i resolution, under quasi-static conditions, when the sample gas was passed through tubings of aluminum, copper, stainless steel and teflon. The absorbance was measured for the rotational lines of the fundamental bands of (1)H(35)Cl and (1)H(37)Cl for pressures in the range 100-1000 Torr and for the (14)N(16)O molecule in the range 100-300 Torr. The absorbance was also measured for individual rotational lines corresponding to the three modes of vibrations (upsilon(sub 1) - symmetric stretch, upsilon(sub 2) - symmetric bend, upsilon(sub 3) - anti-symmetric stretch) of the SO2 molecule in the pressure range 25-150 Torr. A graph of absorbance versus pressure was plotted for the observed rotational transitions of the three atmospherically significant molecules, and it was found that the absorbance was linearly proportional to the pressure range chosen, thereby validating Beer's law. The absorption cross-sections were determined from the graphical slopes for each rotational transition recorded for the HCl, NO and SO2 species. Qualitative and quantitative spectral changes in the FT-IR data will be discussed to identify and characterize various tubing materials with respect to their absorption features.

  8. Sensitive detection of weak absorption signals in photoacoustic spectroscopy by using derivative spectroscopy and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zheng, Jincun; Tang, Zhilie; He, Yongheng; Guo, Lina

    2008-05-01

    This report presents a practical analytical method of photoacoustic (PA) spectroscopy that is based on wavelet transform (WT) and the first-derivative PA spectrum. An experimental setup is specially designed to obtain the first-derivative spectrum, which aims to identify some unnoticeable absorption peaks in the normal PA spectrum. To enhance the detectability of overlapping spectral bands, the WT is used to decompose the PA spectrum signals into a series of localized contributions (details and approximation) on the basis of the frequency. For the decomposed contributions do not change the absorption peak position of PA spectrum, one can retrieve the weak absorption signals by the decomposed result of WT. Because of the use of derivative spectroscopy and WT, three unnoticeable absorption peaks that are hidden in the PA spectrum of carbon absorption are precisely retrieved, the wavelengths of which are 699.7, 752.7, and 775.5nm, respectively. This analytical method, which has the virtue of using a physical method and using a computer software method, can achieve great sensitivity and accuracy for PA spectral analysis.

  9. Optical Frequency Comb Fourier Transform Spectroscopy with Resolution Exceeding the Limit Set by the Optical Path Difference

    NASA Astrophysics Data System (ADS)

    Foltynowicz, Aleksandra; Rutkowski, Lucile; Johanssson, Alexandra C.; Khodabakhsh, Amir; Maslowski, Piotr; Kowzan, Grzegorz; Lee, Kevin; Fermann, Martin

    2015-06-01

    Fourier transform spectrometers (FTS) based on optical frequency combs (OFC) allow detection of broadband molecular spectra with high signal-to-noise ratios within acquisition times orders of magnitude shorter than traditional FTIRs based on thermal sources. Due to the pulsed nature of OFCs the interferogram consists of a series of bursts rather than a single burst at zero optical path difference (OPD). The comb mode structure can be resolved by acquiring multiple bursts, in both mechanical FTS systems and dual-comb spectroscopy. However, in all existing demonstrations the resolution was ultimately limited either by the maximum available OPD between the interferometer arms or by the total acquisition time enabled by the storage memory. We present a method that provides spectral resolution exceeding the limit set by the maximum OPD using an interferogram containing only a single burst. The method allows measurements of absorption lines narrower than the OPD-limited resolution without any influence of the instrumental lineshape function. We demonstrate this by measuring undistorted CO2 and CO absorption lines with linewidth narrower than the OPD-limited resolution using OFC-based mechanical FTS in the near- and mid-infrared wavelength ranges. The near-infrared system is based on an Er:fiber femtosecond laser locked to a high finesse cavity, while the mid-infrared system is based on a Tm:fiber-laser-pumped optical parametric oscillator coupled to a multi-pass cell. We show that the method allows acquisition of high-resolution molecular spectra with interferometer length orders of magnitude shorter than traditional FTIR. Mandon, J., G. Guelachvili, and N. Picque, Nat. Phot., 2009. 3(2): p. 99-102. Zeitouny, M., et al., Ann. Phys., 2013. 525(6): p. 437-442. Zolot, A.M., et al., Opt. Lett., 2012. 37(4): p. 638-640.

  10. Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy.

    PubMed

    Watson, Jonathan S; Sephton, Mark A; Sephton, Sarah V; Self, Stephen; Fraser, Wesley T; Lomax, Barry H; Gilmour, Iain; Wellman, Charles H; Beerling, David J

    2007-06-01

    Spore chemistry is at the centre of investigations aimed at producing a proxy record of harmful ultraviolet radiation (UV-B) through time. A biochemical proxy is essential owing to an absence of long-term (century or more) instrumental records. Spore cell material contains UV-B absorbing compounds that appear to be synthesised in variable amounts dependent on the ambient UV-B flux. To facilitate these investigations we have developed a rapid method for detecting variations in spore chemistry using combined thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy. Our method was tested using spores obtained from five populations of the tropical lycopsid Lycopodium cernuum growing across an altitudinal gradient (650-1981 m a.s.l.) in S.E. Asia with the assumption that they experienced a range of UV-B radiation doses. Thermochemolysis and subsequent pyrolysis liberated UV-B pigments (ferulic and para-coumaric acid) from the spores. All of the aromatic compounds liberated from spores by thermochemolysis and pyrolysis were active in UV-B protection. The various functional groups associated with UV-B protecting pigments were rapidly detected by micro-FTIR and included the aromatic C[double bond, length as m-dash]C absorption band which was exclusive to the pigments. We show increases in micro-FTIR aromatic absorption (1510 cm(-1)) with altitude that may reflect a chemical response to higher UV-B flux. Our results indicate that rapid chemical analyses of historical spore samples could provide a record ideally suited to investigations of a proxy for stratospheric O3 layer variability and UV-B flux over historical (century to millennia) timescales.

  11. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  12. Rapid Scan Absorption Spectroscopy with Applications for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Douglass, K.; Maxwell, S. E.; Truong, G.; Van Zee, R. D.; Hodges, J. T.; Plusquellic, D.; Long, D.; Whetstone, J. R.

    2013-12-01

    Our objective is to develop accurate and reliable methods for quantifying distributed carbon sources and sinks to support both mitigation efforts and climate change research. The presentation will describe a method for rapid step-scan absorption spectroscopy in the near-infrared wavelength range for the measurement of greenhouse gases. The method utilizes a fiber coupled laser system and a free space confocal cavity to effectively scan the laser system over a bandwidth of 37.5 GHz (1.25 cm-1), with a step size of 300 MHz (0.01 cm-1) and a scan rate of 40 kHz. The laser system is scanned with microwave precision over a full absorption lineshape profile. Measurements have been demonstrated in a 45 m long multipass cell for detection of carbon dioxide near 1602.4 nm (6240.6 cm-1) and for methane near 1645.5 nm (6077.2 cm 1). Ambient level detection is demonstrated using the multipass cell with a signal-to-noise ratio of ~5:1 in a 5 ms integration time. The scan speed, resolution and bandwidth are well suited for remote sensing using integrated path and differential absorption LIDAR techniques.

  13. Precision atomic beam density characterization by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  14. Optical re-injection in cavity-enhanced absorption spectroscopy.

    PubMed

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  15. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  16. Optical re-injection in cavity-enhanced absorption spectroscopy

    SciTech Connect

    Leen, J. Brian O’Keefe, Anthony

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  17. Simultaneous monitoring of curing shrinkage and degree of cure of thermosets by attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy.

    PubMed

    Fernàndez-Francos, Xavier; Kazarian, Sergei G; Ramis, Xavier; Serra, Àngels

    2013-12-01

    We present a novel methodology to simultaneously monitor of the degree of cure and curing shrinkage of thermosetting formulations. This methodology is based on the observation of changes in the infrared absorption of reactive functional groups and the groups used as a standard reference for normalization. While the optical path length is exact and controlled in transmission infrared spectroscopy, in attenuated total reflection Fourier transform infrared (ATR FT-IR), the exact determination of volume changes requires the measurement of the refractive indices of the studied system throughout the curing process or at least an indirect parallel measurement of this property. The methodology presented here allows one to achieve quantitative measurements of the degree of cure and shrinkage for thermosets using in situ ATR FT-IR spectroscopy.

  18. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    NASA Astrophysics Data System (ADS)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  19. Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR) spectroscopy

    PubMed Central

    Pena, Rodica; Lang, Christa; Naumann, Annette; Polle, Andrea

    2014-01-01

    Roots of forest trees are associated with various ectomycorrhizal (ECM) fungal species that are involved in nutrient exchange between host plant and the soil compartment. The identification of ECM fungi in small environmental samples is difficult. The present study tested the feasibility of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy followed by hierarchical cluster analysis (HCA) to discriminate in situ collected ECM fungal species. Root tips colonized by distinct ECM fungal species, i.e., Amanita rubescens, Cenococcum geophilum, Lactarius subdulcis, Russula ochroleuca, and Xerocomus pruinatus were collected in mono-specific beech (Fagus sylvatica) and mixed deciduous forests in different geographic areas to investigate the environmental variability of the ECM FTIR signatures. A clear HCA discrimination was obtained for ECM fungal species independent of individual provenance. Environmental variability neither limited the discrimination between fungal species nor provided sufficient resolution to discern species sub-clusters for different sites. However, the de-convoluted FTIR spectra contained site-related spectral information for fungi with wide nutrient ranges, but not for Lactarius subdulcis, a fungus residing only in the litter layer. Specific markers for distinct ECM were identified in spectral regions associated with carbohydrates (i.e., mannans), lipids, and secondary protein structures. The present results support that FTIR spectroscopy coupled with multivariate analysis is a reliable and fast method to identify ECM fungal species in minute environmental samples. Moreover, our data suggest that the FTIR spectral signatures contain information on physiological and functional traits of ECM fungi. PMID:24904624

  20. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management

    SciTech Connect

    Smidt, Ena . E-mail: ena.smidt@boku.ac.at; Meissl, Katharina

    2007-07-01

    State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically 'stabilized' leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a 'substrate' that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments.

  1. Spectroscopic analysis of bladder cancer tissues using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Al-Muslet, Nafie A.; Ali, Essam E.

    2012-03-01

    Bladder cancer is one of the most common cancers in Africa. It takes several days to reach a diagnosis using histological examinations of specimens obtained by endoscope, which increases the medical expense. Recently, spectroscopic analysis of bladder cancer tissues has received considerable attention as a diagnosis technique due to its sensitivity to biochemical variations in the samples. This study investigated the use of Fourier transform infrared (FTIR) spectroscopy to analyze a number of bladder cancer tissues. Twenty-two samples were collected from 11 patients diagnosed with bladder cancer from different hospitals without any pretreatment. From each patient two samples were collected, one normal and another cancerous. FTIR spectrometer was used to differentiate between normal and cancerous bladder tissues via changes in spectra of these samples. The investigations detected obvious changes in the bands of proteins (1650, 1550 cm-1), lipids (2925, 2850 cm-1), and nucleic acid (1080, 1236 cm-1). The results show that FTIR spectroscopy is promising as a rapid, accurate, nondestructive, and easy to use alternative method for identification and diagnosis of bladder cancer tissues.

  2. Quantifying many-body effects by high-resolution Fourier transform scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Grothe, Stephanie; Johnston, Steve; Chi, Shun; Dosanjh, Pinder; Burke, Sarah A.; Pennec, Yan

    2014-03-01

    The properties of solids are influenced by many-body effects that arise from the interactions of the electrons with each other and with the multitude of collective lattice, spin or charge excitations. We apply the technique of Fourier transform scanning tunneling spectroscopy (FT-STS) to probe the many-body effects of the Ag(111) surface state. A renormalization of the otherwise parabolic dispersion induced by electron-phonon interactions is revealed that has not previously been resolved by any technique, allowing us to extract the real part of the self-energy. Furthermore, we show how variations in the intensity of the FT-STS signal are related to the imaginary part of the self-energy. We accurately modeled the experimental data with the T-matrix formalism for scattering from a single impurity, assuming that the surface electrons are dressed by electron-electron and electron-phonon interactions. A Debye energy of ℏΩD = 14 +/- 1 meV and an electron-phonon coupling strength of λ = 0 . 13 +/- 0 . 02 was extracted. Our results advance FT-STS as a tool to simultaneously extract real and imaginary parts of the self-energy for both occupied and unoccupied states with a momentum and energy resolution competitive with angle-resolved photoemission spectroscopy.

  3. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Schroeter, L. M.; Itoh, M. J.; Nguyen, B. N.; Apitz, S. E.

    1999-09-01

    A suite of naturally-occurring carboxylic acids (acetic, oxalic, citric, benzoic, salicylic and phthalic) and their corresponding sodium salts were adsorbed onto a set of common mineral substrates (quartz, albite, illite, kaolinite and montmorillonite) in batch slurry experiments. Solution pH's of approximately 3 and 6 were used to examine the effects of pH on sorption mechanisms. Attenuated total reflectance Fourier-transform infrared (ATR FTIR) spectroscopy was employed to obtain vibrational frequencies of the organic ligands on the mineral surfaces and in solution. UV/visible spectroscopy on supernatant solutions was also employed to confirm that adsorption from solution had taken place for benzoic, salicylic and phthalic acids. Molecular orbital calculations were used to model possible surface complexes and interpret the experimental spectra. In general, the tectosilicates, quartz and albite feldspar, did not chemisorb (i.e., strong, inner-sphere adsorption) the carboxylate anions in sufficient amounts to produce infrared spectra of the organics after rinsing in distilled water. The clays (illite, kaolinite and montmorillonite) each exhibited similar ATR FTIR spectra. However, the illite sample used in this study reacted to form strong surface and aqueous complexes with salicylic acid before being treated to remove free Fe-hydroxides. Chemisorption of carboxylic acids onto clays is shown to be limited without the presence of Fe-hydroxides within the clay matrix.

  4. High-Throughput Metabolic Fingerprinting of Legume Silage Fermentations via Fourier Transform Infrared Spectroscopy and Chemometrics

    PubMed Central

    Johnson, Helen E.; Broadhurst, David; Kell, Douglas B.; Theodorou, Michael K.; Merry, Roger J.; Griffith, Gareth W.

    2004-01-01

    Silage quality is typically assessed by the measurement of several individual parameters, including pH, lactic acid, acetic acid, bacterial numbers, and protein content. The objective of this study was to use a holistic metabolic fingerprinting approach, combining a high-throughput microtiter plate-based fermentation system with Fourier transform infrared (FT-IR) spectroscopy, to obtain a snapshot of the sample metabolome (typically low-molecular-weight compounds) at a given time. The aim was to study the dynamics of red clover or grass silage fermentations in response to various inoculants incorporating lactic acid bacteria (LAB). The hyperspectral multivariate datasets generated by FT-IR spectroscopy are difficult to interpret visually, so chemometrics methods were used to deconvolute the data. Two-phase principal component-discriminant function analysis allowed discrimination between herbage types and different LAB inoculants and modeling of fermentation dynamics over time. Further analysis of FT-IR spectra by the use of genetic algorithms to identify the underlying biochemical differences between treatments revealed that the amide I and amide II regions (wavenumbers of 1,550 to 1,750 cm−1) of the spectra were most frequently selected (reflecting changes in proteins and free amino acids) in comparisons between control and inoculant-treated fermentations. This corresponds to the known importance of rapid fermentation for the efficient conservation of forage proteins. PMID:15006782

  5. Strain dependent UV degradation of Escherichia coli DNA monitored by Fourier transform infrared spectroscopy.

    PubMed

    Muntean, Cristina M; Lapusan, Alexandra; Mihaiu, Liora; Stefan, Razvan

    2014-01-01

    In this work we present a method for detection of DNA isolated from nonpathogenic Escherichia coli strains, respectively. Untreated and UV irradiated bacterial DNAs were analyzed by FT-IR spectroscopy, to investigate their screening characteristic features and their structural radiotolerance at 253.7nm. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 800-1800cm(-1). FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Also, UV damage at the DNA molecular level is of interest. Strain dependent UV degradation of DNA from E. coli has been observed. Particularly, alterations in nucleic acid bases, base pairing and base stacking have been found. Also changes in the DNA conformation and deoxyribose were detected. Based on this work, specific E. coli DNA-ligand interactions, drug development and vaccine design for a better understanding of the infection mechanism caused by an interference between pathogenic and nonpathogenic bacteria and for a better control of disease, respectively, might be further investigated using Fourier transform infrared spectroscopy. Besides, understanding the pathways for UV damaged DNA response, like nucleic acids repair mechanisms is appreciated.

  6. Application of Fourier transform infrared spectroscopy to studies of aqueous protein solutions.

    PubMed

    Zuber, G; Prestrelski, S J; Benedek, K

    1992-11-15

    Modern protein Fourier transform infrared (FT-IR) spectroscopy has proven to be a versatile and sensitive technique, applicable to many aspects of protein characterization. The major practical drawback for the FT-IR spectroscopy of proteins is the large absorbance band of water, which overlaps the amide I resonances. D2O is often substituted for H2O in infrared experiments. Removal of water from protein samples can be complicated and tedious and potentially lead to denaturation, aggregation, or sample loss. Solvent removal by dialysis is difficult for suspensions and sols. A new method called the D2O dilution technique (Ddt) is described which simplifies the sample preparation step and improves the solvent subtraction. The effect of the D2O concentration on the IR spectrum of aqueous solutions of several model proteins was studied. Dilution of aqueous samples with D2O yields good quality spectra. The Ddt has been evaluated for quantitative analysis using standard proteins and its applicability to solutions and suspensions of a genetically engineered malaria antigen is demonstrated. Use of resolution-enhancement techniques with spectra in mixed solvents has also been investigated. PMID:1489088

  7. Constructing velocity distributions in crossed-molecular beam studies using Fourier Transform Doppler Spectroscopy

    NASA Astrophysics Data System (ADS)

    Monge, Josue Roberto

    The goal of our scattering experiments is to derive the distribution the differential cross-section and elucidate the dynamics of a bimolecular collision via pure rotational spectroscopy. We have explored the use of a data reduction model to directly transform rotational line shapes into the differential cross section and speed distribution of a reactive bimolecular collision. This inversion technique, known as Fourier Transform Doppler Spectroscopy (FTDS), initially developed by James Kinsey, deconvolves the velocity information contained in one-dimensional Doppler Profiles to construct the non-thermal, state-selective three-dimensional velocity distribution. By employing an expansion in classical orthogonal polynomials, the integral transform in FTDS can be simplified into a set of purely algebraic expressions technique; i.e. the Taatjes method. In this investigation, we extend the Taatjes method for general use in recovering asymmetric velocity distributions. We have also constructed a hypothetical asymmetric distribution from adiabatic scattering in Argon-Argon to test the general method. The angle- and speed-components of the sample distribution were derived classically from a Lennard-Jones 6-12 potential, with collisions at 60 meV, and mapped onto Radon space to generate a set of discrete Doppler profiles. The sample distribution was reconstructed from these profiles using FTDS. Both distributions were compared along with derived total cross sections for the Argon--Argon system. This study serves as a template for constructing velocity distributions from bimolecular scattering experiments using the FTDS inversion technique.

  8. Fourier transform microwave and millimeter-wave spectroscopy of bromoiodomethane, CH2BrI.

    PubMed

    Bailleux, S; Duflot, D; Taniguchi, K; Sakai, S; Ozeki, H; Okabayashi, T; Bailey, W C

    2014-12-18

    Bromoiodomethane, CH2BrI, is a molecule of natural origin emitted in significant amount into the marine boundary layer. It can easily be decomposed by solar radiation, releasing Br and I atoms in the troposphere, which in turn impacts the atmospheric chemistry. Spectroscopy is an invaluable tool to monitor species present in the atmosphere. Since no high-resolution spectroscopic studies are available for this dihalomethane, we have investigated the rotational spectra of the two bromine isotopologues of CH2BrI in its vibrational ground state in the microwave and millimeter-wave regions. Transitions of b-type have been recorded by Fourier transform microwave spectroscopy below 25 GHz while both a- and b-type spectral lines have been measured below 230 GHz. Observed transitions correspond to energy levels with J ≤ 132 and Ka ≤ 14. Molecular constants including those describing the nuclear quadrupole coupling tensors for (79)Br, (81)Br, and (127)I were accurately determined from the least-squares analysis of a total of 1873 distinct transition frequencies (of which 943 belong to the CH2(79)BrI isotopologue). An experimental (r0) structure of the title species has been derived from the two sets of rotational constants.

  9. Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR) spectroscopy.

    PubMed

    Pena, Rodica; Lang, Christa; Naumann, Annette; Polle, Andrea

    2014-01-01

    Roots of forest trees are associated with various ectomycorrhizal (ECM) fungal species that are involved in nutrient exchange between host plant and the soil compartment. The identification of ECM fungi in small environmental samples is difficult. The present study tested the feasibility of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy followed by hierarchical cluster analysis (HCA) to discriminate in situ collected ECM fungal species. Root tips colonized by distinct ECM fungal species, i.e., Amanita rubescens, Cenococcum geophilum, Lactarius subdulcis, Russula ochroleuca, and Xerocomus pruinatus were collected in mono-specific beech (Fagus sylvatica) and mixed deciduous forests in different geographic areas to investigate the environmental variability of the ECM FTIR signatures. A clear HCA discrimination was obtained for ECM fungal species independent of individual provenance. Environmental variability neither limited the discrimination between fungal species nor provided sufficient resolution to discern species sub-clusters for different sites. However, the de-convoluted FTIR spectra contained site-related spectral information for fungi with wide nutrient ranges, but not for Lactarius subdulcis, a fungus residing only in the litter layer. Specific markers for distinct ECM were identified in spectral regions associated with carbohydrates (i.e., mannans), lipids, and secondary protein structures. The present results support that FTIR spectroscopy coupled with multivariate analysis is a reliable and fast method to identify ECM fungal species in minute environmental samples. Moreover, our data suggest that the FTIR spectral signatures contain information on physiological and functional traits of ECM fungi.

  10. Fourier transform microwave and millimeter-wave spectroscopy of bromoiodomethane, CH2BrI.

    PubMed

    Bailleux, S; Duflot, D; Taniguchi, K; Sakai, S; Ozeki, H; Okabayashi, T; Bailey, W C

    2014-12-18

    Bromoiodomethane, CH2BrI, is a molecule of natural origin emitted in significant amount into the marine boundary layer. It can easily be decomposed by solar radiation, releasing Br and I atoms in the troposphere, which in turn impacts the atmospheric chemistry. Spectroscopy is an invaluable tool to monitor species present in the atmosphere. Since no high-resolution spectroscopic studies are available for this dihalomethane, we have investigated the rotational spectra of the two bromine isotopologues of CH2BrI in its vibrational ground state in the microwave and millimeter-wave regions. Transitions of b-type have been recorded by Fourier transform microwave spectroscopy below 25 GHz while both a- and b-type spectral lines have been measured below 230 GHz. Observed transitions correspond to energy levels with J ≤ 132 and Ka ≤ 14. Molecular constants including those describing the nuclear quadrupole coupling tensors for (79)Br, (81)Br, and (127)I were accurately determined from the least-squares analysis of a total of 1873 distinct transition frequencies (of which 943 belong to the CH2(79)BrI isotopologue). An experimental (r0) structure of the title species has been derived from the two sets of rotational constants. PMID:25420099

  11. Time- and space-resolved X-ray absorption spectroscopy of aluminum irradiated by a subpicosecond high-power laser

    NASA Astrophysics Data System (ADS)

    Tzortzakis, S.; Audebert, P.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J. P.; Chenais-Popovics, C.; Nagels, V.; Gary, S.; Shepherd, R.; Girard, F.; Matsushima, I.; Peyrusse, O.; Gauthier, J.-C.

    2006-05-01

    The ionization and recombination dynamics of transient aluminum plasmas was measured using point projection K-shell absorption spectroscopy. An aluminum plasma was produced with a subpicosecond beam of the 100-TW laser at the LULI facility and probed at different times with a picosecond X-ray backlighter created with a synchronized subpicosecond laser beam. Fourier-Domain-Interferometry (FDI) was used to measure the electron temperature at the peak of the heating laser pulse. Absorption X-ray spectra at early times are characteristic of a dense and rather homogeneous plasma, with limited longitudinal gradients as shown by hydrodynamic simulations. The shift of the Al K-edge was measured in the cold dense plasma located at the edge of the heated plasma. From the 1s 2p absorption spectra, the average ionization was measured as a function of time and was also modeled with a collisional-radiative atomic physics code coupled with hydrodynamic simulations.

  12. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  13. Automatic phase correction of fourier transform NMR spectra based on the dispersion versus absorption (DISPA) lineshape analysis

    NASA Astrophysics Data System (ADS)

    Sotak, Christopher H.; Dumoulin, Charles L.; Newsham, Mark D.

    A method for automatic phase correction of Fourier transform NMR spectra bused on the dispersion versus absorption (DISPA) lineshape analysis is described. The DISPA display of a single misphased Lorentzian line gives a unit circle which has been rotated about the origin (relative to its "reference circle") by a number of degrees equal to the phase misadjustment. This rotation, Φ, is a combination of the zero- and first-order phase angles at the frequency of the resonance. Calculation of Φ for two or more resonances allows the spectral phasing parameters to be determined and applied to correct the spectrum. This approach has been implemented in both automatic and "semi-automatic" modes.

  14. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  15. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  16. Intracavity laser absorption spectroscopy of platinum fluoride, PtF

    NASA Astrophysics Data System (ADS)

    Handler, Kimberly G.; Harris, Rachel A.; O'Brien, Leah C.; O'Brien, James J.

    2011-01-01

    Two vibrational bands of an electronic transition of PtF occurring at 11 940 cm -1 and 12 496 cm -1 were recorded and analyzed. These transitions are identified as the (0,0) and (1,0) bands of an [11.9] Ω = 3/2 - XΩ = 3/2 electronic transition. Gas phase PtF was produced in a copper hollow cathode lined with platinum foil using a trace amount of SF 6, and the spectrum was recorded at Doppler resolution by intracavity laser absorption spectroscopy. This work represents the first published spectroscopic data on PtF. Molecular constants for the ground and excited electronic states are presented.

  17. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  18. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals

    SciTech Connect

    Curl, Robert F; Glass, Graham

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  19. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  20. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  1. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Serrano, A.; Rodríguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Monton, C.; Castro, G. R.; García, M. A.

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10-3 to 10-5, depending on the particular experiment.

  2. La Saturated Absorption Spectroscopy for Applications in Quantum Information

    NASA Astrophysics Data System (ADS)

    Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  3. Non-destructive plant health sensing using absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Bledsoe, Jim; Manukian, Ara; Pearce, Michael; Weiss, Lee

    1988-01-01

    The sensor group of the 1988 EGM 4001 class, working on NASA's Controlled Ecological Life Support Systems (CELSS) project, investigated many different plant health indicators and the technologies used to test them. The project selected by the group was to measure chlorophyll levels using absorption spectroscopy. The spectrometer measures the amount of chlorophyll in a leaf by measuring the intensity of light of a specific wavelength that is passed through a leaf. The three wavelengths of light being used corresponded to the near-IR absorption peaks of chlorophyll a, chlorophyll b, and chlorophyll-free structures. Experimentation showed that the sensor is indeed measuring levels of chlorophyll a and b and their changes before the human eye can see any changes. The detector clamp causes little damage to the leaf and will give fairly accurate readings on similar locations on a leaf, freeing the clamp from having to remain on the same spot of a leaf for all measurements. External light affects the readings only slightly so that measurements may be taken in light or dark environments. Future designs and experimentation will concentrate on reducing the size of the sensor and adapting it to a wider range of plants.

  4. Temperature and pressure measurement based on tunable diode laser absorption spectroscopy with gas absorption linewidth detection

    NASA Astrophysics Data System (ADS)

    Meng, Yunxia; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Wang, Tao; Wang, Ranran

    2014-11-01

    A gas temperature and pressure measurement method based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) detecting linewidth of gas absorption line was proposed in this paper. Combined with Lambert-Beer Law and ideal gas law, the relationship between temperature, pressure and gas linewidth with Lorentzian line shape was investigated in theory. Taking carbon monoxide (CO) at 1567.32 nm for example, the linewidths of gas absorption line in different temperatures and pressures were obtained by simulation. The relationship between the linewidth of second harmonic and temperature, pressure with the coefficient 0.025 pm/K and 0.0645 pm/kPa respectively. According to the relationship of simulation results and detected linewidth, the undefined temperature and pressure of CO gas were measured. The gas temperature and pressure measurement based on linewidth detection, avoiding the influence of laser intensity, is an effective temperature and pressure measurement method. This method also has the ability to detect temperature and pressure of other gases with Lorentzian line shape.

  5. Verification of Ganoderma (lingzhi) commercial products by Fourier Transform infrared spectroscopy and two-dimensional IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Choong, Yew-Keong; Sun, Su-Qin; Zhou, Qun; Lan, Jin; Lee, Han-Lim; Chen, Xiang-Dong

    2014-07-01

    Ganoderma commercial products are typically based on two sources, raw material (powder form and/or spores) and extract (water and/or solvent). This study compared three types of Ganoderma commercial products using 1 Dimensional Fourier Transform infrared and second derivative spectroscopy. The analyzed spectra of Ganoderma raw material products were compared with spectra of cultivated Ganoderma raw material powder from different mushroom farms in Malaysia. The Ganoderma extract product was also compared with three types of cultivated Ganoderma extracts. Other medicinal Ganoderma contents in commercial extract product that included glucan and triterpenoid were analyzed by using FTIR and 2DIR. The results showed that water extract of cultivated Ganoderma possessed comparable spectra with that of Ganoderma product water extract. By comparing the content of Ganoderma commercial products using FTIR and 2DIR, product content profiles could be detected. In addition, the geographical origin of the Ganoderma products could be verified by comparing their spectra with Ganoderma products from known areas. This study demonstrated the possibility of developing verification tool to validate the purity of commercial medicinal herbal and mushroom products.

  6. A X-Ray Absorption Spectroscopy Study of Manganese Containing Compounds and Photosynthetic Spinach Chloroplasts.

    NASA Astrophysics Data System (ADS)

    Kirby, Jon Allan

    The manganese sites in chloroplasts, long thought to be involved in photosynthetic oxygen evolution have been examined and partially characterized by X-ray Absorption Spectroscopy (XAS) using synchrotron radiation. The local environment about the manganese atoms is estimated from an analysis of the extended X-ray Absorption Fine Structure (EXAFS). Comparisons with and simulations of the manganese EXAFS for several reference compounds leads to a model in which the chloroplast manganese atoms are contained in a binuclear complex similar to di-u-oxo -tetrakis-(2,2'-bipyridine) dimanganese. It is suggested that the partner metal is another manganese. The bridging ligands are most probably oxygen. The remaining manganese ligands are carbon, oxygen, or nitrogen. A roughly linear correlation between the X-ray K edge onset energy and the "coordination charge" of a large number of manganese coordination complexes and compounds has been developed. Entry of the chloroplast manganese edge energy onto this correlation diagram establishes that the active pool of manganese is in an oxidation state greater than +2. If the manganese is in a dimeric form the oxidation states are most probably (II,III). Underlying these results is an extensive data analysis methodology. The method developed involves the use of many different background removal techniques, Fourier transforms and ultimately curve fitting to the modulations in the x-ray absorption cross sections. A large number of model compounds were used to evaluate the analysis method. These analyses are used to show that the two major curve fitting models available are essentially equivalent. Due to its greater versatility, the theoretical model of Teo and Lee is preferred (J. Am. Chem. Soc. (1979), 101, 2815). The results are also used to determine the informational limitations of XAS within the limits of the present understanding of X-ray absorption phenomena by inner shell electrons for atoms with atomic number greater than that

  7. Chemometric evaluation of physicochemical properties of carbonated-apatitic preparations by Fourier transform infrared spectroscopy.

    PubMed

    Otsuka, Makoto; Papangkorn, Kongnara; Baig, Arif A; Higuchi, William I

    2012-08-01

    The purpose of this study was to develop a simple and quick method of evaluating the physicochemical properties of carbonated apatite preparations (CAP) as an index of the bioaffinity of implantable materials based on Fourier-transformed-infrared (IR) spectra by chemometrics. The wet-synthesized CAPs contained various levels of carbonate content (CO(3)), and were analyzed microstrain parameter (MS), crystallite size parameter (CP), specific surface area (Sw), CO(3), and solubility parameter (pK(HAP)) using by X-ray powder diffraction, nitrogen gas adsorption, IR, and UV absorption. The IR spectral results of CAPs suggested that the peak intensities of CAP reflected the physicochemical properties of the samples. The IR data sets were calculated to obtain calibration models evaluating the physicochemical properties of CAPs by a partial least squares regression analysis (PLS). As validation of the calibration model, physicochemical properties of CAP could be evaluated based on validation IR data sets of independent samples, and those values had sufficient accuracy. The regression vector of each calibration model suggested that the physicochemical properties of CAP, such as CO(3), Sw, MS, CP, and pK(HAP), were affected by phosphate, hydroxyl, and carbonate groups.

  8. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    SciTech Connect

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C. Rosa, M. I. de la

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  9. Physical stability and recrystallization kinetics of amorphous ibipinabant drug product by fourier transform raman spectroscopy.

    PubMed

    Sinclair, Wayne; Leane, Michael; Clarke, Graham; Dennis, Andrew; Tobyn, Mike; Timmins, Peter

    2011-11-01

    The solid-state physical stability and recrystallization kinetics during storage stability are described for an amorphous solid dispersed drug substance, ibipinabant, at a low concentration (1.0%, w/w) in a solid oral dosage form (tablet). The recrystallization behavior of the amorphous ibipinabant-polyvinylpyrrolidone solid dispersion in the tablet product was characterized by Fourier transform (FT) Raman spectroscopy. A partial least-square analysis used for multivariate calibration based on Raman spectra was developed and validated to detect less than 5% (w/w) of the crystalline form (equivalent to less than 0.05% of the total mass of the tablet). The method provided reliable and highly accurate predictive crystallinity assessments after exposure to a variety of stability storage conditions. It was determined that exposure to moisture had a significant impact on the crystallinity of amorphous ibipinabant. The information provided by the method has potential utility for predictive physical stability assessments. Dissolution testing demonstrated that the predicted crystallinity had a direct correlation with this physical property of the drug product. Recrystallization kinetics was measured using FT Raman spectroscopy for the solid dispersion from the tablet product stored at controlled temperature and relative humidity. The measurements were evaluated by application of the Johnson-Mehl-Avrami (JMA) kinetic model to determine recrystallization rate constants and Avrami exponent (n = 2). The analysis showed that the JMA equation could describe the process very well, and indicated that the recrystallization kinetics observed was a two-step process with an induction period (nucleation) followed by rod-like crystal growth.

  10. High-Throughput Biochemical Fingerprinting of Saccharomyces cerevisiae by Fourier Transform Infrared Spectroscopy

    PubMed Central

    Kohler, Achim; Böcker, Ulrike; Shapaval, Volha; Forsmark, Annabelle; Andersson, Mats; Warringer, Jonas; Martens, Harald; Omholt, Stig W.; Blomberg, Anders

    2015-01-01

    Single-channel optical density measurements of population growth are the dominant large scale phenotyping methodology for bridging the gene-function gap in yeast. However, a substantial amount of the genetic variation induced by single allele, single gene or double gene knock-out technologies fail to manifest in detectable growth phenotypes under conditions readily testable in the laboratory. Thus, new high-throughput phenotyping technologies capable of providing information about molecular level consequences of genetic variation are sorely needed. Here we report a protocol for high-throughput Fourier transform infrared spectroscopy (FTIR) measuring biochemical fingerprints of yeast strains. It includes high-throughput cultivation for FTIR spectroscopy, FTIR measurements and spectral pre-treatment to increase measurement accuracy. We demonstrate its capacity to distinguish not only yeast genera, species and populations, but also strains that differ only by a single gene, its excellent signal-to-noise ratio and its relative robustness to measurement bias. Finally, we illustrated its applicability by determining the FTIR signatures of all viable Saccharomyces cerevisiae single gene knock-outs corresponding to lipid biosynthesis genes. Many of the examined knock-out strains showed distinct, highly reproducible FTIR phenotypes despite having no detectable growth phenotype. These phenotypes were confirmed by conventional lipid analysis and could be linked to specific changes in lipid composition. We conclude that the introduced protocol is robust to noise and bias, possible to apply on a very large scale, and capable of generating biologically meaningful biochemical fingerprints that are strain specific, even when strains lack detectable growth phenotypes. Thus, it has a substantial potential for application in the molecular functionalization of the yeast genome. PMID:25706524

  11. [Analysis of Spirulina powder by Fourier transform infrared spectroscopy and calculation of protein content].

    PubMed

    Liu, Hai-Jing; Xu, Chang-Hua; Li, Wei-Ming; Wang, Feng; Zhou, Qun; Li, An; Zhao, Yue-Liang; Ha, Yi-Ming; Sun, Su-Qin

    2013-04-01

    Spirulina, Spirulina powder and dextrin standard were analyzed and identified by Infrared (IR) spectroscopy. The main components, protein (1 657 and 1 537 cm(-1)) and carbohydrate (1 069 and 1054 cm(-1)), had distinct fingerprint characteristics of IR spectra. By comparing the IR spectra of Spirulina, Spirulina powder and dextrin standard, the dominant nutrition in Spirulina powder was identified as protein and carbohydrate. The dominant accessory added in Spirulina powder was dextrin. Comparing the IR spectra of Spirulina powder from 28 different factories and figuring out the correlation provides the information about the amount of accessory. A standard curve of the ratio of absorption peak intensities to protein content was constructed to accurately determine the amount of protein in Spirulina powder.

  12. Identification of Yersinia ruckeri from diseased salmonid fish by Fourier transform infrared spectroscopy.

    PubMed

    Wortberg, F; Nardy, E; Contzen, M; Rau, J

    2012-01-01

    Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM), which mainly affects salmonid fish. Isolates of Y. ruckeri from diseased salmonid fish were obtained over a 6-year period from eight fish farms in the State of Baden-Württemberg, Southwest Germany. The strains were characterized by biochemical methods and Fourier transform infrared spectroscopy (FT-IR) combined with artificial neural network analysis. These methods were complemented by 16S rDNA sequencing for several isolates. The set of strains from these fish farms included sorbitol-positive, gelatinase-positive and non-motile Y. ruckeri. These variants were differentiated with an advanced FT-IR module, which is part of a higher-ranking method including more than 200 well-defined Yersinia strains against a background of more than 1000 other Gram-negative isolates. Validation of the newly constructed method yielded 97.4% of Y. ruckeri identified correctly on the species level. Thus, the FT-IR analysis enables distinction of all Y. ruckeri from other Yersinia species (e.g. fish-borne Y. enterocolitica) and other Enterobacteriaceae typically misidentified because of similar biochemical reaction profiles, especially Hafnia alvei. The differentiation of sorbitol-positive variants of Y. ruckeri using FT-IR was demonstrated.

  13. Study of the hydrolysis of uranium hexafluoride by Fourier transform infrared spectroscopy

    SciTech Connect

    Anderson, S.P.

    1982-08-01

    The reaction of uranium hexafluoride with water has been studied by using Fourier transform infrared (FT-IR) spectroscopy. Several different methods for accomplishing this task have been carried out. In addition, interpretatins of the results have been made. These interpretations have been based on literature values for the reactants and for compounds analogous to possible products. It was shown that classical matrix-isolation techniques proved to be unsatisfactory for studying this reaction. Other methods were developed in order to obtain results. They were: (1) the codeposition of pure UF/sub 6/ and H/sub 2/O on a cold window at 16/sup 0/K, (2) the codeposition of argon matrix to sample ratios of 10:1 to 2:1 of UF/sub 6/ and H/sub 2/O at 16/sup 0/K, and (3) the annealing of the samples produced by (1) and (2) while they were being scanned with FT-IR. 78 refs., 86 figs., 7 tabs.

  14. Attenuated total reflectance Fourier transform infrared spectroscopy method to differentiate between normal and cancerous breast cells.

    PubMed

    Lane, Randy; See, Seong S

    2012-09-01

    Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) is used to find the structural differences between cancerous breast cells (MCF-7 line) and normal breast cells (MCF-12F line). Gold nanoparticles were prepared and the hydrodynamic diameter of the gold nanoparticles found to be 38.45 nm. The Gold nanoparticles were exposed to both MCF-7 and MCF-12F cells from lower to higher concentrations. Spectroscopic studies founds nanoparticles were within the cells, and increasing the nanoparticles concentration inside the cells also resulted in sharper IR peaks as a result of localized surface Plasmon resonance. Asymmetric and symmetric stretching and bending vibrations between phosphate, COO-, CH2 groups were found to give negative shifts in wavenumbers and a decrease in peak intensities when going from noncancerous to cancerous cells. Cellular proteins produced peak assignments at the 1542 and 1644 cm(-1) wavenumbers which were attributed to the amide I and amide II bands of the polypeptide bond of proteins. Significant changes were found in the peak intensities between the cell lines in the spectrum range from 2854-2956 cm(-1). Results show that the concentration range of gold nanoparticles used in this research showed no significant changes in cell viability in either cell line. Therefore, we believe ATR-FTIR and gold nanotechnology can be at the forefront of cancer diagnosis for some time to come.

  15. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences--A Review.

    PubMed

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  16. Multivariate Calibration and Model Integrity for Wood Chemistry Using Fourier Transform Infrared Spectroscopy

    PubMed Central

    Zhou, Chengfeng; Jiang, Wei; Cheng, Qingzheng; Via, Brian K.

    2015-01-01

    This research addressed a rapid method to monitor hardwood chemical composition by applying Fourier transform infrared (FT-IR) spectroscopy, with particular interest in model performance for interpretation and prediction. Partial least squares (PLS) and principal components regression (PCR) were chosen as the primary models for comparison. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set to collect the original data. PLS was found to provide better predictive capability while PCR exhibited a more precise estimate of loading peaks and suggests that PCR is better for model interpretation of key underlying functional groups. Specifically, when PCR was utilized, an error in peak loading of ±15 cm−1 from the true mean was quantified. Application of the first derivative appeared to assist in improving both PCR and PLS loading precision. Research results identified the wavenumbers important in the prediction of extractives, lignin, cellulose, and hemicellulose and further demonstrated the utility in FT-IR for rapid monitoring of wood chemistry. PMID:26576321

  17. Support vector machine based classification of fast Fourier transform spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Lazarevic, Aleksandar; Pokrajac, Dragoljub; Marcano, Aristides; Melikechi, Noureddine

    2009-02-01

    Fast Fourier transform spectroscopy has proved to be a powerful method for study of the secondary structure of proteins since peak positions and their relative amplitude are affected by the number of hydrogen bridges that sustain this secondary structure. However, to our best knowledge, the method has not been used yet for identification of proteins within a complex matrix like a blood sample. The principal reason is the apparent similarity of protein infrared spectra with actual differences usually masked by the solvent contribution and other interactions. In this paper, we propose a novel machine learning based method that uses protein spectra for classification and identification of such proteins within a given sample. The proposed method uses principal component analysis (PCA) to identify most important linear combinations of original spectral components and then employs support vector machine (SVM) classification model applied on such identified combinations to categorize proteins into one of given groups. Our experiments have been performed on the set of four different proteins, namely: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor 2 and Osteopontin. Our proposed method of applying principal component analysis along with support vector machines exhibits excellent classification accuracy when identifying proteins using their infrared spectra.

  18. Fourier transform infrared spectroscopy of DNA from Borrelia burgdorferi sensu lato and Ixodes ricinus ticks

    NASA Astrophysics Data System (ADS)

    Muntean, Cristina M.; Stefan, Razvan; Bindea, Maria; Cozma, Vasile

    2013-06-01

    In this work we present a method for detection of motile and immotile Borrelia burgdorferi genomic DNA, in relation with infectious and noninfectious spirochetes. An FT-IR study of DNA isolated from B. burgdorferi sensu lato strains and from positive and negative Ixodes ricinus ticks, respectively, is reported. Motile bacterial cells from the species B. burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii were of interest. Also, FT-IR absorbance spectra of DNA from immotile spirochetes of B. burgdorferi sensu stricto, in the absence and presence of different antibiotics (doxycycline, erythromycin, gentamicin, penicillin V or phenoxymethylpenicillin, tetracycline, respectively) were investigated. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 400-1800 cm-1. FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Spectral differences between FT-IR absorbances of DNAs from motile bacterial cells and immotile spirochetes, respectively, have been found. Particularly, alterations of the sugar-phosphate B-form chain in the case of DNA from Borrelia immotile cells, as compared with DNA from B. burgdorferi sensu lato motile cells have been observed. Based on this work, specific B. burgdorferi sensu lato and I. ricinus DNA-ligand interactions, respectively, might be further investigated using Fourier transform infrared spectroscopy.

  19. [Rapid identification of microorganisms based on Fourier transform near infrared spectroscopy].

    PubMed

    Yue, Tian-li; Wang, Jun; Yuan, Ya-hong; Gao, Zhen-peng

    2010-11-01

    Fourier transform-near infrared (FT-NIR) spectra of microorganisms reflect the overall molecular composition of the sample. The spectra were specific and can serve as spectroscopic fingerprints that enable highly accurate identification of microorganisms. Bacterial powders of one yeast and five bacteria strains were prepared to collect FT-NIR spectra. FT-NIR measurements were done using a diffuse reflection-integrating sphere. Reduction of data was performed by principal component analysis (PCA) and two identification models based on linear discriminant analysis (LDA) and artificial neural network (ANN) were established to identify bacterial strains. The reproducibility of the method was proved to be excellent (D(yly2) : 1.61 +/- 1.05-10.97 +/- 6. 65) and high identification accuracy was achieved in both the LDA model (Accuracy rate: 100%) and the ANN model (Average relative error: 5.75%). FT-NIR spectroscopy combined with multivariate statistical analysis (MSA) may provide a novel answer to the fields which need for rapid microbial identification and it will have great prospect in industry.

  20. Classification of select category A and B bacteria by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Snyder, A. Peter; St. Amant, Diane; Emge, Darren K.; Minter, Jennifer; Campbell, Mark; Tripathi, Ashish

    2008-04-01

    Relatively few reports have investigated the determination and classification of pathogens such as the National Institute of Allergy and Infectious Diseases (NIAID) Category A Bacillus anthracis spores and cells (BA), Yersinia species, Francisella tularensis (FT), and Category B Brucella species from FTIR spectra. We investigated the classification ability of the Fourier transform infrared (FTIR) spectra of viable pathogenic and non-pathogenic NIAID Category A and B bacteria. The impact of different growth media, growth time and temperature, rolling circle filter of the data, and wavelength range were investigated for their microorganism differentiation. Various 2-D PC plots provided differential degrees of separation with respect to the four viable, bacterial genera including the BA sub-categories of pathogenic spores, vegetative cells, and nonpathogenic vegetative cells. FT spectra were separated from that of the three other genera. The BA pathogenic spore strains 1029, LA1, and Ames were clearly differentiated from the rest of the dataset. Yersinia species were distinctly separated from the remaining dataset and could also be classified by growth media. This work provided evidence that FTIR spectroscopy can separate the four major pathogenic bacterial genera of NIAID Category A and B biological threat agents.

  1. Two-Dimensional Fourier Transform Electronic Spectroscopy of Peridinin and Peridinin Analogs

    NASA Astrophysics Data System (ADS)

    Khosravi, Soroush; Bishop, Michael; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora

    2016-05-01

    The peridinin chlorophyll- a protein (PCP) is a light harvesting complex in dinoflagellates that exhibits a carotenoid-to-chlorophyll (Chl) a excitation energy transfer (EET) efficiency of 85-95%. Unlike most light harvesting complexes, where the number of carotenoids is less than Chl, each subunit of PCP contains eight tightly-packed peridinins surrounding two Chl a molecules. The unusual solvent polarity dependence of the lowest excited S1 state of peridinin suggests the presence of an intramolecular charge-transfer (ICT) state. The nature of the ICT state, its coupling to the S1 of peridinin, and whether it enables the high EET efficiency is still unclear. Two-dimensional electronic Fourier transform spectroscopy (2DES) is a powerful method capable of examining these issues. The present work examines the ICT state of peridinin and peridinin analogs that have diminished ICT character. 2DES data adding new insight into the spectral signatures and nature of the ICT state in peridinin will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.

  2. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    PubMed Central

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-01-01

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems. PMID:26694380

  3. Characterization of historic silk by polarized attenuated total reflectance Fourier transform infrared spectroscopy for informed conservation.

    PubMed

    Garside, Paul; Lahlil, Sophia; Wyeth, Paul

    2005-10-01

    When assessing historic textiles and considering appropriate conservation, display, and storage strategies, characterizing the physical condition of the textiles is essential. Our work has concentrated on developing nondestructive or micro-destructive methodologies that will permit this. Previously, we have demonstrated a correlation between the physical deterioration of unweighted and "pink" tin (IV) chloride weighted silk and certain measurable spectroscopic and chromatographic signatures, derived from polarized Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy (Pol-ATR) and high-performance liquid chromatography (HPLC) microsampling analyses. The application of the Pol-ATR technique to aged silk characterization has now been extended to include a more comprehensive range of weighting methods and aging regimes. This was intended to replicate the full spectrum of states of deterioration observed in silk textiles, from pristine to heavily degraded. Breaking strength was employed as a measure of the physical integrity of the fibers, and, as expected, decreased with aging. An orientational crystallinity parameter, reflecting the microstructural ordering of the fibroin polymer within the fibers, was derived from the Pol-ATR spectra. A good correlation was observed between the breaking strength of the variety of fibers and this parameter. This suggests that the physical state of historic silk fabrics might be adequately characterized for conservation purposes by such indirect micromethodology.

  4. Attenuated total reflection (ATR) Fourier transform infrared spectroscopy of dimyristoyl phosphatidylserine-cholesterol mixtures.

    PubMed

    Bach, D; Miller, I R

    2001-10-01

    Mixtures of cholesterol with dimyristoyl phosphatidylserine or deuterated dimyristoyl phosphatidylserine were investigated by polarized and non polarized attenuated total reflection (ATR) Fourier transform infrared (FTIR) Spectroscopy. From polarized spectra the dichroic ratios of various vibrations as a function of cholesterol were calculated. Dichroic ratios of methylene vibration (CH(2)) 2934 cm(-1) of cholesterol decreases with increase of cholesterol concentration leveling off in the region where cholesterol phase separation takes place. The orientation of deuterated methylene (CD(2)) symmetric and asymmetric bands of the deuterated dimyristoyl phosphatidylserine is influenced little by cholesterol. In the polar region of dimyristoyl phosphatidylserine no effect of cholesterol on the dichroic ratios of carbonyl (C==O) and asymmetric phosphate (PO(2)(-)) vibrations were detected. For nonpolarized spectra the broad bands in the polar region of the phospholipid were deconvoluted. The carbonyl band (C==O) in pure dimyristoyl phosphatidylserine is composed of five bands; in the presence of increasing concentrations of cholesterol conformational change of these vibrations takes place evolving into one predominant band. Similar conformational change takes place in the presence of 75 molecules water/molecule DMPS. For the asymmetric phosphate band very small shifts due to interaction with cholesterol were detected.

  5. Ferrielectric liquid crystal subphase studied by polarized fourier-transform infrared spectroscopy

    PubMed

    Sigarev; Vij; Panarin; Goodby

    2000-08-01

    IR dichroism and the structure of a homogeneously aligned cell of a chiral smectic antiferroelectric liquid crystal (R)-1-methylheptyl 4-(4(')-dodecyloxybiphenyl-4-ylcarbonyloxy)-3-fluorobenzoate [with acronym (R)-12OF1M7] in a ferrielectric subphase in the temperature range between the antiferroelectric phase (also referred to as Fi2) and the smectic-C*(SmC*) phase are studied using polarized Fourier transform IR spectroscopy. The polarization dependencies of the absorbance for several characteristic bands are quantitatively analyzed for different stages of the electrically induced structural transformations in the sample, including the helix unwinding and the phase transition from the ferriphase to the SmC* phase. A qualitative similarity of the voltage dependence of the normalized angular shift of the IR absorbance profile for the "chiral" carbonyl band to that of the normalized macroscopic polarization is found. The voltage dependent dichroic properties of the sample are analyzed in terms of the molecular structure and unwinding of the helical structure under an external electric field. The rotational orientational biasing of the carbonyl groups around the long molecular axis is confirmed by the spectral data. The analysis of IR dichroic data for the field induced SmC* phase is used to determine the rotational orientational distributions for the carbonyl groups.

  6. Stereochemistry of quinoxaline antagonist binding to a glutamate receptor investigated by Fourier transform infrared spectroscopy.

    PubMed

    Madden, D R; Thiran, S; Zimmermann, H; Romm, J; Jayaraman, V

    2001-10-12

    The stereochemistry of the interactions between quinoxaline antagonists and the ligand-binding domain of the glutamate receptor 4 (GluR4) have been investigated by probing their vibrational modes using Fourier transform infrared spectroscopy. In solution, the electron-withdrawing nitro groups of both compounds establish a resonance equilibrium that appears to stabilize the keto form of one of the cyclic amide carbonyl bonds. Changes in the 6,7-dinitro-2,3-dihydroxyquinoxaline vibrational spectra on binding to the glutamate receptor, interpreted within the framework of a published crystal structure, illuminate the stereochemistry of the interaction and suggest that the binding site imposes a more polarized electronic bonding configuration on this antagonist. Similar spectral changes are observed for 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline, confirming that its interactions with the binding site are highly similar to those of 6,7-dinitro-2,3-dihydroxyquinoxaline and leading to a model of the 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline-S1S2 complex, for which no crystal structure is available. Conformational changes within the GluR ligand binding domain were also monitored. Compared with the previously reported spectral changes seen on binding of the agonist glutamate, only a relatively small change is detected on antagonist binding. This correlation between the functional effects of different classes of ligand and the magnitude of the spectroscopic changes they induce suggests that the spectral data reflect physiologically relevant conformational processes.

  7. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE PAGES

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  8. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    SciTech Connect

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  9. The vinyl + NO reaction : determining the products with time-resolved Fourier transform spectroscopy.

    SciTech Connect

    Osborn, David L; Zou, Peng; Klippenstein, Stephen J.

    2005-01-01

    We have studied the vinyl + NO reaction using time-resolved Fourier transform emission spectroscopy, complemented by electronic structure and microcanonical RRKM rate coefficient calculations. To unambiguously determine the reaction products, three precursors are used to produce the vinyl radical by laser photolysis: vinyl bromide, methyl vinyl ketone, and vinyl iodide. The emission spectra and theoretical calculations indicate that HCN + CH{sub 2}O is the only significant product channel for the C{sub 2}H{sub 3} + NO reaction near room temperature, in contradiction to several reports in the literature. Although CO emission is observed when vinyl bromide is used as the precursor, it arises from the reaction of NO with photofragments other than vinyl. This conclusion is supported by the absence of CO emission when vinyl iodide or methyl vinyl ketone is used. Prompt emission from vibrationally excited NO is evidence of the competition between back dissociation and isomerization of the initially formed nitrosoethylene adduct, consistent with previous work on the pressure dependence of this reaction. Our calculations indicate that production of products is dominated by the low energy portion of the energy distribution. The calculation also predicts an upper bound of 0.19% for the branching ratio of the H{sub 2}CNH + CO channel, which is consistent with our experimental results.

  10. Comparative analysis of smokeless gunpowders by Fourier transform infrared and Raman spectroscopy.

    PubMed

    López-López, María; Ferrando, Jose Luis; García-Ruiz, Carmen

    2012-03-01

    Fourier Transform Infrared (FTIR) and Raman spectroscopic techniques were used to perform a comparative study of the spectral profiles of single-base, double-base and triple-base smokeless gunpowders. Preliminary results based on visual comparison of the spectra point out that spectra obtained by both vibrational techniques were useful for a rapid identification of gunpowders containing dinitrotoluene as one of the major components and triple-base gunpowders. Additionally, the Raman spectra of gunpowders with diphenylamine in its primary composition showed a characteristic band, assigned to 2-nitro-diphenylamine, allowing the identification of this type of gunpowders. Further differentiation among the spectra of different types of smokeless gunpowders obtained by both vibrational spectroscopic techniques was investigated by discriminant analysis. Different analyses were applied to spectral data considering the different composition of gunpowders. The presence or absence of different compounds (such as dinitrotoluene, diphenylamine or dibutyl phthalate) or the type of gunpowder according to the number of active components (single-base or double-base gunpowder) has been taken into account. FTIR and Raman spectroscopy in combination with discriminant analyses were successful tools of forensic interest for the classification of gunpowders and the possible identification of unknown samples of gunpowders.

  11. Quantitative analysis of hemoglobin content in polymeric nanoparticles as blood substitutes using Fourier transform infrared spectroscopy.

    PubMed

    Shan, Xiaoqian; Chen, Ligen; Yuan, Yuan; Liu, Changsheng; Zhang, Xiaolan; Sheng, Yan; Xu, Feng

    2010-01-01

    Based on the penetrability of IR within the polymeric nanoparticles, a novel Fourier transform infrared spectroscopy (FTIR) method, with polyacrylonitrile (PAN) as the internal reference standard, was developed to quantify the hemoglobin (Hb) content in Hb-based polymeric nanoparticles (HbPN). The HbPN was fabricated by double emulsion method from poly(ethylene glycol)-poly(lactic acid)-poly(ethylene glycol) triblock copolymers. Depending on the characteristic un-overlapped IR absorbances at 1540 cm(-1) of Hb (amide II) and at 2241 cm(-1) of PAN(-C[triple bond]N), calibration equations, presenting the peak height ratio of Hb and PAN as a function of the weight ratio of Hb and PAN, were established. This new quantification method is validated and used to the determination Hb content in HbPN. Due to the good results of this calibration strategy, the proposed simple FTIR approach with minimal sample-needed and solvent-free makes it useful for routine analysis of protein content and could be also applied to any other drug/protein encapsulated particles.

  12. Far IR Transmission Characteristics of Silicon Nitride Films using Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferrusca, D.; Castillo-Domínguez, E.; Velázquez, M.; Hughes, D.; Serrano, A.; Torres-Jácome, A.

    2009-12-01

    We are fabricating amorphous Silicon (a-Si) bolometers doped with boron with a measured NEP˜1.5×10-16 W/Hz1/2 suitable for use in millimeter and sub-millimeter astronomy. In this paper we present the preliminary results of the absorber optimization for the a-Si bolometers. A film of Silicon Nitride (SiN), deposited by LPCVD (Low Pressure Chemical Vapor Deposition) process at INAOE, with or without metallic coating is used as a weak thermal link to the heat sink as well as an absorber. We have measured the transmission spectrum of thin films of SiN in the range of 200 to 1000 GHz using Fourier Transform Spectroscopy (FTS) and a bolometric system with a NEP˜1.26×10-13. The transmission of thin films of SiN with a thickness of 0.4 μn has been measured at temperatures of 290 K and 4 K. The uncoated SiN films have a transmission of 80% and we expect a 50% transmission for the metallic (e.g. Titanium) coated films.

  13. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    PubMed

    Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K

    2016-07-01

    Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. PMID:27412186

  14. Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    SciTech Connect

    Anderson, Timothy J.; Ai, Yongfeng; Jones, Roger W.; Houk, Robert S.; Jane, Jay-lin; Zhao, Yinsheng; Birt, Diane F.; McClelland, John F.

    2013-01-29

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.

  15. Study of Kerogen Maturity using Transmission Fourier Transform Infrared Spectroscopy (FTIR)

    NASA Astrophysics Data System (ADS)

    Dang, S. T.

    2014-12-01

    Maturity of kerogen in shale governs the productivity and generation hydrocarbon type. There are generally two accepted methods to measure kerogen maturity; one is the measurement of vitrinite reflectance, %Ro, and another is the measurement of Tmax through pyrolysis. However, each of these techniques has its own limits; vitrinite reflectance measurement cannot be applied to marine shale and pre-Silurian shales, which lack plant materials. Furthermore, %Ro, requires the isolation and identification of vitrinite macerals and statistical measurements of at least 50 macerals. Tmax measurement is questionable for mature and post-mature samples. In addition, there are questions involving the effects of solvents on Tmax determinations. Fourier Transmission Infrared Spectroscopy, FTIR, can be applied for both qualitative and quantitative assessment on organics maturity in shale. The technique does not require separating organic matter or identifying macerals. A CH2/CH3 index, RCH, calculated from FTIR spectra is more objective than other measurements. The index increases with maturity (both natural maturation and synthetic maturation through hydrous and dry pyrolysis). The new maturity index RCH can be calibrated to vitrinite reflectance which allows the definition of the following values for levels of maturity: 1) immature—RCH > 1.6±0.2; 2) oil window-- 1.6±0.2 < RCH > 1.3±0.3; 3) wet gas window--1.3±0.3 < RCH> 1.13±0.05; and 4) dry gas window RCH < 1.13±0.05.

  16. Fourier-transform spectroscopy and potential construction of the (2){sup 1}Π state in KCs

    SciTech Connect

    Birzniece, I.; Nikolayeva, O.; Tamanis, M.; Ferber, R.

    2015-04-07

    The paper presents an empirical pointwise potential energy curve (PEC) of the (2){sup 1}Π state of the KCs molecule constructed by applying the Inverted Perturbation Approach routine. The experimental term values in the energy range E(v′, J′) ∈ [15 407; 16 579] cm{sup −1} involved in the fit were based on Fourier-Transform spectroscopy data obtained with 0.01 cm{sup −1} accuracy from the laser-induced (2){sup 1}Π → X{sup 1}Σ{sup +} fluorescence spectra. Buffer gas Ar was used to facilitate the appearance of rotation relaxation lines in the spectra, thus enlarging the (2){sup 1}Π data set and allowing determination of the Λ-splitting constants. The data set included vibrational v′ ∈ [0, 28] and rotational J′ ∈ [7, 274] quantum numbers covering about 67% of the potential well. The present PEC reproduces the overall set of data included in the fit with a standard deviation of 0.5 cm{sup −1}. The obtained value of the Λ-doubling constant q = + 1.8 × 10{sup −6} cm{sup −1} for J′ > 50 and v′ ∈ [0, 6] is in an excellent agreement with q = + 1.84 × 10{sup −6} cm{sup −1} reported in Kim, Lee, and Stolyarov [J. Mol. Spectrosc. 256, 57-67 (2009)].

  17. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  18. Identification of Yersinia ruckeri from diseased salmonid fish by Fourier transform infrared spectroscopy.

    PubMed

    Wortberg, F; Nardy, E; Contzen, M; Rau, J

    2012-01-01

    Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM), which mainly affects salmonid fish. Isolates of Y. ruckeri from diseased salmonid fish were obtained over a 6-year period from eight fish farms in the State of Baden-Württemberg, Southwest Germany. The strains were characterized by biochemical methods and Fourier transform infrared spectroscopy (FT-IR) combined with artificial neural network analysis. These methods were complemented by 16S rDNA sequencing for several isolates. The set of strains from these fish farms included sorbitol-positive, gelatinase-positive and non-motile Y. ruckeri. These variants were differentiated with an advanced FT-IR module, which is part of a higher-ranking method including more than 200 well-defined Yersinia strains against a background of more than 1000 other Gram-negative isolates. Validation of the newly constructed method yielded 97.4% of Y. ruckeri identified correctly on the species level. Thus, the FT-IR analysis enables distinction of all Y. ruckeri from other Yersinia species (e.g. fish-borne Y. enterocolitica) and other Enterobacteriaceae typically misidentified because of similar biochemical reaction profiles, especially Hafnia alvei. The differentiation of sorbitol-positive variants of Y. ruckeri using FT-IR was demonstrated. PMID:22103737

  19. Fourier transform infrared spectroscopy provides an evidence of papain denaturation and aggregation during cold storage.

    PubMed

    Rašković, Brankica; Popović, Milica; Ostojić, Sanja; Anđelković, Boban; Tešević, Vele; Polović, Natalija

    2015-01-01

    Papain is a cysteine protease with wide substrate specificity and many applications. Despite its widespread applications, cold stability of papain has never been studied. Here, we used differential spectroscopy to monitor thermal denaturation process. Papain was the most stabile from 45 °C to 60 °C with ΔG°321 of 13.9±0.3 kJ/mol and Tm value of 84±1 °C. After cold storage, papain lost parts of its native secondary structures elements which gave an increase of 40% of intermolecular β-sheet content (band maximum detected at frequency of 1621 cm(-1) in Fourier transform infrared (FT-IR) spectrum) indicating the presence of secondary structures necessary for aggregation. The presence of protein aggregates after cold storage was also proven by analytical size exclusion chromatography. After six freeze-thaw cycles around 75% of starting enzyme activity of papain was lost due to cold denaturation and aggregation of unfolded protein. Autoproteolysis of papain did not cause significant loss of the protein activity. Upon the cold storage, papain underwent structural rearrangements and aggregation that correspond to other cold denatured proteins, rather than autoproteolysis which could have the commercial importance for the growing polypeptide based industry. PMID:26051646

  20. Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Bi, Renzhe; Ho, Jun Hui; Thong, Patricia S. P.; Soo, Khee-Chee; Lee, Kijoon

    2012-09-01

    Diffuse correlation spectroscopy (DCS) is an emerging noninvasive technique that probes the deep tissue blood flow, by using the time-averaged intensity autocorrelation function of the fluctuating diffuse reflectance signal. We present a fast Fourier transform (FFT)-based software autocorrelator that utilizes the graphical programming language LabVIEW (National Instruments) to complete data acquisition, recording, and processing tasks. The validation and evaluation experiments were conducted on an in-house flow phantom, human forearm, and photodynamic therapy (PDT) on mouse tumors under the acquisition rate of ˜400 kHz. The software autocorrelator in general has certain advantages, such as flexibility in raw photon count data preprocessing and low cost. In addition to that, our FFT-based software autocorrelator offers smoother starting and ending plateaus when compared to a hardware correlator, which could directly benefit the fitting results without too much sacrifice in speed. We show that the blood flow index (BFI) obtained by using a software autocorrelator exhibits better linear behavior in a phantom control experiment when compared to a hardware one. The results indicate that an FFT-based software autocorrelator can be an alternative solution to the conventional hardware ones in DCS systems with considerable benefits.

  1. Fourier transform infrared spectroscopy provides an evidence of papain denaturation and aggregation during cold storage.

    PubMed

    Rašković, Brankica; Popović, Milica; Ostojić, Sanja; Anđelković, Boban; Tešević, Vele; Polović, Natalija

    2015-01-01

    Papain is a cysteine protease with wide substrate specificity and many applications. Despite its widespread applications, cold stability of papain has never been studied. Here, we used differential spectroscopy to monitor thermal denaturation process. Papain was the most stabile from 45 °C to 60 °C with ΔG°321 of 13.9±0.3 kJ/mol and Tm value of 84±1 °C. After cold storage, papain lost parts of its native secondary structures elements which gave an increase of 40% of intermolecular β-sheet content (band maximum detected at frequency of 1621 cm(-1) in Fourier transform infrared (FT-IR) spectrum) indicating the presence of secondary structures necessary for aggregation. The presence of protein aggregates after cold storage was also proven by analytical size exclusion chromatography. After six freeze-thaw cycles around 75% of starting enzyme activity of papain was lost due to cold denaturation and aggregation of unfolded protein. Autoproteolysis of papain did not cause significant loss of the protein activity. Upon the cold storage, papain underwent structural rearrangements and aggregation that correspond to other cold denatured proteins, rather than autoproteolysis which could have the commercial importance for the growing polypeptide based industry.

  2. Various new applications of fiber optic infrared Fourier transform spectroscopy for dermatology

    NASA Astrophysics Data System (ADS)

    Bruch, Reinhard F.; Afanasyeva, Natalia I.; Sukuta, Sydney; Brooks, Angelique L.; Makhine, Volodymyr; Kolyakov, Sergei F.

    1999-02-01

    Fiberoptical evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy has been applied in the middle infrared (MIR) wavelength range (3 to 20 micrometer) to the in vivo diagnostics of normal skin tissue, acupuncture points as well as precancerous and cancerous conditions. The FTIR-FEW technique, using nontoxic unclad fibers, is suitable for noninvasive, sensitive investigations of skin tissue for various dermatological studies of skin caner, aging, laser treatment, cosmetics, skin allergies, etc. This method is direct, nondestructive, and fast (seconds). Our optical fibers are nonhygroscopic, flexible, and characterized by extremely low losses. In this study, we have noninvasively investigated more than 300 cases of normal skin, acupuncture points, precancerous and cancerous tissue in the range of 1400 to 1800 cm-1. The results of our analysis of skin and other tissue are discussed in terms of structural and mathematical similarities and differences on a molecular level. In addition, we have also performed cluster analysis, using principal component scores, to confirm pathological classifications and to discriminate between genders. We have found good agreement with prior pathological classifications for normal skin tissue and melanoma tumors and normal females were distinctly separate from males.

  3. Discrimination of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex species by Fourier transform infrared spectroscopy.

    PubMed

    Sousa, C; Silva, L; Grosso, F; Nemec, A; Lopes, J; Peixe, L

    2014-08-01

    The main goal of this work was to assess the ability of Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) to discriminate between the species of the Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex, i.e. A. baumannii, A. nosocomialis, A. pittii, A. calcoaceticus, genomic species "Between 1 and 3" and genomic species "Close to 13TU". A total of 122 clinical isolates of the Acb complex previously identified by rpoB sequencing were studied. FTIR-ATR spectra was analysed by partial least squares discriminant analysis (PLSDA) and the model scores were presented in a dendrogram form. This spectroscopic technique proved to be effective in the discrimination of the Acb complex species, with sensitivities from 90 to 100%. Moreover, a flowchart aiming to help with species identification was developed and tested with 100% correct predictions for A. baumannii, A. nosocomialis and A. pittii test isolates. This rapid, low cost and environmentally friendly technique proved to be a reliable alternative for the identification of these closely related Acinetobacter species that share many clinical and epidemiological characteristics and are often difficult to distinguish. Its validation towards application on a routine basis could revolutionise high-throughput bacterial identification.

  4. Gas in Scattering Media Absorption Spectroscopy -- Laser Spectroscopy in Unconventional Environments

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2010-02-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The GASMAS technique combines narrow-band diode-laser spectroscopy with optical propagation in diffuse media. Whereas solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures. These are typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. Molecular oxygen and water vapor have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen gas, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the human sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen, while breathing normally through the mouth. A clinical study comprising 40 patients has been concluded.

  5. Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization

    NASA Astrophysics Data System (ADS)

    Grill, Alfred; Neumayer, Deborah A.

    2003-11-01

    Carbon doped oxide dielectrics comprised of Si, C, O, and H (SiCOH) have been prepared by plasma enhanced chemical vapor deposition (PECVD) from mixtures of tetramethylcyclotetrasiloxane (TMCTS) and an organic precursor. The films have been analyzed by determining their elemental composition and by Fourier transform infrared spectroscopy with deconvolution of the absorption peaks. The analysis has shown that PECVD of TMCTS produces a highly crosslinked networked SiCOH film. Dissociation of TMCTS appears to dominate the deposition chemistry as evidenced by the multitude of bonding environments and formation of linear chains and branches. Extensive crosslinking of TMCTS rings occurs through Si-Si, Si-CH2-Si, Si-O-Si, and Si-CH2-O-Si moieties. The films deposited from mixtures of TMCTS and organic precursor incorporate hydrocarbon fragments into the films. This incorporation occurs most probably through the reaction of the organic precursor and the Si-H bonds of TMCTS. Annealing the SiCOH films deposited from TMCTS and organic precursor results in a large loss of carbon and hydrogen from the films resulting from the fragmentation and loss of the incorporated organic component. The deconvolution of the Si-O-Si asymmetric stretching band of the annealed films shows the existence of a larger fraction of a cage structure and a correspondingly smaller fraction of a networked (highly crosslinked) structure in the SiCOH films deposited from mixtures of TMCTS with organic precursor relative to the films deposited from TMCTS only. The evolution of the volatile hydrocarbon fragments during annealing results in the formation of nanopores and subsequent reduction of the dielectric constants of the films to extreme low-k values.

  6. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FT-IR) Applied to Study the Distribution of Ink Components in Printed Newspapers.

    PubMed

    Gómez, Nuria; Molleda, Cristina; Quintana, Ester; Carbajo, José M; Rodríguez, Alejandro; Villar, Juan C

    2016-09-01

    A new method was developed to study how the oil and cyan pigments of cold-set ink are distributed in newspaper thickness. The methodology involved laboratory printing followed by delamination of the printed paper. The unprinted side, printed side, and resulting layers were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR). Three commercial newspapers and black and cyan cold-set inks were chosen for the study. Attenuated total reflection Fourier transform infrared spectroscopy enabled the proportion of oil and cyan pigment on the printed surface and throughout the sheet thickness to be measured. Oil percentage was evaluated as the area increment of the region from 2800 cm(-1) to 3000 cm(-1) The relative amount of cyan pigment was determined as the area of the absorption band at 730 cm(-1) The ink oil was found mainly below half the paper thickness, whereas the pigment was detected at the layers closer to the printed surface, at a depth penetration of less than 15 µm (20% of thickness). Distribution of these two components in paper thickness depended on the type of cold-set ink, the amount of ink transferred, and the newspaper properties. PMID:27129363

  7. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FT-IR) Applied to Study the Distribution of Ink Components in Printed Newspapers.

    PubMed

    Gómez, Nuria; Molleda, Cristina; Quintana, Ester; Carbajo, José M; Rodríguez, Alejandro; Villar, Juan C

    2016-09-01

    A new method was developed to study how the oil and cyan pigments of cold-set ink are distributed in newspaper thickness. The methodology involved laboratory printing followed by delamination of the printed paper. The unprinted side, printed side, and resulting layers were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR). Three commercial newspapers and black and cyan cold-set inks were chosen for the study. Attenuated total reflection Fourier transform infrared spectroscopy enabled the proportion of oil and cyan pigment on the printed surface and throughout the sheet thickness to be measured. Oil percentage was evaluated as the area increment of the region from 2800 cm(-1) to 3000 cm(-1) The relative amount of cyan pigment was determined as the area of the absorption band at 730 cm(-1) The ink oil was found mainly below half the paper thickness, whereas the pigment was detected at the layers closer to the printed surface, at a depth penetration of less than 15 µm (20% of thickness). Distribution of these two components in paper thickness depended on the type of cold-set ink, the amount of ink transferred, and the newspaper properties.

  8. Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR).

    PubMed

    Blum, Marc-Michael; John, Harald

    2012-01-01

    Vibrational spectroscopy has a long history as an important spectroscopic method in chemical and pharmaceutical analysis. Instrumentation for infrared (IR) spectroscopy was revolutionized by the introduction of Fourier Transform Infrared (FTIR) spectrometers. In addition, easier sampling combined with better sample-to-sample reproducibility and user-to-user spectral variation became available with attenuated total reflectance (ATR) probes and their application for in situ IR spectroscopy. These innovations allow many new applications in chemical and pharmaceutical analysis, such as the use of IR spectroscopy in Process Analytical Chemistry (PAC), the quantitation of drugs in complex matrix formulations, the analysis of protein binding and function and in combination with IR microscopy to the emergence of IR imaging technologies. The use of ATR-FTIR instruments in forensics and first response to 'white powder' incidents is also discussed. A short overview is given in this perspective article with the aim to renew and intensify interest in IR spectroscopy.

  9. [Fast determination of induction period of motor gasoline using Fourier transform attenuated total reflection infrared spectroscopy].

    PubMed

    Liu, Ya-Fei; Yuan, Hong-Fu; Song, Chun-Feng; Xie, Jin-Chun; Li, Xiao-Yu; Yan, De-Lin

    2014-11-01

    A new method is proposed for the fast determination of the induction period of gasoline using Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR). A dedicated analysis system with the function of spectral measurement, data processing, display and storage was designed and integrated using a Fourier transform infrared spectrometer module and chemometric software. The sample presentation accessory designed which has advantages of constant optical path, convenient sample injection and cleaning is composed of a nine times reflection attenuated total reflectance (ATR) crystal of zinc selenide (ZnSe) coated with a diamond film and a stainless steel lid with sealing device. The influence of spectral scanning number and repeated sample loading times on the spectral signal-to-noise ratio was studied. The optimum spectral scanning number is 15 times and the optimum sample loading number is 4 times. Sixty four different gasoline samples were collected from the Beijing-Tianjin area and the induction period values were determined as reference data by standard method GB/T 8018-87. The infrared spectra of these samples were collected in the operating condition mentioned above using the dedicated fast analysis system. Spectra were pretreated using mean centering and 1st derivative to reduce the influence of spectral noise and baseline shift A PLS calibration model for the induction period was established by correlating the known induction period values of the samples with their spectra. The correlation coefficient (R2), standard error of calibration (SEC) and standard error of prediction (SEP) of the model are 0.897, 68.3 and 91.9 minutes, respectively. The relative deviation of the model for gasoline induction period prediction is less than 5%, which meets the requirements of repeatability tolerance in GB method. The new method is simple and fast. It takes no more than 3 minutes to detect one sample. Therefore, the method is feasible for implementing

  10. X-Ray Absorption Spectroscopy of Strontium(II) Coordination.

    PubMed

    Sahai; Carroll; Roberts; O'Day

    2000-02-15

    Sorption of dissolved strontium on kaolinite, amorphous silica, and goethite was studied as a function of pH, aqueous strontium concentration, the presence or absence of atmospheric CO(2) or dissolved phosphate, and aging over a 57-day period. Selected sorption samples ([Sr(aq)](i) approximately 0.5-1x10(-3) m) were examined with synchrotron X-ray absorption spectroscopy (XAS) at low (13-23 K) and room temperatures to determine the local molecular coordination around strontium. Quantitative analyses of the extended X-ray absorption fine structure (EXAFS) of kaolinite, amorphous silica, and most goethite sorption samples showed a single first shell of 9-10 (+/-1) oxygen atoms around strontium at an average Sr-O bond-distance of 2.61 (+/-0.02) Å, indicating hydrated surface complexes. The EXAFS spectra were unchanged after reaction for up to 57 days. Likewise, in kaolinite sorption samples prepared in 100% nitrogen atmosphere, the presence of dissolved phosphate (0.5x10(-3) m) in addition to strontium did not change the local coordination around strontium. In two goethite sorption samples reacted in air at pH approximately 8.5, the EXAFS spectra (collected at low and room temperature) clearly showed that the local structure around strontium is that of strontianite (SrCO(3)(s)). We also noted an increase in strontium uptake on goethite in the presence of atmospheric CO(2) in batch experiments, relative to CO(2)-free experiments. These observations suggest that sorption of carbonate may nucleate the precipitation of SrCO(3) in the pH range in which carbonate sorption on goethite is near a maximum. At higher pH, carbonate surface sorption decreases as dissolved CO(2) decreases. For goethite sorption samples above pH 8.6, hydrated surface complexes, rather than a precipitate, were observed in the EXAFS spectra. Copyright 2000 Academic Press.

  11. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    PubMed

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-01

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  12. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Tittel, F. K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J.

    2014-12-01

    This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

  13. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally

  14. Transmission quantification for open path Fourier transform spectroscopy with temperature compensation

    NASA Astrophysics Data System (ADS)

    Crampton, Robert Stiles

    This dissertation contains analyses of new methods for determining the concentration and temperature of atmospheric gases from the data generated by an open-path Fourier transform (OP-FTIR) spectrometer. The concept of FTIR and the subset OP-FTIR are explained in terms of the physical instrumentation and the traditional Beer-Lambert Law based absorbance quantification. The important problems of background collection and water vapor interference with target gas features are also introduced. The process of synthetic spectrum generation is the foundation for this work and is described in detail. The inputs that are required to model the physics of the absorption of infrared radiation by small molecules are explained. The effects that each input has on the final spectrum as recorded by the OP-FTIR are also discussed at length. Also described is the modeling of the optics of the OP-FTIR instrument. Particular attention is paid to the temperature effects on the spectrum of the most important atmospheric infrared absorber, water vapor. A method is explained that is successful at determining the atmospheric temperature along the beam by using two water vapor absorption lines (3281 cm-1 and 3283 cm-1) in the single beam spectrum that have opposite and strong temperature dependencies. The regression model is based on synthetic data created with the HI-TRAN database and shows good agreement with field data. Lastly a new way to quantify gases from the single beam spectrum of the OP-FTIR is introduced and tested. This method contrasts with traditional absorbance based methods and avoids the pitfalls associated with the background spectrum. The input spectra are divided into two arrays. One of these arrays is associated with the points in wave-number space where the target gas has less absorbance and the second array contains information about the points where the target gas absorbs most. A series of reference transmittance spectra are divided from the input spectra and the

  15. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    PubMed

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

  16. Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials

    NASA Astrophysics Data System (ADS)

    Acosta, Roberto I.

    The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.

  17. Structural study of photodegraded acrylic-coated lime wood using Fourier transform infrared and two-dimensional infrared correlation spectroscopy.

    PubMed

    Popescu, Carmen-Mihaela; Simionescu, Bogdan C

    2013-06-01

    The weathering of acrylic films and acrylic-coated lime wood (Tillia cordata Mill.) were examined using Fourier transform infrared (FT-IR) and two-dimensional infrared correlation spectroscopy. The obtained results showed chemical changes induced by exposure to weathering conditions, in both films and coated wood. The observed spectral changes of the acrylic films refer to the absorption band assigned to the C-O stretching, which progressively decreases with increasing exposure time. In the spectra of treated wood samples the main signal indicating the advance of oxidation during the photodegradation exposure is the gradual increase and broadening of the band in the carbonyl region. This is due to the formation of the non-hydrogen bonded aliphatic carboxylic acids and γ-lactone structures in the acrylic resin and of the nonconjugated ketones, carboxyl groups, and lactones in wood. As a consequence, the increase of the 1734 cm(-1) band is due to the degradation of lignin from wood surface. These observations are also supported by the decreased intensities of the bands at 1598 and 1505 cm(-1), assigned to C=C of aromatic skeletal (lignin). The relative intensity of the characteristic aromatic lignin band at 1505 cm(-1) decreases up to 25% of its original value after weathering, being less than half of the value obtained for uncoated wood. Two-dimensional infrared (2D IR) correlation spectroscopy was used to identify the sequence of the modifications of the different stretching vibrations bands under the weathering conditions, the method allowing the prediction of the order of degradation reactions. The acrylic resin degradation starts with the formation of radicals by abstraction of the tertiary hydrogen atoms of the methyl acrylate units and the α-CH3 groups from the ethyl methacrylate units. The subsequent decomposition and oxidation led to the formation of alcohol groups, hydroperoxides, ketones, and/or carboxylic acid groups. The 2D IR correlation spectra of

  18. Near Edge X-ray Absorption Spectroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Dhez, Olivier; Ade, Harald; Urquhart, Stephen

    2001-03-01

    Synthetic and natural polymers exhibit a rich carbon, nitrogen and oxygen K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS). The spectroscopic variations with chemical structure and composition are interesting in their own right. In addition, the large spectroscopic variability can be utilized for the compositional analysis of materials. This is particularly useful for high spatial resolution NEXAFS microanalysis at lateral spatial resolutions exceeding that achievable with more traditional compositional analysis tools such as Infrared and NMR spectroscopy. To increase our understanding of NEXAFS spectra and to start a database for microanalysis, we acquired carbon NEXAFS spectra of the following polymers: polycarbonate, poly(oxybenzoate-co-2,6oxynaphthoate), poly (p-phenylene terephtalamide), toluene diisocyanate polyurethane, toluene diisocyanate polyurea, 4,4'-methylene di-p-phenylene isocyanate polyurethane, 4,4'-methylene di-p-phenylene isocyanate polyurea, poly(ether ether ketone), poly(alpha-methylstyrene), poly-styrene, poly bromostyrene, poly(2-vinyl styrene), polyethylene, poly(ethylene oxide), polypropylene, poly(propylene oxide), polyisobutylene, ethylene propylene rubber, poly(methyl -metacrylate). These spectra were obtained in transmission with an energy resolution of 150 meV. The energy scale was carefully calibrated in-situ utilizing C02 gas as a reference. Spectral assignments are made based on model compounds and theoretical calculations.

  19. Urban ozone measurements using differential optical absorption spectroscopy.

    PubMed

    Morales, J A; Treacy, J; Coffey, S

    2004-05-01

    In order to improve the air quality in Europe the European Commission has issued a number of directives with regard to acceptable levels of a range of gaseous pollutants, which includes ozone. Therefore, monitoring of this compound is necessary to comply with EU legislation, to provide improved pollution warnings for those who are sensitive to air pollutants as well as providing valuable data for environmental planning. Open-path spectroscopic techniques, such as differential optical absorption spectroscopy (DOAS), are ideal for monitoring pollutants because of the advantages they offer over classical methods and point-source analysers. A DOAS system has been installed in Dublin city centre to monitor a range of criteria pollutants including ozone. Observations of urban background ozone concentrations are presented. The measurements are compared with those obtained using a UV point-source analyser and are presented in the context of the current EU directive. The influence of trans-boundary pollution from mainland Europe leading to ozone episodes is also discussed. Observations of high ozone during this measurement campaign coincided with the influx of photochemically polluted air masses which originated over continental Europe. For the analysed time interval, the data suggest that the ground ozone level in Dublin might be significantly influenced by long-range transport from the United Kingdom and continental Europe. PMID:14963627

  20. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  1. Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy.

    PubMed

    Heland, J; Schäfer, K

    1997-07-20

    Because of the worldwide growth in air traffic and its increasing effects on the atmospheric environment, it is necessary to quantify the direct aircraft emissions at all altitudes. In this study Fourier-transform infrared emission spectroscopy as a remote-sensing multi-component-analyzing technique for aircraft exhausts was investigated at ground level with a double pendulum interferometer and a line-by-line computer algorithm that was applied to a multilayer radiative transfer problem. Initial measurements were made to specify the spectral windows for traceable compounds, to test the sensitivity of the system, and to develop calibration and continuum handling procedures. To obtain information about the radial temperature and concentration profiles, we developed an algorithm for the analysis of an axial-symmetric multilayered plume by use of the CO(2) hot band at approximately 2400 cm(-1). Measurements were made with several in-service engines. Effects that were due to engine aging were detected but have to be analyzed systematically in the near future. Validation measurements were carried out with a conventional propane gas burner to compare the results with those obtained with standard measurement equipment. These measurements showed good agreement to within +/-20% for the CO and NO(x) results. The overall accuracy of the system was found to be +/-30%. The detection limits of the system for a typical engine plume (380 degrees C, ? = 50 cm) are below 0.1% for CO(2), ~0.7% for H(2)O, ~20 ppmv (parts per million by volume) for CO, and ~90 ppmv for NO.

  2. A Fourier transform infrared spectroscopy analysis of carious dentin from transparent zone to normal zone.

    PubMed

    Liu, Y; Yao, X; Liu, Y W; Wang, Y

    2014-01-01

    It is well known that caries invasion leads to the differentiation of dentin into zones with altered composition, collagen integrity and mineral identity. However, understanding of these changes from the fundamental perspective of molecular structure has been lacking so far. In light of this, the present work aims to utilize Fourier transform infrared spectroscopy (FTIR) to directly extract molecular information regarding collagen's and hydroxyapatite's structural changes as dentin transitions from the transparent zone (TZ) into the normal zone (NZ). Unembedded ultrathin dentin films were sectioned from carious teeth, and an FTIR imaging system was used to obtain spatially resolved FTIR spectra. According to the mineral-to-matrix ratio image generated from large-area low-spectral-resolution scan, the TZ, the NZ and the intermediate subtransparent zone (STZ) were identified. High-spectral-resolution spectra were taken from each zone and subsequently examined with regard to mineral content, carbonate distribution, collagen denaturation and carbonate substitution patterns. The integrity of collagen's triple helical structure was also evaluated based on spectra collected from demineralized dentin films of selected teeth. The results support the argument that STZ is the real sclerotic layer, and they corroborate the established knowledge that collagen in TZ is hardly altered and therefore should be reserved for reparative purposes. Moreover, the close resemblance between the STZ and the NZ in terms of carbonate content, and that between the STZ and the TZ in terms of being A-type carbonate-rich, suggest that the mineral that initially occludes dentin tubules is hydroxyapatite newly generated from odontoblastic activities, which is then transformed into whitlockite in the demineralization/remineralization process as caries progresses.

  3. Study of tissue engineered bone nodules by Fourier transform infrared spectroscopy.

    PubMed

    Aydin, Halil Murat; Hu, Bin; Suso, Josep Sulé; El Haj, Alicia; Yang, Ying

    2011-02-21

    The key criteria for assessing the success of bone tissue engineering are the quality and quantity of the produced minerals within the cultured constructs. The accumulation of calcium ions and inorganic phosphates in culture medium serves as nucleating agents for the formation of hydroxyapatite, which is the main inorganic component of bone. Bone nodule formation is one of the hallmarks of mineralization in such cell cultures. In this study, we developed a new two-step procedure to accelerate bone formation in which mouse bone cell aggregates were produced first on various chemically treated non-adhesive substrates. After this step, the bone cells' growth and mineralization were followed in conventional culture plates. The number and size of cell aggregates were studied with light microscopy. The minerals' formation in the form of nodules produced by the cell aggregates and the bone crystal quality were studied with Fourier Transform Infrared (FTIR) spectroscopy. The FTIR spectra of the ash specimens (mineral phase only) from thermal gravimetric analysis (TGA) provided valuable information of the quality of the minerals. The υ(4) PO(4) region (550-650 cm(-1)), which reveals apatitic and non-apatitic HPO(4) or PO(4) environments, and phosphate region (910-1180 cm(-1)) were examined for the minerals produced in the form of nodules. The peak position and intensity of the spectra demonstrate that the quality of the bone produced by cell aggregates, especially from the bigger ones, which were formed on Plunoric treated substrates, exhibit a composition more similar to that of native bone. This work establishes a new protocol for high quality bone formation and characterization, with the potential to be applied to bone tissue engineering.

  4. Determination of aluminium induced metabolic changes in mice liver: A Fourier transform infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Sivasubramanian, J.; Khatiwada, Chandra Prasad; Manivannan, J.; Raja, B.

    2013-06-01

    In this study, we made a new approach to evaluate aluminium induced metabolic changes in liver tissue of mice using Fourier transform infrared spectroscopy analysis taking one step further in correlation with strong biochemical evidence. This finding reveals the alterations on the major biochemical constituents, such as lipids, proteins, nucleic acids and glycogen of the liver tissues of mice. The peak area value of amide A significantly decrease from 288.278 ± 3.121 to 189.872 ± 2.012 between control and aluminium treated liver tissue respectively. Amide I and amide II peak area value also decrease from 40.749 ± 2.052 to 21.170 ± 1.311 and 13.167 ± 1.441 to 8.953 ± 0.548 in aluminium treated liver tissue respectively. This result suggests an alteration in the protein profile. The absence of olefinicdbnd CH stretching band and Cdbnd O stretching of triglycerides in aluminium treated liver suggests an altered lipid levels due to aluminium exposure. Significant shift in the peak position of glycogen may be the interruption of aluminium in the calcium metabolism and the reduced level of calcium. The overall findings exhibit that the liver metabolic program is altered through increasing the structural modification in proteins, triglycerides and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected in desferrioxamine treated mice. Histopathological results also revealed impairment of aluminium induced alterations in liver tissue. The results of the FTIR study were found to be in agreement with biochemical studies and which demonstrate FTIR can be used successfully to indicate the molecular level changes.

  5. Determination of aluminium induced metabolic changes in mice liver: a Fourier transform infrared spectroscopy study.

    PubMed

    Sivakumar, S; Sivasubramanian, J; Khatiwada, Chandra Prasad; Manivannan, J; Raja, B

    2013-06-01

    In this study, we made a new approach to evaluate aluminium induced metabolic changes in liver tissue of mice using Fourier transform infrared spectroscopy analysis taking one step further in correlation with strong biochemical evidence. This finding reveals the alterations on the major biochemical constituents, such as lipids, proteins, nucleic acids and glycogen of the liver tissues of mice. The peak area value of amide A significantly decrease from 288.278±3.121 to 189.872±2.012 between control and aluminium treated liver tissue respectively. Amide I and amide II peak area value also decrease from 40.749±2.052 to 21.170±1.311 and 13.167±1.441 to 8.953±0.548 in aluminium treated liver tissue respectively. This result suggests an alteration in the protein profile. The absence of olefinicCH stretching band and CO stretching of triglycerides in aluminium treated liver suggests an altered lipid levels due to aluminium exposure. Significant shift in the peak position of glycogen may be the interruption of aluminium in the calcium metabolism and the reduced level of calcium. The overall findings exhibit that the liver metabolic program is altered through increasing the structural modification in proteins, triglycerides and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected in desferrioxamine treated mice. Histopathological results also revealed impairment of aluminium induced alterations in liver tissue. The results of the FTIR study were found to be in agreement with biochemical studies and which demonstrate FTIR can be used successfully to indicate the molecular level changes.

  6. Microsolvation of reactive systems in the gas phase via Fourier transform microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Brauer, Carolyn Sue

    Fourier transform microwave spectroscopy has been used to study a number of reactive systems, with the primary goal of probing the effects of solvent on a molecule or a weakly bound acid-base system at the small cluster level. Because these systems are particularly sensitive to their first, nearest neighbors, the studies focus on examining structural changes and electronic rearrangement that occurs with the addition of a single solvent molecule, or microsolvent. The structural effects of microsolvation were examined on two prototypical acid-base systems. The first sought to ascertain the effect of microsolvent polarity by microsolvating HCN-SO3 with Ar and CO, forming the complexes HCN-SO3···Ar and HCN-SO 3···CO. Dipole moments and ab initio calculations also are reported. The second examined the effect of microsolvation on the primary hydrogen bond distance of (CH3)3N···HF, by adding a single HF molecule, forming the complex (CH3) 3N···HF···HF. The Stark effect was measured on a series of hydrogen halide complexes. These systems are prototypical complexes with which to study proton transfer across a hydrogen bond. The resulting dipole moments are discussed in terms of the degree of proton transfer. The dipole moment also was determined for the H2SO4···H 2O complex, which provides an important model system for understanding rates of binary homogeneous nucleation, and a series of ab initio calculations were performed in support of the results. Finally, the microwave spectrum of the radical complex OH-H2O was observed and analyzed using a two-state model which accounts for nuclear motion on the 2A' and 2A" potential surfaces. The results provide insights into the effects of the partial quenching of orbital angular momentum.

  7. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Vigouroux, Corinne; Smale, Dan; Conway, Stephanie; Toon, Geoffrey C.; Jones, Nicholas; Nussbaumer, Eric; Warneke, Thorsten; Petri, Christof; Clarisse, Lieven; Clerbaux, Cathy; Hermans, Christian; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Nakajima, Hideaki; Morino, Isamu; Herrera, Beatriz; Stremme, Wolfgang; Grutter, Michel; Schaap, Martijn; Wichink Kruit, Roy J.; Notholt, Justus; Coheur, Pierre-F.; Erisman, Jan Willem

    2016-08-01

    Global distributions of atmospheric ammonia (NH3) measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-)daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR) observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC) stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547) give a mean relative difference of -32.4 ± (56.3) %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (-50 to +100 %).

  8. Identification of Yersinia enterocolitica at the Species and Subspecies Levels by Fourier Transform Infrared Spectroscopy

    PubMed Central

    Kuhm, Andrea Elisabeth; Suter, Daniel; Felleisen, Richard; Rau, Jörg

    2009-01-01

    Yersinia enterocolitica and other Yersinia species, such as Y. pseudotuberculosis, Y. bercovieri, and Y. intermedia, were differentiated using Fourier transform infrared spectroscopy (FT-IR) combined with artificial neural network analysis. A set of well defined Yersinia strains from Switzerland and Germany was used to create a method for FT-IR-based differentiation of Yersinia isolates at the species level. The isolates of Y. enterocolitica were also differentiated by FT-IR into the main biotypes (biotypes 1A, 2, and 4) and serotypes (serotypes O:3, O:5, O:9, and “non-O:3, O:5, and O:9”). For external validation of the constructed methods, independently obtained isolates of different Yersinia species were used. A total of 79.9% of Y. enterocolitica sensu stricto isolates were identified correctly at the species level. The FT-IR analysis allowed the separation of all Y. bercovieri, Y. intermedia, and Y. rohdei strains from Y. enterocolitica, which could not be differentiated by the API 20E test system. The probability for correct biotype identification of Y. enterocolitica isolates was 98.3% (41 externally validated strains). For correct serotype identification, the probability was 92.5% (42 externally validated strains). In addition, the presence or absence of the ail gene, one of the main pathogenicity markers, was demonstrated using FT-IR. The probability for correct identification of isolates concerning the ail gene was 98.5% (51 externally validated strains). This indicates that it is possible to obtain information about genus, species, and in the case of Y. enterocolitica also subspecies type with a single measurement. Furthermore, this is the first example of the identification of specific pathogenicity using FT-IR. PMID:19617388

  9. A Fourier Transform Infrared Spectroscopy Analysis of Carious Dentin from Transparent Zone to Normal Zone

    PubMed Central

    Liu, Y.; Yao, X.; Liu, Y.W.; Wang, Y.

    2015-01-01

    It is well known that caries invasion leads to the differentiation of dentin into zones with altered composition, collagen integrity and mineral identity. However, understanding of these changes from the fundamental perspective of molecular structure has been lacking so far. In light of this, the present work aims to utilize Fourier transform infrared spectroscopy (FTIR) to directly extract molecular information regarding collagen's and hydroxyapatite's structural changes as dentin transitions from the transparent zone (TZ) into the normal zone (NZ). Unembedded ultrathin dentin films were sectioned from carious teeth, and an FTIR imaging system was used to obtain spatially resolved FTIR spectra. According to the mineral-to-matrix ratio image generated from large-area low-spectral-resolution scan, the TZ, the NZ and the intermediate subtransparent zone (STZ) were identified. High-spectral-resolution spectra were taken from each zone and subsequently examined with regard to mineral content, carbonate distribution, collagen denaturation and carbonate substitution patterns. The integrity of collagen's triple helical structure was also evaluated based on spectra collected from demineralized dentin films of selected teeth. The results support the argument that STZ is the real sclerotic layer, and they corroborate the established knowledge that collagen in TZ is hardly altered and therefore should be reserved for reparative purposes. Moreover, the close resemblance between the STZ and the NZ in terms of carbonate content, and that between the STZ and the TZ in terms of being A-type carbonate-rich, suggest that the mineral that initially occludes dentin tubules is hydroxyapatite newly generated from odontoblastic activities, which is then transformed into whitlockite in the demineralization/remineralization process as caries progresses. PMID:24556607

  10. Evaluation of various polyethylene as potential dosimeters by attenuated total reflectance-Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Halperin, Fred; Collins, Greta; DiCicco, Michael; Logar, John

    2014-12-01

    Various types of polyethylene (PE) have been evaluated in the past for use as a potential dosimeter, chiefly via the formation of an unsaturated transvinylene (TV) double-bond resulting from exposure to ionizing radiation. The utilization of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy in characterizing TV formation in irradiated PE for a potential dosimeter has yet to be fully developed. In this initial investigation, various PE films/sheets were exposed to ionizing radiation in a high-energy 5 megaelectron volt (MeV) electron beam accelerator in the 10-500 kilogray (kGy) dose range, followed by ATR-FTIR analysis of TV peak formation at the 965 cm-1 wavenumber. There was an upward trend in TV formation for low-density polyethylene (LDPE) films and high-density polyethylene (HDPE) sheets as a function of absorbed dose in the 10-50 kGy dose range, however, the TV response could not be equated to a specific absorbed dose. LDPE film displayed a downward trend from 50 kGy to 250 kGy and then scattering up to 500 kGy; HDPE sheets demonstrated an upward trend in TV formation up to 500 kGy. For ultra-high molecular weight polyethylene (UHMWPE) sheets irradiated up to 150 kGy, TV response was equivalent to non-irradiated UHMWPE, and a minimal upward trend was observed for 200 kGy to 500 kGy. The scatter of the data for the irradiated PE films/sheets is such that the TV response could not be equated to a specific absorbed dose. A better correlation of the post-irradiation TV response to absorbed dose may be attained through a better understanding of variables.

  11. Fourier Transform Emission Spectroscopy of the Low-Lying Electronic States of NbN

    NASA Astrophysics Data System (ADS)

    Ram, R. S.; Bernath, P. F.

    2000-06-01

    The high-resolution spectrum of NbN has been investigated in emission in the 3000-15 000 cm-1 region using a Fourier transform spectrometer. The bands were excited in a microwave discharge through a mixture of NbCl5 vapor, ∼5 mTorr of N2, and 3 Torr of He. Numerous bands observed in the near-infrared region have been classified into the following transitions: f1Φ-c1Γ, e1Π-a1Δ, C3Π0+-A3Σ-1, C3Π0--A3Σ-1, C3Π1-a1Δ, C3Π1-A3Σ-0, d1Σ+-A3Σ-0, and d1Σ+-b1Σ+. These observations are consistent with the energy level diagram provided by laser excitation and emission spectroscopy [Y. Azuma, G. Huang, M. P. J. Lyne, A. J. Merer, and V. I. Srdanov, J. Chem. Phys. 100, 4138-4155 (1993)]. The missing d1Σ+ state has been observed for the first time and its spectroscopic parameters are consistent with the theoretical predictions of S. R. Langhoff and W. Bauschlicher, Jr. [J. Mol. Spectrosc. 143, 169-179 (1990)]. Rotational analysis of a number of bands has been obtained and improved spectroscopic parameters have been extracted for the low-lying electronic states. The observation of several vibrational bands with v = 1 has enabled us to determine the vibrational intervals and equilibrium bond lengths for the A3Σ-0, a1Δ, b1Σ+, d1Σ+, and C3Π1 states.

  12. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties.

    PubMed

    Amir, Rai Muhammad; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Khan, Moazzam Rafiq; Pasha, Imran; Nadeem, Muhammad

    2013-10-01

    Quality characteristics of wheat are determined by different physiochemical and rheological analysis by using different AACC methods. AACC methods are expensive, time consuming and cause destruction of samples. Fourier transforms infrared (FTIR) spectroscopy is one of the most important and emerging tool used for analyzing wheat for different quality parameters. This technique is rapid and sensitive with a great variety of sampling techniques. In the present study different wheat varieties were analyzed for quality assessment and were also characterized by using AACC methods and FTIR technique. The straight grade flour was analyzed for physical, chemical and rheological properties by standard methods and results were obtained. FTIR works on the basis of functional groups and provide information in the form of peaks. On basis of peaks the value of moisture, protein, fat, ash, carbohydrates and hardness of grain were determined. Peaks for water were observed in the range 1,640 cm(-1) and 3,300 cm(-1) on the basis of functional group H and OH. Protein was observed in the range from 1,600 cm(-1) to 1,700 cm(-1) and 1,550 cm(-1) to 1,570 cm(-1) on the basis of bond amide I and amide II respectively. Fat was also observed within these ranges but on the basis of C-H bond and also starch was observed in the range from 2,800 and 3,000 cm(-1) (C-H stretch region) and in the range 3,000 and 3,600 cm(-1) (O-H stretch region). As FTIR is a fast tool it can be easily emplyed for wheat varieties identification according to a set criterion. PMID:24426012

  13. Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy.

    PubMed

    Heland, J; Schäfer, K

    1997-07-20

    Because of the worldwide growth in air traffic and its increasing effects on the atmospheric environment, it is necessary to quantify the direct aircraft emissions at all altitudes. In this study Fourier-transform infrared emission spectroscopy as a remote-sensing multi-component-analyzing technique for aircraft exhausts was investigated at ground level with a double pendulum interferometer and a line-by-line computer algorithm that was applied to a multilayer radiative transfer problem. Initial measurements were made to specify the spectral windows for traceable compounds, to test the sensitivity of the system, and to develop calibration and continuum handling procedures. To obtain information about the radial temperature and concentration profiles, we developed an algorithm for the analysis of an axial-symmetric multilayered plume by use of the CO(2) hot band at approximately 2400 cm(-1). Measurements were made with several in-service engines. Effects that were due to engine aging were detected but have to be analyzed systematically in the near future. Validation measurements were carried out with a conventional propane gas burner to compare the results with those obtained with standard measurement equipment. These measurements showed good agreement to within +/-20% for the CO and NO(x) results. The overall accuracy of the system was found to be +/-30%. The detection limits of the system for a typical engine plume (380 degrees C, ? = 50 cm) are below 0.1% for CO(2), ~0.7% for H(2)O, ~20 ppmv (parts per million by volume) for CO, and ~90 ppmv for NO. PMID:18259296

  14. Fourier-Transform Raman and Fourier-Transform Infrared Spectroscopy (An Investigation of Five Higher Plant Cell Walls and Their Components).

    PubMed Central

    Sene, CFB.; McCann, M. C.; Wilson, R. H.; Grinter, R.

    1994-01-01

    Infrared and Raman spectra of sequentially extracted primary cell walls and their pectic polymers were obtained from five angiosperm plants. Fourier-transform Raman spectrometry was shown to be a powerful tool for the investigation of primary cell-wall architecture at a molecular level, providing complementary information to that obtained by Fourier-transform infrared microspectroscopy. The use of an extraction procedure using imidazole instead of cyclohexane trans-1,2-N,N,N[prime],N[prime]-diaminotetraacetate allows the extension of the infrared spectral window for data interpretation from 1300 to 800 cm-1, to 2000 to 800 cm-1, and allows us to obtain Raman spectra from extracted cell-wall material. Wall constituents such as pectins, proteins, aromatic phenolics, cellulose, and hemicellulose have characteristic spectral features that can be used to identify and/or fingerprint these polymers without, in most cases, the need for any physical separation. The Gramineae (rice [Oryza sativa], polypogon [Polypogon fugax steud], and sweet corn [Zea mays]) are spectroscopically very different from the nongraminaceous monocotyledon (onion [Allium cepa]) and the dicotyledon (carrot [Daucus carota]); this reflects differences in chemical composition and cross-linking of the walls. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed. PMID:12232436

  15. External Cavity Quantum Cascade Laser for Quartz Tuning Fork Photoacoustic Spectroscopy of Broad Absorption Features

    SciTech Connect

    Phillips, Mark C.; Myers, Tanya L.; Wojcik, Michael D.; Cannon, Bret D.

    2007-05-01

    We demonstrate mid-infrared spectroscopy of large molecules with broad absorption features using a tunable external cavity quantum cascade laser. Absorption spectra for two different Freons are measured over the range 1130-1185 cm-1 with 0.2 cm-1 resolution via laser photoacoustic spectroscopy with quartz tuning forks as acoustic transducers. The measured spectra are in excellent agreement with published reference absorption spectra.

  16. Nitrogen Molecule-Ethylene Sulfide Complex Investigated by Fourier Transform Microwave Spectroscopy and AB Initio Calculation

    NASA Astrophysics Data System (ADS)

    Iwano, Sakae; Kawashima, Yoshiyuki; Hirota, Eizi

    2016-06-01

    We have systematically investigated the van der Waals complexes consisting of the one from each of the two groups: (Rg, CO, N_2 or CO_2) and (dimethyl ether, dimethyl sulfide, ethylene oxide or ethylene sulfide), by using Fourier transform microwave spectroscopy supplemented by ab initio MO calculations, in order to understand the dynamical behavior of van der Waals complexes and to obtain information on the potential function to internal motions in complexes. Two examples of the N_2 complex were investigated: N_2-DME (dimethyl ether), for which we reported a preliminary result and N_2-EO (ethylene oxide). In the present study we focused attention to the N_2-ES (ethylene sulfide) complex. We have detected two sets of the {b}-type transitions for the 15N_2-ES in ortho and para states, and have analyzed them by using the asymmetric-rotor program of {A}-reduction. In contrast with the N_2-EO, for which each of the ortho and para states were found split into a strong/weak pair, only some transitions of the 15N_2-ES were accompanied by two or three components. The observed spectra of the 14N_2-ES were complicated because of hyperfine splittings due to the nuclear quadrupole coupling of the two nitrogen atoms. We concluded that the N_2 moiety was located in the plane perpendicular to the C-S-C plane and bisecting the CSC angle of the ES. Two isomers were expected to exist for 15NN-ES, one with 15N in the inner and the other in the outer position, and in fact two sets of the spectra were detected. We have carried out ab initio molecular orbital calculations at the level of MP2 with basis sets 6-311++G(d, p), aug-cc-pVDZ, and aug-cc-pVTZ, to complement the information on the intracomplex motions obtained from the observed rotational spectra. Y. Kawashima, A. Sato, Y. Orita, and E. Hirota, J. Phys. Chem. A, 2012 116, 1224 Y. Kawashima, Y. Tatamitani, Y. Morita, and E. Hirota, 61st International Symposium on Molecular Spectroscopy, TE10 (2006) Y. Kawashima and E. Hirota, J

  17. Fourier-Transform Microwave and Millimeterwave Spectroscopy of the H2-HCN Molecular Complex

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Harada, Kensuke; Sumiyoshi, Yoshihiro; Nakajima, Masakazu; Endo, Yasuki

    2015-06-01

    Fourier-Transform microwave (FTMW) spectroscopy has been applied to observe the J = 1 - 0 rotational transitions of the H2-HCN/DCN complexes containing both the para-H2 (IH2=0) and ortho-H2 (IH2=1) molecule Rotational spectra of H2-HCN/DCN up to J = 5 - 4 were also observed in the millimeter-wave (MMW) region below 180 GHz. Observed FTMW lines for H2-HCN/DCN split into hyperfine components due to the nuclear quadrupole interaction of N and D nuclei. For the ortho-H2 species, the hyperfine splitting due to the magnetic interaction between the hydrogen nuclear spin of ortho-H2 part (jH2=1, IH2=1) was also observed, but not for the para-H2 species (jH2=0, IH2=0). From the observed nuclear spin-spin coupling constants of ortho-H2 species, d = 21.90(47) and 24.66(68) kHz for HCN and DCN complexes, respectively, the average values of = 0.380(8) and 0.439(10) were derived indicating the nearly free rotation of H2 in the complex with jH2= 1 and kH2= 0. The nuclear quadrupole interaction constants due to N and D nuclei show that the HCN/DCN part executes a floppy motion with a large mean square amplitude of about 29/25 and 33/30 degree in the para and ortho species, respectively. From the observed rotational constants, the center-of-mass distances of H2 and HCN/DCN were derived to be 3.9617(5)/4.00356 (43) Å for the ortho species and 4.1589(13)/4.1596 (36) Å for the para species. The isotope effect on rotational constants confirmed the totally different configurations in the ortho and para species: H2 is attached to the H/D end of HCN/DCN for the para species, while to the N end for the ortho species, as suggested by IR spectroscopy and theoretical study. M. Ishiguro et al., Chem. Phys. Lett. 554, 33 (2012). M. Ishiguro et al., J. Chem. Phys. 115, 5155 (2001).

  18. Molecular Structure and Chirality Determination from Pulsed-Jet Fourier Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lobsiger, Simon; Perez, Cristobal; Evangelisti, Luca; Seifert, Nathan A.; Pate, Brooks; Lehmann, Kevin

    2014-06-01

    Fourier transform microwave (FTMW) spectroscopy has been used for many years as one of the most accurate methods to determine gas-phase structures of molecules and small molecular clusters. In the last years two pioneering works ushered in a new era applications. First, by exploiting the reduced measurement time and the high sensitivity, the development of chirped-pulse CP-FTMW spectrometers enabled the full structural determination of molecules of increasing size as well as molecular clusters. Second, and more recently, Patterson et al. showed that rotational spectroscopy can also be used for enantiomer-specific detection. Here we present an experimental approach that combines both in a single spectrometer. This set-up is capable to rapidly obtain the full heavy-atom substitution structure using the CP-FTMW features. The inclusion of an extra set of broadband horns allows for a chirality-sensitive measurement of the sample. The measurement we implement is a three-wave mixing experiment that uses time-separated pulses to optimally create the chiral coherence - an approach that was proposed recently. Using samples of R-, S- and racemic Solketal, the physical properties of the three-wave mixing experiment were studied. This involved the measurement of the corresponding nutation curves (molecular signal intensity vs excitation pulse duration) to demonstrate the optimal pulse sequence. The phase stability of the chiral signal, required to assign the absolute stereochemistry, has been studied as a function of the measurement signal-to-noise ratio using a "phasogram" method. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 2008, 79, 053103. D. Patterson, M. Schnell, J. M. Doyle, Nature 2013, 497, 475-477. D. Patterson, J. M. Doyle, Phys. Rev. Lett. 2013, 111, 023008. V. A. Shubert, D. Schmitz, D. Patterson, J. M. Doyle, M. Schnell, Angew. Chem. Int. Ed. 2014, 53, 1152-1155. J.-U. Grabow, Angew. Chem. 2013, 125, 11914

  19. Microbeam x-ray absorption spectroscopy study of chromium in large-grain uranium dioxide fuel

    NASA Astrophysics Data System (ADS)

    Mieszczynski, C.; Kuri, G.; Bertsch, J.; Martin, M.; Borca, C. N.; Delafoy, Ch; Simoni, E.

    2014-09-01

    Synchrotron-based microprobe x-ray absorption spectroscopy (XAS) has been used to study the local atomic structure of chromium in chromia-doped uranium dioxide (UO2) grains. The specimens investigated were a commercial grade chromia-doped UO2 fresh fuel pellet, and materials from a spent fuel pellet of the same batch, irradiated with an average burnup of ~40 MW d kg-1. Uranium L3-edge and chromium K-edge XAS have been measured, and the structural environments of central uranium and chromium atoms have been elucidated. The Fourier transform of uranium L3-edge extended x-ray absorption fine structure shows two well-defined peaks of U-O and U-U bonds at average distances of 2.36 and 3.83 Å. Their coordination numbers are determined as 8 and 11, respectively. The chromium Fourier transform extended x-ray absorption fine structure of the pristine UO2 matrix shows similar structural features with the corresponding spectrum of the irradiated spent fuel, indicative of analogous chromium environments in the two samples studied. From the chromium XAS experimental data, detectable next neighbor atoms are oxygen and uranium of the cation-substituted UO2 lattice, and two distinct subshells of chromium and oxygen neighbors, possibly because of undissolved chromia particles present in the doped fuels. Curve-fitting analyses using theoretical amplitude and phase-shift functions of the closest Cr-O shell and calculations with ab initio computer code FEFF and atomic clusters generated from the chromium-dissolved UO2 structure have been carried out. There is a prominent reduction in the length of the adjacent Cr-O bond of about 0.3 Å in chromia-doped UO2 compared with the ideal U-O bond length in standard UO2 that would be expected because of the change in effective Coulomb interactions resulting from replacing U4+ with Cr3+ and their ionic size differences. The contraction of shortest Cr-U bond is ~0.1 Å relative to the U-U bond length in bulk UO2. The difference in the

  20. Geographical differentiation of dried lentil seed (Lens culinaris) samples using diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis.

    PubMed

    Kouvoutsakis, G; Mitsi, C; Tarantilis, P A; Polissiou, M G; Pappas, C S

    2014-02-15

    Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis were used for the geographical differentiation of dried lentil seed (Lens culinaris) samples. Specifically, 18 Greek samples and nine samples imported from other countries were distinguished using the 2250-1720 and 1275-955 cm⁻¹ spectral regions. The differentiation is complete. The combination of DRIFTS and discriminant analysis enables simple, rapid, cheap and accurate differentiation of commercial lentil seeds in terms of geographical origin.

  1. Characterization of the surfaces of platinum/tin oxide based catalysts by Fourier transform spectroscopy (FTIR)

    NASA Technical Reports Server (NTRS)

    Keiser, Joseph T.

    1989-01-01

    The Laser Atmospheric Wind Sounder (LAWS) Program has as one of its goals the development of a satellite based carbon dioxide laser for making wind velocity measurements. The specifications for this laser include the requirement that the laser operate at a repetition rate of 10 Hertz continuously for three years. Earth-based carbon dioxide lasers can operate for only a short time on a single charge of gas because the lasing action causes the CO2 to break down into CO and O2. Therefore, earth-based CO2 lasers are generally operated in a flow through mode in which the spent gas is continually exhausted and fresh gas is continually added. For a satellite based system, however, a recirculation system is desired because it is not practical to send up extra tanks of CO2. A catalyst which could enable a recirculating CO2 laser to function continuously for three years needs to be developed. In the development of a catalyst system there are many variables. Obviously, not all possible formulations can be tested for three years, therefore, an accurate model which is based on the reaction mechanism is needed. The construction of a multistep reaction mechanism is similar to the construction of a jigsaw puzzle. Different techniques each supply a piece of the puzzle and the researcher must put the pieces together. Transmission infrared spectroscopy was shown to be very useful in supplying some of the information needed to elucidate reaction mechanisms. The purpose was to see what kind of information might be obtained about the NASA catalyst using infrared absorption spectroscopy. Approximately 200 infrared spectra of the prototype Pt/tin oxide catalyst and its precursor components are observed under a variety of different conditions. The most significant observations are summarized.

  2. Determination of the stability of laser deposited apatite coatings in phosphate buffered saline solution using Fourier transform infrared (FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Antonov, E. N.; Bagratashvili, V. N.; Popov, V. K.; Sobol, E. N.; Howdle, S. M.

    1996-01-01

    We report the use of grazing angle Fourier transform infrared spectroscopy for determination of the stability to erosion of hydroxyapatite coatings. A series of coatings were deposited by pulsed laser ablation onto titanium foils. The coatings were exposed to a phosphate buffered saline solution, and FTIR spectroscopy was used to monitor the depletion of infrared bands associated with phosphate moieties in the hydroxyapatite coatings. The technique allows determintion of the effects of the laser deposition parameters upon the stability to erosion of the coatings.

  3. Use of attenuated total reflectance Fourier transform infrared spectroscopy to identify microbial metabolic products on carbonate mineral surfaces.

    PubMed

    Bullen, Heather A; Oehrle, Stuart A; Bennett, Ariel F; Taylor, Nicholas M; Barton, Hazel A

    2008-07-01

    This paper demonstrates the use of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to detect microbial metabolic products on carbonate mineral surfaces. By creating an ATR-FTIR spectral database for specific organic acids using ATR-FTIR spectroscopy we were able to distinguish metabolic acids on calcite surfaces following Escherichia coli growth. The production of these acids by E. coli was verified using high-performance liquid chromatography with refractive index detection. The development of this technique has allowed us to identify microbial metabolic products on carbonate surfaces in nutrient-limited cave environments.

  4. Use of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy To Identify Microbial Metabolic Products on Carbonate Mineral Surfaces▿ †

    PubMed Central

    Bullen, Heather A.; Oehrle, Stuart A.; Bennett, Ariel F.; Taylor, Nicholas M.; Barton, Hazel A.

    2008-01-01

    This paper demonstrates the use of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to detect microbial metabolic products on carbonate mineral surfaces. By creating an ATR-FTIR spectral database for specific organic acids using ATR-FTIR spectroscopy we were able to distinguish metabolic acids on calcite surfaces following Escherichia coli growth. The production of these acids by E. coli was verified using high-performance liquid chromatography with refractive index detection. The development of this technique has allowed us to identify microbial metabolic products on carbonate surfaces in nutrient-limited cave environments. PMID:18502924

  5. Nocturnal Measurements of HONO by Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wojtal, P.; McLaren, R.

    2011-12-01

    Differential optical absorption spectroscopy (DOAS) was used to quantify the concentration of HONO, NO2 and SO2 in the nocturnal urban atmosphere at York University over a period of one year. These measurements form a comprehensive HONO data set, including a large range of temperatures, relative humidity, surface conditions (snow, water, dry, etc.) and NO2 concentrations. Laboratory studies and observations within the nocturnal boundary layer reported in the literature suggest heterogeneous conversion of NO2 on surface adsorbed water as the major nighttime source of HONO. HONO formation and photolysis is believed to represent a major source term in the hydroxyl radical budget in polluted continental regions. Currently, most air quality models tend to significantly underpredict HONO, caused by the lack of understanding of HONO formation processes and the parameters that affect its concentration. Recently, we reported nocturnal pseudo steady states (PSS) of HONO in an aqueous marine environment and a conceptual model for HONO formation on aqueous surfaces was proposed. The data set collected at York University is being analyzed with a view towards further understanding the nighttime HONO formation mechanism and testing several hypotheses: 1) A HONO PSS can exist during certain times at night in an urban area in which the HONO concentration is independent of NO2, given the surface contains sufficient water coverage and is saturated with nitrogen containing precursors; 2) The concentration of HONO is positively correlated with temperature during periods where a PSS exists; 3) Different conversion efficiencies of NO2 to HONO exist on dry, wet and snow surfaces; 4) HONO formation has a NO2 order dependence between 0 and 2nd order, dependant on NO2 concentration, relative humidity, etc. The data set will be presented along with statistical analysis that sheds new light on the source of HONO in urban areas at night.

  6. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2016-05-01

    Enzymatically-induced degradation of bovine serum albumin (BSA) by serine proteases (trypsin and α-chymotrypsin) in various concentrations was monitored by means of Fourier transform infrared (FT-IR) and ultraviolet circular dichroism (UV-CD) spectroscopy. In this study, the applicability of both spectroscopies to monitor the proteolysis process in real time has been proven, by tracking the spectral changes together with secondary structure analysis of BSA as proteolysis proceeds. On the basis of the FTIR spectra and the changes in the amide I band region, we suggest the progression of proteolysis process via conversion of α-helices (1654 cm- 1) into unordered structures and an increase in the concentration of free carboxylates (absorption of 1593 and 1402 cm- 1). For the first time, the correlation between the degree of hydrolysis and the concentration of carboxylic groups measured by FTIR spectroscopy was revealed as well. The far UV-CD spectra together with their secondary structure analysis suggest that the α-helical content decreases concomitant with an increase in the unordered structure. Both spectroscopic techniques also demonstrate that there are similar but less spectral changes of BSA for the trypsin attack than for α-chymotrypsin although the substrate/enzyme ratio is taken the same.

  7. Estimation of the amount of tropospheric ozone in a cloudy sky by ground-based Fourier-transform infrared emission spectroscopy.

    PubMed

    Spänkuch, D; Döhler, W; Güldner, J; Schulz, E

    1998-05-20

    The problem of retrieving minor concentrations of constituents by ground-based Fourier-transform infrared emission spectroscopy is addressed by means of the concept of differential optical emission spectroscopy in analogy to the concept of differential optical absorption spectroscopy. Using the prominent nu3 ozone feature at 1043 cm(-1), we show that the strength of the spectral signature depends not only on the amount of ozone but also on the atmospheric thermal structure. This dependence can be described by a rather accurate approximation, which was used to construct a simple diagram to estimate the amount of column ozone between the instrument site and a cloud deck as well as to determine the detection limit. The detection limit is shown to depend on cloud base height. For a given thermal lapse rate it was found that the lower the detection limit, the higher the cloud base altitude. However, as shown in a case study with variable cloud base height, the concept fails for semitransparent clouds. Multiple scattering of the emitted radiation within the clouds yielded a path enhancement that simulated an enhanced amount of constituent. The path enhancement was estimated to be 2.4-4 km at 1000 cm(-1) for low-level clouds, equivalent to an enhancement factor of 6-21. The multiple scattering effect has considerable consequences for ground-based as well as for nadir satellite retrieval techniques in cloudy skies.

  8. [Study on Different Parts of Wild and Cultivated Gentiana Rigescens with Fourier Transform Infrared Spectroscopy].

    PubMed

    Shen, Yun-xia; Zhao, Yan-li; Zhang, Ji; Zuo, Zhi-tian; Wang, Yuan-zhong; Zhang, Qing-zhi

    2016-03-01

    The application of traditional Chinese medicine (TCM) and their preparations have a long history. With the deepening of the research, the market demand is increasing. However, wild resources are so limited that it can not meet the needs of the market. The development of wild and cultivated samples and research on accumulation dynamics of chemical component are of great significance. In order to compare composition difference of different parts (root, stem, and leaf) of wild and cultivated G. rigescens, Fourier infrared spectroscopy (FTIR) and second derivative spectra were used to analyze and evaluate. The second derivative spectra of 60 samples and the rate of affinity (the match values) were measured automatically using the appropriate software (Omnic 8.0). The results showed that the various parts of wild and cultivated G. rigescens. were high similar the peaks at 1732, 1 643, 1 613, 1 510, 1 417, 1 366, 1 322, 1 070 cm(-1) were the characteristic peak of esters, terpenoids and saccharides, respectively. Moreover, the shape and peak intensity were more distinct in the second derivative spectrum of samples. In the second derivative spectrum range of 1 800-600 cm(-1), the fingerprint characteristic peak of samples and gentiopicroside standards were 1 679, 1 613, 1 466, 1 272, 1 204, 1 103, 1 074, 985, 935 cm(-1). The characteristic peak intensity of gentiopicroside of roots of wild and cultivated samples at 1 613 cm(-1) (C-C) was higher than stems and leaves which indicated the higher content of gentiopicroside in root than in stem and leaves. Stems of wild samples at 1 521, 1 462 and 1 452 cm(-1) are the skeletal vibration peak of benzene ring of lignin, and the stem of cultivated sample have stronger peak than other samples which showed that rich lignin in stems. The iInfrared spectrum of samples were similar with the average spectral of root of wild samples, and significant difference was found for the correlation between second derivative spectrum of samples

  9. Trace Gas Emissions From Global Biomass Burning Measured by Fourier Transform Infrared (FTIR) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertschi, I.; Yokelson, R. J.; Christian, T. J.; Field, R. J.; Ward, D. E.; Hao, W.

    2001-05-01

    Biomass burning is an important source of CO(2), CO, CH(4), NO(x), non-methane volatile organic compounds (VOCs), oxygenated volatile organic compounds (OVOCs), and particles in the global atmosphere. In recent field experiments we have used airborne Fourier transform infrared (AFTIR) spectroscopy in Africa, North Carolina, and Alaska. These in-situ measurements have included observations of the rate of ozone and organic acid production, NH(3) losses, and cloud processing in down-wind plumes. In addition, we used AFTIR measurements to characterize the immense mixed haze layers prevalent during the southern Africa dry season and probed the chemistry of two ship plumes off the Namibian coastline. Our airborne measurements of biomass fire emissions were supplemented by ground-based open-path FTIR measurements of the emissions from domestic fuel production and use in African villages and of the post-convection smoldering emissions from African fires. Our ground and airborne measurements both include a suite of important compounds produced from biomass burning sources and from the photochemistry of slightly aged smoke plumes. This suite of compounds includes; O(3), CO(2), CO, CH(4), non-methane VOCs (C(2)H(2), C(2)H(4), C(2)H(6), C(3)H(6)), NO(x), HCN, NH(3), and OVOCs (CH(2)O, HCOOH, CH(3)OH, CH(3)COOH, HOCH(2)COOH, C(6)H(6)O, C(4)H(4)O) that are important HO(x) (OH and HO(2)) precursors. Recently, African and Indonesian fuels were burned in a joint laboratory experiment with the Max-Planck Institute of Chemistry that featured our open-path FTIR and their proton-transfer mass spectrometer (PTR-MS). The research described above consistently shows that biomass fires emit significant concentrations of OVOCs at levels much higher than previously thought. Our laboratory and field findings have been incorporated in a photochemical model that shows the OVOCs in smoke have significant effects on ozone production, HO(x) concentrations, H(2)O(2) production, NO(x) lifetime, and

  10. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  11. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    PubMed

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1. PMID:17021877

  12. [Evaluation of nutrient release profiles from polymer coated fertilizers using Fourier transform mid-infrared photoacoustic spectroscopy].

    PubMed

    Shen, Ya-zhen; Du, Chang-wen; Zhou, Jian-min; Wang, Huo-yan; Chen, Xiao-qin

    2012-02-01

    The acrylate-like materials were used to develop the polymer coated controlled release fertilizer, the nutrients release profiles were determined, meanwhile the Fourier transform mid-infrared photoacoustic spectra of the coatings were recorded and characterized; GRNN model was used to predict the nutrients release profiles using the principal components of the mid-infrared photoacoustic spectra as input. Results showed that the GRNN model could fast and effectively predict the nutrient release profiles, and the predicted calibration coefficients were more than 0.93; on the whole, the prediction errors (RMSE) were influenced by the profiling depth of the spectra, the average prediction error was 10.28%, and the spectra from the surface depth resulted in a lowest prediction error with 7.14%. Therefore, coupled with GRNN modeling, Fourier transform mid-infrared photoacoustic spectroscopy can be used as an alternative new technique in the fast and accurate prediction of nutrient release from polymer coated fertilizer. PMID:22512162

  13. [Evaluation of nutrient release profiles from polymer coated fertilizers using Fourier transform mid-infrared photoacoustic spectroscopy].

    PubMed

    Shen, Ya-zhen; Du, Chang-wen; Zhou, Jian-min; Wang, Huo-yan; Chen, Xiao-qin

    2012-02-01

    The acrylate-like materials were used to develop the polymer coated controlled release fertilizer, the nutrients release profiles were determined, meanwhile the Fourier transform mid-infrared photoacoustic spectra of the coatings were recorded and characterized; GRNN model was used to predict the nutrients release profiles using the principal components of the mid-infrared photoacoustic spectra as input. Results showed that the GRNN model could fast and effectively predict the nutrient release profiles, and the predicted calibration coefficients were more than 0.93; on the whole, the prediction errors (RMSE) were influenced by the profiling depth of the spectra, the average prediction error was 10.28%, and the spectra from the surface depth resulted in a lowest prediction error with 7.14%. Therefore, coupled with GRNN modeling, Fourier transform mid-infrared photoacoustic spectroscopy can be used as an alternative new technique in the fast and accurate prediction of nutrient release from polymer coated fertilizer.

  14. A cavity type absorption cell for double resonance microwave spectroscopy.

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; White, W. F.

    1972-01-01

    Description of an experimental dual resonant cavity absorption cell for observing microwave spectroscopic double-resonance effects. The device is composed of two Fabry-Perot interferometers excited by independent microwave sources and mounted at right angles in a suitable vacuum enclosure. The pumping transition is modulated by one source and the modulation induced on the rf absorption in the orthogonal cavity is detected.

  15. A broadband configuration for static Fourier transform spectroscopy with bandpass sampling

    NASA Astrophysics Data System (ADS)

    Sardari, Behzad; Davoli, Federico; Özcan, Meriç

    2016-10-01

    In this work a new broadband static Fourier transform spectrometer (static-FTS) configuration based on the division of the spectrum into multiple narrow-bands is proposed. This configuration not only decreases the spectrometer size but also allows operation in the traditional spectrometer wavelength range, namely, 400 nm-1100 nm with 1 cm-1 or better resolution. This technique solves the Nyquist sampling rate issue and enables us to record high resolution spectrums with regular CCDs. An algorithm is developed to process the signal and calculate the Fourier transform of the recorded interferograms on the CCD camera.

  16. Interferometric time delay correction for Fourier transform spectroscopy in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Meng, Yijian; Zhang, Chunmei; Marceau, Claude; Naumov, A. Yu.; Corkum, P. B.; Villeneuve, D. M.

    2016-09-01

    We demonstrate a Fourier transform spectrometer in the extreme ultraviolet (XUV) spectrum using a high-harmonic source, with wavelengths as short as 32 nm. The femtosecond infrared laser source is divided into two separate foci in the same gas jet to create two synchronized XUV sources. An interferometric method to determine the relative delay between the two sources is shown to improve the accuracy of the delay time, with corrections of up to 200 asec required. By correcting the time base before the Fourier transform, the frequency resolution is improved by up to an order of magnitude.

  17. Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy.

    PubMed

    Crabtree, Kyle N; Martin-Drumel, Marie-Aline; Brown, Gordon G; Gaster, Sydney A; Hall, Taylor M; McCarthy, Michael C

    2016-03-28

    Because of its structural specificity, rotational spectroscopy has great potential as an analytical tool for characterizing the chemical composition of complex gas mixtures. However, disentangling the individual molecular constituents of a rotational spectrum, especially if many of the lines are entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to characterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative intensities under series of assays, and finally, linking rotational transitions of individual chemical compounds within each category using double resonance techniques. The power of this procedure is demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde, and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which spectral taxonomy has enabled the identification of propynethial, HC(S)CCH.

  18. Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy.

    PubMed

    Crabtree, Kyle N; Martin-Drumel, Marie-Aline; Brown, Gordon G; Gaster, Sydney A; Hall, Taylor M; McCarthy, Michael C

    2016-03-28

    Because of its structural specificity, rotational spectroscopy has great potential as an analytical tool for characterizing the chemical composition of complex gas mixtures. However, disentangling the individual molecular constituents of a rotational spectrum, especially if many of the lines are entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to characterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative intensities under series of assays, and finally, linking rotational transitions of individual chemical compounds within each category using double resonance techniques. The power of this procedure is demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde, and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which spectral taxonomy has enabled the identification of propynethial, HC(S)CCH. PMID:27036440

  19. Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Crabtree, Kyle N.; Martin-Drumel, Marie-Aline; Brown, Gordon G.; Gaster, Sydney A.; Hall, Taylor M.; McCarthy, Michael C.

    2016-03-01

    Because of its structural specificity, rotational spectroscopy has great potential as an analytical tool for characterizing the chemical composition of complex gas mixtures. However, disentangling the individual molecular constituents of a rotational spectrum, especially if many of the lines are entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to characterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative intensities under series of assays, and finally, linking rotational transitions of individual chemical compounds within each category using double resonance techniques. The power of this procedure is demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde, and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which spectral taxonomy has enabled the identification of propynethial, HC(S)CCH.

  20. Rapid identification and classification of Staphylococcus aureus by attenuated total reflectance fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcus aureus is an important bacterium that can cause serious infections in humans such as pneumonia and bacteremia. Rapid detection of this pathogen is crucial in food industries and clinical laboratories to control S. aureus food poisoning and human infections. In this study, fourier tran...

  1. Identification of carbonates as additives in pressure-sensitive adhesive tape substrate with Fourier transform infrared spectroscopy (FTIR) and its application in three explosive cases.

    PubMed

    Lv, Jungang; Feng, Jimin; Zhang, Wen; Shi, Rongguang; Liu, Yong; Wang, Zhaohong; Zhao, Meng

    2013-01-01

    Pressure-sensitive tape is often used to bind explosive devices. It can become important trace evidence in many cases. Three types of calcium carbonate (heavy, light, and active CaCO(3)), which were widely used as additives in pressure-sensitive tape substrate, were analyzed with Fourier transform infrared spectroscopy (FTIR) in this study. A Spectrum GX 2000 system with a diamond anvil cell and a deuterated triglycine sulfate detector was employed for IR observation. Background was subtracted for every measurement, and triplicate tests were performed. Differences in positions of main peaks and the corresponding functional groups were investigated. Heavy CaCO(3) could be identified from the two absorptions near 873 and 855/cm, while light CaCO(3) only has one peak near 873/cm because of the low content of aragonite. Active CaCO(3) could be identified from the absorptions in the 2800-2900/cm region because of the existence of organic compounds. Tiny but indicative changes in the 878-853/cm region were found in the spectra of CaCO(3) with different content of aragonite and calcite. CaCO(3) in pressure-sensitive tape, which cannot be differentiated by scanning electron microscope/energy dispersive X-ray spectrometer and thermal analysis, can be easily identified using FTIR. The findings were successfully applied to three specific explosive cases and would be helpful in finding the possible source of explosive devices in future cases. PMID:22724657

  2. The D/H Ratio in Atmospheric Water Vapour: Continuous in situ Measurements of Soil-Plant-Atmosphere Exchange by Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Griffith, D. W.; Jamie, I. M.; Parkes, S. D.; Wilson, S. R.

    2003-12-01

    The D/H ratio in atmospheric water vapour provides a valuable tracer for exchange and transport processes. We present a novel method for real-time, continuous, in situ field measurements of the D/H ratio of atmospheric water vapour, and illustrate the method with measurements of vertical profiles of both water content and HDO/H2O ratio over an agricultural pasture in SE Australia. We measured 7-point vertical profiles (0.5-22m) every 30 minutes continuously over a three week period in spring. The observed variations in the vertical profiles on diurnal and weekly timescales provide valuable constraints on the exchanges of water between atmosphere, soil and plants. The measurement technique used is Fourier Transform Infrared (FT-IR) spectroscopy. Whole air was drawn via a buffer volume into a multi-pass optical absorption cell from inlet lines on a 22m tower in the pasture paddock. The FT-IR absorption spectrum of the air was recorded with a Bomem MB100 FTIR spectrometer at 1 cm-1 resolution, typically for 2 minutes per sample. Each of the 7 inlets was sampled twice per half hour to provide 30 minute average vertical profiles. Precision in δ D is around 1-2 per mil. The instrument can be fully automated, and is mobile and suitable for field measurements.

  3. The application of Fourier transform Raman spectroscopy to the analysis of poly(anhydride) homo- and co-polymers

    NASA Astrophysics Data System (ADS)

    Tudor, A. M.; Melia, C. D.; Davies, M. C.; Hendra, P. J.; Church, S.; Domb, A. J.; Langer, R.

    Fourier transform Raman spectroscopy was used to characterise a homologous series of aliphatic poly(anhydrides), poly[ bis( p-carboxyphenoxy) alkane anhydrides] and a selection of co-polymers of sebacic/ [bis( p-carboxyphenoxy) propane anhydride] P(SA-CPP). The techniqe is compared to conventional infrared for characterisation work, highlighting the advantage of small sample requirement and minimal sample preparation necessary for acquisition of spectral information. It is possible to differentiate between aromatic and aliphatic anhydride bonding, and in conjunction with other diagnostic bands to monitor the change in individual monomer composition within a co-polymer mixture.

  4. Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe.

    PubMed

    Gaynor, James D; Courtney, Trevor L; Balasubramanian, Madhumitha; Khalil, Munira

    2016-06-15

    The development of coherent Fourier transform two-dimensional electronic-vibrational (2D EV) spectroscopy with acousto-optic pulse-shaper-generated near-UV pump pulses and an octave-spanning broadband mid-IR probe pulse is detailed. A 2D EV spectrum of a silicon wafer demonstrates the full experimental capability of this experiment, and a 2D EV spectrum of dissolved hexacyanoferrate establishes the viability of our 2D EV experiment for studying condensed phase molecular ensembles. PMID:27304316

  5. Resin characterization in cured graphite fiber reinforced composites using diffuse reflectance-FTIR. [Fourier transform infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Stein, B. A.; Chang, A. C.

    1983-01-01

    The feasibility of using diffuse reflectance in combination with Fourier transform infrared spectroscopy to obtain information on cured graphite fiber reinforced polymeric matrix resin composites was investigated. Several graphite/epoxy, polysulfone, and polyimide composites exposed to thermal or radiation environments were examined. An experimental polyimide-sulfone adhesive tape was also studied during processing. In each case, significant changes in resin molecular structure was observed due to environmental exposure. These changes in molecular structure were correlated with previously observed changes in material properties providing new insights into material behavior.

  6. The use of UV-Vis absorption spectroscopy for studies of natively disordered proteins.

    PubMed

    Permyakov, Eugene A

    2012-01-01

    Absorption spectroscopy can be used to monitor structural changes upon transitions from ordered to disordered state in proteins. Changes in environment of tryptophan, tyrosine, and phenylalanine residues result in changes of their absorption spectra. In most cases the changes are small and can be measured only in a differential mode.

  7. Direct and quantitative photothermal absorption spectroscopy of individual particulates

    SciTech Connect

    Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang; Zheng, Ruiting; Shen, Sheng

    2013-12-23

    Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

  8. The use of CNDO in spectroscopy. XV. Two photon absorption

    NASA Astrophysics Data System (ADS)

    Marchese, Francis T.; Seliskar, C. J.; Jaffé, H. H.

    1980-04-01

    Two-photon absorptivities have been calculated within the CNDO/S-CI molecular orbital framework of Del Bene and Jaffé utilizing the second order time dependent perturbation equations of Göppert-Mayer and polarization methods of McClain. Good agreement is found between this theory and experiment for transition energies, symmetries, and two-photon absorptivities for the following molecules: biphenyl, terphenyl, 2,2'-difluorobiphenyl, 2,2'-bipyridyl, phenanthrene, and the isoelectronic series: fluorene, carbazole, dibenzofuran.

  9. Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Heena; Kandhol, Geeta; Deshpande, Uday P.; Kumar, Shyam

    2016-05-01

    In the present work, structural properties of reduced graphene oxide (RGO) synthesized using modified Hummer's method and its composites with Poly(vinyl alcohol) (PVA) fabricated using solution-cast method have been studied. The structural properties of prepared samples have been systematically studied through UV-Visible absorption, Raman, Fourier Transform Infrared (FTIR) and Differential Scanning Calorimeter (DSC) spectroscopy. Infrared spectroscopy indicates the grafting of PVA chains with graphene layer through the formation of H-bonding linkage in the composites. Temperature-dependent FTIR spectra of PVA-RGO composite films were recorded to obtain the glass transition temperature (Tg) and to study its molecular origin. From these spectra the values of Tg were obtained using two-dimensional (2D) mapping of the first derivative of the absorbance intensity with respect to temperature (dA/dT), over the space of wavenumber and temperature. The value of Tg obtained for pure PVA increases from 78 °C to 92 °C after loading 0.5 wt.% of RGO in PVA and can be attributed to the strong H-bonding interaction between polymer chains and grafted solid surface of RGO. These results are in good agreement with those obtained from DSC analysis. This clearly indicates that the thermal behavior of PVA gets modified with loading of RGO.

  10. Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy.

    PubMed

    Shamala, T R; Divyashree, M S; Davis, Reeta; Kumari, K S Latha; Vijayendra, S V N; Raj, Baldev

    2009-09-01

    Rhizobium meliloti produced a copolymer of short chain length polyhydroxyalkanoate (scl-PHA) on sucrose and rice bran oil as carbon substrates. Recombinant Escherichia coli (JC7623ABC1J4), bearing PHA synthesis genes, was used to synthesize short chain length-co-medium chain length PHA (scl-co-mcl-PHA) on glucose and decanoic acid. Fourier transform infrared spectroscopy (FTIR) spectra of the PHAs indicated strong characteristic bands at 1282, 1723, and 2934 cm(-1) for scl-PHA and at 2933 and 2976 cm(-1) for scl-co-mcl-PHA polymer. Differentiation of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-hydroxyvalerate-P(HB-co-HV) copolymer was obseverd using FTIR, with absorption bands at 1723 and 1281 for PHB, and at 1738, 1134, 1215 cm(-1) for HV-copolymer. The copolymers were analyzed by GC and (1)H NMR spectroscopy. Films of polymer blends of PHA produced by R. meliloti and recombinant E. coli were prepared using glycerol, polyethylene glycol, polyvinyl acetate, individually (1:1 ratio), to modify the mechanical properties of the films and these films were evaluated by FTIR and scanning electron microscopy.

  11. Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis†

    PubMed Central

    Gajjar, Ketan; Heppenstall, Lara D.; Pang, Weiyi; Ashton, Katherine M.; Trevisan, Júlio; Patel, Imran I.; Llabjani, Valon; Stringfellow, Helen F.; Martin-Hirsch, Pierre L.; Dawson, Timothy; Martin, Francis L.

    2013-01-01

    The most common initial treatment received by patients with a brain tumour is surgical removal of the growth. Precise histopathological diagnosis of brain tumours is to some extent subjective. Furthermore, currently available diagnostic imaging techniques to delineate the excision border during cytoreductive surgery lack the required spatial precision to aid surgeons. We set out to determine whether infrared (IR) and/or Raman spectroscopy combined with multivariate analysis could be applied to discriminate between normal brain tissue and different tumour types (meningioma, glioma and brain metastasis) based on the unique spectral “fingerprints” of their biochemical composition. Formalin-fixed paraffin-embedded tissue blocks of normal brain and different brain tumours were de-waxed, mounted on low-E slides and desiccated before being analyzed using attenuated total reflection Fourier-transform IR (ATR-FTIR) and Raman spectroscopy. ATR-FTIR spectroscopy showed a clear segregation between normal and different tumour subtypes. Discrimination of tumour classes was also apparent with Raman spectroscopy. Further analysis of spectral data revealed changes in brain biochemical structure associated with different tumours. Decreased tentatively-assigned lipid-to-protein ratio was associated with increased tumour progression. Alteration in cholesterol esters-to-phenylalanine ratio was evident in grade IV glioma and metastatic tumours. The current study indicates that IR and/or Raman spectroscopy have the potential to provide a novel diagnostic approach in the accurate diagnosis of brain tumours and have potential for application in intra-operative diagnosis. PMID:24098310

  12. Dual source fourier transform polarization modulation spectroscopy: an improved method for the measurement of circular and linear dichroism.

    PubMed

    Nafie, Laurence A; Buijs, Henry; Rilling, Allan; Cao, Xiaolin; Dukor, Rina K

    2004-06-01

    It is shown that the use of two sources in a four-port interferometer equipped with cube-corner mirrors leads to increased signal-to-noise ratios in Fourier transform (FT-IR) circular and linear dichroism spectra. The output beam to the sample is a superposition of two interferograms, one from each source, having opposite Fourier phases. These two interferograms cancel one another to the degree that the two sources are matched in intensity. If the radiation from each of the two sources is first polarized orthogonally with respect to the other and passed through a polarization modulator before reaching the sample, the resulting polarization-modulation interferograms are out of Fourier phase and out of polarization-modulation phase. As a result, the polarization-modulation interferograms, due to circular or linear dichroism in the sample, from the two sources combine positively rather than negatively. An improvement in signal-to-noise ratio of up to two (or a factor of four in scan-time reduction for the same signal-to-noise ratio) compared to single source operation can be realized, while at the same time, the potential for saturation of the detector signal is significantly reduced due to the reduction in magnitude of the combined ordinary infrared transmission interferogram. Absorption and circular dichroism spectra from a dual-source FT-IR spectrometer are presented and analyzed.

  13. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  14. Use of attenuated total reflection-Fourier transform infrared spectroscopy to measure collagen degradation in historical parchments.

    PubMed

    Gonzalez, Lee; Wess, Tim

    2008-10-01

    Developing a noninvasive method to assess the degraded state of historical parchments is essential to providing the best possible care for these documents. The conformational changes observed when collagen molecules, the primary constituent of parchment, unfold have been analyzed using attenuated total reflection-Fourier transform infrared (ATR-FT-IR) spectroscopy and the nanoscopic structural changes have been analyzed using X-ray diffraction (XRD). The relationship between the results obtained from these techniques was studied using principal component analysis, where correlation was found. The extent of gelatinization of historical parchments has been assessed using ATR-FT-IR and XRD and the frequency shifts observed as collagen degrades into gelatin have been reported. These results indicate that collagen degradation can be measured noninvasively in parchment and demonstrate the utility of ATR-FT-IR spectroscopy as a method to investigate historical documents.

  15. The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood.

    PubMed

    Shen, Y C; Davies, A G; Linfleld, E H; Elsey, T S; Taday, P F; Arnone, D D

    2003-07-01

    Fourier-transform infrared transmission spectroscopy has been used for the determination of glucose concentration in whole blood samples from 28 patients. A 4-vector partial least-squares calibration model, using the spectral range 950-1200 cm(-1), yielded a standard-error-of-prediction of 0.59 mM for an independent test set. For blood samples from a single patient, we found that the glucose concentration was proportional to the difference between the values of the second derivative spectrum at 1082 cm(-1) and 1093 cm(-1). This indicates that spectroscopy at these two specific wavenumbers alone could be used to determine the glucose concentration in blood plasma samples from a single patient, with a prediction error of 0.95 mM. PMID:12884933

  16. Discrimination between Bacillus and Alicyclobacillus isolates in apple juice by Fourier transform infrared spectroscopy and multivariate analysis.

    PubMed

    Al-Holy, Murad A; Lin, Mengshi; Alhaj, Omar A; Abu-Goush, Mahmoud H

    2015-02-01

    Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between 4 Alicyclobacillus strains and 4 Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm(-1) reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (for example, principal component analysis and soft independent modeling of class analogy) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these 2 genera.

  17. The potential of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect organic emissions under the Clean Air Act

    SciTech Connect

    Demirgian, J.C.; Hammer, C.L. ); Kroutil, R.T. )

    1992-01-01

    The Clean Air Act of 1990 regulates the emission of 198 air toxics. Currently, there is no existing technology by which a regulatory agency can independently determine if a facility is in compliance. We have successfully tested the ability of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect chemical plumes released in the field. Additional laboratory releases demonstrated that FTIR spectroscopy can detect target analytes in mixtures containing components which have overlapping absorbances. The FTIR spectrometer was able to identify and quantify each component released with an average quantitative error of less than 20% using partial least squares (PLS) analysis and 40% using classical least squares analysis (CLS) when calibration files containing pure components and mixtures were used. Calibration files containing only pure analytes resulted in CLS outperforming PLS analyses.

  18. The potential of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect organic emissions under the Clean Air Act

    SciTech Connect

    Demirgian, J.C.; Hammer, C.L.; Kroutil, R.T.

    1992-07-01

    The Clean Air Act of 1990 regulates the emission of 198 air toxics. Currently, there is no existing technology by which a regulatory agency can independently determine if a facility is in compliance. We have successfully tested the ability of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect chemical plumes released in the field. Additional laboratory releases demonstrated that FTIR spectroscopy can detect target analytes in mixtures containing components which have overlapping absorbances. The FTIR spectrometer was able to identify and quantify each component released with an average quantitative error of less than 20% using partial least squares (PLS) analysis and 40% using classical least squares analysis (CLS) when calibration files containing pure components and mixtures were used. Calibration files containing only pure analytes resulted in CLS outperforming PLS analyses.

  19. Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. theory and application

    PubMed Central

    Muñoz Morales, Aarón A.; Vázquez y Montiel, Sergio

    2012-01-01

    The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications. PMID:23082281

  20. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan; Santos Sousa, Joao; Stancu, Gabi Daniel; Hubertus van Helden, Jean-Pierre

    2015-10-01

    Absorption spectroscopy (AS) represents a reliable method for the characterization of cold atmospheric pressure plasma jets. The method’s simplicity stands out in comparison to competing diagnostic techniques. AS is an in situ, non-invasive technique giving absolute densities, free of calibration procedures, which other diagnostics, such as laser-induced fluorescence or optical emission spectroscopy, have to rely on. Ground state densities can be determined without the knowledge of the influence of collisional quenching. Therefore, absolute densities determined by absorption spectroscopy can be taken as calibration for other methods. In this paper, fundamentals of absorption spectroscopy are presented as an entrance to the topic. In the second part of the manuscript, a review of AS performed on cold atmospheric pressure plasma jets, as they are used e.g. in the field of plasma medicine, is presented. The focus is set on special techniques overcoming not only the drawback of spectrally overlapping absorbing species, but also the line-of-sight densities that AS usually provides or the necessity of sufficiently long absorption lengths. Where references are not available for measurements on cold atmospheric pressure plasma jets, other plasma sources including low-pressure plasmas are taken as an example to give suggestions for possible approaches. The final part is a table summarizing examples of absorption spectroscopic measurements on cold atmospheric pressure plasma jets. With this, the paper provides a ‘best practice’ guideline and gives a compendium of works by groups performing absorption spectroscopy on cold atmospheric pressure plasma jets.

  1. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    SciTech Connect

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  2. [Detection of Syrup Adulterants in Prepackaged Pure Pineapple Juice by Fourier-Transform Infrared Spectroscopy and Chemometric Analysis].

    PubMed

    Zhou, Mi; Ke, Jian; Li, Bao-li; Tang, Cui-e; Tan, Jun; Liu, Rui; Wang, Hong; Li, Tao; Zhou, Sheng-yin

    2015-10-01

    This study was performed to establish a method that can quickly and accurately identify adulterated syrup in the pure pineapple juice. A attenuated total internal refraction-fourier transform infrared spectroscopy was used to collect the range of 900 -1 500 cm(-1) infrared spectra of 234 samples pure pineapple juice and adulterated syrup by beet syrup, rice syrup and cassava syrup. By using linear discriminant analysis and support vector machine for the identification model, comparing the full spectral and selected wavelengths based on principal component analysis loading plots of the two models to identify adulteration. Studies showed that the correct rate of validation set by linear discriminant analysis and support vector machine model on full spectral were both higher than 88%, variables were significantly reduced from 312 to 8 after selecting the eight characteristic wavelengths, the correct rate of validation set by linear discriminant analysis model was up to 96.15% and support vector machine was increase to 94.87%. The results demonstrated that the model built using a attenuated total internal refraction-fourier transform infrared spectroscopy in combination with chemometric methods after selected characteristic wavelengths could be used for the identification of the adulterated syrup in the pure pineapple juice. PMID:26904809

  3. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.

    PubMed

    Ritter, Eglof; Stehfest, Katja; Berndt, Andre; Hegemann, Peter; Bartl, Franz J

    2008-12-12

    Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family. PMID:18927082

  4. Intraoperative diagnosis of benign and malignant breast tissues by fourier transform infrared spectroscopy and support vector machine classification

    PubMed Central

    Tian, Peirong; Zhang, Weitao; Zhao, Hongmei; Lei, Yutao; Cui, Long; Wang, Wei; Li, Qingbo; Zhu, Qing; Zhang, Yuanfu; Xu, Zhi

    2015-01-01

    Background: Fourier transform infrared (FTIR) spectroscopy has shown its unique advantages in distinguishing cancerous tissue from normal one. The aim of this study was to establish a quick and accurate diagnostic method of FTIR spectroscopy to differentiate malignancies from benign breast tissues intraoperatively. Materials and methods: In this study, a total of 100 breast tissue samples obtained from 100 patients were taken on surgery. All tissue samples were scanned for spectra intraoperatively before being processed for histopathological diagnosis. Standard normal variate (SNV) method was adopted to reduce scatter effects. Support vector machine (SVM) classification was used to discriminate spectra between malignant and benign breast tissues. Leave-one-out cross validation (LOOCV) was used to evaluate the discrimination. Results: According to histopathological examination, 50 cases were diagnosed as fibroadenoma and 50 cases as invasive ductal carcinoma. The results of SVM algorithm showed that the sensitivity, specificity and accuracy rate of this method are 90.0%, 98.0% and 94.0%, respectively. Conclusions: FTIR spectroscopy technique in combination with SVM classification could be an accurate, rapid and objective tool to differentiate malignant from benign tumors during operation. Our studies establish the feasibility of FTIR spectroscopy with chemometrics method to guide surgeons during the surgery as an effective supplement for pathological diagnosis on frozen section. PMID:25785083

  5. Time-resolved diffuse optical spectroscopy: a differential absorption approach

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Bassi, Andrea; Spinelli, Lorenzo; Cubeddu, Rinaldo; Pifferi, Antonio

    2009-07-01

    A method was developed to estimate spectral changes of the absorption properties of turbid media from time-resolved reflectance/transmittance measurements. It was derived directly from the microscopic Beer-Lambert law, and tested against simulations and phantom measurements.

  6. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  7. Characterization of biotechnologically and medically relevant yeasts (fungi) by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Serfas, Ottmar; Naumann, Dieter; Standfuss, Gabriele; Brueggemann, Lutz; Flemming, Ingeborg

    1992-03-01

    The Fourier-transform infrared spectra of intact procaryotic cells (bacteria) have already been used in the past to characterize (differentiate, classify and identify) a variety of bacterial strains and taxa. In this paper the essential features of a methodology are described which extend the FT-IR pattern recognition approach to intact eucaryotic cells (yeasts/fungi). Basically, the characteristic information pertaining to microbial FT-IR patterns is explored by applying multivariate statistics and cluster analysis to both the time and frequency domain of the mid-ir spectral data.

  8. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF Nb i IN THE NEAR-INFRARED

    SciTech Connect

    Er, A.; Güzelçimen, F.; Başar, Gö.; Öztürk, I. K.; Tamanis, M.; Ferber, R.; Kröger, S. E-mail: sophie.kroeger@htw-berlin.de

    2015-11-15

    In this study, a Fourier Transform spectrum of Niobium (Nb) is investigated in the near-infrared spectral range from 6000 to 12,000 cm{sup −1} (830–1660 nm). The Nb spectrum is produced using a hollow cathode discharge lamp in an argon atmosphere. Both Nb and Ar spectral lines are visible in the spectrum. A total of 110 spectral lines are assigned to the element Nb. Of these lines, 90 could be classified as transitions between known levels of atomic Nb. From these classified Nb i transitions, 27 have not been listed in literature previously. Additionally, 8 lines are classified for the first time.

  9. Hyperfine structure constants for singly ionized manganese (Mn II) using Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Townley-Smith, Keeley; Nave, Gillian; Pickering, Juliet C.; Blackwell-Whitehead, Richard J.

    2016-09-01

    We expand on the comprehensive study of hyperfine structure (HFS) in Mn II conducted by Holt et al. (1999) by verifying hyperfine magnetic dipole constants (A) for 20 levels previously measured by Holt et al. (1999) and deriving A constants for 47 previously unstudied levels. The HFS patterns were measured in archival spectra from Fourier transform (FT) spectrometers at Imperial College London and the National Institute of Standards and Technology. Analysis of the FT spectra was carried out in XGREMLIN. Our A constant for the ground level has a lower uncertainty by a factor of 6 than that of Blackwell-Whitehead et al.

  10. Coherent coupling of magneto-excitons probed by two-dimensional Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Paul, Jagannath; Liu, Cunming; McGill, Stephen; Hilton, David; Karaiskaj, Denis

    We present the coherent two dimensional Fourier Transform (2DFT) spectra of magneto-excitons in undoped GaAs quantum wells at high magnetic field up to 10 Tesla. The 2DFT data reveal strong coherent coupling between resonances and line shapes which are strikingly different from the zero field spectra. 2DFT spectra measured using co-linear and co-circular polarizations at low temperatures will be discussed. The work at USF and UAB was supported by the National Science Foundation under Grant Number DMR-1409473. The work at NHMFL, Florida State University was supported by the National Science Foundation under Grant Numbers DMR-1157490 and DMR-1229217.

  11. New Measurements of Doubly Ionized Iron Group Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smillie, D. G.; Pickering, J. C.; Blackwell-Whitehead, R. J.; Smith, Peter L.; Nave, G.

    2006-01-01

    We report new measurements of doubly ionized iron group element spectra, important in the analysis of B-type (hot) stars whose spectra they dominate. These measurements include Co III and Cr III taken with the Imperial College VUV Fourier transform (FT) spectrometer and measurements of Co III taken with the normal incidence vacuum spectrograph at NIST, below 135 nm. We report new Fe III grating spectra measurements to complement our FT spectra. Work towards transition wavelengths, energy levels and branching ratios (which, combined with lifetimes, produce oscillator strengths) for these ions is underway.

  12. Probing photoelectron multiple interferences via Fourier spectroscopy in energetic photoionization of Xe-C{sub 60}

    SciTech Connect

    Potter, Andrea; McCune, Matthew A.; De, Ruma; Chakraborty, Himadri S.; Madjet, Mohamed E.

    2010-09-15

    Considering the photoionization of the Xe-C{sub 60} endohedral compound, we study in detail the ionization cross sections of various levels of the system at energies higher than the plasmon resonance region. Five classes of single-electron levels are identified depending on their spectral character. Each class engenders distinct oscillations in the cross section, emerging from the interference between active ionization modes specific to that class. Analysis of the cross sections based on their Fourier transforms unravels oscillation frequencies that carry unique fingerprints of the emitting level.

  13. [Optical properties research of NH4NO3 by Fourier transform infrared spectroscopy].

    PubMed

    Liu, Na; Wei, Xiu-Li; Gao, Min-Guang; Xu, Liang; Tong, Jing-Jing; Li, Xiang-Xian; Jin, Ling

    2013-07-01

    In the present paper, the infrared spectrum of aerosol and NH4 NO3 was analysed and compared, and the result showed that the infrared spectral features of aerosol are consistent with that of NH4 NO3. The absorption coefficient alpha and the mass absorption cross section kappa of NO3- was calculated by the transmissivity of NO3- in NH4 NO3 according to Beer-Lambert law. Then the imaginary part of the complex refractive index was calculated through alpha. The real part of the complex refractive index was derived from the K-K(Kramers-Kroning) relationship. It has important significance for further research on the scattering and absorption characteristics of the different composition of the atmospheric aerosol through analysing the results of the experiment. PMID:24059172

  14. [Optical properties research of NH4NO3 by Fourier transform infrared spectroscopy].

    PubMed

    Liu, Na; Wei, Xiu-Li; Gao, Min-Guang; Xu, Liang; Tong, Jing-Jing; Li, Xiang-Xian; Jin, Ling

    2013-07-01

    In the present paper, the infrared spectrum of aerosol and NH4 NO3 was analysed and compared, and the result showed that the infrared spectral features of aerosol are consistent with that of NH4 NO3. The absorption coefficient alpha and the mass absorption cross section kappa of NO3- was calculated by the transmissivity of NO3- in NH4 NO3 according to Beer-Lambert law. Then the imaginary part of the complex refractive index was calculated through alpha. The real part of the complex refractive index was derived from the K-K(Kramers-Kroning) relationship. It has important significance for further research on the scattering and absorption characteristics of the different composition of the atmospheric aerosol through analysing the results of the experiment.

  15. X-ray absorption spectroscopy of chicken sulfite oxidase crystals

    SciTech Connect

    George, G.N.; Pickering, I.J.; Kisker, C.

    1999-05-17

    Sulfite oxidase catalyzes the physiologically vital oxidation of sulfite to sulfate. Recently, the crystal structure of chicken sulfite oxidase has been reported at 1.9 {angstrom} resolution. In contrast to the information available from previous X-ray absorption spectroscopic studies, the active site indicated by crystallography was a mono-oxo species. Because of this the possibility that the crystals did in fact contain a reduced molybdenum species was considered in the crystallographic work. The authors report herein an X-ray absorption spectroscopic study of polycrystalline sulfite oxidase prepared in the same manner as the previous single-crystal samples, and compare this with data for frozen solutions of oxidized and reduced enzyme.

  16. Differential optical spectroscopy for absorption characterization of scattering media.

    PubMed

    Billet, Cyril; Sablong, Raphaël

    2007-11-15

    Reflectance techniques are commonly used to characterize the optical properties of tissues. However, the precise determination of local chromophore concentrations in turbid media is usually difficult because of the nonlinear dependence of light intensity as a function of scattering and absorption coefficients. A technique is presented to easily determine absorbent compound concentration ratios in a turbid media from three optical reflectance spectra, in the visible range, measured for source-detector distances less than 1cm. The validity of the method is experimentally established, in cases of sets of diluted milk containing absorbent inks, over a relatively wide range of absorption (0.05-0.5 cm(-1)) and reduced scattering (10-20 cm(-1)) coefficients.

  17. Ultrafast Extreme Ultraviolet Absorption Spectroscopy of Methylammonium Lead Iodide Perovskite

    NASA Astrophysics Data System (ADS)

    Verkamp, Max A.; Lin, Ming-Fu; Ryland, Elizabeth S.; Vura-Weis, Josh

    2016-06-01

    Methylammonium lead iodide (perovskite) is a leading candidate for use in next-generation solar cell devices. However, the photophysics responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) absorption was used to investigate electron and hole dynamics in perovskite by observing transitions from a common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation with a broad spectrum (40-70 eV) were generated via high-harmonic generation using a tabletop instrument. Transient absorption measurements with visible pump and XUV probe directly observed the relaxation of charge carriers in perovskite after above-band excitation in the femtosecond and picosecond time ranges.

  18. Two-photon absorption spectroscopy of rubrene single crystals

    NASA Astrophysics Data System (ADS)

    Irkhin, Pavel; Biaggio, Ivan

    2014-05-01

    We determine the wavelength dependence of the two-photon absorption cross section in rubrene single crystals both by direct measurement of nonlinear transmission and from the two-photon excitation spectrum of the photoluminescence. The peak two-photon absorption coefficient for b-polarized light was found to be (4.6±1)×10-11 m/W at a wavelength of 850±10 nm. It is 2.3 times larger for c-polarized light. The lowest energy two-photon excitation peak corresponds to an excited state energy of 2.92±0.04 eV and it is followed by a vibronic progression of higher energy peaks separated by ˜0.14 eV.

  19. Fourier resolved spectroscopy of 4U 1543-47 during the 2002 outburst

    NASA Technical Reports Server (NTRS)

    Reig, P.; Papadakis, I. E.; Shrader, C. R.; Kazanas, D.

    2006-01-01

    We have obtained Fourier-resolved spectra of the black-hole binary 4U 1543-47 in the canonical states (high/soft, very high, intermediate and low/hard) observed in this source during the decay of an outburst that took place in 2002. Our objective is to investigate the variability of the spectral components generally used to describe the energy spectra of black-hole systems, namely a disk component, a power-law component attributed to Comptonization by a hot corona and the contribution of the iron line due to reprocessing of the high energy (E greater than or approx, equal to 7 keV) radiation. We find that i) the disk component is not variable on time scales shorter than approx. 100 seconds, ii) the reprocessing emission as manifest by the variability of the Fe K(alpha) line responds to the primary radiation variations down to time scales of approx. 70 ms in the high and very-high states, but longer than 2 s in the low state, iii) the low-frequency QPOs are associated with variations of the X-ray power law spectral component and not to the disk component and iv) the spectra corresponding to the highest Fourier frequency are the hardest (show the flatter spectra) at a given spectral state. These results questions the models that explain the observed power spectra as due to modulations of the accretion rate only.

  20. 3D-printed slit nozzles for Fourier transform microwave spectroscopy.

    PubMed

    Dewberry, Christopher T; Mackenzie, Rebecca B; Green, Susan; Leopold, Kenneth R

    2015-06-01

    3D printing is a new technology whose applications are only beginning to be explored. In this report, we describe the application of 3D printing to the design and construction of supersonic nozzles. Nozzles can be created for $0.50 or less, and the ease and low cost can facilitate the optimization of nozzle performance for the needs of any particular experiment. The efficacy of a variety of designs is assessed by examining rotational spectra of OCS (carbonyl sulfide) and Ar-OCS using a Fourier transform microwave spectrometer with tandem cavity and chirped-pulse capabilities. A slit geometry which, to the best of our knowledge has not been used in conjunction with Fourier transform microwave spectrometers, was found to increase the signal-to-noise ratio for the J = 1←0 transition of OCS, by a factor of three to four compared with that obtained using our standard circular nozzle. Corresponding gains for the Ar-OCS complex were marginal, at best, but further optimization of nozzle geometry should be possible. The spectrometer itself is designed to allow rapid switching between cavity and chirped-pulse modes of operation without the need to break vacuum. This feature, as well as the newly incorporated chirped-pulse capability, is described in detail.

  1. Discrimination of different genuine Danshen and their extracts by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xin-hu; Xu, Chang-hua; Sun, Su-qin; Huang, Jian; Zhang, Ke; Li, Guo-yu; Zhu, Yun; Zhou, Qun; Zhang, Zhi-cheng; Wang, Jin-hui

    2012-11-01

    In this study, six varieties of Danshen from different populations and genuine ("Daodi" in Chinese transliteration) regions were discriminated and identified by a three-step infrared spectroscopy method (Fourier transform-infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy (2D-IR)). Though only small differences were found among the FT-IR spectra of the six Danshen samples, the positions and intensities of peaks at 3393, 3371, 1613, 1050, and 1036 cm-1 could be considered as the key factors to discriminate them. More significant differences were exhibited in their SD-IR, particularly for the peaks around 1080, 1144, 695, 665, 800, 1610, 1510, 1450, 1117 and 1077 cm-1. The visual 2D-IR spectra provided dynamic chemical structure information of the six Danshen samples with presenting different particular auto-peak clusters, respectively. Moreover, the contents of salvianolic acid B in all samples were measured quantitatively by a validated ultra performance liquid chromatography (UPLC), which was consistent with the FT-IR findings. This study provides a promising method for characteristics and quality control of the complicated and extremely similar herbal medicine like Danshen, which is more cost effective and time saving.

  2. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Renaudin, P.; Lecherbourg, L.; Blancard, C.; Cossé, P.; Faussurier, G.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  3. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Fourier-transform infrared spectroscopy (FT-IR) and two-dimensional infrared (2D IR) correlation spectroscopy were applied to analyze main components of liquid red wine with different sugar contents and volatilization residues of dry red wine from different manufactures. The infrared spectra, second derivative spectra of dry red wine show the typical peaks of alcohol, while the spectra of sweet wine are composed of the peaks of both alcohol and sugar, and the contribution of sugar enhanced as the increase of sugar content. Using principal component analysis (PCA) method, dry and sweet wine can be readily classified. Analysis of the infrared spectra of the volatilization residues of dry red wine samples from five different manufactures indicates that dry red wine may be composed of glycerol, carboxylic acids or esters and carboxyl ate, at the same time, different dry red wine show different characteristic peaks in the second derivative spectra and 2D IR correlation spectra, which can be used to discriminate the different manufactures and evaluate the quality of wine samples. The results suggested that infrared spectroscopy is a direct and effective method for the analysis of principle components of different red wines and discrimination of different red wines.

  4. Characterization of the surfaces of platinum/tin oxide based catalysts by Fourier Transform Infrared Spectroscopy (FTIR)

    NASA Technical Reports Server (NTRS)

    Keiser, Joseph T.; Upchurch, Billy T.

    1990-01-01

    A Pt/SnO2 catalyst has been developed at NASA Langley that is effective for the oxidation of CO at room temperature (1). A mechanism has been proposed to explain the effectiveness of this catalyst (2), but most of the species involved in this mechanism have not been observed under actual catalytic conditions. A number of these species are potentially detectable by Fourier Transform Infrared Spectroscopy (FTIR), e.g., HOSnO sub x, HO sub y PtO sub z, Pt-CO, and SnHCO3. Therefore a preliminary investigation was conducted to determine what might be learned about this particular catalyst by transmission FTIR. The main advantage of FTIR for this work is that the catalyst can be examined under conditions similar to the actual catalytic conditions. This can be of critical importance since some surface species may exist only when the reaction gases are present. Another advantage of the infrared approach is that since vibrations are probed, subtle chemical details may be obtained. The main disadvantage of this approach is that FTIR is not nearly as sensitive as the Ultra High Vacuum (UHV) surface analytical techniques such as Auger, Electron Spectroscopy for Chemical Analysis (ESCA), Electron Energy Loss Spectroscopy (EELS), etc. Another problem is that the assignment of the observed infrared bands may be difficult.

  5. A heated chamber burner for atomic absorption spectroscopy.

    PubMed

    Venghiattis, A A

    1968-07-01

    A new heated chamber burner is described. The burner is of the premixed type, and burner heads of the types conventionally used in atomic absorption may be readily adapted to it. This new sampling system has been tested for Ag, Al, Ca, Cu, Fe, Mg, Mn, Ni, Pb, Si, Ti, and Zn in aqueous solutions. An improvement of the order of ten times has been obtained in sensitivity, and in detection limits as well, for the elements determined. Interferences controllable are somewhat more severe than in conventional burners but are controllable.

  6. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  7. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  8. Determination of urea, glucose, and phosphate in dialysate with Fourier transform infrared spectroscopy.

    PubMed

    Jensen, Peter Snoer; Bak, Jimmy; Ladefoged, Søren; Andersson-Engels, Stefan

    2004-03-01

    Individual control and quantification of phosphate removal is desirable in dialysis treatment. Currently, no on-line method exists to quantify phosphate removal. We demonstrate that a multivariate calibration model based on infrared transmission spectra is capable of predicting phosphate, urea, and glucose concentrations at clinically relevant levels. The on-line monitoring of these components by infrared spectroscopy is therefore feasible.

  9. [Retrieval of tropospheric NO2 by multi axis differential optical absorption spectroscopy].

    PubMed

    Xu, Jin; Xie, Pin-hua; Si, Fu-qi; Dou, Ke; Li, Ang; Liu, Yu; Liu, Wen-qing

    2010-09-01

    A method of retrieving NO2 in troposphere based on multi axis differential optical absorption spectroscopy (MAX-DOAS) was introduced. The differential slant column density (dSCD) of NO2 was evaluated by differential optical absorption spectroscopy (DOAS), removing the Fraunhofer structure and Ring effect. Combining the results of different observing directions, the tropospheric NO2 differential slant column density (deltaSCD) was evaluated, and the air mass factor (AMF) was calculated with the radiative transfer model SCIATRAN and the tropospheric NO2 vertical column density (VCD) was retrieved. To ensure the accuracy of the results, it was compared with the results of long path differential optical absorption spectroscopy (LP-DOAS), a good accordance was shown with the correlation coefficients of 0.94027 and 0.96924. PMID:21105419

  10. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS

    NASA Astrophysics Data System (ADS)

    Lins, B.; Zinn, P.; Engelbrecht, R.; Schmauss, B.

    2010-08-01

    A simulative investigation of noise effects in wavelength modulation spectroscopy (WMS) and direct absorption diode laser absorption spectroscopy is presented. Special attention is paid to the impact of quantization noise of the analog-to-digital conversion (ADC) of the photodetector signal in the two detection schemes with the goal of estimating the necessary ADC resolution for each technique. With laser relative intensity noise (RIN), photodetector shot noise and thermal amplifier noise included, the strategies used for noise reduction in direct and wavelength modulation spectroscopy are compared by simulating two respective systems. Results show that because of the combined effects of dithering by RIN and signal averaging, the resolutions required for the direct absorption setup are only slightly higher than for the WMS setup. Only for small contributions of RIN an increase in resolution will significantly improve signal quality in the direct scheme.

  11. Fourier transform microwave spectroscopy of the isocyanomethyl radical, CH(2)NC.

    PubMed

    Hirao, T; Ozeki, H; Saito, S; Yamamoto, S

    2007-10-01

    The pure rotational spectrum of the isocyanomethyl radical, CH(2)NC, was measured for the first time by using a Fourier transform microwave spectrometer. The molecule was produced by a discharge of isocyanomethane, CH(3)NC, diluted in Ar or Ne. The spectral lines due to the N=1-0 and 2-1 transitions were recorded near 22 and 44 GHz, respectively. The observed spectrum showed a complicated fine and hyperfine structure because of the same order of interaction energies. Among the 39 spectral lines detected and assigned, the transitions with K(a)=1 show no hyperfine splitting due to the hydrogen nuclei, suggesting planarity for the molecule. Molecular constants such as rotational and spin-rotational parameters including centrifugal effects and hyperfine coupling constants due to both the nitrogen and the hydrogen nuclei were accurately determined. The structure and the astronomical implications of the molecule are discussed.

  12. High resolution infrared spectroscopy of planetary molecules using diode lasers and Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.

    1990-01-01

    Modern observations of infrared molecular lines in planets are performed at spectral resolutions which are as high as those available in the laboratory. Analysis of such data requires laboratory measurements at the highest possible resolution, which also yield accurate line positions and intensities. For planetary purposes the spectrometer must be coupled to sample cells which can be reduced in temperature and varied in pressure. An approach which produces the full range of required molecular line parameters uses a combination of tunable diode lasers and Fourier transform spectrometers (FTS). The FTS provides board spectral coverage and good calibration accuracy, while the diode laser can be used to study those regions which are not resolved by the FTS.

  13. Fourier transform infrared spectroscopy techniques for the analysis of drugs of abuse

    NASA Astrophysics Data System (ADS)

    Kalasinsky, Kathryn S.; Levine, Barry K.; Smith, Michael L.; Magluilo, Joseph J.; Schaefer, Teresa

    1994-01-01

    Cryogenic deposition techniques for Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) can be successfully employed in urinalysis for drugs of abuse with detection limits comparable to those of the established Gas Chromatography/Mass Spectrometry (GC/MS) technique. The additional confidence of the data that infrared analysis can offer has been helpful in identifying ambiguous results, particularly, in the case of amphetamines where drugs of abuse can be confused with over-the-counter medications or naturally occurring amines. Hair analysis has been important in drug testing when adulteration of urine samples has been a question. Functional group mapping can further assist the analysis and track drug use versus time.

  14. Predicting the thermal/structural performance of the atmospheric trace molecules spectroscopy /ATMOS/ Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Miller, J. M.

    1980-01-01

    ATMOS is a Fourier transform spectrometer to measure atmospheric trace molecules over a spectral range of 2-16 microns. Assessment of the system performance of ATMOS includes evaluations of optical system errors induced by thermal and structural effects. In order to assess the optical system errors induced from thermal and structural effects, error budgets are assembled during system engineering tasks and line of sight and wavefront deformations predictions (using operational thermal and vibration environments and computer models) are subsequently compared to the error budgets. This paper discusses the thermal/structural error budgets, modelling and analysis methods used to predict thermal/structural induced errors and the comparisons that show that predictions are within the error budgets.

  15. Quantification of rapid environmental redox processes with quick-scanning x-ray absorption spectroscopy (Q-XAS).

    PubMed

    Ginder-Vogel, Matthew; Landrot, Gautier; Fischel, Jason S; Sparks, Donald L

    2009-09-22

    Quantification of the initial rates of environmental reactions at the mineral/water interface is a fundamental prerequisite to determining reaction mechanisms and contaminant transport modeling and predicting environmental risk. Until recently, experimental techniques with adequate time resolution and elemental sensitivity to measure initial rates of the wide variety of environmental reactions were quite limited. Techniques such as electron paramagnetic resonance and Fourier transform infrared spectroscopies suffer from limited elemental specificity and poor sensitivity to inorganic elements, respectively. Ex situ analysis of batch and stirred-flow systems provides high elemental sensitivity; however, their time resolution is inadequate to characterize rapid environmental reactions. Here we apply quick-scanning x-ray absorption spectroscopy (Q-XAS), at sub-second time-scales, to measure the initial oxidation rate of As(III) to As(V) by hydrous manganese(IV) oxide. Using Q-XAS, As(III) and As(V) concentrations were determined every 0.98 s in batch reactions. The initial apparent As(III) depletion rate constants (t < 30 s) measured with Q-XAS are nearly twice as large as rate constants measured with traditional analytical techniques. Our results demonstrate the importance of developing analytical techniques capable of analyzing environmental reactions on the same time scale as they occur. Given the high sensitivity, elemental specificity, and time resolution of Q-XAS, it has many potential applications. They could include measuring not only redox reactions but also dissolution/precipitation reactions, such as the formation and/or reductive dissolution of Fe(III) (hydr)oxides, solid-phase transformations (i.e., formation of layered-double hydroxide minerals), or almost any other reaction occurring in aqueous media that can be measured using x-ray absorption spectroscopy. PMID:19805269

  16. In-situ monitoring of blood glucose level for dialysis machine by AAA-battery-size ATR Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Sato, Shun; Ishida, Akane; Suzuki, Yo; Inohara, Daichi; Nogo, Kosuke; Abeygunawardhana, Pradeep K.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    For blood glucose level measurement of dialysis machines, we proposed AAA-battery-size ATR (Attenuated total reflection) Fourier spectroscopy in middle infrared light region. The proposed one-shot Fourier spectroscopic imaging is a near-common path and spatial phase-shift interferometer with high time resolution. Because numerous number of spectral data that is 60 (= camera frame rare e.g. 60[Hz]) multiplied by pixel number could be obtained in 1[sec.], statistical-averaging improvement realize high-accurate spectral measurement. We evaluated the quantitative accuracy of our proposed method for measuring glucose concentration in near-infrared light region with liquid cells. We confirmed that absorbance at 1600[nm] had high correlations with glucose concentrations (correlation coefficient: 0.92). But to measure whole-blood, complex light phenomenon caused from red blood cells, that is scattering and multiple reflection or so, deteriorate spectral data. Thus, we also proposed the ultrasound-assisted spectroscopic imaging that traps particles at standing-wave node. Thus, if ATR prism is oscillated mechanically, anti-node area is generated around evanescent light field on prism surface. By elimination complex light phenomenon of red blood cells, glucose concentration in whole-blood will be quantify with high accuracy. In this report, we successfully trapped red blood cells in normal saline solution with ultrasonic standing wave (frequency: 2[MHz]).

  17. Light Scattering and Absorption Spectroscopy in Three Dimensions Using Quantitative Low Coherence Interferometry for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Robles, Francisco E.

    The behavior of light after interacting with a biological medium reveals a wealth of information that may be used to distinguish between normal and disease states. This may be achieved by simply imaging the morphology of tissues or individual cells, and/or by more sophisticated methods that quantify specific surrogate biomarkers of disease. To this end, the work presented in this dissertation demonstrates novel tools derived from low coherence interferometry (LCI) that quantitatively measure wavelength-dependent scattering and absorption properties of biological samples, with high spectral resolution and micrometer spatial resolution, to provide insight into disease states. The presented work first describes a dual window (DW) method, which decomposes a signal sampled in a single domain (in this case the frequency domain) to a distribution that simultaneously contains information from both the original domain and the conjugate domain (here, the temporal or spatial domain). As the name suggests, the DW method utilizes two independently adjustable windows, each with different spatial and spectral properties to overcome limitations found in other processing methods that seek to obtain the same information. A theoretical treatment is provided, and the method is validated through simulations and experiments. With this tool, the spatially dependent spectral behavior of light after interacting with a biological medium may be analyzed to extract parameters of interest, such as the scattering and absorption properties. The DW method is employed to investigate scattering properties of samples using Fourier domain LCI (fLCI). In this method, induced temporal coherence effects provide insight into structural changes in dominant scatterers, such as cell nuclei within tissue, which can reveal the early stages of cancerous development. fLCI is demonstrated in complex, three-dimensional samples using a scattering phantom and an ex-vivo animal model. The results from the latter

  18. Singlet photochemistry in model photosynthesis: Identification of charge separated intermediates by Fourier transform and CW-EPR spectroscopies

    SciTech Connect

    Hasharoni, K.; Levanon, H. Hebrew Univ. of Jerusalem ); Tang, Jau; Bowman, M.K.; Norris, J.R. ); Gust, D.; Moore, T.A.; Moore, A.L. )

    1990-08-29

    Intramolecular electron transfer from the photoexcited state of a carotenoid-porphyrin-diquinone tetrad was studied by selective laser excitation with both Fourier transform and CW EPR spectroscopies. It is shown that the electron transfer occurs from the singlet state of the porphyrin constituent to produce the terminal benzoquinone radical anion and the carotenoid radical cation. This tetrad molecule can maintain the charge-separated state for a substantial period of time ({approximately} 1 {mu}s), allowing the characterization of the short-lived radicals. The derivative-like spectrum of the quinone radical anion and its dependence on the turning angle of the microwave pulse indicates that electron transfer proceeds via the singlet state.

  19. Four-Point Analysis of Molecular Fluctuations in Sucrose Benzoate Near the Glass Transition by Fourier Imaging Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Utterback, James; Cook, Jasper; Marcus, Andrew

    2010-03-01

    Glass-forming liquids exhibit broad heterogeneous distributions of relaxations. It is of considerable importance to determine the detailed forms of these distributions in order to understand how fast and slow processes are partitioned, and how they couple over time. Such information is available through four-point correlation and distribution functions. We present initial fluorescence fluctuation measurements of probe molecule rotation and translation in the glass forming liquid sucrose benzoate. These measurements are performed using a unique method called polarization-modulated Fourier imaging correlation spectroscopy (PM-FICS), which can simultaneously measure molecular center-of-mass motions and optical anisotropy fluctuations. By combining PM-FICS with single-molecule imaging techniques, we construct two-dimensional spectral densities and joint distribution functions that establish temporal correlations of microscopic coordinates over successive time intervals.

  20. Fourier-transform microwave spectroscopy and determination of the three dimensional potential energy surface for Ar–CS

    SciTech Connect

    Niida, Chisato; Nakajima, Masakazu; Endo, Yasuki; Sumiyoshi, Yoshihiro; Ohshima, Yasuhiro; Kohguchi, Hiroshi

    2014-03-14

    Pure rotational transitions of the Ar–CS van der Waals complex have been observed by Fourier Transform Microwave (FTMW) and FTMW-millimeter wave double resonance spectroscopy. Rotational transitions of v{sub s} = 0, 1, and 2 were able to be observed for normal CS, together with those of C{sup 34}S in v{sub s} = 0, where v{sub s} stands for the quantum number of the CS stretching vibration. The observed transition frequencies were analyzed by a free rotor model Hamiltonian, where rovibrational energies were calculated as dynamical motions of the three nuclei on a three-dimensional potential energy surface, expressed by analytical functions with 57 parameters. Initial values for the potential parameters were obtained by high-level ab initio calculations. Fifteen parameters were adjusted among the 57 parameters to reproduce all the observed transition frequencies with the standard deviation of the fit to be 0.028 MHz.

  1. Application of attenuated total reflectance Fourier transform infrared spectroscopy for determination of cefixime in oral pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Kandhro, Aftab A.; Laghari, Abdul Hafeez; Mahesar, Sarfaraz A.; Saleem, Rubina; Nelofar, Aisha; Khan, Salman Tariq; Sherazi, S. T. H.

    2013-11-01

    A quick and reliable analytical method for the quantitative assessment of cefixime in orally administered pharmaceutical formulations is developed by using diamond cell attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy as an easy procedure for quality control laboratories. The standards for calibration were prepared in aqueous medium ranging from 350 to 6000 mg/kg. The calibration model was developed based on partial least square (PLS) using finger print region of FT-IR spectrum in the range from 1485 to 887 cm-1. Excellent coefficient of determination (R2) was achieved as high as 0.99976 with root mean square error of 44.8 for calibration. The application of diamond cell (smart accessory) ATR FT-IR proves a reliable determination of cefixime in pharmaceutical formulations to assess the quality of the final product.

  2. Application of attenuated total reflectance Fourier transform infrared spectroscopy for determination of cefixime in oral pharmaceutical formulations.

    PubMed

    Kandhro, Aftab A; Laghari, Abdul Hafeez; Mahesar, Sarfaraz A; Saleem, Rubina; Nelofar, Aisha; Khan, Salman Tariq; Sherazi, S T H

    2013-11-01

    A quick and reliable analytical method for the quantitative assessment of cefixime in orally administered pharmaceutical formulations is developed by using diamond cell attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy as an easy procedure for quality control laboratories. The standards for calibration were prepared in aqueous medium ranging from 350 to 6000mg/kg. The calibration model was developed based on partial least square (PLS) using finger print region of FT-IR spectrum in the range from 1485 to 887cm(-1). Excellent coefficient of determination (R(2)) was achieved as high as 0.99976 with root mean square error of 44.8 for calibration. The application of diamond cell (smart accessory) ATR FT-IR proves a reliable determination of cefixime in pharmaceutical formulations to assess the quality of the final product.

  3. Membrane molecule reorientation in an electric field recorded by attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed

    Le Saux, A; Ruysschaert, J M; Goormaghtigh, E

    2001-01-01

    Electric fields play an important role in the physiological function of macromolecules. Much is known about the role that electric fields play in biological systems, but membrane molecule structure and orientation induced by electric fields remain essentially unknown. In this paper, we present a polarized attenuated total reflection (ATR) experiment we designed to study the effect of electric fields on membrane molecule structure and orientation by Fourier-transform infrared (FTIR) spectroscopy. Two germanium crystals used as the internal reflection element for ATR-FTIR experiments were coated with a thin layer of polystyrene as insulator and used as electrodes to apply an electric field on an oriented stack of membranes made of dioleylphosphatidylcholine (DOPC) and melittin. This experimental set up allowed us for the first time to show fully reversible orientational changes in the lipid headgroups specifically induced by the electric potential difference.

  4. Photochemistry of a Puckered Ferracyclobutadiene in Liquid Solution Studied by Time-Resolved Fourier-Transform Infrared Spectroscopy.

    PubMed

    Torres-Alacan, Joel; Das, Ujjal; Wezisla, Boris; Straßmann, Martin; Filippou, Alexander C; Vöhringer, Peter

    2015-11-23

    Flash photolysis combined with step-scan and rapid-scan Fourier-transform infrared spectroscopy was carried out to explore the photochemistry of a puckered, quasi-square pyramidal ferracyclobutadiene, [Fe{κ(2) -C3 (NEt2 )3 }(CO)3 ]BF4 ([1]BF4 ), that features three additional carbonyl ligands in the metal coordination sphere. In liquid solution at room temperature, an excitation with λ=355 nm light resulted in the loss of one CO ligand, which is cleaved from a basal metal-coordination site. Within the time resolution of the experiment, a solvent molecule promptly refills the resultant vacancy at the coordinatively unsaturated metal center. In the weakly interacting liquid, dichloromethane, the counterion of the complex is subsequently able to substitute the solvent in the coordination sphere of the iron center, thereby forming as a stable product a neutral dicarbonyl tetrafluoroborato iron(0) species containing a four-membered ferracycle. PMID:26457465

  5. On the application of Open-Path Fourier Transform Infra-Red spectroscopy to measure aerosols: Observations of water droplets

    SciTech Connect

    Hashmonay, R.A.; Yost, M.G.

    1999-04-01

    This paper proposes the application of Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy to measure aerosols. A preliminary experiment conducted in a standard shower chamber generated a condensed water aerosol cloud. The OP-FTIR beam acquired spectra through the cloud of water droplets. The authors matched calculated extinction spectra to measured extinction in the spectral range between 500 and 5,000 wavenumbers by using Mie theory for spherical particles. The results indicate that size distribution parameters may be retrieved from OP-FTIR spectra acquired over a 1 km optical path with reasonable detection limits on the order of 10 {micro}g{center_dot}m{sup {minus}3} for aerosols with optical properties equivalent to water.

  6. Membrane molecule reorientation in an electric field recorded by attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed Central

    Le Saux, A; Ruysschaert, J M; Goormaghtigh, E

    2001-01-01

    Electric fields play an important role in the physiological function of macromolecules. Much is known about the role that electric fields play in biological systems, but membrane molecule structure and orientation induced by electric fields remain essentially unknown. In this paper, we present a polarized attenuated total reflection (ATR) experiment we designed to study the effect of electric fields on membrane molecule structure and orientation by Fourier-transform infrared (FTIR) spectroscopy. Two germanium crystals used as the internal reflection element for ATR-FTIR experiments were coated with a thin layer of polystyrene as insulator and used as electrodes to apply an electric field on an oriented stack of membranes made of dioleylphosphatidylcholine (DOPC) and melittin. This experimental set up allowed us for the first time to show fully reversible orientational changes in the lipid headgroups specifically induced by the electric potential difference. PMID:11159405

  7. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    PubMed

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive. PMID:26896150

  8. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    SciTech Connect

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R.

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  9. Photochemistry of a Puckered Ferracyclobutadiene in Liquid Solution Studied by Time-Resolved Fourier-Transform Infrared Spectroscopy.

    PubMed

    Torres-Alacan, Joel; Das, Ujjal; Wezisla, Boris; Straßmann, Martin; Filippou, Alexander C; Vöhringer, Peter

    2015-11-23

    Flash photolysis combined with step-scan and rapid-scan Fourier-transform infrared spectroscopy was carried out to explore the photochemistry of a puckered, quasi-square pyramidal ferracyclobutadiene, [Fe{κ(2) -C3 (NEt2 )3 }(CO)3 ]BF4 ([1]BF4 ), that features three additional carbonyl ligands in the metal coordination sphere. In liquid solution at room temperature, an excitation with λ=355 nm light resulted in the loss of one CO ligand, which is cleaved from a basal metal-coordination site. Within the time resolution of the experiment, a solvent molecule promptly refills the resultant vacancy at the coordinatively unsaturated metal center. In the weakly interacting liquid, dichloromethane, the counterion of the complex is subsequently able to substitute the solvent in the coordination sphere of the iron center, thereby forming as a stable product a neutral dicarbonyl tetrafluoroborato iron(0) species containing a four-membered ferracycle.

  10. Quantitative analysis of sodium carbonate and sodium bicarbonate in solid mixtures using Fourier transform infrared spectroscopy (FT-IR).

    PubMed

    Joshi, Shailesh; Kalyanasundaram, Sivasubramanian; Balasubramanian, Venkatraman

    2013-08-01

    An analytical methodology is proposed based on constant ratio and absorbance correction methods to quantify sodium carbonate, Na₂CO₃ (1450 cm⁻¹), and sodium bicarbonate, NaHCO₃ (1000 cm⁻¹, 1923 cm⁻¹), in solid mixtures using Fourier transform infrared (FT-IR) spectroscopy. Potassium ferricyanide, K₃Fe(CN)₆ (2117cm⁻¹), was used as an internal standard to get characteristic parameters. NaHCO₃ was quantified using the constant ratio method. Spectral interference of NaHCO₃ in Na₂CO₃ (1450 cm⁻¹) was corrected using the absorbance correction method. The corrected absorbance was successfully applied to quantify Na₂CO₃ (1450 cm⁻¹) in the mixture using the constant ratio method. The results obtained for simulated samples were satisfactory (relative standard deviation less than 7%) for all samples.

  11. Near-IR Fourier transform Raman spectroscopy in surgery and medicine: detection of renal stones and bladder cancer

    NASA Astrophysics Data System (ADS)

    Nie, Shuming; Redd, Douglas C. B.; Li, Yunzhi; Yu, Nai-Teng

    1992-06-01

    Tissue diagnosis and characterization are critically important to the development and applications of laser-based therapeutic procedures in urology (viz., laser lithotripsy and bladder cancer treatment). Recently, we demonstrated for the first time that the new technique of near-infrared laser excited Fourier transform (FT)-Raman spectroscopy can readily differentiate various types of renal stones and bladder cancer from normal kidney/bladder tissues. It has thus become possible to develop an FT-Raman-based fiberoptic sensor for clinical use in laser lithotripsy and bladder cancer treatment. The future development of such a diagnostic modality will allow a surgeon/physician to take real-time Raman spectra of urinary calculi or cancerous tissue via a flexible fiberoptic probe.

  12. In situ concentration monitoring in a vertical OMVPE reactor by fiber-optics-based Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Salim, S.; Wang, C. A.; Driver, R. D.; Jensen, K. F.

    1996-12-01

    We describe fiber-optics-based Fourier transform infrared (FOB-FTIR) spectroscopy for in situ monitoring of input partial pressures of organometallic precursors in a vertical rotating-disk organometallic vapor phase epitaxy reactor. Detection limits as low as 0.05 Torr for trimethylgallium and 0.006 Torr for tritertiarybutylaluminum (TTBAl) are achieved using a 1 s scan time, which are comparable to established ultrasonic measurements. In addition, the FOB-FTIR approach has the ability to detect parasitic Lewis acid-base interactions between organometallic precursors, as demonstrated for in situ measurements of TTBAl mixed with arsine, trimethylantimony or triethylantimony. Such observations are shown to provide insight into unexpected results in epitaxial growth.

  13. Properties of Liquid Silicon Observed by Time-Resolved X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, S. L.; Heimann, P. A.; Lindenberg, A. M.; Jeschke, H. O.; Garcia, M. E.; Chang, Z.; Lee, R. W.; Rehr, J. J.; Falcone, R. W.

    2003-10-01

    Time-resolved x-ray spectroscopy at the Si L edges is used to probe the electronic structure of an amorphous Si foil as it melts following absorption of an ultrafast laser pulse. Picosecond temporal resolution allows observation of the transient liquid phase before vaporization and before the liquid breaks up into droplets. The melting causes changes in the spectrum that match predictions of molecular dynamics and ab initio x-ray absorption codes.

  14. Internal multiple-scattering hole-enhanced Raman spectroscopy: improved backscattering Fourier transform Raman sampling in pharmaceutical tablets utilizing cylindrical-conical holes.

    PubMed

    Larkin, Peter J; Santangelo, Matthew; Šašiċ, Slobodan

    2012-08-01

    The benefits of Raman signal enhancement and improved measurement precision are demonstrated using 180° backscattering Fourier transform Raman (FT-Raman) spectroscopy from drilled cylindrical-conical holes within pharmaceutical tablet cores. Multiple scattering of the incident laser light within the holes results in an increased Raman signal due to the larger Raman sampling volume. This is important for overcoming typical sub-sampling issues encountered when employing FT-Raman backscattering of heterogeneous pharmaceutical tablets. Hole depth and diameter were found to be important experimental parameters and were optimized to yield the greatest signal enhancement. The FT-Raman spectra collected using backscattering from cylindrical-conical holes is compared to typical 180° backscattering from flat surfaces using tablet cores of Excedrin® and Vivarin®. Raman chemical images are used to establish a representative sampling area. We observe a three- to five-fold increase in the Raman intensity and a two-fold improvement in the measurement precision when sampling from cylindrical-conical holes rather than classic backscattering from flat tablet cores. Self-absorption effects on analyte band ratios are negligible in the fingerprint region but are more significant at the higher near-infrared (NIR) absorbances found in the C-H/O-H/-N-H stretching region. The sampling technique will facilitate developing quantitative FT-Raman methods for application to pharmaceutical tablets using the fingerprint spectral region.

  15. Fourier transform infrared photoacoustic spectroscopy study of physicochemical interaction between human dentin and etch-&-rinse adhesives in a simulated moist bond technique.

    PubMed

    Ubaldini, Adriana L M; Baesso, Mauro L; Sehn, Elizandra; Sato, Francielle; Benetti, Ana R; Pascotto, Renata C

    2012-06-01

    The purpose of this study was to provide the physicochemical interactions at the interfaces between two commercial etch-&-rinse adhesives and human dentin in a simulated moist bond technique. Six dentin specimens were divided into two groups (n=3) according to the use of two different adhesive systems: (a) 2-hydroxyethylmethacrylate (HEMA) and 4-methacryloxyethyl trimellitate anhydrate (4-META), and (b) HEMA. The Fourier transform infrared photoacoustic spectroscopy was performed before and after dentin treatment with 37% phosphoric acid, with adhesive systems and also for the adhesive systems alone. Acid-conditioning resulted in a decalcification pattern. Adhesive treated spectra subtraction suggested the occurrence of chemical bonding to dentin expressed through modifications of the OH stretching peak (3340 cm(-1)) and symmetric CH stretching (2900 cm(-1)) for both adhesives spectra; a decrease of orthophosphate absorption band (1040 to 970 cm(-1)) for adhesive A and a better resolved complex band formation (1270 to 970 cm(-1)) for adhesive B were observed. These results suggested the occurrence of chemical bonding between sound human dentin and etch-&-rinse adhesives through a clinical typical condition.

  16. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System.

    PubMed

    Ferguson, Frank T; Johnson, Natasha M; Nuth, Joseph A

    2015-10-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the High-Resolution Transmission Molecular Absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  17. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  18. Detection and quantification of soymilk in cow-buffalo milk using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR).

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Borah, Anjan; Gautam, Anuj; Grewal, Manpreet Kaur; Jindal, Gaurav

    2015-02-01

    Milk consumption is steadily increasing, especially in India and China, due to rising income. To bridge the gap between supply and demand, unscrupulous milk vendors add milk-like products from vegetable sources (soymilk) to milk without declaration. A rapid detection technique is required to enforce the safety norms of food regulatory authorities. Fourier Transform Infrared (FTIR) spectroscopy has demonstrated potential as a rapid quality monitoring method and was therefore explored for detection of soymilk in milk. In the present work, spectra of milk, soymilk (SM), and milk adulterated with known quantity of SM were acquired in the wave number range of 4000-500cm(-1) using Attenuated Total Reflectance (ATR)-FTIR. The acquired spectra revealed differences amongst milk, SM and adulterated milk (AM) samples in the wave number range of 1680-1058cm(-1). This region encompasses the absorption frequency of amide-I, amide-II, amide-III, beta-sheet protein, α-tocopherol and Soybean Kunitz Trypsin Inhibitor. Principal component analysis (PCA) showed clustering of samples based on SM concentration at 5% level of significance and thus SM could be detected in milk using ATR-FTIR. The SM was best predicted in the range of 1472-1241cm(-1) using multiple linear regression with coefficient of determination (R(2)) of 0.99 and 0.92 for calibration and validation, respectively.

  19. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System.

    PubMed

    Ferguson, Frank T; Johnson, Natasha M; Nuth, Joseph A

    2015-10-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the High-Resolution Transmission Molecular Absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments. PMID:26449809

  20. Detection of albumin unfolding preceding proteolysis using Fourier transform infrared spectroscopy and chemometric data analysis.

    PubMed

    Domínguez-Vidal, Ana; Saenz-Navajas, María P; Ayora-Cañada, María José; Lendl, Bernhard

    2006-05-15

    The hydrolysis of bovine serum albumin with protease K at 60 degrees C has been studied by means of infrared spectroscopy. Two-dimensional correlation spectroscopy (2DCoS) has been used to study spectral changes in the reaction. The use of the multivariate curve resolution-alternating least-squares method applied to infrared measurements allowed the recovery of pure infrared spectra and concentration profiles of the different species involved in the reaction. Special attention was paid to the careful inspection of residuals again using 2DCoS. In this way, a heat-induced unfolding step previous to protein hydrolysis was identified. The infrared spectra of the intermediate species showed a more disordered structure than native albumin, the decrease in alpha-helix conformation being especially noticeable. The formation of beta-sheet aggregates due to heating was detected too.

  1. Analyzing Strawberry Spoilage via its Volatile Compounds Using Longpath Fourier Transform Infrared Spectroscopy

    PubMed Central

    Dong, Daming; Zhao, Chunjiang; Zheng, Wengang; Wang, Wenzhong; Zhao, Xiande; Jiao, Leizi

    2013-01-01

    The volatile compounds from fruits vary based on the spoilage stage. We used FTIR spectroscopy to analyze and to attempt to identify the spoilage process of strawberries. To enhance the sensitivity of the measuring system, we increased the optical pathlength by using multi-reflecting mirrors. The volatile compounds that were vaporized from strawberries in different spoilage stages were tested. We analyzed the spectra and found that the concentrations of esters, alcohols, ethylene, and similar compounds changed with deterioration. The change patterns of the infrared spectra for the volatiles were further examined using 2D correlation spectroscopy. We analyzed the spectral data using PCA and were able to distinguish the fresh, slightly spoiled strawberries from the seriously spoiled strawberries. This study demonstrates that FTIR is an effective tool for monitoring strawberry spoilage and for providing status alerts. PMID:24002611

  2. Applications of Fourier transform Raman and infrared spectroscopy in forensic sciences

    NASA Astrophysics Data System (ADS)

    Kuptsov, Albert N.

    2000-02-01

    First in the world literature comprehensive digital complementary vibrational spectra collection of polymer materials and search system was developed. Non-destructive combined analysis using complementary FT-Raman and FTIR spectra followed by cross-parallel searching on digital spectral libraries, was applied in different fields of forensic sciences. Some unique possibilities of Raman spectroscopy has been shown in the fields of examination of questioned documents, paper, paints, polymer materials, gemstones and other physical evidences.

  3. Total absorption spectroscopy of N = 51 nucleus 85Se

    NASA Astrophysics Data System (ADS)

    Goetz, K. C.; Grzywacz, R. K.; Rykaczewski, K. P.; Karny, M.; Fialkowska, A.; Wolinska-Cichocka, M.; Rasco, B. C.; Zganjar, E. F.; Johnson, J. W.; Gross, C. J.

    2014-09-01

    An experimental campaign utilizing the Modular Total Absorption Spectrometer (MTAS) was conducted at the HRIBF facility in January of 2012. The campaign studied 22 isotopes, many of which were identified as the highest priority for decay heat analysis during a nuclear fuel cycle, see the report by the OECD-IAEA Nuclear Energy Agency in 2007. The case of 85Se will be discussed. 85Se is a Z = 34, N = 51 nucleus with the valence neutron located in the positive parity sd single particle state. Therefore, its decay properties are determined by interplay between first forbidden decays of the valence neutron and Gamow-Teller decay of a 78Ni core. Analysis of the data obtained during the January 2012 run indicates a significant increase of the beta strength function when compared with previous measurements, see Ref..

  4. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods which have been proposed for the detection of trace concentrations of gaseous contaminants include Raman backscattering (LIDAR) and passive radiometry (LOPAIR). Remote sensing techniques using laser spectrometry are presented and in particular a simple long-path laser absorption method (LOLA), which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels is discussed. A number of species were selected for study which are representative of those most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Computer programs were developed which will permit a real-time analysis of the monitored atmosphere. Estimates of the dynamic range of this monitoring technique for various system configurations, and comparison with other methods of analysis, are given.

  5. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  6. Examination of the local structure in composite and lowdimensional semiconductor by X-ray Absorption Spectroscopy

    SciTech Connect

    Lawniczak-Jablonska, K.; Demchenko, I.N.; Piskorska, E.; Wolska,A.; Talik, E.; Zakharov, D.N.; Liliental-Weber, Z.

    2006-09-25

    X-ray absorption methods have been successfully used to obtain quantitative information about local atomic composition of two different materials. X-ray Absorption Near Edge Structure analysis and X-Ray Photoelectron Spectroscopy allowed us to determine seven chemical compounds and their concentrations in c-BN composite. Use of Extended X-ray Absorption Fine Structure in combination with Transmission Electron Microscopy enabled us to determine the composition and size of buried Ge quantum dots. It was found that the quantum dots consisted out of pure Ge core covered by 1-2 monolayers of a layer rich in Si.

  7. Proton Transfer and Protein Conformation Dynamics in Photosensitive Proteins by Time-resolved Step-scan Fourier-transform Infrared Spectroscopy

    PubMed Central

    Lórenz-Fonfría, Víctor A.; Heberle, Joachim

    2014-01-01

    Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With ~102-103 repetitions of the photoreaction, the minimum number to complete a scan at reasonable spectral resolution and bandwidth, the noise level in the absorption difference spectra can be as low as ~10-4, sufficient to follow the kinetics of protonation changes from a single amino acid. Lower noise levels can be accomplished by more data averaging and/or mathematical processing. The amount of protein required for optimal results is between 5-100 µg, depending on the sampling technique used. Regarding additional requirements, the protein needs to be first concentrated in a low ionic strength buffer and then dried to form a film. The protein film is hydrated prior to the experiment, either with little droplets of water or under controlled atmospheric humidity. The attained hydration level (g of water / g of protein) is gauged from an IR absorption spectrum. To showcase the technique, we studied the photocycle of the light-driven proton-pump bacteriorhodopsin in its native purple membrane environment, and of the light-gated ion channel channelrhodopsin-2 solubilized in detergent. PMID:24998200

  8. Proton transfer and protein conformation dynamics in photosensitive proteins by time-resolved step-scan Fourier-transform infrared spectroscopy.

    PubMed

    Lórenz-Fonfría, Víctor A; Heberle, Joachim

    2014-06-27

    Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With -10(2)-10(3) repetitions of the photoreaction, the minimum number to complete a scan at reasonable spectral resolution and bandwidth, the noise level in the absorption difference spectra can be as low as -10(-) (4), sufficient to follow the kinetics of protonation changes from a single amino acid. Lower noise levels can be accomplished by more data averaging and/or mathematical processing. The amount of protein required for optimal results is between 5-100 µg, depending on the sampling technique used. Regarding additional requirements, the protein needs to be first concentrated in a low ionic strength buffer and then dried to form a film. The protein film is hydrated prior to the experiment, either with little droplets of water or under controlled atmospheric humidity. The attained hydration level (g of water / g of protein) is gauged from an IR absorption spectrum. To showcase the technique, we studied the photocycle of the light-driven proton-pump bacteriorhodopsin in its native purple membrane environment, and of the light-gated ion channel channelrhodopsin-2 solubilized in detergent.

  9. Hyperfine resolved spectrum of the bromomethyl radical, CH2Br, by Fourier transform microwave spectroscopy.

    PubMed

    Ozeki, H; Okabayashi, T; Tanimoto, M; Saito, S; Bailleux, S

    2007-12-14

    Pure rotational spectra of the bromomethyl radical, CH(2)Br, were measured by using a Fourier transform microwave (FT-MW) spectrometer in order to fully resolve hyperfine structures arising from both the bromine and hydrogen nuclei. We detected a total of 124 lines for the (79)Br and (81)Br isotopomers, including K(a)=0 (ortho species) and K(a)=1 (para species). No hyperfine splitting due to the hydrogen nuclei was observed for the para species, directly confirming the planarity of the radical. We conducted a global analysis of our present FT-MW results and previous measurements in the millimeter-wave region and obtained an exhaustive list of molecular constants. The sign of the Fermi constant of the bromine nucleus was unambiguously determined to be positive, which is opposite to that found in previous work in the millimeter-wave region and in electron spin resonance experiment on this radical. The present study permitted a systematic comparison to be made of the hyperfine coupling constants of both the halogen and hydrogen nuclei for CH(2)X-type compounds, where X=F, Cl, and Br.

  10. Portable Fourier Transform Spectroscopy for Analysis of Surface Contamination and Quality Control

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2012-01-01

    Progress has been made into adapting and enhancing a commercially available infrared spectrometer for the development of a handheld device for in-field measurements of the chemical composition of various samples of materials. The intent is to duplicate the functionality of a benchtop Fourier transform infrared spectrometer (FTIR) within the compactness of a handheld instrument with significantly improved spectral responsivity. Existing commercial technology, like the deuterated L-alanine triglycine sulfide detectors (DLATGS), is capable of sensitive in-field chemical analysis. This proposed approach compares several subsystem elements of the FTIR inside of the commercial, non-benchtop system to the commercial benchtop systems. These subsystem elements are the detector, the preamplifier and associated electronics of the detector, the interferometer, associated readout parameters, and cooling. This effort will examine these different detector subsystem elements to look for limitations in each. These limitations will be explored collaboratively with the commercial provider, and will be prioritized to meet the deliverable objectives. The tool design will be that of a handheld gun containing the IR filament source and associated optics. It will operate in a point-and-shoot manner, pointing the source and optics at the sample under test and capturing the reflected response of the material in the same handheld gun. Data will be captured via the gun and ported to a laptop.

  11. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    NASA Astrophysics Data System (ADS)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  12. Development of imaging Fourier-transform spectroscopy for the characterization of turbulent jet flames

    NASA Astrophysics Data System (ADS)

    Harley, Jacob L.

    Recent advances in computational models to simulate turbulent, reactive flow fields have outpaced the ability to collect highly constraining data---throughout the entire flow field---for validating and improving such models. In particular, the ability to quantify in three dimensions both the mean scalar fields (i.e. temperature & species concentrations) and their respective fluctuation statistics via hyperspectral imaging would be a game-changing advancement in combustion diagnostics, with high impact in both validation and improvement efforts for computational combustion models. This research effort establishes imaging Fourier- transform spectrometry (IFTS) as a valuable tool (which complements laser diagnostics) for the study of turbulent combustion. Specifically, this effort (1) demonstrates that IFTS can be used to quantitatively measure spatially resolved spectra from a canonical turbulent flame; (2) establishes the utility of quantile spectra in first-ever quantitative comparisons between measured and modeled turbulent radiation interaction (TRI); (3) develops a simple onion-peeling-like spectral inversion methodology suitable for estimating radial scalar distributions in axisymmetric, optically-thick flames; (4) builds understanding of quantile spectra and demonstrates proof of concept for their use in estimating scalar fluctuation statistics.

  13. Study on dietary fibre by Fourier transform-infrared spectroscopy and chemometric methods.

    PubMed

    Chylińska, Monika; Szymańska-Chargot, Monika; Kruk, Beata; Zdunek, Artur

    2016-04-01

    Fresh fruit is an important part of the diet of people all over the world as a significant source of water, vitamins and natural sugars. Nowadays it is also one of the main sources of dietary fibre. In fruit the dietary fibre is simply cell wall consisting essentially of polysaccharides. The aim of present study was to predict the contents of pectins, cellulose and hemicelluloses by partial least squares regression (PLS) analysis on the basis of Fourier transform-infrared (FT-IR) spectra of fruit cell wall residue. The second purpose was to analyse the composition of dietary fibre from fruit based on FT-IR spectral information in combination with chemometric methods (principle components analysis (PCA) and hierarchical cluster analysis (HCA)). Additionally the contents of polysaccharides in studied fruits were determined by analytical methods. It has been shown that the analysis of infrared spectra and the use of multivariate statistical methods can be useful for studying the composition of dietary fibre. PMID:26593472

  14. Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation.

    PubMed

    West, P A; Torzilli, P A; Chen, C; Lin, P; Camacho, N P

    2005-01-01

    Collagenase treatment of cartilage serves as an in vitro model of the pathological collagen degradation that occurs in the disease osteoarthritis (OA). Fourier transform infrared imaging spectroscopic (FT-IRIS) analysis of collagenase-treated cartilage is performed to elucidate the molecular origin of the spectral changes previously found at the articular surface of human OA cartilage. Bovine cartilage explants are treated with 0.1% collagenase for 0, 15, or 30 min. In situ collagen cleavage is assessed using immunofluorescent staining with an antibody specific for broken type II collagen. The FT-IRIS analysis of the control and treated specimens mirrors the differences previously found between normal and OA cartilage using an infrared fiber optic probe (IFOP). With collagenase treatment, the amide II/1338 cm(-1) area ratio increases while the 1238 cm(-1)/1227 cm(-1) peak ratio decreases. In addition, polarized FT-IRIS demonstrates a more random orientation of the collagen fibrils that correlate spatially with the immunofluorescent-determined regions of broken type II collagen. We can therefore conclude that the spectral changes observed in the collagenase-treated cartilage, and similarly in OA cartilage, arise from changes in collagen structure. These findings support the use of mid-infrared spectral analysis, in particular the minimally invasive IFOP, as potential techniques for the diagnosis and management of degenerative joint diseases such as osteoarthritis.

  15. HIGH-RESOLUTION FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF METHYL- AND DIMETHYLNAPTHALENES

    SciTech Connect

    Schnitzler, Elijah G.; Zenchyzen, Brandi L. M.; Jäger, Wolfgang

    2015-06-01

    High-resolution pure rotational spectra of four alkylnaphthalenes were measured in the range of 6–15 GHz using a molecular-beam Fourier-transform microwave spectrometer. Both a- and b-type transitions were observed for 1-methylnaphthalene (1-MN), 1,2-dimethylnaphthalene (1,2-DMN), and 1,3-dimethylnaphthalene (1,3-DMN); only a-type transitions were observed for 2-methylnaphthalene (2-MN). Geometry optimization and vibrational analysis calculations at the B3LYP/6-311++G(d,p) level of theory aided in the assignments of the spectra and the characterization of the structures. Differences between the experimental and predicted rotational constants are small, and they can be attributed in part to low-lying out-of-plane vibrations, which distort the alkylnaphthalenes out of their equilibrium geometries. Splittings of rotational lines due to methyl internal rotation were observed in the spectra of 2-MN, 1,2-DMN, and 1,3-DMN, and allowed for the determination of the barriers to methyl internal rotation, which are compared to values from density functional theory calculations. All four species are moderately polar, so they are candidate species for detection by radio astronomy, by targeting the transition frequencies reported here.

  16. A simple method to fabricate lenses for in situ Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Treffman, Lia M.; Morrison, Philip W., Jr.

    1996-04-01

    A process has been developed to hand grind and polish infrared KBr lenses with a wide choice of focal lengths. These lenses are designed for coupling the infrared (IR) beam from a Fourier transform infrared spectrometer into a hot filament chemical vapor deposition reactor. These IR lenses are ground using a glass lens as a mold; the mold lens is a commercial glass lens used for spectacles and is available in a wide range of focal lengths. Rough grinding begins with ♯100 sandpaper and followed by a sequence of fine grinding steps under ethanol: ♯400 SiC powder, ♯600 SiC powder, and emery powder. Polishing is done with a CeO slurry in water followed by a chamois cloth moistened with ethanol. As an indication of the surface finish of the lenses, a flat KBr window that is hand ground and polished in the above manner has a transmission of ≳89% at 8000 cm-1 and ≳91% at 500 cm-1; the commercially polished KBr window has a transmittance of 92% throughout this spectral range.

  17. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology

    SciTech Connect

    Sundaram, S. K.; Sacksteder, Colette A.; Weber, T. J.; Riley, Brian J.; Addleman, Raymond S.; Harrer, Bruce J.; Peterman, John W.

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live-cells interact with an external stimulus, e.g., a nanosized particle (NSP), and the toxicity and broad risk associated with these stimuli. NSPs are increasingly used in medicine with largely undetermined hazards in complex cell dynamics and environments. It is difficult to capture the complexity and dynamics of these interactions by following an omics-based approach exclusively, which are expensive and time-consuming. Additionally, this approach needs destructive sampling methods. Live-cell attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry is well suited to provide noninvasive approach to provide rapid screening of cellular responses to potentially toxic NSPs or any stimuli. Herein we review the technical basis of the approach, the instrument configuration and interface with the biological media, and various effects that impact the data, data analysis, and toxicity. Our preliminary results on live-cell monitoring show promise for rapid screening the NSPs.

  18. Detection of emission sources using passive-remote Fourier transform infrared spectroscopy

    SciTech Connect

    Demirgian, J.C.; Macha, S.M.; Darby, S.M.; Ditillo, J.

    1995-04-01

    The detection and identification of toxic chemicals released in the environment is important for public safety. Passive-remote Fourier transform infrared (FTIR) spectrometers can be used to detect these releases. Their primary advantages are their small size and ease of setup and use. Open-path FTIR spectrometers are used to detect concentrations of pollutants from a fixed frame of reference. These instruments detect plumes, but they are too large and difficult to aim to be used to track a plume to its source. Passive remote FTIR spectrometers contain an interferometer, optics, and a detector. They can be used on tripods and in some cases can be hand-held. A telescope can be added to most units. We will discuss the capability of passive-remote FTIR spectrometers to detect the origin of plumes. Low concentration plumes were released using a custom-constructed vaporizer. These plumes were detected with different spectrometers from different distances. Passive-remote spectrometers were able to detect small 10 cm on a side chemical releases at concentration-pathlengths at the low parts per million-meter (ppm-m) level.

  19. Vibrational mapping of sinonasal lesions by Fourier transform infrared imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Giorgini, Elisabetta; Sabbatini, Simona; Conti, Carla; Rubini, Corrado; Rocchetti, Romina; Re, Massimo; Vaccari, Lisa; Mitri, Elisa; Librando, Vito

    2015-12-01

    Fourier transform infrared imaging (FTIRI) is a powerful tool for analyzing biochemical changes in tumoral tissues. The head and neck region is characterized by a great variety of lesions, with different degrees of malignancy, which are often difficult to diagnose. Schneiderian papillomas are sinonasal benign neoplasms arising from the Schneiderian mucosa; they can evolve into malignant tumoral lesions (squamous cell carcinoma). In addition, they can sometimes be confused with the more common inflammatory polyps. Therefore, an early and definitive diagnosis of this pathology is mandatory. Progressing in our research on the study of oral cavity lesions, 15 sections consisting of inflammatory sinonasal polyps, benign Schneiderian papillomas, and sinonasal undifferentiated carcinomas were analyzed using FTIRI. To allow a rigorous description of these pathologies and to gain objective diagnosis, the epithelial layer and the adjacent connective tissue of each section were separately investigated by following a multivariate analysis approach. According to the nature of the lesion, interesting modifications were detected in the average spectra of the different tissue components, above all in the lipid and protein patterns. Specific band-area ratios acting as spectral markers of the different pathologies were also highlighted.

  20. Fourier transform emission spectroscopy of the near infrared transitions of CeS

    NASA Astrophysics Data System (ADS)

    Ram, R. S.; Bernath, P. F.

    2014-05-01

    The emission spectra of CeS have been investigated at high resolution with a Fourier transform spectrometer. Several bands observed in the 4000-9000 cm-1 region have been classified into nine transitions having five different lower states, X1(3), X2(⩾ 2), X3(⩾ 2), X4(⩾ 3) and X5(0) based on Ω doubling and relative branch intensities. Out of these, the [7.54] (4) → X1(3) transition consisting of 0-1, 1-2, 0-0, 1-1, 1-0 and 2-1 bands is strongest in intensity. A rotational analysis of these bands provides equilibrium spectroscopic constants: ωe = 461.3947(14) cm-1, ωexe = 1.00095(65) cm-1, Be = 0.118782207(15) cm-1, αe = 0.000341453(14) cm-1 and re = 2.33522875(15) Å for the lower X1(Ω = 3) state. The [8.78] (⩾3) → X2(⩾2) transition, for which 0-0 and 0-1 bands were rotationally analyzed, provides ΔG½ = 458.87411(88) cm-1, Be = 0.1187649(31) cm-1, αe = 0.0003401(37) cm-1 and re = 2.335399(31) Å for the X2(Ω ⩾ 2) lower state.

  1. Chemical Composition Determination Of Francolite Apatites By Fourier Transform Infrared (FTIR) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scheib, Robin M.; Thrasher, Raymond D.; Lehr, James R.

    1981-10-01

    Prior work by Lehr and McClellan and Lehr, based on chemical, crystallographic, and x-ray diffraction studies, showed the relationship between phosphate (P) and substituted carbonate (C) in francolite apatite to be P+C = 6.00 ± 0.04 and the generalized apatite formula to be (Ca,Na,Mg) 10(PO4)6-x(CO3)xFy(F,OH)2, in which y ranges from 0.33x to 0.5x. Using the FTIR, the ratio of the area of the absorption curve for C-0 (bands in the region 1375 to 1550 cm-1) versus the area of the absorption curve for P-0 (bands in the region 530 to 690 cm-1), the "CO2 index," was found to be proportional to the mole ratio of CO3:PO4 in francolites. Stripping methods allowed the subtraction of spectral contributions of silicate and carbonate minerals and water, which would ordinarily interfere with such a determination. The study was based on 65 mineral samples and the formula was found to be: CO2 index = 0.0678 + 4.184(mole ratio CO3:PO4) (1) The correlation factor, r2, was 0.938 and the standard error of the slope ±0.136. The probability of the null hypothesis for the model was less than 0.0001.

  2. Collection of VLE data for acid gas-alkanolamine systems using Fourier transform infrared spectroscopy

    SciTech Connect

    Bullin, J.A.; Frazier, R.E.

    1991-09-01

    The industrial standard process for the purification of natural gas is to remove acid gases, mainly hydrogen sulfide and carbon dioxide, by the absorption and reaction of these gases with alkanolamines. Inadequate data for vapor -- liquid equilibrium (VLE) hinder the industry from converting operations to more energy efficient amine mixtures and conserving energy. Some energy reductions have been realized in the past decade by applying such amine systems as hindered'' amines, methyldiethanolamine (MDEA), and MDEA based amine mixtures. However, the lack of reliable and accurate fundamental VLE data impedes the commercial application of these more efficient alkanolamine systems. The first project objective is to improve the accuracy of vapor -- liquid equilibrium measurements at low hydrogen sulfide concentrations. The second project objective is to measure the VLE for amine mixtures. By improving the accuracy of the VLE measurements on MDEA and mixtures with other amines, energy saving can be quickly and confidently implemented in the many existing absorption units already in use. If about 25% of the existing 95.3 billion SCFD gas purification capacity is converted to these new amine systems, the energy savings are estimated to be about 3 {times} 10{sup 14} BTU/yr.

  3. Mineralogical Mapping of the Banded Iron Formations using Fourier Transform Infra-Red (FTIR) Spectroscopy and micro-Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    McKeeby, B. E.; Schoonen, M. A.; Glotch, T. D.; Ohmoto, H.

    2013-12-01

    Banded Iron Formations (BIFs) consist of thin alternating layers of iron-poor silica and iron-bearing phylosilicates, iron oxides, and carbonates and/or sulfides. BIFs are common in the Precambrian. Although BIFs have been the subject of numerous studies, the mechanism and environments of formation remains poorly understood. It has been hotly debated whether BIFs formed by microbes in Fe2+-rich oceans under a reducing atmosphere, or by reactions between locally discharged submarine hydrothermal fluids and O2-rich deep ocean water. The debates have continued mostly because of the lack of detailed studies on the paragenesis of minerals in BIFs to determine which minerals are primary precipitates, and which are diagenetic and metamorphic products. The purpose of this study is to explore the applications of FTIR spectroscopy and micro-Raman spectroscopy in micro-scale paragenetic studies of BIF samples. FTIR and Raman are vibrational spectroscopy techniques that provide insight into the chemical bonding within a compound. With these techniques it is possible to resolve the iron oxide, carbonate, and clay mineralogy within BIFs, which is difficult with techniques that rely on elemental analysis, such as TEM-EDAX. Samples used in this study are thin sections of the 2.7 Ga BIFs from Temagami in the Abitibi green stone belt, Ontario, Canada. FTIR analyses were conducted using a Nicolet iN10MX Micro-Imaging FTIR Spectrometer. This instrument is capable of collecting hyperspectral infrared images with a pixel size of 25 microns covering the range from 7000 to 715 cm-1. In addition, we collected point spectra measuring 50X50 microns over a spectral range from 4000 to 400 cm-1. These point spectra were used to distinguish among different iron minerals in the thin sections. Using the hyperspectral data, we created composite false color Images to show mineral variation across the samples. The spectra were modeled using a digital spectral library. After modeling and examination

  4. [Novel analysis algorithms for differential optical absorption spectroscopy for pollution monitoring].

    PubMed

    Zhang, Xue-Dian; Huang, Xian; Xu, Ke-Xin

    2007-11-01

    Differential optical absorption spectroscopy, or DOAS, is a widely used method to determine concentrations of atmospheric species. The principle of DOAS for measuring the concentration of air pollutants is presented in briefly. Using the linear relationship between the area of the measured differential absorbance curve and that of the differential absorption cross-section curve as taken from the literature, an alternative method for calculating the gas concentration on the basis of the proportionality between differential absorbance and differential absorption cross section of the gas under study was developed. The method can be used on its own for single-component analysis or as a complement to the standard technique in multi-component cases. The procedure can be used with differential absorption cross sections measured in the laboratory or taken from the literature. In addition, the method provides a criterion to discriminate between different species having absorption features in the same wavelength range.

  5. Application of Fourier Transform Infrared (FTIR) Spectroscopy for Rapid Detection of Fumonisin B2 in Raisins.

    PubMed

    Heperkan, Dilek; Gökmen, Ece

    2016-07-01

    The aim of this study was to investigate the potential use of FTIR spectroscopy as a rapid screening method to detect fumonisin produced by Aspergillus niger. A. niger spore suspensions isolated from raisins were inoculated in Petri dishes prepared with sultana raisin or black raisin extracts containing agar and malt extract agar (MEA). After 9 days of incubation at 25°C, fumonisin B2 (FB2) production on each agar plate was determined by subjecting the agar plugs to IR spectroscopy. The presence of amino group (at 1636-1639 cm(-1)) was especially indicative of fumonisin production in MEA and the raisin extracts containing agar. The results were confirmed by HPLC analysis of the agar sample extracts after immunoaffinity column cleanup. It was determined that A. niger produced more FB2 in sultana raisins than in MEA, with no FB2 being produced in black raisin extract agar. This study demonstrated that proper sample preparation procedure followed by FTIR analysis is a useful technique for identifying toxigenic molds and their mycotoxin production in agricultural commodities. PMID:27455931

  6. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  7. Application of multibounce attenuated total reflectance fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks.

    PubMed

    Khurana, Harpreet Kaur; Cho, Il Kyu; Shim, Jae Yong; Li, Qing X; Jun, Soojin

    2008-02-13

    Aspartame is a low-calorie sweetener commonly used in soft drinks; however, the maximum usage dose is limited by the U.S. Food and Drug Administration. Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance sampling accessory and partial least-squares regression (PLS) was used for rapid determination of aspartame in soft drinks. On the basis of spectral characterization, the highest R2 value, and lowest PRESS value, the spectral region between 1600 and 1900 cm(-1) was selected for quantitative estimation of aspartame. The potential of FTIR spectroscopy for aspartame quantification was examined and validated by the conventional HPLC method. Using the FTIR method, aspartame contents in four selected carbonated diet soft drinks were found to average from 0.43 to 0.50 mg/mL with prediction errors ranging from 2.4 to 5.7% when compared with HPLC measurements. The developed method also showed a high degree of accuracy because real samples were used for calibration, thus minimizing potential interference errors. The FTIR method developed can be suitably used for routine quality control analysis of aspartame in the beverage-manufacturing sector.

  8. Characterization of a water-dispersible metal protective coating with Fourier transform infrared spectroscopy, modulated differential scanning calorimetry, and ellipsometry.

    PubMed

    Boyatzis, Stamatis C; Douvas, Antonios M; Argyropoulos, Vassilike; Siatou, Amalia; Vlachopoulou, Marilena

    2012-05-01

    An ethylene-methacrylic acid copolymer, formulated by BASF as a waterborne suspension of its alkylammonium salt and used, among other applications, in art conservation as a temporary protective coating was characterized using Fourier transform infrared (FT-IR) spectroscopy aided by modulated differential scanning calorimetry (MDSC) and ellipsometry. The thermal conversion of thin copolymer films from the freshly applied state, where carboxylic acid and carboxylate ion functional groups co-exist, to a purely acidic working state was spectroscopically followed. Transmission mid-infrared data of the working state showed a 1 : 12 ratio of methacrylic acid towards ethylene units. The glass transition temperature (T(g)) in the same state was found at 45 °C. Copolymer films spin-coated on mechanically polished bronze and iron coupons were characterized with transflection infrared spectroscopy and compared to corresponding transmission mid-infrared spectra of copolymer films spin-coated on silicon wafers. In the case of bronze coupons, evidence for interaction of the carboxylate ion with the copper substrate was obtained. The chemical structure and the thermal behavior of the coating, as well as some implications on its protective capability towards iron and copper alloys, is discussed as this material has received considerable attention in the field of metal conservation and coatings.

  9. Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance-Fourier transformed-infrared spectroscopy.

    PubMed

    Hu, Yaxi; Pan, Zhi Jie; Liao, Wen; Li, Jiaqi; Gruget, Pierre; Kitts, David D; Lu, Xiaonan

    2016-07-01

    Antioxidant capacity and phenolic content of chocolate, containing different amounts of cacao (35-100%), were determined using attenuated total reflectance (ATR)-Fourier transformed-infrared (FT-IR) spectroscopy (4000-550cm(-1)). Antioxidant capacities were first characterized using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity) assays. Phenolic contents, including total phenol and procyanidins monomers, were quantified using the Folin-Ciocalteu assay and high performance liquid chromatography coupled with photodiode array detector (HPLC-DAD), respectively. Five partial least-squares regression (PLSR) models were constructed and cross-validated using FT-IR spectra from 18 types of chocolate and corresponding reference values determined using DPPH, ORAC, Folin-Ciocalteu, and HPLC assays. The models were validated using seven unknown samples of chocolate. PLSR models showed good prediction capability for DPPH [R(2)-P (prediction)=0.88, RMSEP (root mean squares error of prediction)=12.62μmol Trolox/g DFW], ORAC (R(2)-P=0.90, RMSEP=37.92), Folin-Ciocalteu (R(2)-P=0.88, RMSEP=5.08), and (+)-catechin (R(2)-P=0.86, RMSEP=0.10), but lacked accuracy in the prediction of (-)-epicatechin (R(2)-P=0.72, RMSEP=0.57). ATR-FT-IR spectroscopy can be used for rapid prediction of antioxidant capacity, total phenolic content, and (+)-catechin in chocolate. PMID:26920292

  10. Reconnaissance gas measurements on the East Rift Zone of Kilauea Volcano, Hawai'i by Fourier transform infrared spectroscopy

    USGS Publications Warehouse

    McGee, Kenneth A.; Elias, Tamar; Sutton, A. Jefferson; Doukas, Michael P.; Zemek, Peter G.; Gerlach, Terrence M.

    2005-01-01

    We report the results of a set of measurements of volcanic gases on two small ground level plumes in the vicinity of Pu`u `O`o cone on the middle East Rift Zone (ERZ) of Kilauea volcano, Hawai`i on 15 June 2001 using open-path Fourier transform infrared (FTIR) spectroscopy. The work was carried out as a reconnaissance survey to assess the monitoring and research value of FTIR measurements at this volcano. Despite representing emissions of residual volatiles from lava that has undergone prior degassing, the plumes contained detectable amounts of CO2, CO, SO2, HCl, HF and SiF4. Various processes, including subsurface cooling, condensation of water in the atmospheric plume, oxidation, dissolution in water, and reactions with wall rocks at plume vents affect the abundance of these gases. Low concentrations of volcanic CO2 measured against a high ambient background are not well constrained by FTIR spectroscopy. Although there appear to be some differences between these gases and Pu`u `O`o source gases, ratios of HCl/SO2, HF/SO2 and CO/SO2 determined by FTIR measurements of these two small plumes compare reasonably well with earlier published analyses of ERZ vent samples. The measurements yielded emission rate estimates of 4, 11 and 4 t d-1

  11. Rapid Quantification of Methamphetamine: Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Chemometrics

    PubMed Central

    Hughes, Juanita; Ayoko, Godwin; Collett, Simon; Golding, Gary

    2013-01-01

    In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1%–78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain. PMID:23936058

  12. Liquid-liquid-solid microextraction and detection of nerve agent simulants by on-membrane Fourier transform infrared spectroscopy.

    PubMed

    Garg, Prabhat; Purohit, Ajay; Tak, Vijay K; Kumar, Ajeet; Dubey, D K

    2012-11-01

    A coupling of novel liquid-liquid-solid microextraction (LLSME) technique based on porous hydrophobic membrane and Fourier-transform infrared spectroscopy has been presented for the detection, identification and quantification of markers and simulants of nerve agents. Two isomers O,O'-dihexyl methylphosphonate (DHMP) and O,O'-dipentyl isopropylphosphonate (DPIPP) were chosen as model analytes for the study. In the present technique, organic phase was immobilised within the pores of membrane after fixing it in an assembly, which was then immersed into aqueous sample of target analytes for extraction. The analytes were directly determined on the surface of membrane by FTIR spectroscopy without elution. On comparison with solid phase microextraction (SPME), LLSME was found to be much more efficient. The method was optimised and quantitative analyses were performed using calibration curves obtained via Beer's law and employing processing of spectra obtained, via a multivariate calibration technique partial least square (PLS). Relative standard deviations (RSDs) for intraday repeatability and interday reproducibility were found to be in the range of 0.20-0.50% and 0.20-0.60%, respectively. Limit of detection (LOD) was achieved up to 15 ng mL(-1). Applicability of the method was tested with an unknown real sample obtained in an international official proficiency test (OPT). PMID:23084054

  13. Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy.

    PubMed

    Gross, Kevin C; Bradley, Kenneth C; Perram, Glen P

    2010-12-15

    Industrial smokestack plume emissions were remotely measured with a midwave infrared (1800-3000 cm(-1)) imaging Fourier-transform spectrometer operating at moderate spatial (128 × 64 with 19.4 × 19.4 cm(2) per pixel) and high spectral (0.25 cm(-1)) resolution over a 20 min period. Strong emissions from CO(2), H(2)O, SO(2), NO, HCl, and CO were observed. A single-layer plume radiative transfer model was used to estimate temperature T and effluent column densities q(i) for each pixel's spectrum immediately above the smokestack exit. Across the stack, temperature was uniform with T = 396.3 ± 1.3 K (mean ± stdev), and each q(i) varied in accordance with the plume path length defined by its cylindrical geometry. Estimated CO(2) and SO(2) volume fractions of 8.6 ± 0.4% and 380 ± 23 ppm(v), respectively, compared favorably with in situ measurements of 9.40 ± 0.03% and 383 ± 2 ppm(v). Total in situ NO(x) concentration (NO + NO(2)) was reported at 120 ± 1 ppm(v). While NO(2) was not spectrally detected, NO was remotely observed with a concentration of 104 ± 7 ppm(v). Concentration estimates for the unmonitored species CO, HCl, and H(2)O were 14.4 ± 0.3 ppm(v), 88 ± 1 ppm(v), and 4.7 ± 0.1%, respectively.

  14. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    PubMed

    Hanifi, Arash; McCarthy, Helen; Roberts, Sally; Pleshko, Nancy

    2013-01-01

    Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR) spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types) to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in connective tissues

  15. Rapid Isolation of Phenol Degrading Bacteria by Fourier Transform Infrared (FTIR) Spectroscopy.

    PubMed

    Li, Fei; Song, Wen-jun; Wei, Ji-ping; Wang, Su-ying; Liu, Chong-ji

    2015-05-01

    Phenol is an important chemical engineering material and ubiquitous in industry wastewater, its existence has become a thorny issue in many developed and developing country. More and more stringent standards for effluent all over the world with human realizing the toxicity of phenol have been announced. Many advanced biological methods are applied to industrial wastewater treatment with low cost, high efficiency and no secondary pollution, but the screening of function microorganisms is certain cumbersome process. In our study a rapid procedure devised for screening bacteria on solid medium can degrade phenol coupled with attenuated total reflection fourier transform infrared (ATR-FTIR) which is a detection method has the characteristics of efficient, fast, high fingerprint were used. Principal component analysis (PCA) is a method in common use to extract fingerprint peaks effectively, it couples with partial least squares (PLS) statistical method could establish a credible model. The model we created using PCA-PLS can reach 99. 5% of coefficient determination and validation data get 99. 4%, which shows the promising fitness and forecasting of the model. The high fitting model is used for predicting the concentration of phenol at solid medium where the bacteria were grown. The highly consistent result of two screening methods, solid cultural with ATR-FTIR detected and traditional liquid cultural detected by GC methods, suggests the former can rapid isolate the bacteria which can degrade substrates as well as traditional cumbersome liquid cultural method. Many hazardous substrates widely existed in industry wastewater, most of them has specialize fingerprint peaks detected by ATR-FTIR, thereby this detected method could be used as a rapid detection for isolation of functional microorganisms those can degrade many other toxic substrates.

  16. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF LANTHANUM IN Ar DISCHARGE IN THE NEAR-INFRARED

    SciTech Connect

    Güzelçimen, F.; Başar, Gö.; Tamanis, M.; Kruzins, A.; Ferber, R.; Windholz, L.; Kröger, S. E-mail: sophie.kroeger@htw-berlin.de

    2013-10-01

    A high-resolution spectrum of lanthanum has been recorded by a Fourier Transform spectrometer in the wavelength range from 833 nm to 1666 nm (6000 cm{sup –1} to 12,000 cm{sup –1}) using as light source a hollow cathode lamp operated with argon as the discharge carrier gas. In total, 2386 spectral lines were detected in this region, of which 555 lines could be classified as La I transitions and 10 lines as La II transitions. All La II transitions and 534 of these La I transitions were classified for the first time, and 6 of the La II transitions and 433 of the classified La I transitions appear to be new lines, which could not be found in the literature. The corresponding energy level data of classified lines are given. Additionally, 430 lines are assigned as Ar I lines and 394 as Ar II lines, of which 179 and 77, respectively, were classified for the first time. All 77 classified Ar II transitions as well as 159 of the classified Ar I transitions are new lines. Furthermore, the wavenumbers of 997 unclassified spectral lines were determined, 235 of which could be assigned as La lines, because of their hyperfine pattern. The remaining 762 lines may be either unclassified Ar lines or unresolved and unclassified La lines with only one symmetrical peak with an FWHM in the same order of magnitude as the Ar lines. The accuracy of the wavenumber for the classified lines with signal-to-noise-ratio higher than four is better than 0.006 cm{sup –1} which corresponds to an accuracy of 0.0004 nm at 830 nm and 0.0017 nm at 1660 nm, respectively.

  17. Study of dynamic emission spectra from lubricant films in an elastohydrodynamic contact using Fourier transform spectroscopy

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.

    1978-01-01

    Infrared emission spectra were obtained through a diamond window from lubricating fluids in an operating sliding elastohydrodynamic contact and analyzed by comparison with static absorption spectra under similar pressures. Different loads, shear rates and temperatures were used. Most of the spectra exhibited polarization characteristics, indicating directional alignment of the lubricant in the EHD contact. Among the fluids studied were a "traction" fluid, an advanced ester, and their mixtures, a synthetic paraffin, a naphthenic reference fluid (N-1), both neat and containing 1 percent of p-tricresyl phosphate as an anti-wear additive, and a C-ether. Traction properties were found to be nearly proportional to mixture composition for traction fluid and ester mixtures. The anti-wear additive reduced traction and fluid temperature under low loads but increased them under higher loads, giving rise to formation of a friction polymer.

  18. Direct discrimination of Parmotrema tinctorum from various location by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Fam, W. H.; Latip, Jalifah; bin Din, Laily; Samsuddin, Mohd. Wahid

    2014-09-01

    Parmatrema tinctorum collected from various locations of Gohtong Jaya, Genting Highlands, Pahang underwent IR analysis. The analysis is aimed to discriminate the chemical constituents of P. tinctorum living in pristine and polluted area. Based on the FTIR analysis, there is a close resemblance in the absorption bands of all collected samples but differ in terms of their intensity. This suggested all samples produce similar chemical constituents but varies in numbers of metabolites. Student's t test was then performed on the IR spectra and results showed that there is a significant difference between P. tinctorum collected from pristine area and roundabout with heavy traffic. These preliminary results suggested other additional chemical constituents were produced in addition to depsides, depsidones and other aromatic polyketides by P. tinctorum living in the polluted area. Further isolation work is currently on going to identify the secondary metabolites.

  19. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  20. Application of x-ray absorption spectroscopy to the study of corrosion and inhibition

    SciTech Connect

    Davenport, A.J.; Isaacs, H.S.

    1991-01-01

    X-ray absorption spectroscopy is a powerful technique for determination of valency and coordination. Measurements can be made in air or in situ under electrochemical control. The technique will be described and its application to the analysis of passive oxide films, corrosion products, and inhibitors will be reviewed.

  1. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  2. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  3. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring.

  4. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring. PMID:27410280

  5. Fourier transform infrared spectroscopy study on order-disorder transition in Langmuir-Blodgett films of 7-(2-octadecyloxycarbonylethyl)guanine before and after recognition to cytidine.

    PubMed

    Miao, Wangen; Luo, Xuzhong; Wu, Sanxie; Liang, Yingqiu

    2004-01-01

    Order-disorder transitions of 9-monolayer Langmuir-Blodgett (LB) films of 7-(2-octadecyloxycarbonylethyl)guanine (ODCG) before and after recognition to cytidine were investigated by Fourier transform infrared (FTIR) spectroscopy. The different order-disorder transitions suggest that molecular recognition between ODCG and cytidine influence these two LB films on the order-disorder process of alkyl tailchain. Cleavage of the multi-hydrogen bonds was also observed by the infrared spectroscopy at elevated temperature.

  6. Characterization of polymer composites during autoclave manufacturing by Fourier transform Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Smith, Wayne W.; Rigas, Elias J.; Granville, Dana

    2001-02-01

    12 The superior engineering properties of fiber reinforced polymer matrix composites, primarily the high strength-to- weight ratio, make them suitable to applications ranging from sporting goods to aircraft components (e.g. helicopter blades). Unfortunately, consistent fabrication of components with desired mechanical properties has proven difficult, and has led to high production costs. This is largely due to the inability to monitor and control polymer cure, loosely defined as the process of polymer chain extension and cross- linking. Even with stringent process control, slight variations in the pre-polymer formulations (e.g. prepreg) can influence reaction rates, reaction mechanisms, and ultimately, product properties. In an effort to optimize the performance of thermoset composite, we have integrated fiber optic probes between the plies of laminates and monitored cure by Raman spectroscopy, with the eventual goal of process control. Here we present real-time measurements of two high performance aerospace companies cured within an industrial autoclave.

  7. Fourier-Transform Microwave and Millimeterwave Spectroscopy of CH2IBr in its Ground Vibrational State

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kotomi; Sakai, Shohei; Ozeki, Hiroyuki; Okabayashi, Toshiaki; Bailey, William C.; Duflot, Denis; Bailleux, Stephane

    2014-06-01

    Halo-substituted methanes constitute a class of molecules that are important in various fields, from spectroscopy to quantum-chemical calculations. They are also gaining interest due to their potential adverse impact on the atmospheric chemistry. In the series of the CH_2IX iodomethanes where X = {F, Cl, Br}, only the rotational spectra of CH_2IF and CH_2ICl have been published. We present our investigations on the high-resolution rotational spectroscopy of the two bromine isotopologues of bromoiodomethane, CH_2I79Br and CH_2I81Br. Due to the lack of spectroscopic information available for this compound, high-level quantum-chemical calculations were essential to guide the microwave and millimeterwave spectral assignments of both μ_a- and μ_b-type transitions. They provided rotational and centrifugal distortion constants (quartic and sextic), as well as the quadrupole-coupling tensor of the iodine (II = 5/2) and bromine (IBr = 3/2) nuclei. More than 1900 lines have been analyzed, leading to an accurate determination of molecular constants for both isotopologues. The experimental structure (r_0) of the title species has been derived from the two sets of rotational constants. S.B. acknowledges support from the Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-005 of the Programme d'Investissement d'Avenir. C. Puzzarini, G. Cazzoli, J. C. López, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng and J. Gauss, J. Chem. Phy. 62, 174312 (2011). S. Bailleux, H. Ozeki, S. Sakai, T. Okabayashi, P. Kania and D. Duflot, J. Mol. Spectrosc. 270, 51 (2011).

  8. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  9. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    SciTech Connect

    Tilikin, I. N. Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-15

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  10. Evaluation of different grades of ginseng using Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Ginseng is one of the most widely used herbal medicines which have many kinds of pharmaceutical values. The discrimination of grades of ginseng includes the cultivation types and the growth years herein. To evaluate the different grades of ginseng, the fibrous roots and rhizome roots of ginseng were analyzed by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy in this paper. The fibrous root and rhizome root of ginseng have different content of starch, calcium oxalate and other components. For the fibrous roots of ginseng, mountain cultivation ginseng (MCG), garden cultivation ginseng (GCG) and transplanted cultivation ginseng (TCG) have clear difference in the infrared spectra and second derivative spectra in the range of 1800-400 cm -1, and clearer difference was observed in the range of 1045-1160 and 1410-1730 cm -1 in 2D synchronous correlation spectra. Three kinds of ginseng can be clustered very well by using SIMCA analysis on the basis of PCA as well. For the rhizome roots, the content of calcium oxalate and starch change with growth years in the IR spectra, and some useful procedure can be obtained by the analysis of 2D IR synchronous spectra in the range of 1050-1415 cm -1. Also, ginsengs cultivated in different growth years were clustered perfectly by using SIMCA analysis. The results suggested that different grades of ginseng can be well recognized using the mid-infrared spectroscopy assisted by 2D IR correlation spectroscopy, which provide the macro-fingerprint characteristics of ginseng in different parts and supplied a rapid, effective approach for the evaluation of the quality of ginseng.

  11. Nondestructive wood discrimination: FTIR - Fourier Transform Infrared Spectroscopy in the characterization of different wood species used for artistic objects

    NASA Astrophysics Data System (ADS)

    Buoso, Maria Crista; de Poli, Mario; Matthaes, Peter; Silvestrin, Luca; Zafiropoulos, Demetre

    2016-09-01

    Wooden artifacts represent a significant component of past cultures. Successful conservation of wooden artifacts depends on the knowledge of wood structure and types. It is critical that conservators know the category of wood that they are treating in order to successfully conserve it. Recently, vibrational spectroscopy has been successfully applied to determine the chemical structure of wood and to characterize wood types. FTIR (Fourier Transform Infrared) is a useful nondestructive or micro-destructive analytical technique providing information about chemical bonding and molecular structure. Its application in the discrimination between softwoods (conifers) and hardwoods (broad-leafs) has already been reported. The aim of the present study was to investigate the potential of FTIR as a tool for the discrimination between different wood types belonging to the same genus. Three different hardwood species, namely poplar (Populus spp), lime (Tilia spp) and birch (Betula spp), were investigated by means of FTIR spectroscopy. The woods were first inspected using a light microscope to certify the wood essence types through micrographic and morphoanatomical features. The FTIR spectra in the 4000 cm‑1 to 450 cm‑1 region were recorded using a Perkin-Elmer Spectrum 100 spectrometer. To enhance the qualitative interpretation of the IR spectra, second derivatives of all spectra were calculated using the Spectrum software to separate superimposed bands and to extract fine spectral details. To obtain a comprehensive characterization, the essences under investigation were also analyzed by means of Raman Spectroscopy. Clear differences were found in the spectra of the three samples confirming FTIR to be a powerful tool for wood type discrimination.

  12. Nondestructive wood discrimination: FTIR - Fourier Transform Infrared Spectroscopy in the characterization of different wood species used for artistic objects

    NASA Astrophysics Data System (ADS)

    Buoso, Maria Crista; de Poli, Mario; Matthaes, Peter; Silvestrin, Luca; Zafiropoulos, Demetre

    2016-09-01

    Wooden artifacts represent a significant component of past cultures. Successful conservation of wooden artifacts depends on the knowledge of wood structure and types. It is critical that conservators know the category of wood that they are treating in order to successfully conserve it. Recently, vibrational spectroscopy has been successfully applied to determine the chemical structure of wood and to characterize wood types. FTIR (Fourier Transform Infrared) is a useful nondestructive or micro-destructive analytical technique providing information about chemical bonding and molecular structure. Its application in the discrimination between softwoods (conifers) and hardwoods (broad-leafs) has already been reported. The aim of the present study was to investigate the potential of FTIR as a tool for the discrimination between different wood types belonging to the same genus. Three different hardwood species, namely poplar (Populus spp), lime (Tilia spp) and birch (Betula spp), were investigated by means of FTIR spectroscopy. The woods were first inspected using a light microscope to certify the wood essence types through micrographic and morphoanatomical features. The FTIR spectra in the 4000 cm-1 to 450 cm-1 region were recorded using a Perkin-Elmer Spectrum 100 spectrometer. To enhance the qualitative interpretation of the IR spectra, second derivatives of all spectra were calculated using the Spectrum software to separate superimposed bands and to extract fine spectral details. To obtain a comprehensive characterization, the essences under investigation were also analyzed by means of Raman Spectroscopy. Clear differences were found in the spectra of the three samples confirming FTIR to be a powerful tool for wood type discrimination.

  13. Spectral monitoring of toluene and ethanol in gasoline blends using Fourier-Transform Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan; Meyrueis, Patrick; Javahiraly, Nicolas

    2013-04-01

    The combination of fossil-derived fuels with ethanol and methanol has acquired relevance and attention in several countries in recent years. This trend is strongly affected by market prices, constant geopolitical events, new sustainability policies, new laws and regulations, etc. Besides bio-fuels these materials also include different additives as anti-shock agents and as octane enhancer. Some of the chemical compounds in these additives may have harmful properties for both environment and public health (besides the inherent properties, like volatility). We present detailed Raman spectral information from toluene (C7H8) and ethanol (C2H6O) contained in samples of ElO gasoline-ethanol blends. The spectral information has been extracted by using a robust, high resolution Fourier-Transform Raman spectrometer (FT-Raman) prototype. This spectral information has been also compared with Raman spectra from pure additives and with standard Raman lines in order to validate its accuracy in frequency. The spectral information is presented in the range of 0 cm-1 to 3500 cm-1 with a resolution of 1.66cm-1. This allows resolving tight adjacent Raman lines like the ones observed around 1003cm-1 and 1030cm-1 (characteristic lines of toluene). The Raman spectra obtained show a reduced frequency deviation when compared to standard Raman spectra from different calibration materials. The FT-Raman spectrometer prototype used for the analysis consist basically of a Michelson interferometer and a self-designed photon counter cooled down on a Peltier element arrangement. The light coupling is achieved with conventional62.5/125μm multi-mode fibers. This FT-Raman setup is able to extract high resolution and frequency precise Raman spectra from the additives in the fuels analyzed. The proposed prototype has no additional complex hardware components or costly software modules. The mechanical and thermal disturbances affecting the FT-Raman system are mathematically compensated by accurately

  14. Herschel-SPIRE Fourier transform spectroscopy of the nearby spiral galaxy IC 342

    NASA Astrophysics Data System (ADS)

    Rigopoulou, D.; Hurley, P. D.; Swinyard, B. M.; Virdee, J.; Croxall, K. V.; Hopwood, R. H. B.; Lim, T.; Magdis, G. E.; Pearson, C. P.; Pellegrini, E.; Polehampton, E.; Smith, J.-D.

    2013-09-01

    We present observations of the nearby spiral galaxy IC 342 with the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier transform spectrometer. The spectral range afforded by SPIRE, 196-671 μm, allows us to access a number of 12CO lines from J = 4-3 to J = 13-12 with the highest J transitions observed for the first time. In addition we present measurements of 13CO, [C I] and [N II]. We use a radiative transfer code coupled with Bayesian likelihood analysis to model and constrain the temperature, density and column density of the gas. We find two 12CO components, one at 35 K and one at 400 K with CO column densities of 6.3 × 1017 and 0.4 × 1017 cm-2 and CO gas masses of 1.26 × 107 and 0.15 × 107 M⊙ for the cold and warm components, respectively. The inclusion of the high-J 12CO line observations indicate the existence of a much warmer gas component (˜400 K) confirming earlier findings from H2 rotational line analysis from Infrared Space Observatory and Spitzer. The mass of the warm gas is 10 per cent of the cold gas, but it likely dominates the CO luminosity. In addition, we detect strong emission from [N II] 205 μm and the 3P1 → 3P0 and 3P2 → 3P1 [C I] lines at 370 and 608 μm, respectively. The measured 12CO line ratios can be explained by photon-dominated region (PDR) models although additional heating by e.g. cosmic rays cannot be excluded. The measured [C I] line ratio together with the derived [C] column density of 2.1 × 1017 cm-2 and the fact that [C I] is weaker than CO emission in IC 342 suggests that [C I] likely arises in a thin layer on the outside of the CO emitting molecular clouds consistent with PDRs playing an important role.

  15. Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Kevin R.; Schaller, R. D.; Co, D. T.; Saykally, R. J.; Rude, Bruce S.; Catalano, T.; Bozek, J. D.

    2002-10-01

    X-ray absorption spectroscopy is a powerful probe of local electronic structure in disordered media. By employing extended x-ray absorption fine structure spectroscopy of liquid microjets, the intermolecular O-O distance has been observed to undergo a 5.9% expansion at the liquid water interface, in contrast to liquid methanol for which there is a 4.6% surface contraction. Despite the similar properties of liquid water and methanol (e.g., abnormal heats of vaporization, boiling points, dipole moments, etc.), this result implies dramatic differences in the surface hydrogen bond structure, which is evidenced by the difference in surface tension of these liquids. This result is consistent with surface vibrational spectroscopy, which indicates both stronger hydrogen bonding and polar ordering at the methanol surface as a consequence of "hydrophobic packing" of the methyl group.

  16. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    SciTech Connect

    Fischer, D.A. ); Mitchell, G.E.; Dekoven, B.M. ); Yeh, A.T.; Gland, J.L. ); Moodenbaugh, A.R. )

    1993-01-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  17. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    SciTech Connect

    Fischer, D.A.; Mitchell, G.E.; Dekoven, B.M.; Yeh, A.T.; Gland, J.L.; Moodenbaugh, A.R.

    1993-06-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  18. [Influence of silver/silicon dioxide on infrared absorption spectroscopy of sodium nitrate].

    PubMed

    Yang, Shi-Ling; Yue, Li; Jia, Zhi-Jun

    2014-09-01

    Quickly detecting of ocean nutrient was one important task in marine pollution monitoring. We discovered the application of surface-enhanced infrared absorption spectroscopy in the detection of ocean nutrient through researching the evaporation of sodium nitrate solution. The silicon dioxide (SiO2) with highly dispersion was prepared by Stober method, The silver/silica (Ag/SiO2) composite materials were prepared by mixing ammonia solution and silicon dioxide aqueous solution. Three kinds of composite materials with different surface morphology were fabricated through optimizing the experimental parameter and changing the experimental process. The surface morphology, crystal orientation and surface plasmon resonance were investigated by means of the scanning electronic microscope (SEM), X-ray diffraction (XRD), UV-Visible absorption spectrum and infrared ab- sorption spectroscopy. The SEM images showed that the sample A was purified SiO2, sample B and sample C were mixture of silver nanoparticle and silicon dioxide, while sample D was completed nanoshell structure. The absorption spectroscopy showed that there was surface plasmon resonance in the UV-visible region, while there was possibility of surface plasmon resonance in the Infrared absorption region. The effect of Ag/SiO2 composite material on the infrared absorption spectra of sodium nitrite solution was investigated through systematically analyzing the infrared absorption spectroscopy of sodium nitrate solution during its evaporation, i. e. the peak integration area of nitrate and the peak integration area of water molecule. The experimental results show that the integration area of nitrate was enhanced greatly during the evaporation process while the integration area of water molecule decreased continuously. The integration area of nitrate comes from the anti-symmetric stretch vibration and the enhancement of the vibration is attributed to the interface effect of Ag/SiO2 which is consistent with Jensen T

  19. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  20. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results