Science.gov

Sample records for absorption spectroscopy ftir

  1. Glass Composition-Dependent Silicate Absorption Peaks in FTIR Spectroscopy: Implications for Measuring Sample Thickness and Molecular H2O

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Schipper, C. I.; Stewart, R. B.

    2015-12-01

    Fourier-transform infrared spectroscopy (FTIR) is often used to measure the H2O and CO2 contents of volcanic glasses. A key advantage of FTIR over other analytical techniques is that it can reveal not only total H2O concentration but also H2O speciation, i.e. how much H2O is present as molecular H2O (H2Om) and how much as hydroxyl groups (OH) bound to the silicate network. This H2O speciation data can be used to investigate cooling rate and glass transition temperature of volcanic glasses, and to interpret H2O contents of pyroclasts affected by partial bubble resorption during cooling or secondary hydration after deposition. FTIR in transmitted light requires sample wafers polished on both sides of known thickness. Thickness is commonly measured using a micrometer but this may damage fragile samples and in samples with non-uniform thickness, e.g. vesicular samples, it is difficult to position at the exact location of FTIR analysis. Furthermore, in FTIR images or maps of such samples it is impractical to determine the thickness across the whole of the analysed area, resulting either in only a selection of the collected data being processed quantitatively and the rest being unused, or results being presented in terms of absorbance, which does not account for variations in thickness.It is known that FTIR spectra contain absorption peaks related to the glass aluminosilicate network at wavenumbers of ~2000, ~1830 and ~1600 cm-1 [1]. These have been shown to be proportional to sample thickness at the analysis location for one obsidian composition with up to 0.66 wt% H2O [2]. We test whether this calibration can be applied more widely by analysing a range of synthetic and natural glasses (andesitic to rhyolitic) to examine how the position and relative intensities of the different silicate absorption peaks vary with composition and H2O content. Our data show that even minor differences in composition necessitate a unique calibration. Furthermore, importantly we show how

  2. Airborne observations of the 1992 Arctic winter stratosphere by FTIR solar absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Toon, G. C.; Blavier, J.-F.; Solario, J. N.; Szeto, J. T.

    1993-01-01

    The JPL MkIV interferometer, a Fourier Transform Infra-Red (FTIR) spectrometer designed specifically for atmospheric remote sensing, made measurements of the composition of the Arctic stratosphere in January, February and March 1992. These measurements were made from the NASA DC-8 aircraft as part of the AASE2 campaign. The data reveal that despite 5 to 6 km of subsidence inside the vortex, which more than doubled the vertically integrated column amounts (burdens) of HF and HNO3 with respect to outside the vortex, considerable losses of NO2, HCl and ClNO3 were evident by mid-January. Temporary freeze-out of HNO3 was observed only on one occasion, Jan. 19, and was accompanied by substantial reductions in HCl and ClNO3. During February and March, ClNO3 and NO2 amounts increased dramatically. HCl also recovered but at a much slower rate, so that by March ClNO3 was the major reservoir of inorganic chlorine, at times exceeding HCl by a factor 2.

  3. Measurements of methane emissions from landfills using a time correlation tracer method based on FTIR absorption spectroscopy.

    PubMed

    Galle, B; Samuelsson, J; Svensson, B H; Borjesson, G

    2001-01-01

    Methane is an important climate gas contributing significantly to global warming. A large part of the anthropogenic emissions of methane comes from landfills. Due to the biogenic origin of these emissions and the inhomogeneous characteristics of landfills and their soil cover, these emissions show large spatial variation. Thus, development of reliable and cost-effective methods for measurements of these emissions is an important task and a challenge to the scientific community. Traditionally, field chamber methods have been used but also different area integrating methods based on downwind plume measurements. These measurements have been supported by meteorological data either directly from local measurements or by controlled release of tracer gas from the landfill providing the dispersion characteristics of the plume. In this paperwe describe a method,the Time Correlation Tracer method, combining controlled tracer gas release from the landfill with time-resolved concentration measurements downwind the landfill using FTIR absorption spectroscopy. The method has been tested and used on measurements at a landfill in southern Sweden over the past 1.5 years. The method has proven to be a usable method for measurements of total methane emission from landfills, and under favorable meteorological conditions we estimate an achievable accuracy of 15-30%. The real time analysis capability of the FTIR makes it possible to judge the success of the measurement already on site and to decide whether more measurements are necessary. The measurement strategy is relatively simple and straightforward, and one person can make a measurement from a medium sized landfill (1-4 ha) within a few days to a week depending on the meteorological situation.

  4. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    SciTech Connect

    Groessle, R.; Beck, A.; Bornschein, B.; Fischer, S.; Kraus, A.; Mirz, S.; Rupp, S.

    2015-03-15

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)

  5. FTIR Rotational Spectroscopy.

    ERIC Educational Resources Information Center

    Woods, Ron; Henderson, Giles

    1987-01-01

    Presented are representative examples of the spectra and the analyses for a linear molecule (HC1), a symmetric top molecule (NH3), and an asymmetric top (H2O). Any combination of these projects could be incorporated in a physical chemistry or molecular spectroscopy laboratory. (RH)

  6. Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV-vis absorption spectroscopy and flow cytometry.

    PubMed

    Liu, Renming; Tang, Weiyue; Kang, Yipu; Si, Minzhen

    2009-08-15

    We report here the use of Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-vis) absorption spectroscopy, and flow cytometry (FCM) to analysis the best dose of X-ray for human laryngeal squamous cell carcinoma cell lines (Hep-2). Our analysis indicates specific FTIR and UV-vis spectral differences between X-irradiated and normal Hep-2 cells. In addition, striking spectral differences are seen in FTIR spectra in the ratios at 2925/2958 and 1654/1542 cm(-1). These two ratios of the X-irradiated cells for 8 Gy dose group with value of 1.07+/-0.025 and 1.184+/-0.013, respectively, were more notable (mean+/-S.D., n=5, P<0.05) compared with that of the cells for the controls. UV-vis absorption spectra analysis shows X-ray irradiation disturbed the metabolism of phenylalanine and tyrosine intracellular, maybe, which was caused by cell cycle arrest. Spectroscopy analysis suggests 8 Gy is a better dose of X-ray for lowering the canceration degree of Hep-2 cells. Moreover, FCM analysis shows the apoptosis of X-irradiated cells depended on the radiation dose to some extent, but it was not linear. The total apoptosis ratio with value of (20.793+/-1.133)% (P<0.01, n=5) for the 12 Gy dose group was the maximum, however, the maximum apoptosis ratio per Gray (total apoptosis ratio/radiation dose) was the cells of the 2 Gy dose group with value of (4.887+/-0.211)% (P<0.05, n=5). Our data suggest that Hep-2 cells are given 2 Gy radiation of X-ray once a time, 8 Gy per week (accumulatively), the effect for lowering the canceration degree and restraining the proliferation of Hep-2 cells will be better.

  7. Surface inspection using FTIR spectroscopy

    NASA Technical Reports Server (NTRS)

    Powell, G. L.; Smyrl, N. R.; Williams, D. M.; Meyers, H. M., III; Barber, T. E.; Marrero-Rivera, M.

    1995-01-01

    The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface inspection is described. Laboratory instruments and portable instruments can support remote sensing probes that can map chemical contaminants on surfaces with detection limits under the best of conditions in the sub-nanometer range, i.e.. near absolute cleanliness, excellent performance in the sub-micrometer range, and useful performance for films tens of microns thick. Examples of discovering and quantifying contamination such as mineral oils and greases, vegetable oils, and silicone oils on aluminum foil, galvanized sheet steel, smooth aluminum tubing, and sandblasted 7075 aluminum alloy and D6AC steel. The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques associated with quantitatively applying oils to metals, subsequently verifying the application, and non-linear relationships between reflectance and the quantity oil are described.

  8. A top-down approach to determine carbon monoxide (CO) emissions in the Mexico Megacity using ground based FTIR solar and lunar absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Stremme, Wolfgang; Ortega, Ivan; Garcia, Agustin; Grutter, Michel

    2010-05-01

    The carbon monoxide (CO) total column has been measured by ground based solar and lunar FTIR absorption spectroscopy with 0.5 cm-1 resolution since October 2007 at the UNAM Campus in Mexico City (19,33°N, 99.18°W). The CO column density is retrieved using the SFIT2 retrieval code based on the optimal estimation theory (Rodgers 1976). The time series of the CO-column retrievals show different diurnal behaviours compared to the surface CO concentration. This is explained by the change in the vertical distribution which is dominated by the evolution of the mixing layer height (MLH). The CO column shows a diurnal and weekly pattern depending on the wind speed and traffic, but is not directly dependent on the mixing layer height. A comparison of the measured CO-column, CO-surface concentration and the reconstructed MLH with results from regional MCCM (Grell et al , 2000) model will be presented. Based on the information of the vertical structure, the surface wind fields and surface CO concentrations that are provided by LIDAR measurements, the meteorological and air quality networks, it is possible to estimate the horizontal CO-transport. The CO surface emissions can therefore be calculated from the CO column growth rate. For horizontal homogeneous conditions, the CO column density growth-rate directly gives the surface emission. A first top-down CO emission estimation is presented and compared with the official inventory (bottom-up approach) and other estimations used in recent studies on Mexico City. Monitoring of CO columns in megacities provides new information of the anthropogenic emissions on a regional scale and helps to link the understanding of the CO budget from local to the global scale.

  9. Identification of clay minerals in reservoir rocks by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Cong Khang, Vu; Korovkin, Mikhail V.; Ananyeva, Ludmila G.

    2016-09-01

    Clay minerals including kaolinite, montmorillonite and bentonite in oil and gas reservoir rocks are identified by absorption spectra obtained via Fourier Transform Infrared (FTIR) spectroscopy. Bands around 3695, 3666, 3650 and 3630 cm-1 and bands around 3620 and 3400 cm-1 are the most diagnostically reliable for kaolinite and montmorillonite, respectively; also absorption bands in the region of 1200...955 cm-1 are equally diagnostic for all the clay minerals studied.

  10. FTIR Spectroscopy for Carbon Family Study.

    PubMed

    Ţucureanu, Vasilica; Matei, Alina; Avram, Andrei Marius

    2016-11-01

    Fourier transform Infrared (FTIR) spectroscopy is a versatile technique for the characterization of materials belonging to the carbon family. Based on the interaction of the IR radiation with matter this technique may be used for the identification and characterization of chemical structures. Most important features of this method are: non-destructive, real-time measurement and relatively easy to use. Carbon basis for all living systems has found numerous industrial applications from carbon coatings (i.e. amorphous and nanocrystalline carbon films: diamond-like carbon (DLC) films) to nanostructured materials (fullerenes, nanotubes, graphene) and carbon materials at nanoscale or carbon dots (CDots). In this paper, we present the FTIR vibrational spectroscopy for the characterization of diamond, amorphous carbon, graphite, graphene, carbon nanotubes (CNTs), fullerene and carbon quantum dots (CQDs), without claiming to cover entire field.

  11. Soliton absorption spectroscopy

    PubMed Central

    Kalashnikov, V. L.; Sorokin, E.

    2010-01-01

    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique. PMID:21151755

  12. Characterization of Phytophthora infestans resistance to mefenoxam using FTIR spectroscopy.

    PubMed

    Pomerantz, A; Cohen, Y; Shufan, E; Ben-Naim, Y; Mordechai, S; Salman, A; Huleihel, M

    2014-12-01

    Phytophthora infestans (P. infestans) is the causal agent of late blight in potato and tomato. This pathogen devastated the potato crops in Ireland more than a century years ago and is still causing great losses worldwide. Although fungicides controlling P. infestans have been used successfully for almost 100 years, some isolates have developed resistance to most common fungicides. Identification and characterization of these resistant isolates is required for better control of the disease. Current methods that are based on microbiological and molecular techniques are both expensive and time consuming. Fourier Transform Infra-Red spectroscopy (FTIR) is an inexpensive and reagent-free technique that provides accurate results in only a few minutes. In this study the infrared absorption spectra of the sporangia of P. infestans were measured to evaluate the potential of FTIR spectroscopy in tandem with multivariate analysis in order to classify those sporangia into those that were resistant and those that were non-resistant to the phenylamide fungicide mefenoxam. Based on individual measurements, our results show that FTIR spectroscopy enables classification of P. infestans isolates into mefenoxam resistant and mefenoxam non-resistant types with specificity of 81.9% and sensitivity of 75.5%. Using average spectra per leaf, it was possible to improve the classification results to 88% sensitivity and 95% specificity.

  13. [Application of FTIR micro-spectroscopy in the tribology].

    PubMed

    Hu, Zhi-meng

    2002-10-01

    The wave number of characteristic absorption peak nu asC-O-C of the polyester formed on the frictional process were determined by Fourier Transform Infrared (FTIR) Micro-spectroscopy, and the wave number displacement of characteristic absorption peak nu asC-O-C was analyzed based on the conversion mass of polyester formed. The internal relations between anti-wear order rule of hydroxyl fatty acids and vibration absorption peak nu asC-O-C of polyester formed by hydroxyl fatty acids was deduced according to these results, and the anti-wear order of hydroxyl fatty acids was reasonably explained, that is 13, 14-di-hydroxydocosanoic acid > 13 (14)-monohydroxydocosanoic acid = 9,10-dihydroxyoctadecanoic acid > 9,10,12-trihydroxyoctadecanoic acid > 9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by 13, 14-dihydroxydocosanoic acid and a linear polyester film is formed by 9, (10)-monohydroxyoctadecanoic acid and 13(14)-monohydroxydocosanoic acid.

  14. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  15. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  16. Tissue diagnostics using fiber optic FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bindig, Uwe; Waesche, Wolfgang; Liebold, K.; Winter, Harald; Gross, Ulrich M.; Frege, P.; Mueller, G.

    1999-01-01

    The infrared spectrum of biological tissue is due to the 'microheterogenous' composition as a whole and is based on complex vibrational modes. In detail, the spectrum represents the biochemical status resulting from a combination of the structural framework of tissues together with the biological active compounds of metabolism. According to the literature, the main IR-spectroscopic differences are to be expected by the characteristic spectral pattern which is located at the 'fingerprint' region (1500 - 1000 cm-1). In order to design and develop an endoscopic system for the in vivo identification of healthy and malignant tissue FTIR- measurements were carried out using a fiberoptic device. The source of IR-radiation can be either the FTIR-spectrometer or tunable IR-diode lasers. Fiberoptic IR-spectra obtained using the attenuated total reflectance (ATR) and reflection mode were compared to spectra resulting from the FTIR- microspectroscopic measurements.

  17. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.

    PubMed

    Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim

    2015-06-21

    The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.

  18. Bioacoustic Absorption Spectroscopy

    DTIC Science & Technology

    2016-06-07

    seas in co-operation with fisheries biologists. The first planned experiment will be in the seas off California in co-operation with the Southwest... Fisheries Science Center of NOAA’s National Marine Fisheries Service. These experiments will be designed to investigate the “signatures” of the two major...formulating environmental adaptation strategies for tactical sonars. Fisheries applications: These results suggest that bioacoustic absorptivity can be used to

  19. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  20. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  1. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    PubMed

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell.

  2. [Structural characterization of copper-phthalocyanine thin solid films by FTIR spectroscopy].

    PubMed

    Ding, H; Zhang, Y; Chen, W; Xi, S

    1997-04-01

    The structure of tris- (2, 4-di-t-amylpheoxy) - (8-quinolinoxy) copper phthalocyanine (CuPc) thin solid films has been characterized by Fourier transform infrared (FTIR) transmission, polarized transmission and reflection absorption (RA) spectroscopy. The following conclusions can be obtained from the above measurements: (1)in LB films, the hydrocarbon chains of CuPc are in hexagonal or pseudohexagonal subcell packing, the CH2 asymmetric vibrational vector is oriented with respect to the substrate surface and the RA spectroscopy can distinguish the two CH2 streching modes of benzene cycle; (2)in sublimed films, the molecules of CuPc are out of order.

  3. FT-IR spectroscopy study of perturbations induced by antibiotic on bacteria (Escherichia coli).

    PubMed

    Zeroual, W; Manfait, M; Choisy, C

    1995-04-01

    Fourier transform infrared spectroscopy (FT-IR) is an analysis method which over the spectral absorption, gives information about the molecular structures of systems. Recently, this method is widely used to the investigation of complex systems like cells and bacteria. Characteristic of FT-IR spectrum of bacteria depend closely to physiological and culture parameters. In this study, the infrared bands of intact bacteria are first tentatively attributed to the contribution of the cellular components. Secondly are compared the FT-IR spectra of Escherichia coli bacteria before and after treatment at sub-inhibitrice concentrations (< or = MIC) at penicillin A, penicillin G and nalidixic acid. The observed spectral perturbations are closely depending on the antibiotic treatment and are observed even if bacterial cell mass is far away from cell death. On the other hand, this spectral changes are related to the known mode of action of the used antibiotic.

  4. Surface analysis of powder binary mixtures with ATR FTIR spectroscopy.

    PubMed

    Planinsek, Odon; Planinsek, Daniela; Zega, Anamarija; Breznik, Matej; Srcic, Stane

    2006-08-17

    Attenuated Total Reflectance Fourier Transform Infra Red spectroscopy (ATR FTIR) has been used for surface analysis of powder mixtures. The appearance of one component on the surface of the mixture in greater amounts than that expected from the mass or volume ratio was quantified. Coloured mixtures containing methyl orange were analysed. They contained proportions of components from 0% to 100% in steps of 10%. Mixtures of non-sieved powders of methyl orange and Povidone were dark red when containing only 20% of methyl orange, indicating that particles of methyl orange were present on the surface of the mixture in higher amounts than expected from the mass ratios. Mixtures of methyl orange and Mg stearate, on the other hand, were a light colour, showing the presence of more Mg stearate on the surface than expected. Visual observations correlated with semiquantitative surface concentration determination by ATR FTIR spectroscopy using specific peaks of each component. Quantitative determination of components on the surface of the mixture, using the Beer Lambert law, was possible when characteristic peaks for the first component did not overlap with those of the other component. A non-linear correlation between peak height and concentration of a component in a mixture was explained by distribution of the particle size of components. With a small component, the larger number of particles in the same volume allowed them to surround the larger particles of the second component. These conclusions were confirmed by preparing mixtures with non-coloured components (Povidone-Eudragit, NaCl-Povidone, NaCl-Eudragit. Results again correlated with the ATR FTIR spectroscopy measurements. It was additionally shown that a small proportion of finer particles can drastically influence the surface of powder mixtures, due to their large contribution to the specific surface area. ATR FTIR is thus demonstrated to be a useful method for studying surfaces of powder mixtures also in terms of

  5. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sheng, Daping; Xu, Fangcheng; Yu, Qiang; Fang, Tingting; Xia, Junjun; Li, Seruo; Wang, Xin

    2015-11-01

    Since liver cancer seriously threatens human health, it is very urgent to explore an effective method for diagnosing liver cancer early. In this study, we investigated the structure differences of IR spectra between neoplastic liver cells and normal liver cells. The major differences of absorption bands were observed between liver cancer cells and normal liver cells, the values of A2955/A2921, A1744/A1082, A1640/A1535, H1121/H1020 might be potentially useful factors for distinguishing liver cancer cells from normal liver cells. Curve fitting also provided some important information on structural differences between malignant and normal liver cancer cells. Furthermore, IR spectra combined with hierarchical cluster analysis could make a distinction between liver cancer cells and normal liver cells. The present results provided enough cell basis for diagnosis of liver cancer by FTIR spectroscopy, suggesting FTIR spectroscopy may be a potentially useful tool for liver cancer diagnosis.

  6. Absorption Spectroscopy in Homogeneous and Micellar Solutions.

    ERIC Educational Resources Information Center

    Shah, S. Sadiq; Henscheid, Leonard G.

    1983-01-01

    Describes an experiment which has helped physical chemistry students learn principles of absorption spectroscopy, the effect of solvent polarity on absorption spectra, and some micellar chemistry. Background information and experimental procedures are provided. (JN)

  7. Atomic absorption spectroscopy in ion channel screening.

    PubMed

    Stankovich, Larisa; Wicks, David; Despotovski, Sasko; Liang, Dong

    2004-10-01

    This article examines the utility of atomic absorption spectroscopy, in conjunction with cold flux assays, to ion channel screening. The multiplicity of ion channels that can be interrogated using cold flux assays and atomic absorption spectroscopy is summarized. The importance of atomic absorption spectroscopy as a screening tool is further elaborated upon by providing examples of the relevance of ion channels to various physiological processes and targeted diseases.

  8. Coal devolatilization and char combustion study using FTIR spectroscopy

    SciTech Connect

    Raines, T.S.; Brown, R.C.

    1995-12-31

    The goal of this research is to characterize coals during the normal operation of an industrial-scale circulating fluidized bed (CFB) boiler. The method determines coal properties based on the analysis of transient CO and CO{sub 2} emissions from the boiler. Fourier Transform Infrared (FTIR) spectroscopy is used to qualitatively and quantitatively analyze the gaseous products of combustion. The method is non-intrusive and is performed under realistic combustion conditions. Preliminary data suggest that coal devolatilization is complete before char combustion commences in a circulating fluidized bed boiler.

  9. Application of FTIR spectroscopy to the characterization of archeological wood.

    PubMed

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2016-01-15

    Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P=0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR.

  10. Application of FTIR spectroscopy to the characterization of archeological wood

    NASA Astrophysics Data System (ADS)

    Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio

    2016-01-01

    Two archeological wood samples were studied by attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy. They originate from a shipwreck in Ribadeo Bay in the northwest of Spain and from a beam wood of an old nave of the Cathedral of Segovia in the central Spain. Principal component analysis was applied to the transposed data matrix (samples as columns and spectral bands as rows) of 43 recorded spectra (18 in the shipwreck and 25 in the beam wood). The results showed differences between the two samples, with a larger proportion of carbohydrates and smaller proportion of lignin in the beam than in the shipwreck wood. Within the beam wood, lignin content was significantly lower in the recent than the old tree rings (P = 0.005). These variations can be attributed to species differences between the two woods (oak and pine respectively), with a mixture of guaiacyl and syringyl in hardwood lignin, whereas softwood lignin consists almost exclusively of guaiacyl moieties. The influence of environmental conditions on the FTIR fingerprint was probably reflected by enhanced oxidation of lignin in aerated conditions (beam wood) and hydrolysis of carbohydrates in submerged-anoxic conditions (shipwreck wood). Molecular characterization by analytical pyrolysis of selected samples from each wood type confirmed the interpretation of the mechanisms behind the variability in wood composition obtained by the FTIR-ATR.

  11. Raman/FTIR spectroscopy of oil shale retort gases

    SciTech Connect

    Richardson, J H; Monaco, S B; Sanborn, R H; Hirschfeld, T B; Taylor, J R

    1982-08-01

    A Raman facility was assembled in order to aid in the evaluation of the feasibility of using Raman or FTIR spectroscopy for analyzing gas mixtures of interest in oil shale. Applications considered in oil shale research included both retort monitoring and laboratory kinetic studies. Both techniques gave limits of detection between 10 and 1000 ppM for ten representative pertinent gases. Both techniques are inferior as a general analytical technique for oil shale gas analysis in comparison with mass spectroscopy, which had detection limits between 1 and 50 ppM for the same gases. The conclusion of the feasibility study was to recommend that mass spectroscopic techniques be used for analyzing gases of interest to oil shale.

  12. [Authentication and adulteration analysis of sesame oil by FTIR spectroscopy].

    PubMed

    Ding, Qing-Zhen; Liu, Ling-Ling; Wu, Yan-Wen; Li, Bing-Ning; Ouyang, Jie

    2014-10-01

    It's common in edible oil market that adulterating low price oils in high price oils. Sesame oil was often adulterated because of its high quality and price, so the authentication and adulteration of sesame oil were qualitatively and quantitatively analyzed by Fourier transform infrared (FTIR) spectroscopy combined with chemometrics. Firstly, FTIR spectra of sesame oil, soybean oil, and sunflower seed oil in 4,000-650 cm(-1) were analyzed. It was very difficult to detect the difference among the spectra of above edible oils, because they are all mixtures of triglyceride fatty acids and have similar spectra. However, the FTIR data of edible oils in the fingerprint region of 1,800-650 cm(-1) differed slightly because their fatty acid compositions are different, so the data could be classified and recognized by chemometric methods. The authenticity model of sesame oil was built by principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The recognition rate was 100%, and the built model was satisfactory. The classification limits of both soybean oil and sunflower seed oil adulterated in sesame oil were 10%, with the chemometric treatments of standard normal variation (SNV), partial least square (PLS) and PCA. In addition, the FTIR data processed by PCA and PLS were used to establish an analysis model of binary system of sesame oil mixed with soybean oil or sunflower oil, the prediction values had good corresponding relationship with true values, and the relative errors of prediction were between -6.87% and 8.07%, which means the quantitative model was practical. This method is very convenient and rapid after the models have been built, and can be used for rapid detection of authenticity and adulteration of sesame oil. The method is also practical and suitable for the daily analysis of large amount of samples.

  13. Use of absorption spectroscopy for refined petroleum product discrimination

    NASA Astrophysics Data System (ADS)

    Short, Michael

    1991-07-01

    On-line discrimination between arbitrary petroleum products is necessary for optimal control of petroleum refinery and pipeline operation and process control involving petroleum distillates. There are a number of techniques by which petroleum products can be distinguished from one another. Among these, optical measurements offer fast, non-intrusive, real-time characterization. The application examined here involves optically monitoring the interface between dissimilar batches of fluids in a gasoline pipeline. After examination of near- infrared and mid-infrared absorption spectroscopy and Raman spectroscopy, Fourier transform mid-infrared (FTIR) spectroscopy was chosen as the best candidate for implementation. On- line FTIR data is presented, verifying the applicability of the technique for batch interface detection.

  14. Chemical characterization of torbanites by transmission micro-FTIR spectroscopy: Origin and extent of compositional heterogeneities

    NASA Astrophysics Data System (ADS)

    Landais, Patrick; Rochdi, Aïcha; Largeau, Claude; Derenne, Sylvie

    1993-06-01

    Four Permian to Carboniferous torbanites of various geographical origins were examined by transmission micro-FTIR spectroscopy on doubly polished thin sections (10-25 μm). Several types of heterogeneities (different types of organic matrix; yellow and orange Botryococcus braunii colonies) were identified and chemically characterized. Important differences were noted between the organic constituents of the matrix and the algal bodies, regarding the intensity of OH, CO, and aromatic CC absorptions. The previous IR studies of torbanites on bulk samples therefore afforded substantially biased information on the composition of B. braunii fossil colonies, on their oil potential, and on the maturity of such kerogens. Micro-FTIR spectra indicate that the organic matrix corresponds neither to an extensive breaking up of colonies nor to humic substances. This matrix is highly heterogeneous; two types were identified in the Autun sample (chiefly corresponding to degraded algal and bacterial constituents, respectively). A precise characterization of the organic matrix was made difficult, however, in Pumpherston torbanite, due to intimate mixing with minerals. The co-occurrence of yellow and orange colonies, with contrasted micro-FTIR features, in Autun torbanite neither reflects radiolysis processes nor differences in maturation and/or source algae. A specific spatial relation was observed between these two types of algal bodies and the organo-mineral matrix, thus revealing differences in colony microenvironment after deposition. The orange colonies are likely derived, in agreement with their micro-FTIR spectra and their spatial correlation with the matrix, from sedimentological and/or matrix-catalysed diagenetic transformations of some yellow colonies. This first application of micro-FTIR to kerogens confirmed the utility of this nondestructive, in situ pin-point method. Although torbanites have been extensively studied, all the analytical methods so far used only

  15. Differentiation of Leishmania species by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  16. Studies on breast tumor tissues with ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Ge; Xu, Jialin; Niu, Yun; Zhang, Cunzhou; Zhang, Chunping

    2005-01-01

    The original and deconvoluted spectra of Attenuated Total Reflection (ATR) FTIR have been determined for both benign and malignant tumor tissues samples and the spectral differences have been investigated between the two types of samples. In comparison with the benign samples, the characteristic changes of malignant ones mainly involve: The prominent bands 1652 and 1645cm-1 due to the proteins in the α-helical and the unordered-random-coils substructures become stronger compared to those in the β-sheet and the turns substructures, suggesting that the former type of proteins increase in content in contrast to the later. The phospodiester band 1083 cm-1 of the nucleic acids becomes strongest on cancer tissues spectra and its area ratio to the amide II band 1548cm-1 rises greatly, indicating that the DNA content rises remarkably. The collagen proteins reduce in content while phosphorylated ones rise, and some hydrogen bonding is nearly broken in amino acid residue C-O (H) groups. The glycogen content decreases, and the CH2 content is higher than CH3 one. These results suggest that ATR-FTIR spectroscopy has the potential to become a powerful tool for biochemical studies and in vivo diagnosis of human breast cancers.

  17. Monitoring of bacterial growth and structural analysis as probed by FT-IR spectroscopy.

    PubMed

    Zeroual, W; Choisy, C; Doglia, S M; Bobichon, H; Angiboust, J F; Manfait, M

    1994-06-30

    Fourier-transform infrared spectroscopy was used to explore structural changes in bacteria under different incubation conditions. In particular, differences between Bradyrhizobium japonicum (BRJ) grown in liquid and on solid media were investigated, as well as the rearrangement of BRJ after transfer from one medium to the other. The FT-IR absorption bands located between 1200 and 900 cm-1 region, vary in spectral shape and intensity when BRJ were suspended in solution medium or plated on solid medium. In agreement with the electronic micrograph data, these spectroscopic changes are due to the changes involving the bacterial wall (peptidoglycan) when BRJ are plated in agar medium. By means of this FT-IR ultrastructural study of Bradyrhizobium japonicum bacteria, it has been possible to follow and to evaluate the rate of the molecular change in bacteria without any destructive interference. This indicates that FT-IR spectroscopy can prove to be a valuable technique in the monitoring of metabolic events in bacterial cells relevant to agriculture as well as environmental and health sciences.

  18. Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites.

    PubMed

    Ling, Florence T; Post, Jeffrey E; Heaney, Peter J; Kubicki, James D; Santelli, Cara M

    2017-05-05

    The characterization of birnessite structures is particularly challenging for poorly crystalline materials of biogenic origin, and a determination of the relative concentrations of triclinic and hexagonal birnessite in a mixed assemblage has typically required synchrotron-based spectroscopy and diffraction approaches. In this study, Fourier-transform infrared spectroscopy (FTIR) is demonstrated to be capable of differentiating synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite. Furthermore, IR spectral deconvolution of peaks resulting from MnO lattice vibrations between 400 and 750cm(-1) yield results comparable to those obtained by linear combination fitting of synchrotron X-ray absorption fine structure (EXAFS) data when applied to known mixtures of triclinic and hexagonal birnessites. Density functional theory (DFT) calculations suggest that an infrared absorbance peak at ~1628cm(-1) may be related to OH vibrations near vacancy sites. The integrated intensity of this peak may show sensitivity to vacancy concentrations in the Mn octahedral sheet for different birnessites.

  19. An improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy.

    PubMed

    Sanyal, Bhaskar; Ahn, Jae-Jun; Maeng, Jeong-Hwan; Kyung, Hyun-Kyu; Lim, Ha-Kyeong; Sharma, Arun; Kwon, Joong-Ho

    2014-09-01

    Changes in cumin and chili powder from India resulting from electron-beam irradiation were investigated using 3 analytical methods: electronic nose (E-nose), Fourier transform infrared (FTIR) spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The spices had been exposed to 6 to 14 kGy doses recommended for microbial decontamination. E-nose measured a clear difference in flavor patterns of the irradiated spices in comparison with the nonirradiated samples. Principal component analysis further showed a dose-dependent variation. FTIR spectra of the samples showed strong absorption bands at 3425, 3007 to 2854, and 1746 cm(-1). However, both nonirradiated and irradiated spice samples had comparable patterns without any noteworthy changes in functional groups. EPR spectroscopy of the irradiated samples showed a radiation-specific triplet signal at g = 2.006 with a hyper-fine coupling constant of 3 mT confirming the results obtained with the E-nose technique. Thus, E-nose was found to be a potential tool to identify irradiated spices.

  20. Chemical characterization of torbanites by transmission micro-FTIR spectroscopy: Origin and extent of compositional heterogeneities

    SciTech Connect

    Landais, P.; Rochdi, A. ); Largeau, C.; Derenne, S. )

    1993-06-01

    Four Permian to Carboniferous torbanites of various geographical origins were examined by transmission micro-FTIR spectroscopy on doubly polished thin sections (10--25 [mu]m). Several types of heterogeneities (different types of organic matrix; yellow and orange Botryococcus braunii colonies) were identified and chemically characterized. Important differences were noted between the organic constituents of the matrix and the algal bodies, regarding the intensity of OH, C[double bond]O, and aromatic C[double bond]C absorptions. The previous IR studies of torbanites on bulk samples therefore afforded substantially biased information on the composition of B. braunii fossil colonies, on their oil potential, and on the maturity of such kerogens. Micro-FTIR spectra indicate that the organic matrix corresponds neither to an extensive breaking up of colonies nor to humic substances. This matrix is highly heterogeneous; two types were identified in the Autun sample (chiefly corresponding to degraded algal and bacterial constituents, respectively). A precise characterization of the organic matrix was made difficult, however, in Pumpherston torbanite, due to intimate mixing with minerals. The co-occurrence of yellow and orange colonies, with contrasted micro-FTIR features, in Autun torbanite neither reflects radiolysis processes nor differences in maturation and/or source algae. A specific spatial relation was observed between these two types of algal bodies and the organo-mineral matrix, thus revealing differences in colony microenvironment after deposition. The orange colonies are likely derived, in agreement with their micro-FTIR spectra and their spatial correlation with the matrix, from sedimentological and/or matrix-catalyzed diagenetic transformations of some yellow colonies. This first application of micro-FTIR to kerogens confirmed the utility of this nondestructive, in situ pin-point method. 69 refs., 9 figs., 4 tabs.

  1. Investigation of stoichiometry of oxygen precipitates in Czochralski silicon wafers by means of EDX, EELS and FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kot, D.; Kissinger, G.; Schubert, M. A.; Klingsporn, M.; Huber, A.; Sattler, A.

    2016-11-01

    In this work, we used EDX, EELS and FTIR spectroscopy to investigate the stoichiometry of oxygen precipitates in Czochralski silicon wafers. The EDX analysis of a plate-like precipitate demonstrated that the composition of the precipitate is SiO1.93. This result was confirmed by EELS where the characteristic plasmon peak of SiO2 was observed. Additionally, the absorption band of plate-like precipitates at 1223 cm-1 was found in the FTIR spectrum measured at liquid helium temperature. It was demonstrated that this band can only be simulated by the dielectric constants of amorphous SiO2.

  2. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part I--Fundamentals and Examples

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. Several examples of the use of FTIR-ATR spectroscopy in different undergraduate chemistry laboratory courses are presented here. These…

  3. Cancer diagnostics using Fourier transform fiber optic infrared evanescent wave spectroscopy (FTIR-FEWS)

    NASA Astrophysics Data System (ADS)

    Spielvogel, Juergen; Lobik, Leonid; Nissencorn, Israel; Hibst, Raimund; Gotshal, Yaron; Katzir, Abraham

    1998-06-01

    A Fourier transform IR spectrometer and IR transmitting AgClBr fibers were used for fiberoptic evanescent wave spectroscopy (FTIR-FEWS) of cancer. Malignant and healthy tissue samples were extracted from patients at the Meir Hospital in Israel, placed on a Silver Halide fiber, and measured using the FTIR-FEWS system. The IR spectra were analyzed and compared by taking the ratio of absorption of the active functional groups of Amide I at 1642 cm-1 and Amide II at 1545 cm-1. Clear differences appeared between the two types of tissue. When placing the tissue samples on bare fiber the reproducibility of the result was not satisfactory due to chemical interaction between the tissue and the fibers. This problem was solved by applying Polyethylene coating of thickness 1-2 μm on the fiber, leading to reproducible results. The results of these preliminary studies indicate that eh FTIR-FEWS technique can be used for cancer diagnostics. Combined with endoscopy this technique could be used to analyze tissues inside the body in vivo and in real time.

  4. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy.

    PubMed

    Lohumi, Santosh; Lee, Sangdae; Lee, Wang-Hee; Kim, Moon S; Mo, Changyeun; Bae, Hanhong; Cho, Byoung-Kwan

    2014-09-24

    Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1-35 wt % starch) were collected and preprocessed to generate calibration and prediction sets. A multivariate calibration model of partial least-squares regression (PLSR) was executed on the pretreated spectra to predict the presence of starch. The PLSR model predicted adulteration with an R(p)2 of 0.98 and a standard error of prediction (SEP) of 1.18% for the FT-NIR data and an R(p)2 of 0.90 and SEP of 3.12% for the FT-IR data. Thus, the FT-NIR data were of greater predictive value than the FT-IR data. Principal component analysis on the preprocessed data identified the onion powder in terms of added starch. The first three principal component loadings and β coefficients of the PLSR model revealed starch-related absorption. These methods can be applied to rapidly detect adulteration in other spices.

  5. Optical absorption, Mössbauer, and FTIR spectroscopic studies of two blue bazzites

    NASA Astrophysics Data System (ADS)

    Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.; Boesenberg, Joseph S.

    2017-02-01

    Two samples of bazzite, a very rare Sc analog of beryl, from Tørdal, Telemark, Norway and Kent, Central Kazakhstan were studied by electron microprobe, optical absorption, and Mössbauer spectroscopies; the latter sample was also studied by FTIR. Electron microprobe results show that the Norway bazzite is composed of two bazzites with slightly different FeO contents, viz. 5.66 and 5.43 wt%. The Kazakhstan sample consists of several varieties of bazzite displaying strong differences in iron, manganese, magnesium, and aluminum contents (in wt%): FeO from 2.02 to 6.73, MnO from 0.89 to 2.98, MgO from 0.37 to 1.86, and Al2O3 from 0.30 to 1.30. Mössbauer spectroscopy shows different degrees of iron oxidation. The Norway bazzite is completely Fe2+, while the Kazakhstan sample contains roughly equivalent Fe3+ and Fe2+ accommodated in the octahedral site. The difference in iron oxidation causes strong variations in the intensity of the broad optical absorption band around 13,850 cm-1, which is assigned to Fe2+ → Fe3+ IVCT; as a result, there are strong differences in the intensity of blue color. Dichroism (E||c ≫ E⊥c) is much stronger in the Kazakhstan sample than in the Norway one. Intensities of the electronic spin-allowed bands of [6]Fe2+ at 8900 and 10,400 cm-1 are somewhat higher in the latter than in the former. FTIR spectra of the sample from Kent show the presence of only water type II molecules with the H-H vector perpendicular to the c-axis, in contrast to more typical beryls that always show at least weak minor bands of H2O I. This result shows that trapped water molecules in structural channels of studied bazzite occupy only sites next to or between six-membered rings centered by Na atoms. Definite structure can be observed in the vicinities of ν2 and ν3 peaks. Peaks at 1621 and 3663 cm-1 are assigned to "doubly coordinated" H2O (IId), whereas maximums at 1633 and 3643 cm-1 likely represent "singly coordinated" H2O (IIs). Interpretation of the third

  6. ATR-FTIR Spectroscopy for the Assessment of Biochemical Changes in Skin Due to Cutaneous Squamous Cell Carcinoma

    PubMed Central

    Lima, Cássio A.; Goulart, Viviane P.; Côrrea, Luciana; Pereira, Thiago M.; Zezell, Denise M.

    2015-01-01

    Nonmelanoma skin cancers represent 95% of cutaneous neoplasms. Among them, squamous cell carcinoma (SCC) is the more aggressive form and shows a pattern of possible metastatic profile. In this work, we used Fourier transform infrared spectroscopy (FTIR) spectroscopy to assess the biochemical changes in normal skin caused by squamous cell carcinoma induced by multi-stage chemical carcinogenesis in mice. Changes in the absorption intensities and shifts were observed in the vibrational modes associated to proteins, indicating changes in secondary conformation in the neoplastic tissue. Hierarchical cluster analysis was performed to evaluate the potential of the technique to differentiate the spectra of neoplastic and normal skin tissue, so that the accuracy obtained for this classification was 86.4%. In this sense, attenuated total reflection (ATR)-FTIR spectroscopy provides a useful tool to complement histopathological analysis in the clinical routine for the diagnosis of cutaneous squamous cell carcinoma. PMID:25811925

  7. FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases - Implications for laser remote sensing

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Grant, W. B.

    1984-01-01

    The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9-12-micron spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-kayser resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.

  8. Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Papadopoulos, P.; Sölter, J.; Kremer, F.

    2007-10-01

    Polarized Fourier Transform Infrared (FTIR) spectroscopy is employed to study structure-property relationships in major ampullate spider silk being exposed to an external mechanical strain. From the measured infrared dichroism of aminoacid-residue - specific bands the molecular order parameter, the frequency width at half-maximum (FWHM) and the spectral position of the absorption maximum are determined in dependence on the external strain. For the highly ordered alanine-rich β sheets a change in the vibrational potential is found for macroscopic strains as low as a few percent. It can be quantitatively described by a quantum-mechanical approach in which the mechanical strain is treated as a weak external perturbation. The immediate microscopic response to the external field proves that β -sheeted crystals are tightly interconnected by pre-stretched chains as suggested recently (Y. Liu et al., Nat. Mater. 4, 901 (2005)).

  9. Measurement of VOCs in vehicle exhaust by extractive FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lechner, Bernhard; Paar, H.; Sturm, Peter J.

    2001-02-01

    12 The detection of benzene and other organic compounds in vehicle exhaust by FT-IR-spectroscopy is seriously limited by the strong interference of carbon dioxide and the rather weak absorption coefficient of the gases. Therefore, a measurement device was developed which separates the components of interest (mostly VOCs) from carbon dioxide, water and nitric oxide. In addition the VOCs have to be pre- concentrated. To avoid condensation of VOCs the measurements have to take place at higher temperatures. The vehicle exhaust was led through an activated charcoal tube where the organic compounds were adsorbed. Afterwards, the charcoal tube was heated in a furnace, the VOCs were desorbed thermically and were carried by (heated) nitrogen into a gas cell with a path-length of 10 m where the concentration of the different species was measured. With the help of this measurement device a lot of VOC- components like benzene, toluene, and xylene were detected successfully. Measurements were performed on an engine test bed and a chassis dynamometer for heavy duty vehicles. The detection limit of most of the VOCs was about 2 to 3 ppb for a sampling time of 20 min. Calibration measurements showed an accuracy of 15%.

  10. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics

    PubMed Central

    Shang, Zhonglin; Zhao, Jiancheng

    2017-01-01

    Fourier-transform infrared spectroscopy (FTIR) with the attenuated total reflectance technique was used to identify Rhodobryum roseum from its four adulterants. The FTIR spectra of six samples in the range from 4000 cm−1 to 600 cm−1 were obtained. The second-derivative transformation test was used to identify the small and nearby absorption peaks. A cluster analysis was performed to classify the spectra in a dendrogram based on the spectral similarity. Principal component analysis (PCA) was used to classify the species of six moss samples. A cluster analysis with PCA was used to identify different genera. However, some species of the same genus exhibited highly similar chemical components and FTIR spectra. Fourier self-deconvolution and discrete wavelet transform (DWT) were used to enhance the differences among the species with similar chemical components and FTIR spectra. Three scales were selected as the feature-extracting space in the DWT domain. The results show that FTIR spectroscopy with chemometrics is suitable for identifying Rhodobryum roseum and its adulterants. PMID:28207900

  11. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics.

    PubMed

    Cao, Zhen; Wang, Zhenjie; Shang, Zhonglin; Zhao, Jiancheng

    2017-01-01

    Fourier-transform infrared spectroscopy (FTIR) with the attenuated total reflectance technique was used to identify Rhodobryum roseum from its four adulterants. The FTIR spectra of six samples in the range from 4000 cm-1 to 600 cm-1 were obtained. The second-derivative transformation test was used to identify the small and nearby absorption peaks. A cluster analysis was performed to classify the spectra in a dendrogram based on the spectral similarity. Principal component analysis (PCA) was used to classify the species of six moss samples. A cluster analysis with PCA was used to identify different genera. However, some species of the same genus exhibited highly similar chemical components and FTIR spectra. Fourier self-deconvolution and discrete wavelet transform (DWT) were used to enhance the differences among the species with similar chemical components and FTIR spectra. Three scales were selected as the feature-extracting space in the DWT domain. The results show that FTIR spectroscopy with chemometrics is suitable for identifying Rhodobryum roseum and its adulterants.

  12. Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Mandelis, Andreas; Melnikov, Alexander; Michaelian, Kirk; Huan, Huiting; Haisch, Christoph

    2016-07-01

    Air pollutants have adverse effects on the Earth's climate system. There is an urgent need for cost-effective devices capable of recognizing and detecting various ambient pollutants. An FTIR photoacoustic spectroscopy (FTIR-PAS) method based on a commercial FTIR spectrometer developed for air contamination monitoring will be presented. A resonant T-cell was determined to be the most appropriate resonator in view of the low-frequency requirement and space limitations in the sample compartment. Step-scan FTIR-PAS theory for regular cylinder resonator has been described as a reference for prediction of T-cell vibration principles. Both simulated amplitude and phase responses of the T-cell show good agreement with measurement data Carbon dioxide IR absorption spectra were used to demonstrate the capacity of the FTIR-PAS method to detect ambient pollutants. The theoretical detection limit for carbon dioxide was found to be 4 ppmv. A linear response to carbon dioxide concentration was found in the range from 2500 ppmv to 5000 ppmv. The results indicate that it is possible to use step-scan FTIR-PAS with a T-cell as a quantitative method for analysis of ambient contaminants.

  13. Cavity Enhanced Ultrafast Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K.; Reber, Melanie Roberts; Chen, Yuning

    2015-06-01

    Ultrafast spectroscopy on gas phase systems is typically restricted to techniques involving photoionization, whereas solution phase experiments utilize the detection of light. At Stony Brook, we are developing new techniques for performing femtosecond time-resolved spectroscopy using frequency combs and high-finesse optical resonators. A large detection sensitivity enhancement over traditional methods enables the extension of all-optical ultrafast spectroscopies, such as broad-band transient absorption spectroscopy (TAS) and 2D spectroscopy, to dilute gas phase samples produced in molecular beams. Here, gas phase data can be directly compared to solution phase data. Initial demonstration experiments are focusing on the photodissociation of iodine in small neutral argon clusters, where cluster size strongly influences the effects solvent-caging and geminate recombination. I will discuss these initial results, our high power home-built Yb:fiber laser systems, and also extensions of the methods to the mid-IR to study the vibrational dynamics of hydrogen bonded clusters.

  14. FT-IR spectroscopy combined with DFT calculation to explore solvent effects of vinyl acetate.

    PubMed

    Chen, Yi; Zhang, Hui; Liu, Qing

    2014-05-21

    The infrared vibration frequencies of vinyl acetate (VAc) in 18 different solvents were theoretically computed at Density Function Theory (DFT) B3LYP/6-311G(*) level based on Polarizable Continuum Model (PCM) and experimentally recorded by FT-IR spectroscopy. The solvent-induced long-range bulk electrostatic solvation free energies of VAc (ΔGelec) were calculated by the SMD model. The C=O stretching vibration frequencies of VAc were utilized as a measure of the chemical reactivities of the CC group in VAc. The calculated and experimental C=O stretching vibration frequencies of VAc (νcal(C=O) and νexp(C=O)) were correlated with empirical solvent parameters including the KBM equation, the Swain equation and the linear solvation energy relationships (LSER). Through ab initio calculation, assignments of the two C=O absorption bands of VAc in alcohol solvents were achieved. The PCM, SMD and ab initio calculation offered supporting evidence to explain the FT-IR experimental observations from differing aspects.

  15. FT-IR spectroscopy combined with DFT calculation to explore solvent effects of vinyl acetate

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Hui; Liu, Qing

    The infrared vibration frequencies of vinyl acetate (VAc) in 18 different solvents were theoretically computed at Density Function Theory (DFT) B3LYP/6-311G* level based on Polarizable Continuum Model (PCM) and experimentally recorded by FT-IR spectroscopy. The solvent-induced long-range bulk electrostatic solvation free energies of VAc (ΔGelec) were calculated by the SMD model. The Cdbnd O stretching vibration frequencies of VAc were utilized as a measure of the chemical reactivities of the Cdbnd C group in VAc. The calculated and experimental Cdbnd O stretching vibration frequencies of VAc (νcal(Cdbnd O) and νexp(Cdbnd O)) were correlated with empirical solvent parameters including the KBM equation, the Swain equation and the linear solvation energy relationships (LSER). Through ab initio calculation, assignments of the two Cdbnd O absorption bands of VAc in alcohol solvents were achieved. The PCM, SMD and ab initio calculation offered supporting evidence to explain the FT-IR experimental observations from differing aspects.

  16. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  17. FT-IR spectroscopy characterization of schwannoma: a case study

    NASA Astrophysics Data System (ADS)

    Ferreira, Isabelle; Neto, Lazaro P. M.; das Chagas, Maurilio José; Carvalho, Luís. Felipe C. S.; dos Santos, Laurita; Ribas, Marcelo; Loddi, Vinicius; Martin, Airton A.

    2016-03-01

    Schwannoma are rare benign neural neoplasia. The clinical diagnosis could be improved if novel optical techniques are performed. Among these techniques, FT-IR is one of the currently techniques which has been applied for samples discrimination using biochemical information with minimum sample preparation. In this work, we report a case of a schwannoma in the cervical region. A histological examination described a benign process. An immunohistochemically examination demonstrated positivity to anti-S100 protein antibody, indicating a diagnosis of schwannoma. The aim of this analysis was to characterize FT-IR spectrum of the neoplastic and normal tissue in the fingerprint (1000-1800 cm-1) and high wavenumber region (2800-3600 cm-1). The IR spectra were collect from tumor tissue and normal nerve samples by a FT-IR spectrophotometer (Spotlight Perkin Elmer 400, USA) with 64 scans, and resolution of 4 cm-1. A total of twenty spectra were recorded (10 from schwannoma and 10 from nerve). Multivariate Analysis was used to classify the data. Through average and standard deviation analysis we observed that the main spectral change occurs at ≍1600 cm-1 (amide I) and ≍1400 cm-1 (amide III) in the fingerprint region, and in CH2/CH3 protein-lipids and OH-water vibrations for the high wavenumber region. In conclusion, FT-IR could be used as a technique for schwannoma analysis helping to establish specific diagnostic.

  18. FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photoreduction of the bacteriopheophytin electron acceptor.

    PubMed

    Zabelin, Alexej A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2011-09-01

    Mid-infrared spectral changes associated with the photoreduction of the bacteriopheophytin electron acceptor H(A) in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (Cfl.) aurantiacus are examined by light-induced Fourier transform infrared (FTIR) spectroscopy. The light-induced H(A)(-)/H(A) FTIR (1800-1200cm(-1)) difference spectrum of Cfl. aurantiacus RCs is compared to that of the previously well characterized purple bacterium Rhodobacter (Rba.) sphaeroides RCs. The most notable feature is that the large negative IR band at 1674cm(-1) in Rba. sphaeroides R-26, attributable to the loss of the absorption of the 13(1)-keto carbonyl of H(A) upon the radical anion H(A)(-) formation, exhibits only a very minor upshift to 1675cm(-1) in Cfl. aurantiacus. In contrast, the absorption band of the 13¹-keto C=O of H(A)(-) is strongly upshifted in the spectrum of Cfl. aurantiacus compared to that of Rba. sphaeroides (from 1588 to 1623cm(-1)). The data are discussed in terms of: (i) replacing the glutamic acid at L104 in Rba. sphaeroides R-26 RCs by a weaker hydrogen bond donor, a glutamine, at the equivalent position L143 in Cfl. aurantiacus RCs; (ii) a strengthening of the hydrogen-bonding interaction of the 13¹-keto C=O of H(A) with Glu L104 and Gln L143 upon H(A)(-) formation and (iii) a possible influence of the protein dielectric environment on the 13¹-keto C=O stretching frequency of neutral H(A). A conformational heterogeneity of the 13³-ester C=O group of H(A) is detected for Cfl. aurantiacus RCs similar to what has been previously described for purple bacterial RCs.

  19. Triplet absorption spectroscopy and electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  20. Drug-polymer interaction between glucosamine sulfate and alginate nanoparticles: FTIR, DSC and dielectric spectroscopy studies

    NASA Astrophysics Data System (ADS)

    El-Houssiny, A. S.; Ward, A. A.; Mostafa, D. M.; Abd-El-Messieh, S. L.; Abdel-Nour, K. N.; Darwish, M. M.; Khalil, W. A.

    2016-06-01

    This work involves the preparation and characterization of alginate nanoparticles (Alg NPs) as a new transdermal carrier for site particular transport of glucosamine sulfate (GS). The GS-Alg NPs were examined through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dielectric spectroscopy. GS-Alg NPs was efficiently prepared via ionic gelation method which generates favorable conditions for the entrapment of hydrophilic drugs. The TEM studies revealed that GS-Alg NPs are discrete and have spherical shapes. FTIR studies showed a spectral change of the characteristic absorptions bands of Alg NPs after encapsulation with GS because of the amine groups of GS and the carboxylic acid groups of Alg. The DSC data showed changes in the thermal behavior of GS-Alg NPs after the addition of GS indicating signs of main chemical interaction among the drug (GS) and the polymer (Alg). The absence of the drug melting endothermic peak within the DSC thermogram of GS-Alg NPs indicating that GS is molecularly dispersed in the NPs and not crystallize. From the dielectric study, it was found modifications within the dielectric loss (ɛ″) and conductivity (σ) values after the addition of GS. The ɛ″ and σ values of Alg NPs decreased after the addition of GS which indicated the successful encapsulation of GS within Alg NPs. Furthermore, the dielectric study indicated an increase of the activation energy and the relaxation time for the first process in the GS-Alg NPs as compared to Alg NPs. Consequently, the existing observations indicated an initiation of electrostatic interaction among the amine group of GS and carboxyl group of Alg indicating the successful encapsulation of GS inside Alg NPs which could provide favorable circumstance for the encapsulation of GS for topical management.

  1. FT-IR spectroscopy of lipoproteins—A comparative study

    NASA Astrophysics Data System (ADS)

    Krilov, Dubravka; Balarin, Maja; Kosović, Marin; Gamulin, Ozren; Brnjas-Kraljević, Jasminka

    2009-08-01

    FT-IR spectra, in the frequency region 4000-600 cm -1, of four major lipoprotein classes: very low density lipoprotein (VLDL), low density lipoprotein (LDL) and two subclasses of high density lipoproteins (HDL 2 and HDL 3) were analyzed to obtain their detailed spectral characterization. Information about the protein domain of particle was obtained from the analysis of amide I band. The procedure of decomposition and curve fitting of this band confirms the data already known about the secondary structure of two different apolipoproteins: apo A-I in HDL 2 and HDL 3 and apo B-100 in LDL and VLDL. For information about the lipid composition and packing of the particular lipoprotein the well expressed lipid bands in the spectra were analyzed. Characterization of spectral details in the FT-IR spectrum of natural lipoprotein is necessary to study the influence of external compounds on its structure.

  2. Nanosecond step-scan FTIR spectroscopy of hemoglobin: Ligand recombination and protein conformational changes

    SciTech Connect

    Hu, Xuehua; Spiro, T.G.; Frei, H.

    1996-10-08

    Step-scan FTIR spectroscopy with nanosecond time resolution is applied to the photocycle of carbonmonoxy hemoglobin (HbCO). The strong CO stretching band at 1951 cm{sup {minus}1} serves as a convenient monitor of the state of ligation. Both geminate and second-order phases of CO recombination occur at rates which are in excellent agreement with previous visible absorption measurements, showing the molecular mechanisms to be unperturbed by the high protein concentrations (6.7 mM in heme) required for adequate protein signals. While the extent of photolysis (43%) was insufficient to drive the R{r_arrow} T quaternary transition, the protein TRIR (time-resolved infrared) difference bands (1250-1700 cm{sup {minus}1}) nevertheless reveal interesting tertiary dynamics. Most of the bands are fully developed at very early times, possibly preceding the geminate recombination phase ({tau} = 50 ns). Some bands arise more slowly, however, with a time constant of 0.4 {mu}s, reflecting a tertiary motion which is coincident with a quaternary motion previously detected by ultraviolet resonance Raman spectroscopy of fully photolyzed HbCO. Relaxation of the TRIR bands is either faster ({tau} = {approximately}90 {mu}s) or slower ({tau}= {approximately}250 {mu}s) than CO rebinding (effective time constant of 160 {mu}s), suggesting either a distribution of tertiary processes or a chain inequivalence in CO rebinding. 32 refs., 6 figs., 1 tab.

  3. Topical Protectant Evaluation By FT-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Braue, Ernest H.; Pannella, Michael G.

    1989-12-01

    A unique analytical method for evaluating the effectiveness of topical protectants against penetration by chemical agents has been developed using FT-IR and the horizontal attenuated total reflectance (ATR) accessory. A template was fabricated from double-sided adhesive tape attached to a piece of plastic sheet with an 8.0mm hole punched in the middle. This laminate was placed on the surface of the ATR crystal. A uniform thickness layer of topical protectant was applied to the ATR crystal through the hole in the template. Background spectra of the ATR crystal with and without the template were recorded and stored. A chemical challenge was applied to the template filled with topical protectant, and spectra were recorded every 15 seconds using a Nicolet 60SXB FT-IR spectrometer fitted with an MCT-A detector. Analysis of the recorded spectra identified how much time was required for the chemical challenge to break through the topical protectant barrier. The method was validated using polysaturated fat, petroleum jelly, and hexafluoropropylene epoxide polymer as topical protectants. These materials were challenged with ethyl disulfide. The detection threshold concentration for ethyl disulfide in the topical protectant was observed to be 0.5% (w/w). Using a barrier thickness of 0.45mm the break-through times were observed to be 5.0 min and 22.0 min for polysaturated fat and petroleum jelly respectively. The fluoropolymer showed no break-through even after 180 min.

  4. FTIR Spectroscopy Applied in Remazol Blue Dye Oxidation by Laccases

    NASA Astrophysics Data System (ADS)

    Juárez-Hernández, J.; Zavala-Soto, M. E.; Bibbins-Martínez, M.; Delgado-Macuil, R.; Díaz-Godinez, G.; Rojas-López, M.

    2008-04-01

    We have used FTIR with attenuated total reflectance (ATR) technique to analyze the decolourization process of Remazol Blue dye (RB19) caused by the oxidative activity of laccase enzyme. It is known that laccases catalyze the oxidation of a large range of phenolic compounds and aromatic amines carrying out one-electron oxidations, although also radicals could be formed which undergo subsequent nonenzymatic reactions. The enzyme laccase is a copper-containing polyphenol oxidase (EC 1.10.3.2) which has been tested as a potential alternative in detoxification of environmental pollutants such as dyes present in wastewaters generated for the textile industry. In order to ensure degradation or avoid formation of toxic compounds it is important to establish the mechanism by which laccase oxidizes dyes. In this research individual ATR-FTIR spectra have been recorded for several reaction times between 0 to 236 hours, and the temporal dependence of the reaction was analyzed through the relative diminution of the intensity of the infrared band at 1127 cm-1 (associated to C-N vibration), with respect to the intensity of the band at 1104 cm-1 (associated to S = O) from sulphoxide group. Decolourization process of this dye by laccase could be attributed to its accessibility on the secondary amino group, which is a potential point of attack of laccases, abstracting the hydrogen atom. This decolourization process of remazol blue dye by laccase enzyme might in a future replace the traditionally high chemical, energy and water consuming textile operations.

  5. Methane overtone absorption by intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Obrien, James J.

    1990-01-01

    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres.

  6. Deciphering Host Genotype-Specific Impacts on the Metabolic Fingerprint of Listeria monocytogenes by FTIR Spectroscopy

    PubMed Central

    Grunert, Tom; Monahan, Avril; Lassnig, Caroline; Vogl, Claus; Müller, Mathias; Ehling-Schulz, Monika

    2014-01-01

    Bacterial pathogens are known for their wide range of strategies to specifically adapt to host environments and infection sites. An in-depth understanding of these adaptation mechanisms is crucial for the development of effective therapeutics and new prevention measures. In this study, we assessed the suitability of Fourier Transform Infrared (FTIR) spectroscopy for monitoring metabolic adaptations of the bacterial pathogen Listeria monocytogenes to specific host genotypes and for exploring the potential of FTIR spectroscopy to gain novel insights into the host-pathogen interaction. Three different mouse genotypes, showing different susceptibility to L. monocytogenes infections, were challenged with L. monocytogenes and re-isolated bacteria were subjected to FTIR spectroscopy. The bacteria from mice with different survival characteristics showed distinct IR spectral patterns, reflecting specific changes in the backbone conformation and the hydrogen-bonding pattern of the protein secondary structure in the bacterial cell. Coupling FTIR spectroscopy with chemometrics allowed us to link bacterial metabolic fingerprints with host infection susceptibility and to decipher longtime memory effects of the host on the bacteria. After prolonged cultivation of host-passaged bacteria under standard laboratory conditions, the host's imprint on bacterial metabolism vanished, which suggests a revertible metabolic adaptation of bacteria to host environment and loss of host environment triggered memory effects over time. In summary, our work demonstrates the potential and power of FTIR spectroscopy to be used as a fast, simple and highly discriminatory tool to investigate the mechanism of bacterial host adaptation on a macromolar and metabolic level. PMID:25541972

  7. [Determination of the carboxyl content of oxidized starch by fourier transform infrared (FTIR) spectroscopy].

    PubMed

    Ding, Long-Long; Zhang, Yan-Hua; Gu, Ji-You; Tan, Hai-Yan; Zhu, Li-Bin

    2014-02-01

    In the present study, the carboxyl content of oxidized starch was determined by FTIR spectroscopy. Standard curve was drawn in which the ordinate was carboxyl content determined by national standard method with the ratio of carbonyl absorbance to the key of C-H absorbance in FTIR spectroscopy as the abscissa. The ratio of absorbance of unknown oxidized starch tested by FTIR spectroscopy was obtained, The carboxyl content was calculated by standard curve, and then compared with the carboxyl content determined by national standard method, and the deviation is between 2% and 4%. In order to improve the accuracy of the experiment, standard sample was selected to draw standard curve to better ensure that the carboxyl content of the unknown oxidized starch is in the range of standard curve calculation limit, and deviates from the limit of standard curve. Compared with the carboxyl content determined by national standard method, testing with FTIR spectroscopy is simple, easy to operate, and of high efficiency and better accuracy. So, it is significant to forecast the carboxyl content of oxidized starch by FTIR spectroscopy.

  8. Fast quantification of recombinant protein inclusion bodies within intact cells by FT-IR spectroscopy.

    PubMed

    Gross-Selbeck, Sven; Margreiter, Gerd; Obinger, Christian; Bayer, Karl

    2007-01-01

    The accomplishment of the quantification of the recombinant protein content of whole bacterial cells by FT-IR spectroscopy by application of chemometrics is shown. Recombinant Escherichia coli cells expressing an inclusion body forming fusion protein were dried on a 96-well silicon plate for the analysis in a high-throughput FT-IR spectrometer. Acquired spectra of additionally conventionally quantified samples were used to establish a multivariate calibration. The obtained method was tested by predicting inclusion body contents of samples not used for the multivariate model. Results from FT-IR spectra coincided well with the data of universalized electrophoresis analysis. Hence FT-IR spectroscopy could prove as a fast and simple alternative to conventional quantification methods.

  9. Determination of Ethanol in Gasoline by FT-IR Spectroscopy

    ERIC Educational Resources Information Center

    Conklin, Alfred, Jr.; Goldcamp, Michael J.; Barrett, Jacob

    2014-01-01

    Ethanol is the primary oxygenate in gasoline in the United States. Gasoline containing various percentages of ethanol is readily available in the market place. A laboratory experiment has been developed in which the percentage of ethanol in hexanes can easily be determined using the O-H and alkane C-H absorptions in an infrared spectrum. Standard…

  10. HITRAN spectroscopy evaluation using solar occultation FTIR spectra

    NASA Astrophysics Data System (ADS)

    Toon, Geoffrey C.; Blavier, Jean-Francois; Sung, Keeyoon; Rothman, Laurence S.; E. Gordon, Iouli

    2016-10-01

    High resolution FTIR solar occultation spectra, acquired by the JPL MkIV Fourier transform spectrometer from balloon, covering 650-5650 cm-1 at 0.01 cm-1 resolution, are systematically analyzed using the last four versions of the HITRAN linelist (2000, 2004, 2008, 2012). The rms spectral fitting residuals are used to assess the quality and adequacy of the linelists as a function of wavenumber and altitude. Although there have been substantial overall improvements with each successive version of HITRAN, there are nevertheless a few spectral regions where the latest HITRAN version (2012) has regressed, or produces residuals that far exceed the noise level. A few of these instances are investigated further and their causes identified. We emphasize that fitting atmospheric spectra, in addition to laboratory spectra, should be part of the quality assurance for any new linelist before public release.

  11. Photoacoustic Fourier Transform Infrared (FTIR) Spectroscopy Of Solids

    NASA Astrophysics Data System (ADS)

    Vidrine, D. Warren

    1981-10-01

    After discovering the photoacoustic effect, Alexander Graham Bell predicted its use in spectrometers, and that it would find its greatest utility "in the ultra-red." More than ninety years were required to fulfil his first prediction, and the second is still a prophecy. There is no record whether he ever imagined that an invention being developed that same winter by a young protege of his named Albert Michelson would ever be combined with his photoacoustic effect. A century later, the combination was made by Farrow Burnham, and Eyring, using a visible-range interferometer spectrometer of their own design. Soon afterwards, Rockley and myself, working independently, applied the technique to infrared measurements of solid samples. Photoacoustic cells are now commercially available as FT-IR accessories, and the technique is in use in the field.

  12. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  13. FTIR spectroscopy and sequence prediction: Structure of human α2-macroglobulin

    NASA Astrophysics Data System (ADS)

    Dukor, Rina K.; Liebman, Michael N.; Yuan, Anna I.; Feinman, Richard D.

    1998-06-01

    The structure of a plasma proteinase inhibitor α2-Macroglobulin (α2m) is determined by FTIR spectroscopy and a number of sequence-structure prediction algorithms. In addition, α2M dimers and complexes with methylamine and trypsin are examined. Our FTIR results estimate a helix content of 5-15% and a β-sheet content of 28-36%. None of the sequence prediction algorithms used in this study predicted values close to experimental data. Considerable differences in the FTIR spectra of α2M dimer are observed and somewhat smaller changes are seen upon reaction of α2M with methylamine and dithiodipyridine (DTP).

  14. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  15. Comparison of red blood cells from gastric cancer patients and healthy persons using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Su, Qinglong; Sheng, Daping; Zheng, Wei; Wang, Xin

    2017-02-01

    In this paper, FTIR spectroscopy was used to compare gastric cancer patients' red blood cells (RBCs) with healthy persons' RBCs. IR spectra were acquired with high resolution. The A1653/A1543 (the protein secondary structures), A1543/A2958 (the relative content of proteins and lipids), A1106/A1166 (the structure and content changes of sugars) and A1543/A1106 (the relative content of proteins and sugars) ratios of gastric cancer patients' RBCs were significantly different from those of healthy persons' RBCs. Curve fitting results showed that the protein secondary structures and sugars' structures had differences between gastric cancer patients' and healthy persons' RBCs. Additionally, FTIR spectroscopy could obtain 95% sensitivity, 70% specificity, 84.2% accuracy and 80.9% positive predictive value in combination with canconical discriminant analysis. The above results indicate FTIR spectroscopy may be useful for diagnosing gastric cancer.

  16. Remote laser evaporative molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis

    2016-09-01

    We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.

  17. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  18. [Study on thermal unfolding process of trichosanthin by FTIR spectroscopy].

    PubMed

    Bian, W; Sun, S; Wong, R N; Zhou, Q; Hu, X

    2000-08-01

    Fourier-transform infared spectroscopy, combined with resolution-enhancement techniques including second-derivative spectroscopy, Fourier self-deconvolution and curvefitting technique, was used to investigate the thermally induced unfolding process of anti-HIV-I toxin protein trichosanthin. During heating from 25 degrees C to 85 degrees C, the peak of Amide I shifted to 1618 cm-1 while the secondary structural contents change with the temperature. Upon cooling the protein from 85 degrees C to 25 degrees C, the contour of the Amide I do not change. All these show that the thermal unfolding of trichosanthin is an irreversible intermolecular aggregation process between 25 degrees C and 85 degrees C. The changes of secondary structures with temperature suggest the presence of folding intermediates.

  19. Water analysis of glass ceramics by FT-IR spectroscopy

    SciTech Connect

    Nease, A B; Hale, M D; Kramer, D P

    1983-12-15

    A method for measuring water concentration in glasses has been described and the results of the study of ten batches of glasses have been tabulated. It has been shown that infrared spectroscopy is a satisfactory tool for measuring water concentration in glass ceramics. The water concentrations of ten batches of glass have been shown to differ significantly, and these variances are associated with environmental humidity and glass preparation method.

  20. FTIR spectroscopy and DFT studies of carbosilane dendrimers.

    PubMed

    Furer, V L; Vandukova, I I; Tatarinova, E A; Muzafarov, A M; Kovalenko, V I

    2008-08-01

    The FTIR spectra of G(3), G(4), and G(9) generations of polybutylcarbosilane dendrimers have been recorded and analyzed. The structural optimization and normal mode analysis were performed for G(1) generation on the basis of density functional theory (DFT). This calculation gave vibrational frequencies and infrared intensities for the t,t- and g,-g-conformers of the butyl terminal groups, attached to the same silicon atom. The g,-g-conformer is 5.83 kcal/mol less stable compared to t,t-conformer. Relying on DFT calculations a complete vibrational assignment is proposed for different parts of the studied dendrimers. The dependence of band full width at half height in the IR spectra on generation number is established. The IR spectra of carbosilane dendrimers at higher temperatures at the ambient air and isolated from atmosphere air were studied. At temperature 180 degrees C all studied carbosilane dendrimers are stable when contact with atmosphere is absent, in the air they oxidize and thus CO and SiO groups appear.

  1. Low temperature FTIR spectroscopy and hydrogen bonding in cytosine polycrystals

    NASA Astrophysics Data System (ADS)

    Rozenberg, M.; Shoham, G.; Reva, I.; Fausto, R.

    2004-01-01

    The FTIR spectra of both the pure NH and isotopically substituted ND (<10% and >90% D) polycrystalline cytosine were recorded in the range 400-4000 cm -1 as a function of temperature (10-300 K). For the first time, uncoupled NH(D) stretching mode bands of amine and imine groups were observed in the spectra of isotopically diluted cytosine at low temperatures. These bands correspond to the three distinct H-bonds that are present in the crystal, in agreement with the available data obtained by structural methods. At least nine bands were observed below 1000 cm -1 and, in consonance with their temperature and isotopic exchange behavior, were assigned to the NH proton out-of-the-plane bending modes. Six of these bands were found to correspond to additional "disordered" H-bonds, which could not be observed by structural methods. Empirical correlations of spectral and thermodynamic parameters enabled to estimate the contribution of the H-bonds to the sublimation enthalpy of the crystal, in agreement with independent experimental data.

  2. Surface characterization of Kevlar fibers by FT-IR spectroscopy

    SciTech Connect

    Chatzi, E.G.

    1987-01-01

    The Kevlar-49 aramid fiber offers considerable potential for utilization in high-performance composite materials. However, it has poor adhesion to the polymer matrix resin. In order to improve the adhesion the surface of the fiber was characterized by using two nondestructive Fourier transform infrared (FT-IR) techniques. It was shown that the polymer chains in the skin are oriented parallel to the surface, while in the core they are almost radially oriented. This orientation as well as the fact that the functional groups are intermolecularly hydrogen-bonded might limit their availability for reacting with the polymer matrix. The author also characterized the water absorbed in both the skin and the core of the fiber and found the existence of three types of water: (a) weakly hydrogen-bonded between one NH and one carbonyl group, (b) between two carbonyl groups and (c) liquid-like water clustered in microvoids and other sites inside the fibers. It was also found that 30% of the NH groups of the Kevlar-49 fiber are accessible for deuterium exchange. These groups on one hand are available for reactions that would improve the adhesion, but on the other hand can hydrogen-bond with water, which would be detrimental for the mechanical properties of the composite.

  3. IRIS: A database application system for diseases identification using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Arshad, Ahmad Zulhilmi; Munajat, Yusof; Ibrahim, Raja Kamarulzaman Raja; Mahmood, Nasrul Humaimi

    2015-05-01

    Infrared information on diseases identification system (IRIS) is an application for diseases identification and analysis by using Fourier transform infrared (FTIR) spectroscopy. This is the preliminary step to gather information from the secondary data which was extracted from recognized various research and scientific paper, which are combined into a single database as in IRIS for our purpose of study. The importance of this database is to examine the fingerprint differences between normal and diseases cell or tissue. With the implementation of this application is it hopes that the diseases identification using FTIR spectroscopy would be more reliable and may assist either physicians, pathologists, or researchers to diagnose the certain type of disease efficiently.

  4. Characterisation Of Polysacharides And Lipids From Selected Green Algae Species By FTIR-ATR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Blinová, Lenka; Gerulová, Kristína

    2015-06-01

    Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chromochloris zofingiensis (Dönz) Fucíková et L.A. Lewis (SAG 211-14, Gottingen, Germany), Acutodesmus obliguus (Turpin) Hegewald (SAG 276-1, Gottingen, Germany) and Chlorella sorokiniana (K. Brandt) Pröschold et Darienko (SAG 211-40c, Gottingen, Germany). Polysaccharides and lipids from these three algae species were determined using Fourier Transformed Infrared Spectroscopy (FTIR) with ATR accessory with diamante crystal in spectral range from 400 - 4000 cm-1 and resolution 4.

  5. Thermal decomposition studies of energetic materials using confined rapid thermolysis/FTIR spectroscopy

    SciTech Connect

    Kim, E.S.; Lee, H.S.; Mallery, C.F.; Thynell, S.T.

    1997-07-01

    An experimental setup for performing rapid thermolysis studies of small samples of energetic materials is described. In this setup, about 8 {micro}L of a liquid sample or about 2 mg of a solid sample is heated at rates exceeding 1,500 K/s to a set temperature where decomposition occurs. The rapid heating is achieved as a result of confining the sample between two closely spaced isothermal surfaces. The gaseous decomposition products depart from the confined space through a rectangular slit into the region of detection. The evolved gases are quantified using FTIR absorption spectroscopy by accounting for the instrument line shape. To illustrate the use of this setup, the thermolysis behaviors of three different energetic materials are examined. These materials include HMX, RDX, and HAN, all of which are considered as highly energetic propellant ingredients. The results obtained in this study of the temporal evolution of species concentrations from these ingredients are in reasonably close agreement with results available in the literature.

  6. Attenuated Total Internal Reflectance Infrared Spectroscopy (ATR-FTIR): A Quantitative Approach for Kidney Stone Analysis

    PubMed Central

    Gulley-Stahl, Heather J.; Haas, Jennifer A.; Schmidt, Katherine A.; Evan, Andrew P.; Sommer, André J.

    2011-01-01

    The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflectance infrared spectroscopy (ATR-FTIR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 ± 0.02% COM/HAP where COM is the analyte and HAP the matrix to 0.26 ± 0.07% HAP/COM where HAP is the analyte and COM the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size. PMID:19589213

  7. Spectral staining of tumor tissue by fiber optic FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Salzer, Reiner; Steiner, Gerald; Kano, Angelique; Richter, Tom; Bergmann, Ralf; Rodig, Heike; Johannsen, Bernd; Kobelke, Jens

    2003-07-01

    Infrared (IR) optical fiber have aroused great interest in recent years because of their potential in in-vivo spectroscopy. This potential includes the ability to be flexible, small and to guide IR light in a very large range of wavelengths. Two types - silver halide and chalcogenide - infrared transmitting fibers are investigated in the detection of a malignant tumor. As a test sample for all types of fibers we used a thin section of an entire rat brain with glioblastoma. The fibers were connected with a common infrared microscope. Maps across the whole tissue section with more than 200 spectra were recorded by moving the sample with an XY stage. Data evaluation was performed using fuzzy c-means cluster analysis (FCM). The silver halide fibers provided excellent results. The tumor was clearly discernible from healthy tissue. Chalcogenide fibers are not suitable to distinguish tumor from normal tissue because the fiber has a very low transmittance in the important fingerprint region.

  8. Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis

    NASA Astrophysics Data System (ADS)

    Dong, Liu; Sun, Xuejun; Chao, Zhang; Zhang, Shiyun; Zheng, Jianbao; Gurung, Rajendra; Du, Junkai; Shi, Jingsen; Xu, Yizhuang; Zhang, Yuanfu; Wu, Jinguang

    2014-03-01

    The aim of this study is to confirm FTIR spectroscopy as a diagnostic tool for colorectal cancer. 180 freshly removed colorectal samples were collected from 90 patients for spectrum analysis. The ratios of spectral intensity and relative intensity (/I1460) were calculated. Principal component analysis (PCA) and Fisher's discriminant analysis (FDA) were applied to distinguish the malignant from normal. The FTIR parameters of colorectal cancer and normal tissues were distinguished due to the contents or configurations of nucleic acids, proteins, lipids and carbohydrates. Related to nitrogen containing, water, protein and nucleic acid were increased significantly in the malignant group. Six parameters were selected as independent factors to perform discriminant functions. The sensitivity for FTIR in diagnosing colorectal cancer was 96.6% by discriminant analysis. Our study demonstrates that FTIR can be a useful technique for detection of colorectal cancer and may be applied in clinical colorectal cancer diagnosis.

  9. Thermal analysis of paracetamol polymorphs by FT-IR spectroscopies.

    PubMed

    Zimmermann, Boris; Baranović, Goran

    2011-01-25

    A simple IR spectroscopy based methodology in routine screening studies of polymorphism is proposed. Reflectance and transmittance temperature-dependent IR measurements (coupled with the 2D-IR data presentation and the baseline analysis) offer a positive identification of each polymorphic phase, therefore allowing simple and rapid monitoring of the measured system. Applicability and flexibility of the methodology was demonstrated on the measurement of the model polymorphic compound paracetamol under various conditions (including geometric constraints and elevated pressure). The thermal behavior of paracetamol strongly depends on slight variations in experimental conditions that can result in formation of various phases (three polymorphs and the amorphous form). The amorphous phase can crystallize during heating into either Form II or Form III within almost identical temperature range. Likewise, the crystal transformations II→I and III→II also can proceed within almost identical temperature range. Furthermore, the thermal behavior is even more diverse than that, and includes the crystallizations of Forms I, II and III from the melt, and the high temperature II→I transition. The variety of the temperatures of the transformations is a major obstacle for unambiguous identification of a particular phase by DSC and a major reason for the implementation of these IR methods.

  10. High resolution FTIR spectroscopy of the ClO radical

    NASA Technical Reports Server (NTRS)

    Lang, Valerie; Sander, Stanley P.; Friedl, Randy

    1988-01-01

    The chlorine monoxide radical, ClO, plays a significant role in the catalytic destruction of ozone in the Earth's stratosphere. Because of its atmospheric importance, ClO has been the subject of numerous observational attempts. In order to deduce ClO concentrations from stratospheric infrared measurements, the infrared spectroscopy of ClO must be well characterized. Approximately 830 individual lines were measured form ClO imfrared spectra with the ClO concentration between 1 x 10 to the 13th power and 6 x 10 to the 13th power molecules per cu cu. The lines were then averaged and fit to a function of m (where m = O, -J or J+1 for the Q,P and R branches respectively) to obtain the band strength, S sub v and the first Herman-Wallis coefficient, alpha. The total S sub v for the two main isotopmers was 13.11 plus or minus 1 cm(-2) atm(-1) while alpha was 0.00412 plus or minus .00062.

  11. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1–35 wt% starch) were collected and preprocessed to generate calibration and predi...

  12. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  13. Automated species and strain identification of bacteria in complex matrices using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Puzey, K. A.; Gardner, P. J.; Petrova, V. K.; Donnelly, C. W.; Petrucci, G. A.

    2008-04-01

    Fourier Transform Infrared (FTIR) spectroscopy provides a highly selective and reproducible means for the chemically-based discrimination of intact microbial cells which make the method valuable for large-scale screening of foods. The goals of the present study were to assess the effect of chemical interferents, such as food matrices, different sanitizing compounds and growth media, on the ability of the method to accurately identify and classify L. innocua, L. welshimeri, E. coli, S. cholerasuis, S. subterranea, E. sakazakii, and E. aerogenes. Moreover, the potential of FTIR spectroscopy for discrimination of L. innocua and L. welshimeri of different genotypes and the effect of growth phase on identification accuracy of L. innocua and L. welshimeri were tested. FTIR spectra were collected using two different sample presentation techniques - transmission and attenuated total reflection (ATR), and then analyzed using multivariate discriminant analysis based on the first derivative of the FTIR spectra with the unknown spectra assigned to the species group with the shortest Mahalanobis distance. The results of the study demonstrated 100% correct identification and differentiation of all bacterial strains used in this study in the presence of chemical interferents or food matrices, better than 99% identification rate in presence of media matrices, and 100% correct detection for specific bacteria in mixed flora species. Additionally, FTIR spectroscopy proved to be 100% accurate when differentiating between genotypes of L. innocua and L. welshimeri, with the classification accuracy unaffected by the growth stage. These results suggest that FTIR spectroscopy can be used as a valuable tool for identifying pathogenic bacteria in food and environmental samples.

  14. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  15. Highly sensitive detection using Herriott cell for laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Chongyi; Song, Guangming; Du, Yang; Zhao, Xiaojun; Wang, Wenju; Zhong, Liujun; Hu, Mai

    2016-11-01

    The tunable diode laser absorption spectroscopy combined with the long absorption path technique is a significant method to detect harmful gas. The long optical path could come true by Herriott cell reducing the size of the spectrometers. A 15 cm long Herriott cell with 28.8 m optical absorption path after 96 times reflection was designed that enhanced detection sensitivity of absorption spectroscopy. According to the theory data of calculation, Herriott cell is analyzed and simulated by softwares Matlab and Lighttools.

  16. Double point contact single molecule absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Howard, John Brooks

    Our primary objective with the presentation of this thesis is to utilize superconducting transport through microscopic objects to both excite and analyze the vibrational degrees of freedom of various molecules of a biological nature. The technique stems from a Josephson junction's ability to generate radiation that falls in the terahertz gap (≈ 10 THz) and consequently can be used to excite vibrational modes of simple and complex molecules. Analysis of the change in IV characteristics coupled with the differential conductance dIdV allows determination of both the absorption spectra and the vibrational modes of biological molecules. Presented here are both the theoretical foundations of superconductivity relevant to our experimental technique and the fabrication process of our samples. Comparisons between our technique and that of other absorption spectroscopy techniques are included as a means of providing a reference upon which to judge the merits of our novel procedure. This technique is meant to improve not only our understanding of the vibrational degrees of freedom of useful biological molecules, but also these molecule's structural, electronic and mechanical properties.

  17. Universal method for protein immobilization on chemically functionalized germanium investigated by ATR-FTIR difference spectroscopy.

    PubMed

    Schartner, Jonas; Güldenhaupt, Jörn; Mei, Bastian; Rögner, Matthias; Muhler, Martin; Gerwert, Klaus; Kötting, Carsten

    2013-03-13

    Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy allows a detailed analysis of surface attached molecules, including their secondary structure, orientation, and interaction with small molecules in the case of proteins. Here, we present a universal immobilization technique on germanium for all oligo-histidine-tagged proteins. For this purpose, new triethoxysilane derivates were developed: we synthesized a linker-silane with a succinimidyl ester as amine-reactive headgroup and a matrix-silane with an unreactive ethylene glycol group. A new methodology for the attachment of triethoxysilanes on germanium was established, and the surface was characterized by ATR-FTIR and X-ray photoelectron spectroscopy. In the next step, the succinimidyl ester was reacted with aminonitrilotriacetic acid. Subsequently, Ni(2+) was coordinated to form Ni-nitrilotriacetic acid for His-tag binding. The capability of the functionalized surface was demonstrated by experiments using the small GTPase Ras and photosystem I (PS I). The native binding of the proteins was proven by difference spectroscopy, which probes protein function. The function of Ras as molecular switch was demonstrated by a beryllium trifluoride anion titration assay, which allows observation of the "on" and "off" switching of Ras at atomic resolution. Furthermore, the activity of immobilized PS I was proven by light-induced difference spectroscopy. Subsequent treatment with imidazole removes attached proteins, enabling repeated binding. This universal technique allows specific attachment of His-tagged proteins and a detailed study of their function at the atomic level using FTIR difference spectroscopy.

  18. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  19. Precision Saturated Absorption Spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong

    2016-06-01

    In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).

  20. Phylogeny of cultivated and wild wheat species using ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Demir, Pinar; Onde, Sertac; Severcan, Feride

    2015-01-01

    Within the last decade, an increasing amount of genetic data has been used to clarify the problems inherent in wheat taxonomy. The techniques for obtaining and analyzing these data are not only cumbersome, but also expensive and technically demanding. In the present study, we introduce infrared spectroscopy as a method for a sensitive, rapid and low cost phylogenetic analysis tool for wheat seed samples. For this purpose, 12 Triticum and Aegilops species were studied by Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy. Hierarchical cluster analysis and principal component analysis clearly revealed that the lignin band (1525-1505 cm-1) discriminated the species at the genus level. However, the species were clustered according to their genome commonalities when the whole spectra were used (4000-650 cm-1). The successful differentiation of Triticum and its closely related genus Aegilops clearly demonstrated the power of ATR-FTIR spectroscopy as a suitable tool for phylogenetic research.

  1. Molecular and structural changes induced by essential oil treatments in Vicia faba roots detected by FTIR and FTNIR spectroscopy.

    PubMed

    Mecozzi, Mauro; Sturchio, Elena; Boccia, Priscilla; Zanellato, Miriam; Meconi, Claudia; Peleggi, Francesco

    2016-12-24

    Essential oils have recognized antimicrobial and antifungal properties which allow their utilization in agriculture like an alternative to pesticides, but their utilization requires the knowledge of all the potential structural changes and damages produced by the interaction with the vegetal organisms. In this paper, we investigated the effects of two essential oils, the tea tree oil (TTO) and the mixture of clove and rosemary oils (C + R), on the molecular structure of Vicia faba roots by Fourier transform infrared (FTIR) and Fourier near infrared transform (FTNIR) spectroscopy. FTIR spectroscopy showed structural modifications of the absorption bands related to DNA (1100 and 1050 cm(-1), carbohydrate backbones, and nucleotide bands within 900 and 850 cm(-1)), proteins (1700 and 1600 cm(-1) amide I band, 1580 and 1520 cm(-1) amide II band), and lipids (methylene group of aliphatic chains between 2950 and 2800 cm(-1)). The changes in the secondary structures of proteins consisted of a denaturation depending on increased presence of random coil structures. In addition, in the samples treated with TTO oils, we observed the presence of protein oxidation, an effect negligible instead for the C + R-treated samples. The modified shapes of the infrared methyl bands of aliphatic chains suggested an increased lipid disorder which could also determine lipid peroxidation. The changes observed for the DNA structures at the highest concentration of the above essential oils can be related to the genotoxic effect of eugenol, an important constituent of both TTO and C + R mixture oils. FTNIR spectroscopy showed the modified shape of the second overtone bands belonging to methyl and methylene groups, between 8500 and 8000 cm(-1). This confirmed the increased lipid disorders already observed by FTIR spectroscopy. The results obtained on the probe organism V. faba show that FTIR and FTNIR spectroscopy can become a useful support to the conventional cytogenetic tests used

  2. Comparison of fluorescence spectroscopy and FTIR in differentiation of plant pollens

    NASA Astrophysics Data System (ADS)

    Mularczyk-Oliwa, Monika; Bombalska, Aneta; Kaliszewski, Miron; Włodarski, Maksymilian; Kopczyński, Krzysztof; Kwaśny, Mirosław; Szpakowska, Małgorzata; Trafny, Elżbieta A.

    2012-11-01

    Spectroscopic techniques are under investigation on possibility of differentiation of airborne particles. This paper describes pollen discrimination among others bio-particles in laboratory conditions. Pollen samples were characterized with UV-Vis fluorescence, drift and KBr pellet techniques of infrared spectroscopy. Principal Component Analysis of UV-Vis fluorescence and FTIR spectra revealed that pollens can be distinguished from other bio-materials with use of these methods. Both methods resulted in similar classification capability. Combined FTIR and fluorescence data analysis did not improve the discrimination between pollen allergens and other airborne biological materials.

  3. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.

  4. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  5. Monitoring incinerator emissions from remote sites using Fourier transform infrared spectroscopy (FTIR)

    SciTech Connect

    Demirgian, J.C.; Spurgash, S.M.; Snyder, C.T.

    1990-01-01

    Fourier transform infrared spectroscopy (FTIR) provides the potential to monitor incinerator emissions remotely and passively from air-mounted (helicopter) or ground-mounted (car) locations. The objective of this work was to extend the application of remote FTIR as an incinerator monitor to simple mixtures released in the laboratory and in the field. Initial data were collected for two commonly used principal organic hazardous components (POHCs), chloroform and carbon tetrachloride. To simulate mixtures that are more difficult to identify and quantify, subsequent laboratory and field studies were performed with methanol and diethyl malonate mixtures. The sensitivity of the equipment is currently in the region of low parts-per-million-per meter of air measured. Remote FTIR was able to identify and quantify components with overlapping absorbances in the presence of interference from carbon dioxide. 1 ref., 5 figs., 4 tabs.

  6. Determination of the aromatic compounds in plant cuticular waxes using FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dubis, Eligiusz N.; Dubis, Alina T.; Popławski, J.

    2001-09-01

    The infrared study of the aromatic components of hops ( Humulus lupulus) cuticular wax was performed. HATR FT-IR technique for fresh leaves and their extract analysis was applied. Phenylmethyl myristate, 2-phenylethyl myristate and docosyl benzoate were synthesized and used as reference standards. An absorption band in the range of 709-966 cm -1 indicates the presence of aromatic esters in plant cuticular waxes.

  7. Transient absorption spectroscopy of laser shocked explosives

    SciTech Connect

    Mcgrane, Shawn D; Dang, Nhan C; Whitley, Von H; Bolome, Cindy A; Moore, D S

    2010-01-01

    Transient absorption spectra from 390-890 nm of laser shocked RDX, PETN, sapphire, and polyvinylnitrate (PVN) at sub-nanosecond time scales are reported. RDX shows a nearly linear increase in absorption with time after shock at {approx}23 GPa. PETN is similar, but with smaller total absorption. A broad visible absorption in sapphire begins nearly immediately upon shock loading but does not build over time. PVN exhibits thin film interference in the absorption spectra along with increased absorption with time. The absorptions in RDX and PETN are suggested to originate in chemical reactions happening on picosecond time scales at these shock stresses, although further diagnostics are required to prove this interpretation.

  8. Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics

    PubMed Central

    Li, Xiaoli; Zhang, Yuying; He, Yong

    2016-01-01

    This paper investigated the feasibility of Fourier transform infrared transmission (FT-IR) spectroscopy to detect talcum powder illegally added in tea based on chemometric methods. Firstly, 210 samples of tea powder with 13 dose levels of talcum powder were prepared for FT-IR spectra acquirement. In order to highlight the slight variations in FT-IR spectra, smoothing, normalize and standard normal variate (SNV) were employed to preprocess the raw spectra. Among them, SNV preprocessing had the best performance with high correlation of prediction (RP = 0.948) and low root mean square error of prediction (RMSEP = 0.108) of partial least squares (PLS) model. Then 18 characteristic wavenumbers were selected based on a hybrid of backward interval partial least squares (biPLS) regression, competitive adaptive reweighted sampling (CARS) algorithm and successive projections algorithm (SPA). These characteristic wavenumbers only accounted for 0.64% of the full wavenumbers. Following that, 18 characteristic wavenumbers were used to build linear and nonlinear determination models by PLS regression and extreme learning machine (ELM), respectively. The optimal model with RP = 0.963 and RMSEP = 0.137 was achieved by ELM algorithm. These results demonstrated that FT-IR spectroscopy with chemometrics could be used successfully to detect talcum powder in tea. PMID:27468701

  9. Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy.

    PubMed

    Lohumi, Santosh; Joshi, Ritu; Kandpal, Lalit Mohan; Lee, Hoonsoo; Kim, Moon S; Cho, Hyunjeong; Mo, Changyeun; Seo, Young-Wook; Rahman, Anisur; Cho, Byoung-Kwan

    2017-02-17

    As adulteration of foodstuffs with Sudan dye, especially paprika- and chilli-containing products, has been reported with some frequency, this issue has become one focal point for addressing food safety. FTIR spectroscopy has been used extensively as an analytical method for quality control and safety determination for food products. Thus, the use of FTIR spectroscopy for rapid determination of Sudan dye in paprika powder was investigated in this study. A net analyte signal (NAS)-based methodology, named HLA/GO (hybrid linear analysis in the literature), was applied to FTIR spectral data to predict Sudan dye concentration. The calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results had a high determination coefficient (R(2)) of 0.98 and low root mean square error (RMSE) of 0.026% for the calibration set, and an R(2) of 0.97 and RMSE of 0.05% for the validation set. The model was further validated using a second validation set and through the figures of merit, such as sensitivity, selectivity, and limits of detection and quantification. The proposed technique of FTIR combined with HLA/GO is rapid, simple and low cost, making this approach advantageous when compared with the main alternative methods based on liquid chromatography (LC) techniques.

  10. Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics.

    PubMed

    Li, Xiaoli; Zhang, Yuying; He, Yong

    2016-07-29

    This paper investigated the feasibility of Fourier transform infrared transmission (FT-IR) spectroscopy to detect talcum powder illegally added in tea based on chemometric methods. Firstly, 210 samples of tea powder with 13 dose levels of talcum powder were prepared for FT-IR spectra acquirement. In order to highlight the slight variations in FT-IR spectra, smoothing, normalize and standard normal variate (SNV) were employed to preprocess the raw spectra. Among them, SNV preprocessing had the best performance with high correlation of prediction (RP = 0.948) and low root mean square error of prediction (RMSEP = 0.108) of partial least squares (PLS) model. Then 18 characteristic wavenumbers were selected based on a hybrid of backward interval partial least squares (biPLS) regression, competitive adaptive reweighted sampling (CARS) algorithm and successive projections algorithm (SPA). These characteristic wavenumbers only accounted for 0.64% of the full wavenumbers. Following that, 18 characteristic wavenumbers were used to build linear and nonlinear determination models by PLS regression and extreme learning machine (ELM), respectively. The optimal model with RP = 0.963 and RMSEP = 0.137 was achieved by ELM algorithm. These results demonstrated that FT-IR spectroscopy with chemometrics could be used successfully to detect talcum powder in tea.

  11. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  12. Comparison of serum from gastric cancer patients and from healthy persons using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sheng, Daping; Wu, Yican; Wang, Xin; Huang, Dake; Chen, Xianliang; Liu, Xingcun

    2013-12-01

    Since serum can reflect human beings' physiological and pathological conditions, FTIR spectroscopy was used to compare gastric cancer patients' serum with healthy persons' serum in this study. The H2959/H2931, H1646/H1550, H1314/H1243, H1453/H1400 and H1080/H1550 ratios were calculated, among these ratios, the H2959/H2931 ratio might be a standard for distinguishing gastric cancer patients from healthy persons. Then curve fitting was processed using Gaussian curves in the 1140-1000 cm-1 region, and the result showed that the RNA/DNA ratios of gastric cancer patients' serum were obviously lower than those of healthy persons' serum. The results suggest that FTIR spectroscopy may be a potentially useful tool for diagnosis of gastric cancer.

  13. Active FTIR-based stand-off spectroscopy using a femtosecond optical parametric oscillator.

    PubMed

    Zhang, Zhaowei; Clewes, Rhea J; Howle, Christopher R; Reid, Derryck T

    2014-10-15

    We presented the first demonstration of stand-off Fourier transform infrared (FTIR) spectroscopy using a broadband mid-infrared optical parametric oscillator, with spectral coverage over 2700-3200  cm⁻¹. For vapor-phase water and nitromethane (NM), stand-off spectra was recorded using a concrete target at from 1-m to 2-m range and showed good agreement with reference spectra, and in NM a normalized detection sensitivity of 15  ppm·m·Hz(-1/2) was obtained. Spectra from 50-μL droplets of liquid thiodiglycol were detected at a stand-off distance of 2 m from aluminum, concrete and painted metal surfaces. Our results imply that OPO-based active FTIR stand-off spectroscopy is a promising new technique for the detection of industrial pollutants and the identification of chemical agents, explosives or other hazardous materials.

  14. Characterization of human ovarian teratoma hair by using AFM, FT-IR, and Raman spectroscopy.

    PubMed

    Kim, Kyung Sook; Lee, Jinwoo; Jung, Min-Hyung; Choi, Young Joon; Park, Hun-Kuk

    2011-12-01

    The structural, physical, and chemical properties of hair taken from an ovarian teratoma (teratoma hair) was first examined by atomic force microscopy (AFM), Fourier transform infrared (FT-IR), and Raman spectroscopy. The similarities and differences between the teratoma hair and scalp hair were also investigated. Teratoma hair showed a similar morphology and chemical composition to scalp hair. Teratoma hair was covered with a cuticle in the same manner as scalp hair and showed the same amide bonding modes as scalp hair according to FT-IR and Raman spectroscopy. On the other hand, teratoma hair showed different physical properties and cysteic acid bands from scalp hair: the surface was rougher and the adhesive force was lower than the scalp hair. The cystine oxides modes did not change with the position unlike scalp hair. These differences can be understood by environmental effects not by the intrinsic properties of the teratoma hair.

  15. Photocatalytic removal of soot: unravelling of the reaction mechanism by EPR and in situ FTIR spectroscopy.

    PubMed

    Smits, Marianne; Ling, Yun; Lenaerts, Silvia; Van Doorslaer, Sabine

    2012-12-21

    Photocatalytic soot oxidation is studied on P25 TiO(2) as an important model reaction for self-cleaning processes by means of electron paramagnetic resonance (EPR) and Fourier transform infrared (FTIR) spectroscopy. Contacting of carbon black with P25 leads on the one hand to a reduction of the local dioxygen concentration in the powder. On the other hand, the weakly adsorbed radicals on the carbon particles are likely to act as alternative traps for the photogenerated conduction-band electrons. We find furthermore that the presence of dioxygen and oxygen-related radicals is vital for the photocatalytic soot degradation. The complete oxidation of soot to CO(2) is evidenced by in situ FTIR spectroscopy, no intermediate CO is detected during the photocatalytic process.

  16. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy.

    PubMed

    Akerholm, Margaretha; Hinterstoisser, Barbara; Salmén, Lennart

    2004-02-25

    The cellulose structure is a factor of major importance for the strength properties of wood pulp fibers. The ability to characterize small differences in the crystalline structures of cellulose from fibers of different origins is thus highly important. In this work, dynamic FT-IR spectroscopy has been further explored as a method sensitive to cellulose structure variations. Using a model system of two different celluloses, the relation between spectral information and the relative cellulose Ialpha content was investigated. This relation was then used to determine the relative cellulose Ialpha content in different pulps. The estimated cellulose I allomorph compositions were found to be reasonable for both unbleached and bleached chemical pulps. In addition, it was found that the dynamic FT-IR spectroscopy technique had the potential to indicate possible correlation field splitting peaks of cellulose Ibeta.

  17. Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria.

    PubMed

    Zarnowiec, Paulina; Lechowicz, Łukasz; Czerwonka, Grzegorz; Kaca, Wiesław

    2015-01-01

    Methods of human bacterial pathogen identification need to be fast, reliable, inexpensive, and time efficient. These requirements may be met by vibrational spectroscopic techniques. The method that is most often used for bacterial detection and identification is Fourier transform infrared spectroscopy (FTIR). It enables biochemical scans of whole bacterial cells or parts thereof at infrared frequencies (4,000-600 cm(-1)). The recorded spectra must be subsequently transformed in order to minimize data variability and to amplify the chemically-based spectral differences in order to facilitate spectra interpretation and analysis. In the next step, the transformed spectra are analyzed by data reduction tools, regression techniques, and classification methods. Chemometric analysis of FTIR spectra is a basic technique for discriminating between bacteria at the genus, species, and clonal levels. Examples of bacterial pathogen identification and methods of differentiation up to the clonal level, based on infrared spectroscopy, are presented below.

  18. [Digestion-flame atomic absorption spectroscopy].

    PubMed

    Xu, Liang; Hu, Jian-Guo; Liu, Rui-Ping; Wang, Zhi-Min; Narenhua

    2008-01-01

    A microwave digestion-flame atomic absorption spectroscopy (FAAS) method was developed for the determination of metal elements Na, Zn, Cu, Fe, Mn, Ca and Mg in Mongolian patents. The instrument parameters for the determination were optimized, and the appropriate digestion solvent was selected. The recovery of the method was between 95.8% and 104.3%, and the RSD was between 1.6% and 4.2%. The accuracy and precision of the method was tested by comparing the values obtained from the determination of the standard sample, bush twigs and leaves (GSV-1) by this method with the reference values of GSV-1. The determination results were found to be basically consistent with the reference values. The microwave digestion technique was applied to process the samples, and the experimental results showed that compared to the traditional wet method, the present method has the merits of simplicity, saving agents, rapidness, and non-polluting. The method was accurate and reliable, and could be used to determine the contents of seven kinds of metal elements in mongolian patents.

  19. FTIR difference and resonance Raman spectroscopy of rhodopsins with applications to optogenetics

    NASA Astrophysics Data System (ADS)

    Saint Clair, Erica C.

    The major aim of this thesis is to investigate the molecular basis for the function of several types of rhodopsins with special emphasis on their application to the new field of optogenetics. Rhodopsins are transmembrane biophotonic proteins with 7 alpha-helices and a retinal chromophore. Studies included Archaerhodopsin 3 (AR3), a light driven proton pump similar to the extensively studied bacteriorhodopsin (BR); channelrhodopsins 1 and 2, light-activated ion channels; sensory rhodopsin II (SRII), a light-sensing protein that modulates phototaxis used in archaebacteria; and squid rhodopsins (sRho), the major photopigment in squid vision and a model for human melanopsin, which controls circadian rhythms. The primary techniques used in these studies were FTIR difference spectroscopy and resonance Raman spectroscopy. These techniques, in combination with site directed mutagenesis and other biochemical methodologies produced new knowledge regarding the structural changes of the retinal chromophore, the location and function of internal water molecules as well as specific amino acids and peptide backbone. Specialized techniques were developed that allowed rhodopsins to be studied in intact membrane environments and in some cases in vivo measurements were made on rhodopsin heterologously expressed in E. coli thus allowing the effects of interacting proteins and membrane potential to be investigated. Evidence was found that the local environment of one or more internal water molecules in SRII is altered by interaction with its cognate transducer, HtrII, and is also affected by the local lipid environment. In the case of AR3, many of the broad IR continuum absorption changes below 3000 cm -1, assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR, were found to be very similar to BR. Bands assigned to water molecules near the Schiff base postulated to be involved in proton transport were, however, shifted

  20. Practical Analysis of materials with depth varying compositions using FT-IR photoacoustic spectroscopy (PAS)

    SciTech Connect

    J.F. McClelland; R.W. Jones; Siquan Luo

    2004-09-30

    FT-IR photoacoustic spectroscopy (PAS) is discussed as a nondestructive method to probe the molecular composition of materials versus depth on the basis of the analysis of layers of experimentally controllable thickness, which are measured from the sample surface to depths of some tens of micrometers, depending on optical and thermal properties. Computational methods are described to process photoacoustic amplitude and phase spectra for both semi-quantitative and quantitative depth analyses. These methods are demonstrated on layered and gradient samples.

  1. GHB: Forensic examination of a dangerous recreational drug by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kindig, J. P.; Ellis, L. E.; Brueggemeyer, T. W.; Satzger, R. D.

    1998-06-01

    Gamma-hydroxybutyric acid (GHB) is an illegal drug that has been abused for its intoxicating effects. However, GHB can also produce harmful physiological effects ranging from mild (nausea, drowsiness) to severe (coma, death). Because GHB is often produced by clandestine manufacture, its concentration, purity, and final form can be variable. Therefore, the analysis of suspected GHB samples using FTIR spectroscopy requires a variety of sample preparations and accessories, based on the sample matrix.

  2. Proton Transfers in a Channelrhodopsin-1 Studied by Fourier Transform Infrared (FTIR) Difference Spectroscopy and Site-directed Mutagenesis*

    PubMed Central

    Ogren, John I.; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L.; Rothschild, Kenneth J.

    2015-01-01

    Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2380 state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2380 formation. The unusual charge neutrality of both Schiff base counterions in the P2380 conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs. PMID:25802337

  3. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis.

    PubMed

    Ogren, John I; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L; Rothschild, Kenneth J

    2015-05-15

    Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs.

  4. Modeling and simulation of atmosphere interference signal based on FTIR spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Zhang, Yugui; Li, Qiang; Yu, Zhengyang; Liu, Zhengmin

    2016-09-01

    Fourier Transform Infrared spectroscopy technique, featured with large frequency range and high spectral resolution, is becoming the research focus in spectrum analysis area, and is spreading in atmosphere detection applications in the aerospace field. In this paper, based on FTIR spectroscopy technique, the principle of atmosphere interference signal generation is deduced in theory, and also its mathematical model and simulation are carried out. Finally, the intrinsic characteristics of the interference signal in time domain and frequency domain, which give a theoretical foundation to the performance parameter design of electrical signal processing, are analyzed.

  5. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy.

    PubMed

    Orphanou, Charlotte-Maria; Walton-Williams, Laura; Mountain, Harry; Cassella, John

    2015-07-01

    Blood, saliva, semen and vaginal secretions are the main human body fluids encountered at crime scenes. Currently presumptive tests are routinely utilised to indicate the presence of body fluids, although these are often subject to false positives and limited to particular body fluids. Over the last decade more sensitive and specific body fluid identification methods have been explored, such as mRNA analysis and proteomics, although these are not yet appropriate for routine application. This research investigated the application of ATR FT-IR spectroscopy for the detection and discrimination of human blood, saliva, semen and vaginal secretions. The results demonstrated that ATR FT-IR spectroscopy can detect and distinguish between these body fluids based on the unique spectral pattern, combination of peaks and peak frequencies corresponding to the macromolecule groups common within biological material. Comparisons with known abundant proteins relevant to each body fluid were also analysed to enable specific peaks to be attributed to the relevant protein components, which further reinforced the discrimination and identification of each body fluid. Overall, this preliminary research has demonstrated the potential for ATR FT-IR spectroscopy to be utilised in the routine confirmatory screening of biological evidence due to its quick and robust application within forensic science.

  6. UV-VIS absorption spectroscopy: Lambert-Beer reloaded.

    PubMed

    Mäntele, Werner; Deniz, Erhan

    2017-02-15

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  7. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    NASA Astrophysics Data System (ADS)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  8. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    PubMed Central

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-01-01

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems. PMID:26694380

  9. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    SciTech Connect

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  10. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE PAGES

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; ...

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  11. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences--A Review.

    PubMed

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  12. Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils.

    PubMed

    Xing, Zhe; Du, Changwen; Tian, Kang; Ma, Fei; Shen, Yazhen; Zhou, Jianmin

    2016-09-01

    In soil analysis, Raman spectroscopy is not as widely used as infrared spectroscopy mainly owing to fluorescence interferences. This paper investigated the feasibility of Fourier-transform infrared photoacoustic (FTIR-PAS) and Raman spectroscopies for predicting soil organic matter (SOM) using partial least squares regression (PLSR) analysis. 194 farmland soil samples were collected and scanned with FTIR and Raman spectrometers in the spectral range of 4000-400cm(-1) and 180-3200cm(-1), respectively. For the PLSR models, the combined dataset was split into 146 samples as the calibration set (75%) and 48 samples as the validation set (25%). The optimal number of analytical factors was determined using a leave-one-out cross-validation. The results showed that SOM could be predicted using FTIR-PAS and Raman spectroscopies independently, with R(2)>0.70 and RPD>1.8 for the validation sets. In comparison to the single applications of FTIR-PAS and Raman spectroscopies, accurate prediction of SOM was made by combining FTIR-PAS and Raman spectroscopies, with R(2)=0.81 and RPD=2.18 for the validation sets. By statistically assessing large amounts of PLS models, model-population analysis confirmed that the accuracy of the PLS model can be increased by combining FTIR-PAS and Raman spectroscopies. In conclusion, the combination of FTIR-PAS and Raman spectroscopies is a promising alternative for soil characterization, especially for the prediction of SOM, owing to the availability of complementary information from both FTIR-PAS (polar vibrations) and Raman spectroscopy (non-polar vibrations).

  13. FTIR transmission and photoacoustic spectroscopy for the statistical identification of bacteria

    NASA Astrophysics Data System (ADS)

    Foster, Nancy S.; Valentine, Nancy B.; Thompson, Sandra E.; Johnson, Timothy J.; Amonette, James E.

    2004-03-01

    We have previously reported a combined mid-infrared spectroscopic/statistical modeling approach for the discrimination and identification, at the strain level, of both sporulated and vegetative bacteria. This paper reports on the expansion of the reference spectral library: transmissive Fourier-transform mid-infrared (trans-FTIR) spectra were obtained for three Escherichia bacterial strains (E. coli RZ1032, E. coli W3110, and E. coli HB101 ATCC 33694), and two Pseudomonas putida bacterial strains (P. putida 0301 and P. putida ATCC 39169). These were combined with the previous spectral data of five Bacillus bacterial strains (B. atrophaeus ATCC 49337, B. globigii Dugway, B. thuringiensis spp. kurstaki ATCC 35866, B. subtilis ATCC 49760, and B. subtilis 6051) to form an extended library. The previously developed four step statistical model for the identification of bacteria (using the expanded library) was subsequently used on blind samples including other bacteria as well as non-biological materials. The results from the trans-FTIR spectroscopy experiments are discussed and compared to results obtained using photoacoustic Fourier-transform infrared spectroscopy (PA-FTIR). The advantages, disadvantages, and preliminary detection limits for each technique are discussed. Both methods yield promising identification of unknown bacteria, including bacterial spores, in a matter of minutes.

  14. FTIR Transmission and Photoacoustic Spectroscopy for the Statistical Identification of Bacteria

    SciTech Connect

    Foster, Nancy S.; Valentine, Nancy B.; Thompson, Sandra E.; Johnson, Timothy J.; Amonette, James E.; Arthur J. Sedlacek III, Richard Colton, Tuan Vo-Dinh

    2004-03-12

    We have previously reported a combined mid-infrared spectroscopic/statistical modeling approach for the discrimination and identification, at the strain level, of both sporulated and vegetative bacteria. This paper reports on the expansion of the reference spectral library: transmissive Fourier-transform mid-infrared (trans-FTIR) spectra were obtained for three Escherichia bacterial strains (E. coli RZ1032, E. coli W3110, and E. coli HB101 ATCC 33694), and two Pseudomonas putida bacterial strains (P. putida 0301 and P. putida ATCC 39169). These were combined with the previous spectral data of five Bacillus bacterial strains (B. atrophaeus ATCC 49337, B. globigii Dugway, B. thuringiensis spp. kurstaki ATCC 35866, B. subtilis ATCC 49760, and B. subtilis 6051) to form an extended library. The previously developed four step statistical model for the identification of bacteria (using the expanded library) was subsequently used on blind samples including other bacteria as well as non-biological materials. The results from the trans-FTIR spectroscopy experiments are discussed and compared to results obtained using photoacoustic Fourier-transform infrared spectroscopy (PA-FTIR). The advantages, disadvantages, and preliminary detection limits for each technique are discussed. Both methods yield promising identification of unknown bacteria, including bacterial spores, in a matter of minutes.

  15. Identification of species' blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy.

    PubMed

    Mistek, Ewelina; Lednev, Igor K

    2015-09-01

    Blood is one of the most common and informative forms of biological evidence found at a crime scene. A very crucial step in forensic investigations is identifying a blood stain's origin. The standard methods currently employed for analyzing blood are destructive to the sample and time-consuming. In this study, attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy is used as a confirmatory, nondestructive, and rapid method for distinction between human and animal (nonhuman) blood. Partial least squares-discriminant analysis (PLS-DA) models were built and demonstrated complete separation between human and animal donors, as well as distinction between three separate species: human, cat, and dog. Classification predictions of unknown blood donors were performed by the model, resulting in 100 % accuracy. This study demonstrates ATR FT-IR spectroscopy's great potential for blood stain analysis and species discrimination, both in the lab and at a crime scene since portable ATR FT-IR instrumentation is commercially available.

  16. Advanced algorithms for the identification of mixtures using condensed-phase FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Andersson, Greger; Levy, Dustin; Tomczyk, Carol; Zou, Peng; Zuidema, Eric

    2011-06-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. Advances in instrument portability have made possible the use of FT-IR spectroscopy in emergency response and military field applications. The samples collected in those harsh environments are rarely pure and typically contain multiple chemical species in water, sand, or inorganic matrices. In such critical applications, it is also desired that in addition to broad chemical identification, the user is warned immediately if the sample contains a threat or target class material (i.e. biological, narcotic, explosive). The next generation HazMatID 360 combines the ruggedized design and functionality of the current HazMatID with advanced mixture analysis algorithms. The advanced FT-IR instrument allows effective chemical assessment of samples that may contain one or more interfering materials like water or dirt. The algorithm was the result of years of cumulative experience based on thousands of real-life spectra sent to our ReachBack spectral analysis service by customers in the field. The HazMatID 360 combines mixture analysis with threat detection and chemical hazard classification capabilities to provide, in record time, crucial information to the user. This paper will provide an overview of the software and algorithm enhancements, in addition to examples of improved performance in mixture identification.

  17. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Rohman, A; Sismindari; Erwanto, Y; Che Man, Yaakob B

    2011-05-01

    Meatball is one of the favorite foods in Indonesia. The adulteration of pork in beef meatball is frequently occurring. This study was aimed to develop a fast and non destructive technique for the detection and quantification of pork in beef meatball using Fourier transform infrared (FTIR) spectroscopy and partial least square (PLS) calibration. The spectral bands associated with pork fat (PF), beef fat (BF), and their mixtures in meatball formulation were scanned, interpreted, and identified by relating them to those spectroscopically representative to pure PF and BF. For quantitative analysis, PLS regression was used to develop a calibration model at the selected fingerprint regions of 1200-1000 cm(-1). The equation obtained for the relationship between actual PF value and FTIR predicted values in PLS calibration model was y = 0.999x + 0.004, with coefficient of determination (R(2)) and root mean square error of calibration are 0.999 and 0.442, respectively. The PLS calibration model was subsequently used for the prediction of independent samples using laboratory made meatball samples containing the mixtures of BF and PF. Using 4 principal components, root mean square error of prediction is 0.742. The results showed that FTIR spectroscopy can be used for the detection and quantification of pork in beef meatball formulation for Halal verification purposes.

  18. Collaborative Student Laboratory Exercise Using FT-IR Spectroscopy for the Kinetics Study of a Biotin Analogue

    ERIC Educational Resources Information Center

    Leong, Jhaque; Ackroyd, Nathan C.; Ho, Karen

    2014-01-01

    The synthesis of N-methoxycarbonyl-2-imidazolidone, an analogue of biotin, was conducted by organic chemistry students and confirmed using FT-IR and H NMR. Spectroscopy students used FT-IR to measure the rate of hydrolysis of the product and determined the rate constant for the reaction using the integrated rate law. From the magnitude of the rate…

  19. Improving the determination of moisture in edible oils by FTIR spectroscopy using acetonitrile extraction.

    PubMed

    Meng, Xianghe; Sedman, J; van de Voort, F R

    2012-11-15

    A Fourier transform infrared (FTIR) method developed for the analysis of moisture in edible oils using dry acetonitrile as the extraction solvent was re-examined with the objective of improving its overall sensitivity and reproducibility. Quantitation was based on the H-O-H bending absorption at ∼1630 cm(-1) instead of the bands in the OH stretching region, fewer interferences being an issue in the former as opposed to the latter region. In addition, a spectroscopic dilution correction procedure was developed to compensate for any miscibility of oil samples with acetonitrile, and gap-segment 2nd derivative spectra were employed to minimise the associated possibility of spectral interferences from absorptions of the oils. In comprehensive standard addition experiments using a variety of edible oils, the FTIR method was shown to recover the amounts of water quantitatively added to dry oil with an accuracy of ±20 ppm when the spectra of the acetonitrile extracts of the water-spiked oils were ratioed against the spectra of the acetonitrile extracts of the corresponding dry oils. The accuracy deteriorated substantially when the spectra of the acetonitrile extracts of the water-spiked oils were ratioed against the spectrum of the acetonitrile extraction solvent only. However, the primary variable affecting the apparent difference in the accuracy of the two approaches was determined to be the variability in the residual moisture content of the dried oils used in the standard addition experiments, as confirmed by an FTIR procedure based on H-D exchange with D(2)O. The FTIR method as structured is amenable to automation (>120 samples/h) and provides a very competitive means by which to routinely measure moisture present in a variety of hydrophobic materials that are normally the domain of Karl Fischer titration, such as edible oils, mineral oils, biodiesel and fuels.

  20. An investigation of the RWPE prostate derived family of cell lines using FTIR spectroscopy.

    PubMed

    Baker, M J; Clarke, C; Démoulin, D; Nicholson, J M; Lyng, F M; Byrne, H J; Hart, C A; Brown, M D; Clarke, N W; Gardner, P

    2010-05-01

    Interest in developing robust, quicker and easier diagnostic tests for cancer has lead to an increased use of Fourier transform infrared (FTIR) spectroscopy to meet that need. In this study we present the use of different experimental modes of infrared spectroscopy to investigate the RWPE human prostate epithelial cell line family which are derived from the same source but differ in their mode of transformation and their mode of invasive phenotype. Importantly, analysis of the infrared spectra obtained using different experimental modes of infrared spectroscopy produces similar results. The RWPE family of cell lines can be separated into groups based upon the method of cell transformation rather than the resulting invasiveness/aggressiveness of the cell line. The study also demonstrates the possibility of using a genetic algorithm as a possible standardised pre-processing step and raises the important question of the usefulness of cell lines to create a biochemical model of prostate cancer progression.

  1. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  2. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: a comparative study.

    PubMed

    Li, Bingning; Wang, Haixia; Zhao, Qiaojiao; Ouyang, Jie; Wu, Yanwen

    2015-08-15

    Fourier transform infrared (FTIR) and fluorescence spectroscopy combined with soft independent modeling of class analogies (SIMCA) and partial least square (PLS) were used to detect the authenticity of walnut oil and adulteration amount of soybean oil in walnut oil. A SIMCA model of FTIR spectra could differentiate walnut oil and other oils into separate categories; the classification limit of soybean oil in walnut oil was 10%. Fluorescence spectroscopy could differentiate oil composition by the peak position and intensity of emission spectrum without multivariate analysis. The classification limit of soybean oil adulterated in walnut oil by fluorescence spectroscopy was below 5%. The deviation of the prediction model for fluorescence spectra was lower than that for FTIR spectra. Fluorescence spectroscopy was more applicable than FTIR in the adulteration detection of walnut oil, both from the determination limit and prediction deviation.

  3. Quantitative analysis of virgin coconut oil in cream cosmetics preparations using fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Rohman, A; Man, Yb Che; Sismindari

    2009-10-01

    Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.

  4. In vitro evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zezell, Denise Maria; Veloso, Marcelo Noronha; Dias, Derly Augusto; Politano, Rodolfo; Benetti, Carolina

    2015-06-01

    We verified the changes promoted by ionizing radiation in bone tissue using FTIR. Samples of bovine bone were irradiated using Cobalt-60 with 0.01kGy, 0.1kGy, 1kGy, 15kGy and 75kGy. The effects of ionizing irradiation on chemical structure of bone, were studied considering the sub-bands of amide I, the crystallinity index and relation of organic and inorganic materials. ATR-FTIR spectroscopy showed changes in organic components and in hydroxyapatite crystals organization. High correlation with statistical significance was observed between (amideIII+collagen)/ ν1,ν3PO4, crystallinity and mechanical properties of the samples.

  5. Thermal properties of tannin extracted from Anacardium occidentale L. using TGA and FT-IR spectroscopy.

    PubMed

    Viswanath, Vinod; Leo, Vincent Vineeth; Prabha, S Sabna; Prabhakumari, C; Potty, V P; Jisha, M S

    2016-01-01

    The chemical nature of the polyphenols of cashew kernel testa has been determined. Testa contains tannins, which present large molecular complexity and has an ancient use as tanning agents. The use of tannins extracted from cashew testa, considered in many places as a waste, grants an extra value to the cashew. In this work we have analysed through high performance liquid chromatography, infrared spectroscopy (FT-IR) and thermo gravimetric analysis the average molecular weight, main functional groups and thermal properties of tannins extracted from Anacardium occidentale L. The results of these analyses are compared with the commercial grade tannic acid. The FT-IR spectra showed bands characteristic of C = C, C-C and OH bonds. This important bioactive compound present in the cashew nut kernel testa was suggested as an interesting economical source of antioxidants for use in the food and nutraceutical industry.

  6. A study of the proteorhodopsin primary photoreaction by low-temperature FTIR difference and ultrafast transient infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Amsden, Jason J.

    Proteorhodopsin (PR), a newly discovered microbial rhodopsin found in marine proteobacteria, functions as a light-driven proton pump similar to bacteriorhodopsin (BR). PR-containing bacteria account for ˜13% of the microorganisms in the oceans' photic zone and are responsible for a significant fraction of the biosphere's solar energy conversion. We study the initial response of proteorhodopsin to photon absorption using a combination of low-temperature (80 K) Fourier transform infrared (FTIR) difference spectroscopy and ultrafast transient infrared (TIR) spectroscopy. Low-temperature FTIR difference spectroscopy combined with site-directed mutagenesis and isotope labeling is used to detect and characterize changes occurring in the conformation of the retinal chromophore, protein, and internal water molecules of green-absorbing PR (GPR) and blue-absorbing PR (BPR) during the initial phototransition. Measurements on cryogenically trapped intermediates do not accurately reflect all native structural changes occurring in PR and other microbial rhodopsins on ultrafast time scales at room temperature. Recent studies demonstrate that photoactive proteins such as photoactive yellow protein, myoglobin, and green-fluorescent protein, can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal chromophore photoisomerization may impulsively drive structural changes in nearby protein groups. Here, I test this possibility by investigating the earliest protein and chromophore structural changes occurring in GPR using ultrafast TIR spectroscopy with ˜200 fs time resolution combined with non-perturbing isotope labeling. On the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling, the all-trans to 13-cis retinal chromophore isomerization occurs with a 500-700 fs time constant and the amide II mode of one or more

  7. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions.

    PubMed

    Zaera, Francisco

    2014-11-21

    Infrared absorption spectroscopy has proven to be one of the most powerful spectroscopic techniques available for the characterization of catalytic systems. Although the history of IR absorption spectroscopy in catalysis is long, the technique continues to provide key fundamental information about a variety of catalysts and catalytic reactions, and to also offer novel options for the acquisition of new information on both reaction mechanisms and the nature of the solids used as catalysts. In this review, an overview is provided of the main contributions that have been derived from IR absorption spectroscopy studies of catalytic systems, and a discussion is included on new trends and new potential directions of research involving IR in catalysis. We start by briefly describing the power of Fourier-transform IR (FTIR) instruments and the main experimental IR setups available, namely, transmission (TIR), diffuse reflectance (DRIFTS), attenuated total reflection (ATR-IR), and reflection-absorption (RAIRS), for advancing research in catalysis. We then discuss the different environments under which IR characterization of catalysts is carried out, including in situ and operando studies of typical catalytic processes in gas-phase, research with model catalysts in ultrahigh vacuum (UHV) and so-called high-pressure cell instruments, and work involving liquid/solid interfaces. A presentation of the type of information extracted from IR data follows in terms of the identification of adsorbed intermediates, the characterization of the surfaces of the catalysts themselves, the quantitation of IR intensities to extract surface coverages, and the use of probe molecules to identify and titrate specific catalytic sites. Finally, the different options for carrying out kinetic studies with temporal resolution such as rapid-scan FTIR, step-scan FTIR, and the use of tunable lasers or synchrotron sources, and to obtain spatially resolved spectra, by sample rastering or by 2D imaging, are

  8. Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Pitcher, Bradley W.

    2013-01-01

    We present a calibration for attenuated total reflectance (ATR) micro-FTIR for analysis of H2O in hydrous glass. A Ge ATR accessory was used to measure evanescent wave absorption by H2O within hydrous rhyolite and other standards. Absorbance at 3450 cm−1 (representing total H2O or H2Ot) and 1630 cm−1 (molecular H2O or H2Om) showed high correlation with measured H2O in the glasses as determined by transmission FTIR spectroscopy and manometry. For rhyolite, wt%H2O=245(±9)×A3450-0.22(±0.03) and wt%H2Om=235(±11)×A1630-0.20(±0.03) where A3450 and A1630 represent the ATR absorption at the relevant infrared wavelengths. The calibration permits determination of volatiles in singly polished glass samples with spot size down to ~5 μm (for H2O-rich samples) and detection limits of ~0.1 wt% H2O. Basaltic, basaltic andesite and dacitic glasses of known H2O concentrations fall along a density-adjusted calibration, indicating that ATR is relatively insensitive to glass composition, at least for calc-alkaline glasses. The following equation allows quantification of H2O in silicate glasses that range in composition from basalt to rhyolite: wt%H2O=(ω×A3450/ρ)+b where ω = 550 ± 21, b = −0.19 ± 0.03, ρ = density, in g/cm3, and A3450 is the ATR absorbance at 3450 cm−1. The ATR micro-FTIR technique is less sensitive than transmission FTIR, but requires only a singly polished sample for quantitative results, thus minimizing time for sample preparation. Compared with specular reflectance, it is more sensitive and better suited for imaging of H2O variations in heterogeneous samples such as melt inclusions. One drawback is that the technique can damage fragile samples and we therefore recommend mounting of unknowns in epoxy prior to polishing. Our calibration should hold for any Ge ATR crystals with the same incident angle (31°). Use of a different crystal type or geometry would require measurement of several H2O-bearing standards to provide a crystal

  9. Application of FTIR-ATR spectroscopy coupled with multivariate analysis for rapid estimation of butter adulteration.

    PubMed

    Fadzlillah, Nurrulhidayah Ahmad; Rohman, Abdul; Ismail, Amin; Mustafa, Shuhaimi; Khatib, Alfi

    2013-01-01

    In dairy product sector, butter is one of the potential sources of fat soluble vitamins, namely vitamin A, D, E, K; consequently, butter is taken into account as high valuable price from other dairy products. This fact has attracted unscrupulous market players to blind butter with other animal fats to gain economic profit. Animal fats like mutton fat (MF) are potential to be mixed with butter due to the similarity in terms of fatty acid composition. This study focused on the application of FTIR-ATR spectroscopy in conjunction with chemometrics for classification and quantification of MF as adulterant in butter. The FTIR spectral region of 3910-710 cm⁻¹ was used for classification between butter and butter blended with MF at various concentrations with the aid of discriminant analysis (DA). DA is able to classify butter and adulterated butter without any mistakenly grouped. For quantitative analysis, partial least square (PLS) regression was used to develop a calibration model at the frequency regions of 3910-710 cm⁻¹. The equation obtained for the relationship between actual value of MF and FTIR predicted values of MF in PLS calibration model was y = 0.998x + 1.033, with the values of coefficient of determination (R²) and root mean square error of calibration are 0.998 and 0.046% (v/v), respectively. The PLS calibration model was subsequently used for the prediction of independent samples containing butter in the binary mixtures with MF. Using 9 principal components, root mean square error of prediction (RMSEP) is 1.68% (v/v). The results showed that FTIR spectroscopy can be used for the classification and quantification of MF in butter formulation for verification purposes.

  10. FTIR Spectroscopy for Evaluation and Monitoring of Lipid Extraction Efficiency for Oleaginous Fungi

    PubMed Central

    Zimmermann, Boris; Kosa, Gergely; Kohler, Achim; Shapaval, Volha

    2017-01-01

    To assess whether Fourier Transform Infrared (FTIR) spectroscopy could be used to evaluate and monitor lipid extraction processes, the extraction methods of Folch, Bligh and Lewis were used. Biomass of the oleaginous fungi Mucor circinelloides and Mortierella alpina were employed as lipid-rich material for the lipid extraction. The presence of lipids was determined by recording infrared spectra of all components in the lipid extraction procedure, such as the biomass before and after extraction, the water and extract phases. Infrared spectra revealed the incomplete extraction after all three extraction methods applied to M.circinelloides and it was shown that mechanical disruption using bead beating and HCl treatment were necessary to complete the extraction in this species. FTIR spectroscopy was used to identify components, such as polyphosphates, that may have negatively affected the extraction process and resulted in differences in extraction efficiency between M.circinelloides and M.alpina. Residual lipids could not be detected in the infrared spectra of M.alpina biomass after extraction using the Folch and Lewis methods, indicating their complete lipid extraction in this species. Bligh extraction underestimated the fatty acid content of both M.circinelloides and M.alpina biomass and an increase in the initial solvent-to-sample ratio (from 3:1 to 20:1) was needed to achieve complete extraction and a lipid-free IR spectrum. In accordance with previous studies, the gravimetric lipid yield was shown to overestimate the potential of the SCO producers and FAME quantification in GC-FID was found to be the best-suited method for lipid quantification. We conclude that FTIR spectroscopy can serve as a tool for evaluating the lipid extraction efficiency, in addition to identifying components that may affect lipid extraction processes. PMID:28118388

  11. [Evaluation of Malassezia species by Fourier transform infrared (FT-IR) spectroscopy].

    PubMed

    Ergin, Cağrı; Vuran, M Emre; Gök, Yaşar; Ozdemir, Durmuş; Karaarslan, Aydın; Kaleli, Ilknur; Zorbozan, Orçun; Kabay, Nilgün; Con, Ahmet Hilmi

    2011-10-01

    Malassezia species which are lipophilic exobasidiomycetes fungi, have been accepted as members of normal cutaneous flora as well as causative agent of certain skin diseases. In routine microbiology laboratory, species identification based on phenotypic characters may not yield identical results with taxonomic studies. Lipophilic and lipid-dependent Malassezia yeasts require lipid-enriched complex media. For this reason, Fourier transform infrared (FT-IR) spectroscopy analysis focused on lipid window may be useful for identification of Malassezia species. In this study, 10 different standard Malassezia species (M.dermatis CBS 9145, M.furfur CBS 7019, M.japonica CBS 9432, M.globosa CBS 7966, M.nana CBS 9561, M.obtusa CBS 7876, M.pachydermatis CBS 1879, M.slooffiae CBS 7956, M.sympodialis CBS 7222 and M.yamatoensis CBS 9725) which are human pathogens, have been analyzed by FT-IR spectroscopy following standard cultivation onto modified Dixon agar medium. Results showed that two main groups (M1; M.globosa, M.obtusa, M.sympodialis, M.dermatis, M.pachydermatis vs, M2; M.furfur, M.japonica, M.nana, M.slooffiae, M.yamatoensis) were discriminated by whole spectra analysis. M.obtusa in M1 by 1686-1606 cm-1 wavenumber ranges and M.japonicum in M2 by 2993-2812 cm-1 wavenumber ranges were identified with low level discrimination power. Discriminatory areas for species differentiation of M1 members as M.sympodialis, M.globosa and M.pachydermatis and M2 members as M.furfur and M.yamatoensis could not be identified. Several spectral windows analysis results revealed that FT-IR spectroscopy was not sufficient for species identification of culture grown Malassezia species.

  12. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  13. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.

    PubMed

    Berera, Rudi; van Grondelle, Rienk; Kennis, John T M

    2009-01-01

    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.

  14. Characterization of laser-treated Opuntia using FT-IR spectroscopy and thermal analysis

    NASA Astrophysics Data System (ADS)

    Mejías Díaz, K. D.; Flores Reyes, T.; Ponce Cabrera, L.; Domínguez Sánchez, M.; Arronte García, M.; de Posada Piñán, E.

    2013-07-01

    This paper presents the characterization of Opuntia samples whose thorns were removed by laser pulses. The characterization was performed by Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). In this study we performed a comparative analysis of samples before and after treatment by using a Nd:YAG laser emitting at 1064 nm with an energy variable of up to 0.9 J. It was determined that no significant morphological or compositional changes had taken place in the cactus epidermis due to the laser treatment.

  15. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    NASA Technical Reports Server (NTRS)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  16. Comparison of methodologies for separation of fungal isolates using Fourier transform infrared (FTIR) spectroscopy and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) microspectroscopy.

    PubMed

    Oberle, Jennifer; Dighton, John; Arbuckle-Keil, Georgia

    2015-11-01

    Twenty distinct fungal isolates were analysed using three methods of sample preparation for FTIR spectroscopy and FTIR-ATR microspectroscopy to test for differences in surface chemical composition between living and dried fungal samples, as well as differences between surface chemistry and overall chemistry of homogenized dried samples. Results indicated that visually the FTIR spectra of different fungi are remarkably similar with subtle discernable differences, which statistical analysis of the spectra supported. Within each data set, different fungal isolates were responsible for statistical differences. Lack of congruence between each of the methods used suggests that determination of chemical composition is highly dependent upon the method of sample preparation and analysis (surface vs. whole) applied.

  17. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.

    PubMed

    Lambrecht, Armin; Pfeifer, Marcel; Konz, Werner; Herbst, Johannes; Axtmann, Felix

    2014-05-07

    Laser spectroscopy is a powerful tool for analyzing small molecules, i.e. in the gas phase. In the mid-infrared spectral region quantum cascade lasers (QCLs) have been established as the most frequently used laser radiation source. Spectroscopy of larger molecules in the gas phase, of complex mixtures, and analysis in the liquid phase requires a broader tuning range and is thus still the domain of Fourier transform infrared (FTIR) spectroscopy. However, the development of tunable external cavity (EC) QCLs is starting to change this situation. The main advantage of QCLs is their high spectral emission power that is enhanced by a factor of 10(4) compared with thermal light sources. Obviously, transmission measurements with EC-QCLs in strongly absorbing samples are feasible, which can hardly be measured by FTIR due to detector noise limitations. We show that the high power of EC-QCLs facilitates spectroscopy beyond simple absorption measurements. Starting from QCL experiments with liquid samples, we show results of fiber evanescent field analysis (FEFA) to detect pesticides in drinking water. FEFA is a special case of attenuated total reflection spectroscopy. Furthermore, powerful CW EC-QCLs enable fast vibrational circular dichroism (VCD) spectroscopy of chiral molecules in the liquid phase - a technique which is very time consuming with standard FTIR equipment. We present results obtained for the chiral compound 1,1'-bi-2-naphthol (BINOL). Finally, powerful CW EC-QCLs enable the application of laser photothermal emission spectroscopy (LPTES). We demonstrate this for a narrowband and broadband absorber in the gas phase. All three techniques have great potential for MIR process analytical applications.

  18. Photoelectron and X-ray Absorption Spectroscopy Of Pu

    SciTech Connect

    Tobin, J; Chung, B; Schulze, R; Farr, J; Shuh, D

    2003-11-12

    We have performed Photoelectron Spectroscopy and X-Ray Absorption Spectroscopy upon highly radioactive samples of Plutonium at the Advanced Light Source in Berkeley, CA, USA. First results from alpha and delta Plutonium are reported as well as plans for future studies of actinide studies.

  19. Measuring NMHC and NMOG emissions from motor vehicles via FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gierczak, Christine A.; Kralik, Lora L.; Mauti, Adolfo; Harwell, Amy L.; Maricq, M. Matti

    2017-02-01

    The determination of non-methane organic gases (NMOG) emissions according to United States Environmental Protection Agency (EPA) regulations is currently a multi-step process requiring separate measurement of various emissions components by a number of independent on-line and off-line techniques. The Fourier transform infrared spectroscopy (FTIR) method described in this paper records all required components using a single instrument. It gives data consistent with the regulatory method, greatly simplifies the process, and provides second by second time resolution. Non-methane hydrocarbons (NMHCs) are measured by identifying a group of hydrocarbons, including oxygenated species, that serve as a surrogate for this class, the members of which are dynamically included if they are present in the exhaust above predetermined threshold levels. This yields an FTIR equivalent measure of NMHC that correlates within 5% to the regulatory flame ionization detection (FID) method. NMOG is then determined per regulatory calculation solely from FTIR recorded emissions of NMHC, ethanol, acetaldehyde, and formaldehyde, yielding emission rates that also correlate within 5% with the reference method. Examples are presented to show how the resulting time resolved data benefit aftertreatment development for light duty vehicles.

  20. Fourier Transform Infrared (FT-IR) Spectroscopy of Atmospheric Trace Gases HCl, NO and SO2

    NASA Technical Reports Server (NTRS)

    Haridass, C.; Aw-Musse, A.; Dowdye, E.; Bandyopadhyay, C.; Misra, P.; Okabe, H.

    1998-01-01

    Fourier Transform Infrared (FT-IR) spectral data have been recorded in the spectral region 400-4000/cm of hydrogen chloride and sulfur dioxide with I/cm resolution and of nitric oxide with 0.25 cm-i resolution, under quasi-static conditions, when the sample gas was passed through tubings of aluminum, copper, stainless steel and teflon. The absorbance was measured for the rotational lines of the fundamental bands of (1)H(35)Cl and (1)H(37)Cl for pressures in the range 100-1000 Torr and for the (14)N(16)O molecule in the range 100-300 Torr. The absorbance was also measured for individual rotational lines corresponding to the three modes of vibrations (upsilon(sub 1) - symmetric stretch, upsilon(sub 2) - symmetric bend, upsilon(sub 3) - anti-symmetric stretch) of the SO2 molecule in the pressure range 25-150 Torr. A graph of absorbance versus pressure was plotted for the observed rotational transitions of the three atmospherically significant molecules, and it was found that the absorbance was linearly proportional to the pressure range chosen, thereby validating Beer's law. The absorption cross-sections were determined from the graphical slopes for each rotational transition recorded for the HCl, NO and SO2 species. Qualitative and quantitative spectral changes in the FT-IR data will be discussed to identify and characterize various tubing materials with respect to their absorption features.

  1. Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.

    PubMed

    Tantipolphan, R; Rades, T; McQuillan, A J; Medlicott, N J

    2007-06-07

    The adsorption of bovine serum albumin (BSA) to lecithin was investigated by ATR-FTIR spectroscopy. Lecithin films were prepared by casting aliquots of 3.2 microg lecithin in methanol onto ZnSe ATR prisms. Surface morphology and the thickness of the films were investigated by laser scanning confocal electron microscopy and scanning electron microscopy and the thickness of the films used for adsorption studies was estimated to be 40 A. The dependency of the CO peak area on the lecithin mass in the calibration curve confirms that the thickness of the film is below the penetration depth of the infrared evanescent wave. Size exclusion HPLC and fluorescence spectroscopy show that BSA conformation in up to 1M NaCl and CaCl(2) solutions is similar to that in water with no aggregation or changes in protein conformation seen over 4h. The kinetics of BSA adsorption on the lecithin film from water, NaCl and CaCl(2) solutions demonstrates that ions promote the protein adsorption. BSA bound more in the presence of NaCl compared to CaCl(2) at equivalent concentrations. The adsorption appeared greatest at a 0.1M concentration for both NaCl and CaCl(2). The results are explained in terms of absorptive reactivity of BSA and lecithin surfaces upon salt addition.

  2. Quantitative analysis of binary polymorphs mixtures of fusidic acid by diffuse reflectance FTIR spectroscopy, diffuse reflectance FT-NIR spectroscopy, Raman spectroscopy and multivariate calibration.

    PubMed

    Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia

    2017-03-10

    Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs.

  3. Organic and inorganic content of fluorotic rat incisors measured by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Porto, Isabel Maria; Saiani, Regina Aparecida; Chan, K. L. Andrew; Kazarian, Sergei G.; Gerlach, Raquel Fernanda; Bachmann, Luciano

    2010-09-01

    Details on how fluoride interferes in enamel mineralization are still controversial. Therefore, this study aimed at analyzing the organic contents of fluorosis-affected teeth using Fourier Transformation Infrared spectroscopy. To this end, 10 male Wistar rats were divided into two groups: one received 45 ppm fluoride in distilled water for 60 days; the other received distilled water only. Then, the lower incisors were removed and prepared for analysis by two FTIR techniques namely, transmission and micro-ATR. For the first technique, the enamel was powdered, whereas in the second case one fluorotic incisor was cut longitudinally for micro-ATR. Using transmission and powdered samples, FTIR showed a higher C-H content in the fluorotic enamel compared with control enamel ( p < 0.05, n = 4 in the flurotic, and n = 5 in the control group). Results from the micro-ATR-FTIR spectroscopic analysis on one longitudinally cut incisor carried out at six points reveal a higher C-H bond content at the surface of the enamel, with values decreasing toward the dentine-enamel junction, and reaching the lowest values at the subsuperficial enamel. These results agree with the morphological data, which indicate that in the rat incisor the fluorotic lesion is superficial, rather than subsuperficial, as in the case of human enamel. The results also suggest that the increased C-H bond content may extend toward the more basal enamel (intraosseous), indicating that fluorotic enamel may intrinsically contain more protein. Finally, particularly when coupled to ATR, FTIR is a suitable tool to study the rat incisor enamel, which is a largely used model of normal and abnormal amelogenesis. Further studies along this line may definitely answer some questions regarding protein content in fluorotic enamel as well as their origin.

  4. Rigorous comparison of the spectral SNR of FTIR and EC-QCL spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Childs, David T. D.; Hogg, Richard A.; Groom, Kristian M.; Revin, Dmitry G.; Rehman, Ihtesham U.; Cockburn, John W.; Matcher, Stephen J.

    2016-03-01

    FTIR spectroscopy using a thermal light source has been the dominant method for obtaining infrared spectra since the 1950's. Unfortunately the limited surface brightness and low spatial coherence of black-body radiators limits the spectral SNR in microspectroscopy and stand-off detection. Two recent innovations are addressing this problem a) FTIR instruments illuminated by high-spatial coherence broad-band supercontinuum sources and b) high spatial coherence narrow-band EC-QCL's. Here we ask whether these two approaches offer equivalent sensitivity. By noting an analogy with near-infrared optical coherence tomography we rigorously show that the high temporal coherence of the EC-QCL brings an additional, very large SNR advantage over an FTIR instrument illuminated by a supercontinuum source under otherwise matched conditions. Specifically if a spectrum containing N points is recorded by both instruments using the same illumination intensity and the same detector noise level, then the EC-QCL can deliver a given spectral SNR in a time xN shorter than the FTIR instrument. This factor can reach x100, potentially even x1000, in realistic applications. We exploit the analogy with OCT further by developing a mid-infrared "swept laser", using commercially available components, in which the tuning rate is much higher than in commercial EC-QCL devices. We use this swept laser to demonstrate the SNR advantage experimentally, using a custom-made EC-QCL spectrometer and PDMS polymer samples. We explore the potential upper limits on spectral acquisition rates, both from the fundamental kinetics of gain build-up in the external cavity and from likely mechanical limits on cavity tuning rates.

  5. FT-IR and FT-NIR Raman spectroscopy in biomedical research

    NASA Astrophysics Data System (ADS)

    Naumann, D.

    1998-06-01

    FT-IR and FT-NIR Raman spectra of intact microbial, plant animal or human cells, tissues, and body fluids are highly specific, fingerprint-like signatures which can be used to discriminate between diverse microbial species and strains, characterize growth-dependent phenomena and cell-drug interactions, and differentiate between various disease states. The spectral information potentially useful for biomedical characterizations may be distributed over the entire infrared region of the electromagnetic spectrum, i.e. over the near-, mid-, and far-infrared. It is therefore a key problem how the characteristic vibrational spectroscopic information can be systematically extracted from the infrared spectra of complex biological samples. In this report these questions are addressed by applying factor and cluster analysis treating the classification problem of microbial infrared spectra as a model task. Particularly interesting applications arise by means of a light microscope coupled to the FT-IR spectrometer. FT-IR spectra of single microcolonies of less than 40 μm in diameter can be obtained from colony replica applying a stamping technique that transfers the different, spatially separated microcolonies from the culture plate to a special IR-sample holder. Using a computer controlled x,y-stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro-organisms can be integrated in one single apparatus. Since high quality, essentially fluorescence free Raman spectra may now be obtained in relatively short time intervals on previously intractable biological specimens, FT-IR and NIR-FT-Raman spectroscopy can be used in tandem to characterize biological samples. This approach seems to open up new horizons for biomedical characterizations of complex biological systems.

  6. Biochemical changes in cutaneous squamous cell carcinoma submitted to PDT using ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lima, Cassio A.; Goulart, Viviane P.; de Castro, Pedro A. A.; Correa, Luciana; Benetti, Carolina; Zezell, Denise M.

    2015-06-01

    Nonmelanoma skin cancers are the most common form of malignancy in humans. Between the traditional treatment ways, the photodynamic therapy (PDT) is a promising alternative which is minimally invasive and do not requires surgical intervention or exposure to ionizing radiation. The understanding of the cascade of effects playing role in PDT is not fully understood, so that define and understand the biochemical events caused by photodynamic effect will hopefully result in designing better PDT protocols. In this study we investigated the potential of the FTIR spectroscopy to assess the biochemical changes caused by photodynamic therapy after 10 and 20 days of treatment using 5-aminolevulinic acid (ALA) as precursor of the photosensitizer photoporphyrin IX (PpIX). The amplitude values of second derivative from vibrational modes obtained with FTIR spectroscopy showed similar behavior with the morphological features observed in histopathological analysis, which showed active lesions even 20 days after PDT. Thus, the technique has the potential to be used to complement the investigation of the main biochemical changes that photodynamic therapy promotes in tissue.

  7. New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution

    NASA Astrophysics Data System (ADS)

    Süss, B.; Ringleb, F.; Heberle, J.

    2016-06-01

    A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy.

  8. In vivo interstitial glucose characterization and monitoring in the skin by ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Skrebova Eikje, Natalja

    2011-03-01

    Successful development of real-time non-invasive glucose monitoring would represent a major advancement not only in the treatment and management of patients with diabetes mellitus and carbohydrate metabolism disorders, but also for understanding in those biochemical, metabolic and (patho-)physiological processes of glucose at the molecular level in vivo. Here, ATR-FTIR spectroscopy technique has been challenged not only for in vivo measurement of interstitial glucose levels, but also for their non-invasive molecular qualitative and quantitative comparative characterization in the skin tissue. The results, based on calculated mean values of determined 5 glucose-specific peaks in the glucose-related 1000-1160 cm-1 region, showed intra- and inter-subject differences in interstitial glucose activity levels with their changes at different times and doses of OGTT, while raising questions about the relationships between interstitial and blood glucose levels. In conclusion, the introduction of ATR-FTIR spectroscopy technique has opened up an access to the interstitial fluid space in the skin tissue for interstitial glucose characterization and monitoring in vivo. Though interstitial versus blood glucose monitoring has different characteristics, it can be argued that accurate and precise measurements of interstitial glucose levels may be more important clinically.

  9. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    PubMed Central

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness. PMID:26889359

  10. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test.

    PubMed

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  11. Utility of FT-IR imaging spectroscopy in estimating differences between the quality of bovine blastocysts

    NASA Astrophysics Data System (ADS)

    Wiecheć, A.; Opiela, J.; Lipiec, E.; Kwiatek, W. M.

    2013-10-01

    This study was conducted to verify whether the FT-IR spectroscopy and Focal Plane Array (FPA) imaging can be successfully applied to estimate the quality of bovine blastocysts (on the basis of the concentration of nucleic acids and amides). The FT-IR spectra of inner cell mass from blastocysts of three different culture systems were examined. The spectral changes between blastocysts were analyzed in DNA (spectral range of 1240-950 cm-1) and protein amides (1800-1400 cm-1). Blastocyst 1 (BL1-HA) was developed from the fertilized oocyte cultured with low concentration of hialuronian (HA), Blastocyst 2 and 3 were developed from the oocytes cultured in standard conditions. Cleavage stage blastocyst 2 (BL2-SOF) has been cultured in SOF medium while blastocyst 3 (BL3-VERO) was cultured in co-culture with VERO cells. The multivariate statistical analysis (Hierarchical Cluster Analysis - HCA and Principal Component Analysis - PCA) of single cells spectra showed high similarity of cells forming the inner cell mass within single blastocyst. The main variance between the three examined blastocysts was related to amides bands. Differences in the intensities of the amides' peaks between the bovine blastocysts derived from different culture systems indicated that specific proteins reflecting the appearance of a new phenotype were produced. However, for the three blastocysts, the α-helix typical peak was twice more intensive than the β-sheet typical peak suggesting that the differentiation processes had been started. Taking into account the quantitative and qualitative composition of the protein into examined blastocysts, it can be assumed, that the quality of the BL1-HA turned out much more similar to BL3-VERO than to BL2-SOF. FT-IR spectroscopy can be successfully applied in reproductive biology research for quality estimation of oocytes and embryos at varied stages of their development. Moreover this technique proved to be particularly useful when the quantity of the

  12. Solar-absorption measurements of ozone from two ground based FTIR sites

    NASA Astrophysics Data System (ADS)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Blumenstock, Thomas; Hase, Frank; Gisi, Michael

    2013-04-01

    Ozone reduces the amount of ultraviolet light entering earths atmosphere and continuous monitoring of total ozone column especially in higher latitudes has been a major task since the discovery of the stratospheric ozone depletion. As tropospheric ozone is a main greenhouse gas, monitoring of ozone in the lower atmosphere and also in the tropics gains importance. Tropospheric ozone also plays an important role in air quality and high levels of ozone in the boundary layer affects the public health. Ozone is produced through a complicated path of photochemistry processes from volatile organic compounds and nitrogen oxides (NOx)[1]. In large cities, these ozone precursors are mainly emitted from anthropogenic activities and in Mexico City the ozone concentration frequently exceedes the local standard for air quality (e.g. on 80% of the days of the year 2002)[2]. Since May 2012 high resolution Fourier transform infrared solar absorption spectra have been used for determining the total column and profile of ozone at the high altitude remote site Altzomoni (19°.12`N, 98°.65`E) located 60 km southeast of Mexico City at 4000 m a.s.l. These measurements are complemented with solar absorption spectra recorded with a moderate resolution FTIR spectrometer at the UNAM campus in Mexcio City (19°25`N, 99°10`W, 2240 m a.s.l.). The vertical profiles and total columns of ozone are inferred from solar spectra by using the retrieval code PROFFIT. The results are compared with simulations of the Whole Atmosphere Community Climate Model (WACCM) and other correlative data. The ozone column amount in the polluted mixing layer of Mexico City is estimated from the intercomparison of measurements at the urban and remote sites and discussed. [1] Tie, X.; Brasseur, G.; Ying, Z. Impact of Model Resolution on Chemical Ozone Formation in Mexico City: Application of the Wrf-Chem Model. Atmospheric Chemistry and Physics. 2010, 10, 8983-8995. [2] McKinley, G.; Zuk, M.; Hojer, M.; Avalos, M

  13. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2016-05-01

    Enzymatically-induced degradation of bovine serum albumin (BSA) by serine proteases (trypsin and α-chymotrypsin) in various concentrations was monitored by means of Fourier transform infrared (FT-IR) and ultraviolet circular dichroism (UV-CD) spectroscopy. In this study, the applicability of both spectroscopies to monitor the proteolysis process in real time has been proven, by tracking the spectral changes together with secondary structure analysis of BSA as proteolysis proceeds. On the basis of the FTIR spectra and the changes in the amide I band region, we suggest the progression of proteolysis process via conversion of α-helices (1654 cm- 1) into unordered structures and an increase in the concentration of free carboxylates (absorption of 1593 and 1402 cm- 1). For the first time, the correlation between the degree of hydrolysis and the concentration of carboxylic groups measured by FTIR spectroscopy was revealed as well. The far UV-CD spectra together with their secondary structure analysis suggest that the α-helical content decreases concomitant with an increase in the unordered structure. Both spectroscopic techniques also demonstrate that there are similar but less spectral changes of BSA for the trypsin attack than for α-chymotrypsin although the substrate/enzyme ratio is taken the same.

  14. Modelling mercury accumulation in minerogenic peat combining FTIR-ATR spectroscopy and partial least squares (PLS)

    NASA Astrophysics Data System (ADS)

    Pérez-Rodríguez, Marta; Horák-Terra, Ingrid; Rodríguez-Lado, Luis; Martínez Cortizas, Antonio

    2016-11-01

    Despite its potential, infrared spectroscopy combined with multivariate statistics has been seldom used to model peat properties with environmental value, such us the concentration of potentially toxic metals. In this research, we applied attenuated total reflectance (ATR) Fourier-Transform Infrared (FTIR) spectroscopy to evaluate the ability of the technique to predict mercury concentrations in late-Pleistocene/Holocene peat from a minerogenic peatland from Minas Gerais (Brazil). Mercury concentrations were analysed using a Milestone DMA-80 analyzer and attenuated total reflectance FTIR-ATR was performed using a Gladi-ATR (Pike Technologies) in the mid IR spectrum (4000-400 cm- 1). Concentrations were modelled using principal components (PCR) and partial least squares regression (PLS). The performance of the models varied between moderate and very good (R2 0.67-0.90), with low RMSD values (0.35-1.06). A PLS model based on three latent vectors (LV1 to LV3) provided the best (R2 0.90, RMSD 0.35) results. LV1 reflected total organic matter content versus mineral matter (mainly quartz from local fluxes), LV2 was related to dust deposition from regional sources, and LV3 reflected peat organic matter decomposition. Compared to a previous investigation based on geochemical data, the spectroscopy-based PLS model performed better, but it has to be complemented with additional data (as δ13 C ratios) to reliably reproduce the changes of the factors controlling mercury accumulation over time. This, time- and cost-effective, methodology may help to develop multi-core approaches to study the within and between mire (of a similar type and area) variability in mercury accumulation, and probably also other peat properties.

  15. Nearedge Absorption Spectroscopy of Interplanetary Dust Particles

    SciTech Connect

    Brennan, S.; Luening, K.; Pianetta, P.; Bradley, J.; Graham, G.; Westphal, A.; Snead, C.; Dominguez, G.; /SLAC, SSRL

    2006-10-25

    Interplanetary Dust Particles (IDPs) are derived from primitive Solar System bodies like asteroids and comets. Studies of IDPs provide a window onto the origins of the solar system and presolar interstellar environments. We are using Total Reflection X-ray Fluorescence (TXRF) techniques developed for the measurement of the cleanliness of silicon wafer surfaces to analyze these particles with high detection sensitivity. In addition to elemental analysis of the particles, we have collected X-ray Absorption Near-Edge spectra in a grazing incidence geometry at the Fe and Ni absorption edges for particles placed on a silicon wafer substrate. We find that the iron is dominated by Fe{sub 2}O{sub 3}.

  16. Structural Investigations of CuO-B2O3-Bi2O3 Glasses by Means of EPR and Ft-Ir Spectroscopies

    NASA Astrophysics Data System (ADS)

    Ardelean, I.; Cora, Simona; Ciceo-Lucacel, Raluca

    EPR and FT-IR spectroscopy have been used to investigate the B2O3-Bi2O3 glass matrix containing CuO in order to obtain more information about the local structure of these glasses. The EPR absorption spectra revealed the presence in the glass structure of the Cu2+ ions in axially distorted octahedral environments. No superexchange interaction of Cu2+ was detected. In the samples with x≥5 mol%, mixed valence states of copper ions were revealed. The FT-IR measurements indicate the presence in the glass structure of the distorted [BiO6] polyhedra, tri- and tetra-borate units (BO3, BO4) and its dependence by the copper content.

  17. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  18. Single-crystal polarized FTIR spectroscopy and neutron diffraction refinement of cancrinite

    NASA Astrophysics Data System (ADS)

    Della Ventura, Giancarlo; Gatta, G. Diego; Redhammer, Gunter J.; Bellatreccia, Fabio; Loose, Anja; Parodi, Gian Carlo

    2009-04-01

    We relate a single-crystal FTIR (Fourier transform infrared) and neutron diffraction study of two natural cancrinites. The structural refinements show that the oxygen site of the H2O molecule lies off the triad axis. The water molecule is almost symmetric and slightly tilted from the (0001) plane. It is involved in bifurcated hydrogen bridges, with Ow···O donor-acceptor distances >2.7 Å. The FTIR spectra show two main absorptions. The first at 3,602 cm-1 is polarized for E ⊥ c and is assigned to the ν3 mode. The second, at 3,531 cm-1, is also polarized for E ⊥ c and is assigned to ν1 mode. A weak component at 4,108 cm-1 could possibly indicate the presence of additional OH groups in the structure of cancrinite. Several overlapping bands in the 1,300-1,500 cm-1 range are strongly polarized for E ⊥ c, and are assigned to the vibrations of the CO3 group.

  19. Characterization of minerals in air dust particles in the state of Tamilnadu, India through ftir spectroscopy

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, R.; Rajkumar, P.

    2013-08-01

    The abstract of this paper explains the presence of minerals in air which causes great concern regarding public health issues. The spectroscopic investigation of air dust particles of several samples in various locations in the state of Tamilnadu, India is reported. Qualitative analyses were carried out to determine the major and minor constituent minerals present in the samples based on the FTIR absorption peaks. This study also identified the minerals like quartz, asbestos, kaolinite, calcite, hematite, montmorillonite, nacrite and several other trace minerals in the air dust particles. The presents of quartz is mainly found in all the samples invariably. Hence the percentage of quartz and its crystalline nature were determined with the help of extinction co-efficient and crystallinity index respectively.

  20. Optoacoustic spectroscopy and its application to molecular and particle absorption

    NASA Astrophysics Data System (ADS)

    Trees, Charles C.; Voss, Kenneth J.

    1990-09-01

    Light absorption in the ocean has been the least studied optical property because of the difficulties in making accurate measurements. With the previously used techniques, large differences have been reported for the specific absorption coefficient of phytoplankton (cultures and natural assemblages). It is difficult to determine if the diversity in these values are methodological or a function of actual variations in absorption. With the renewed interest and activity in optoacoustic spectroscopy (OAS), which accurately measures absorption, some of these discrepancies should be resolved. In this method, as molecules and particles absorb light from a modulated source, they thermally expand and contract, thereby generating acoustic waves, at the modulation frequency, which are detected by a hydrophone. Optoacoustic spectroscopy is ideally suited for measuring dissolved organic material and particle absorptions because of its high sensitivity (105m1) and the egligible effect of scattered light. In this paper the instrumental design for an optoacoustic spectrophotometer (OAS), which pecifically measures phytoplankton absorption (420-S5Onm), is described. The spectral absorption of dissolved organic material and a phytoplankton culture is presented. OAS holds promise in being able to measure absorption without use of either filtration or concentration techniques.

  1. ATR-FTIR spectroscopy and spectroscopic imaging of solvent and permeant diffusion across model membranes.

    PubMed

    McAuley, W J; Lad, M D; Mader, K T; Santos, P; Tetteh, J; Kazarian, S G; Hadgraft, J; Lane, M E

    2010-02-01

    The uptake and diffusion of solvents across polymer membranes is important in controlled drug delivery, effects on drug uptake into, for example, infusion bags and containers, as well as transport across protective clothing. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy has been used to monitor the effects of different solvents on the diffusion of a model compound, 4-cyanophenol (CNP) across silicone membrane and on the equilibrium concentration of CNP obtained in the membrane following diffusion. ATR-FTIR spectroscopic imaging of membrane diffusion was used to gain an understanding of when the boundary conditions applied to Fick's second law, used to model the diffusion of permeants across the silicone membrane do not hold. The imaging experiments indicated that when the solvent was not taken up appreciably into the membrane, the presence of discrete solvent pools between the ATR crystal and the silicone membrane can affect the diffusion profile of the permeant. This effect is more significant if the permeant has a high solubility in the solvent. In contrast, solvents that are taken up into the membrane to a greater extent, or those where the solubility of the permeant in the vehicle is relatively low, were found to show a good fit to the diffusion model. As such these systems allow the ATR-FTIR spectroscopic approach to give mechanistic insight into how the particular solvents enhance permeation. The solubility of CNP in the solvent and the uptake of the solvent into the membrane were found to be important influences on the equilibrium concentration of the permeant obtained in the membrane following diffusion. In general, solvents which were taken up to a significant extent into the membrane and which caused the membrane to swell increased the diffusion coefficient of the permeant in the membrane though other factors such as solvent viscosity may also be important.

  2. Enzymatic surface modification and functionalization of PET: a water contact angle, FTIR, and fluorescence spectroscopy study.

    PubMed

    Donelli, Ilaria; Taddei, Paola; Smet, Philippe F; Poelman, Dirk; Nierstrasz, Vincent A; Freddi, Giuliano

    2009-08-01

    The purpose of this study was to investigate the changes induced by a lypolytic enzyme on the surface properties of polyethylene terephthalate (PET). Changes in surface hydrophilicity were monitored by means of water contact angle (WCA) measurements. Fourier Transform Infrared spectroscopy (FTIR) in the Attenuated Total Reflectance mode (ATR) was used to investigate the structural and conformational changes of the ethylene glycol and benzene moieties of PET. Amorphous and crystalline PET membranes were used as substrate. The lipolytic enzyme displayed higher hydrolytic activity towards the amorphous PET substrate, as demonstrated by the decrease of the WCA values. Minor changes were observed on the crystalline PET membrane. The effect of enzyme adhesion was addressed by applying a protease after-treatment which was able to remove the residual enzyme protein adhering to the surface of PET, as demonstrated by the behavior of WCA values. Significant spectral changes were observed by FTIR-ATR analysis in the spectral regions characteristic of the crystalline and amorphous PET domains. The intensity of the crystalline marker bands increased while that of the amorphous ones decreased. Accordingly, the crystallinity indexes calculated as band intensity ratios (1,341/1,410 cm(-1) and 1,120/1,100 cm(-1)) increased. Finally, the free carboxyl groups formed at the surface of PET by enzyme hydrolysis were esterified with a fluorescent alkyl bromide, 2-(bromomethyl)naphthalene (BrNP). WCA measurements confirmed that the reaction proceeded effectively. The fluorescence results indicate that the enzymatically treated PET films are more reactive towards BrNP. FTIR analysis showed that the surface of BrNP-modified PET acquired a more crystalline character.

  3. Spatial metabolic fingerprinting using FT-IR spectroscopy: investigating abiotic stresses on Micrasterias hardyi.

    PubMed

    Patel, Soyab A; Currie, Felicity; Thakker, Nalin; Goodacre, Royston

    2008-12-01

    The release of active pharmaceutical ingredients (APIs) into the environment is an ecologically important topic for study because, whilst APIs have been designed to have a wide range of biological properties for the target of interest (usually in man), little information on potential ecological risks is currently available regarding their effects on the organisms that inhabit the environment. In this study, the algae Micrasterias hardyi was exposed to propranolol, metoprolol (beta-adrenergic receptor agonist drugs) and mefenamic acid (a non steroidal anti-inflammatory drug), at concentrations ranging between 0.002-0.2 mM. Initial studies showed that Fourier transform infrared (FT-IR) spectroscopy on algal homogenates illustrated that all three APIs had a quantitative effect on the metabolism of the organisms and it was possible to estimate the level of API exposure from the FT-IR metabolic fingerprints using partial least squares (PLS) regression. From the inspection of the PLS loadings matrices it was possible to elucidate that all drugs caused effects on protein and lipid levels. Most strikingly propranolol had significant effects on the lipid components of the cell. These were dramatically reduced possibly as a consequence of loss of membrane integrity. In order to investigate this further, FT-IR microspectroscopy was used to generate detailed metabolic fingerprinting maps. These chemical maps revealed that all the drugs had a dramatic effect on the distribution of various chemical species throughout the algae, and that all drugs had an affect on protein and lipid levels. In particular, as noted in the PLS analyses for propranolol treated cells, the lipid complement found in the lipid storage areas in the processes of M. hardyi was greatly reduced. This illustrates the power of spatial metabolic fingerprinting for investigating abiotic stresses on complex biological species.

  4. Structural investigations of oriented membrane assemblies by FTIR-ATR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fringeli, Urs Peter; Goette, Jeannette; Reiter, Gerald; Siam, Monira; Baurecht, Dieter

    1998-06-01

    In situ attenuated total reflection (ATR) Fourier transform (FT) spectroscopy is presented as an adequate tool for studying molecular structure and function of biomembranes. In this article emphasis was directed to the production of suitable model bilayer membranes for optimum mimicking of natural biomembranes, and to special FTIR ATR techniques to achieve enhanced selectivity as well as time resolved information on complex membrane assemblies. In this context, the preparation of supported bilayers according to the LB/vesicle method is presented and the use of such model membranes to build more complex assemblies, e.g. with creatine kinase, a surface bound enzyme, and alkaline phosphatase, a membrane anchored enzyme. A comprehensive summary of equations used for quantitative ATR spectroscopy is given and applied to determine the surface concentration and orientation of membrane bound molecules. The use of supported bilayers for drug membrane interaction studies is demonstrated by the local anesthetic dibucaine. Besides of structural information's, such studies result also thermodynamic date, such as adsorption isotherm and partition coefficient. A special ATR set-up for more precise background compensation is presented enabling the conversion of a single beam spectrometer into a pseudo double beam spectrometer. This optical component may be placed in the sample compartment of the spectrometer, and is referred to as single-beam-sample-reference (SBSR) attachment. Finally, a short theoretical introduction into time resolved modulation spectroscopy is given. Temperature modulated excitation of reversible conformational changes in the polypeptide poly-L-lysine and the enzyme RNase are shown as examples.

  5. Application of FT-IR spectroscopy for control of the medium composition during the biodegradation of nitro aromatic compounds.

    PubMed

    Grube, Mara; Muter, Olga; Strikauska, Silvija; Gavare, Marita; Limane, Baiba

    2008-11-01

    Previous studies showed that cabbage leaf extract (CLE) added to the growth medium can noticeably promote the degradation of nitro aromatic compounds by specific consortium of bacteria upon their growth. For further development of the approach for contaminated soil remediation it was necessary to evaluate the qualitative and/or quantitative composition of different origin CLE and their relevance on the growth of explosives-degrading bacteria. Six CLE (different by species, cultivars and harvesting time) were tested and used as additives to the growth medium. It was shown that nitro aromatic compounds can be identified in the FT-IR absorption spectra by the characteristic band at 1,527 cm(-1), and in CLE by the characteristic band at 1,602 cm(-1). The intensity of the CLE band at 1,602 cm(-1) correlated with the concentration of total nitrogen (R2=0.87) and decreased upon the growth of bacteria. The content of nitrogen in CLE differed (0.22-1.00 vol.%) and significantly influenced the content of total carbohydrates (9.50-16.00% DW) and lipids [3.90-9.90% dry weight (DW)] accumulated in bacterial cells while the content of proteins was similar in all samples. Though this study showed quantitative differences in the composition of the studied CLE and the response of bacterial cells to the composition of the growth media, and proved the potential of this additive for remediation of contaminated soil. It was shown that analysis of CLE and monitoring of the conversion of nitro aromatic compounds can be investigated by FT-IR spectroscopy as well as by conventional chemical methods.

  6. Secondary structure and conformational change of mushroom polyphenol oxidase during thermosonication treatment by using FTIR spectroscopy.

    PubMed

    Baltacıoğlu, Hande; Bayındırlı, Alev; Severcan, Feride

    2017-01-01

    To understand the conformational changes of mushroom PPO, the secondary structural change of the enzyme during thermosonication treatment at different power (60, 80 and 100%), temperature (20-60°C) and time (0-30min) combinations was investigated by using FTIR spectroscopy and compared with the change in enzyme activity. The enzyme inactivation higher than 99% was obtained at 100% amplitude at 60°C for 10min. FTIR studies showed that marked spectral changes were noted after ultrasound treatment at 20°C. The α-helix and β-sheet contents decreased, while aggregated β-sheet, turns and random coil contents increased as temperature increased up to 60°C during thermosonication treatment for 10min indicating protein denaturation. Aggregated bands located at 1683 and 1616cm(-1) became evident after ultrasound treatment at 40°C. When temperature was lowered back to 25°C, from ultrasound treatment at 60°C, these bands were still observed, indicating the irreversible change in the structure.

  7. Micro-FTIR reflectance spectroscopy of the solid products from processing heavy oils/resids

    SciTech Connect

    Kybett, B.D.; Potter, J.; Vasu Nambudiri, E.M.; Krane-Solomon, M. ); Rahimi, P.M.; Dawson, W.H. )

    1989-04-01

    The various semicokes present in the solid products of processing heavy oils and resid can be characterized by their morphology. Knowledge of their chemicl composition would provide additional information about their origin and fate. Eser and Jenkins investigated the carbonization of Ashland-240 pitch and a vacuum distillation residue (VDR) at 723-773 K and obtained the FTIR spectra (KBr disc) of the pyridine insolubles without separation. The A-240 pitch showed gradual development of the mesophase producing large flow domains consisting of planar polycyclic aromatic units. The VDR showed more rapid development of the mesophase and the formation of mosaic semicoke containing highly substituted and condensed rings. Separation of the complex solid products of processing, in order to obtain spectra of each constituent, is difficult. Micro-FTIR reflectance spectroscopy can be used to obtain absorbance-like spectra of the components of solid mixtures without prior separation. The differences in the spectra of isotropic and anisotropic semicokes from the hydrogenation of a resid and the coprocessing of a coal/resid are discussed.

  8. Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars

    NASA Astrophysics Data System (ADS)

    Bekiaris, Georgios; Peltre, Clément; Jensen, Lars S.; Bruun, Sander

    2016-11-01

    In the last decade, numerous studies have evaluated the benefits of biochar for improving soil quality. The purposes of the current study were to use Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to analyse P species in biochar and to determine the effect of pyrolysis temperature on P speciation. The photoacoustic detector has a range of advantages for the very dark biochar samples in comparison to more traditional reflectance or transmission FTIR detectors. The spectra turned out to be more informative in the regions with P vibrations for biochar produced at temperatures above 400 °C, where most of the remaining organic compounds were aromatic and therefore not overlapping with the P vibrations. For biochars produced from the solid fraction of digestate from biogas production, an increase in the pyrolysis temperature led to the formation of a large variety of P species. Hydroxylapatite and tricalcium phosphate were the most dominant P species in the mid to high temperature range (600-900 °C), while at 1050 °C apatite, iron phosphates, variscite and calcium phosphates were identified. However, the changes in P speciation in biochars produced from bone meal at different temperatures were smaller than in the biochars from digestate. Hydroxylapatite and calcium phosphates were identified in biochar produced at all temperatures, while there was some indication of struvite formation.

  9. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy.

    PubMed

    Garczarek, Florian; Gerwert, Klaus

    2006-01-05

    Much progress has been made in our understanding of water molecule reactions on surfaces, proton solvation in gas-phase water clusters and proton transfer through liquids. Compared with our advanced understanding of these physico-chemical systems, much less is known about individual water molecules and their cooperative behaviour in heterogeneous proteins during enzymatic reactions. Here we use time-resolved Fourier transform infrared spectroscopy (trFTIR) and in situ H2(18)O/H2(16)O exchange FTIR to determine how the membrane protein bacteriorhodopsin uses the interplay among strongly hydrogen-bonded water molecules, a water molecule with a dangling hydroxyl group and a protonated water cluster to transfer protons. The precise arrangement of water molecules in the protein matrix results in a controlled Grotthuss proton transfer, in contrast to the random proton migration that occurs in liquid water. Our findings support the emerging paradigm that intraprotein water molecules are as essential for biological functions as amino acids.

  10. Prion structure investigated in situ, ex vivo, and in vitro by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kneipp, Janina; Miller, Lisa M.; Spassov, Sashko; Sokolowski, Fabian; Lasch, Peter; Beekes, Michael; Naumann, Dieter

    2004-07-01

    Syrian hamster nervous tissue was investigated by FTIR microspectroscopy with conventional and synchrotron infrared light sources. Various tissue structures from the cerebellum and medulla oblongata of scrapie-infected and control hamsters were investigated at a spatial resolution of 50 μm. Single neurons in dorsal root ganglia of scrapie-infected hamsters were analyzed by raster scan mapping at 6 μm spatial resolution. These measurements enabled us to (i) scrutinize structural differences between infected and non-infected tissue and (ii) analyze for the first time the distribution of different protein structures in situ within single nerve cells. Single nerve cells exhibited areas of increased β-sheet content, which co-localized consistently with accumulations of the pathological prion protein (PrPSc). Spectral data were also obtained from purified, partly proteinase K digested PrPSc isolated from scrapie-infected nervous tissue of hamsters to elucidate similarities/dissimilarities between prion structure in situ and ex vivo. A further comparison is drawn to the recombinant Syrian hamster prion protein SHaPrP90-232, whose in vitro transition from the predominantly a-helical isoform to β-sheet rich oligomeric structures was also investigated by FTIR spectroscopy.

  11. Global responses of Escherichia coli to adverse conditions determined by microarrays and FT-IR spectroscopy.

    PubMed

    Moen, Birgitte; Janbu, Astrid Oust; Langsrud, Solveig; Langsrud, Oyvind; Hobman, Jon L; Constantinidou, Chrystala; Kohler, Achim; Rudi, Knut

    2009-06-01

    The global gene expression and biomolecular composition in an Escherichia coli model strain exposed to 10 adverse conditions (sodium chloride, ethanol, glycerol, hydrochloric and acetic acid, sodium hydroxide, heat (46 degrees C), and cold (15 degrees C), as well as ethidium bromide and the disinfectant benzalkonium chloride) were determined using DNA microarrays and Fourier transform infrared (FT-IR) spectroscopy. In total, approximately 40% of all investigated genes (1682/4279 genes) significantly changed expression, compared with a nonstressed control. There were, however, only 3 genes (ygaW (unknown function), rmf (encoding a ribosomal modification factor), and ghrA (encoding a glyoxylate/hydroxypyruvate reductase)) that significantly changed expression under all conditions (not including benzalkonium chloride). The FT-IR analysis showed an increase in unsaturated fatty acids during ethanol and cold exposure, and a decrease during acid and heat exposure. Cold conditions induced changes in the carbohydrate composition of the cell, possibly related to the upregulation of outer membrane genes (glgAP and rcsA). Although some covariance was observed between the 2 data sets, principle component analysis and regression analyses revealed that the gene expression and the biomolecular responses are not well correlated in stressed populations of E. coli, underlining the importance of multiple strategies to begin to understand the effect on the whole cell.

  12. Study of Kerogen Maturity using Transmission Fourier Transform Infrared Spectroscopy (FTIR)

    NASA Astrophysics Data System (ADS)

    Dang, S. T.

    2014-12-01

    Maturity of kerogen in shale governs the productivity and generation hydrocarbon type. There are generally two accepted methods to measure kerogen maturity; one is the measurement of vitrinite reflectance, %Ro, and another is the measurement of Tmax through pyrolysis. However, each of these techniques has its own limits; vitrinite reflectance measurement cannot be applied to marine shale and pre-Silurian shales, which lack plant materials. Furthermore, %Ro, requires the isolation and identification of vitrinite macerals and statistical measurements of at least 50 macerals. Tmax measurement is questionable for mature and post-mature samples. In addition, there are questions involving the effects of solvents on Tmax determinations. Fourier Transmission Infrared Spectroscopy, FTIR, can be applied for both qualitative and quantitative assessment on organics maturity in shale. The technique does not require separating organic matter or identifying macerals. A CH2/CH3 index, RCH, calculated from FTIR spectra is more objective than other measurements. The index increases with maturity (both natural maturation and synthetic maturation through hydrous and dry pyrolysis). The new maturity index RCH can be calibrated to vitrinite reflectance which allows the definition of the following values for levels of maturity: 1) immature—RCH > 1.6±0.2; 2) oil window-- 1.6±0.2 < RCH > 1.3±0.3; 3) wet gas window--1.3±0.3 < RCH> 1.13±0.05; and 4) dry gas window RCH < 1.13±0.05.

  13. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  14. The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers

    PubMed Central

    Ceglińska, Alicja; Reder, Magdalena; Ciemniewska-Żytkiewicz, Hanna

    2017-01-01

    Samples of wheat, spelt, rye, and triticale flours produced by different Polish mills were studied by both classic chemical methods and FT-IR MIR spectroscopy. An attempt was made to statistically correlate FT-IR spectral data with reference data with regard to content of various components, for example, proteins, fats, ash, and fatty acids as well as properties such as moisture, falling number, and energetic value. This correlation resulted in calibrated and validated statistical models for versatile evaluation of unknown flour samples. The calibration data set was used to construct calibration models with use of the CSR and the PLS with the leave one-out, cross-validation techniques. The calibrated models were validated with a validation data set. The results obtained confirmed that application of statistical models based on MIR spectral data is a robust, accurate, precise, rapid, inexpensive, and convenient methodology for determination of flour characteristics, as well as for detection of content of selected flour ingredients. The obtained models' characteristics were as follows: R2 = 0.97, PRESS = 2.14; R2 = 0.96, PRESS = 0.69; R2 = 0.95, PRESS = 1.27; R2 = 0.94, PRESS = 0.76, for content of proteins, lipids, ash, and moisture level, respectively. Best results of CSR models were obtained for protein, ash, and crude fat (R2 = 0.86; 0.82; and 0.78, resp.). PMID:28243483

  15. [Study on the processing of leech by FTIR and 2D-IR correlation spectroscopy].

    PubMed

    Li, Bing-Ning; Wu, Yan-Wen; Ouyang, Jie; Sun, Su-Qin; Chen, Shun-Cong

    2011-04-01

    The chemical differences of traditional Chinese medicine leech before and after processing were analyzed by FTIR and two-dimensional correlation infrared (2D-IR) spectroscopy. The result showed that the leech was high in protein, with characteristic peaks of amide I, II bands. Comparing the IR spectra of samples, the primary difference was that the characteristic peak of fresh leech was at 1 543 cm(-1), while that of crude and processed leech was at 1 535 cm(-1). A 2D-IR spectrum with heating perturbation was used to track the processing dynamics of leech In the 2D-IR correlation spectra, fresh leech exhibited stronger automatic peaks of the amide I and II bands than that of processed leech, which indicates that the protein components of the fresh leech were more sensitive to heat perturbation than the processed one. Moreover, the result of FTIR and 2D-IR correlation spectra validated that the 3-dimensional structure of protein was damaged and hydrogen bonds were broken after processing, which resulted in the inactivation of protein. The fatty acids and cholesterol components of leech were also oxidized in this process.

  16. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  17. Structural characterization of lignins isolated from Caragana sinica using FT-IR and NMR spectroscopy.

    PubMed

    Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang; Mohanty, Amar K

    2011-09-01

    In order to efficiently explore and use woody biomass, six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions. The lignin structures were characterized by Fourier transform infrared spectroscopy (FT-IR) and 1D and 2D Nuclear Magnetic Resonance (NMR). FT-IR spectra revealed that the "core" of the lignin structure did not significantly change during the treatment under the conditions given. The results of 1H and 13C NMR demonstrated that the lignin fraction L2, isolated with 70% ethanol containing 1% NaOH, was mainly composed of beta-O-4 ether bonds together with G and S units and trace p-hydroxyphenyl unit. Based on the 2D HSQC NMR spectrum, the ethanol organosolv lignin fraction L1, extracted with 70% ethanol, presents a predominance of beta-O-4' aryl ether linkages (61% of total side chains), and a low abundance of condensed carbon-carbon linked structures (such as beta-beta', beta-1', and beta-5') and a lower S/G ratio. Furthermore, a small percentage (ca. 9%) of the linkage side chain was found to be acylated at the gamma-carbon.

  18. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  19. Volatile gas concentrations in turkey houses estimated by Fourier Transform Infrared Spectroscopy (FTIR).

    PubMed

    Witkowska, D

    2013-06-01

    1. The aim of the present study was to estimate gas concentrations in commercial turkey houses by Fourier Transform Infrared Spectroscopy (FTIR). 2. The experiment was conducted in 5 buildings of a commercial turkey farm. The measurements of gases were carried out every 3 weeks of the growth cycle. 3. The results demonstrate that ammonia and carbon dioxide are the prevalent gases released during the entire production cycle in turkey houses. The mean concentrations of the above compounds ranged between 4-31 ppm and 220-2058 ppm, respectively. Thiols, nitriles, amines, aldehydes, hydrocarbons and other organic and inorganic compounds also occurred in turkey houses, but they were emitted periodically and their mean concentrations were significantly lower in comparison with CO2 and NH3. 4. Lower ventilation ratio and higher moisture of excreta in the first half of the growth period accelerated the release of some gases, whereas gradual faeces and urine accumulation contributed to an increase in the concentration of selected organic compounds. 5. A portable FTIR analyser is a useful device for measuring gas concentrations in commercial turkey farms, and it supports determinations of tolerable emission limits in turkey production.

  20. In situ soft X-ray absorption spectroscopy of flames

    NASA Astrophysics Data System (ADS)

    Frank, Jonathan H.; Shavorskiy, Andrey; Bluhm, Hendrik; Coriton, Bruno; Huang, Erxiong; Osborn, David L.

    2014-10-01

    The feasibility of in situ soft X-ray absorption spectroscopy for imaging carbonaceous species in hydrocarbon flames is demonstrated using synchrotron radiation. Soft X-rays are absorbed by core level electrons in all carbon atoms regardless of their molecular structure. Core electron spectroscopy affords distinct advantages over valence spectroscopy, which forms the basis of traditional laser diagnostic techniques for combustion. In core level spectroscopy, the transition linewidths are predominantly determined by the instrument response function and the decay time of the core-hole, which is on the order of a femtosecond. As a result, soft X-ray absorption measurements can be performed in flames with negligible Doppler and collisional broadening. Core level spectroscopy has the further advantage of measuring all carbonaceous species regardless of molecular structure in the far-edge region, whereas near-edge features are molecule specific. Interferences from non-carbon flame species are unstructured and can be subtracted. In the present study, absorption measurements in the carbon K-edge region are demonstrated in low-pressure ( P total = 20-30 Torr) methane jet flames. Two-dimensional imaging of the major carbonaceous species, CH4, CO2, and CO, is accomplished by tuning the synchrotron radiation to the respective carbon K-edge, near-edge X-ray absorption fine structure (NEXAFS) transitions and scanning the burner.

  1. [Analysis of the 4th generation outer space bred Angelica dahurica by FTIR spectroscopy].

    PubMed

    Zhu, Yan-ying; Wu, Peng-le; Liu, Mei-yi; Wang, Zhi-zhou; Guo, Xi-hua; Guan, Ying

    2012-03-01

    The major components of the 4th generation outer space bred angelica and the ground group were determined and analyzed by Fourier transform infrared spectroscopy (FTIR) and second derivative spectrum, considering the large mutation of the plants with space mutagenesis. The results show that the content of the coumarin (1741 cm(-1)), which is the main active components of the space angelica dahurica increased, and the content of the protein (1 459, 1 419 cm(-1)) and the fat (930 cm(-1)) increased slightly, whereas the content of the starch and the dietary fiber reduced drastically. There are obvious differences between the peak values of the second derivative spectra of the plants, revealing that the outer space angelica dahurica contained amine component at 1 279 cm(-1). Space mutation breeding is favor of breeding angelica with better idiosyncrasy.

  2. Characterization of poly(L-lactide/Propylene glycol) based polyurethane films using ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Manap, Siti Munirah; Ahmad, Azizan; Anuar, Farah Hannan

    2016-11-01

    A polyurethane films consisting of PLLA, PPG and PLLA-PPG were prepared using solution casting method. Three types of polyurethane were prepared: PPLA:PMDI, PPG:PMDI and PLLA-PPG:PMDI in the presence of polymeric diphenylmethane diisocyanate (PMDI) as the coupling agent and catalyst, Sn(Oct)2. The aim of this research was to improve the physicals properties of PLLA and PPG homopolymers through copolymerization between the two polymers. The homopolymers and polyurethane films were characterized using ATR-FTIR spectroscopy. Chemical reaction between PLLA, PPG and PMDI before and after the reaction were confirmed by observing the shifting of wavenumber for the carbonyl and ether group. Other than that, the additional band for N-H after the reaction indicated that the reaction was successful.

  3. FTIR spectroscopy of synthesized racemic nonacosan-10-ol: a model compound for plant epicuticular waxes

    PubMed Central

    2010-01-01

    As there are no published graphically presented, detailed IR spectra of nonacosan-10-ol (occurring naturally and widely in plant epicuticular waxes of nanotube form), near IR FTIR spectroscopy (fundamentals, overtones and combinations) has been performed on laboratory synthesized racemic nonacosan-10-ol, as a crystalline solid on Mylar and polypropylene substrates. Room temperature, in vacuo data are presented graphically, in full, and show evidence of extensive hydrogen bonding, an orthorhombic perpendicular subcell, a methylene wagging progression, diagnostic of all-trans conformational order, and Fermi resonance. Moderate or stronger anharmonicity is confirmed. Detailed discussion, quantitative in parts, is given of the observed spectral features, especially as to how they inform crystal structure and molecular conformation, and assignments given for some of the features. The results will serve as a reference for future IR studies of the natural epicuticular wax nanotube form of (S)-nonacosan-10-ol. PMID:21886346

  4. Probing proton dissociation in ionic polymers by means of in situ ATR-FTIR spectroscopy.

    PubMed

    Grosmaire, Lidwine; Castagnoni, Samuel; Huguet, Patrice; Sistat, Philippe; Boucher, Mario; Bouchard, Patrick; Bébin, Philippe; Deabate, Stefano

    2008-03-21

    The hydration process of cationic membrane protogenic groups was investigated using in situ ATR-FTIR spectroscopy. The aim of this study is to provide a relationship between the hydration degree of the membrane and the dissociation state of exchange sites inside the polymer material. IR spectra were recorded by means of an environmental device specifically manufactured to allow the control of water vapour pressure in equilibrium with the sample. The behaviour of Nafion 112 and sulfonated poly(ether ether ketone) (S-PEEK), in both proton and sodium forms, was compared. IR data, analyzed and fitted in the 800-1850 cm(-1) spectral range, gave precise information on the assignment of sulfonic group vibrational modes. The results of this study improve the understanding of the transition phenomena between dissociated and undissociated states of the grafted sites in protonic conductors.

  5. Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR).

    PubMed

    Blum, Marc-Michael; John, Harald

    2012-01-01

    Vibrational spectroscopy has a long history as an important spectroscopic method in chemical and pharmaceutical analysis. Instrumentation for infrared (IR) spectroscopy was revolutionized by the introduction of Fourier Transform Infrared (FTIR) spectrometers. In addition, easier sampling combined with better sample-to-sample reproducibility and user-to-user spectral variation became available with attenuated total reflectance (ATR) probes and their application for in situ IR spectroscopy. These innovations allow many new applications in chemical and pharmaceutical analysis, such as the use of IR spectroscopy in Process Analytical Chemistry (PAC), the quantitation of drugs in complex matrix formulations, the analysis of protein binding and function and in combination with IR microscopy to the emergence of IR imaging technologies. The use of ATR-FTIR instruments in forensics and first response to 'white powder' incidents is also discussed. A short overview is given in this perspective article with the aim to renew and intensify interest in IR spectroscopy.

  6. Spectroscopic characterization of biological agents using FTIR, normal Raman and surface-enhanced Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Luna-Pineda, Tatiana; Soto-Feliciano, Kristina; De La Cruz-Montoya, Edwin; Pacheco Londoño, Leonardo C.; Ríos-Velázquez, Carlos; Hernández-Rivera, Samuel P.

    2007-04-01

    FTIR, Raman spectroscopy and Surface Enhanced Raman Scattering (SERS) requires a minimum of sample allows fast identification of microorganisms. The use of this technique for characterizing the spectroscopic signatures of these agents and their stimulants has recently gained considerable attention due to the fact that these techniques can be easily adapted for standoff detection from considerable distances. The techniques also show high sensitivity and selectivity and offer near real time detection duty cycles. This research focuses in laying the grounds for the spectroscopic differentiation of Staphylococcus spp., Pseudomonas spp., Bacillus spp., Salmonella spp., Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, and E. coli, together with identification of their subspecies. In order to achieve the proponed objective, protocols to handle, cultivate and analyze the strains have been developed. Spectroscopic similarities and marked differences have been found for Spontaneous or Normal Raman spectra and for SERS using silver nanoparticles have been found. The use of principal component analysis (PCA), discriminate factor analysis (DFA) and a cluster analysis were used to evaluate the efficacy of identifying potential threat bacterial from their spectra collected on single bacteria. The DFA from the bacteria Raman spectra show a little discrimination between the diverse bacterial species however the results obtained from the SERS demonstrate to be high discrimination technique. The spectroscopic study will be extended to examine the spores produced by selected strains since these are more prone to be used as Biological Warfare Agents due to their increased mobility and possibility of airborne transport. Micro infrared spectroscopy as well as fiber coupled FTIR will also be used as possible sensors of target compounds.

  7. New method for estimating greenhouse gas emissions from livestock buildings using open-path FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Briz, Susana; Barrancos, José; Nolasco, Dácil; Melián, Gladys; Padrón, Eleazar; Pérez, Nemesio

    2009-09-01

    It is widely known that methane, together with carbon dioxide, is one of the most effective greenhouse gases contributing to climate global change. According to EMEP/CORINAIR Emission Inventory Guidebook1, around 25% of global CH4 emissions originate from animal husbandry, especially from enteric fermentation. However, uncertainties in the CH4 emission factors provided by EMEP/CORINAIR are around 30%. For this reason, works addressed to calculate emissions experimentally are so important to improve the estimations of emissions due to livestock and to calculate emission factors not included in this inventory. FTIR spectroscopy has been frequently used in different methodologies to measure emission rates in many environmental problems. Some of these methods are based on dispersion modelling techniques, wind data, micrometeorological measurements or the release of a tracer gas. In this work, a new method for calculating emission rates from livestock buildings applying Open-Path FTIR spectroscopy is proposed. This method is inspired by the accumulation chamber method used for CO2 flux measurements in volcanic areas or CH4 flux in wetlands and aquatic ecosystems. The process is the following: livestock is outside the building, which is ventilated in order to reduce concentrations to ambient level. Once the livestock has been put inside, the building is completely closed and the concentrations of gases emitted by livestock begin to increase. The Open-Path system measures the concentration evolution of gases such as CO2, CH4, NH3 and H2O. The slope of the concentration evolution function, dC/dt, at initial time is directly proportional to the flux of the corresponding gas. This method has been applied in a cow shed in the surroundings of La Laguna, Tenerife Island, Spain). As expected, evolutions of gas concentrations reveal that the livestock building behaves like an accumulation chamber. Preliminary results show that the CH4 emission factor is lower than the proposed by

  8. Cutaneous approach towards clinical and pathophysiological aspects of hyperglycemia by ATR FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Eikje, Natalja Skrebova; Sota, Takayuki; Aizawa, Katsuo

    2007-07-01

    Attempts were made to non-invasively detect glucose-specific spectral signals in the skin by ATR-FTIR spectroscopy. In vivo spectra were collected from the inner wrists of healthy, prediabetes and diabetes subjects in the 750-4000 cm -1 region, with a closer assessment of the glucose-related region between 1000 and 1180 cm -1. Spectra in vivo showed glucose-specific peaks at 1030, 1080, 1118 and 1151 cm -1, as a variety of glucose solutions are found in vitro. Based on the differences of intensities at 1030 and 1118 cm -1 two spectral patterns were seen: I 1118 > I 1030 for a diabetes and I 1030> I 1118 for non-diabetes subjects. The peak at 1030 cm -1 was used to assess glucose concentrations in the skin due to its good correlation with glucose concentrations in vitro. Calculated mean values of the peak at 1030 cm -1 showed evidence of correlation with blood glucose levels when grouped as <= 140, 140-200 and >= 200 mg/dL, though there was no constant correlation between them when compared before/after OGTT or at the fasting/postprandial states. Absorbances at 1030 cm -1 were not only increased in a dose-dependent manner in a diabetes patient, but were also generally higher than in non-diabetes subjects at 30 min OGTT assessment. Also we could monitor absorbances at 1030 cm -1 and determine their changes in the skin tissue at different times of OGTT. We assume that our approach to in vivo measurement and monitoring of glucose concentrations at 1030 cm -1 may be one of the indicators to assess glucose activity level and its changes in the skin tissue, and has further implications in the study of clinical and pathophysiological aspects of hyperglycemia in diabetes and non-diabetes subjects by ATR-FTIR spectroscopy.

  9. Spectral database for postage stamps by means of FT-IR spectroscopy.

    PubMed

    Imperio, Eleonora; Giancane, Gabriele; Valli, Ludovico

    2013-08-06

    A Fourier transform infrared (FT-IR) spectroscopy study on the entire Italian postage stamps production is presented in this work. Crossing 150 years of issues from the unification of Italy until today, a time line of the major components constituting the stamps has been defined, based on the wide spectral database built on the basis of the numerous analyzed exemplars. Even though it is easy to find reports about stamps' issues history, information arising from these investigations contributes to throw light upon the substances incorporated in the stamps, which could be described as hybrid or composite materials (a sort of undisclosed or hidden story). As a result of the whole spectra acquired in attenuated total reflectance (ATR) mode, changes in paper composition showed the transition from the protein sizing glue to starch sizing; also the employment of kaolin varied through time. First it was used as the extender in the pigment-medium mixture, and finally it constituted the coating on the stamp surface. Also the chemical composition of the adhesive gum on the rear side of stamps has been subjected to modifications, as well as the front side. The earliest back glue was a protein-based adhesive; then it was replaced by gum arabic first and by poly(vinyl acetate) (PVAC) later. FT-IR spectroscopy, supported by the detailed database developed, has been applied, for the first time, in the very useful detection of two counterfeit samples: a fake of the famous Gronchi Rosa, issued in 1961, and a regummed 2 cent red stamp, issued in 1865. The information held in the whole spectral data has been selected and employed in the principal component analysis (PCA) statistical analysis.

  10. Molecular shock response of explosives: electronic absorption spectroscopy

    SciTech Connect

    Mcgrne, Shawn D; Moore, David S; Whitley, Von H; Bolme, Cindy A; Eakins, Daniel E

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  11. Molecular Shock Response of Explosives: Electronic Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGrane, S. D.; Moore, D. S.; Whitley, V. H.; Bolme, C. A.; Eakins, D. E.

    2009-12-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference as well as broadband increased absorption. Relation to shock initiation and the need for time dependent absorption (future experiments) is briefly discussed.

  12. How can Synchrotron-Based FTIR Spectroscopy Contribute to Astrophysical and Atmospheric Data Needs?

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.

    2009-06-01

    Following the pioneering demonstration of gas-phase IR spectroscopy using synchrotron radiation (SR) at MAXLab and LURE, a number of new high resolution IR beamline facilities have recently become available, including those at the Canadian Light Source, the Australian Synchrotron, and Synchrotron SOLEIL. The high brightness of SR compared to conventional thermal sources gives potential signal gains of 2 to 3 orders of magnitude for this difficult region, though noise (e.g. from mechanical vibration) remains a problem. For astrophysical applications, comprehensive studies which involve measuring many thousands of transitions are needed for molecules ubiquitous in space (like methanol). Here the multiplex nature of FTIR spectroscopy is advantageous compared to the line-by-line nature of conventional microwave measurements. But is the accuracy sufficient? In recent Canadian Light Source spectra with line widths of 20 MHz and reasonable signal-to-noise ratio, line centers are routinely measured to better than 1 MHz. So it should be possible to approach the accuracy required by radio astronomers. Another astrophysical need is for improved data on unstable species (radicals and ions). Here the broad-band nature of FTIR helps with the search problem, and the high resolution possible with SR helps with sensitivity. But coherent (microwave or laser) sources may give better ultimate sensitivity. As well, synchrotron users face the challenge of creating unstable molecules (difficult enough in their own laboratory!) at the beamline where they may have only a few days of access. For terrestrial remote sensing, we wish to have complete and detailed spectral data for atmospheric molecules and potential pollutants. The availability of new synchrotron facilities will certainly help in this respect, particularly for the 50 - 500 wn range where coverage has been relatively limited. The required data are not limited to line positions. Detailed line shape information is also needed for

  13. FTIR Spectroscopy of HNO3 and NO2 Relevant to Stratospheric Wake Analysis

    NASA Technical Reports Server (NTRS)

    Abina, Rafiu A.; Misra, Prabhakar; Okabe, Hideo; Chu, P. M.; Sams, Robert L.

    1997-01-01

    The Fourier Transform Infrared (FTIR) technique has been employed to measure absolute concentrations of nitric acid (HNO3) and nitrogen dioxide (NO2) with 1/cm resolution and an absorption pathlength of 4 m under quasi-static and flow conditions at atmospheric pressure and room temperature. Water features seen under quasi-static conditions diminished in intensity under flowing conditions. Nitric acid was observed in the 1660-1760/cm range, while nitrogen dioxide was detected both in the 1536-1660 and 1213-1400/cm ranges. Concentrations of nitrogen dioxide and nitric acid were determined to be 11.9 and 4.35 parts per million (ppm), respectively, with an uncertainty of 0.2 ppm. Experiments are underway with a 10 m cell to measure the absorption of nitric acid, water, sulfur dioxide, hydrochloric acid and ammonia on various materials such as glass, teflon, stainless steel and aluminum used for implementation of the flow system. Such materials will be used for the measurements of stratospheric trace gases by the Quartz Crystal Microbalance (QCM) and Surface Acoustic Wave (SAW) devices.

  14. Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-01-01

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with <1E-3 absorbance noise for a 10 second measurement time.

  15. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  16. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  17. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  18. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  19. [Burner head with high sensitivity in atomic absorption spectroscopy].

    PubMed

    Feng, X; Yang, Y

    1998-12-01

    This paper presents a burner head with gas-sample separate entrance and double access, which is used for atomic absorption spectroscopy. According to comparison and detection, the device can improve sensitivity by a factor of 1 to 5. In the meantime it has properties of high stability and resistance to interference.

  20. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  1. Analysis of a Brazilian baroque sculpture using Raman spectroscopy and FT-IR.

    PubMed

    Freitas, Renato P; Ribeiro, Iohanna M; Calza, Cristiane; Oliveira, Ana L; Felix, Valter S; Ferreira, Douglas S; Pimenta, André R; Pereira, Ronaldo V; Pereira, Marcelo O; Lopes, Ricardo T

    2016-02-05

    In this study, samples were taken from the sculpture of Our Lady of Sorrows and analyzed by Raman spectroscopy and FT-IR. This sculpture has been dated to the early eighteenth century. Samples were also examined using optical microscopy and Energy Dispersive Spectroscopy (EDS). Based on chemical analysis, the pigments vermilion [HgS], massicot [PbO] and azurite [Cu3(CO3)2(OH)2]were found in the sculpture polychrome. The results indicate that the green polychrome of the sculpture's mantle comes from the blending of massicot and azurite. Because the literature reports that the mantle of the Our Lady of Sorrows sculpture is blue, the mixing of these pigments results from a production error. The results also indicate the presence of Au in the sculpture, which indicates the originality of the piece. The results from this study helped restorers to choose the appropriate procedures for intervening in the sculpture and contributed to the knowledge about the manufacturing process of Brazilian baroque sculptures.

  2. Analysis of a Brazilian baroque sculpture using Raman spectroscopy and FT-IR

    NASA Astrophysics Data System (ADS)

    Freitas, Renato P.; Ribeiro, Iohanna M.; Calza, Cristiane; Oliveira, Ana L.; Felix, Valter S.; Ferreira, Douglas S.; Pimenta, André R.; Pereira, Ronaldo V.; Pereira, Marcelo O.; Lopes, Ricardo T.

    2016-02-01

    In this study, samples were taken from the sculpture of Our Lady of Sorrows and analyzed by Raman spectroscopy and FT-IR. This sculpture has been dated to the early eighteenth century. Samples were also examined using optical microscopy and Energy Dispersive Spectroscopy (EDS). Based on chemical analysis, the pigments vermilion [HgS], massicot [PbO] and azurite [Cu3(CO3)2(OH)2] were found in the sculpture polychrome. The results indicate that the green polychrome of the sculpture's mantle comes from the blending of massicot and azurite. Because the literature reports that the mantle of the Our Lady of Sorrows sculpture is blue, the mixing of these pigments results from a production error. The results also indicate the presence of Au in the sculpture, which indicates the originality of the piece. The results from this study helped restorers to choose the appropriate procedures for intervening in the sculpture and contributed to the knowledge about the manufacturing process of Brazilian baroque sculptures.

  3. Transmission FTIR derivative spectroscopy for estimation of furosemide in raw material and tablet dosage form

    PubMed Central

    Gallignani, Máximo; Rondón, Rebeca A.; Ovalles, José F.; Brunetto, María R.

    2014-01-01

    A Fourier transform infrared derivative spectroscopy (FTIR-DS) method has been developed for determining furosemide (FUR) in pharmaceutical solid dosage form. The method involves the extraction of FUR from tablets with N,N-dimethylformamide by sonication and direct measurement in liquid phase mode using a reduced path length cell. In general, the spectra were measured in transmission mode and the equipment was configured to collect a spectrum at 4 cm−1 resolution and a 13 s collection time (10 scans co-added). The spectra were collected between 1400 cm−1 and 450 cm−1. Derivative spectroscopy was used for data processing and quantitative measurement using the peak area of the second order spectrum of the major spectral band found at 1165 cm−1 (SO2 stretching of FUR) with baseline correction. The method fulfilled most validation requirements in the 2 mg/mL and 20 mg/mL range, with a 0.9998 coefficient of determination obtained by simple calibration model, and a general coefficient of variation <2%. The mean recovery for the proposed assay method resulted within the (100±3)% over the 80%–120% range of the target concentration. The results agree with a pharmacopoeial method and, therefore, could be considered interchangeable. PMID:26579407

  4. Transmission FTIR derivative spectroscopy for estimation of furosemide in raw material and tablet dosage form.

    PubMed

    Gallignani, Máximo; Rondón, Rebeca A; Ovalles, José F; Brunetto, María R

    2014-10-01

    A Fourier transform infrared derivative spectroscopy (FTIR-DS) method has been developed for determining furosemide (FUR) in pharmaceutical solid dosage form. The method involves the extraction of FUR from tablets with N,N-dimethylformamide by sonication and direct measurement in liquid phase mode using a reduced path length cell. In general, the spectra were measured in transmission mode and the equipment was configured to collect a spectrum at 4 cm(-1) resolution and a 13 s collection time (10 scans co-added). The spectra were collected between 1400 cm(-1) and 450 cm(-1). Derivative spectroscopy was used for data processing and quantitative measurement using the peak area of the second order spectrum of the major spectral band found at 1165 cm(-1) (SO2 stretching of FUR) with baseline correction. The method fulfilled most validation requirements in the 2 mg/mL and 20 mg/mL range, with a 0.9998 coefficient of determination obtained by simple calibration model, and a general coefficient of variation <2%. The mean recovery for the proposed assay method resulted within the (100±3)% over the 80%-120% range of the target concentration. The results agree with a pharmacopoeial method and, therefore, could be considered interchangeable.

  5. FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer.

    PubMed

    Spoto, Giuseppe; Vitillo, Jenny G; Cocina, Donato; Damin, Alessandro; Bonino, Francesca; Zecchina, Adriano

    2007-09-28

    The adsorption of H(2) in a cross-linked poly(styrene-co-divinylbenzene) (St-DVB) microporous polymer (BET surface area 920 m(2) g(-1)) is studied by volumetric and gravimetric methods, FTIR spectroscopy at variable temperature (300-14 K) and ab initio calculations. At 77 K the polymer reversibly stores up to 1.3 mass% H(2) at a pressure of 1 bar and 1.8 mass% at 10 bar. The adsorption process involves the specific interaction of H(2) with the structural phenyl rings through weak dispersive forces. The interacting molecules become IR active and give rise to vibrational and rotational-vibrational manifestations which are affected by the temperature, the contact time and the H(2) equilibrium pressure. The spectra of the H(2)/St-DVB system reported here represent the first IR evidence of the adsorption of hydrogen on unsaturated molecules. The adsorption enthalpy is evaluated by the VTIR (variable temperature IR spectroscopy) method (C. Otero Areán et al., Phys. Chem. Chem. Phys., 2007, DOI: 10.1039/b615535a) and compared with the results of ab initio calculations for the H(2)/benzene interaction and with literature data.

  6. Variability of cork from Portuguese Quercus suber studied by solid-state (13)C-NMR and FTIR spectroscopies.

    PubMed

    Lopes, M H; Barros, A S; Pascoal Neto, C; Rutledge, D; Delgadillo, I; Gil, A M

    2001-01-01

    A new approach is presented for the study of the variability of Portuguese reproduction cork using solid-state (13)C-NMR spectroscopy and photoacoustic (PAS) FTIR (FTIR-PAS) spectroscopy combined with chemometrics. Cork samples were collected from 12 different geographical sites, and their (13)C-cross-polarization with magic angle spinning (CP/MAS) and FTIR spectra were registered. A large spectral variability among the cork samples was detected by principal component analysis and found to relate to the suberin and carbohydrate contents. This variability was independent of the sample geographical origin but significantly dependent on the cork quality, thus enabling the distinction of cork samples according to the latter property. The suberin content of the cork samples was predicted using multivariate regression models based on the (13)C-NMR and FTIR spectra of the samples as reported previously. Finally, the relationship between the variability of the (13)C-CP/MAS spectra with that of the FTIR-PAS spectra was studied by outer product analysis. This type of multivariate analysis enabled a clear correlation to be established between the peaks assigned to suberin and carbohydrate in the FTIR spectrum and those appearing in the (13)C-CP/MAS spectra.

  7. Combined surface plasmon resonance and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia, Miguel Angel; Serrano, Aida; Rodriguez de La Fuente, Oscar; Castro, German R.

    2012-02-01

    We present a system for the excitation and measurement of surface plasmons in metallic films based on the Kretschmann-Raether configuration that can be installed in a synchrotron beamline. The device was mounted an tested in a hard X-ray Absorption beamline, BM25 Spline at ESRF. Whit this device it is possible to carry on experiments combining surface plasmon and X-ray absorption spectroscopies. The surface plasmons can be use to monitor in situ changes induced by the X-rays in the metallic films or the dielectric overlayer. Similarly, the changes in the electronic configuration of the material when surface plasmons are excited can be measured by X-ray absorption spectroscopy. The resolution of the system allows to observe changes in the signals of the order of 10-3 to 10-5 depending on the particular experiment and used configuration. The system is available for experiments at the beamline.

  8. Polarization-enhanced absorption spectroscopy for laser stabilization.

    PubMed

    Kunz, Paul D; Heavner, Thomas P; Jefferts, Steven R

    2013-11-20

    We demonstrate a variation of pump-probe spectroscopy that is particularly useful for laser frequency stabilization. The polarization-enhanced absorption spectroscopy (POLEAS) signal provides a significant improvement in signal-to-noise ratio over saturated absorption spectroscopy (SAS) for the important and commonly used atomic cycling transitions. The improvements can directly increase the short-term stability of a laser frequency lock, given sufficient servo loop bandwidth. The long-term stability of the POLEAS method, which is limited by environmental sensitivities, is comparable to that of SAS. The POLEAS signal is automatically Doppler-free, without requiring a separate Doppler subtraction beam, and lends itself to straightforward compact packaging. Finally, by increasing the amplitude of the desired (cycling) peak, while reducing the amplitude of all other peaks in the manifold, the POLEAS method eases the implementation of laser auto-locking schemes.

  9. The potential of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect organic emissions under the Clean Air Act

    SciTech Connect

    Demirgian, J.C.; Hammer, C.L. ); Kroutil, R.T. )

    1992-01-01

    The Clean Air Act of 1990 regulates the emission of 198 air toxics. Currently, there is no existing technology by which a regulatory agency can independently determine if a facility is in compliance. We have successfully tested the ability of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect chemical plumes released in the field. Additional laboratory releases demonstrated that FTIR spectroscopy can detect target analytes in mixtures containing components which have overlapping absorbances. The FTIR spectrometer was able to identify and quantify each component released with an average quantitative error of less than 20% using partial least squares (PLS) analysis and 40% using classical least squares analysis (CLS) when calibration files containing pure components and mixtures were used. Calibration files containing only pure analytes resulted in CLS outperforming PLS analyses.

  10. The potential of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect organic emissions under the Clean Air Act

    SciTech Connect

    Demirgian, J.C.; Hammer, C.L.; Kroutil, R.T.

    1992-07-01

    The Clean Air Act of 1990 regulates the emission of 198 air toxics. Currently, there is no existing technology by which a regulatory agency can independently determine if a facility is in compliance. We have successfully tested the ability of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect chemical plumes released in the field. Additional laboratory releases demonstrated that FTIR spectroscopy can detect target analytes in mixtures containing components which have overlapping absorbances. The FTIR spectrometer was able to identify and quantify each component released with an average quantitative error of less than 20% using partial least squares (PLS) analysis and 40% using classical least squares analysis (CLS) when calibration files containing pure components and mixtures were used. Calibration files containing only pure analytes resulted in CLS outperforming PLS analyses.

  11. Interaction between vitamin D 2 and magnesium in liposomes: Differential scanning calorimetry and FTIR spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Toyran, Neslihan; Severcan, Feride

    2007-08-01

    Magnesium (Mg 2+) ion is of great importance in physiology by its intervention in 300 enzymatic systems, its role in membrane structure, its function in neuromuscular excitability and vitamin D metabolism and/or action. In the present study, the interaction of Mg 2+, at low (1 mole %) and high (7 mole %) concentrations with dipalmitoyl phosphatidylcholine (DPPC) liposomes has been studied in the presence and absence of vitamin D 2 (1 mole %) by using two noninvasive techniques, namely differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. DSC studies reveal that the presence of vitamin D 2 in the pure or Mg 2+ (at both low and high concentrations) containing liposomes diminishes the pretransition. The calorimetric results also reveal that, inclusion of Mg 2+ (more significantly at high concentration) into pure or vitamin D 2 containing DPPC liposomes increases the main phase transition temperature. The investigation of the CH 2 symmetric, the CH 3 asymmetric, the C dbnd O stretching, and the PO2- antisymmetric double bond stretching bands in FTIR spectra with respect to changes occurring in the wavenumber and/or the bandwidth values as a function of temperature reveal that, inclusion of vitamin D 2 or Mg 2+ into pure DPPC liposomes orders and decreases the dynamics of the acyl chains in both gel and liquid-crystalline phases and does not induce hydrogen bond formation in the interfacial region. Furthermore, the dynamics of the head groups of the liposomes decreases in both phases. Our findings reveal that, simultaneous presence of vitamin D 2 and Mg 2+ alters the effect of each other, which is reflected as a decrease in the interactions between these two additives within the model membrane.

  12. Characterization of Paracoccidioides brasiliensis by FT-IR spectroscopy and nanotechnology

    NASA Astrophysics Data System (ADS)

    Ferreira, Isabelle; Ferreira-Strixino, Juliana; Castilho, Maiara L.; Campos, Claudia B. L.; Tellez, Claudio; Raniero, Leandro

    2016-01-01

    Paracoccidioides brasiliensis, the etiological agent of paracoccidioidomycosis, is a dimorphic fungus existing as mycelia in the environment (or at 25 °C in vitro) and as yeast cells in the human host (or at 37 °C in vitro). Because mycological examination of lesions in patients frequently is unable to show the presence of the fungus and serological tests can misdiagnose the disease with other mycosis, the development of new approach's for molecular identification of P. brasiliensis spurges is needed. This study describes the use of a gold nanoprobe of a known gene sequence of P. brasiliensis as a molecular tool to identify P. brasiliensis by regular polymerase chain reaction (PCR) associated with a colorimetric methods. This approach is suitable for testing in remote areas because it does not require any further step than gene amplification, being safer and cheaper than electrophoresis methods. The proposed test showed a color change of the PCR reaction mixture from red to blue in negative samples, whereas the solution remains red in positive samples. We also performed a Fourier Transform Infrared (FT-IR) Spectroscopy analysis to characterize and compare the chemical composition between yeast and mycelia forms, which revealed biochemical differences between these two forms. The analysis of the spectra showed that differences were distributed in chemical bonds of proteins, lipids and carbohydrates. The most prominent difference between both forms was vibration modes related to 1,3-β-glucan usually found in mycelia and 1,3-α-glucan found in yeasts and also chitin forms. In this work, we introduce FT-IR as a new method suitable to reveal overall differences that biochemically distinguish each form of P. brasiliensis that could be additionally used to discriminate biochemical differences among a single form under distinct environmental conditions.

  13. Stoichiometric determination of moisture in edible oils by Mid-FTIR spectroscopy.

    PubMed

    van de Voort, F R; Tavassoli-Kafrani, M H; Curtis, J M

    2016-04-28

    A simple and accurate method for the determination of moisture in edible oils by differential FTIR spectroscopy has been devised based on the stoichiometric reaction of the moisture in oil with toluenesulfonyl isocyanate (TSI) to produce CO2. Calibration standards were devised by gravimetrically spiking dry dioxane with water, followed by the addition of neat TSI and examination of the differential spectra relative to the dry dioxane. In the method, CO2 peak area changes are measured at 2335 cm(-1) and were shown to be related to the amount of moisture added, with any CO2 inherent to residual moisture in the dry dioxane subtracted ratioed out. CO2 volatility issues were determined to be minimal, with the overall SD of dioxane calibrations being ∼18 ppm over a range of 0-1000 ppm. Gravimetrically blended dry and water-saturated oils analysed in a similar manner produced linear CO2 responses with SD's of <15 ppm on average. One set of dry-wet blends was analysed in duplicate by FTIR and by two independent laboratories using coulometric Karl Fischer (KF) procedures. All 3 methods produced highly linear moisture relationships with SD's of 7, 16 and 28 ppm, respectively over a range of 200-1500 ppm. Although the absolute moisture values obtained by each method did not exactly coincide, each tracked the expected moisture changes proportionately. The FTIRTSI-H2O method provides a simple and accurate instrumental means of determining moisture in oils rivaling the accuracy and specificity of standard KF procedures and has the potential to be automated. It could also be applied to other hydrophobic matrices and possibly evolve into a more generalized method, if combined with polar aprotic solvent extraction.

  14. PIR-fiber spectroscopy with FTIR and TDL spectrometers in the middle infared range of spectra

    NASA Astrophysics Data System (ADS)

    Artjushenko, Vjacheslav G.; Afanasyeva, Natalia I.; Bruch, Reinhard F.; Daniellian, G.; Stepanov, Eugene V.

    2000-07-01

    Development of Polycrystalline Infrared (PIR-) fibers extruded from solid solutions of AgCl/AgBr has opened a new horizon of molecular spectroscopy applications in 4 - 18 micron range of spectra. PIR-fiber cables and probes could be coupled with a variety of Fourier Transform Infrared spectrometer and Tunable Diode Lasers (TDL), including pig tailing of Mercury Cadmium Tellurium (MCT) detectors. Using these techniques no sample preparation is necessary for PIR- fiber probes to measure reflection and absorption spectra, in situ, in vivo, in real time and even multiplexed. Such PIR-fiber probes have been used for evanescent absorption spectroscopy of malignant tissue and skin surface diagnostics in-vivo, glucose detection in blood as well as crude oil composition analysis, for organic pollution and nuclear waste monitoring. A review of various PIR-fiber applications in medicine, industry and environment control is presented. The synergy of PIR-fibers flexibility with a super high resolution of TDL spectrometers with (Delta) v equals 10-4 cm-1, provides the unique tool for gas analysis, specifically when PIR-fibers are coupled as pigtails with MCT-detectors, and Pb-salt lasers. Design of multichannel PIR-fiber tailed TDL spectrometer could be used as a portable device for multispectral gas analysis at 1 ppb level of detectivity for various applications in medicine and biotechnology.

  15. Subtractive-FTIR spectroscopy to characterize organic matter in lignite samples from different depths.

    PubMed

    Gezici, Orhan; Demir, Ibrahim; Demircan, Aydin; Unlü, Nuri; Karaarslan, Muhsin

    2012-10-01

    Organic matter present in lignite samples collected from different depths (i.e. top, mid and bottom) of lignite source, Ilgın, Konya province, was examined by using subtractive-FTIR-ATR spectroscopy. FTIR spectra were recorded on (i) original samples, (ii) the samples dried at 105 °C and (iii) the samples acid-treated and dried. After a combustion process performed for each sample at 650 °C for 15 min, the spectra of samples were recorded and subtracted from the spectra of untreated samples. Hence, a software-based subtraction made it possible to acquire a representative spectra related with organic matter. As the contribution of the bands related with inorganic constituents in lignite samples were eliminated after spectrum-subtraction procedure, difference-spectra led analyzing the spectra related with organic matter in lignite samples, reasonably. Furthermore, the bands related with acidic functional groups, aromatic and aliphatic structures were analyzed on the basis of difference-spectra, easily. From the difference-spectra it was shown that an acid-treatment process under mild conditions caused shift in some specific bands related with carbonyl groups of carboxyls so that the band at around 1710 cm(-1) arisen, while the intensity of the band at around 1420 cm(-1) was diminished. Through the acid-treatment process, acidic groups in lignite samples from different depths were thought to be turned into similar forms by protonation and/or stripping of metal ions originally bonded. Difference-spectra acquired for acid-treated samples made it possible to evaluate the form of carboxylic acid groups present in the studied samples under specific environmental conditions. Hence, a facile and environmentally-friendly methodology was used to analyze organic matter in lignite by using FTIR spectra, and valuable information was acquired about the aliphatic, aromatic and acidic character of the studied lignite samples collected from different depths. The proposed

  16. Subtractive-FTIR spectroscopy to characterize organic matter in lignite samples from different depths

    NASA Astrophysics Data System (ADS)

    Gezici, Orhan; Demir, Ibrahim; Demircan, Aydin; Ünlü, Nuri; Karaarslan, Muhsin

    2012-10-01

    Organic matter present in lignite samples collected from different depths (i.e. top, mid and bottom) of lignite source, Ilgın, Konya province, was examined by using subtractive-FTIR-ATR spectroscopy. FTIR spectra were recorded on (i) original samples, (ii) the samples dried at 105 °C and (iii) the samples acid-treated and dried. After a combustion process performed for each sample at 650 °C for 15 min, the spectra of samples were recorded and subtracted from the spectra of untreated samples. Hence, a software-based subtraction made it possible to acquire a representative spectra related with organic matter. As the contribution of the bands related with inorganic constituents in lignite samples were eliminated after spectrum-subtraction procedure, difference-spectra led analyzing the spectra related with organic matter in lignite samples, reasonably. Furthermore, the bands related with acidic functional groups, aromatic and aliphatic structures were analyzed on the basis of difference-spectra, easily. From the difference-spectra it was shown that an acid-treatment process under mild conditions caused shift in some specific bands related with carbonyl groups of carboxyls so that the band at around 1710 cm-1 arisen, while the intensity of the band at around 1420 cm-1 was diminished. Through the acid-treatment process, acidic groups in lignite samples from different depths were thought to be turned into similar forms by protonation and/or stripping of metal ions originally bonded. Difference-spectra acquired for acid-treated samples made it possible to evaluate the form of carboxylic acid groups present in the studied samples under specific environmental conditions. Hence, a facile and environmentally-friendly methodology was used to analyze organic matter in lignite by using FTIR spectra, and valuable information was acquired about the aliphatic, aromatic and acidic character of the studied lignite samples collected from different depths. The proposed methodology

  17. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  18. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  19. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation.

    PubMed

    Drescher, L; Galbraith, M C E; Reitsma, G; Dura, J; Zhavoronkov, N; Patchkovskii, S; Vrakking, M J J; Mikosch, J

    2016-07-07

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ(*) excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  20. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    NASA Astrophysics Data System (ADS)

    Drescher, L.; Galbraith, M. C. E.; Reitsma, G.; Dura, J.; Zhavoronkov, N.; Patchkovskii, S.; Vrakking, M. J. J.; Mikosch, J.

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  1. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piletic, Ivan R.; Matthews, Thomas E.; Warren, Warren S.

    2009-11-01

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain ˜46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  2. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy.

    PubMed

    Piletic, Ivan R; Matthews, Thomas E; Warren, Warren S

    2009-11-14

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750 nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain approximately 46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  3. Organic matter from benthic foraminifera (Ammonia beccarii) shells by FT-IR spectroscopy: A study on Tupilipalem, South east coast of India.

    PubMed

    Sreenivasulu, G; Jayaraju, N; Sundara Raja Reddy, B C; Lakshmi Prasad, T; Nagalakshmi, K; Lakshmanna, B

    2017-01-01

    Fourier Transform Infrared Spectroscopy (FTIR) was used to study the variations in organic matters of benthic foraminifera (Ammonia beccarii) from four samples collected from beach environments from brackish environments along Tupilipalem coast (South east coast of India). Common absorption bands were observed as peaks in the range of 3600-3400 cm(-1), 3000-2850 cm(-1), 1750-1740 cm(-1), 1640-1600 cm(-1), 1450-1350 cm(-1), 885-870 cm(-1) and 725-675 cm(-1) in all the shells of Ammonia beccarii. The FTIR spectrum of station-1 represents the presence of alkanes (CH3) and alkyl halide (C-F stretching) with absorptions at the range 1385-1255 and 1350-1150 cm(-1) were observed and ether (C-O stretching) absorption band was observed at stations 1 and 3 with wavenumber of 1115 cm(-1) and 1117 cm(-1) respectively. Alkynes C-H bend was observed at station-1 with the wavenumber of 667.43 cm(-1). The shifting of peak positions in all the samples is could be due to presence of organic matter in the samples. Satellite remote sensing and field observation data revealed that the river mouth at Tupilipalem coast was closed by a sand bar. Consequentially, this waterbody may affect the species diversity. •Positions of the sampling locations were identified using a hand-held Garmin Global Positioning System (GPS).•Foraminifera from the sediment were obtained using a mixture of Bromoform and Acetone.•The functional groups present in the benthic foraminifera shells were recorded in the spectral range of 4000-400 cm(-1) using an FT-IR Spectrophotometer.

  4. Study of thin films of LiNbO3 using FTIR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zezulová, Marketa; Jelínek, Miroslav; Železný, Vladimír; Kocourek, Tomáš

    2011-09-01

    Lithium niobate (LiNbO3) is a material which can be used in many applications. LiNbO3 thin films were studied for the development of doped planar waveguides using Pulsed Laser Deposition (PLD) method from two targets. The films were deposited by PLD on SiO2/Si and (0001) sapphire substrates at temperatures 650°C, 700°C, 750°C, from one crystalline and two sintered LiNbO3 targets using KrF excimer laser. The film thickness was ~680 nanometers. Two techniques - Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy - are used to characterize the dependence of the deposited thin films on the deposition conditions. These methods characterize the materials by monitoring their phonons whose spectra are sensitive to film deposition parameters. Bulk LiNbO3 has rhombohedral crystal structure with two chemical units per primitive cell, it means, that 30 degrees of freedom are distributed between A1 and E irreducible representations. The precise assignment of phonon modes, however, has not been unambiguously established. So, we use the spectra for qualitative comparison of the conditions of deposition. The spectra on SiO2/Si substrates of the same temperatures are essentially the same, indicating good reproducibility of the deposition process, but the spectra are shifted in case of different targets. The spectra of the samples deposited from the powder target or magnetron target are shifted to lower wavenumbers. This implies that different targets have an impact on the film growth. The deposition temperature also influences the spectra. The same is valid for films prepared on (0001) sapphire substrates. The bands shift with increasing temperature.

  5. Study of thin films of LiNbO3 using FTIR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zezulová, Marketa; Jelínek, Miroslav; Železný, Vladimír; Kocourek, Tomáš

    2012-02-01

    Lithium niobate (LiNbO3) is a material which can be used in many applications. LiNbO3 thin films were studied for the development of doped planar waveguides using Pulsed Laser Deposition (PLD) method from two targets. The films were deposited by PLD on SiO2/Si and (0001) sapphire substrates at temperatures 650°C, 700°C, 750°C, from one crystalline and two sintered LiNbO3 targets using KrF excimer laser. The film thickness was ~680 nanometers. Two techniques - Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy - are used to characterize the dependence of the deposited thin films on the deposition conditions. These methods characterize the materials by monitoring their phonons whose spectra are sensitive to film deposition parameters. Bulk LiNbO3 has rhombohedral crystal structure with two chemical units per primitive cell, it means, that 30 degrees of freedom are distributed between A1 and E irreducible representations. The precise assignment of phonon modes, however, has not been unambiguously established. So, we use the spectra for qualitative comparison of the conditions of deposition. The spectra on SiO2/Si substrates of the same temperatures are essentially the same, indicating good reproducibility of the deposition process, but the spectra are shifted in case of different targets. The spectra of the samples deposited from the powder target or magnetron target are shifted to lower wavenumbers. This implies that different targets have an impact on the film growth. The deposition temperature also influences the spectra. The same is valid for films prepared on (0001) sapphire substrates. The bands shift with increasing temperature.

  6. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  7. [Effects of Different Pretreatment Methods on the Phenylketonuria Screening Model by FTIR/ATR Spectroscopy].

    PubMed

    Wang, Wei-wei; Wei, Wei-wei; Song, Xiang-gang; Cheng, Ya-ting; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang

    2015-05-01

    To establish a phenylketonuria screening model by FTIR/ATR spectroscopy, and to compare the effects of different pretreatment methods, such as baseline correction, smoothing, derivation, Fourier deconvolution, on the model quality. A consensus partial least squares regression method (cPLS) was used to build the quantitative model of phenylalanine in dried blood spots. The effects of different pretreatment methods on the model performance were investigated, using the correlation coefficient (r), root mean square error of prediction (RMSEP), mean relative error (MRE) and predictive accuracy (Acc). The nine-point smoothing coupled with the first differential was found to perform the best. Compared with the model by the original spectra, its r, RMSEP, MRE and Acc were improved from 0. 822 7, 115. 8, 0. 395 and 94. 6 to 0. 889 9, 102. 2, 0. 286 and 100, respectively. With the advantages of fast speed, easy process, no reagents consumption and environmental protection, the present method is expected to become a simple and green technology for rapidly screening the neonatal phenylketonuria in a large population.

  8. Dogfish egg case structural studies by ATR FT-IR and FT-Raman spectroscopy.

    PubMed

    Iconomidou, Vassiliki A; Georgaka, Martha E; Chryssikos, Georgios D; Gionis, Vassilis; Megalofonou, Persefoni; Hamodrakas, Stavros J

    2007-06-01

    The dogfish egg case is a composite structure that combines mechanical tensile strength, toughness and elasticity with high permeability to small molecules and ions. Presumably, it provides both a protective and a filtering role for the egg/embryo contained within it. In this work, we performed structural studies of the Galeus melastomus egg case at two different stages of the hardening process, utilizing ATR FT-IR and FT-Raman spectroscopy. Based on these data we deduce that: (a) The G. melastomus egg case, in close analogy to that of the related species Scyliorhinus cunicula, is a complex, composite structure which consists mainly of an analogue of collagen IV. This network forming protein appears to have common secondary structural characteristics in the entire egg case. (b) The outermost layer of the non-sclerotized egg case is especially rich in tyrosine, while the innermost layer is rich in polysaccharides, presumably glycosaminoglycans, and lipids. These differences are diminished upon hardening. (c) Disulfide bonds do not appear to play a significant role in cross-linking. However, cross-links involving tyrosine residues appear to sclerotize the egg case. It is proposed that the intensity of the Raman band at ca. 1615 cm(-1), which is due to ring stretching vibrations of Tyr, might be a useful indicator of the sclerotization status of a certain proteinaceous tissue, when tyrosines are involved in sclerotization mechanisms.

  9. Distinct β-sheet structure in protein aggregates determined by ATR-FTIR spectroscopy.

    PubMed

    Shivu, Bhavana; Seshadri, Sangita; Li, Jie; Oberg, Keith A; Uversky, Vladimir N; Fink, Anthony L

    2013-08-06

    Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to study the conformation of aggregated proteins in vivo and in vitro. Several different protein aggregates, including amyloid fibrils from several peptides and polypeptides, inclusion bodies, folding aggregates, soluble oligomers, and protein extracts from stressed cells, were examined in this study. All protein aggregates demonstrate a characteristic new β structure with lower-frequency band positions. All protein aggregates acquire this new β band following the aggregation process involving intermolecular interactions. The β sheets in some proteins arise from regions of the polypeptide that are helical or non β in the native conformation. For a given protein, all types of the aggregates (e.g., inclusion bodies, folding aggregates, and thermal aggregates) showed similar spectra, indicating that they arose from a common partially folded species. All of the aggregates have some nativelike secondary structure and nonperiodic structure as well as the specific new β structure. The new β could be most likely attributed to stronger hydrogen bonds in the intermolecular β-sheet structure present in the protein aggregates.

  10. Adsorption of Enrofloxacin on montmorillonite: two-dimensional correlation ATR/FTIR spectroscopy study.

    PubMed

    Yan, Wei; Zhang, Jianfeng; Jing, Chuanyong

    2013-01-15

    Adsorption of Enrofloxacin (ENR) on minerals dominates the fate and transport of ENR in the environment. In this study, the sorption process of ENR on montmorillonite and the impact of dissolved organic matters (DOMs) on ENR-montmorillonite interactions were investigated using in situ ATR-FTIR spectroscopy and two-dimensional correlation analysis (2D-COS). Negative peaks were observed in the 3400-2900 cm(-1) region due to the loss of hydrated protons at montmorillonite surfaces. The primary characteristic peaks of adsorbed ENR molecules were resolved in the 1800-1100 cm(-1) range. The results of 2D-COS suggested the sorption process was initiated by the interaction of hydrated protons on montmorillonite surfaces with diverse moieties of ENR molecules depending on pH. The sorption mechanism of ENR was mainly cation exchange at acidic condition, charge neutralization at neutral condition, and proton transfer at alkaline condition. DOM could interact with piperazinyl amine groups of dissolved ENR, which changed the interaction sequence of ENR molecule with montmorillonite surfaces. Electrostatic interaction was the predominant driving force for the interaction between DOM and dissolved ENR. H-donor-acceptor interaction and π-π interaction may also be responsible to this interaction. Insights gained from this study improve our understandings on sorption mechanism of ENR and similar ionic organic pollutants in soil systems.

  11. LDPE phase composition in LDPE/Cu composites using thermal analysis and FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Abdmouleh, M.; Jedidi, I.; Khitouni, M.; Ben Salah, A.; Kabadou, A.

    2011-05-01

    Low-density polyethylene (LDPE) films with different copper contents were prepared from solu-tion. The TGA (thermogravimetric analysis) results show that the presence of copper particles can im-prove the thermal stability of the composite since a maximum increment of 14°C is obtained compared with the pure LDPE in this experiment. The results of DSC (differential scanning calorimetry) in stan-dard conditions show that the Cu content has little influence on the crystallinity, X c , of LDPE. But a trace of DSC under non-standard conditions suggests that the presence of the copper microparticles has a greater effect on the network phase than on the crystalline long-range-order phase. FTIR spectroscopy was used to study the phase content of LDPE in LDPE/Cu non-oriented composite films prepared from solution with different copper contents by analysis of CH2 rocking vibrations. A spectral simulation of transmission spectra performed using a two-phase model does not show any variation into the phase composition of the LDPE matrix for all copper contents. When a three-phase model was taken into account, the amount of the orthorhombic phase was found to be constant. However, the fraction of the amorphous and that of the network phase were found to increase and decrease respectively with increase in the copper particle load in the film.

  12. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    NASA Astrophysics Data System (ADS)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  13. Characterization of the surfaces of platinum/tin oxide based catalysts by Fourier Transform Infrared Spectroscopy (FTIR)

    NASA Technical Reports Server (NTRS)

    Keiser, Joseph T.; Upchurch, Billy T.

    1990-01-01

    A Pt/SnO2 catalyst has been developed at NASA Langley that is effective for the oxidation of CO at room temperature (1). A mechanism has been proposed to explain the effectiveness of this catalyst (2), but most of the species involved in this mechanism have not been observed under actual catalytic conditions. A number of these species are potentially detectable by Fourier Transform Infrared Spectroscopy (FTIR), e.g., HOSnO sub x, HO sub y PtO sub z, Pt-CO, and SnHCO3. Therefore a preliminary investigation was conducted to determine what might be learned about this particular catalyst by transmission FTIR. The main advantage of FTIR for this work is that the catalyst can be examined under conditions similar to the actual catalytic conditions. This can be of critical importance since some surface species may exist only when the reaction gases are present. Another advantage of the infrared approach is that since vibrations are probed, subtle chemical details may be obtained. The main disadvantage of this approach is that FTIR is not nearly as sensitive as the Ultra High Vacuum (UHV) surface analytical techniques such as Auger, Electron Spectroscopy for Chemical Analysis (ESCA), Electron Energy Loss Spectroscopy (EELS), etc. Another problem is that the assignment of the observed infrared bands may be difficult.

  14. Absorption/emission spectroscopy and applications using shock tubes

    NASA Astrophysics Data System (ADS)

    Sulzmann, K. G. P.

    1988-09-01

    A historical overview is presented about the important contributions made by Penner, his co-workers, and his students to the application of shock-tube techniques for quantitative emission and absorption spectroscopy and its applications to chemical kinetics studies in high-temperature gases. The discussions address critical aspects related to valid determinations of quantitative spectroscopic data and chemical rate parameters and stress the requirements for uniformly heated gas samples, temperature determinations, gas-mixture preparations, selection of useful spectral intervals, verification of LTE conditions, time resolutions for concentration histories, uniqueness of kinetic measurements, as well as accuracies and reproducibilities of measurement results.The potential of absorption spectroscopy by molecule and/or radical resonance radiation and by laser transmission techniques is highlighted for kinetic studies in mixtures with very small reactant concentrations.Besides the work by the honoree and his school, the references include books, monographs and key articles related to the subjects discussed.

  15. Detection Limits for Blood on Fabrics Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy and Derivative Processing.

    PubMed

    Lu, Zhenyu; DeJong, Stephanie A; Cassidy, Brianna M; Belliveau, Raymond G; Myrick, Michael L; Morgan, Stephen L

    2016-06-27

    Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) was used to detect blood stains based on signature protein absorption in the mid-IR region, where intensity changes in the spectrum can be related to blood concentration. Partial least squares regression (PLSR) was applied for multivariate calibrations of IR spectra of blood dilutions on four types of fabric (acrylic, nylon, polyester, and cotton). Gap derivatives (GDs) were applied as a preprocessing technique to optimize the performance of calibration models. We report a much improved IR detection limit (DL) for blood on cotton (2700× in dilution factor units) and the first IR DL reported for blood on nylon (250×). Due to sample heterogeneity caused by fabric hydrophobicity, acrylic fabric produced variable ATR FT-IR spectra that caused poor DLs in concentration units compared to previous work. Polyester showed a similar problem at low blood concentrations that lead to a relatively poor DL as well. However, the increased surface sensitivity and decreased penetration depth of ATR FT-IR make it an excellent choice for detection of small quantities of blood on the front surface of all fabrics tested (0.0010 µg for cotton, 0.0077 µg for nylon, 0.011 µg for acrylic, and 0.0066 µg for polyester).

  16. Detection and quantification of soymilk in cow-buffalo milk using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR).

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Borah, Anjan; Gautam, Anuj; Grewal, Manpreet Kaur; Jindal, Gaurav

    2015-02-01

    Milk consumption is steadily increasing, especially in India and China, due to rising income. To bridge the gap between supply and demand, unscrupulous milk vendors add milk-like products from vegetable sources (soymilk) to milk without declaration. A rapid detection technique is required to enforce the safety norms of food regulatory authorities. Fourier Transform Infrared (FTIR) spectroscopy has demonstrated potential as a rapid quality monitoring method and was therefore explored for detection of soymilk in milk. In the present work, spectra of milk, soymilk (SM), and milk adulterated with known quantity of SM were acquired in the wave number range of 4000-500cm(-1) using Attenuated Total Reflectance (ATR)-FTIR. The acquired spectra revealed differences amongst milk, SM and adulterated milk (AM) samples in the wave number range of 1680-1058cm(-1). This region encompasses the absorption frequency of amide-I, amide-II, amide-III, beta-sheet protein, α-tocopherol and Soybean Kunitz Trypsin Inhibitor. Principal component analysis (PCA) showed clustering of samples based on SM concentration at 5% level of significance and thus SM could be detected in milk using ATR-FTIR. The SM was best predicted in the range of 1472-1241cm(-1) using multiple linear regression with coefficient of determination (R(2)) of 0.99 and 0.92 for calibration and validation, respectively.

  17. Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry.

    PubMed

    Wenning, Mareike; Breitenwieser, Franziska; Konrad, Regina; Huber, Ingrid; Busch, Ulrich; Scherer, Siegfried

    2014-08-01

    The food industry requires easy, accurate, and cost-effective techniques for microbial identification to ensure safe products and identify microbial contaminations. In this work, FTIR spectroscopy and MALDI-TOF mass spectrometry were assessed for their suitability and applicability for routine microbial diagnostics of food-related microorganisms by analyzing their robustness according to changes in incubation time and medium, identification accuracy and their ability to differentiate isolates down to the strain level. Changes in the protocol lead to a significantly impaired performance of FTIR spectroscopy, whereas they had only little effects on MALDI-TOF MS. Identification accuracy was tested using 174 food-related bacteria (93 species) from an in-house strain collection and 40 fresh isolates from routine food analyses. For MALDI-TOF MS, weaknesses in the identification of bacilli and pseudomonads were observed; FTIR spectroscopy had most difficulties in identifying pseudomonads and enterobacteria. In general, MALDI-TOF MS obtained better results (52-85% correct at species level), since the analysis of mainly ribosomal proteins is more robust and seems to be more reliable. FTIR spectroscopy suffers from the fact that it generates a whole-cell fingerprint and intraspecies diversity may lead to overlapping species borders which complicates identification. In the present study values between 56% and 67% correct species identification were obtained. On the opposite, this high sensitivity offers the opportunity of typing below the species level which was not possible using MALDI-TOF MS. Using fresh isolates from routine diagnostics, both techniques performed well with 88% (MALDI-TOF) and 75% (FTIR) correct identifications at species level, respectively.

  18. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  19. A fourier transform infrared spectroscopy (FTIR) based assay for Candida parapsilosis ATCC 7330 mediated oxidation of aryl alcohols.

    PubMed

    Sudhakara, Sneha; Chadha, Anju

    2015-09-10

    We present an FTIR based assay to monitor the whole cell mediated oxidation of aryl alcohols by measuring the characteristic IR absorption of the hydroxyl group [OH] of the substrate and the carbonyl group [CO] of the corresponding oxidized product. This method expedites the analysis of whole cell mediated catalysis which is usually done by GC and/or HPLC. The FTIR assay had linearity with R(2)≥0.980 and sensitivity up to 10μM. The accuracy and precision of FTIR assay was found ≥81% and ≥94%, respectively. This assay was validated by GC which exhibited ≥82% accuracy and ≥79% precision. The time of analysis taken by this assay was 2-3min per sample in comparison with 20-40min by GC.

  20. Temperature dependent soft x-ray absorption spectroscopy of liquids.

    PubMed

    Meibohm, Jan; Schreck, Simon; Wernet, Philippe

    2014-10-01

    A novel sample holder is introduced which allows for temperature dependent soft x-ray absorption spectroscopy of liquids in transmission mode. The setup is based on sample cells with x-ray transmissive silicon nitride windows. A cooling circuit allows for temperature regulation of the sample liquid between -10 °C and +50 °C. The setup enables to record soft x-ray absorption spectra of liquids in transmission mode with a temperature resolution of 0.5 K and better. Reliability and reproducibility of the spectra are demonstrated by investigating the characteristic temperature-induced changes in the oxygen K-edge x-ray absorption spectrum of liquid water. These are compared to the corresponding changes in the oxygen K-edge spectra from x-ray Raman scattering.

  1. Potential of FTIR spectroscopy for analysis of tears for diagnosis purposes.

    PubMed

    Travo, Adrian; Paya, Clément; Déléris, Gérard; Colin, Joseph; Mortemousque, Bruno; Forfar, Isabelle

    2014-04-01

    It has been widely reported that the tear film, which is crucially important as a protective barrier of the eye, undergoes biochemical changes as a result of a wide range of ocular pathology. This tends to suggest the possibility of early detection of ocular diseases on the basis of biochemical analysis of tears. However, studies of tears by conventional methods of biomolecular and biochemical analysis are often limited by methodological difficulties. Moreover, such analysis could not be applied in the clinic, where structural and morphological analyses by, mainly, slit-lamp biomicroscopy remains the recommended method. In this study, we assessed, for the first time, the potential of FTIR spectroscopy combined with advanced chemometric processing of spectral data for analysis of raw tears for diagnosis purposes. We first optimized sampling and spectral acquisition (tears collection method, tear sample volume, and preservation of the samples) for accurate spectral measurement. On the basis of the results, we focused our study on the possibility of discriminating tears from normal individuals from those of patients with different ocular pathologies, and showed that the most discriminating spectral range is that corresponding to variations of CH2 and CH3 of lipid aliphatic chains. We also report more subtle discrimination of tears from patients with keratoconus and those from patients with non-specific inflammatory ocular diseases, on the basis of variations in spectral ranges attributed notably to lipid and carbohydrate vibrations. Finally, we also succeeded in distinguishing tears from patients with early-stage and late-stage keratoconus on the basis of spectral features attributed to protein structure. Therefore, this study strongly suggests that FTIR spectral analysis of tears could be developed as a valuable and cost-saving tool for biochemical-based detection of ocular diseases, potentially before the appearance of the first morphological signs of diseases

  2. Atmospheric and environmental sensing by photonic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, T.; Zhao, W.; Wysocki, G.; Cui, X.; Lengignon, C.; Maamary, R.; Fertein, E.; Coeur, C.; Cassez, A.; Wang, Y.; Zhang, W.; Gao, X.; Liu, W.; Dong, F.; Zha, G.; Zheng, Xu; Wang, T.

    2013-01-01

    Chemically reactive short-lived species play a crucial role in tropospheric processes affecting regional air quality and global climate change. Contrary to long-lived species (such as greenhouse gases), fast, accurate and precise monitoring changes in concentration of atmospheric short-lived species represents a real challenge due to their short life time (~1 s for OH radical) and very low concentration in the atmosphere (down to 106 molecules/cm3, corresponding to 0.1 pptv at standard temperature and pressure). We report on our recent progress in instrumentation developments for spectroscopic sensing of trace reactive species. Modern photonic sources such as quantum cascade laser (QCL), distributed feedback (DFB) diode laser, light emitting diode (LED), difference-frequency generation (DFG) parametric source are implemented in conjunction with highsensitivity spectroscopic measurement techniques for : (1) nitrous acid (HONO) monitoring by QCL-based long optical pathlength absorption spectroscopy and LED-based IBBCEAS (incoherent broadband cavity-enhanced absorption spectroscopy); (2) DFB laser-based hydroxyl free radical (OH) detection using WM-OA-ICOS (wavelength modulation off-axis integrated cavity output spectroscopy) and FRS (Faraday rotation spectroscopy), respectively; (3) nitrate radical (NO3) and nitrogen dioxide (NO2) simultaneous measurements with IBBCEAS approach. Applications in field observation and in smog chamber study will be presented.

  3. Design optimization for two-step photon absorption in quantum dot solar cells by using infrared photocurrent spectroscopy

    NASA Astrophysics Data System (ADS)

    Tamaki, R.; Shoji, Y.; Okada, Y.

    2016-03-01

    Multi-stacked quantum dot solar cell (QDSC) is a promising candidate for intermediate band solar cell, which can exceed thermodynamic efficiency limit of single-junction solar cells. In recent years, lots of effort has been made to evaluate and understand the photo-carrier response of two-step photon absorption in QDSCs. One crucial issue is to suppress thermal excitation of photo-carriers out of QDs, which obscures the QD filling under quasi-equilibrium at operation conditions. We have investigated infrared photocurrent spectra of the QD states to conduction band (CB) transition by using Fourier transform infrared (FTIR) spectroscopy. Multi-stacked In(Ga)As QDSCs with different barrier materials, such as GaAs, GaNAs, GaAsSb, and AlGaAs, were investigated. The IR absorption edge of the QD to CB transition was evaluated at low temperature by analyzing the low energy tail of the FTIR spectra. The threshold temperature of the two-step photon absorption in In(Ga)As QDSCs was determined by observing temperature dependence of the IR photo-response. A universal linear relationship between the threshold temperature and the IR absorption edge was obtained in In(Ga)As QDSCs with varied barrier materials. The threshold temperature of 295 K was predicted for the absorption edge at 0.459 eV by extrapolating the linear relationship. It reveals strategy for cell optimization to achieve efficient two-step photon absorption at ambient conditions.

  4. Ethylene polymerization on a SiH4-modified Phillips catalyst: detection of in situ produced α-olefins by operando FT-IR spectroscopy.

    PubMed

    Barzan, Caterina; Groppo, Elena; Quadrelli, Elsje Alessandra; Monteil, Vincent; Bordiga, Silvia

    2012-02-21

    Ethylene polymerization on a model Cr(II)/SiO(2) Phillips catalyst modified with gas phase SiH(4) leads to a waxy product containing a bimodal MW distribution of α-olefins (M(w) < 3000 g mol(-1)) and a highly branched polyethylene, LLDPE (M(w) ≈ 10(5) g mol(-1), T(m) = 123 °C), contrary to the unmodified catalyst which gives a linear and more dense PE, HDPE (M(w) = 86,000 g mol(-1) (PDI = 7), T(m) = 134 °C). Pressure and temperature resolved FT-IR spectroscopy under operando conditions (T = 130-230 K) allows us to detect α-olefins, and in particular 1-hexene and 1-butene (characteristic IR absorption bands at 3581-3574, 1638 and 1598 cm(-1)) as intermediate species before their incorporation in the polymer chains. The polymerization rate is estimated, using time resolved FT-IR spectroscopy, to be 7 times higher on the SiH(4)-modified Phillips catalyst with respect to the unmodified one.

  5. Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna

    NASA Astrophysics Data System (ADS)

    La Spina, Alessandro; Burton, Mike; Allard, Patrick; Alparone, Salvatore; Muré, Filippo

    2015-03-01

    In June-July 2001 a series of 16 discrete lava fountain paroxysms occurred at the Southeast summit crater (SEC) of Mount Etna, preceding a 28-day long violent flank eruption. Each paroxysm was preceded by lava effusion, growing seismic tremor and a crescendo of Strombolian explosive activity culminating into powerful lava fountaining up to 500 m in height. During 8 of these 16 events we could measure the chemical composition of the magmatic gas phase (H2O, CO2, SO2, HCl, HF and CO), using open-path Fourier transform infrared (OP-FTIR) spectrometry at ∼1-2 km distance from SEC and absorption spectra of the radiation emitted by hot lava fragments. We show that each fountaining episode was characterized by increasingly CO2-rich gas release, with CO2/SO2 and CO2/HCl ratios peaking in coincidence with maxima in seismic tremor and fountain height, whilst the SO2/HCl ratio showed a weak inverse relationship with respect to eruption intensity. Moreover, peak values in both CO2/SO2 ratio and seismic tremor amplitude for each paroxysm were found to increase linearly in proportion with the repose interval (2-6 days) between lava fountains. These observations, together with a model of volatile degassing at Etna, support the following driving process. Prior to and during the June-July 2001 lava fountain sequence, the shallow (∼2 km) magma reservoir feeding SEC received an increasing influx of deeply derived carbon dioxide, likely promoted by the deep ascent of volatile-rich primitive basalt that produced the subsequent flank eruption. This CO2-rich gas supply led to gas accumulation and overpressure in SEC reservoir, generating a bubble foam layer whose periodical collapse powered the successive fountaining events. The anti-correlation between SO2/HCl and eruption intensity is best explained by enhanced syn-eruptive degassing of chlorine from finer particles produced during more intense magma fragmentation.

  6. Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna

    NASA Astrophysics Data System (ADS)

    La Spina, Alessandro; Burton, Mike; Allard, Patrick; Alparone, Salvatore; Murè, Filippo

    2016-04-01

    In June-July 2001 a series of 16 discrete lava fountain paroxysms occurred at the Southeast summit crater (SEC) of Mount Etna, preceding a 28-day long violent flank eruption. Each paroxysm was preceded by lava effusion, growing seismic tremor and a crescendo of Strombolian explosive activity culminating into powerful lava fountaining up to 500m in height. During 8 of these 16 events we could measure the chemical composition of the magmatic gas phase (H2O, CO2, SO2, HCl, HF and CO), using open-path Fourier transform infrared (OP-FTIR) spectrometry at ˜1-2km distance from SEC and absorption spectra of the radiation emitted by hot lava fragments. We show that each fountaining episode was characterized by increasingly CO2-rich gas release, with CO2/SO2and CO2/HCl ratios peaking in coincidence with maxima in seismic tremor and fountain height, whilst the SO2/HCl ratio showed a weak inverse relationship with respect to eruption intensity. Moreover, peak values in both CO2/SO2ratio and seismic tremor amplitude for each paroxysm were found to increase linearly in proportion with the repose interval (2-6 days) between lava fountains. These observations, together with a model of volatile degassing at Etna, support the following driving process. Prior to and during the June-July 2001 lava fountain sequence, the shallow (˜2km) magma reservoir feeding SEC received an increasing influx of deeply derived carbon dioxide, likely promoted by the deep ascent of volatile-rich primitive basalt that produced the subsequent flank eruption. This CO2-rich gas supply led to gas accumulation and overpressure in SEC reservoir, generating a bubble foam layer whose periodical collapse powered the successive fountaining events. The anti-correlation between SO2/HCl and eruption intensity is best explained by enhanced syn-eruptive degassing of chlorine from finer particles produced during more intense magma fragmentation.

  7. An FTIR investigation of isocyanate skin absorption using in vitro guinea pig skin.

    PubMed

    Bello, Dhimiter; Smith, Thomas J; Woskie, Susan R; Streicher, Robert P; Boeniger, Mark F; Redlich, Carrie A; Liu, Youcheng

    2006-05-01

    Isocyanates may cause contact dermatitis, sensitization and asthma. Dermal exposure to aliphatic and aromatic isocyanates can occur in various exposure settings. The fate of isocyanates on skin is an important unanswered question. Do they react and bind to the outer layer of skin or do they penetrate through the epidermis as unreacted compounds? Knowing the kinetics of these processes is important in developing dermal exposure sampling or decontamination strategies, as well as understanding potential health implications such exposure may have. In this paper the residence time of model isocyanates on hairless guinea pig skin was investigated in vitro using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry. Model isocyanates tested were octyl isocyanate, polymeric hexamethylene diisocyanate isocyanurate (pHDI), polymeric isophorone diisocyanate isocyanurate (pIPDI) and methylenediphenyl diisocyanate (MDI). Isocyanates in ethyl acetate (30 microL) were spiked directly on the skin to give 0.2-1.8 micromol NCO cm(-2) (NCO = -N=C=O), and absorbance of the isocyanate group and other chemical groups of the molecule were monitored over time. The ATR-FTIR findings showed that polymeric isocyanates pHDI and pIPDI may remain on the skin as unreacted species for many hours, with only 15-20% of the total isocyanate group disappearing in one hour, while smaller compounds octyl isocyanate and MDI rapidly disappear from the skin surface (80+% in 30 min). Isocyanates most likely leave the skin surface by diffusion predominantly, with minimal reaction with surface proteins. The significance of these findings and their implications for dermal exposure sampling and isocyanate skin decontamination are discussed.

  8. Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is charred material produced by the pyrolysis of organic biomass. In this work, Fourier transform infrared (FTIR) spectra of different agricultural by-products feedstock and their derived biochars were collected to explore the potential of FTIR technique as a simple and rapid method for char...

  9. Nondestructive wood discrimination: FTIR - Fourier Transform Infrared Spectroscopy in the characterization of different wood species used for artistic objects

    NASA Astrophysics Data System (ADS)

    Buoso, Maria Crista; de Poli, Mario; Matthaes, Peter; Silvestrin, Luca; Zafiropoulos, Demetre

    2016-09-01

    Wooden artifacts represent a significant component of past cultures. Successful conservation of wooden artifacts depends on the knowledge of wood structure and types. It is critical that conservators know the category of wood that they are treating in order to successfully conserve it. Recently, vibrational spectroscopy has been successfully applied to determine the chemical structure of wood and to characterize wood types. FTIR (Fourier Transform Infrared) is a useful nondestructive or micro-destructive analytical technique providing information about chemical bonding and molecular structure. Its application in the discrimination between softwoods (conifers) and hardwoods (broad-leafs) has already been reported. The aim of the present study was to investigate the potential of FTIR as a tool for the discrimination between different wood types belonging to the same genus. Three different hardwood species, namely poplar (Populus spp), lime (Tilia spp) and birch (Betula spp), were investigated by means of FTIR spectroscopy. The woods were first inspected using a light microscope to certify the wood essence types through micrographic and morphoanatomical features. The FTIR spectra in the 4000 cm-1 to 450 cm-1 region were recorded using a Perkin-Elmer Spectrum 100 spectrometer. To enhance the qualitative interpretation of the IR spectra, second derivatives of all spectra were calculated using the Spectrum software to separate superimposed bands and to extract fine spectral details. To obtain a comprehensive characterization, the essences under investigation were also analyzed by means of Raman Spectroscopy. Clear differences were found in the spectra of the three samples confirming FTIR to be a powerful tool for wood type discrimination.

  10. The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae.

    PubMed

    Stehfest, Katja; Toepel, Jörg; Wilhelm, Christian

    2005-07-01

    Micro-Fourier transform infrared (FTIR) spectroscopy was used to study changes in spectral features of three species of Cyanobacteria (Microcystis aeruginosa, Croococcus minutus, and Nostoc sp.) and two Bacillariophyceae (Cyclotella meneghiniana, and Phaeodactylum tricornutum) in response to nutrient stress. The change of physiological state of the cells was followed during a 4-week starvation period on the basis of physiological key parameters and by means of FTIR spectroscopy. Changes in the integrated FTIR bands of cell spectra assigned to proteins, lipids, carbohydrates and silicate were used to calculate relative biomass composition. The results show that short-term acclimatization become visible at first in pigmentation and photosynthetic efficiency, whereas changes in biomass composition reflect long term modulation in the metabolism. Simultaneous monitoring of short term and long term stress acclimatization showed evidence that the metabolic strategies to cope with increasing nutrient limitation are highly species-specific. This species-specificity can only be resolved in natural phytoplankton samples by single cell techniques. The results show that the FTIR technique has the potential to become applicable for the determination of single cell biomass composition from natural phytoplankton communities.

  11. [The effect of Tween-80 on the differentiation of Trichophyton mentagrophytes and Trichophyton rubrum strains with FT-IR spectroscopy].

    PubMed

    Ergın, Çagri; İlkit, Macit; Gök, Yaşar; Çon, Ahmet Hilmi; Özel, Mustafa Zafer; Kabay, Nilgün; Döğen, Aylin; Baygu, Yasemin

    2014-07-01

    Trichophyton mentagrophytes and Trichophyton rubrum, are two of the frequently identified dermatophyte species in routine microbiology laboratories. Although newer technologies may assist in species-level identification, direct application of these methods usually require improvement in order to obtain reliable identification of these species. Earlier data have shown that dermatophytes may be identified with FT-IR spectroscopy although there are some limitations. In particular, the organic bond ranges in FT-IR spectra showed more irregularity because of the eucaryotic complexity of the molds. In this study, Tween-80 which is an inorganic molecule, was added to the dermatophyte growth medium in order to investigate its effect on FT-IR spectroscopy analysis of dermatophytes. Nine reference dermatophyte strains [5 T.mentagrophytes complex (T.asteroides CBS 424.63, T.erinacei CBS 344.79, CBS 511.73, CBS 677.86, T.mentagrophytes CBS 110.65) and 4 T.rubrum complex strains with different morphotypes (T.fluviomuniense CBS 592.68, T.kuryangei CBS 422.67, T.raubitschekii CBS 102856, T.rubrum CBS 392.58)] were included in the study. All strains were cultured on Sabouraud glucose agar either with or without 1% Tween-80 for three weeks. After the incubation period, superficial scrapings from each dermatophyte colony were analyzed using FT-IR spectroscopy. All measurements were performed in transmission mode between 4400 and 400 cm-1. Numerous spectral window data were analyzed by principal component analysis and hierarchical clustering was performed. The second derivations of spectral ranges revealed clear grouping of T.mentagrophytes complex and T.rubrum complex in association over five separate spectral ranges. The findings also showed that while all of the T.mentagrophytes strains contained lipid compounds in their mold structure after Tween-80 incubation (p< 0.025), T.rubrum strains did not. Based on these results, it was concluded that culture medium containing Tween-80

  12. Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Rodica

    The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally

  13. Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy.

    PubMed

    Malferrari, Marco; Mezzetti, Alberto; Francia, Francesco; Venturoli, Giovanni

    2013-03-01

    Following light-induced electron transfer between the primary donor (P) and quinone acceptor (Q(A)) the bacterial photosynthetic reaction center (RC) undergoes conformational relaxations which stabilize the primary charge separated state P(+)Q(A)(-). Dehydration of RCs from Rhodobacter sphaeroides hinders these conformational dynamics, leading to acceleration of P(+)Q(A)(-) recombination kinetics [Malferrari et al., J. Phys. Chem. B 115 (2011) 14732-14750]. To clarify the structural basis of the conformational relaxations and the involvement of bound water molecules, we analyzed light-induced P(+)Q(A)(-)/PQ(A) difference FTIR spectra of RC films at two hydration levels (relative humidity r=76% and r=11%). Dehydration reduced the amplitude of bands in the 3700-3550cm(-1) region, attributed to water molecules hydrogen bonded to the RC, previously proposed to stabilize the charge separation by dielectric screening [Iwata et al., Biochemistry 48 (2009) 1220-1229]. Other features of the FTIR difference spectrum were affected by partial depletion of the hydration shell (r=11%), including contributions from modes of P (9-keto groups), and from NH or OH stretching modes of amino acidic residues, absorbing in the 3550-3150cm(-1) range, a region so far not examined in detail for bacterial RCs. To probe in parallel the effects of dehydration on the RC conformational relaxations, we analyzed by optical absorption spectroscopy the kinetics of P(+)Q(A)(-) recombination following the same photoexcitation used in FTIR measurements (20s continuous illumination). The results suggest a correlation between the observed FTIR spectral changes and the conformational rearrangements which, in the hydrated system, strongly stabilize the P(+)Q(A)(-) charge separated state over the second time scale.

  14. Tunneling and tunneling switching dynamics in phenol and its isotopomers from high-resolution FTIR spectroscopy with synchrotron radiation.

    PubMed

    Albert, Sieghard; Lerch, Philippe; Prentner, Robert; Quack, Martin

    2013-01-02

    Tunneling and chemical reactions by tunneling switching are reported for phenol and ortho-deuterophenol on the basis of high-resolution FTIR spectroscopy. Tunneling splittings are measured for the torsional motion in the ground and several vibrationally excited states of phenol. Tunneling times range from 10 ns to 1 ps, depending on excitation. For more-highly excited torsional levels in ortho-deuterophenol, delocalization and chemical reaction by tunneling switching is found.

  15. [Application of HATR-FTIR spectroscopy combined with cluster analysis to identification of Cuscuta chinensis lam and its unofficial varieties].

    PubMed

    Hong, Qing-hong; Cheng, Ze-feng; Li, Qun-li

    2008-08-01

    Horizontal attenuated total reflectance Fourier transform infrared spectroscopy was used to identify Cuscuta chinensis lam. samples directly and their chemical differences were compared. In addition to FTIRS/cluster analysis, the kindredship between the different varieties of official and unofficial Cuscuta chinensis lam was studied. As shown by the results of cluster analysis, the four samples mentioned above were separated to three groups. The proposed method can be effectively applied to analyse the qualitify of Cuscuta chinensis lam.

  16. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    SciTech Connect

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  17. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    PubMed Central

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-01-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy. PMID:28262765

  18. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-03-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy.

  19. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  20. FT-IR spectroscopy of microorganisms at the Robert Koch Institute: experiences gained during a successful project

    NASA Astrophysics Data System (ADS)

    Naumann, Dieter

    2008-02-01

    The characterization and identification of microorganisms by infrared or Raman spectroscopy is probably one of the best developed and most frequent applications of biomedical vibrational spectroscopy. The serial types of dedicated instruments for routine FT-IR characterizations of microorganisms are now available on the market and already used in routine microbiological laboratories. The experiences gained to date, especially the necessity to define standards for sampling and measurement procedures and the details of how data compatibility between different laboratories is achieve will be discussed as well as the problem to establish validated reference data bases for objective species or strain identifications.

  1. Phospholipid-protein balance in affective disorders: Analysis of human blood serum using Raman and FTIR spectroscopy. A pilot study.

    PubMed

    Depciuch, Joanna; Sowa-Kućma, Magdalena; Nowak, Gabriel; Dudek, Dominika; Siwek, Marcin; Styczeń, Krzysztof; Parlińska-Wojtan, Magdalena

    2016-11-30

    Raman and FTIR (Fourier Transform Infra Red) spectroscopies provide information on the chemical structure of compounds through identification and analysis of functional groups. In the present study, both spectroscopic techniques were used for investigating the phospholipid - protein balance in blood serum of depressed subjects (major depressive disorder and bipolar disorder type I or II) taking also into account their age and gender. The obtained results were compared with those of healthy subjects. The Raman and FTIR (using ATR (Attenuated Total Reflectance) technique), spectra show that a correlation between the level of phospholipids and proteins exists. Indeed, in depressed subjects the quantity of phospholipids and proteins is lower, compared to healthy ones. The second derivative of FTIR spectra shows that phospholipids directly affect the structure of proteins and their functions. In all male depressed subjects a higher amount of phospholipids and proteins compared to female depressed subjects was measured, offering them faster recovery perspectives. Spectroscopy results show that the phospholipids' and proteins' levels are lower in depressed subjects from 41 to 65 compared to the age group between 20 and 40, independently from the gender. Consequently, this study shows that Raman and infrared spectroscopies might be applied as a diagnostic tool to evaluate the balance between phospholipids and proteins in blood serum as a potential biomarker in depressive disorders.

  2. Characterization of the surfaces of platinum/tin oxide based catalysts by Fourier transform spectroscopy (FTIR)

    NASA Technical Reports Server (NTRS)

    Keiser, Joseph T.

    1989-01-01

    The Laser Atmospheric Wind Sounder (LAWS) Program has as one of its goals the development of a satellite based carbon dioxide laser for making wind velocity measurements. The specifications for this laser include the requirement that the laser operate at a repetition rate of 10 Hertz continuously for three years. Earth-based carbon dioxide lasers can operate for only a short time on a single charge of gas because the lasing action causes the CO2 to break down into CO and O2. Therefore, earth-based CO2 lasers are generally operated in a flow through mode in which the spent gas is continually exhausted and fresh gas is continually added. For a satellite based system, however, a recirculation system is desired because it is not practical to send up extra tanks of CO2. A catalyst which could enable a recirculating CO2 laser to function continuously for three years needs to be developed. In the development of a catalyst system there are many variables. Obviously, not all possible formulations can be tested for three years, therefore, an accurate model which is based on the reaction mechanism is needed. The construction of a multistep reaction mechanism is similar to the construction of a jigsaw puzzle. Different techniques each supply a piece of the puzzle and the researcher must put the pieces together. Transmission infrared spectroscopy was shown to be very useful in supplying some of the information needed to elucidate reaction mechanisms. The purpose was to see what kind of information might be obtained about the NASA catalyst using infrared absorption spectroscopy. Approximately 200 infrared spectra of the prototype Pt/tin oxide catalyst and its precursor components are observed under a variety of different conditions. The most significant observations are summarized.

  3. Study on the Identification of Radix Bupleuri from Its Unofficial Varieties Based on Discrete Wavelet Transformation Feature Extraction of ATR-FTIR Spectroscopy Combined with Probability Neural Network.

    PubMed

    Jin, Wenying; Wan, Chayan; Cheng, Cungui

    2015-01-01

    The attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was employed to acquire the infrared spectra of Radix Bupleuri and its unofficial varieties: the root of Bupleurum smithii Wolff and the root of Bupleurum bicaule Helm. The infrared spectra and spectra of Fourier self-deconvolution (FSD), discrete wavelet transform (DWT), and probability neural network (PNN) of these species were analyzed. By the method of FSD, there were conspicuous differences of the infrared absorption peak intensity of different types between Radix Bupleuri and its unofficial varieties. But it is hard to tell the differences between the root of Bupleurum smithii Wolff and the root of Bupleurum bicaule. The differences could be shown more clearly when the DWT was used. The research result shows that by the DWT technology it is easier to identify Radix Bupleuri from its unofficial varieties the root of Bupleurum smithii Wolff and the root of Bupleurum bicaule.

  4. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    PubMed

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  5. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  6. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Requejo, Olga Mena; Quigg, Chris

    2005-04-15

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21}-10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the line shape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  7. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  8. Principles and calibration of collinear photofragmentation and atomic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sorvajärvi, Tapio; Toivonen, Juha

    2014-06-01

    The kinetics of signal formation in collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) are discussed, and theoretical equations describing the relation between the concentration of the target molecule and the detected atomic absorption in case of pure and impure samples are derived. The validity of the equation for pure samples is studied experimentally by comparing measured target molecule concentrations to concentrations determined using two other independent techniques. Our study shows that CPFAAS is capable of measuring target molecule concentrations from parts per billion (ppb) to hundreds of parts per million (ppm) in microsecond timescale. Moreover, the possibility to extend the dynamic range to cover eight orders of magnitude with a proper selection of fragmentation light source is discussed. The maximum deviation between the CPFAAS technique and a reference measurement technique is found to be less than 5 %. In this study, potassium chloride vapor and atomic potassium are used as a target molecule and a probed atom, respectively.

  9. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  10. Imide photodissociation investigated by X-ray absorption spectroscopy.

    PubMed

    Johnson, Phillip S; Cook, Peter L; Liu, Xiaosong; Yang, Wanli; Bai, Yiqun; Abbott, Nicholas L; Himpsel, F J

    2012-06-21

    X-ray absorption spectroscopy is used to investigate the photodissociation of the imides PMDI (pyromellitic diimide) and SSMCC (sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate). PMDI contains only one type of imide, and its photodissociation can be explained by a simple conversion from imide to a mix of imine and nitrile after desorption of the oxygens from the imide. SSMCC contains two different imides. One reacts like PMDI, the other in a more complex multistep process. Eventually, N(2) is formed in the bulk of the sample at high radiation density. The sequence of reactions is inferred from the π* peaks in total electron yield and fluorescence yield absorption spectra at the N 1s and O 1s edges. First-order rate equations are used to model the evolution of the peak areas versus radiation dose.

  11. Quantitative analysis of immobilized metalloenzymes by atomic absorption spectroscopy.

    PubMed

    Opwis, Klaus; Knittel, Dierk; Schollmeyer, Eckhard

    2004-12-01

    A new, sensitive assay for the quantitative determination of immobilized metal containing enzymes has been developed using atomic absorption spectroscopy (AAS). In contrast with conventionally used indirect methods the described quantitative AAS assay for metalloenzymes allows more exact analyses, because the carrier material with the enzyme is investigated directly. As an example, the validity and reliability of the method was examined by fixing the iron-containing enzyme catalase on cotton fabrics using different immobilization techniques. Sample preparation was carried out by dissolving the loaded fabrics in sulfuric acid before oxidising the residues with hydrogen peroxide. The iron concentrations were determined by flame atomic absorption spectrometry after calibration of the spectrometer with solutions of the free enzyme at different concentrations.

  12. Is it possible to find presence of lactose in pharmaceuticals? - Preliminary studies by ATR-FTIR spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Banas, A.; Banas, K.; Kalaiselvi, S. M. P.; Pawlicki, B.; Kwiatek, W. M.; Breese, M. B. H.

    2017-01-01

    Lactose and saccharose have the same molecular formula; however, the arrangement of their atoms is different. A major difference between lactose and saccharose with regard to digestion and processing is that it is not uncommon for individuals to be lactose intolerant (around two thirds of the population has a limited ability to digest lactose after infancy), but it is rather unlikely to be saccharose intolerant. The pharmaceutical industry uses lactose and saccharose as inactive ingredients of drugs to help form tablets because of their excellent compressibility properties. Some patients with severe lactose intolerance may experience symptoms of many allergic reactions after taking medicine that contains this substance. People who are specifically ;allergic; to lactose (not just lactose intolerant) should not use tablets containing this ingredient. Fourier Transform Infrared (FTIR) spectroscopy has a unique chemical fingerprinting capability and plays a significant important role in the identification and characterization of analyzed samples and hence has been widely used in pharmaceutical science. However, a typical FTIR spectrum collected from tablets contains a myriad of valuable information hidden in a family of tiny peaks. Powerful multivariate spectral data processing can transform FTIR spectroscopy into an ideal tool for high volume, rapid screening and characterization of even minor tablet components. In this paper a method for distinction between FTIR spectra collected for tablets with or without lactose is presented. The results seem to indicate that the success of identifying one component in FTIR spectra collected for pharmaceutical composition (that is tablet) is largely dependent on the choice of the chemometric technique applied.

  13. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy.

    PubMed

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-05

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  14. Predicting of Effective Dose as Biomarker for Cytotoxicity Using Partial Least Square-Fourier Transform Infrared Spectroscopy (PLS_FTIR).

    PubMed

    Zendehdel, Rezvan; Khodakarim, Soheila; H Shirazi, Farshad

    2015-01-01

    Toxicity bioassays are important tools to determine biological effects of chemical agents on species. The questions remained on, what effects have been imposed on each of the different molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. To address the questions, HepG2 cell lines were exposed to the different concentrations of cisplatin for 24 hours to result cell mortality in the range of one to one hundred percent. Fourier Transform Infrared spectroscopy (FTIR) has been used in this study to analyze the chemical alterations on HepG2 cell line by cisplatin. Partial least square regression (PLS) analysis was then applied to the FTIR spectrum results to search for a biomarker peak and present the desire cellular effects of cisplatin. The comparison of cellular FTIR spectra after exposure to different concentrations of cisplatin confirmed the binding of cisplatin to DNA through direct interaction of platinum to guanine and thymine bases of DNA. Biochemical Index Spectra (BIS) were defined based on the differences between of normal and cisplatin exposed cells. Information from the BIS was subjected to PLS analysis to trigger any particular relationship between the toxicity spectral response and cisplatin concentration. This approach was capable of predicting the concentration of cisplatin for any particular effects observed in the cellular FTIR spectrum (R(2) = 0.968 ± 0.037). Our work supports the promises that, FTIR can demonstrate the trace of toxicity before the cells dies. Finally, PLS of FTIR data directly predicts the effective concentration of chemicals in particular cellular components.

  15. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    PubMed

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  16. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  17. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    PubMed Central

    Dhakal, Sagar; Chao, Kuanglin; Schmidt, Walter; Qin, Jianwei; Kim, Moon; Chan, Diane

    2016-01-01

    Turmeric powder (Curcuma longa L.) is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman) and Fourier Transform-Infra Red (FT-IR) spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w). FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively. PMID:28231130

  18. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  19. Improving precursor adsorption characteristics in ATR-FTIR spectroscopy with a ZrO2 nanoparticle coating

    NASA Astrophysics Data System (ADS)

    Park, Jaeseo; Mun, Jihun; Shin, Jae-Soo; Kim, Jongho; Park, Hee Jung; Kang, Sang-Woo

    2017-02-01

    Nanoparticles were applied to a crystal surface to increase its precursor adsorption efficiency in an attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometer. Nanoparticles with varying dispersion stabilities were employed and the resulting precursor adsorption characteristics were assessed. The size of the nanoparticles was <100 nm (TEM). In order to vary the dispersion stability, ZrO2 nanoparticles were dispersed in aqueous solutions of different pH. The ZrO2 dispersion solutions were analyzed using scanning electron microscopy (SEM) while particle distribution measurements were analyzed using electrophoretic light scattering (ELS) and dynamic light scattering (DLS) techniques. ZrO2 nanoparticles dispersed in solutions of pH 3 and 11 exhibited the most stable zeta potentials (≥+30 or ≤-30 mV); these observations were confirmed by SEM analysis and particle distribution measurements. Hexamethyldisilazane (HMDS) was used as a precursor for ATR-FTIR spectroscopy. Consequently, when ZrO2 nanoparticle solutions with the best dispersion stabilities (pH 3 and 11) were applied to the adsorption crystal surface, the measurement efficiency of ATR-FTIR spectroscopy improved by ˜200 and 300%, respectively.

  20. Fourier transform infrared spectroscopy (FTIR) and multivariate analysis for identification of different vegetable oils used in biodiesel production.

    PubMed

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; Schneider, Rosana de Cássia de Souza

    2013-03-28

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources--canola, cotton, corn, palm, sunflower and soybeans--were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples.

  1. Azimuthal Doppler shift of absorption spectrum in optical vortex laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Ozawa, Naoya; Terasaka, Kenichiro; Tanaka, Masayoshi; Nagaoka, Kenichi; Morisaki, Tomohiro

    2016-10-01

    Laser spectroscopy is a powerful diagnostic tool for measuring the mean flow velocity of plasma particles. We have been developing a new laser spectroscopy method utilizing an optical vortex beam, which has helical phase fronts corresponding to the phase change in the azimuthal direction. Because of this phase change, a Doppler effect is experienced even by an atom crossing the beam vertically. The additional azimuthal Doppler shift is proportional to the topological charge of optical vortex and is inversely proportional to the distance from the beam axis in which the beam intensity is vanished by destructive interference or the phase singularity. In order to detect the azimuthal Doppler shift, we have performed a laser absorption spectroscopy experiment with the linear ECR plasma device HYPER-I. Since the azimuthal Doppler shift depends on a position in the beam cross section, the absorption spectra at various positions were reconstructed from the transmitted beam intensity measured by a beam profiler. We have observed a clear spatial dependence of the Doppler shift, which qualitatively agreed with theory. Detailed experimental results, as well as remaining issues and future prospect, will be discussed at the meeting. This study was partially supported by JAPS KAKENHI Grand Numbers 15K05365 and 25287152.

  2. Characterization of large amyloid fibers and tapes with Fourier transform infrared (FT-IR) and Raman spectroscopy.

    PubMed

    Ridgley, Devin M; Claunch, Elizabeth C; Barone, Justin R

    2013-12-01

    Amyloids are self-assembled protein structures implicated in a host of neurodegenerative diseases. Organisms can also produce "functional amyloids" to perpetuate life, and these materials serve as models for robust biomaterials. Amyloids are typically studied using fluorescent dyes, Fourier transform infrared (FT-IR), or Raman spectroscopy analysis of the protein amide I region, and X-ray diffraction (XRD) because the self-assembled β-sheet secondary structure of the amyloid can be easily identified with these techniques. Here, FT-IR and Raman spectroscopy analyses are described to characterize amyloid structures beyond just identification of the β-sheet structure. It has been shown that peptide mixtures can self-assemble into nanometer-sized amyloid structures that then continue to self-assemble to the micrometer scale. The resulting structures are flat tapes of low rigidity or cylinders of high rigidity depending on the peptides in the mixture. By monitoring the aggregation of peptides in solution using FT-IR spectroscopy, it is possible to identify specific amino acids implicated in β-sheet formation and higher order self-assembly. It is also possible to predict the final tape or cylinder morphology and gain insight into the structure's physical properties based on observed intermolecular interactions during the self-assembly process. Tapes and cylinders are shown to both have a similar core self-assembled β-sheet structure. Soft tapes also have weak hydrophobic interactions between alanine, isoleucine, leucine, and valine that facilitate self-assembly. Rigid cylinders have similar hydrophobic interactions that facilitate self-assembly and also have extensive hydrogen bonding between glutamines. Raman spectroscopy performed on the dried tapes and fibers shows the persistence of these interactions. The spectroscopic analyses described could be generalized to other self-assembling amyloid systems to explain property and morphological differences.

  3. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  4. Precision atomic beam density characterization by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  5. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  6. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  7. Optical re-injection in cavity-enhanced absorption spectroscopy

    SciTech Connect

    Leen, J. Brian O’Keefe, Anthony

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  8. Optical re-injection in cavity-enhanced absorption spectroscopy.

    PubMed

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  9. Distribution of Hydroxyl Groups in Kukersite Shale Oil: Quantitative Determination Using Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver

    2015-05-01

    This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.

  10. Characterization of fossil organic matter with Fourier-Transform Infrared (FTIR) Spectroscopy: an attempt to record extraterrestrial life .

    NASA Astrophysics Data System (ADS)

    Guido, A.; Mastandrea, A.; Tosti, F.; Demasi, F.; Blanco, A.; D'Elia, M.; Orofino, V.; Fonti, S.; Russo, F.

    The characterization of the insoluble macromolecular fraction of organic matter preserved in carbonate sediments allows the identification of fossil organisms otherwise not recognizable. This approach represents a new tool for the detection of extraterrestrial traces of life even in their primitive form, one of the primary goals of exobiological studies on Mars. Considering the deep connection between carbonate sediments and biological activities on Earth, we checked if it was possible to characterize the organic matter remains dispersed within these rocks, with Fourier transform infrared (FTIR) spectroscopy. The experiment was performed on ancient and well preserved carbonates, belonging to the Calcare di Base Formation outcropping in Northern Calabria (Rossano Basin). The origin of these Miocene deposits is problematic, due to the absence of skeletal fossils. The results demonstrate that FTIR is a reliable method for the characterization of the organic matter preserved in carbonates, and generally in all types of sedimentary rocks.

  11. Optical absorption and scattering spectroscopies of single nano-objects.

    PubMed

    Crut, Aurélien; Maioli, Paolo; Del Fatti, Natalia; Vallée, Fabrice

    2014-06-07

    Developments of optical detection and spectroscopy methods for single nano-objects are key advances for applications and fundamental understanding of the novel properties exhibited by nanosize systems. These methods are reviewed, focusing on far-field optical approaches based on light absorption and elastic scattering. The principles of the main linear and nonlinear methods are described and experimental results are illustrated in the case of metal nanoparticles, stressing the key role played by the object environment, such as the presence of a substrate, bound surface molecules or other nano-objects. Special attention is devoted to quantitative methods and correlation of the measured optical spectra of a nano-object with its morphology, characterized either optically or by electron microscopy, as this permits precise comparison with theoretical models. Application of these methods to optical detection and spectroscopy for single semiconductor nanowires and carbon nanotubes is also presented. Extension to ultrafast nonlinear extinction or scattering spectroscopies of single nano-objects is finally discussed in the context of investigation of their nonlinear optical response and their electronic, acoustic and thermal properties.

  12. Non destructive FTIR-photoacoustic spectroscopy studies on carbon fiber reinforced polyimide composite and water diffusion in epoxy resin

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Ravikumar

    Photo-acoustic (PA) detection is a non-destructive, non-disruptive mode of sample analysis. The principle of PA detection is monitoring the change in thermal properties of the material as a result of optical absorption. The ability to use with any incident radiation source makes it an attractive technique to study molecular excitations, vibrations and defects in any sample. Given the need for non-destructive analysis, the tool can be employed to study plethora of samples ranging from organic to inorganic. In the polymeric domain, there is a significant need for studying samples non-destructively with the architecture intact. For instance, molecular characterization in carbon fiber reinforced polymer, chemical diffusion in polymer resin/membrane and particulate/fillers incorporated thermosets suffer in characterization due to sample make-up. These samples are affected by opacity and thickness, which make them a very difficult set-up to study using conventional spectroscopic tools. We have employed PA mode of detection in tandem with a FTIR source to study the molecular vibrations to get an understanding of the systems considered. The first part of the work involved employing PA spectroscopy to study the curing in carbon fiber reinforced polymer (CFRP). Phenyl-ethynyl terminated oligoamic acid impregnated composite system was studied. The curing of composite and resin was monitored using PAS and compared with Transmission FTIR on resin and dynamic scanning calorimetry (DSC). The composite showed two distinct reactions as a function of thermal treatment. (1) Imidization at low temperatures due to cyclo-dehydration and (2) at high temperatures, crosslinking due to ethynyl addition reaction. Composite exhibited enhanced curing trends compared to neat resin. Our results indicate that the thermal conductivity of the carbon fiber might play a role in heat transfer facilitating the reaction. The activation energy was found to be 23kcal/mol for the crosslinking step. The

  13. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    PubMed

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of

  14. Development of simple algorithm for direct and rapid determination of cotton maturity from FTIR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fourier transform infrared (FTIR) spectra of seed and lint cottons were collected to explore the potential for the discrimination of immature cottons from mature ones and also for the determination of actual cotton maturity. Spectral features of immature and mature cottons revealed large differences...

  15. Molecular modifications induced by inorganic arsenic in Vicia faba investigated by FTIR, FTNIR spectroscopy and genotoxicity testing.

    PubMed

    Boccia, P; Meconi, C; Mecozzi, M; Sturchio, E

    2013-01-01

    Exposure to inorganic arsenic (iAs) through drinking water is a major public health concern affecting most countries. Epidemiologic studies showed a significant association between consumption of iAs through drinking water and different types of cancer. However, the exact mechanisms underlying As-induced cancer and other diseases are not yet well understood. The aim of this study is to determine the effects of exposure iAs (20 or 30 mg/L) on Vicia faba seedlings in terms of phytotoxicity, genotoxicity, and spectroscopy by investigation of molecular modifications using infrared (FTIR) and near infrared (FTNIR) spectroscopy. Further, the mitigation effects of a precursor of glutathione (GSH), N-acetylcysteine (NAC), were also assessed. Spectroscopic and genotoxicity analysis demonstrated that specific molecular changes were directly correlated with iAs exposure. Comet assay in Vicia faba showed significant effects at concentrations of 20 and 30 mg/L, depending on the structural changes involving nucleic acids as identified by FTIR and FTNIR spectroscopy. Results of phytotoxicity and micronuclei tests were significant only at higher iAs concentrations (30 mg/L), where an antioxidant effect of NAC was noted. The two spectroscopic techniques demonstrated molecular modifications predominantly associated with chemical interactions of iAs with biomolecules such as nucleic acids, carbohydrates, lipids, and proteins in Vicia faba. Our findings suggest that further studies are required to better understand the mechanisms underlying toxicity produced by different As chemical forms in vegetal and agricultural species.

  16. Neural differentiation of mouse embryonic stem cells studied by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tanthanuch, Waraporn; Thumanu, Kanjana; Lorthongpanich, Chanchao; Parnpai, Rangsun; Heraud, Philip

    2010-04-01

    Embryonic Stem-derived Neural Cells (ESNCs) hold potential as a source of neurons for a cell-based therapy for the treatment of brain tumors, and other neurological diseases and disorders in the future. The sorting of neural cell types is envisaged to be one of the most important processed for clinical application of these cells in cell-based therapies of the central nervous system (CNS). In this study, laboratory-based FTIR and Synchrotron-FTIR (SR-FTIR) microspectroscopy were used to identify FTIR marker for distinguishing different neural cell types derived from the differentiation of mouse embryonic stem cells (mESCs). Principal Component Analysis (PCA) and Unsupervised Hierarchical Cluster Analysis (UHCA) were shown to be able to distinguish the developmental stage of mESCs into three cell types: embryoid bodies (EBs), neural progenitor cells (NPCs), and ESNCs. Moreover, PCA provided the mean for identifying potential FTIR "marker bands" that underwent dramatic changes during stem cell differentiation along neural lineages. These appeared to be associated with changes in lipids (bands from CH 2 and CH 3 stretching vibrations at ˜2959, 2923 and 2852 cm -1) and proteins (changes in the amide I band at ˜1659 and 1637 cm -1). The results suggested that lipid content of cells increased significantly over the time of differentiation, suggesting increased expression of glycerophospholipids. Changes in the amide I profile, suggested concomitant increases in α-helix rich proteins as mESCs differentiated towards ESNCs, with a corresponding decrease in β-sheet rich proteins, corresponding with changes in cytoskeleton protein which may have been taking place involved with the establishment of neural structure and function.

  17. The application of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the stratum corneum.

    PubMed

    Goh, Choon Fu; Craig, Duncan Q M; Hadgraft, Jonathan; Lane, Majella E

    2017-02-01

    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm(-1)) containing the carboxylate (COO(-)) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO(-) asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin.

  18. ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: classifying subtypes of human cancer.

    PubMed

    Theophilou, Georgios; Lima, Kássio M G; Martin-Hirsch, Pierre L; Stringfellow, Helen F; Martin, Francis L

    2016-01-21

    Surgical management of ovarian tumours largely depends on their histo-pathological diagnosis. Currently, screening for ovarian malignancy with tumour markers in conjunction with radiological investigations has a low specificity for discriminating benign from malignant tumours. Also, pre-operative biopsy of ovarian masses increases the risk of intra-peritoneal dissemination of malignancy. Intra-operative frozen section, although sufficiently accurate in differentiating tumours according to their histological type, increases operation times. This results in increased surgery-related risks to the patient and additional burden to resource allocation. We set out to determine whether attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, combined with chemometric analysis can be applied to discriminate between normal, borderline and malignant ovarian tumours and classify ovarian carcinoma subtypes according to the unique spectral signatures of their molecular composition. Formalin-fixed, paraffin-embedded ovarian tissue blocks were de-waxed, mounted on Low-E slides and desiccated before being analysed using ATR-FTIR spectroscopy. Chemometric analysis in the form of principal component analysis (PCA), successive projection algorithm (SPA) and genetic algorithm (GA), followed by linear discriminant analysis (LDA) of the obtained spectra revealed clear segregation between benign versus borderline versus malignant tumours as well as segregation between different histological tumour subtypes, when these approaches are used in combination. ATR-FTIR spectroscopy coupled with chemometric analysis has the potential to provide a novel diagnostic approach in the accurate diagnosis of ovarian tumours assisting surgical decision making to avoid under-treatment or over-treatment, with minimal impact to the patient.

  19. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  20. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miller, Dennis D.; Rutzke, Michael A.

    Atomic spectroscopy has played a major role in the development of our current database for mineral nutrients and toxicants in foods. When atomic absorption spectrometers became widely available in the 1960s, the development of atomic absorption spectroscopy (AAS) methods for accurately measuring trace amounts of mineral elements in biological samples paved the way for unprecedented advances in fields as diverse as food analysis, nutrition, biochemistry, and toxicology (1). The application of plasmas as excitation sources for atomic emission spectroscopy (AES) led to the commercial availability of instruments for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) beginning in the late 1970s. This instrument has further enhanced our ability to measure the mineral composition of foods and other materials rapidly, accurately, and precisely. More recently, plasmas have been joined with mass spectrometers (MS) to form inductively coupled plasma-mass spectrometer ICP-MS instruments that are capable of measuring mineral elements with extremely low detection limits. These three instrumental methods have largely replaced traditional wet chemistry methods for mineral analysis of foods, although traditional methods for calcium, chloride, iron, and phosphorus remain in use today (see Chap. 12).

  1. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  2. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  3. Terahertz absorption spectroscopy of protein-containing reverse micellar solution

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Toyota, Y.; Nishi, T.; Nashima, S.

    2012-01-01

    Terahertz time-domain spectroscopy has been carried out for AOT/isooctane reverse micellar solution with myoglobin at the water-to-surfactant molar ratios ( w0) of 0.2 and 4.4. The amplitude of the absorption spectrum increases with increasing the protein concentration at w0 = 0.2, whereas it decreases at w0 = 4.4. The molar extinction coefficients of the protein-filled reverse micelle, and the constituents, i.e., myoglobin, water, and AOT, have been derived by use of the structural parameters of the micellar solution. The experimental results are interpreted in terms of hydration onto the protein and surfactant in the reverse micelle.

  4. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  5. Investigating DNA Radiation Damage Using X-Ray Absorption Spectroscopy

    PubMed Central

    Czapla-Masztafiak, Joanna; Szlachetko, Jakub; Milne, Christopher J.; Lipiec, Ewelina; Sá, Jacinto; Penfold, Thomas J.; Huthwelker, Thomas; Borca, Camelia; Abela, Rafael; Kwiatek, Wojciech M.

    2016-01-01

    The biological influence of radiation on living matter has been studied for years; however, several questions about the detailed mechanism of radiation damage formation remain largely unanswered. Among all biomolecules exposed to radiation, DNA plays an important role because any damage to its molecular structure can affect the whole cell and may lead to chromosomal rearrangements resulting in genomic instability or cell death. To identify and characterize damage induced in the DNA sugar-phosphate backbone, in this work we performed x-ray absorption spectroscopy at the P K-edge on DNA irradiated with either UVA light or protons. By combining the experimental results with theoretical calculations, we were able to establish the types and relative ratio of lesions produced by both UVA and protons around the phosphorus atoms in DNA. PMID:27028640

  6. La Saturated Absorption Spectroscopy for Applications in Quantum Information

    NASA Astrophysics Data System (ADS)

    Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  7. Antimony quantification in Leishmania by electrothermal atomic absorption spectroscopy.

    PubMed

    Roberts, W L; Rainey, P M

    1993-05-15

    Tri- and pentavalent antimony were quantified in Leishmania mexicana pifanoi amastigotes and promastigotes by atomic absorption spectroscopy with electrothermal atomization. Leishmania grown in axenic culture were treated with either potassium antimony tartrate [Sb(III)] or sodium stibogluconate [Sb(V)]. The parasites were collected, digested with nitric acid, and subjected to atomic absorption spectroscopy. The method was linear from 0 to 7 ng of antimony. The interassay coefficients of variation were 9.6 and 5.7% (N = 5) for 0.52 and 3.7-ng samples of leishmanial antimony, respectively. The limit of detection was 95 pg of antimony. The assay was used to characterize Sb(III) and Sb(V) influx and efflux kinetics. Influx rates were determined at antimony concentrations that produced a 50% inhibition of growth (IC50). The influx rates of Sb(V) into amastigotes and promastigotes were 4.8 and 12 pg/million cells/h, respectively, at 200 micrograms antimony/ml. The influx rate of Sb(III) into amastigotes was 41 pg/million cells/h at 20 micrograms antimony/ml. Influx of Sb(III) into promastigotes at 1 microgram antimony/ml was rapid and reached a plateau of 175 pg/million cells in 2 h. Efflux of Sb(III) and Sb(V) from amastigotes and promastigotes exhibited biphasic kinetics. The initial (alpha) half-life of Sb(V) efflux was less than 4 min and that of Sb(III) was 1-2 h. The apparent terminal (beta) half-lives ranged from 7 to 14 h.

  8. Infrared spectroscopy as a tool to characterise starch ordered structure--a joint FTIR-ATR, NMR, XRD and DSC study.

    PubMed

    Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M

    2016-03-30

    Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic.

  9. Absorption and emission spectroscopy in natural and synthetic corundum

    NASA Astrophysics Data System (ADS)

    Spinolo, G.; Palanza, V.; Ledonne, A.; Paleari, A.

    2009-04-01

    sapphires absorption spectra. In conclusion, both for metamorphic, synthetic and magmatic sapphires we reached a quite complete interpretation of the spectroscopic data in terms of "non interacting impurity ions". Orange, purple and green sapphires absorption spectra may also be discussed in terms of such interpretative approach. References Fontana I, LeDonne A, Palanza V, Binetti S and Spinolo G (2008) Optical spectroscopy study of type 1 natural and synthetic sapphires. J. Phys:Condens.Matter 20:125228-125232

  10. Non-destructive plant health sensing using absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Bledsoe, Jim; Manukian, Ara; Pearce, Michael; Weiss, Lee

    1988-01-01

    The sensor group of the 1988 EGM 4001 class, working on NASA's Controlled Ecological Life Support Systems (CELSS) project, investigated many different plant health indicators and the technologies used to test them. The project selected by the group was to measure chlorophyll levels using absorption spectroscopy. The spectrometer measures the amount of chlorophyll in a leaf by measuring the intensity of light of a specific wavelength that is passed through a leaf. The three wavelengths of light being used corresponded to the near-IR absorption peaks of chlorophyll a, chlorophyll b, and chlorophyll-free structures. Experimentation showed that the sensor is indeed measuring levels of chlorophyll a and b and their changes before the human eye can see any changes. The detector clamp causes little damage to the leaf and will give fairly accurate readings on similar locations on a leaf, freeing the clamp from having to remain on the same spot of a leaf for all measurements. External light affects the readings only slightly so that measurements may be taken in light or dark environments. Future designs and experimentation will concentrate on reducing the size of the sensor and adapting it to a wider range of plants.

  11. Effect of storage on microstructural changes of Carbopol polymers tracked by the combination of positron annihilation lifetime spectroscopy and FT-IR spectroscopy.

    PubMed

    Szabó, Barnabás; Süvegh, Károly; Zelkó, Romána

    2011-09-15

    Different types of Carbopols are frequently applied excipients of various dosage forms. Depending on the supramolecular structure, their water sorption behaviour could significantly differ. The purpose of the present study was to track the supramolecular changes of two types of Carbopol polymers (Carbopol 71G and Ultrez 10NF) alone and in their physical mixture with a water-soluble drug, vitamin B(12), as a function of storage time. The combination of FT-IR spectroscopy, positron annihilation lifetime spectroscopy (PALS) and Doppler-broadening spectroscopy was applied to follow the effect of water uptake on the structural changes. Our results indicate that water-induced interactions between polymeric chains can be sensitively detected. This enables the prediction of stability of dosage forms in the course of storage.

  12. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy.

    PubMed

    Ghosh, S B; Bhattacharya, K; Nayak, S; Mukherjee, P; Salaskar, D; Kale, S P

    2015-09-05

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  13. Remote skin tissue diagnostics in vivo by fiber optic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Butvina, Leonid N.

    1998-04-01

    The new method of fiber-optical evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy has been applied to the diagnostics of normal tissue, as well as precancerous and cancerous conditions. The FEW-FTIR technique is nondestructive and sensitive to changes of vibrational spectra in the IR region, without heating and damaging human and animal skin tissue. Therefore this method and technique is an ideal diagnostic tool for tumor and cancer characterization at an early stage of development on a molecular level. The application of fiber optic technology in the middle IR region is relatively inexpensive and can be adapted easily to any commercially available tabletop FTIR spectrometers. This method of diagnostics is fast, remote, and can be applied to many fields Noninvasive medical diagnostics of skin cancer and other skin diseases in vivo, ex vivo, and in vitro allow for the development convenient, remote clinical applications in dermatology and related fields. The spectral variations from normal to pathological skin tissue and environmental influence on skin have been measured and assigned in the regions of 850-4000 cm-1. The lipid structure changes are discussed. We are able to develop the spectral histopathology as a fast and informative tool of analysis.

  14. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    PubMed

    Tamosaityte, Sandra; Galli, Roberta; Uckermann, Ortrud; Sitoci-Ficici, Kerim H; Later, Robert; Beiermeister, Rudolf; Doberenz, Falko; Gelinsky, Michael; Leipnitz, Elke; Schackert, Gabriele; Koch, Edmund; Sablinskas, Valdas; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  15. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, S. B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S. P.

    2015-09-01

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  16. Development of on-line FTIR spectroscopy for siloxane detection in biogas to enhance carbon contactor management.

    PubMed

    Hepburn, C A; Vale, P; Brown, A S; Simms, N J; McAdam, E J

    2015-08-15

    Activated carbon filters are used to limit engine damage by siloxanes when biogas is utilised to provide electricity. However, carbon filter siloxane removal performance is poorly understood as until recently, it had not been possible to measure siloxanes on-line. In this study, on-line Fourier Transform Infrared (FTIR) spectroscopy was developed to measure siloxane concentration in real biogas both upstream (86.1-157.5mg m(-3)) and downstream (2.2-4.3mg m(-3)) of activated carbon filters. The FTIR provided reasonable precision upstream of the carbon vessel with a root mean square error of 10% using partial least squares analysis. However, positive interference from volatile organic carbons was observed in downstream gas measurements limiting precision at the outlet to an RMSE of 1.5mg m(-3) (47.8%). Importantly, a limit of detection of 3.2mg m(-3) was identified which is below the recommended siloxane limit and evidences the applicability of on-line FTIR for this application.

  17. Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy.

    PubMed

    Chércoles Asensio, Ruth; San Andrés Moya, Margarita; de la Roja, José Manuel; Gómez, Marisa

    2009-12-01

    In the last few decades many new polymers have been synthesized that are now being used in cultural heritage conservation. The physical and chemical properties and the long-term behaviors of these new polymers are determined by the chemical composition of the starting materials used in their synthesis along with the nature of the substances added to facilitate their production. The practical applications of these polymers depend on their composition and form (foam, film, sheets, pressure-sensitive adhesives, heat-seal adhesives, etc.). Some materials are used in restoration works and others for the exhibition, storage and transport of works of art. In all cases, it is absolutely necessary to know their compositions. Furthermore, many different materials that are manufactured for other objectives are also used for conservation and restoration. The technical information about the materials provided by the manufacturer is usually incomplete, so it is necessary to analytically characterize such materials. FTIR spectrometry is widely used for polymer identification, and, more recently, ATR-FTIR has been shown to give excellent results. This paper reports the ATR-FTIR analysis of samples of polymeric materials used in the conservation of artworks. These samples were examined directly in the solid material without sample preparation.

  18. Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy.

    PubMed

    Staniszewska, Emilia; Malek, Kamilla; Baranska, Malgorzata

    2014-01-24

    ATR FTIR spectra were collected from rat tissue homogenates (myocardium, brain, liver, lung, intestine, and kidney) to analyze their biochemical content. Based on the second derivative of an average spectral profile it was possible to assign bands e.g. to triglycerides and cholesterol esters, proteins, phosphate macromolecules (DNA, RNA, phospholipids, phosphorylated proteins) and others (glycogen, lactate). Peaks in the region of 1600-1700 cm(-1) related to amide I mode revealed the secondary structure of proteins. The collected spectra do not characterize morphological structure of the investigated tissues but show their different composition. The comparison of spectral information gathered from FTIR spectra of the homogenates and those obtained previously from FTIR imaging of the tissue sections implicates that the presented here approach can be successfully employed in the investigations of biochemical variation in animal tissues. Moreover, it can be used in the pharmacological and pharmacokinetic studies to correlate the overall biochemical status of the tissue with the pathological changes it has undergone.

  19. Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Staniszewska, Emilia; Malek, Kamilla; Baranska, Malgorzata

    2014-01-01

    ATR FTIR spectra were collected from rat tissue homogenates (myocardium, brain, liver, lung, intestine, and kidney) to analyze their biochemical content. Based on the second derivative of an average spectral profile it was possible to assign bands e.g. to triglycerides and cholesterol esters, proteins, phosphate macromolecules (DNA, RNA, phospholipids, phosphorylated proteins) and others (glycogen, lactate). Peaks in the region of 1600-1700 cm-1 related to amide I mode revealed the secondary structure of proteins. The collected spectra do not characterize morphological structure of the investigated tissues but show their different composition. The comparison of spectral information gathered from FTIR spectra of the homogenates and those obtained previously from FTIR imaging of the tissue sections implicates that the presented here approach can be successfully employed in the investigations of biochemical variation in animal tissues. Moreover, it can be used in the pharmacological and pharmacokinetic studies to correlate the overall biochemical status of the tissue with the pathological changes it has undergone.

  20. FTIR-ATR spectroscopy applied to quality control of grape-derived spirits.

    PubMed

    Anjos, Ofélia; Santos, António J A; Estevinho, Letícia M; Caldeira, Ilda

    2016-08-15

    The Fourier transform infrared (FTIR) spectroscopic method with attenuated total reflectance (ATR) was used for predicting the alcoholic strength, the methanol, acetaldehyde and fusel alcohols content of grape-derived spirits. FTIR-ATR spectrum in the mid-IR region (4000-400 cm(-1)) was used for the quantitative estimation by applying partial least square (PLS) regression models and the results were correlated with those obtained from reference methods. In the developed method, a cross-validation with 50% of the samples was used for PLS analysis along with a validation test set with 50% of the remaining samples. Good correlation models with a great accuracy were obtained for methanol (r(2)=99.4; RPD=12.8), alcoholic strength (r(2)=97.2; RPD=6.0), acetaldehyde (r(2)=98.2; RPD=7.5) and fusel alcohols (r(2) from 97.4 to 94.1; RPD from 6.2 to 4.1). These results corroborate the hypothesis that FTIR-ATR is a useful technique for the quality control of grape-derived spirits, whose practical application may improve the efficiency and quickness of the current laboratory analysis.

  1. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  2. Comparison of absorption, fluorescence, and polarization spectroscopy of atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ashman, Seth; Stifler, Cayla; Romero, Joaquin

    2015-05-01

    An ongoing spectroscopic investigation of atomic rubidium utilizes a two-photon, single-laser excitation process. Transitions accessible with our tunable laser include 5P1 / 2F' <-- 5S1 / 2 F and 5P3 / 2F' <-- 5S1 / 2 F . The laser is split into a pump and probe beam to allow for Doppler-free measurements of transitions between hyperfine levels. The pump and probe beams are overlapped in a counter-propagating geometry and the laser frequency scans over a transition. Absorption, fluorescence and polarization spectroscopy techniques are applied to this basic experimental setup. The temperature of the vapor cell and the power of the pump and probe beams have been varied to explore line broadening effects and signal-to-noise of each technique. This humble setup will hopefully grow into a more robust experimental arrangement in which double resonance, two-laser excitations are used to explore hyperfine state changing collisions between rubidium atoms and noble gas atoms. Rb-noble gas collisions can transfer population between hyperfine levels, such as 5P3 / 2 (F' = 3) <-- Collision 5P3 / 2 (F ' = 2) , and the probe beam couples 7S1 / 2 (F'' = 2) <-- 5P3 / 2 (F' = 3) . Polarization spectroscopy signal depends on the rate of population transfer due to the collision as well as maintaining the orientation created by the pump laser. Fluorescence spectroscopy relies only on transfer of population due to the collision. Comparison of these techniques yields information regarding the change of the magnetic sublevels, mF, during hyperfine state changing collisions.

  3. Diffusion and molecular interactions in a methanol/polyimide system probed by coupling time-resolved FTIR spectroscopy with gravimetric measurements

    PubMed Central

    Musto, Pellegrino; Galizia, Michele; La Manna, Pietro; Pannico, Marianna; Mensitieri, Giuseppe

    2013-01-01

    In this contribution the diffusion of methanol in a commercial polyimide (PMDA-ODA) is studied by coupling gravimetric measurements with in-situ, time-resolved FTIR spectroscopy. The spectroscopic data have been treated with two complementary techniques, i.e., difference spectroscopy (DS) and least-squares curve fitting (LSCF). These approaches provided information about the overall diffusivity, the nature of the molecular interactions among the system components and the dynamics of the various molecular species. Additional spectroscopic measurements on thin film samples (about 2 μm) allowed us to identify the interaction site on the polymer backbone and to propose likely structures for the H-bonding aggregates. Molar absorptivity values from a previous literature report allowed us to estimate the population of first-shell and second-shell layers of methanol in the polymer matrix. In terms of diffusion kinetics, the gravimetric and spectroscopic estimates of the diffusion coefficients were found to be in good agreement with each other and with previous literature reports. A Fickian behavior was observed throughout, with diffusivity values markedly affected by the total concentration of sorbed methanol. PMID:24809042

  4. Understanding the Zr and Si interdispersion in Zr1-xSixO2 mesoporous thin films by using FTIR and XANES spectroscopy.

    PubMed

    Andrini, Leandro; Angelomé, Paula C; Soler-Illia, Galo J A A; Requejo, Félix G

    2016-06-14

    Zr-Si mixed mesoporous oxides were obtained in a wide range of proportions, from 0 to 30% and from 70 to 100% of Si, using Si(OEt)4 and ZrCl4 as precursors and Pluronic F127 as a template. The oxide mesostructure was characterized by transmission electron microscopy and 2D-small angle X-ray scattering. Fourier transform infrared spectroscopy measurements suggested a local homogeneous interdispersion of both cations. Further selective studies using X-ray Absorption Near Edge Structure (XANES) spectroscopy for separately Zr and Si local environments, allowed for demonstrating that the Zr coordination varies from close to 7 to 6, when its concentration in the mixed oxide is reduced. In addition, it was possible to determine that in mixed oxides with low Zr concentrations, Zr can fit into the spaces occupied by Si in SiO2 pure oxide. An equivalent XANES result was obtained for Si, which is also compatible with the information obtained by FTIR. Furthermore, the Zr-O distance varied from close to 2.2 Å to 1.7 Å when the Zr concentration decreased. Finally, our study also demonstrates the usefulness of XANES to selectively assess the local structure (coordination, symmetry and chemical state) of specific atoms in nanostructured systems.

  5. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FT-IR) Applied to Study the Distribution of Ink Components in Printed Newspapers.

    PubMed

    Gómez, Nuria; Molleda, Cristina; Quintana, Ester; Carbajo, José M; Rodríguez, Alejandro; Villar, Juan C

    2016-09-01

    A new method was developed to study how the oil and cyan pigments of cold-set ink are distributed in newspaper thickness. The methodology involved laboratory printing followed by delamination of the printed paper. The unprinted side, printed side, and resulting layers were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR). Three commercial newspapers and black and cyan cold-set inks were chosen for the study. Attenuated total reflection Fourier transform infrared spectroscopy enabled the proportion of oil and cyan pigment on the printed surface and throughout the sheet thickness to be measured. Oil percentage was evaluated as the area increment of the region from 2800 cm(-1) to 3000 cm(-1) The relative amount of cyan pigment was determined as the area of the absorption band at 730 cm(-1) The ink oil was found mainly below half the paper thickness, whereas the pigment was detected at the layers closer to the printed surface, at a depth penetration of less than 15 µm (20% of thickness). Distribution of these two components in paper thickness depended on the type of cold-set ink, the amount of ink transferred, and the newspaper properties.

  6. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales

    USGS Publications Warehouse

    Lis, G.P.; Mastalerz, Maria; Schimmelmann, A.; Lewan, M.D.; Stankiewicz, B.A.

    2005-01-01

    FTIR absorbance signals in kerogens and macerals were evaluated as indices for thermal maturity. Two sets of naturally matured type-II kerogens from the New Albany Shale (Illinois Basin) and the Exshaw Formation (Western Canada Sedimentary Basin) and kerogens from hydrous pyrolysis artificial maturation of the New Albany Shale were characterized by FTIR. Good correlation was observed between the aromatic/aliphatic absorption ratio and vitrinite reflectance R 0. FTIR parameters are especially valuable for determining the degree of maturity of marine source rocks lacking vitrinite. With increasing maturity, FTIR spectra express four trends: (i) an increase in the absorption of aromatic bands, (ii) a decrease in the absorption of aliphatic bands, (iii) a loss of oxygenated groups (carbonyl and carboxyl), and (iv) an initial decrease in the CH2/CH3 ratio that is not apparent at higher maturity in naturally matured samples, but is observed throughout increasing R0 in artificially matured samples. The difference in the CH2/CH 3 ratio in samples from natural and artificial maturation at higher maturity indicates that short-term artificial maturation at high temperatures is not fully equivalent to slow geologic maturation at lower temperatures. With increasing R0, the (carboxyl + carbonyl)/aromatic carbon ratio generally decreases, except that kerogens from the Exshaw Formation and from hydrous pyrolysis experiments express an intermittent slight increase at medium maturity. FTIR-derived aromaticities correlate well with R0, although some uncertainty is due to the dependence of FTIR parameters on the maceral composition of kerogen whereas R0 is solely dependent on vitrinite. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Final report of the pilot study CCQM-P110-B1: A comparison of nitrogen dioxide (NO2) in nitrogen standards at 10 µmol/mol by Fourier transform infrared spectroscopy (FT-IR)

    NASA Astrophysics Data System (ADS)

    Flores, Edgar; Idrees, Faraz; Moussay, Philippe; Viallon, Joële; Wielgosz, Robert; Fernández, Teresa; Aoki, Nobuyuki; Kato, Kenji; Jeongsoon, Lee; Moon, Dongmin; Kim, Jin-Seog; Harling, A.; Milton, M.; Smeulders, Damian; Guenther, Franklin R.; Gameson, Lyn; Botha, Angelique; Tshilongo, James; Godwill Ntsasa, Napo; Valková, Miroslava; Konopelko, Leonid A.; Kustikov, Yury A.; Ballandovich, Vladimir S.; Gromova, Elena V.; Tuma, Dirk; Kohl, Anka; Schulz, Gert

    2012-01-01

    This pilot study compares the performance of participants in analyzing gas mixtures of nitrogen dioxide in nitrogen by comparison with in-house gravimetric standards using Fourier transformed infrared spectroscopy (FT-IR). In this study the same gas mixtures were used as in the key comparison CCQM-K74, which was designed to evaluate the level of comparability of National Metrology Institutes' measurement capabilities for nitrogen dioxide (NO2) at a nominal mole fraction of 10 µmol/mol. In the comparison CCQM-K74 most of the participants used chemiluminescence, with a small number using UV absorption or FT-IR spectroscopy, and thus it is of interest to improve understanding of the comparative performance of these techniques because they do not exhibit any cross-sensitivity to nitric acid (HNO3), which was known to be present in the mixtures used for the comparison. The results of this pilot study indicate good consistency and a level of agreement similar to that reported in the comparison CCQM-K74, demonstrating that FT-IR can be operated as a comparison method when calibrated with appropriate gas standards and can achieve similar measurement uncertainties to chemiluminescence and UV absorption techniques. An additional pilot study, CCQM-P110-B2, was conducted on the same gas mixtures in parallel with this pilot study. The second study addressed FT-IR spectroscopy when used to measure the gas mixtures with respect to reference spectra. The results of this second study will be reported elsewhere. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM-GAWG.

  8. Fluorescence anisotropy, FT-IR spectroscopy and 31-P NMR studies on the interaction of paclitaxel with lipid bilayers.

    PubMed

    Dhanikula, Anand Babu; Panchagnula, Ramesh

    2008-06-01

    To understand the bilayer interaction with paclitaxel, fluorescence polarization, Fourier transform infrared spectroscopy (FT-IR) and 31-phosphorus nuclear magnetic resonance (31P-NMR) studies were performed on paclitaxel bearing liposomes. Fluorescence anisotropy of three probes namely, 1,6-diphenyl-1,3,5-hexatriene (DPH), 12-(9-anthroyloxy) stearic acid (12AS) and 8-anilino-1-naphthalene sulfonate (ANS) were monitored as a function of paclitaxel concentration in the unsaturated bilayers. The incorporation of paclitaxel decreased anisotropy of 12AS and ANS probes, while slightly increased anisotropy of DPH. Paclitaxel has a fluidizing effect in the upper region of the bilayer whereas the hydrophobic core is slightly rigidized. FT-IR spectroscopy showed an increase in the asymmetric and symmetric methylene stretching frequencies, splitting of methylene scissoring band and broadening of carbonyl stretching mode. These studies collectively ascertained that paclitaxel mainly occupies the cooperativity region and interact with the interfacial region of unsaturated bilayers and induces fluidity in the headgroup region of bilayer. At higher loadings (>3 mol%), paclitaxel might gradually tend to accumulate at the interface and eventually partition out of bilayer as a result of solute exclusion phenomenon, resulting in crystallization; seed non-bilayer phases, as revealed by 31P-NMR, thereby destabilizing liposomal formulations. In general, any membrane component which has a rigidization effect will decrease, while that with a fluidizing effect will increase, with a bearing on headgroup interactions, partitioning of paclitaxel into bilayers and stability of the liposomes.

  9. Utilizing FTIR-ATR spectroscopy for classification and relative spectral similarity evaluation of different Colletotrichum coccodes isolates.

    PubMed

    Salman, A; Pomerantz, A; Tsror, L; Lapidot, I; Moreh, R; Mordechai, S; Huleihel, M

    2012-08-07

    Colletotrichum coccodes (C. coccodes) is a pathogenic fungus which causes anthracnose on tomatoes and black dot disease in potatoes. It is important to differentiate among these isolates and to detect the origin of newly discovered isolates, in order to treat the disease in its early stages. However, distinguishing between isolates using common biological methods is time-consuming, and not always available. We used Fourier Transform Infra-Red (FTIR)-Attenuated Total Reflectance (ATR) spectroscopy and advanced mathematical and statistical methods to distinguish between different isolates of C. coccodes. To our knowledge, this is the first time that FTIR-ATR spectroscopy was used, combined with multivariate analysis, to classify such a large number of 15 isolates belonging to the same species. We obtained a success rate of approximately 90% which was achieved using the region 800-1775 cm(-1). In addition we succeeded in determining the relative spectral similarity between different fungal isolates by developing a new algorithm. This method could be an important potential diagnostic tool in agricultural research, since it may outline the extent of the biological similarity between fungal isolates. Based on the PCA calculations, we grouped the fifteen isolates included in this study into four different degrees of similarity.

  10. Accelerated Aging of BKC 44306-10 Rigid Polyurethane Foam: FT-IR Spectroscopy, Dimensional Analysis, and Micro Computed Tomography

    SciTech Connect

    Gilbertson, Robert D.; Patterson, Brian M.; Smith, Zachary

    2014-01-02

    An accelerated aging study of BKC 44306-10 rigid polyurethane foam was carried out. Foam samples were aged in a nitrogen atmosphere at three different temperatures: 50 °C, 65 °C, and 80 °C. Foam samples were periodically removed from the aging canisters at 1, 3, 6, 9, 12, and 15 month intervals when FT-IR spectroscopy, dimensional analysis, and mechanical testing experiments were performed. Micro Computed Tomography imaging was also employed to study the morphology of the foams. Over the course of the aging study the foams the decreased in size by a magnitude of 0.001 inches per inch of foam. Micro CT showed the heterogeneous nature of the foam structure likely resulting from flow effects during the molding process. The effect of aging on the compression and tensile strength of the foam was minor and no cause for concern. FT-IR spectroscopy was used to follow the foam chemistry. However, it was difficult to draw definitive conclusions about the changes in chemical nature of the materials due to large variability throughout the samples.

  11. FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions.

    PubMed

    Kobayashi, Yuka; Mayer, Steven G; Park, Jae W

    2017-07-01

    Tilapia proteins refined by pH shift and water washing were chopped under various comminution conditions and their structural changes were investigated using Fourier transform infrared (FT-IR) and Raman spectroscopies. Both techniques revealed the degree of unfolding in protein structure increased when fish protein isolate (FPI) and surimi were chopped at 25°C for 18min compared to samples chopped at 5°C for 6min. Results indicated both hydrophobic interactions and disulfide bonds were significantly enhanced during gelation. FPI and surimi gels prepared at 25°C for 18min exhibited higher β-sheet contents and more chemical bonds such as hydrophobic interactions and disulfide bonds than those at 5°C for 6min. Results suggested that controlling comminution is important to improve gel qualities in FPI and surimi from tropical fish like tilapia. Moreover, FT-IR and Raman spectroscopies are useful complementary tools for elucidating the change in the structure of protein during comminution and gelation.

  12. Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Qin-Bin; Xu, Xue-Mei; Li, Chen-Jing; Ding, Yi-Peng; Cao, Can; Yin, Lin-Zi; Ding, Jia-Feng

    2016-11-01

    The expressions of the second harmonic (2f) signal are derived on the basis of absorption spectral and lock-in theories. A parametric study indicates that the phase shift between the intensity and wavelength modulation makes a great contribution to the 2f signal. A self-calibration wavelength modulation spectroscopy (WMS) method based on tunable diode laser absorption spectroscopy (TDLAS) is applied, combining the advantages of ambient pressure, temperature suppression, and phase-shift influences elimination. Species concentration is retrieved simultaneously from selected 2f signal pairs of measured and reference WMS-2f spectra. The absorption line of acetylene (C2H2) at 1530.36 nm near-infrared is selected to detect C2H2 concentrations in the range of 0-400 ppmv. System sensitivity, detection precision and limit are markedly improved, demonstrating that the self-calibration method has better detecting performance than the conventional WMS. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047, 61502538, and 61501525).

  13. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  14. Applications of remote fiber optic spectroscopy using infrared fibers and Fourier transform infrared (FTIR) spectroscopy to environmental monitoring

    NASA Astrophysics Data System (ADS)

    Druy, Mark A.; Glatkowski, Paul J.; Bolduc, Roy A.; Stevenson, William A.; Thomas, Thomas C.

    1994-10-01

    This manuscript summarizes the effort to demonstrate the feasibility of developing a field-portable Fourier Transform Infrared (FTIR) instrument that can perform a quick and accurate chemical analysis of unknown waste materials at Air Force bases without removing a sample for analysis. We report that devices containing a tapered infrared fiber optic sensor can remotely detect and quantify the range of liquid hazardous waste typically found at Air Force bases. Partial Least Squares (PLS) calibration equations were formulated and shown to accurately predict the concentration of components in a mixture with an error or +/- 0.05% volume.

  15. Determination of Aluminum Concentration in Seawater by Colorimetry and Atomic Absorption Spectroscopy.

    DTIC Science & Technology

    1972-11-30

    this was also high. 5 . ,Irj ~ - • lri*; llo. TALLE 2 ATOMIC ABSORPTION SPECTROSCOPY DETEPIJINATION OF ALUMINU1 CONCENTRATIO11 OF SEAWATER OCEAN...Concentration in Seawater by Colorimetr-y and Atomic Absorption Spectroscopy Charles A. Greene, Jr. and Everett N. Jones Ocean Science Department T14

  16. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun

    2008-07-01

    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  17. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally

  18. Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy.

    PubMed

    Suchy, Miro; Virtanen, Jenni; Kontturi, Eero; Vuorinen, Tapani

    2010-02-08

    The impact of drying on the ultrastructure of fresh wood was studied by deuterium exchange coupled with FT-IR analysis. This fundamental investigation demonstrated that water removal leads to irreversible alterations of the wood structure, namely, supramolecular rearrangements between wood polymers. The deuteration of fresh wood was shown to be fully reversible by a subsequent exposure of the deuterated sample to water (reprotonation). Therefore, the presence of any OD groups in deuterated and then dried wood samples after reprotonation is a clear indicator of reduced accessibility. The extent of changes was affected by drying temperature and relative humidity. Application of this methodology for the evaluation of chemical pulp sample (reference material) resulted in similar response, only more pronounced. Two hypothetical alternatives were proposed for accessibility reduction in dried wood: (i) irreversible aggregation of cellulose microfibrils and (ii) irreversible stiffening of the hemicellulose/lignin matrix that extensively swells when exposed to water.

  19. Polyimide analysis using diffuse reflectance-FTIR. [Fourier Transform IR Spectroscopy

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1985-01-01

    The thermal imidization of a number of polyimide precursors in the form of powders, films, and prepregs was examined by an in situ diffuse reflectance-FTIR technique where infrared spectra were determined while the material was being heated. An analysis of these spectra revealed that, with the exception of one water soluble adhesive, each precursor developed an anhydride band around 1850 cm/cu during imidization. This band diminished in intensity during final stages of cure. Efforts were made to quantify the amount of anhydride in several samples. Evidence obtained could be interpreted to mean that poly(amic acid) resins undergo an initial reduction in molecular weight during imidization before recombining to achieve their ultimate molecular weights as polyimides. Several reports in the literature are cited to support this interpretation. This report serves both to document anhydride formation during imidization and to increase our fundamental understanding of how polyimides cure.

  20. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  1. Femtosecond XUV transient absorption spectroscopy of small organic molecules

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2015-05-01

    High-order harmonic generation has evolved as a powerful method for the generation of femtosecond XUV pulses with table-top laser systems. Femtosecond XUV transient absorption spectroscopy is an emerging application of these novel light sources for the investigation of molecular dynamics. Recording time-dependent XUV induced core-to-valence transitions traces a molecular response to an initial perturbation with IR, VIS or UV laser pulses from the perspective of distinct atomic sites. Preliminary results for sulfur and selenium containing organic molecules, such as thiophene (C4H4S) and selenophene(C4H4Se), are presented. While molecular orbital dynamics in thiophene will be monitored at the sulfur 2p edge around 165 eV, experiments at the Se 3d (57 eV) and Se 3p (163 eV) edges of selenophene will provide insight about the impact of specific inner-shell transitions within the same atom on the spectroscopic fingerprint of similar dynamics. The method's element-specificity and sensitivity to local valance electronic structures will be exploited to monitor the photo-induced opening of the aromatic rings at the S-C and Se-C bonds, thereby shining new light on the primary steps of photochemical reaction pathways in organic compounds.

  2. X-ray Absorption Spectroscopy of the Rare Earth orthophosphates

    SciTech Connect

    Shuh, D.K.; Terminello, L.J.; Boatner, L.A.; Abraham, M.M.

    1993-06-01

    X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d{sup 10}4f{sup n} {yields} 3d-{sup 9}4f{sup n+1} transitions and these transitions exhibit a wealth of spectroscopic features. The XAS measurements of single crystal REPO{sub 4} (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) at the 3d edge were performed in the total yield mode at beam line 8-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble the XAS of the corresponding RE metal. This is not unexpected and emphasizes the major contribution of the trivalent state to the electronic transitions at the RE 3d edges. These spectra unequivocally identify the transitions originating from well-characterized RE cores and correlate well with previous theoretical investigations.

  3. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  4. Gypsophile Chemistry Unveiled: Fourier Transform Infrared (FTIR) Spectroscopy Provides New Insight into Plant Adaptations to Gypsum Soils

    PubMed Central

    Palacio, Sara; Aitkenhead, Matt; Escudero, Adrián; Montserrat-Martí, Gabriel; Maestro, Melchor; Robertson, A. H. Jean

    2014-01-01

    Gypsum soils are among the most restrictive and widespread substrates for plant life. Plants living on gypsum are classified as gypsophiles (exclusive to gypsum) and gypsovags (non-exclusive to gypsum). The former have been separated into wide and narrow gypsophiles, each with a putative different ecological strategy. Mechanisms displayed by gypsum plants to compete and survive on gypsum are still not fully understood. The aim of this study was to compare the main chemical groups in the leaves of plants with different specificity to gypsum soils and to explore the ability of Fourier transform infrared (FTIR) spectra analyzed with neural network (NN) modelling to discriminate groups of gypsum plants. Leaf samples of 14 species with different specificity to gypsum soils were analysed with FTIR spectroscopy coupled to neural network (NN) modelling. Spectral data were further related to the N, C, S, P, K, Na, Ca, Mg and ash concentrations of samples. The FTIR spectra of the three groups analyzed showed distinct features that enabled their discrimination through NN models. Wide gypsophiles stood out for the strong presence of inorganic compounds in their leaves, particularly gypsum and, in some species, also calcium oxalate crystals. The spectra of gypsovags had less inorganic chemical species, while those of narrow gypsum endemisms had low inorganics but shared with wide gypsophiles the presence of oxalate. Gypsum and calcium oxalate crystals seem to be widespread amongst gypsum specialist plants, possibly as a way to tolerate excess Ca and sulphate. However, other mechanisms such as the accumulation of sulphates in organic molecules are also compatible with plant specialization to gypsum. While gypsovags seem to be stress tolerant plants that tightly regulate the uptake of S and Ca, the ability of narrow gypsum endemisms to accumulate excess Ca as oxalate may indicate their incipient specialization to gypsum. PMID:25222564

  5. Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils.

    PubMed

    Palacio, Sara; Aitkenhead, Matt; Escudero, Adrián; Montserrat-Martí, Gabriel; Maestro, Melchor; Robertson, A H Jean

    2014-01-01

    Gypsum soils are among the most restrictive and widespread substrates for plant life. Plants living on gypsum are classified as gypsophiles (exclusive to gypsum) and gypsovags (non-exclusive to gypsum). The former have been separated into wide and narrow gypsophiles, each with a putative different ecological strategy. Mechanisms displayed by gypsum plants to compete and survive on gypsum are still not fully understood. The aim of this study was to compare the main chemical groups in the leaves of plants with different specificity to gypsum soils and to explore the ability of Fourier transform infrared (FTIR) spectra analyzed with neural network (NN) modelling to discriminate groups of gypsum plants. Leaf samples of 14 species with different specificity to gypsum soils were analysed with FTIR spectroscopy coupled to neural network (NN) modelling. Spectral data were further related to the N, C, S, P, K, Na, Ca, Mg and ash concentrations of samples. The FTIR spectra of the three groups analyzed showed distinct features that enabled their discrimination through NN models. Wide gypsophiles stood out for the strong presence of inorganic compounds in their leaves, particularly gypsum and, in some species, also calcium oxalate crystals. The spectra of gypsovags had less inorganic chemical species, while those of narrow gypsum endemisms had low inorganics but shared with wide gypsophiles the presence of oxalate. Gypsum and calcium oxalate crystals seem to be widespread amongst gypsum specialist plants, possibly as a way to tolerate excess Ca and sulphate. However, other mechanisms such as the accumulation of sulphates in organic molecules are also compatible with plant specialization to gypsum. While gypsovags seem to be stress tolerant plants that tightly regulate the uptake of S and Ca, the ability of narrow gypsum endemisms to accumulate excess Ca as oxalate may indicate their incipient specialization to gypsum.

  6. Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy

    DOE PAGES

    Bekiaris, Georgios; Lindedam, Jane; Peltre, Clément; ...

    2015-06-18

    Complexity and high cost are the main limitations for high-throughput screening methods for the estimation of the sugar release from plant materials during bioethanol production. In addition, it is important that we improve our understanding of the mechanisms by which different chemical components are affecting the degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was combined with advanced chemometrics to develop calibration models predicting the amount of sugars released after pretreatment and enzymatic hydrolysis of wheat straw during bioethanol production, and the spectra were analysed to identify components associated with recalcitrance. A total of 1122more » wheat straw samples from nine different locations in Denmark and one location in the United Kingdom, spanning a large variation in genetic material and environmental conditions during growth, were analysed. The FTIR-PAS spectra of non-pretreated wheat straw were correlated with the measured sugar release, determined by a high-throughput pretreatment and enzymatic hydrolysis (HTPH) assay. A partial least square regression (PLSR) calibration model predicting the glucose and xylose release was developed. The interpretation of the regression coefficients revealed a positive correlation between the released glucose and xylose with easily hydrolysable compounds, such as amorphous cellulose and hemicellulose. Additionally, we observed a negative correlation with crystalline cellulose and lignin, which inhibits cellulose and hemicellulose hydrolysis. FTIR-PAS was used as a reliable method for the rapid estimation of sugar release during bioethanol production. The spectra revealed that lignin inhibited the hydrolysis of polysaccharides into monomers, while the crystallinity of cellulose retarded its hydrolysis into glucose. Amorphous cellulose and xylans were found to contribute significantly to the released amounts of glucose and xylose

  7. Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy

    SciTech Connect

    Bekiaris, Georgios; Lindedam, Jane; Peltre, Clément; Decker, Stephen R.; Turner, Geoffrey B.; Magid, Jakob; Bruun, Sander

    2015-06-18

    Complexity and high cost are the main limitations for high-throughput screening methods for the estimation of the sugar release from plant materials during bioethanol production. In addition, it is important that we improve our understanding of the mechanisms by which different chemical components are affecting the degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was combined with advanced chemometrics to develop calibration models predicting the amount of sugars released after pretreatment and enzymatic hydrolysis of wheat straw during bioethanol production, and the spectra were analysed to identify components associated with recalcitrance. A total of 1122 wheat straw samples from nine different locations in Denmark and one location in the United Kingdom, spanning a large variation in genetic material and environmental conditions during growth, were analysed. The FTIR-PAS spectra of non-pretreated wheat straw were correlated with the measured sugar release, determined by a high-throughput pretreatment and enzymatic hydrolysis (HTPH) assay. A partial least square regression (PLSR) calibration model predicting the glucose and xylose release was developed. The interpretation of the regression coefficients revealed a positive correlation between the released glucose and xylose with easily hydrolysable compounds, such as amorphous cellulose and hemicellulose. Additionally, we observed a negative correlation with crystalline cellulose and lignin, which inhibits cellulose and hemicellulose hydrolysis. FTIR-PAS was used as a reliable method for the rapid estimation of sugar release during bioethanol production. The spectra revealed that lignin inhibited the hydrolysis of polysaccharides into monomers, while the crystallinity of cellulose retarded its hydrolysis into glucose. Amorphous cellulose and xylans were found to contribute significantly to the released amounts of glucose and xylose, respectively.

  8. Direct evidence from in situ FTIR spectroscopy that o-quinonemethide is a key intermediate during the pyrolysis of guaiacol.

    PubMed

    Cheng, Hao; Wu, Shubin; Huang, Jinbao; Zhang, Xiaohua

    2017-02-10

    Although o-quinonemethide (6-methylene-2,4-cyclohexadien-1-one) has been proposed as a key intermediate in char formation during the pyrolysis of guaiacol (2-methoxyphenol), direct evidence of this (e.g., spectroscopic data) has not yet been provided. Using in situ FTIR spectroscopy, the pyrolysis of guaiacol was investigated from 30 °C to 630 °C at 40 °C/min. The IR profiles showed direct evidence of o-quinonemethide production at about 350 °C, which vanished rapidly at around 420 °C in the vapor phase, indicating char formation. In addition, at 400 °C, salicyl aldehyde was observed, which decomposed slowly at about 500 °C. In combination with the known products of guaiacol pyrolysis, these results allowed the major reaction pathways of guaiacol pyrolysis to be discerned. Density functional theory calculations were performed, and the results were found to be in good agreement with the experimentally obtained IR profiles. These findings provide guidance on how to suppress secondary reactions of guaiacol during lignin pyrolysis. Graphical abstract On-line analysis of pyrolysis process of guaiacol using in situ FTIR.

  9. Study of N, N-dimethyl(carboethoxymethyl)-3-phthalimidopropylammonium chloride dihydrate by DFT calculations, NMR and FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Iwona

    2009-06-01

    N, N-dimethyl(carboethoxymethyl)-3-phthalimidopropylammonium chloride dihydrate ( 1) and N, N-dimethyl(carboxymethyl)-3-phthalimidopropylammonium hydrochloride ( 3) have been obtained in reaction of N, N-dimethyl-3-phthalimidopropylamine with ethyl chloroacetate and chloroacetic acid, respectively. N, N-dimethyl(carboethoxymethyl)-3-phthalimido-propylammonium chloride dihydrate ( 1) has been characterized by FTIR and NMR spectroscopy. Moreover, for ( 1) and ( 3) B3LYP calculations have been carried out. The optimized bond lengths, bond angles and torsion angles calculated by B3LYP/6-31G(d,p) approach have been presented. Both FTIR and Raman spectra of ( 1) are consistent with the calculated structures in the gas phase. Correlations between the experimental 1H and 13C NMR chemical shifts ( δexp) of investigated compound in D 2O, and the GIAO/B3LYP/6-31G(d,p) calculated magnetic isotropic shielding tensors ( σcalc), δexp = a + b σcalc, are reported. The assignments of the anharmonic experimental solid state vibrational frequencies of ( 1) based on the calculated B3LYP/6-31G(d,p) harmonic frequencies have been made. Linear correlations between the experimental 1H and 13C chemical shifts and the computed screening constants confirm the optimized geometry.

  10. Investigation of normal human skin tissue and acupuncture points of human skin tissue using fiberoptical FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Brooks, Angelique L.; Bruch, Reinhard F.; Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Butvina, Leonid N.; Ma, Lixing

    1998-06-01

    An innovative spectroscopic diagnostic method has been developed for investigation of different regions of normal human skin tissue. This new method is a combination of Fourier transform IR fiberoptic evanescent wave (FTIR-FEW) spectroscopy and fiber optic techniques for the middle IR (MIR) wavelength range. The fiber optical sensors we have used are characterized by low optical losses and high flexibility for remote analysis. Our fiber optical accessories and method allows for direct interaction of the skin tissue with the fiber probe and can be utilized with a diversity of standard commercial Fourier transform spectrometers. The FTIR-FEW technique, using nontoxic unclad fibers in the attenuated total reflection regime, is suitable for noninvasive, fast, sensitive investigations of normal skin in vivo for various medical diagnostics applications including studies of acupuncture points. Here we present the first data on IR spectra of skin tissue in vivo for normal skin and several acupuncture points in the range of 1300 to 1800 cm-1 and 2600 to 4000 cm-1.

  11. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy.

    PubMed

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the I(β) content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (X(C)(RAMAN)%) varied from -25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose I(β). However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm(-1). Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls.

  12. A combined FTIR and infrared emission spectroscopy investigation of layered double hydroxide as an effective electron donor

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Wei, Feng; Liang, Ying; Zhou, Jizhi; Xi, Yunfei; Qian, Guangren; Frost, Ray

    2016-02-01

    A novel method has been presented to characterize electron transfer in layered double hydroxides (LDHs) utilizing an investigation combing FTIR and infrared emission spectroscopy. At room temperature, electron could transfer to interlayer Fe3 + through monodentate ligand cyanide, and resulted in a reduction of 40% Fe3 + to Fe2 +. When the environmental temperature increased from 25 to 300 °C, reduction of Fe3 + and Ni2 + increased to 94% and 42%. Furthermore, electron also transferred to interlayer cation through multidentate ligand EDTA. As a result, LDHs has been proven to be an effective electron donor, and FTIR was a feasible tool in characterizing this property by monitoring the valence state of cations. It was also concluded that octahedral units with OH- groups in LDH layer functioned as electron donor centers. Driving force for electron transfer is attributed to the charge density difference between cation layer and probe anion. These results could help to explain the mechanism of various applications of LDHs in catalysis and photocatalysis.

  13. Molecular Structural Analysis of Spider's Capture Thread and Viscid Droplets Studied by Microscopic FT-IR Spectroscopy.

    PubMed

    Yabe, Hironobu; Katayama, Norihisa; Miyazawa, Mitsuhiro

    2017-01-01

    The molecular structural analysis of capture thread, including its viscid droplets of oriental golden orb-web spider Nephila clavata, has been performed by microscopic FT-IR spectroscopy. The obtained spectra of capture threads with and without viscid droplets indicate that the features in the region of 1400 - 1000 cm(-1) will be useful as marker bands for the degree of the dissolving of viscid droplet; further, the bands at 1395 and 1335 cm(-1) are attributable to the components of anchoring granules located at the inner side of viscid droplets. By recrystallization and its infrared measurements, the main chemical component of viscid droplets is assignable to glycosylated proline. It has also been demonstrated that the components of the anchoring granule of a viscid droplet are decomposed by UV irradiation, and that the molecular conformation of silk fiber protein of a capture thread is denatured at over 60°C, whereas the viscid droplets on a capture thread retain their structure.

  14. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    PubMed

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive.

  15. Measuring similarity and improving stability in biomarker identification methods applied to Fourier-transform infrared (FTIR) spectroscopy.

    PubMed

    Trevisan, Júlio; Park, Juhyun; Angelov, Plamen P; Ahmadzai, Abdullah A; Gajjar, Ketan; Scott, Andrew D; Carmichael, Paul L; Martin, Francis L

    2014-04-01

    FTIR spectroscopy is a powerful diagnostic tool that can also derive biochemical signatures of a wide range of cellular materials, such as cytology, histology, live cells, and biofluids. However, while classification is a well-established subject, biomarker identification lacks standards and validation of its methods. Validation of biomarker identification methods is difficult because, unlike classification, there is usually no reference biomarker against which to test the biomarkers extracted by a method. In this paper, we propose a framework to assess and improve the stability of biomarkers derived by a method, and to compare biomarkers derived by different method set-ups and between different methods by means of a proposed "biomarkers similarity index".

  16. Direct determination of niflumic acid in a pharmaceutical gel by ATR/FTIR spectroscopy and PLS calibration.

    PubMed

    Boyer, C; Brégère, B; Crouchet, S; Gaudin, K; Dubost, J P

    2006-02-13

    A simple, rapid and convenient analytical method without sample handling procedure is proposed for the determination of niflumic acid in a pharmaceutical gel with attenuated total reflectance/Fourier transform infrared spectroscopy (ATR/FTIR). A partial least square (PLS) calibration model for the prediction of niflumic acid contents was developed using 81 and 27 spectra of standard gels as training and validation sets, respectively. The used spectral range of niflumic acid for the establishment of this model was 2300-1100 cm(-1). All spectra were obtained in the transmittance mode, then normalized and first derivative transformed. The model yielded a regression coefficient R2 equal to 1 for the training set and a root mean square error of prediction (RMSEP) equal to 0.2 for the validation set. The percentage recoveries of the method for the analysis of Niflugel ranged from 96.60 to 101.02%.

  17. Solid state 13C NMR and FT-IR spectroscopy of the cocoon silk of two common spiders

    NASA Astrophysics Data System (ADS)

    Bramanti, Emilia; Catalano, Donata; Forte, Claudia; Giovanneschi, Mario; Masetti, Massimo; Veracini, Carlo Alberto

    2005-11-01

    The structure of the silk from cocoons of two common spiders, Araneus diadematus (family Araneidae) and Achaearanea tepidariorum (family Theridiidae) was investigated by means of 13C solid state NMR and FT-IR spectroscopies. The combined use of these two techniques allowed us to highlight differences in the two samples. The cocoon silk of Achaearanea tepidariorum is essentially constituted by helical and β-sheet structures, whereas that of Araneus diadematus shows a more complex structure, containing also β-strands and β-turns. Moreover, the former silk is essentially crystalline while the latter contains more mobile domains. The structural differences of the two cocoon silks are ascribed to the different habitat of the two species.

  18. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis.

    PubMed

    Gok, Seher; Severcan, Mete; Goormaghtigh, Erik; Kandemir, Irfan; Severcan, Feride

    2015-03-01

    Botanical origin of the nectar predominantly affects the chemical composition of honey. Analytical techniques used for reliable honey authentication are mostly time consuming and expensive. Additionally, they cannot provide 100% efficiency in accurate authentication. Therefore, alternatives for the determination of floral origin of honey need to be developed. This study aims to discriminate characteristic Anatolian honey samples from different botanical origins based on the differences in their molecular content, rather than giving numerical information about the constituents of samples. Another scope of the study is to differentiate inauthentic honey samples from the natural ones precisely. All samples were tested via unsupervised pattern recognition procedures like hierarchical clustering and Principal Component Analysis (PCA). Discrimination of sample groups was achieved successfully with hierarchical clustering over the spectral range of 1800-750 cm(-1) which suggests a good predictive capability of Fourier Transform Infrared (FTIR) spectroscopy and chemometry for the determination of honey floral source.

  19. Histone Acetylation Induced Transformation of B-DNA to Z-DNA in Cells Probed through FT-IR Spectroscopy.

    PubMed

    Zhang, Fengqiu; Huang, Qing; Yan, Jingwen; Chen, Zhu

    2016-04-19

    A nucleosome is made up of DNA and histones, and acetylation of histones perturbs the interaction of DNA and histones and thus affects the chromatin conformation and function. However, whether or how acetylation induces DNA conformation changes is still elusive. In this work, we applied FT-IR spectroscopy to monitor the DNA signals in cells as the histone acetylation was regulated by trichostatin A (TSA), a reversible inhibitor to histone deacetylases (HDACs). Our results unambiguously demonstrate the significant transformation of B-DNA to Z-DNA upon histone acetylation in the TSA treated HeLa cells. This is the first report providing the explicit experimental evidence for such a B-Z transformation of DNA in the epigenetic states of cells.

  20. FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification.

    PubMed

    Ollesch, Julian; Drees, Steffen L; Heise, H Michael; Behrens, Thomas; Brüning, Thomas; Gerwert, Klaus

    2013-07-21

    The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human body fluids demands the highest standards of accuracy and reproducibility of measurements because the expected spectral differences between healthy and diseased subjects are very small in relation to a large background absorbance of the whole sample. Here, we demonstrate that with the increased sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients underwent cytology and pathological biopsy characterization to distinguish between patients without UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood serum, EDTA and citrate plasma were collected from each patient and processed following predefined strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and their 1(st) and 2(nd) derivative spectra using an advanced Random Forest (RF) approach. It turned out that the 2(nd) derivative spectra were most useful for classification. Repeat validation on 21% of the dataset not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests (RFs) yielded a sensitivity of 93 ± 10% and a specificity of 46 ± 18% for bladder cancer. The

  1. [Identification and analysis of genuine and false Flos Rosae Rugosae by FTIR and 2D correlation IR spectroscopy].

    PubMed

    Cai, Fang; Sun, Su-qin; Yan, Wen-rong; Niu, Shi-jie; Li, Xian-en

    2009-09-01

    The genuine and false Flos Rosae Rugosae (Flos Rosae Chinensis and Flos Rosa multiflora) were examined in terms of their differences by using Fourier transform infrared spectroscopy (FTIR) combined with two-dimensional (2D) correlation IR spectroscopy. The three species were shown very similar in FTIR spectra. The peak of 1318 cm(-1) of genuine Flos Rosae Rugosae is not obvious but this peak could be found sharp in Flos Rosae Chinensis and Flos Rosa multiflora. Generally, the second derivative IR spectrum can clearly enhance the spectral resolution. Flos Rosae Rugosae and Flos rosae Chinensis have aromatic compounds distinct fingerprint characteristics at 1 617 and 1 618 cm(-1), respectively. Nevertheless, FlosRosa multiflora has the peak at 1612 cm(-1). There is a discrepancy of 5 to 6 cm(-1). FlosRosa multiflora has glucide's distinct fingerprint characteristics at 1 044 cm(-1), but Flos Rosae Rugosae and Flos Rosae Chinensis don't. The second derivative infrared spectra indicated different fingerprint characteristics. Three of them showed aromatic compounds with autopeaks at 1620, 1560 and 1460 cm(-1). Flos Rosae Chinensis and Flos Rosa multiflora have the shoulder peak at 1660 cm(-1). In the range of 850-1250 cm(-1), three of them are distinct different, Flos Rosae Rugosae has the strongest autopeak, Flos Rosae Chinensis has the feeble autopeak and Flos Rosa multiflora has no autopeak at 1050 cm(-1). In third-step identification, the different contents of aromatic compounds and glucide in Flos Rosae Rugosae, Flos Rosae Chinensis and Flos Rosa multiflora were revealed. It is proved that the method is fast and effective for distinguishing and analyzing genuine Flos Rosae Rugosae and false Flos Rosae Rugosae (Flos Rosae Chinensis and Flos Rosa multiflora).

  2. Classification of agents using Syrian hamster embryo (SHE) cell transformation assay (CTA) with ATR-FTIR spectroscopy and multivariate analysis.

    PubMed

    Ahmadzai, Abdullah A; Trevisan, Júlio; Pang, Weiyi; Riding, Matthew J; Strong, Rebecca J; Llabjani, Valon; Pant, Kamala; Carmichael, Paul L; Scott, Andrew D; Martin, Francis L

    2015-09-01

    The Syrian hamster embryo (SHE) cell transformation assay (pH 6.7) has a reported sensitivity of 87% and specificity of 83%, and an overall concordance of 85% with in vivo rodent bioassay data. To date, the SHE assay is the only in vitro assay that exhibits multistage carcinogenicity. The assay uses morphological transformation, the first stage towards neoplasm, as an endpoint to predict the carcinogenic potential of a test agent. However, scoring of morphologically transformed SHE cells is subjective. We treated SHE cells grown on low-E reflective slides with 2,6-diaminotoluene, N-nitroso-N-ethylnitroguanidine, N-nitroso-N-methylurea, N-nitroso-N-ethylurea, EDTA, dimethyl sulphoxide (DMSO; vehicle control), methyl methanesulfonate, benzo[e]pyrene, mitomycin C, ethyl methanesulfonate, ampicillin or five different concentrations of benzo[a]pyrene. Macroscopically visible SHE colonies were located on the slides and interrogated using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy acquiring five spectra per colony. The acquired IR data were analysed using Fisher's linear discriminant analysis (LDA) followed by principal component analysis (PCA)-LDA cluster vectors to extract major and minor discriminating wavenumbers for each treatment class. Each test agent vs. DMSO and treatment-induced transformed cells vs. corresponding non-transformed were classified by a unique combination of major and minor discriminating wavenumbers. Alterations associated with Amide I, Amide II, lipids and nucleic acids appear to be important in segregation of classes. Our findings suggest that a biophysical approach of ATR-FTIR spectroscopy with multivariate analysis could facilitate a more objective interrogation of SHE cells towards scoring for transformation and ultimately employing the assay for risk assessment of test agents.

  3. Chemical curing in alkyd paints: An evaluation via FT-IR and NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Bartolozzi, G.; Marchiafava, V.; Mirabello, V.; Peruzzini, M.; Picollo, M.

    2014-01-01

    A study aimed at determining the time necessary for an alkyd paint to attain chemical curing is presented. In particular, the object of our investigation was an oil paint made by Winsor & Newton, namely French ultramarine (PB29) in the Griffin Alkyd “fast drying oil colour” series. Using this paint, we prepared several mock-ups on glass. These were left in the laboratory at room temperature in a piece of furniture with glass doors for a total of 70 days. Samples were taken at different times, and the changes in their composition were monitored by means of FT-IR and multinuclear NMR spectroscopic analyses. Since the cross-linking reactions involved in the formation of the pictorial film mainly affect the amount of carbon-carbon double bonds, we monitored the decrease in allyl, diallyl and vinyl protons and carbons. The data obtained from the use of both techniques led us to conclude that, in our particular experimental conditions, the chemical curing of the paint layer is reached within the first 70 days, thus establishing the beginning of the ageing phenomena.

  4. Iron pentacarbonyl detection limits in the cigarette smoke matrix using FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Parrish, Milton E.; Plunkett, Susan E.; Harward, Charles N.

    2005-11-01

    Endogenous metals present in tobacco from agricultural practices have been purported to generate metal carbonyls in cigarette smoke. Transition metal catalysts, such as iron oxide, have been investigated for the reduction of carbon monoxide (CO) in cigarette smoke. These studies motivated the development of an analytical method to determine if iron pentacarbonyl [Fe(CO) 5] is present in mainstream smoke from cigarette models having cigarette paper made with iron oxide. An FT-IR puff-by-puff method was developed and the detection limit was determined using two primary reference spectra from different sources to estimate the amount of Fe(CO) 5 present in a high-pressure steel cylinder of CO. We do not detect Fe(CO) 5 in a single 35 mL puff from reference cigarettes or from those cigarette models having cigarette paper made with iron oxide, with a 30-ppbV limit of detection (LOD). Also, it was shown that a filter containing activated carbon would remove Fe(CO) 5.

  5. In Vitro Antimicrobial Bioassays, DPPH Radical Scavenging Activity, and FTIR Spectroscopy Analysis of Heliotropium bacciferum

    PubMed Central

    2016-01-01

    The present study deals with the antimicrobial, antioxidant, and functional group analysis of Heliotropium bacciferum extracts. Disc diffusion susceptibility method was followed for antimicrobial assessment. Noteworthy antimicrobial activities were recorded by various plant extracts against antibiotic resistant microorganisms. Plant flower extracts antioxidant activity was investigated against 2, 2-diphenyl-1-picryl hydrazyl radical by ultraviolet spectrophotometer (517 nm). Plant extracts displayed noteworthy radical scavenging activities at all concentrations (25–225 μg/mL). Notable activities were recorded by crude, chloroform and ethyl acetate extracts up to 88.27% at 225 μg/mL concentration. Compounds functional groups were examined by Fourier transform infrared spectroscopic studies. Alkanes, alkenes, alkyl halides, amines, carboxylic acids, amides, esters, alcohols, phenols, nitrocompounds, and aromatic compounds were identified by FTIR analysis. Thin layer chromatography bioautography was carried out for all plant extracts. Different bands were separated by various solvent systems. The results of the current study justify the use of Heliotropium bacciferum in traditional remedial herbal medicines. PMID:27597961

  6. Measurement of conjugated linoleic acid (CLA) in CLA-rich potato chips by ATR-FTIR spectroscopy.

    PubMed

    Kadamne, Jeta V; Castrodale, Chelsey L; Proctor, Andrew

    2011-03-23

    A conjugated linoleic acid (CLA)-rich soy oil has been produced by photoisomerization of soy oil linoleic acid. Nutritional studies have shown that CLA possesses health benefits in terms of reducing certain heart disease and diabetes risk factors. Potato chips are snacks that are readily produced in the CLA-rich soy oil containing CLA levels similar to those of the oil used for frying. The objective of this study was to develop an FTIR method to rapidly determine the CLA content of oil in potato chips. Photoirradiated soy oil samples with ∼25% total CLA were mixed with control soy oil, and 100 soy oil samples with total CLA levels ranging from 0.89 to 24.4% were made. Potato chips were fried using each of these 300 g CLA rich soy oil mixtures at 175 °C for approximately 3 min. Duplicate GC-FID fatty acid analyses were conducted on oil extracted from each batch of potato chips. The chip samples were ground and then scanned using ATR-FTIR spectroscopy with the aid of a high-pressure clamp, and duplicate spectra of each sample were averaged to obtain an average spectrum. Calibration models were developed using PLS regression analysis. These correlated the CLA isomer concentrations of potato chips obtained by GC-FID fatty acid analysis with their corresponding FTIR spectral features. The calibration models were fully cross validated and tested using samples that were not used in the calibration sample set. Calibrations for total CLA, trans,trans CLA, trans-10,cis-12 CLA, trans-9,cis-11 CLA, cis-10,trans-12 CLA, and cis-9,trans-11 CLA had coefficients of determinations (R2v) between 0.91 and 0.96 and corresponding root-mean-square error of prediction (RMSEP) ranging from 0.005 to 1.44. The ATR-FTIR technique showed potential as a method for the determination of the CLA levels in unknown potato chip samples.

  7. Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy.

    PubMed

    Martinez-Cruz, Karla; Sepulveda-Jauregui, Armando; Escobar-Orozco, Nayeli; Thalasso, Frederic

    2012-10-01

    Methanogenic activity (MA) tests are commonly carried out to estimate the capability of anaerobic biomass to treat effluents, to evaluate anaerobic activity in bioreactors or natural ecosystems, or to quantify inhibitory effects on methanogenic activity. These activity tests are usually based on the measurement of the volume of biogas produced by volumetric, pressure increase or gas chromatography (GC) methods. In this study, we present an alternative method for non-invasive measurement of methane produced during activity tests in closed vials, based on Infrared Tunable Diode Laser Absorption Spectroscopy (MA-TDLAS). This new method was tested during model acetoclastic and hydrogenotrophic methanogenic activity tests and was compared to a more traditional method based on gas chromatography. From the results obtained, the CH(4) detection limit of the method was estimated to 60 ppm and the minimum measurable methane production rate was estimated to 1.09(.)10(-3) mg l(-1) h(-1), which is below CH(4) production rate usually reported in both anaerobic reactors and natural ecosystems. Additionally to sensitivity, the method has several potential interests compared to more traditional methods among which short measurements time allowing the measurement of a large number of MA test vials, non-invasive measurements avoiding leakage or external interferences and similar cost to GC based methods. It is concluded that MA-TDLAS is a promising method that could be of interest not only in the field of anaerobic digestion but also, in the field of environmental ecology where CH(4) production rates are usually very low.

  8. Probing the role of chemical enhancers in facilitating drug release from patches: Mechanistic insights based on FT-IR spectroscopy, molecular modeling and thermal analysis.

    PubMed

    Song, Wenting; Quan, Peng; Li, Shanshan; Liu, Chao; Lv, Siji; Zhao, Yongshan; Fang, Liang

    2016-04-10

    In patches, a drug must release from patches prior to its percutaneous absorption. Chemical enhancers have been used for several decades, but their roles in drug release from patches are poorly understood. In this work, the roles of chemical enhancers in bisoprolol tartrate (BSP-T) release from patches were probed in vitro and in vivo. More importantly, an innovative mechanism insight of chemical enhancers in drug release process was provided at molecular level. FT-IR spectroscopy and molecular modeling were employed to investigate the influence of chemical enhancers on drug-adhesive interaction. The results showed chemical enhancers like Span 80, which had a strong ability forming hydrogen bonds, could decrease drug-adhesive interaction leading to the release of drug from adhesive of patches. Thermal analysis was conducted to research the influence of chemical enhancers on the thermodynamic properties of patch system. It showed that chemical enhancers promoted the formation of free volume of adhesive, which facilitated drug release process. By contrast, the influence on the thermodynamic properties of BSP-T was less effective in influencing BSP-T release process. In conclusion, chemical enhancers played an important role in facilitating BSP-T release from the adhesive DURO-TAK® 87-2287 of patches by decreasing drug-adhesive interaction and promoting the formation of free volume of adhesive. This work may be an important step in understanding the important roles of chemical enhancers in drug release process.

  9. Simple and rapid determination of free fatty acids in brown rice by FTIR spectroscopy in conjunction with a second-derivative treatment.

    PubMed

    Genkawa, Takuma; Ahamed, Tofael; Noguchi, Ryozo; Takigawa, Tomohiro; Ozaki, Yukihiro

    2016-01-15

    A simple and rapid method for the determination of free fatty acid (FFA) content in brown rice using Fourier transform infrared spectroscopy (FTIR) in conjunction with second-derivative treatment was proposed. Ground brown rice (10g) was soaked in toluene (20mL) for 30min, and the filtrate of the extract was placed in a 1mm CaF2 liquid cell. The transmittance spectrum of the filtrate was recorded using toluene for the background spectrum. The absorption band due to the CO stretching mode of FFAs was detected at 1710cm(-1), and the Savitzky-Golay second-derivative treatment was performed for band separation. A single linear regression model for FFA was developed using the 1710cm(-1) band in the second-derivative spectra of oleic acid in toluene (0.25-2.50gL(-1)), and the model displayed high prediction accuracy with a determination coefficient of 0.998 and a root mean square error of 0.03gL(-1).

  10. Determination of chemical changes in Isatis indigotica seeds carried after Chinese first spaceship with FTIR and 2D-IR correlation spectroscopy.

    PubMed

    Chen, Xiangdong; Keong, Choong Yew; Mei, Xiling; Lan, Jin

    2014-04-24

    Spaceflight represents a complex environmental condition. Space mutagenesis breeding has achieved and marked certain results over the years. This method was employed in our previous studies in order to obtain improved germplasm of Isatis indigotica. This study is to determine the chemical changes in I. indigotica seeds carried after Chinese first spaceship (Shenzhou I). Fourier transform infrared (FTIR), second derivative and two-dimensional infrared (2DIR) correlation spectroscopy were used in analysis. Not much differences between the two spectra were found except the peaks in the range of 1500-1200 cm(-)(1) which was about 7 cm(-)(1) different and indicated the absorption could be initialed from different bonds. SP4 showed different derivative compared with C4 in the second derivative spectra of 1200-800 cm(-)(1). The stronger signal of 2DIR in SP4 indicated the protein content of the seed was changed after spaceflight. It is concluded that spaceflight provided an extreme condition that caused changes of chemical properties in I. indigotica.

  11. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.

    PubMed

    Ataka, Kenichi; Stripp, Sven Timo; Heberle, Joachim

    2013-10-01

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light-dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.

  12. Principles, performance, and applications of spectral reconstitution (SR) in quantitative analysis of oils by Fourier transform infrared spectroscopy (FT-IR).

    PubMed

    García-González, Diego L; Sedman, Jacqueline; van de Voort, Frederik R

    2013-04-01

    Spectral reconstitution (SR) is a dilution technique developed to facilitate the rapid, automated, and quantitative analysis of viscous oil samples by Fourier transform infrared spectroscopy (FT-IR). This technique involves determining the dilution factor through measurement of an absorption band of a suitable spectral marker added to the diluent, and then spectrally removing the diluent from the sample and multiplying the resulting spectrum to compensate for the effect of dilution on the band intensities. The facsimile spectrum of the neat oil thus obtained can then be qualitatively or quantitatively analyzed for the parameter(s) of interest. The quantitative performance of the SR technique was examined with two transition-metal carbonyl complexes as spectral markers, chromium hexacarbonyl and methylcyclopentadienyl manganese tricarbonyl. The estimation of the volume fraction (VF) of the diluent in a model system, consisting of canola oil diluted to various extents with odorless mineral spirits, served as the basis for assessment of these markers. The relationship between the VF estimates and the true volume fraction (VF(t)) was found to be strongly dependent on the dilution ratio and also depended, to a lesser extent, on the spectral resolution. These dependences are attributable to the effect of changes in matrix polarity on the bandwidth of the ν(CO) marker bands. Excellent VF(t) estimates were obtained by making a polarity correction devised with a variance-spectrum-delineated correction equation. In the absence of such a correction, SR was shown to introduce only a minor and constant bias, provided that polarity differences among all the diluted samples analyzed were minimal. This bias can be built into the calibration of a quantitative FT-IR analytical method by subjecting appropriate calibration standards to the same SR procedure as the samples to be analyzed. The primary purpose of the SR technique is to simplify preparation of diluted samples such that

  13. Determination of major combustion products in aircraft exhausts by FTIR emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Heland, J.; Schäfer, K.

    The results of ground-based FTIR emission measurements of major combustion products such as CO 2, H 2O, CO, NO, and N 2O of in-service aircraft engines are reported and compared to values published in recent literature. About 25% differences in the NO and CO emission indices at several power settings were found for two military bypass engines of the same type. In addition the measured CO emission index of (51.8±4.6) g kg -1 at idle power of a CFM56-3 engine was about 27% lower than the value given by Spicer et al. (1984, 1994)for this engine type and about 27-48% higher than the ICAO data ( ICAO, 1995) for the whole span of CFM56-3 engines. The CO emission index measured at idle power of a CFM56-5C2 engine of AN Airbus A340 was (24±4) g kg -1 and can be compared to the ICAO value of 34 g kg -1. The N 2O mixing ratios measured at a higher power setting of this engine was found to be 4 ppm and is in the range of reported literature values. Since the NO and CO emissions are strongly connected to the combustion process/efficiency and thus to the state of engine maintainance and/or the engine age, it can be concluded that there are significant engine-to-engine (of the same type) and possibly day-to-day variations in the emission characteristics of aero engines which cannot be neglected for the estimation of the overall air-traffic emissions.

  14. Temperature-dependent deliquescent and efflorescent properties of methanesulfonate sodium studied by ATR-FTIR spectroscopy.

    PubMed

    Zeng, Guang; Kelley, Judas; Kish, J Duncan; Liu, Yong

    2014-01-23

    Modeling of aerosols and cloud formation processes in the marine boundary layer (MBL) require extensive data on hygroscopic properties of relevant methanesulfonate particles, which are currently scarce. In this work, methanesulfonate sodium (CH3SO3Na, MSA-Na), the most abundant methanesulfonate salt, was selected, and its deliquescent and efflorescent properties at temperatures relevant to the lower troposphere were studied using an ATR-FTIR flow system. To validate the approach, we investigated hygroscopic properties of NaCl particles, and our measured deliquescent relative humidity (DRH) and efflorescent relative humidity (ERH) of the NaCl particles obtained from the changes in integrated absorbance of water peaks in infrared spectra agreed with literature data well. We then reported DRH and ERH of MSA-Na particles as a function of temperature for the first time using both the changes in integrated absorbance of water peaks and the changes in peak position and shape of CH3SO3(-) symmetric and asymmetric vibrational modes. Our experiments showed that MSA-Na particles present quite different temperature-dependent hygroscopic behaviors from NaCl. Both the DRH and ERH of MSA-Na particles increase with decreasing temperatures. Due to the significant differences in temperature-dependent DRH and ERH, NaCl particles, if processed in MBL by methanesulfonic acid, are expected to deliquesce slightly earlier during a hydration process but effloresce at a much earlier stage during a dehydration process, especially at lower temperatures. This could considerably influence phase, size, and water content of sea salt aerosols and consequently their reactivity, lifetime, and impacts on atmospheric chemistry and climate systems.

  15. Methacrolein in the IR Atmospheric Window: Mm-Wave and FTIR Spectroscopies Complemented by Quantum Calculations

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Aviles Moreno, Juan-Ramon; Imane, Haykal; Motiyenko, R. A.; Huet, T. R.; Pirali, Olivier

    2014-06-01

    Methacrolein, CH_2=C(CH_3)CHO or MAC, is an important atmospheric molecule because it is a major product of the isoprene-OH reaction. Meanwhile the spectroscopic information on MAC is very scarse. On the theoretical side, we have performed quantum calculations at different levels of theory (DFT and ab initio) to model the structure of the two conformers, the large amplitude motion associated with the methyl top, and the anharmonic vibrational structure. On the experimental side, we have at first characterized the millimeter-wave spectrum of MAC in the 150-465 GHz range using the Lille frequency multiplication chain spectrometer. In particular the ground state has been analyzed up to J, K_a = 37, 17 and the first excited states are currently investigated. Secondly, FTIR spectra have been recorded on the AILES beamline of SOLEIL using a long path cell, between 30 and 3500 wn at medium resolution (0.5 wn). A few bands of atmospheric interest have also been recorded at higher resolution (0.001 wn). We will report the details of the vibrational analysis, as well as the molecular parameters derived from the analysis of the high resolution spectrum of the c-type band located around 930 wn. Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged. The experiment on the AILES beam-line of the synchrotron SOLEIL was performed under project number 20130192. M. Suzuki and K. Kozima, J. Molec. Spectrosc. 38 (1971) 314 J. R. Durig, J. Qiu, B. Dehoff and T. S. Little, Spectrochimica Acta 42A (1986) 89

  16. Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption.

    PubMed

    Parolo, María Eugenia; Savini, Mónica Claudia; Loewy, Ruth Miriam

    2017-03-14

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC) assuming that the main factor that influences the amount sorbed is the organic carbon content (OC) of the soil. However, KOC can vary across a range of soils. The influence of certain soil characteristics on the chlorpyrifos KOC values variation for 12 representative soils of the Northpatagonian Argentinian region with different physicochemical properties was investigated for this study. The chlorpyrifos sorption coefficients normalized by the OC content were experimentally obtained using the batch equilibrium method; the KOC values ranged between 9000-20,000 L kg(-1). The soil characteristics assessed were pH, clay content and spectral data indicative of soil organic matter (SOM) quality measured by FT-IR on the whole soil. The bands considered in the spectroscopic analyses were those corresponding to the aliphatic components, 2947-2858 cm(-1) (band A) and the hydrophilic components, 1647-1633 cm(-1) (band B). A significant relationship was found (R(2) = 0.66) between chlorpyrifos sorption (KOC) and the variables pH and A/B height band ratio. The correlation between the values predicted by the derived model and the experimental data was significant (r = 0.89 p < 0.05). Thus, this methodology could be used to estimate chlorpyrifos sorption coefficient through the use of a simple, rapid, and environmentally-friendly measurement. KOC analysis in relation to soil properties represents a valuable contribution to the understanding of the attenuation phenomena of the organic contaminants off-site migration in the environment.

  17. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management

    SciTech Connect

    Smidt, Ena . E-mail: ena.smidt@boku.ac.at; Meissl, Katharina

    2007-07-01

    State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically 'stabilized' leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a 'substrate' that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments.

  18. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  19. Benefits of applying combined diffuse reflectance FTIR spectroscopy and principal component analysis for the study of blue tempera historical painting.

    PubMed

    Navas, Natalia; Romero-Pastor, Julia; Manzano, Eloisa; Cardell, Carolina

    2008-12-23

    This paper explores the application of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to the examination of historic blue pigments and blue tempera paintings commonly found on works of art. The discussion is mainly focused on the practical benefits of using this technique joined to principal component analysis (PCA), a powerful multivariate analysis tool. Thanks to the study of several replica samples that contain either pure blue pigments (azurite, lapis lazuli and smalt), or pure binder (rabbit glue) and mixtures of each of the pigments with the binder (tempera samples), different aspects of these benefits are highlighted. Comparative results of direct spectra and multivariate analysis using transmittance-Fourier transform infrared spectroscopy (T-FTIR) are discussed throughout this study. Results showed an excellent ability of PCA on DRIFT spectra for discriminating replica samples according to differing composition. Several IR regions were tested with this aim; the fingerprint IR region exhibited the best ability for successfully clustering the samples. The presence of the binder was also discriminated. Only using this approach it was possible to completely separate all the studied replica samples. This demonstrates the potential benefits of this approach in identifying historical pigments and binders for conservation and restoration purposes in the field of Cultural Heritage.

  20. Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy.

    PubMed

    Dieckmann, Ralf; Hammerl, Jens Andre; Hahmann, Hartmut; Wicke, Amal; Kleta, Sylvia; Dabrowski, Piotr Wojciech; Nitsche, Andreas; Stämmler, Maren; Al Dahouk, Sascha; Lasch, Peter

    2016-06-23

    Microbiological monitoring of consumer products and the efficiency of early warning systems and outbreak investigations depend on the rapid identification and strain characterisation of pathogens posing risks to the health and safety of consumers. This study evaluates the potential of three rapid analytical techniques for identification and subtyping of bacterial isolates obtained from a liquid hand soap product, which has been recalled and reported through the EU RAPEX system due to its severe bacterial contamination. Ten isolates recovered from two bottles of the product were identified as Klebsiella oxytoca and subtyped using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS), near-infrared Fourier transform (NIR FT) Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Comparison of the classification results obtained by these phenotype-based techniques with outcomes of the DNA-based methods pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis of whole-genome sequencing (WGS) data revealed a high level of concordance. In conclusion, a set of analytical techniques might be useful for rapid, reliable and cost-effective microbial typing to ensure safe consumer products and allow source tracking.

  1. Lag time changes between capillary blood glucose and in-vivo interstitial glucose levels by HATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Eikje, Natalja Skrebova

    2011-03-01

    Method of the lag/latency time (LT) measurement, calculation and interpretation can be simultaneously applied to study in vivo glucose diffusion from the capillary to the skin tissue, to calibrate spectroscopically measured glucose levels during real-time glucose monitoring of dynamic processes in the skin tissue and to study glucose optical properties in the living skin tissue. Based on previous reports on determining interstitial glucose levels and their LT's by HATR-FTIR spectroscopy, here the LT was calculated for each glucose absorbance level at about 1030-41, 1080, 1118 and 1153 cm-1 during oral glucose tolerance test (OGTT) with different doses (5g, 20g, 75g). The LT showed dose-dependency and described intra-/inter-subject changes of skin glucose dynamics in healthy and diabetes subjects. The time required for glucose to diffuse from the capillary to the skin tissue was shorter in a diabetes subject, than in a healthy subject, independently on intaken dose of glucose. Nevertheless, in both subjects the LT changes ranged within 0-50 minutes. Measurement of the LT demonstrated a potential to provide insight to healthy and diabetic glucose dynamics between the blood and interstitial fluid compartments in the upper layer of the skin tissue. Also, the LT might be regarded as a method to calibrate dynamic measurements of glucose in vivo by this spectroscopy method and to characterize living skin tissue glucose optical properties.

  2. The studies of FT-IR and CD spectroscopy on catechol oxidase I from tobacco

    NASA Astrophysics Data System (ADS)

    Xiao, Hourong; Xie, Yongshu; Liu, Qingliang; Xu, Xiaolong; Shi, Chunhua

    2005-10-01

    A novel copper-containing enzyme named COI (catechol oxidase I) has been isolated and purified from tobacco by extracting acetone-emerged powder with phosphate buffer, centrifugation at low temperature, ammonium sulfate fractional precipitation, and column chromatography on DEAE-sephadex (A-50), sephadex (G-75), and DEAE-celluse (DE-52). PAGE, SDS-PAGE were used to detect the enzyme purity, and to determine its molecular weight. Then the secondary structures of COI at different pH, different temperatures and different concentrations of guanidine hydrochloride (GdnHCl) were studied by the FT-IR, Fourier self-deconvolution spectra, and circular dichroism (CD). At pH 2.0, the contents of both α-helix and anti-parallel β-sheet decrease, and that of random coil increases, while β-turn is unchanged compared with the neutral condition (pH 7.0). At pH 11.0, the results indicate that the contents of α-helix, anti-parallel β-sheet and β-turn decrease, while random coil structure increases. According to the CD measurements, the relative average fractions of α-helix, anti-parallel β-sheet, β-turn/parallel β-sheet, aromatic residues and disulfide bond, and random coil/γ-turn are 41.7%, 16.7%, 23.5%, 11.3%, and 6.8% at pH 7.0, respectively, while 7.2%, 7.7%, 15.2%, 10.7%, 59.2% at pH 2.0, and 20.6%, 9.5%, 15.2%, 10.5%, 44.2% at pH 11.0. Both α-helix and random coil decrease with temperature increasing, and anti-parallel β-sheet increases at the same time. After incubated in 6 mol/L guanidine hydrochloride for 30 min, the fraction of α-helix almost disappears (only 1.1% left), while random coil/γ-turn increases to 81.8%, which coincides well with the results obtained through enzymatic activity experiment.

  3. FTIR spectroscopy of framework aluminosilicate structures: carnegieite and pure sodium nepheline

    NASA Astrophysics Data System (ADS)

    Markovic, Smilja; Dondur, Vera; Dimitrijevic, Radovan

    2003-06-01

    In this work the spectroscopic studies of polymorph transformation of framework silicates containing six-membered rings and different Si/Al ratio were carried out. Two model systems with different stoichiometries (Na-LTA, Si/Al=1 and Na-FAU, Si/Al=1.23) were investigated. Thermally induced phase transformations of initial zeolites resulted in forming of stuffed derivatives of cristobalite (carnegieite) and tridymite (nepheline). Powder XRD method was used for the recognition of new phases. All obtained phases have framework structures built by single six-membered rings. The changes of middle range order (rings symmetry), which take place during transformations of Na-LTA and Na-FAU into low-temperature carnegieite, low-temperature carnegieite into pure sodium (ps) nepheline as well as ps-nepheline into high-temperature carnegieite, were investigated by IR spectroscopy. The rings symmetry is found to be dependent on a phase stoichiometry as well as on polymorph type.

  4. FT-Raman and FTIR-ATR spectroscopies and DFT calculations of triterpene acetyl aleuritolic acid

    NASA Astrophysics Data System (ADS)

    Melo, I. R. S.; Teixeira, A. M. R.; Sena Junior, D. M.; Santos, H. S.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Rodrigues, A. S.; Braz-Filho, R.; Gusmão, G. O. M.; Silva, J. H.; Faria, J. L. B.; Bento, R. R. F.

    2014-01-01

    Triterpenoids comprise an important class of compounds presenting a wide range of biologically important properties. Acetyl aleutitolic acid (AAA) is a triterpenoid isolated from Croton zehntneri, with molecular formula C32H50O4. Its structure has been characterized by NMR spectroscopy, however, there are no papers available regarding its vibrational properties. The Fourier-Transform Infrared with Attenuated Total Reflectance and Fourier-Transform Raman spectra, together with Density Functional Theory calculations of AAA are reported. Vibrational spectra were recorded at 300 K in the regions 600 cm-1 to 4000 cm-1 and 40 cm-1 to 4000 cm-1, for IR and Raman, respectively. Vibrational wavenumbers were predicted using Density Functional Theory calculations with the hybrid functional B3LYP and the basis set 6-31 G(d,p). A complete assignment of vibrational modes is given.

  5. Rapid presumptive "fingerprinting" of body fluids and materials by ATR FT-IR spectroscopy.

    PubMed

    Elkins, Kelly M

    2011-11-01

    Human body fluids and materials were evaluated using attenuated total reflectance Fourier transform infrared spectroscopy. Purified proteins, cosmetics, and foodstuffs were also assayed with the method. The results of this study show that the sampled fluids and materials vary in the fingerprint region and locations of the amide I peaks because of the secondary structure of the composite proteins although the C = O stretch is always present. The distinct 1016 cm(-1) peak serves as a signature for semen. The lipid-containing materials (e.g., fingerprints, earwax, tears, and skin) can also be easily separated from the aqueous materials because of the strong CH(3) asymmetric stretch of the former. Blood-saliva and blood-urine mixtures were also successfully differentiated using combinations of peaks. Crime scene investigators employing rapid, portable, or handheld infrared spectroscopic instruments may be able to reduce their need for invasive, destructive, and consumptive presumptive test reagents in evaluating trace evidence.

  6. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  7. Studies of cavity enhanced absorption spectroscopy for weak absorption gas measurements

    NASA Astrophysics Data System (ADS)

    Li, Liucheng; Duo, Liping; Gong, Deyu; Ma, Yanhua; Zhang, Zhiguo; Wang, Yuanhu; Zhou, Dongjian; Jin, Yuqi

    2017-01-01

    In order to determine the concentrations of trace amount metastable species in chemical lasers, an off-axis cavity enhanced absorption spectrometer for the detection of weak absorption gases has been built with a noise equivalent absorption sensitivity of 1.6x10-8 cm-1. The absorption spectrum of trace amount gaseous ammonia and water vapor was obtained with a spectral resolution of about 78 MHz. A multiple-line absorption spectroscopic method to determine the temperature of gaseous ammonia has been developed by use of multiple lines of ammonia molecule absorption spectrum.

  8. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans.

    PubMed

    Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D

    2016-01-27

    The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans.

  9. Discrimination of Solanaceae taxa and quantification of scopolamine and hyoscyamine by ATR-FTIR spectroscopy.

    PubMed

    Naumann, Annette; Kurtze, Lukas; Krähmer, Andrea; Hagels, Hansjoerg; Schulz, Hartwig

    2014-10-01

    Plant species of the Solanaceae family (nightshades) contain pharmacologically active anticholinergic tropane alkaloids, e.g., scopolamine and hyoscyamine. Tropane alkaloids are of special interest, either as active principles or as starting materials for semisynthetic production of other substances. For genetic evaluation, domestication, cultivation, harvest and post-harvest treatments, quantification of the individual active principles is necessary to monitor industrial processes and the resulting finished products. Up to now, frequently applied methods for quantification are based on high performance liquid chromatography and gas chromatography optionally combined with mass spectrometry. However, alternative analytical methods have the potential to replace the established standard methods partly. In this context, attenuated total reflection-Fourier transform infrared spectroscopy enabled chemotaxonomical classification of the Solanaceae Atropa belladonna, Datura stramonium, Hyoscyamus niger, Solanum dulcamara, and Duboisia in combination with cluster analysis. Also discrimination of genotypes within species was achieved to some extent. The most characteristic scopolamine bands could be identified in attenuated total reflection-Fourier transform infrared spectra of Solanaceae leaves, which allow a fast characterisation of plants with high scopolamine content. Applying a partial least square algorithm, very good calibration statistics were obtained for the prediction of the scopolamine content (residual prediction deviation = 7.67), and moderate prediction quality could be achieved for the hyoscyamine content (residual prediction deviation = 2.48).

  10. Interaction of myelin basic protein isoforms with lipid bilayers studied by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, Michael; Choo, Lin-P'ing; Boulias, Christopher; Moscarello, Mario A.; Mantsch, Henry H.

    1993-05-01

    The secondary structure of the naturally occurring isoforms of myelin basic protein (MBP1-8) from human myelin was studied by Fourier transform infrared spectroscopy under a variety of experimental conditions. In aqueous solution each isoform was found to be unstructured. In the presence of negatively charged liquid bilayers MBP1-4 were shown to exhibit an amide I band maximum indicative of the adoption of (alpha) -helical secondary structures. A detailed analysis revealed that significant proportions of (beta) -sheet secondary structure were also present. MBP5 and MBP8, which have significantly less cationic charge than MBP1-4, exhibited an amide I maximum identical to that seen in solution, suggesting that no interaction with the bilayer occurred. Analysis of the lipid CH2 and C equals O stretching vibrations also pointed towards significant interaction of MBP1-4 with the bilayer. The changes in intensity and frequency of these bands which typically accompany the phase transition in the pure bilayer were abolished by addition of the proteins. No such effect was seen for MBP5 and 8, the normal lipid phase transition being apparent. The implications of these results in the aetiology of multiple sclerosis is discussed.

  11. Using FT-IR spectroscopy to measure charge organization in ionic liquids.

    PubMed

    Burba, Christopher M; Janzen, Jonathan; Butson, Eric D; Coltrain, Gage L

    2013-07-25

    A major goal in the field of ionic liquids is correlating transport property trends with the underlying liquid structure of the compounds, such as the degree of charge organization among the constituent ions. Traditional techniques for experimentally assessing charge organization are specialized and not readily available for routine measurements. This represents a significant roadblock in elucidating these correlations. We use a combination of transmission and polarized-ATR infrared spectroscopy to measure the degree of charge organization for ionic liquids. The technique is illustrated with a family of 1-alkyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids at 30 °C. As expected, the amount of charge organization decreases as the alkyl side chain is lengthened, highlighting the important role of short-range repulsive interactions in defining quasilattice structure. Inherent limitations of the method are identified and discussed. The quantitative measurements of charge organization are then correlated with trends in the transport properties of the compounds to highlight the relationship between charge and momentum transport and the underlying liquid structure. Most research laboratories possess infrared spectrometers capable of conducting these measurements; thus, the proposed method may represent a cost-effective solution for routinely measuring charge organization in ionic liquids.

  12. Turbine engine exhaust gas measurements using in-situ FT-IR emission/transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Marran, David F.; Cosgrove, Joseph E.; Neira, Jorge; Markham, James R.; Rutka, Ronald; Strange, Richard R.

    2001-02-01

    12 An advanced multiple gas analyzer based on in-situ Fourier transform infrared spectroscopy has been used to successfully measure the exhaust plume composition and temperature of an operating gas turbine engine at a jet engine test stand. The sensor, which was optically coupled to the test cell using novel broadband hollow glass waveguides, performed well in this harsh environment (high acoustical noise and vibration, considerable temperature swings in the ambient with engine operation), providing quantitative gas phase information. Measurements were made through the diameter of the engine's one meter exhaust plume, about 0.7 meters downstream of the engine exit plane. The sensor performed near simultaneous infrared transmission and infrared emission measurements through the centerline of the plume. Automated analysis of the emission and transmission spectra provided the temperature and concentration information needed for engine tuning and control that will ensure optimal engine operation and reduced emissions. As a demonstration of the utility and accuracy of the technique, carbon monoxide, nitric oxide, water, and carbon dioxide were quantified in spite of significant variations in the exhaust gas temperature. At some conditions, unburned fuel, particulates (soot/fuel droplets), methane, ethylene and aldehydes were identified, but not yet quantified.

  13. Classification and structural analysis of live and dead salmonella cells using fourier transform infrared (FT-IR) spectroscopy and principle component analysis (PCA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fourier Transform Infrared Spectroscopy (FT-IR) was used to detect Salmonella typhimurium and Salmonella enteritidis foodborne bacteria and distinguish between live and dead cells of both serotypes. Bacteria were loaded individually on the ZnSe Attenuated Total Reflection (ATR) crystal surface and s...

  14. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  15. Aerosol particle absorption spectroscopy by photothermal modulation of Mie scattered light

    SciTech Connect

    Campillo, A.J.; Dodge, C.J.; Lin, H.B.

    1981-09-15

    Absorption spectroscopy of suspended submicron-sized aqueous ammonium-sulfate aerosol droplets has been performed by employing a CO/sub 2/ laser to photothermally modulate visible Mie scattered light. (AIP)

  16. Determination of tin in poly(vinyl chloride) by atomic-absorption spectroscopy.

    PubMed

    Anwar, J; Marr, I L

    1982-10-01

    A simple procedure is described for the determination of tin in PVC by atomic-absorption spectroscopy with an air-hydrogen flame, after wet digestion of the sample with sulphuric acid and hydrogen peroxide.

  17. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  18. Liquid Structure of Bis(trifluoromethylsulfonyl)imide-based Ionic Liquids Assessed by FT-IR Spectroscopy.

    PubMed

    Kimble, Cassie; Burba, Christopher M

    2017-03-17

    Ionic liquids are a fertile and active area of research, in part, due to the unique properties these solvents offer over traditional molecular solvents. Since these properties are rooted in the fundamental ion-ion interactions that govern liquid structure, there is a strong motivation to characterize liquid structure. Infrared spectroscopy is a standard analytical tool for assessing the liquid structure, for the intramolecular vibrational modes of the composing the materials are often quite sensitive to the local environment about a given ion. In this work, we demonstrate the band asymmetry for the νa(SNS) anion mode of N(Tf)2(‒)-based ionic liquids originates from the dynamic coupling of vibrationally-induced dipole moments of anions across a quasilattice. The magnitude of TO-LO splitting is linearly correlated to the particle densities of the ionic liquids; an observation that is in accord with the predictions of dipolar coupling theory. Dipole moment derivatives of νa(SNS) calculated from dipolar coupling theory, (∂μ/∂q)DCT, are lower than independent measurements of (∂μ/∂q). The most likely explanation for the disparity is that while ionic liquids possess sufficient long-range structure to support TO-LO splitting of infrared-active modes, there is sufficient orientational and translational disorder in the quasilattice to partially disrupt the coupling of vibrationally-induced dipole moments across the quasilattice. This will result in diminished amounts of TO-LO splitting than would be expected if the ionic liquid were a perfect crystal at 0 K. Impacts of cation molecular structure as well as formation of a binary solution on liquid structure is also explored.

  19. Direct and quantitative photothermal absorption spectroscopy of individual particulates

    SciTech Connect

    Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang; Zheng, Ruiting; Shen, Sheng

    2013-12-23

    Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

  20. VUV absorption spectroscopy of bacterial spores and DNA components

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2017-01-01

    Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.

  1. In situ Gas Temperature Measurements by UV-Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fateev, A.; Clausen, S.

    2009-02-01

    The absorption spectrum of the NO A2Σ+ ← X2Πγ-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in the range from 23 °C to 1,500 °C. The gas temperature was evaluated (1) from the analysis of the structure of selected NO high-resolution γ-absorption bands and (2) from the analysis of vibrational distribution in the NO γ-absorption system in the (211-238) nm spectral range. The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 °C over an optical absorption path length of 0.533 m.

  2. Selective detection of the structural changes upon photoreactions of several redox cofactors in photosystem II by means of light-induced ATR-FTIR difference spectroscopy

    NASA Astrophysics Data System (ADS)

    Okubo, Tatsunori; Noguchi, Takumi

    2007-04-01

    Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was applied for the first time to detect the structural changes upon photoreactions of redox cofactors in photosystem II (PSII). The PSII-enriched membranes from spinach were adsorbed on the surface of a silicon prism, and FTIR measurements of various redox cofactors were performed for the same sample but under different conditions by exchanging buffers in a flow cell. Light-induced FTIR difference spectra upon redox reactions of the oxygen-evolving Mn cluster, the primary quinone electron acceptor Q A, the redox-active tyrosine Y D, the primary electron acceptor pheophytin, and the primary electron donor chlorophyll P680 were successively recorded in buffers including different redox reagents and inhibitors. All of these cofactors remained active in the PSII membranes on the silicon surface, and the resultant spectra were basically identical to those previously recorded by the conventional transmission method. These ATR-FTIR measurements enable accurate comparison between reactions of different active sites in a single PSII sample. The present results demonstrated that the ATR-FTIR spectroscopy is a useful technique for investigation of the reaction mechanism of PSII.

  3. The use of CNDO in spectroscopy. XV. Two photon absorption

    NASA Astrophysics Data System (ADS)

    Marchese, Francis T.; Seliskar, C. J.; Jaffé, H. H.

    1980-04-01

    Two-photon absorptivities have been calculated within the CNDO/S-CI molecular orbital framework of Del Bene and Jaffé utilizing the second order time dependent perturbation equations of Göppert-Mayer and polarization methods of McClain. Good agreement is found between this theory and experiment for transition energies, symmetries, and two-photon absorptivities for the following molecules: biphenyl, terphenyl, 2,2'-difluorobiphenyl, 2,2'-bipyridyl, phenanthrene, and the isoelectronic series: fluorene, carbazole, dibenzofuran.

  4. An investigation of the effect of silicone oil on polymer intraocular lenses by means of PALS, FT-IR and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Chamerski, Kordian; Lesniak, Magdalena; Sitarz, Maciej; Stopa, Marcin; Filipecki, Jacek

    2016-10-01

    The effect of the polydimethylsiloxane (PDMS) based silicone oil, that is widely used in vitreoretinal surgery, on internal structures of the polymer intraocular lenses was investigated. The effect of PDMS was studied on the polymethyl methacrylate (PMMA) rigid lenses and poly(2-hydroxyethyl methacrylate) (PHEMA) flexible lenses. The research was carried out by means of the positron lifetime spectroscopy (PALS) as well as the infrared spectroscopy (FT-IR) and the Raman spectroscopy (RS). The studies involving the use of PALS and FT-IR methods have revealed that the PHEMA based lenses absorbed, whereas the PMMA lenses did not absorb, silicone oil. The results obtained with the use of the RS method were inconclusive, probably due to the too low intensity of the characteristic PDMS bands. The evidence from this study was discussed in terms of physics and related to the clinical use of both silicone oil and intraocular lenses.

  5. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  6. Prediction of the quality of coke obtained from vacuum residues by using spectroscopy infrared FTIR-ART

    NASA Astrophysics Data System (ADS)

    León, A. Y.; Rodríguez, N. A.; Mejía, E.; Cabanzo, R.

    2016-02-01

    According to the trend of the heavy crudes and high demand of fuels, it is projected a considerable increase in the production of vacuum residues. With the purpose of taking advantage of these loads, the refineries have been improving conversion processes for the production of better quality distillates. However, as increasing the severity conditions and the species content of resins and asphaltenes high concentrations of coke are obtained. To provide an insight into the quality and cokes properties, in this study fifty (50) coke samples obtained from vacuum residues processed under conditions of thermal cracking and hydroconversion were selected. Each coke was analysed in detail with properties such as fixed carbon, volatile material, ash, and calorific value. Subsequently, a characterization methodology was developed to predict the properties of cokes, by using partial least squares regression, and infrared spectroscopy (FTIR-ATR) in the spectral range from 4000 to 500cm-1. The models obtained by chemometrics allowed to predict the quality of the coke produced from vacuum residues with reliable responses in short periods of time.

  7. Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Mengmeng; Fu, Cuiping; Liu, Xingang; Lin, Zhipeng; Yang, Ning; Yu, Shaoning

    2015-09-01

    Protein-nanoparticle interactions are important in biomedical applications of nanoparticles and for growing biosafety concerns about nanomaterials. In this study, the interactions of four plasma proteins, human serum albumin (HSA), myoglobin (MB), hemoglobin (HB), and trypsin (TRP), with Au and Ag nanoparticles were investigated by FT-IR spectroscopy. The secondary structure of thio-proteins changed with time during incubation with Au and Ag nanoparticles, but the secondary structures of non-thio-proteins remained unchanged. The incubation time for structural changes depended on the sulfur-metal bond energy; the stronger the sulfur-metal energy, the less the time needed. H/D exchange experiments revealed that protein-NP complexes with thio-proteins were less dynamic than free proteins. No measurable dynamic differences were found between free non-thio-proteins and the protein-Au (or Ag) nanoparticle complex. Therefore, the impact of covalent bonds on the protein structure is greater than that of the electrostatic force.

  8. Mechanism of PEO-PPO-PEO micellization in aqueous solutions studied by two-dimensional correlation FTIR spectroscopy.

    PubMed

    Jia, Lianwei; Guo, Chen; Yang, Liangrong; Xiang, Junfeng; Tang, Yalin; Liu, Chunzhao; Liu, Huizhou

    2010-05-15

    The micellization mechanism of PEO-PPO-PEO block copolymer in aqueous solutions was studied by two-dimensional correlation FTIR spectroscopy. The 1400-1000 cm(-1) region was investigated, involving the stretching vibrations of ether band, C-H wagging vibrations of EO methylene groups and C-H symmetric deformation vibrations of PO methyl groups. In the 2D correlated spectra, the hydrous and anhydrous state of the ether band, PO methyl groups, and the two conformations of EO methylene groups were observed. Molecules with different PO lengths and increasing molecular weight were investigated to determine the sequence of association of the separate groups. During temperature-induced micellization, the following changes were detected: firstly, EO methylene groups changed from a gauche state to a trans state; secondly, conformational transitions led to the dehydration of hydrated methyl groups; next, the hydrogen bonding between C-O band and water diminished; and finally, dehydrated groups approached to form hydrophobic cores, resulting in micelle formation. From this variation in the sequence of group associations, it is concluded that aggregates of unimers first formed, then hydrophobic cores formed through the hydrophobic interaction from dehydrated PPO blocks, and proper micelles eventually evolved. The temperature-induced conformational changes are suggested the reason for micellization.

  9. Optical Determination of Lead Chrome Green in Green Tea by Fourier Transform Infrared (FT-IR) Transmission Spectroscopy

    PubMed Central

    Li, Xiaoli; Xu, Kaiwen; Zhang, Yuying; Sun, Chanjun; He, Yong

    2017-01-01

    The potential of Fourier transform infrared (FT-IR) transmission spectroscopy for determination of lead chrome green in green tea was investigated based on chemometric methods. Firstly, the qualitative analysis of lead chrome green in tea was performed based on partial least squares discriminant analysis (PLS-DA), and the correct rate of classification was 100%. And then, a hybrid method of interval partial least squares (iPLS) regression and successive projections algorithm (SPA) was proposed to select characteristic wavenumbers for the quantitative analysis of lead chrome green in green tea, and 19 wavenumbers were obtained finally. Among these wavenumbers, 1384 (C = C), 1456, 1438, 1419(C = N), and 1506 (CNH) cm-1 were the characteristic wavenumbers of lead chrome green. Then, these 19 wavenumbers were used to build determination models. The best model was achieved by least squares support vector machine (LS-SVM)algorithm with high coefficient of determination and low root-mean square error of prediction set (R2p = 0.864 and RMSEP = 0.291). All these results indicated the feasibility of IR spectra for detecting lead chrome green in green tea. PMID:28068348

  10. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Guennoun, L.; Zaydoun, S.; El jastimi, J.; Marakchi, K.; Komiha, N.; Kabbaj, O. K.; El Hajji, A.; Guédira, F.

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400 cm-1 and 3600-50 cm-1 respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G∗ level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G∗ basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program.

  11. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies.

    PubMed

    Guennoun, L; Zaydoun, S; El Jastimi, J; Marakchi, K; Komiha, N; Kabbaj, O K; El Hajji, A; Guédira, F

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400cm(-1) and 3600-50cm(-1) respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program.

  12. Optical Determination of Lead Chrome Green in Green Tea by Fourier Transform Infrared (FT-IR) Transmission Spectroscopy.

    PubMed

    Li, Xiaoli; Xu, Kaiwen; Zhang, Yuying; Sun, Chanjun; He, Yong

    2017-01-01

    The potential of Fourier transform infrared (FT-IR) transmission spectroscopy for determination of lead chrome green in green tea was investigated based on chemometric methods. Firstly, the qualitative analysis of lead chrome green in tea was performed based on partial least squares discriminant analysis (PLS-DA), and the correct rate of classification was 100%. And then, a hybrid method of interval partial least squares (iPLS) regression and successive projections algorithm (SPA) was proposed to select characteristic wavenumbers for the quantitative analysis of lead chrome green in green tea, and 19 wavenumbers were obtained finally. Among these wavenumbers, 1384 (C = C), 1456, 1438, 1419(C = N), and 1506 (CNH) cm-1 were the characteristic wavenumbers of lead chrome green. Then, these 19 wavenumbers were used to build determination models. The best model was achieved by least squares support vector machine (LS-SVM)algorithm with high coefficient of determination and low root-mean square error of prediction set (R2p = 0.864 and RMSEP = 0.291). All these results indicated the feasibility of IR spectra for detecting lead chrome green in green tea.

  13. Perfluoroalkylated Substance Effects in Xenopus laevis A6 Kidney Epithelial Cells Determined by ATR-FTIR Spectroscopy and Chemometric Analysis

    PubMed Central

    2016-01-01

    The effects of four perfluoroalkylated substances (PFASs), namely, perfluorobutanesulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and perfluorononanoic acid (PFNA) were assessed in Xenopus laevis A6 kidney epithelial cells by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and chemometric analysis. Principal component analysis–linear discriminant analysis (PCA-LDA) was used to visualize wavenumber-related alterations and ANOVA-simultaneous component analysis (ASCA) allowed data processing considering the underlying experimental design. Both analyses evidenced a higher impact of low-dose PFAS-treatments (10–9 M) on A6 cells forming monolayers, while there was a larger influence of high-dose PFAS-treatments (10–5 M) on A6 cells differentiated into dome structures. The observed dose–response PFAS-induced effects were to some extent related to their cytotoxicity: the EC50-values of most influential PFAS-treatments increased (PFOS < PFNA < PFOA ≪ PFBS), and higher-doses of these chemicals induced a larger impact. Major spectral alterations were mainly attributed to DNA/RNA, secondary protein structure, lipids, and fatty acids. Finally, PFOS and PFOA caused a decrease in A6 cell numbers compared to controls, whereas PFBS and PFNA did not significantly change cell population levels. Overall, this work highlights the ability of PFASs to alter A6 cells, whether forming monolayers or differentiated into dome structures, and the potential of PFOS and PFOA to induce cell death. PMID:27078751

  14. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must.

    PubMed

    Grangeteau, Cédric; Gerhards, Daniel; Terrat, Sebastien; Dequiedt, Samuel; Alexandre, Hervé; Guilloux-Benatier, Michèle; von Wallbrunn, Christian; Rousseaux, Sandrine

    2016-02-01

    The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains.

  15. Feasibility study of mid-infrared absorption spectroscopy using electrospray ionization

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Bohn, Paul; Howard, Scott

    2016-09-01

    Precise detection of trace amount of molecules, such as the disease biomarkers present in biofluids or explosive residues, requires high sensitivity detection. electrospray ionization-mass spectrometry (ESI-MS) is a common and effective technique for sensitive trace molecular detection in small-volume liquid samples. In ESI-MS, nano-liter volume samples are ionized and aerosolized by ESI, and fed into MS for mass analysis. ESI-MS has proven to be a reliable ionization technique for coupling liquid phase separations like liquid chromatography (LC) and capillary zone electrophoresis (CE) with the highly specific resolving power of MS. While CE and ESI can be performed on a microfluidic chip having a footprint of a few cm2, MS is typically at least 100 times bigger in size than a micro-chip. A reduced size, weight, and power profile would enable semi-portable applications in forensics, environmental monitoring, defense, and biological/pharmaceutical applications. To achieve this goal, we present an initial study evaluating the use of mid-infrared absorption spectroscopy (MIRAS) in place of MS to create a ESI-MIRAS system. To establish feasibility, we perform ESI-MIRAS on phospholipid samples, which have been previously demonstrated to be separable by CE. Phospholipids are biomarkers of degenerative neurological, kidney, and bone diseases and can be found in biofluids such as blood, urine and cerebrospinal fluid. To establish sensitivity limits, calibration samples of 100 μM concentration are electrospray deposited on to a grounded Si wafer for different times (1 minutes to 4 minutes with a 1 minute step). The minimum detectable concentration-time product, where a FTIR globar is used as the MIR source, is found 200 μM·s.

  16. High-Resolution Absorption Spectroscopy of NO2

    DTIC Science & Technology

    1987-08-31

    identify by block number) FIELD GROUP SUB-GROUP Atmospheric propagation, Laser spectroscopy, Nitrogen dioxide , Spectroscopy 19. RACT (Continue on reverse if...pulsed dye laser having a 0.05-A"-bandwidth (FWHM). This represents an improvement of at least a factor of three over the resolution employed in...concise interpretation of the observed features has yet to be made. Actual state-to-state assignments in the visible and near UV have been possible only

  17. FTIR measurements of mid-IR absorption spectra of gaseous fatty acid methyl esters at T=25-500 °C

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Freeman, K. G.; Davidson, D. F.; Hanson, R. K.

    2014-09-01

    Gas-phase mid-infrared (IR) absorption spectra (2500-3400 cm-1) for eleven fatty acid methyl esters (FAMEs) have been quantitatively measured at temperatures between 25 and 500 °C using an FTIR spectrometer with a resolution of 1 cm-1. Using these spectra, the absorption cross section at 3.39 μm, corresponding to the monochromatic output of a helium-neon laser, is reported for each of these fuels as a function of temperature. The data indicate that the 3.39 μm cross section values of saturated FAMEs vary linearly with the logarithm of the number of Csbnd H bonds in the molecule.

  18. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  19. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan; Santos Sousa, Joao; Stancu, Gabi Daniel; Hubertus van Helden, Jean-Pierre

    2015-10-01

    Absorption spectroscopy (AS) represents a reliable method for the characterization of cold atmospheric pressure plasma jets. The method’s simplicity stands out in comparison to competing diagnostic techniques. AS is an in situ, non-invasive technique giving absolute densities, free of calibration procedures, which other diagnostics, such as laser-induced fluorescence or optical emission spectroscopy, have to rely on. Ground state densities can be determined without the knowledge of the influence of collisional quenching. Therefore, absolute densities determined by absorption spectroscopy can be taken as calibration for other methods. In this paper, fundamentals of absorption spectroscopy are presented as an entrance to the topic. In the second part of the manuscript, a review of AS performed on cold atmospheric pressure plasma jets, as they are used e.g. in the field of plasma medicine, is presented. The focus is set on special techniques overcoming not only the drawback of spectrally overlapping absorbing species, but also the line-of-sight densities that AS usually provides or the necessity of sufficiently long absorption lengths. Where references are not available for measurements on cold atmospheric pressure plasma jets, other plasma sources including low-pressure plasmas are taken as an example to give suggestions for possible approaches. The final part is a table summarizing examples of absorption spectroscopic measurements on cold atmospheric pressure plasma jets. With this, the paper provides a ‘best practice’ guideline and gives a compendium of works by groups performing absorption spectroscopy on cold atmospheric pressure plasma jets.

  20. A comparative study of CO adsorption on tetrahexahedral Pt nanocrystals and interrelated Pt single crystal electrodes by using cyclic voltammetry and in situ FTIR spectroscopy.

    PubMed

    Liu, Hai-Xia; Tian, Na; Ye, Jin-Yu; Lu, Bang-An; Ren, Jie; Huangfu, Zhi-Chao; Zhou, Zhi-You; Sun, Shi-Gang

    2014-01-01

    This study focuses on CO adsorption at tetrahexahedral Pt nanocrystals (THH Pt NCs) by using cyclic voltammetry and in situ FTIR spectroscopy. Since the electrochemically prepared THH Pt NCs in this study are enclosed by {730} facets which could be considered by a subfacet configuration of 2{210} + {310}, we have also studied CO adsorption on the interrelated Pt(310) and Pt(210) single crystal electrodes as a comparison. Cyclic voltammetry results demonstrated that CO adsorbs dominantly on the (100) sites of THH Pt NCs at low CO coverage (θ(CO)≤ 0.135), while on both (100) and (110) sites at higher CO coverage. On ordered Pt(310) and Pt(210), i.e. they were flame annealed and then cooled in H(2) + Ar, CO adsorption also illustrates relative priority on (100) sites at low CO coverage; while at high CO coverage or on oxygen-disordered Pt(310) and Pt(210) when they were cooled in air after flame annealing, the adsorption of CO presents a weak preference on (100) sites of Pt(310) and even no preference at all on (100) sites of Pt(210). In situ FTIR spectroscopic studies illustrated that CO adsorption on THH Pt NCs yields anomalous infrared effects (AIREs), which are depicted by the Fano-like IR feature on a dense distribution (60 μm(-2)) and the enhancement of abnormal IR absorption on a sparse distribution (22 μm(-2)) of THH Pt NCs on glassy carbon substrate. Systematic investigation of CO coverage dependence of IR features revealed that, on THH Pt NCs, the IR band center (ν(COL)) of linearly bonded CO (COL) is rapidly shifted to higher wavenumbers along with the increase of CO coverage to 0.184, yielding a fast linear increase rate with a high slope (dν(COL)/dθ(IR)(CO) = 219 cm(-1)); when θ > 0.184, the increase of ν(COL) with θCO slows down and deviates drastically from linearity. In contrast, the ν(COL) on the ordered Pt(310) electrode maintains a linear increase with θ(IR)(CO) for the whole range of θ(IR)(CO) variation, and gives a much smaller

  1. Tunneling and Tunneling Switching Dynamics in Phenol and Ortho-D FTIR Spectroscopy with Synchrotron Radiation and Theory

    NASA Astrophysics Data System (ADS)

    Albert, S.; Prentner, R.; Quack, M.; Lerch, Ph.

    2013-06-01

    The understanding of tunneling in chemical reactions is of fundamental interest. A particularly intriguing recent development is the theoretical prediction of tunneling switching in ortho-D-phenol (C_6H_4DOH) as opposed to phenol (C_6H_5OH) where only tunneling dominates the dynamics. For ortho-D-phenol at low energy, tunneling is completely suppressed due to isotopic substitution, which introduces an asymmetry in the effective potential including zero point energy. This localizes the molecular wavefunction in either the syn or the anti structure of ortho-D-phenol. At higher torsional states of ortho-D-phenol, tunneling becomes dominant, thus switching the dynamics to a delocalized quantum wavefunction. Therefore, we have investigated the rotationally resolved THz and IR spectra of phenol and ortho-D-phenol measured with our FTIR setup at the Swiss Light Source (SLS) using synchrotron radiation. We have been able to analyse the torsional fundamentals, the first and second overtones of both isotopomers. A comparison of the spectra of phenol and ortho-D-phenol indicates the theoretically predicted behavior of tunneling switching upon excitation of the torsional mode. In detail, we shall discuss the splitting of the torsional fundamental, of its first and second overtones of phenol as well as the fundamentals of syn- and anti- ortho-D-phenol and the possible tunneling switching in the torsional overtone region of ortho-D-phenol. The results shall be also discussed in relation to the quasiadiabatic channel Reaction Path Hamiltonian approach. We shall also discuss the comparison with results for meta-D-phenol. M. Quack, Fundamental symmetries and symmetry violations in Handbook of High Resolution Spectroscopy, Vol. 1(Eds. M. Quack and F. Merkt), Wiley, Chicester (2011), 659-722. S. Albert, Ph. Lerch, R. Prentner, M. Quack, Angew. Chem. Int. Ed. 2013, 52, 346-349. S. Albert and M. Quack, ChemPhysChem, 2007, 8, 1271-1281, S. Albert, K. Keppler Albert and M. Quack, High

  2. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    DOEpatents

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  3. An ATR-FTIR Study on the Effect of Molecular Structural Variations on the CO2 Absorption Characteristics of Heterocyclic Amines, Part II

    PubMed Central

    Robinson, Kelly; McCluskey, Adam; Attalla, Moetaz I

    2012-01-01

    This paper reports on an ATR-FTIR spectroscopic investigation of the CO2 absorption characteristics of a series of heterocyclic diamines: hexahydropyrimidine (HHPY), 2-methyl and 2,2-dimethylhexahydropyrimidine (MHHPY and DMHHPY), hexahydropyridazine (HHPZ), piperazine (PZ) and 2,5- and 2,6-dimethylpiperazine (2,6-DMPZ and 2,5-DMPZ). By using in situ ATR-FTIR the structure–activity relationship of the reaction between heterocyclic diamines and CO2 is probed. PZ forms a hydrolysis-resistant carbamate derivative, while HHPY forms a more labile carbamate species with increased susceptibility to hydrolysis, particularly at higher CO2 loadings (>0.5 mol CO2/mol amine). HHPY exhibits similar reactivity toward CO2 to PZ, but with improved aqueous solubility. The α-methyl-substituted MHHPY favours HCO3− formation, but MHHPY exhibits comparable CO2 absorption capacity to conventional amines MEA and DEA. MHHPY show improved reactivity compared to the conventional α-methyl- substituted primary amine 2-amino-2-methyl-1-propanol. DMHHPY is representative of blended amine systems, and its reactivity highlights the advantages of such systems. HHPZ is relatively unreactive towards CO2. The CO2 absorption capacity CA (mol CO2/mol amine) and initial rates of absorption RIA (mol CO2/mol amine min−1) for each reactive diamine are determined: PZ: CA=0.92, RIA=0.045; 2,6-DMPZ: CA=0.86, RIA=0.025; 2,5-DMPZ: CA=0.88, RIA=0.018; HHPY: CA=0.85, RIA=0.032; MHHPY: CA=0.86, RIA=0.018; DMHHPY: CA=1.1, RIA=0.032; and HHPZ: no reaction. Calculations at the B3LYP/6-31+G** and MP2/6-31+G** calculations show that the substitution patterns of the heterocyclic diamines affect carbamate stability, which influences hydrolysis rates. PMID:22517608

  4. Characterization of compounds derived from copper-oxamate and imidazolium by X-ray absorption and vibrational spectroscopies

    NASA Astrophysics Data System (ADS)

    do Nascimento, Gustavo M.; do Pim, Walace D.; Reis, Daniella O.; Simões, Tatiana R. G.; Pradie, Noriberto A.; Stumpf, Humberto O.

    2015-05-01

    In this work, compounds derived from copper-oxamate anions (ortho, meta, and para)-phenylenebis (oxamate) and imidazolium cations (1-butyl-3-methylimidazolium) were synthesized. The compounds were characterized by Raman and FTIR spectroscopies and the band assignments were supported by DFT calculations. Strong IR bands from 1610 to 1700 cm-1 dominated the spectra of the complex and can be assigned to νCdbnd O vibrations of the [Cu(opba)]2- anions by the comparison with the DFT data. In opposition to the FTIR spectra, the main vibrational bands in the Raman spectra are observed in the 1350-1600 cm-1 range. All bands in this region are associated to the modified benzene vibrations of the copper-phenylenebis(oxamate) anions. X-ray absorption near edge (XANES) at different energies (NK and Cu L2,3 edges) was also used to probe the interionic interactions. XANES data show that anion-cation interaction in the Cu-oxamate-imidazolium changes the electronic structure around the sbnd Cusbnd Nsbnd sites in the oxamate anion.

  5. Characterization of compounds derived from copper-oxamate and imidazolium by X-ray absorption and vibrational spectroscopies.

    PubMed

    do Nascimento, Gustavo M; do Pim, Walace D; Reis, Daniella O; Simões, Tatiana R G; Pradie, Noriberto A; Stumpf, Humberto O

    2015-05-05

    In this work, compounds derived from copper-oxamate anions (ortho, meta, and para)-phenylenebis (oxamate) and imidazolium cations (1-butyl-3-methylimidazolium) were synthesized. The compounds were characterized by Raman and FTIR spectroscopies and the band assignments were supported by DFT calculations. Strong IR bands from 1610 to 1700cm(-1) dominated the spectra of the complex and can be assigned to νCO vibrations of the [Cu(opba)](2-) anions by the comparison with the DFT data. In opposition to the FTIR spectra, the main vibrational bands in the Raman spectra are observed in the 1350-1600cm(-1) range. All bands in this region are associated to the modified benzene vibrations of the copper-phenylenebis(oxamate) anions. X-ray absorption near edge (XANES) at different energies (NK and Cu L2,3 edges) was also used to probe the interionic interactions. XANES data show that anion-cation interaction in the Cu-oxamate-imidazolium changes the electronic structure around the CuN sites in the oxamate anion.

  6. The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations.

    PubMed

    Pirali, O; Goubet, M; Huet, T R; Georges, R; Soulard, P; Asselin, P; Courbe, J; Roy, P; Vervloet, M

    2013-07-07

    Using synchrotron radiation, we performed the rotationally resolved Fourier transform infrared absorption spectroscopy of three bands of naphthalene C10H8, namely ν(46)-0 (centered at 782 cm(-1), 12.7 μm), ν(47)-0 (centered at 474 cm(-1), 21 μm), and ν(48)-0 (centered at 167 cm(-1), 60 μm). The intense CH bending out of plane ν(46)-0 band was recorded under supersonic jet-cooled conditions using a molecular beam (the Jet-AILES apparatus) and the low frequency ν(47)-0 and ν(48)-0 bands were measured at room temperature in a long absorption path cell. The simultaneous rotational analysis of these bands permitted us to refine the ground state (GS) and ν(46) rotational spectroscopic constants and to provide the first sets of constants for the ν(47) and ν(48) modes. The experimental rotational constants were then used as reference data to calibrate theoretical models in order to provide new insights into the accuracy of anharmonic calculations. The B97-1 functional associated with the cc-pVTZ and ANO-RCC basis sets gave a consistent set of results, for rotational constants and fundamental frequencies. The data presented here pave the way for the search of naphthalene through its far-infrared spectrum in different objects of the interstellar medium.

  7. Infrared spectra of U.S. automobile original finishes (post - 1989). VIII: In situ identification of bismuth vanadate using extended range FT-IR spectroscopy, Raman spectroscopy, and X-ray fluorescence spectrometry.

    PubMed

    Suzuki, Edward M

    2014-03-01

    Chrome Yellow (PbCrO4 ·xPbSO4 ) was a common pigment in U.S. automobile OEM finishes for more than three decades, but in the early 1990s its use was discontinued. One of its main replacements was Bismuth Vanadate (BiVO4 ·nBi2 MoO6 , n = 0-2), which was commercially introduced in 1985, as this inorganic pigment also produces a very bright hue and has excellent outdoor durability. This paper describes the in situ identification of Bismuth Vanadate in automotive finishes using FT-IR and dispersive Raman spectroscopy and XRF spectrometry. Some differentiation of commercial formulations of this pigment is possible based on far-infrared absorptions, Raman data, and elemental analysis. The spectral differences arise from the presence or absence of molybdenum, the use of two crystal polymorphs of BiVO4 , and differences in pigment stabilizers. Bismuth Vanadate is usually not used alone, and it is typically found with Isoindoline Yellow, hydrous ferric oxide, rutile, Isoindolinone Yellow 3R, or various combinations of these.

  8. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  9. Enhancing FTIR imaging capabilities with two-dimensional correlation spectroscopy (2DCOS): A study of concentration gradients of collagen and proteoglycans in human patellar cartilage

    NASA Astrophysics Data System (ADS)

    Jiang, Eric Y.; Rieppo, Jarno

    2006-11-01

    This paper explores a new application of two-dimensional correlation spectroscopy (2DCOS) in FTIR spectroscopic imaging analysis of biological samples. A particular example demonstrated in this paper is the characterization of concentration gradients of collagen and proteoglycans in human patellar cartilage. A focal plane array detector-based FTIR imaging system has been proven to be an efficient tool to detect early collagen and proteoglycans degradation in developing osteoarthrosis through evaluating compositional changes of osteoarthritic cartilage along the depth. However, the closely overlapped bands of collagen and proteoglycans make normal spectral and spatial analysis difficult. With 2DCOS analysis of the imaging data, it is possible to enhance the spectral resolution and reveal distinctive compositional changes that are normally hidden with conventional approaches. The combined technique, FTIR imaging enhanced with 2DCOS, provides new possibilities to solve challenging problems in the analysis of complex biological systems.

  10. Real-time feedback control using online attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy for continuous flow optimization and process knowledge.

    PubMed

    Skilton, Ryan A; Parrott, Andrew J; George, Michael W; Poliakoff, Martyn; Bourne, Richard A

    2013-10-01

    The use of automated continuous flow reactors is described, with real-time online Fourier transform infrared spectroscopy (FT-IR) analysis to enable rapid optimization of reaction yield using a self-optimizing feedback algorithm. This technique has been applied to the solvent-free methylation of 1-pentanol with dimethyl carbonate using a γ-alumina catalyst. Calibration of the FT-IR signal was performed using gas chromatography to enable quantification of yield over a wide variety of flow rates and temperatures. The use of FT-IR as a real-time analytical technique resulted in an order of magnitude reduction in the time and materials required compared to previous studies. This permitted a wide exploration of the parameter space to provide process understanding and validation of the optimization algorithms.

  11. Time-resolved pump-probe spectroscopy of intraband absorption by a semiconductor nanorod

    NASA Astrophysics Data System (ADS)

    Leonov, Mikhail Y.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory of time-resolved pump-probe optical spectroscopy of intraband absorption of a probe pulse inside an anisotropic semiconductor nanorod. The absorption is preceded by the absorption of the pump pulse resonant to an interband transition. It is assumed that the resonantly exited states of the nanorod are interrelated via the relaxation induced by their interaction with a bath. We reveal the conditions for which the absorption of the probe's pulse is governed by a simple formula regardless of the pulse's shape. This formula is useful for the analysis of the experimental data containing information on the relaxation parameters of the nanorod's electronic subsystem.

  12. Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal.

    PubMed

    Memon, Jamil R; Memon, Saima Q; Bhanger, M I; Memon, G Zuhra; El-Turki, A; Allen, Geoffrey C

    2008-10-15

    This study describes the use of banana peel, a commonly produced fruit waste, for the removal of Cd(II) from environmental and industrial wastewater. The banana peel was characterized by FT-IR and scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis. The parameters pH, contact time, initial metal ion concentration and temperature were investigated and found to be rapid ( approximately 97% within 10 min). The Langmuir adsorption isotherm was used to describe partitioning behavior for the system at room temperature. The value of Q(L) was found to be (35.52 mg g(-1)) higher than the previously reported materials. The binding of metal ions was found to be pH-dependent with the optimal sorption occurring at pH 8. The retained species were eluted with 5 mL of 5 x 10(-3)M HNO(3) with the detection limit of 1.7 x 10(-3)mg L(-1). Kinetics of sorption followed the pseudo-first-order rate equation with the rate constant k, equal to 0.13+/-0.01 min(-1). Thermodynamic parameters such as Gibbs free energy at 303K (-7.41+/-0.13 kJ mol(-1)) and enthalpy (40.56+/-2.34 kJ mol(-1)) indicated the spontaneous and endothermic nature of the sorption process. The developed method was utilized for the removal of Cd(II) ions from environmental and industrial wastewater samples using flame atomic absorption spectrophotometer (FAAS).

  13. ATR-FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance.

    PubMed

    Lahlali, Rachid; Jiang, Yunfei; Kumar, Saroj; Karunakaran, Chithra; Liu, Xia; Borondics, Ferenc; Hallin, Emil; Bueckert, Rosalind

    2014-01-01

    With climate change, pea will be more frequently subjected to heat stress in semi-arid regions like Saskatchewan during flowering. The pollen germination percentage of two pea cultivars was reduced by heat stress (36°C) with an important decrease in cultivar 'CDC Golden' compared to 'CDC Sage.' Lipids, protein and other pollen coat compositions of whole intact pollen grains of both pea cultivars were investigated using mid infrared (mid-IR) attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. Curve fitting of ATR absorbance spectra in the protein region enabled estimation and comparison of different protein secondary structures between the two cultivars. CDC Sage had relatively greater amounts of α-helical structures (48.6-43.6%; band at 1654 cm(-1)) and smaller amounts of β-sheets (41.3-46%) than CDC Golden. The CDC Golden had higher amounts of β-sheets (46.3-51.7%) compared to α-helical structures (35.3-36.2%). Further, heat stress resulted in prominent changes in the symmetrical and asymmetrical CH2 bands from lipid acyl chain, ester carbonyl band, and carbohydrate region. The intensity of asymmetric and symmetric CH2 vibration of heat stressed CDC Golden was reduced considerably in comparison to the control and the decrease was higher compared to CDC Sage. In addition, CDC Golden showed an increase in intensity at the oxidative band of 3015 cm(-1). These results reveal that the whole pollen grains of both pea cultivars responded differently to heat stress. The tolerance of CDC Sage to heat stress (expressed as pollen germination percentage) may be due to its protein richness with α-helical structures which would protect against the destructive effects of dehydration due to heat stress. The low pollen germination percentage of CDC Golden after heat stress may be also due to its sensitivity to lipid changes due to heat stress.

  14. Characterization of caries progression on dentin after irradiation with Nd:YAG laser by FTIR spectroscopy and fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Ana, P. A.; Brito, A. M. M.; Zezell, D. M.; Lins, E. C. C. C.

    2015-06-01

    Considering the use of high intensity lasers for preventing dental caries, this blind in vitro study evaluated the compositional and fluorescence effects promoted by Nd:YAG laser (λ=1064 nm) when applied for prevention of progression of dentin caries, in association or not with topical application of acidulated phosphate fluoride (APF). Sixty bovine root dentin slabs were prepared and demineralized by 32h in order to create early caries lesions. After, the slabs were distributed into six experimental groups: G1- untreated and not submitted to a pH-cycling model; G2- untreated and submitted to a pH-cycling model; G3- acidulated phosphate fluoride application (APF); G4- Nd:YAG irradiation (84.9 J/cm2, 60 mJ/pulse); G5- treated with Nd:YAG+APF; G6- treated with APF+Nd:YAG. After treatments, the samples of groups G2 to G6 were submitted to a 4-day pH-cycling model in order to simulate the progression of early caries lesions. All samples were characterized by the micro-attenuated total reflection technique of Fourier transformed infrared spectroscopy (μATR-FTIR), using a diamond crystal, and by a fluorescence imaging system (FIS), in which it was used an illuminating system at λ= 405±30 nm. Demineralization promoted reduction in carbonate and phosphate contents, exposing the organic matter; as well, it was observed a significant reduction of fluorescence intensity. Nd:YAG laser promoted additional chemical changes, and increased the fluorescence intensity even with the development of caries lesions. It was concluded that the compositional changes promoted by Nd:YAG, when associated to APF, are responsible for the reduction of demineralization progression observed on root dentin.

  15. Ultrafast Extreme Ultraviolet Absorption Spectroscopy of Methylammonium Lead Iodide Perovskite

    NASA Astrophysics Data System (ADS)

    Verkamp, Max A.; Lin, Ming-Fu; Ryland, Elizabeth S.; Vura-Weis, Josh

    2016-06-01

    Methylammonium lead iodide (perovskite) is a leading candidate for use in next-generation solar cell devices. However, the photophysics responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) absorption was used to investigate electron and hole dynamics in perovskite by observing transitions from a common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation with a broad spectrum (40-70 eV) were generated via high-harmonic generation using a tabletop instrument. Transient absorption measurements with visible pump and XUV probe directly observed the relaxation of charge carriers in perovskite after above-band excitation in the femtosecond and picosecond time ranges.

  16. Mapping of the Local Interstellar Medium using Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penprase, Bryan Edward

    2017-01-01

    Using the Yale SMARTS 1.5-meter telescope at CTIO and the CHIRON spectrograph, we have developed a program for mapping the local interstellar medium using a sample of over 200 newly observed B stars previously unobserved using Na I absorption lines. This sample includes stars that extend out to map beyond the local bubble to 500 pc. The sample has been observed using high resolution absorption lines, and when combined with previously observed stars with Na I and Ca II data provides a more complete picture of the local ISM than previous surveys. The distances to the stars using the new GAIA database also allows for more accurate determination of distances to features in the lcoal ISM, and new maps of the structure of the ISM hav been prepared with the data.

  17. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development.

    PubMed

    Szymanska-Chargot, M; Chylinska, M; Kruk, B; Zdunek, A

    2015-01-22

    The aim of this work was to quantitatively and qualitatively determine the composition of the cell wall material from apples during development by means of Fourier transform infrared (FT-IR) spectroscopy. The FT-IR region of 1500-800 cm(-1), containing characteristic bands for galacturonic acid, hemicellulose and cellulose, was examined using principal component analysis (PCA), k-means clustering and partial least squares (PLS). The samples were differentiated by development stage and cultivar using PCA and k-means clustering. PLS calibration models for galacturonic acid, hemicellulose and cellulose content from FT-IR spectra were developed and validated with the reference data. PLS models were tested using the root-mean-square errors of cross-validation for contents of galacturonic acid, hemicellulose and cellulose which was 8.30 mg/g, 4.08% and 1.74%, respectively. It was proven that FT-IR spectroscopy combined with chemometric methods has potential for fast and reliable determination of the main constituents of fruit cell walls.

  18. Spectral investigation of normal skin tissue in vivo via fiber-optical evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Kano, Angelique

    2001-11-01

    New applications for the Fiberoptic Evanescent Wave Fourier Transform (FEW-FTIR) method have been developed for the diagnostics of skin surfaces. Our technique allows for the detection of functional groups in the molecular structure of skin tissue noninvasively and in vivo. The FEW-FTIR spectroscopic method is direct, nondestructive, and fast. Our optical fibers for the middle infrared (MIR) range are nontoxic, nonhygroscopic, flexible, and characterized by extremely low losses. This combination of traditional FTIR spectroscopy and advanced fiber technology has enabled us to noninvasively investigate normal skin tissue in vivo in the range of 900 to 4000 cm-1. The second derivative spectra of the baseline-corrected and normalized data have been calculated to determine the peak positions. We have obtained for the first time a more detailed understanding of normal skin tissue fusing FTIR spectroscopy. Despite the complex nature of human skin tissue, the MIR spectra of normal human skin surface tissue has some basic characteristics seen in all cases. The results of our surface analysis of skin tissue are discussed in terms of spectral parameters, band assignments, and molecular structural similarities and differences. Our results have revealed that our spectral parameters can be separated into four distinct classes, providing us with a preliminary model of normal human skin tissue.

  19. Determination of trans Fat in Selected Fast Food Products and Hydrogenated Fats of India Using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy.

    PubMed

    Khan, Mohd Umar; Hassan, Mohammad Fahimul; Rauf, Abdul

    2017-01-01

    This paper reports the application of a simple and rapid method for the determination of trans fatty acid (TFA) content in some of the selected Indian fast food products and hydrogenated fats using Fourier transform infrared (FTIR) spectroscopy in conjunction with second derivative procedure. FTIR spectroscopy has been successfully applied to trans measurement using the absorbance bands at or near 966 cm(-1) in the FTIR spectra. It was found from the analysis that TFA content of fast food product was ranging from 1.57% to 3.83% of the total fat while for hydrogenated fats, comparatively large quantity of TFA was detected in the range of 3.31% to 4.73%. Since GC-FID is most widely used method for the determination of fatty acid (FA) composition, this method was used for the sake of comparison. Value of regression coefficient was found very close to one (0.99503) with standard deviation of 0.10247 showing a good agreement between GC-FID and proposed ATR-FTIR method.

  20. Direct and Quantitative Photothermal Absorption Spectroscopy of Individual Particulates

    DTIC Science & Technology

    2013-01-01

    photovoltaics and photo detectors.17,22,23 To predict the absorptive properties of an individual silicon microwire, the well-established Mie theory was... silicon microwire is frequency limiting .43 It was also observed that vibration, thermal drift, and electrical noise were significant below 100 Hz. In...NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 7

  1. Aerosol particle microphotography and glare-spot absorption spectroscopy.

    PubMed

    Arnold, S; Holler, S; Li, J H; Serpengüzel, A; Auffermann, W F; Hill, S C

    1995-04-01

    The relative intensities of glare spots in the image of an electrodynamically trapped aerosol droplet are measured experimentally with an aerosol particle microscope and calculated theoretically. The theoretical calculations are in good agreement with these experiments and indicate that the intensities of these spots are extremely sensitive to the imaginary part of the refractive index. Experimentally, we obtain the molecular absorption spectrum of an impurity within a droplet by recording the spectrum of an individual glare spot produced by broadband illumination.

  2. Authentication of Nigella sativa seed oil in binary and ternary mixtures with corn oil and soybean oil using FTIR spectroscopy coupled with partial least square.

    PubMed

    Rohman, Abdul; Ariani, Rizka

    2013-01-01

    Fourier transform infrared spectroscopy (FTIR) combined with multivariate calibration of partial least square (PLS) was developed and optimized for the analysis of Nigella seed oil (NSO) in binary and ternary mixtures with corn oil (CO) and soybean oil (SO). Based on PLS modeling performed, quantitative analysis of NSO in binary mixtures with CO carried out using the second derivative FTIR spectra at combined frequencies of 2977-3028, 1666-1739, and 740-1446 cm(-1) revealed the highest value of coefficient of determination (R (2), 0.9984) and the lowest value of root mean square error of calibration (RMSEC, 1.34% v/v). NSO in binary mixtures with SO is successfully determined at the combined frequencies of 2985-3024 and 752-1755 cm(-1) using the first derivative FTIR spectra with R (2) and RMSEC values of 0.9970 and 0.47% v/v, respectively. Meanwhile, the second derivative FTIR spectra at the combined frequencies of 2977-3028 cm(-1), 1666-1739 cm(-1), and 740-1446 cm(-1) were selected for quantitative analysis of NSO in ternary mixture with CO and SO with R (2) and RMSEC values of 0.9993 and 0.86% v/v, respectively. The results showed that FTIR spectrophotometry is an accurate technique for the quantitative analysis of NSO in binary and ternary mixtures with CO and SO.

  3. Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata

    The effect of some metals on the electronic system of benzoic and nicotinic acids has recently been investigated by IR, Raman and UV spectroscopy [1-3]. Benzoic and nicotinic acids are regarded model systems representing a wide group of aromatic ligands which are incorporated into enzymes. In this work the FT-IR (in solid state and in solution), FT-Raman, UV absorption and 1H and 13C NMR spectra of caffeic acid (3,4-dihydroxycinnamic acid) and its salts with lithium, sodium, potassium, rubidium and caesium were registered, assigned and analyzed. The effect of alkali metals on the electronic system of ligands was discussed. Studies of differences in the number and position of bands from the IR, Raman, UV absorption spectra and chemical shifts from NMR spectra allowed to conclude on the distribution of electronic charge in the molecules, the delocalization energy of π electrons and the reactivity of ligands in metal complexes. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G** basis set. Bond lengths, angles and dipole moments for the optimized structures of caffeic acid and lithium, sodium, potassium caffeinates were also calculated. The theoretical wavenumbers and intensities of IR spectra were obtained. The calculated parameters were compared to the experimental characteristics of investigated compounds. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris.

  4. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    SciTech Connect

    Renaudin, P.; Blancard, C.; Cosse, P.; Faussurier, G.; Lecherbourg, L.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-02

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  5. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Renaudin, P.; Lecherbourg, L.; Blancard, C.; Cossé, P.; Faussurier, G.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  6. Synchrotron-Based Highest Resolution FTIR Spectroscopy of Azulene, Naphthalene (C_{10}H_8), Indole (C_{8}H_6N) and Biphenyl (C_{12}H_{10})

    NASA Astrophysics Data System (ADS)

    Albert, S.; Quack, M.; Lerch, Ph.

    2013-06-01

    Great progress has been made in resolution (Δν≤ 20 MHz) and sensitivity in the field of high resolution Fourier transform infrared (FTIR) spectroscopy over the last decade. In particular, the use of synchrotron sources such as the Swiss Light Source (SLS) have overcome one of the disadvantages of high resolution FTIR spectroscopy, the problem of noise related to modest signal strength with broad band coverage from weak light sources. FTIR spectroscopy with synchrotron sources now makes it possible to investigate scientific questions of fundamental physics and astrophysics. One of the great challenges of astronomical infrared spectroscopy is the identification of the Unidentified Infrared Bands (UIBs) found in several interstellar objects. Polycyclic Aromatic Hydrocarbons (PAHs) have been proposed to be the carrier of the UIBs For that reason we have started to investigate with our ETH-SLS interferometer the rotationally resolved FTIR spectra of the bicyclic molecules naphthalene (C_{10}H_8)^d and azulene (C_{10}H_8) as a simple prototypical spectrum for a PAH infrared spectrum and of indole (C_{8}H_6N) as a prototype of a bicyclic heteroaromatic system. We have analysed in high resolution the ν_{46} band of naphthalene, the ν_{35} and 2ν_{40} bands of indole as well as the ν_{44} band of azulene. We have found a coincidence between the ν_{46} fundamental of naphthalene and the UIB at 12.78 μm. A comparison of the biphenyl FTIR spectrum with the UIBs in the range 13 to 15 μm illustrates a coincidence between the UIBs at 13.6 μm and 14.2 μm with the major biphenyl bands. S. Albert, K. Keppler Albert and M. Quack, Trend in Optics and Photonics 2003, 84, 177-180. S. Albert and M. Quack, ChemPhysChem, 2007, 8, 1271-1281. S. Albert, K. Keppler Albert and M. Quack, High Resolution Fourier Transform Infrared Spectroscopy in Handbook of High Resolution Spectroscopy, Vol. 2 (Eds. M. Quack and F. Merkt), Wiley, Chicester 2011, 965-1021. S. Albert, K.K. Albert, Ph

  7. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels.

    PubMed

    Muhamadali, Howbeer; Chisanga, Malama; Subaihi, Abdu; Goodacre, Royston

    2015-04-21

    There is no doubt that the contribution of microbially mediated bioprocesses toward maintenance of life on earth is vital. However, understanding these microbes in situ is currently a bottleneck, as most methods require culturing these microorganisms to suitable biomass levels so that their phenotype can be measured. The development of new culture-independent strategies such as stable isotope probing (SIP) coupled with molecular biology has been a breakthrough toward linking gene to function, while circumventing in vitro culturing. In this study, for the first time we have combined Raman spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, as metabolic fingerprinting approaches, with SIP to demonstrate the quantitative labeling and differentiation of Escherichia coli cells. E. coli cells were grown in minimal medium with fixed final concentrations of carbon and nitrogen supply, but with different ratios and combinations of (13)C/(12)C glucose and (15)N/(14)N ammonium chloride, as the sole carbon and nitrogen sources, respectively. The cells were collected at stationary phase and examined by Raman and FT-IR spectroscopies. The multivariate analysis investigation of FT-IR and Raman data illustrated unique clustering patterns resulting from specific spectral shifts upon the incorporation of different isotopes, which were directly correlated with the ratio of the isotopically labeled content of the medium. Multivariate analysis results of single-cell Raman spectra followed the same trend, exhibiting a separation between E. coli cells labeled with different isotopes and multiple isotope levels of C and N.

  8. Non-coincident multi-wavelength emission absorption spectroscopy

    SciTech Connect

    Baumann, L.E.

    1995-02-01

    An analysis is presented of the effect of noncoincident sampling on the measurement of atomic number density and temperature by multiwavelength emission absorption. The assumption is made that the two signals, emission and transmitted lamp, are time resolved but not coincident. The analysis demonstrates the validity of averages of such measurements despite fluctuations in temperature and optical depth. At potassium-seeded MHD conditions, the fluctuations introduce additional uncertainty into measurements of potassium atom number density and temperature but do not significantly bias the average results. Experimental measurements in the CFFF aerodynamic duct with coincident and noncoincident sampling support the analysis.

  9. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  10. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  11. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy

    PubMed Central

    Díaz-Visurraga, Judith; Daza, Carla; Pozo, Claudio; Becerra, Abraham; von Plessing, Carlos; García, Apolinaria

    2012-01-01

    Background The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix. Methods Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution

  12. X-Ray Absorption Spectroscopy of Uranium Dioxide

    SciTech Connect

    Tobin, J G

    2010-12-10

    After the CMMD Seminar by Sung Woo Yu on the subject of the x-ray spectroscopy of UO2, there arose some questions concerning the XAS of UO2. These questions can be distilled down to these three issues: (1) The validity of the data; (2) The monchromator energy calibration; and (3) The validity of XAS component of the figure shown. The following will be shown: (1) The data is valid; (2) It is possible to calibrate the monchromator; and (3) The XAS component of the above picture is correct. The remainder of this document is in three sections, corresponding to these three issues.

  13. Quasi zero-background tunable diode laser absorption spectroscopy employing a balanced Michelson interferometer.

    PubMed

    Guan, Zuguang; Lewander, Märta; Svanberg, Sune

    2008-12-22

    Tunable diode laser spectroscopy (TDLS) normally observes small fractional absorptive reductions in the light flux. We show, that instead a signal increase on a zero background can be obtained. A Michelson interferometer, which is initially balanced out in destructive interference, is perturbed by gas absorption in one of its arms. Both theoretical analysis and experimental demonstration show that the proposed zero-background TDLS can improve the achievable signal-to-noise ratio.

  14. Calibration of effective optical path length for hollow-waveguide based gas cell using absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Du, Zhenhui; Li, Jinyi

    2016-10-01

    The Hollow Waveguide (HWG) has emerged as a novel tool to transmit laser power. Owing to its long Effective Optical Path Length (EOPL) within a relatively small volume, it is suitable for the application as a gas cell in concentration measurement by using laser spectroscopy. The measurement of effective optical path length for a hollow waveguide, which possesses the physical length of 284.0 cm, by using Tunable Diode Laser Absorption Spectroscopy (TDLAS) was demonstrated. Carbon dioxide was used as a sample gas for a hollow waveguide calibration. A 2004 nm Distributed Feed-Back (DFB) laser was used as the light source to cover a CO2 line near 2003 nm, which was selected as the target line in the measurement. The reference direct absorption spectroscopy signal was obtained by delivering CO2 into a reference cell possessing a length of 29.4 cm. Then the effective optical path length of HWG was calculated by least-squares fitting the measured absorption signal to the reference absorption signal. The measured EOPL of HWG was 282.8 cm and the repeatability error of effective optical path length was calculated as 0.08 cm. A detection limit of 0.057 cm (with integral time 5 s) characterized by the Allan variance, was derived. The effective optical path length is obtained as the significant parameter to calculate the concentration of gases and it is of great importance to precise measurement of absorption spectroscopy.

  15. Analysis of the absorption layer of CIGS solar cell by laser-induced breakdown spectroscopy.

    PubMed

    Lee, Seok H; Shim, Hee S; Kim, Chan K; Yoo, Jong H; Russo, Richard E; Jeong, Sungho

    2012-03-01

    Laser induced breakdown spectroscopy (LIBS) was applied for the elemental analysis of the thin copper indium gallium diselenide (CuIn(1-x)Ga(x)Se(2) [CIGS]) absorption layer deposited on Mo-coated soda-lime glass by the co-evaporation technique. The optimal laser and detection parameters for LIBS measurement of the CIGS absorption layer (1.23 μm) were investigated. The calibration results of Ga/In ratio with respect to the concentration ratios measured by x-ray fluorescence and inductively coupled plasma optical emission spectroscopy showed good linearity.

  16. Spectroscopic characterization of iron ores formed in different geological environments using FTIR, XPS, Mössbauer spectroscopy and thermoanalyses

    NASA Astrophysics Data System (ADS)

    Salama, Walid; El Aref, Mourtada; Gaupp, Reinhard

    2015-02-01

    Application of thermoanalyses, FTIR, XPS and Mössbauer spectroscopic methods can differentiate between iron ores formed in different geological environments. Two types of iron ore are formed in shallow marine environments in the Bahariya Depression, Egypt, yellowish brown ooidal ironstones (type 1) and black mud and fossiliferous ironstones (type 2). Both types were subjected to subaerial weathering, producing a dark brown lateritic (pedogenic) iron ore (type 3). Microscopic investigation indicates goethite is the main mineral in types 1 and 3, while hematite is the main mineral in type 2 and also occurs in type 3. Thermoanalyses indicated the dehydroxylation endothermic peak of goethite of type 1 occurs between 329 and 345 °C, while in type 3 occurs between 284 and 330 °C. This variation can be attributed to the nanocrystalline nature of the pedogenic goethite. The presence of an exothermic peak at 754 °C in type 3 is probably attributed to goethite-hematite phase transformation. FTIR spectroscopy indicated that goethite of type 1 is characterized by the presence of the δ-OH band between 799 and 802 cm-1, the γ-OH between 898 and 904 cm-1 and the bulk hydroxyl stretch between 3124 and 3133 cm-1. Goethite of type 3 is characterized by the absence of the bulk hydroxyl stretch band and the δ-OH and γ-OH are shifted to higher Wavenumbers that can attributed to a relative Al-for Fe-substitution. Hematite is identified by two IR bands; the first is between 464 and 475 cm-1 and at the second is between 540 and 557 cm-1. Quartz is identified in all iron ore types, nitrates are identified in types 1 and 2, but absent in type 3 and Kaolinite is identified in type 2. The Mössbauer spectrum of type 1 is fitted with one magnetic sextet corresponding to goethite with an isomer shift (IS) = 0.374 mm s-1, a quadruple splitting (QS) = -0.27 mm s-1 and a hyperfine magnetic field (BHF) = ∼37. The Mössbauer spectrum of type 2 is fitted with one magnetic sextet

  17. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-01-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The A(sub V)/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous

  18. Total absorption spectroscopy of N = 51 nucleus 85Se

    NASA Astrophysics Data System (ADS)

    Goetz, K. C.; Grzywacz, R. K.; Rykaczewski, K. P.; Karny, M.; Fialkowska, A.; Wolinska-Cichocka, M.; Rasco, B. C.; Zganjar, E. F.; Johnson, J. W.; Gross, C. J.

    2014-09-01

    An experimental campaign utilizing the Modular Total Absorption Spectrometer (MTAS) was conducted at the HRIBF facility in January of 2012. The campaign studied 22 isotopes, many of which were identified as the highest priority for decay heat analysis during a nuclear fuel cycle, see the report by the OECD-IAEA Nuclear Energy Agency in 2007. The case of 85Se will be discussed. 85Se is a Z = 34, N = 51 nucleus with the valence neutron located in the positive parity sd single particle state. Therefore, its decay properties are determined by interplay between first forbidden decays of the valence neutron and Gamow-Teller decay of a 78Ni core. Analysis of the data obtained during the January 2012 run indicates a significant increase of the beta strength function when compared with previous measurements, see Ref..

  19. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods which have been proposed for the detection of trace concentrations of gaseous contaminants include Raman backscattering (LIDAR) and passive radiometry (LOPAIR). Remote sensing techniques using laser spectrometry are presented and in particular a simple long-path laser absorption method (LOLA), which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels is discussed. A number of species were selected for study which are representative of those most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Computer programs were developed which will permit a real-time analysis of the monitored atmosphere. Estimates of the dynamic range of this monitoring technique for various system configurations, and comparison with other methods of analysis, are given.

  20. Hyphenation of sequential- and flow injection analysis with FTIR-spectroscopy for chemical analysis in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lendl, B.; Schindler, R.; Kellner, R.

    1998-06-01

    A survey of the principles of sequential (SIA)-and flow injection analysis (FIA) systems with FTIR spectroscopic detection is presented to introduce these hyphenations as powerful techniques for performing chemical analysis in aqueous solution. The strength of FIA/SIA-FTIR systems lies in the possibility to perform highly reproducible and automated sample manipulations such as sample clean-up and/or chemical reactions prior to spectrum acquisition. It is shown that the hyphenation of FIA/SIA systems with an FTIR spectrometer enhances the problem solving capabilities of the FTIR spectrometer as also parameters which can not be measured directly (e.g. enzyme activities) can be determined. On the other hand application of FTIR spectroscopic detection in FIA or SIA is also of advantage as it allows to shorten conventional analysis procedures (e.g. sucrose or phosphate analysis) or to establish and apply a multivariate calibration model for simultaneous determinations (e.g. glucose, fructose and sucrose analysis). In addition to these examples two recent instrumental developments in miniaturized FIA/SIA-FTIR systems, a μ-Flow through cell based on IR fiber optics and a micromachined SI-enzyme reactor are presented in this paper.

  1. Fourier Transform Infrared (FTIR) Spectroscopy as a Utilitarian Tool for the Routine Determination of Acidity in Ester-Based Oils.

    PubMed

    Meng, Xianghe; Li, Lei; Ye, Qin; van de Voort, Frederik

    2015-09-23

    A primary Fourier transform infrared (FTIR) method capable of determining acidity in ester-based oils is described and evaluated. Absolute free fatty acid (%FFA) and acid value (AV) calibrations were devised by spiking oleic acid into a refined, acid-free oil and measuring ν COO(-) at ∼ 1569 and ν phenolate(-) at ∼ 1588 cm(-1), respectively, in the second-derivative differential spectra. The FTIR acidity predictions were compared to the AOCS titrimetric method using acid mixtures as well as acid containing used vendor oils of undefined makeup and provenance, using two spectroscopically divergent reference oils as AC0. Relative to the AOCS reference method, the FTIR procedure was found to be both more accurate (± 0.107 vs ± 0.122) and reproducible (± 0.025 vs ± 0.077) in determining %FFA and similar in predicting AV. The FTIR phenolate method overcomes a variety of limitations of earlier FTIR-based methods, being particularly simple and well suited to routine, semiautomated acidity analysis of ester-based oils using a basic FTIR spectrometer.

  2. VUV Absorption Spectroscopy of Planetary Molecules at Low Temperature

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Benilan, Y.; Ferradaz, T.; Fray, N.; Schwell, M.

    2005-08-01

    A critical review of the available absorption coefficient in the vacuum ultraviolet domain (100-200 nm) has lead us to undertake new measurements at the Berlin synchrotron facility (BESSY). Many of the molecules detected in planetary atmospheres and in particular those which need to be synthesized in the laboratory, have never been measured at low temperature. The first molecules that we have studied are HCN, HC3N and C2N2. New absorption coefficients have been obtained including first spectra at low temperature (220 K). The effect of the temperature on the spectra can then be discussed in view of the application to the much colder atmosphere of Titan. The nitriles studied here play an important role in the chemistry taking place in Titan's atmosphere and are believed to be responsible for the formation of Titan's aerosols. From our measurements, we have calculated the photodissociation rates for each molecule which are essential to include in any photochemical model. This is true for Titan but also for cometary and interstellar medium models. To describe the formation of a solid phase, the models also need to include photodissociation rates for larger molecules which have not been detected yet. This will now be possible for HC5N since the first spectra of this molecule has been obtained by our team. Furthermore, the first stellar occultation measurement of Titan's atmosphere by the UV spectrometer (UVIS) on board the CASSINI spacecraft has permitted the detection of species not observed before in this wavelength domain. But it has also shown a lack of experimental data in this domain. So far, the model is not able to reproduce the observed spectral feature. C4H2 is the molecule that should explain some of the observed feature but absolute cross sections are missing. We will present our latest experimental measurements on this molecule.

  3. Difference Between Far-Infrared Photoconductivity Spectroscopy and Absorption Spectroscopy: Theoretical Evidence of the Electron Reservoir Mechanism

    NASA Astrophysics Data System (ADS)

    Toyoda, Tadashi; Fujita, Maho; Uchida, Tomohisa; Hiraiwa, Nobuyoshi; Fukuda, Taturo; Koizumi, Hideki; Zhang, Chao

    2013-08-01

    The intriguing difference between far-infrared photoconductivity spectroscopy and absorption spectroscopy in the measurement of the magnetoplasmon frequency in GaAs quantum wells reported by Holland et al. [Phys. Rev. Lett. 93, 186804 (2004)] remains unexplained to date. This Letter provides a consistent mechanism to solve this puzzle. The mechanism is based on the electron reservoir model for the integer quantum Hall effect in graphene [Phys. Lett. A 376, 616 (2012)]. We predict sharp kinks to appear in the magnetic induction dependence of the magnetoplasmon frequency at very low temperatures such as 14 mK in the same GaAs quantum well sample used by Holland et al..

  4. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations.

    PubMed

    Ojeda, Jesús J; Romero-Gonzalez, María E; Bachmann, Robert T; Edyvean, Robert G J; Banwart, Steven A

    2008-04-15

    Aquabacterium commune, a predominant member of European drinking water biofilms, was chosen as a model bacterium to study the role of functional groups on the cell surface that control the changes in the chemical cell surface properties in aqueous electrolyte solutions at different pH values. Cell surface properties of A. commune were examined by potentiometric titrations, modeling, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. By combining FTIR data at different pH values and potentiometric titration data with thermodynamic model optimization, the presence, concentration, and changes of organic functional groups on the cell surface (e.g., carboxyl, phosphoryl, and amine groups) were inferred. The pH of zero proton charge, pH(zpc) = 3.7, found from titrations of A. commune at different electrolyte concentrations and resulting from equilibrium speciation calculations suggests that the net surface charge is negative at drinking water pH in the absence of other charge determining ions. In situ FTIR was used to describe and monitor chemical interactions between bacteria and liquid solutions at different pH in real time. XPS analysis was performed to quantify the elemental surface composition, to assess the local chemical environment of carbon and oxygen at the cell wall, and to calculate the overall concentrations of polysaccharides, peptides, and hydrocarbon compounds of the cell surface. Thermodynamic parameters for proton adsorption are compared with parameters for other gram-negative bacteria. This work shows how the combination of potentiometric titrations, modeling, XPS, and FTIR spectroscopy allows a more comprehensive characterization of bacterial cell surfaces and cell wall reactivity as the initial step to understand the fundamental mechanisms involved in bacterial adhesion to solid surfaces and transport in aqueous systems.

  5. ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance

    PubMed Central

    Lahlali, Rachid; Jiang, Yunfei; Kumar, Saroj; Karunakaran, Chithra; Liu, Xia; Borondics, Ferenc; Hallin, Emil; Bueckert, Rosalind

    2014-01-01

    With climate change, pea will be more frequently subjected to heat stress in semi-arid regions like Saskatchewan during flowering. The pollen germination percentage of two pea cultivars was reduced by heat stress (36°C) with an important decrease in cultivar ‘CDC Golden’ compared to ‘CDC Sage.’ Lipids, protein and other pollen coat compositions of whole intact pollen grains of both pea cultivars were investigated using mid infrared (mid-IR) attenuated total reflectance (ATR)–Fourier transform infrared (FTIR) spectroscopy. Curve fitting of ATR absorbance spectra in the protein region enabled estimation and comparison of different protein secondary structures between the two cultivars. CDC Sage had relatively greater amounts of α-helical structures (48.6–43.6%; band at 1654 cm-1) and smaller amounts of β-sheets (41.3–46%) than CDC Golden. The CDC Golden had higher amounts of β-sheets (46.3–51.7%) compared to α-helical structures (35.3–36.2%). Further, heat stress resulted in prominent changes in the symmetrical and asymmetrical CH2 bands from lipid acyl chain, ester carbonyl band, and carbohydrate region. The intensity of asymmetric and symmetric CH2 vibration of heat stressed CDC Golden was reduced considerably in comparison to the control and the decrease was higher compared to CDC Sage. In addition, CDC Golden showed an increase in intensity at the oxidative band of 3015 cm-1. These results reveal that the whole pollen grains of both pea cultivars responded differently to heat stress. The tolerance of CDC Sage to heat stress (expressed as pollen germination percentage) may be due to its protein richness with α-helical structures which would protect against the destructive effects of dehydration due to heat stress. The low pollen germination percentage of CDC Golden after heat stress may be also due to its sensitivity to lipid changes due to heat stress. PMID:25566312

  6. Time-Resolved Broadband Cavity-Enhanced Absorption Spectroscopy behind Shock Waves.

    PubMed

    Matsugi, Akira; Shiina, Hiroumi; Oguchi, Tatsuo; Takahashi, Kazuo

    2016-04-07

    A fast and sensitive broadband absorption technique for measurements of high-temperature chemical kinetics and spectroscopy has been developed by applying broadband cavity-enhanced absorption spectroscopy (BBCEAS) in a shock tube. The developed method has effective absorption path lengths of 60-200 cm, or cavity enhancement factors of 12-40, over a wavelength range of 280-420 nm, and is capable of simultaneously recording absorption time profiles over an ∼32 nm spectral bandpass in a single experiment with temporal and spectral resolutions of 5 μs and 2 nm, respectively. The accuracy of the kinetic and spectroscopic measurements was examined by investigating high-temperature reactions and absorption spectra of formaldehyde behind reflected shock waves using 1,3,5-trioxane as a precursor. The rate constants obtained for the thermal decomposition reactions of 1,3,5-trioxane (to three formaldehyde molecules) and formaldehyde (to HCO + H) agreed well with the literature data. High-temperature absorption cross sections of formaldehyde between 280 and 410 nm have been determined at the post-reflected-shock temperatures of 955, 1265, and 1708 K. The results demonstrate the applicability of the BBCEAS technique to time- and wavelength-resolved sensitive absorption measurements at high temperatures.

  7. [High-order derivative spectroscopy of infrared absorption spectra of the reaction centers from Rhodobacter sphaeroides].

    PubMed

    2005-01-01

    The infrared absorption spectra of reduced and chemically oxidized reaction center preparations from the purple bacterium Rhodobacter sphaeroides were investigated by means of high-order derivative spectroscopy. The model Gaussian band with a maximum at 810 nm and a half-band of 15 nm found in the absorption spectrum of the reduced reaction center preparation is eliminated after the oxidation of photoactive bacteriochlorophyll dimer (P). This band was related to the absorption of the P(+)y excitonic band of P. On the basis of experimental results, it was concluded that the bleaching of the P(+)y absorption band at 810 nm in the oxidized reaction center preparations gives the main contribution to the blue shift of the 800 nm absorption band of Rb. sphaeroides reaction centers.

  8. Analysis of Atmospheric Composition and Tropospheric Variability With Integrated Open- Path and Ground-Based Solar Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Compton, R. N.; Hager, J. S.

    2006-12-01

    Ground-based solar infrared absorption spectroscopy coupled with open-path spectroscopy provides a means for analysis of the highly variable contribution of the boundary layer to problems of radiative transfer and atmospheric chemistry. This is of particular importance in geographic regions of significant local anthropogenic influence and large tropospheric fluctuations in general. A Bomem DA8 FT-IR integrated with a sun-tracking and open-path system (~0.5 km) is located at The University of Tennessee, in downtown Knoxville and near The Great Smoky Mountains National Park, an area known for problematic air quality. From atmospheric absorption spectra, boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. A record of more than 1000 solar-sourced atmospheric spectra covering a period greater than three years in duration is under analysis to characterize the limit of precision in total column abundance determinations for many gases such as O3, CO, CH4, N2O, HF and CO2. Initial efforts using atmospheric O2 as a calibration indicate the solar-sourced spectra may not meet the precision required for the highly accurate atmospheric CO2 quantification by such global efforts as the OCO and NDSC. However, the determined variability of CO2 and other gas concentrations is statistically significant and is indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. This is therefore an important data record in the southeastern United States, a somewhat under- sampled geographic region. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the trace gas concentrations. This provides an urban air quality monitor in addition to improving the description of the total atmospheric composition, as the open-path system is stable and permanent.

  9. [Near infrared Cavity enhanced absorption spectroscopy study of NO2O].

    PubMed

    Wu, Zhi-wei; Dong, Yan-ting; Zhou, Wei-dong

    2014-08-01

    Using a tunable near infrared external cavity diode laser and a 650 mm long high finesse optical cavity consisting of two highly reflective (R=99.97% at 6561.39 cm(-1)) plan-concave mirrors of curvature radius approximately 1000 mm, a cavity enhanced absorption spectroscopy (CEAS) system was made. The absorption spectra centered at 6561.39 cm(-1) of pure N2O gas and gas mixtures of N2O and N2 were recorded. According to the absorption of N2O at 6561.39 cm(-1) in the cavity, the measured effective absorption path was about 1460 km. The spectra line intensity and line-width of N2O centered at 6561.39 cm(-1) were carefully studied. The relationship between the line-width of absorption spectra and the gas pressure was derived. The pressure broadening parameter of N2 gas for NO2O line centered at 6 561. 39 cm(-1) was deduced and given a value of approximately (0.114 +/- 0.004) cm(-1) x atm(-1). The possibility to detect trace N2O gas in mixture using this CEAS system was investigated. By recording the ab- sorption spectra of N2O gas mixtures at different concentration, the relationship between the line intensity and gas concentration was derived. The minimum detectable absorption was found to be 2.34 x 10(-7) cm(-1) using this cavity enhanced absorption spectroscopy system. And te measurement precision in terms of relative standard deviation (RSD) for N2O is approximately 1.73%, indicating the possibility of using the cavity enhanced absorption spectroscopy system for micro gas N2O analysis in the future.

  10. Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: A comparative study between different modeling methods

    NASA Astrophysics Data System (ADS)

    Javidnia, Katayoun; Parish, Maryam; Karimi, Sadegh; Hemmateenejad, Bahram

    2013-03-01

    By using FT-IR spectroscopy, many researchers from different disciplines enrich the experimental complexity of their research for obtaining more precise information. Moreover chemometrics techniques have boosted the use of IR instruments. In the present study we aimed to emphasize on the power of FT-IR spectroscopy for discrimination between different oil samples (especially fat from vegetable oils). Also our data were used to compare the performance of different classification methods. FT-IR transmittance spectra of oil samp