Science.gov

Sample records for absorption spectroscopy gfaas

  1. A Comparison of Blood-lead Level (BLL) in Opium-dependant Addicts With Healthy Control Group Using the Graphite Furnace/atomic Absorption Spectroscopy (GF-AAS) Followed by Chemometric Analysis.

    PubMed

    Amiri, Mojtaba; Amini, Ramin

    2012-08-01

    A comparison of oral/inhaled opium addicts with a healthy control group was investigated. Using the graphite furnace atomic absorption spectroscopy (GF-AAS) followed by chemometric analysis, sub-to-low µg L-1 concentrations of blood lead level (BLL) was detected in both the addict and the control groups. In this study, BLL of 78 subjects (Iranian volunteers) in two opium-addicted (patient group) and healthy control groups was evaluated. All the volunteers were men. The patient group was comprised of 39 patients who used opium orally or by inhalation with a mean age of 48.6 ± 7.3 years. The patient group was selected through systematic incidental sampling from 150 orally or by inhalation opium-addicted patients referred to Shariati Hospital located in Tehran .The control group (39 subjects) was matched with the patient group with regard to age and sex and with a mean age of 44.8 ± 5.6 years. The mean concentration of lead was found to be significantly lower (P = 0.0001) in control group (16.70 ± 12.51 μg/dL) compared to addicts (57.04 ± 46.03 μg/dL). When the addicts were divided into various age groups, there appeared to be a significant difference (p= 0.0451) in blood lead concentration as a function of age, however when the control group was considered, no difference was observed (P = 0.51). Also, a tendency (P = 0.048) towards increasing BLL with respect to BMI was observed due to drug consumption, but there was no significant variation between BLL concentration and BMI when the control group was considered (P = 0.35). It was observed that the BLL in opium-addicts was significantly higher than that of the healthy control group. The mean difference of both groups was statistically significant.

  2. Soliton absorption spectroscopy

    PubMed Central

    Kalashnikov, V. L.; Sorokin, E.

    2010-01-01

    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique. PMID:21151755

  3. [Selenium determination in plasma/serum by inductively coupled plasma mass spectrometry (ICP-MS): comparison with graphite furnace atomic absorption spectrometry (GF-AAS)].

    PubMed

    Janasik, Beata; Trzcinka-Ochocka, Małgorzata; Brodzka, Renata

    2011-01-01

    The present study was aimed at comparing two techniques of selenium (Se) determination in serum/plasma samples: inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption (GF-AAS). Blood samples were collected by venipuncture, using Venosafe closed blood sampling system. The samples were centrifuged. The measurements were performed by Elan DRC-e mass spectrometry, Perkin Elmer, SCIEX, USA and Unicam Solar 989 QZ atomic absorption spectrometry. Reference material, Clincheck Serum Control Level 1 (Recipe, Germany), was used to verify the determinations. The Laboratory participates in external quality control (G-EQUAS). Analytical parameters for both techniques are respectively: ICP-MS--precision 5.9%, limit of detection 0.19 microg/l, repeatability 5.5%, trueness 2.4%, bias 97.6%, GF-AAS--precision 8%, limit of detection 3.4 microg/l, repeatability 7.2%, trueness 6.8%, bias 93.2%. The benefits of the ICP-MS technique are high accuracy, low detection limits and the possibility of multi-element analysis.

  4. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  5. Solidified floating organic drop microextraction (SFODME) for simultaneous separation/preconcentration and determination of cobalt and nickel by graphite furnace atomic absorption spectrometry (GFAAS).

    PubMed

    Bidabadi, Mahboubeh Shirani; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2009-07-15

    Solidified floating organic drop microextraction (SFODME), combined with graphite furnace atomic absorption spectrometry (GFAAS) was proposed for simultaneous separation/enrichment and determination of trace amounts of nickel and cobalt in surface waters and sea water. 1-(2-Pyridylazo)-2-naphthol (PAN) was used as chelating agent. The main parameters affecting the performance of SFODME, such as pH, concentration of PAN, extraction time, stirring rate, extraction temperature, sample volume and nature of the solvent were optimized. Under the optimum experimental conditions, a good relative standard deviation for six determination of 20 ng l(-1) of Co(II) and Ni(II) were 4.6 and 3.6%, respectively. An enrichment factor of 502 and 497 and detection limits of 0.4 and 0.3 ng l(-1) for cobalt and nickel were obtained, respectively. The procedure was applied to tap water, well water, river water and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments.

  6. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  7. Bioacoustic Absorption Spectroscopy

    DTIC Science & Technology

    2016-06-07

    simulation of the effects of absorptivity due to fish on transmission loss in shallow water, Proceedings of the Oceans 96 Conference, IEEE Press. PATENTS ...The Naval Research Laboratory has decided to apply for an international patent on my design of low cost, ultra-wide bandwidth, light weight, autonomous

  8. Absorption Spectroscopy in Homogeneous and Micellar Solutions.

    ERIC Educational Resources Information Center

    Shah, S. Sadiq; Henscheid, Leonard G.

    1983-01-01

    Describes an experiment which has helped physical chemistry students learn principles of absorption spectroscopy, the effect of solvent polarity on absorption spectra, and some micellar chemistry. Background information and experimental procedures are provided. (JN)

  9. Atomic absorption spectroscopy in ion channel screening.

    PubMed

    Stankovich, Larisa; Wicks, David; Despotovski, Sasko; Liang, Dong

    2004-10-01

    This article examines the utility of atomic absorption spectroscopy, in conjunction with cold flux assays, to ion channel screening. The multiplicity of ion channels that can be interrogated using cold flux assays and atomic absorption spectroscopy is summarized. The importance of atomic absorption spectroscopy as a screening tool is further elaborated upon by providing examples of the relevance of ion channels to various physiological processes and targeted diseases.

  10. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    PubMed

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  11. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    PubMed

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPRMAX), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS).

  12. Cavity Enhanced Ultrafast Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K.; Reber, Melanie Roberts; Chen, Yuning

    2015-06-01

    Ultrafast spectroscopy on gas phase systems is typically restricted to techniques involving photoionization, whereas solution phase experiments utilize the detection of light. At Stony Brook, we are developing new techniques for performing femtosecond time-resolved spectroscopy using frequency combs and high-finesse optical resonators. A large detection sensitivity enhancement over traditional methods enables the extension of all-optical ultrafast spectroscopies, such as broad-band transient absorption spectroscopy (TAS) and 2D spectroscopy, to dilute gas phase samples produced in molecular beams. Here, gas phase data can be directly compared to solution phase data. Initial demonstration experiments are focusing on the photodissociation of iodine in small neutral argon clusters, where cluster size strongly influences the effects solvent-caging and geminate recombination. I will discuss these initial results, our high power home-built Yb:fiber laser systems, and also extensions of the methods to the mid-IR to study the vibrational dynamics of hydrogen bonded clusters.

  13. Determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn by Inductively Coupled Plasma Mass Spectroscopy or Flame Atomic Absorption Spectrometry after On-line Preconcentration and Solvent Extraction by Flow Injection System

    PubMed

    Bortoli; Gerotto; Marchiori; Mariconti; Palonta; Troncon

    1996-11-01

    The concentrations of Cd, Co, Cu, Mn, Ni, Pb, and Zn in natural and sea waters are too low to be directly determined with by flame atomic absorption spectrometry (FAAS) or graphite furnace atomic absorption spectrometry (GFAAS). Specific sample preparations are requested that make possible the determination of these analytes by preconcentration or extraction. These techniques are affected by severe problems of sample contamination. In this work Cd, Co, Cu, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS) or by atomic absorption spectrometry, in fresh and seawater samples, after on-line preconcentration and following solvent elution with a flow injection system. Bonded silica with octadecyl functional group C18, packed in a microcolumn of 100-μl capacity, was used to collect diethyldithiocarbamate complexes of the heavy metals in aqueous solutions. The metals are complexed with a chelating agent, adsorbed on the C18 column, and eluted with methanol directly in the flow injection system. The methanolic stream can be addressed to FAAS for direct determination of Cu, Ni, and Zn, or collected in a vial for successive analysis by GFAAS. The eluted samples can be also dried in a vacuum container and restored to a little volume with concentrated HNO3 and Milli-Q water for analysis by ICP-MS or GFAAS.

  14. The oscillator strength in atomic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hannaford, P.

    1994-12-01

    The role of the oscillator strength, f, in the theory of atomic absorption is investigated. For a pure natural broadened absorption line, the peak absorption coefficient α o is independent of the oscillator strength. The peak absorption coefficient becomes dependent on f only through additional broadening processes such as Doppler or collisional broadening. The peak cross section for resonance absorption, α 0/ N1, for a closed transition with equal statistical weights is given by σ 0 = 2πXXX 2 = ( 2/π)/[c n(ω 0)] (where XXX = λ/2π and n(ω 0) is the spectral mode density of the radiation field at the resonance frequency ω 0) and physically represents the cross-sectional area per allowed mode of the radiation field per unit time per unit frequency interval, multiplied by a lineshape factor 2/π. A summary is presented of some recent determinations of oscillator strengths of atomic absorption lines, based on lifetime measurements made in this laboratory. The results are used to revise values of the theoretical characteristic mass for Ag, Al, Au, Ca, Cu, Mo, Na, Ti and V used in absolute analysis by graphite furnace atomic absorption spectroscopy.

  15. Triplet absorption spectroscopy and electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  16. Use of flameless atomic absorption spectroscopy in immune cytolysis for nonradioactive determination of killer cell activity.

    PubMed

    Borella, P; Bargellini, A; Salvioli, S; Cossarizza, A

    1996-02-01

    We describe here a novel method to evaluate natural killer (NK) cytolytic activity by use of flameless atomic absorption spectroscopy (GF-AAS). This technique may be adopted for use in laboratories equipped with electrothermal atomic absorption spectrometers. Nonradioactive Cr as Na2CrO4 was used to label target cells (K562), and cell lysis was evaluated by measuring Cr released after 4 h of incubation with the effectors. We selected 520 micrograms/L as the optimal dose for labeling targets, between 12 and 20 h as the optimal incubation time, and 10(4) cells as the optimal target size. Advantages of this method include: (a) exclusion of radioactive tracer, with no risk for workers; (b) limited costs; (c) high sensitivity and reproducibility; (d) possibility to store samples; and (e) better control of Cr used for labeling cells due to well-determined, fixed Cr concentrations in the range of nontoxic and linear cellular uptake. Comparison with data obtained by conventional 51Cr labeling of targets killed by the same effectors was excellent, yielding comparable results and corroborating the method.

  17. Absorption spectroscopy with quantum cascade lasers

    NASA Technical Reports Server (NTRS)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    2001-01-01

    Novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers operating near lambda=8 micrometers were used for detection and quantification of trace gases in ambient air by means of sensitive absorption spectroscopy. N2O, 12CH4, 13CH4, and different isotopic species of H2O were detected. Also, a highly selective detection of ethanol vapor in air with a sensitivity of 125 parts per billion by volume (ppb) was demonstrated.

  18. Phase Fluctuation Absorption Spectroscopy of Small Particles

    NASA Astrophysics Data System (ADS)

    Fluckiger, David Ulrich

    The purpose of this dissertation is to establish a viable mass measurement technique for in situ aerosol. Adaptation of the photothermal effect in a Mach-Zehnder interferometer provided high mass sensitivity in an instrument employing Phase Fluctuation Laser Optical Heterodyne (PFLOH) absorption spectroscopy. The theory of aerosol absorption of electromagnetic energy and subsequent thermalization in continuum, Rayleigh regime region is presented. From this theory the general behavior of PFLOH detection of aerosol is described and shown to give a signal proportional to the absorption species mass. Furthermore the signal is shown to be linear in excitation energy and modulation frequency, and scalable. The instrument is calibrated and shown to behave as predicted. PFLOH detection is then used in determining the mass size distribution of the aerosol component of the ozone-isoprene and ozone -(alpha)-pinene products as a function of isoprene and (alpha) -pinene concentration.

  19. Methane overtone absorption by intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Obrien, James J.

    1990-01-01

    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres.

  20. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  1. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  2. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  3. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  4. Remote laser evaporative molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis

    2016-09-01

    We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.

  5. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  6. Tomographic laser absorption spectroscopy using Tikhonov regularization.

    PubMed

    Guha, Avishek; Schoegl, Ingmar

    2014-12-01

    The application of tunable diode laser absorption spectroscopy (TDLAS) to flames with nonhomogeneous temperature and concentration fields is an area where only few studies exist. Experimental work explores the performance of tomographic reconstructions of species concentration and temperature profiles from wavelength-modulated TDLAS measurements within the plume of an axisymmetric McKenna burner. Water vapor transitions at 1391.67 and 1442.67 nm are probed using calibration-free wavelength modulation spectroscopy with second harmonic detection (WMS-2f). A single collimated laser beam is swept parallel to the burner surface, where scans yield pairs of line-of-sight (LOS) data at multiple radial locations. Radial profiles of absorption data are reconstructed using Tikhonov regularized Abel inversion, which suppresses the amplification of experimental noise that is typically observed for reconstructions with high spatial resolution. Based on spectral data reconstructions, temperatures and mole fractions are calculated point-by-point. Here, a least-squares approach addresses difficulties due to modulation depths that cannot be universally optimized due to a nonuniform domain. Experimental results show successful reconstructions of temperature and mole fraction profiles based on two-transition, nonoptimally modulated WMS-2f and Tikhonov regularized Abel inversion, and thus validate the technique as a viable diagnostic tool for flame measurements.

  7. Highly sensitive detection using Herriott cell for laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Chongyi; Song, Guangming; Du, Yang; Zhao, Xiaojun; Wang, Wenju; Zhong, Liujun; Hu, Mai

    2016-11-01

    The tunable diode laser absorption spectroscopy combined with the long absorption path technique is a significant method to detect harmful gas. The long optical path could come true by Herriott cell reducing the size of the spectrometers. A 15 cm long Herriott cell with 28.8 m optical absorption path after 96 times reflection was designed that enhanced detection sensitivity of absorption spectroscopy. According to the theory data of calculation, Herriott cell is analyzed and simulated by softwares Matlab and Lighttools.

  8. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  9. Determination of ruthenium in pharmaceutical compounds by graphite furnace atomic absorption spectroscopy.

    PubMed

    Jia, Xiujuan; Wang, Tiebang; Bu, Xiaodong; Tu, Qiang; Spencer, Sandra

    2006-04-11

    A graphite furnace atomic absorption (GFAA) spectrometric method for the determination of ruthenium (Rh) in solid and liquid pharmaceutical compounds has been developed. Samples are dissolved or diluted in dimethyl sulfoxide (DMSO) without any other treatment before they were analyzed by GFAA with a carefully designed heating program to avoid pre-atomization signal loss and to achieve suitable sensitivity. Various inorganic and organic solvents were tested and compared and DMSO was found to be the most suitable. In addition, ruthenium was found to be stable in DMSO for at least 5 days. Spike recoveries ranged from 81 to 100% and the limit of quantitation (LOQ) was determined to be 0.5 microg g(-1) for solid samples or 0.005 microg ml(-1) for liquid samples based a 100-fold dilution. The same set of samples was also analyzed by ICP-MS with a different sample preparation method, and excellent agreement was achieved.

  10. Precision Saturated Absorption Spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong

    2016-06-01

    In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).

  11. Transient absorption spectroscopy of laser shocked explosives

    SciTech Connect

    Mcgrane, Shawn D; Dang, Nhan C; Whitley, Von H; Bolome, Cindy A; Moore, D S

    2010-01-01

    Transient absorption spectra from 390-890 nm of laser shocked RDX, PETN, sapphire, and polyvinylnitrate (PVN) at sub-nanosecond time scales are reported. RDX shows a nearly linear increase in absorption with time after shock at {approx}23 GPa. PETN is similar, but with smaller total absorption. A broad visible absorption in sapphire begins nearly immediately upon shock loading but does not build over time. PVN exhibits thin film interference in the absorption spectra along with increased absorption with time. The absorptions in RDX and PETN are suggested to originate in chemical reactions happening on picosecond time scales at these shock stresses, although further diagnostics are required to prove this interpretation.

  12. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  13. [Digestion-flame atomic absorption spectroscopy].

    PubMed

    Xu, Liang; Hu, Jian-Guo; Liu, Rui-Ping; Wang, Zhi-Min; Narenhua

    2008-01-01

    A microwave digestion-flame atomic absorption spectroscopy (FAAS) method was developed for the determination of metal elements Na, Zn, Cu, Fe, Mn, Ca and Mg in Mongolian patents. The instrument parameters for the determination were optimized, and the appropriate digestion solvent was selected. The recovery of the method was between 95.8% and 104.3%, and the RSD was between 1.6% and 4.2%. The accuracy and precision of the method was tested by comparing the values obtained from the determination of the standard sample, bush twigs and leaves (GSV-1) by this method with the reference values of GSV-1. The determination results were found to be basically consistent with the reference values. The microwave digestion technique was applied to process the samples, and the experimental results showed that compared to the traditional wet method, the present method has the merits of simplicity, saving agents, rapidness, and non-polluting. The method was accurate and reliable, and could be used to determine the contents of seven kinds of metal elements in mongolian patents.

  14. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    NASA Astrophysics Data System (ADS)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  15. Trace and Essential Elements Analysis in Cymbopogon citratus (DC.) Stapf Samples by Graphite Furnace-Atomic Absorption Spectroscopy and Its Health Concern.

    PubMed

    Anal, Jasha Momo H

    2014-01-01

    Cymbopogon citratus (DC.) Stapf commonly known as lemon grass is used extensively as green tea and even as herbal tea ingredient across the world. Plants have the ability to uptake metals as nutrient from the soil and its environment which are so essential for their physiological and biochemical growth. Concentrations of these twelve trace elements, namely, Mg, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Mo, As, Cd, and Pb, are analysed by graphite furnace-atomic absorption spectroscopy (GF-AAS) and are compared with the permissible limits of FAO/WHO, ICMR, and NIH, USA, which are found to be within permissible limits. Toxic metals like As, Cd, and Pb, analysed are within the tolerable daily diet limit and at low concentration.

  16. Trace and Essential Elements Analysis in Cymbopogon citratus (DC.) Stapf Samples by Graphite Furnace-Atomic Absorption Spectroscopy and Its Health Concern

    PubMed Central

    Anal, Jasha Momo H.

    2014-01-01

    Cymbopogon citratus (DC.) Stapf commonly known as lemon grass is used extensively as green tea and even as herbal tea ingredient across the world. Plants have the ability to uptake metals as nutrient from the soil and its environment which are so essential for their physiological and biochemical growth. Concentrations of these twelve trace elements, namely, Mg, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Mo, As, Cd, and Pb, are analysed by graphite furnace-atomic absorption spectroscopy (GF-AAS) and are compared with the permissible limits of FAO/WHO, ICMR, and NIH, USA, which are found to be within permissible limits. Toxic metals like As, Cd, and Pb, analysed are within the tolerable daily diet limit and at low concentration. PMID:25525430

  17. GFAAS determination of selenium in infant formulas using a microwave digestion method.

    PubMed

    Alegria, A; Barbera, R; Farré, R; Moreno, A

    1994-01-01

    A method for determining the selenium content of infant formulas is proposed. It includes wet digestion with nitric acid and hydrogen peroxide in medium pressure teflon bombs in a microwave oven and determination by graphite furnace atomic absorption spectrometry (GFAAS). The absence of interferences is checked. Values obtained for the limit of detection (19.4 ng/g), precision (RSD = 2.2%) and accuracy by analysis of a reference material show that the method is reliable.

  18. [Determination of lead with GFAAS using online flow injection].

    PubMed

    Chen, Zhong-Lan

    2007-06-01

    A cheap, rapid and sensitive method for the determination of trace amount of lead in water samples by graphite furnace absorption spectrometry coupled with online flow injection preconcentration with ammonium pyrrolidine dithiocarboxylate chelating cellulose (CC-APDC) was developed. There were six steps in the preconcentration of flow injection: first, 0.15 mL nitric acid was used for a complete elution, which exceeded the volume of the graphite tube, so the 40 mL solution was removed before eluting. Secondly, 40 mL maximum concentration elution solution was added to GFAAS by fixed volume sampling to improve the accuracy. In addition, traditional stopping gas measurement was substituted with small flow gas atomization (30 mL x min(-1), preconcention for 1 min) during the removal of high memory effect for ashing stage in graphite furnace, which develops tail-out phenomenon and makes blank value low and steady. Various parameters affecting the adsorption and elution, such as pH of the solution, eluent concentration, sample flow rate etc, were optimized. If miniflow in atomization step was used, the memory effect in the determination of lead by GFAAS could be removed. The CC-APDC was used for preparation and preconcentration. A good precision (RSD = 1.4%, n = 10), high enrichment factor (15) and sample throughput (50 h) with detection limit 0.12 microg x L(-1) were obtained. This method has been successfully applied to the water sample for lead determination with a recovery of 95%-105%.

  19. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.

    PubMed

    Berera, Rudi; van Grondelle, Rienk; Kennis, John T M

    2009-01-01

    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.

  20. Molecular characterization and fingerprinting of vanadyl porphyrin and non-porphyrin compounds in the asphaltenes of heavy crude petroleums using HPLC-GFAA analysis

    SciTech Connect

    Wines, B.K.; Vermeulen, T.; Fish, R.H.

    1983-08-01

    High performance liquid chromatography coupled with graphite furnace atomic absorption (HPLC-GFAA) analysis were used to study the precipitated asphaltene fraction of four heavy crude petroleums. Prudhoe Bay and Wilmington crude oils from Alaska and California, respectively, have low vanadium and asphaltene concentrations. Boscan and Cerro Negro are Venezuelan crudes with high levels of vanadium and asphaltenes. The emphasis of this study is the molecular characterization of classes of vanadyl compounds, with special emphasis placed on differentiating the locations of non-porphyrin and porphyrin compounds in the HPLC-GFAA analyses of the asphaltenes and their solvent extracts. Steric exclusion chromatography (SEC) columns were used to determine the molecular weight distribution of vanadium in the asphaltenes and extracts. Fingerprints obtained from SEC-HPLC-GFAA analysis of asphaltenes or normal and reverse phase HPLC-GFAA analysis of polar extracts provided information on the composition of the asphaltines. 122 references, 27 figures, 7 tables.

  1. Photoelectron and X-ray Absorption Spectroscopy Of Pu

    SciTech Connect

    Tobin, J; Chung, B; Schulze, R; Farr, J; Shuh, D

    2003-11-12

    We have performed Photoelectron Spectroscopy and X-Ray Absorption Spectroscopy upon highly radioactive samples of Plutonium at the Advanced Light Source in Berkeley, CA, USA. First results from alpha and delta Plutonium are reported as well as plans for future studies of actinide studies.

  2. UV-VIS absorption spectroscopy: Lambert-Beer reloaded.

    PubMed

    Mäntele, Werner; Deniz, Erhan

    2017-02-15

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Absorption and fluorescence spectroscopy on a smartphone

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    A self-powered smartphone-based field-portable "dual" spectrometer has been developed for both absorption and fluorescence measurements. The smartphone's existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.

  4. GFAAS determination of ultratrace quantities of organotins in sea-water by using enhancement methods.

    PubMed

    Parks, E J; Blair, W R; Brinckman, F E

    1985-08-01

    Tributyltin in sea-water is preconcentrated by extraction into toluene and determined by enhanced graphite-furnace atomic-absorption (GFAAS) at ultratrace concentrations (as low as 1.0 mug l .) equal to or lower than the toxic limits for aquatic organotins. Toluene is preferred to MIBK, chloroform or hexane as the solvent. Sea salts, in concentrations as low as 0.1%, critically interfere with GFAAS tin determinations, and must be removed by washing the extract with demineralized water. Signal enhancement effected by inserting L'vov platforms in the graphite furnace tubes or by adding ammonium dichromate to the analyte solution is nearly additive when both methods of enhancement are combined.

  5. [Tunable diode laser absorption spectroscopy system for trace ethylene detection].

    PubMed

    Pan, Wei-Dong; Zhang, Jia-Wei; Dai, Jing-Min; Song, Kai

    2012-10-01

    Tunable diode laser absorption spectroscopy (TDLAS) was characterized by ultra-narrow line width laser and wavelength modulation, which makes it possible to scan a single absorption line. TDLAS has an advantage in trace gas analysis for its high resolution, high sensitivity and quick response. The 1 626.8 nm absorption line of ethylene was selected for detecting by analyzing its absorption line characteristic. The TDLAS system was developed with a white type multi-pass cell, combined with wavelength modulation and harmonic detection. Ethylene concentration ranges from 20 to 1 200 ppmv were tested using this system. The estimated detection limit of the system is 10 ppmv.

  6. Nearedge Absorption Spectroscopy of Interplanetary Dust Particles

    SciTech Connect

    Brennan, S.; Luening, K.; Pianetta, P.; Bradley, J.; Graham, G.; Westphal, A.; Snead, C.; Dominguez, G.; /SLAC, SSRL

    2006-10-25

    Interplanetary Dust Particles (IDPs) are derived from primitive Solar System bodies like asteroids and comets. Studies of IDPs provide a window onto the origins of the solar system and presolar interstellar environments. We are using Total Reflection X-ray Fluorescence (TXRF) techniques developed for the measurement of the cleanliness of silicon wafer surfaces to analyze these particles with high detection sensitivity. In addition to elemental analysis of the particles, we have collected X-ray Absorption Near-Edge spectra in a grazing incidence geometry at the Fe and Ni absorption edges for particles placed on a silicon wafer substrate. We find that the iron is dominated by Fe{sub 2}O{sub 3}.

  7. Optoacoustic spectroscopy and its application to molecular and particle absorption

    NASA Astrophysics Data System (ADS)

    Trees, Charles C.; Voss, Kenneth J.

    1990-09-01

    Light absorption in the ocean has been the least studied optical property because of the difficulties in making accurate measurements. With the previously used techniques, large differences have been reported for the specific absorption coefficient of phytoplankton (cultures and natural assemblages). It is difficult to determine if the diversity in these values are methodological or a function of actual variations in absorption. With the renewed interest and activity in optoacoustic spectroscopy (OAS), which accurately measures absorption, some of these discrepancies should be resolved. In this method, as molecules and particles absorb light from a modulated source, they thermally expand and contract, thereby generating acoustic waves, at the modulation frequency, which are detected by a hydrophone. Optoacoustic spectroscopy is ideally suited for measuring dissolved organic material and particle absorptions because of its high sensitivity (105m1) and the egligible effect of scattered light. In this paper the instrumental design for an optoacoustic spectrophotometer (OAS), which pecifically measures phytoplankton absorption (420-S5Onm), is described. The spectral absorption of dissolved organic material and a phytoplankton culture is presented. OAS holds promise in being able to measure absorption without use of either filtration or concentration techniques.

  8. Diode laser absorption spectroscopy of lithium isotopes

    NASA Astrophysics Data System (ADS)

    Olivares, Ignacio E.; González, Iván A.

    2016-10-01

    We study Doppler-limited laser intensity absorption, in a thermal lithium vapor containing 7Li and 6Li atoms in a 9 to 1 ratio, using a narrow-linewidth single-longitudinal-mode tunable external cavity diode laser at the wavelength of 670.8 nm. The lithium vapor was embedded in helium or argon buffer gas. The spectral lineshapes were rigorously predicted for D_1 and D_2 for the lithium 6 and 7 isotope lines using reduced optical Bloch equations, specifically derived, from a density matrix analysis. Here, a detailed comparison is provided of the predicted lineshapes with the measured 7Li-D_2, 7Li-D_1, 6Li-D_2 and 6Li-D_1 lines, in the case of high vapor density and with intensity above the saturation intensity. To our knowledge, this is the first time that such detailed comparison is reported in the open literature. The calculations were also extended to saturated absorption spectra and compared to measured Doppler-free 7Li-D_2 and 6Li-D_2 hyperfine lines.

  9. In situ soft X-ray absorption spectroscopy of flames

    NASA Astrophysics Data System (ADS)

    Frank, Jonathan H.; Shavorskiy, Andrey; Bluhm, Hendrik; Coriton, Bruno; Huang, Erxiong; Osborn, David L.

    2014-10-01

    The feasibility of in situ soft X-ray absorption spectroscopy for imaging carbonaceous species in hydrocarbon flames is demonstrated using synchrotron radiation. Soft X-rays are absorbed by core level electrons in all carbon atoms regardless of their molecular structure. Core electron spectroscopy affords distinct advantages over valence spectroscopy, which forms the basis of traditional laser diagnostic techniques for combustion. In core level spectroscopy, the transition linewidths are predominantly determined by the instrument response function and the decay time of the core-hole, which is on the order of a femtosecond. As a result, soft X-ray absorption measurements can be performed in flames with negligible Doppler and collisional broadening. Core level spectroscopy has the further advantage of measuring all carbonaceous species regardless of molecular structure in the far-edge region, whereas near-edge features are molecule specific. Interferences from non-carbon flame species are unstructured and can be subtracted. In the present study, absorption measurements in the carbon K-edge region are demonstrated in low-pressure ( P total = 20-30 Torr) methane jet flames. Two-dimensional imaging of the major carbonaceous species, CH4, CO2, and CO, is accomplished by tuning the synchrotron radiation to the respective carbon K-edge, near-edge X-ray absorption fine structure (NEXAFS) transitions and scanning the burner.

  10. Molecular shock response of explosives: electronic absorption spectroscopy

    SciTech Connect

    Mcgrne, Shawn D; Moore, David S; Whitley, Von H; Bolme, Cindy A; Eakins, Daniel E

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  11. Molecular Shock Response of Explosives: Electronic Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGrane, S. D.; Moore, D. S.; Whitley, V. H.; Bolme, C. A.; Eakins, D. E.

    2009-12-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference as well as broadband increased absorption. Relation to shock initiation and the need for time dependent absorption (future experiments) is briefly discussed.

  12. [Burner head with high sensitivity in atomic absorption spectroscopy].

    PubMed

    Feng, X; Yang, Y

    1998-12-01

    This paper presents a burner head with gas-sample separate entrance and double access, which is used for atomic absorption spectroscopy. According to comparison and detection, the device can improve sensitivity by a factor of 1 to 5. In the meantime it has properties of high stability and resistance to interference.

  13. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  14. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  15. Laser photothermal spectroscopy of light-induced absorption

    SciTech Connect

    Skvortsov, L A

    2013-01-31

    Basic methods of laser photothermal spectroscopy, which are used to study photoinduced absorption in various media, are briefly considered. Comparative analysis of these methods is performed and the latest results obtained in this field are discussed. Different schemes and examples of their practical implementation are considered. (review)

  16. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  17. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  18. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  19. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  20. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  1. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  2. Combined surface plasmon resonance and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia, Miguel Angel; Serrano, Aida; Rodriguez de La Fuente, Oscar; Castro, German R.

    2012-02-01

    We present a system for the excitation and measurement of surface plasmons in metallic films based on the Kretschmann-Raether configuration that can be installed in a synchrotron beamline. The device was mounted an tested in a hard X-ray Absorption beamline, BM25 Spline at ESRF. Whit this device it is possible to carry on experiments combining surface plasmon and X-ray absorption spectroscopies. The surface plasmons can be use to monitor in situ changes induced by the X-rays in the metallic films or the dielectric overlayer. Similarly, the changes in the electronic configuration of the material when surface plasmons are excited can be measured by X-ray absorption spectroscopy. The resolution of the system allows to observe changes in the signals of the order of 10-3 to 10-5 depending on the particular experiment and used configuration. The system is available for experiments at the beamline.

  3. Polarization-enhanced absorption spectroscopy for laser stabilization.

    PubMed

    Kunz, Paul D; Heavner, Thomas P; Jefferts, Steven R

    2013-11-20

    We demonstrate a variation of pump-probe spectroscopy that is particularly useful for laser frequency stabilization. The polarization-enhanced absorption spectroscopy (POLEAS) signal provides a significant improvement in signal-to-noise ratio over saturated absorption spectroscopy (SAS) for the important and commonly used atomic cycling transitions. The improvements can directly increase the short-term stability of a laser frequency lock, given sufficient servo loop bandwidth. The long-term stability of the POLEAS method, which is limited by environmental sensitivities, is comparable to that of SAS. The POLEAS signal is automatically Doppler-free, without requiring a separate Doppler subtraction beam, and lends itself to straightforward compact packaging. Finally, by increasing the amplitude of the desired (cycling) peak, while reducing the amplitude of all other peaks in the manifold, the POLEAS method eases the implementation of laser auto-locking schemes.

  4. Optimization of Ultrasound-Assisted Extraction of Cr, Cu, Zn, Cd, and Pb from Sediment, Followed by FAAS and GFAAS Analysis.

    PubMed

    Mimura, Aparecida M S; Oliveira, Marcone A L; Ciminelli, Virginia S T; Silva, Julio C J

    2016-01-01

    An ultrasound method for simultaneous extraction of Cr, Cu, Zn, Cd, and Pb from sediment, and determination by flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) was proposed. The experimental results obtained using analytical curves and the method of standard additions agreed at a confidence level of 95% for all the analytes, as determined by FAAS and GFAAS, indicating no significant matrix effects. Recoveries ranged from 80.1 to 93.7% (certified reference material) and from 89 to 107% (spike tests). The LOD and LOQ results from the method were consistent with the techniques used (FAAS and GFAAS), with high analytical throughput. The proposed method was then used to determine Cr, Cu, Zn, Cd, and Pb in river sediment samples from Rio Doce, Minas Gerais, Brazil. The results indicated levels below those permitted by Brazilian legislation for all the analytes, with the exception of Cr.

  5. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    NASA Astrophysics Data System (ADS)

    Drescher, L.; Galbraith, M. C. E.; Reitsma, G.; Dura, J.; Zhavoronkov, N.; Patchkovskii, S.; Vrakking, M. J. J.; Mikosch, J.

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  6. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation.

    PubMed

    Drescher, L; Galbraith, M C E; Reitsma, G; Dura, J; Zhavoronkov, N; Patchkovskii, S; Vrakking, M J J; Mikosch, J

    2016-07-07

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ(*) excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  7. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  8. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy.

    PubMed

    Piletic, Ivan R; Matthews, Thomas E; Warren, Warren S

    2009-11-14

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750 nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain approximately 46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  9. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piletic, Ivan R.; Matthews, Thomas E.; Warren, Warren S.

    2009-11-01

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain ˜46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  10. Gas Accretion Traced in Absorption in Galaxy Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.

    The positive velocity shift of absorption transitions tracing diffuse material observed in a galaxy spectrum is an unambiguous signature of gas flow toward the host system. Spectroscopy probing, e.g., Na I resonance lines in the rest-frame optical or Mg II and Fe II in the near-ultraviolet is in principle sensitive to the infall of cool material at temperatures T ˜ 100-10,000 K anywhere along the line of sight to a galaxy's stellar component. However, secure detections of this redshifted absorption signature have proved challenging to obtain due to the ubiquity of cool gas outflows giving rise to blueshifted absorption along the same sightlines. In this chapter, we review the bona fide detections of this phenomenon. Analysis of Na I line profiles has revealed numerous instances of redshifted absorption observed toward early-type and/or AGN-host galaxies, while spectroscopy of Mg II and Fe II has provided evidence for ongoing gas accretion onto > 5% of luminous, star-forming galaxies at z ˜ 0. 5-1. We then discuss the potentially ground-breaking benefits of future efforts to improve the spectral resolution of such studies, and to leverage spatially resolved spectroscopy for new constraints on inflowing gas morphology.

  11. Freon (CHF3)-assisted atomization for the determination of titanium using ultrasonic slurry sampling-graphite furnace atomic absorption spectrometry (USS-GFAAS): a simple and advantageous method for solid samples.

    PubMed

    Asfaw, Alemayehu; Wibetoe, Grethe

    2004-06-01

    A simple and advantageous method for the determination of titanium using graphite furnace atomic absorption spectrometry with slurry sampling has been developed. Titanium is one of the refractory elements that form thermally stable carbides in the graphite tube, which leads to severe memory effects. Trifluoromethane (Freon-23) was applied in the purge gas during the atomization step or alternatively just prior to the atomization to successfully eliminate the problems of carbide formation and increase the lifetime of the furnace tube which could be used for more than 600 heating cycles. A flow rate of 40 mL min(-1) (5% of Freon in argon) was used to obtain symmetrical peaks with no tailing. However, when the gas flow rate was too high (250 mL min(-1)) the peak-tailing and memory effects reappeared. Ti was determined in various materials covering a wide range of concentrations, from 2.8 microg g(-1) to 12% (m/m) Ti. The accuracy of the method was confirmed by analyzing certified reference materials (CRMs) or by comparing the results with those obtained using inductively coupled plasma-atomic emission spectrometry (ICP-AES) after decomposition of the samples. The materials analyzed were soil, plant, human hair, coal, urban particulate matters, toothpaste, and powdered paint.

  12. Direct Absorption Spectroscopy with Electro-Optic Frequency Combs

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Plusquellic, David F.; Hodges, Joseph T.

    2017-06-01

    The application of electro-optic frequency combs to direct absorption spectroscopy has increased research interest in high-agility, modulator-based comb generation. This talk will review common architectures for electro-optic frequency comb generators as well as describe common self-heterodyne and multi-heterodyne (i.e., dual-comb) detection approaches. In order to achieve a sufficient signal-to-noise ratio on the recorded interferogram while allowing for manageable data volumes, broadband electro-optic frequency combs require deep coherent averaging, preferably in real-time. Applications such as cavity-enhanced spectroscopy, precision atomic and molecular spectroscopy, as well as time-resolved spectroscopy will be introduced. D.A. Long et al., Opt. Lett. 39, 2688 (2014) A.J. Fleisher et al., Opt. Express 24, 10424 (2016)

  13. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  14. Artificial absorption creation for more accurate tunable diode laser absorption spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Chang, Jun; Cao, Lihua; Liu, Yuanyuan; Chen, Xi; Zhu, Cunguang; Qin, Zengguang

    2017-09-01

    A novel strategy for more accurate tunable diode laser absorption spectroscopy (TDLAS) measurement is presented. This method is immune to non-absorption transmission losses, and allows dead zone removal for ultra-low concentration detection, and reference point selection at atmospheric pressure. The method adjusts laser emission and creates artificial absorption peaks according to requirements. By creating an artificial absorption peak next to the real absorption zone, calibration is not necessary. The developed method can be applied to not only wavelength modulation spectroscopy (WMS) but also direct absorption (DA). In WMS, the method does not need two harmonic signals, resulting in higher reliability, better performance, and no electro-optical gain uncertainty. At the same time, non-absorption transmission losses effect is suppressed from 70% to 0.425% with DA and from 70% to 0.225% with WMS method. When the artificial absorption peak coincides with the real one, the dead zone of measurement can be removed to give a lower detection limit, and water vapor still can be detected when concentration is lower than 0.2 ppm in our experiment. Reference point selection uncertainty with the DA method, especially when the signal-to-noise ratio is low and absorption line is broad, can also be facilitated. And the uncertainty of reference point selection is improved from 6% to 0.8% by measuring reference point amplitude. The method is demonstrated and validated by WMS and DA measurements of water vapor (1 atm, 296 K, 1368.597 nm). The measurement results obtained using the new method reveal its promise in TDLAS.

  15. Absorption/emission spectroscopy and applications using shock tubes

    NASA Astrophysics Data System (ADS)

    Sulzmann, K. G. P.

    1988-09-01

    A historical overview is presented about the important contributions made by Penner, his co-workers, and his students to the application of shock-tube techniques for quantitative emission and absorption spectroscopy and its applications to chemical kinetics studies in high-temperature gases. The discussions address critical aspects related to valid determinations of quantitative spectroscopic data and chemical rate parameters and stress the requirements for uniformly heated gas samples, temperature determinations, gas-mixture preparations, selection of useful spectral intervals, verification of LTE conditions, time resolutions for concentration histories, uniqueness of kinetic measurements, as well as accuracies and reproducibilities of measurement results.The potential of absorption spectroscopy by molecule and/or radical resonance radiation and by laser transmission techniques is highlighted for kinetic studies in mixtures with very small reactant concentrations.Besides the work by the honoree and his school, the references include books, monographs and key articles related to the subjects discussed.

  16. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  17. Suspended-core optical fibres for organic dye absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wajnchold, Barbara; Umińska, Ada; Grabka, Michał; Kotas, Dariusz; Pustelny, Szymon; Gawlik, Wojciech

    2013-05-01

    In this paper, we report on our study of UV-VIS absorption spectroscopy in suspended-core optical fibres (SCFs) filled with organic-dye solutions. We compare two different dye classes, the anionic dye - bromophenol blue sodium salt (BB) and cationic dye - oxazine 725 perchlorate (OX). While the results obtained with BB are in a good agreement with the spectra measured in a standard reference cuvette, those obtained with OX are different and reveal much stronger absorption of light than in cuvettes. This stronger absorption indicates accumulation of the dye molecules on the short section of the core close to the end of the fibre. This observation demonstrates difference in physicochemical properties of the two dye classes and is important for the development of chemical sensors based on SCFs.

  18. Temperature dependent soft x-ray absorption spectroscopy of liquids

    NASA Astrophysics Data System (ADS)

    Meibohm, Jan; Schreck, Simon; Wernet, Philippe

    2014-10-01

    A novel sample holder is introduced which allows for temperature dependent soft x-ray absorption spectroscopy of liquids in transmission mode. The setup is based on sample cells with x-ray transmissive silicon nitride windows. A cooling circuit allows for temperature regulation of the sample liquid between -10 °C and +50 °C. The setup enables to record soft x-ray absorption spectra of liquids in transmission mode with a temperature resolution of 0.5 K and better. Reliability and reproducibility of the spectra are demonstrated by investigating the characteristic temperature-induced changes in the oxygen K-edge x-ray absorption spectrum of liquid water. These are compared to the corresponding changes in the oxygen K-edge spectra from x-ray Raman scattering.

  19. Temperature dependent soft x-ray absorption spectroscopy of liquids.

    PubMed

    Meibohm, Jan; Schreck, Simon; Wernet, Philippe

    2014-10-01

    A novel sample holder is introduced which allows for temperature dependent soft x-ray absorption spectroscopy of liquids in transmission mode. The setup is based on sample cells with x-ray transmissive silicon nitride windows. A cooling circuit allows for temperature regulation of the sample liquid between -10 °C and +50 °C. The setup enables to record soft x-ray absorption spectra of liquids in transmission mode with a temperature resolution of 0.5 K and better. Reliability and reproducibility of the spectra are demonstrated by investigating the characteristic temperature-induced changes in the oxygen K-edge x-ray absorption spectrum of liquid water. These are compared to the corresponding changes in the oxygen K-edge spectra from x-ray Raman scattering.

  20. Atmospheric and environmental sensing by photonic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, T.; Zhao, W.; Wysocki, G.; Cui, X.; Lengignon, C.; Maamary, R.; Fertein, E.; Coeur, C.; Cassez, A.; Wang, Y.; Zhang, W.; Gao, X.; Liu, W.; Dong, F.; Zha, G.; Zheng, Xu; Wang, T.

    2013-01-01

    Chemically reactive short-lived species play a crucial role in tropospheric processes affecting regional air quality and global climate change. Contrary to long-lived species (such as greenhouse gases), fast, accurate and precise monitoring changes in concentration of atmospheric short-lived species represents a real challenge due to their short life time (~1 s for OH radical) and very low concentration in the atmosphere (down to 106 molecules/cm3, corresponding to 0.1 pptv at standard temperature and pressure). We report on our recent progress in instrumentation developments for spectroscopic sensing of trace reactive species. Modern photonic sources such as quantum cascade laser (QCL), distributed feedback (DFB) diode laser, light emitting diode (LED), difference-frequency generation (DFG) parametric source are implemented in conjunction with highsensitivity spectroscopic measurement techniques for : (1) nitrous acid (HONO) monitoring by QCL-based long optical pathlength absorption spectroscopy and LED-based IBBCEAS (incoherent broadband cavity-enhanced absorption spectroscopy); (2) DFB laser-based hydroxyl free radical (OH) detection using WM-OA-ICOS (wavelength modulation off-axis integrated cavity output spectroscopy) and FRS (Faraday rotation spectroscopy), respectively; (3) nitrate radical (NO3) and nitrogen dioxide (NO2) simultaneous measurements with IBBCEAS approach. Applications in field observation and in smog chamber study will be presented.

  1. Use of absorption spectroscopy for refined petroleum product discrimination

    NASA Astrophysics Data System (ADS)

    Short, Michael

    1991-07-01

    On-line discrimination between arbitrary petroleum products is necessary for optimal control of petroleum refinery and pipeline operation and process control involving petroleum distillates. There are a number of techniques by which petroleum products can be distinguished from one another. Among these, optical measurements offer fast, non-intrusive, real-time characterization. The application examined here involves optically monitoring the interface between dissimilar batches of fluids in a gasoline pipeline. After examination of near- infrared and mid-infrared absorption spectroscopy and Raman spectroscopy, Fourier transform mid-infrared (FTIR) spectroscopy was chosen as the best candidate for implementation. On- line FTIR data is presented, verifying the applicability of the technique for batch interface detection.

  2. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  3. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-03-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy.

  4. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    PubMed Central

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-01-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy. PMID:28262765

  5. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    SciTech Connect

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  6. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Requejo, Olga Mena; Quigg, Chris

    2005-04-15

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21}-10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the line shape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  7. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  8. Imide photodissociation investigated by X-ray absorption spectroscopy.

    PubMed

    Johnson, Phillip S; Cook, Peter L; Liu, Xiaosong; Yang, Wanli; Bai, Yiqun; Abbott, Nicholas L; Himpsel, F J

    2012-06-21

    X-ray absorption spectroscopy is used to investigate the photodissociation of the imides PMDI (pyromellitic diimide) and SSMCC (sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate). PMDI contains only one type of imide, and its photodissociation can be explained by a simple conversion from imide to a mix of imine and nitrile after desorption of the oxygens from the imide. SSMCC contains two different imides. One reacts like PMDI, the other in a more complex multistep process. Eventually, N(2) is formed in the bulk of the sample at high radiation density. The sequence of reactions is inferred from the π* peaks in total electron yield and fluorescence yield absorption spectra at the N 1s and O 1s edges. First-order rate equations are used to model the evolution of the peak areas versus radiation dose.

  9. Quantitative analysis of immobilized metalloenzymes by atomic absorption spectroscopy.

    PubMed

    Opwis, Klaus; Knittel, Dierk; Schollmeyer, Eckhard

    2004-12-01

    A new, sensitive assay for the quantitative determination of immobilized metal containing enzymes has been developed using atomic absorption spectroscopy (AAS). In contrast with conventionally used indirect methods the described quantitative AAS assay for metalloenzymes allows more exact analyses, because the carrier material with the enzyme is investigated directly. As an example, the validity and reliability of the method was examined by fixing the iron-containing enzyme catalase on cotton fabrics using different immobilization techniques. Sample preparation was carried out by dissolving the loaded fabrics in sulfuric acid before oxidising the residues with hydrogen peroxide. The iron concentrations were determined by flame atomic absorption spectrometry after calibration of the spectrometer with solutions of the free enzyme at different concentrations.

  10. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  11. Principles and calibration of collinear photofragmentation and atomic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sorvajärvi, Tapio; Toivonen, Juha

    2014-06-01

    The kinetics of signal formation in collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) are discussed, and theoretical equations describing the relation between the concentration of the target molecule and the detected atomic absorption in case of pure and impure samples are derived. The validity of the equation for pure samples is studied experimentally by comparing measured target molecule concentrations to concentrations determined using two other independent techniques. Our study shows that CPFAAS is capable of measuring target molecule concentrations from parts per billion (ppb) to hundreds of parts per million (ppm) in microsecond timescale. Moreover, the possibility to extend the dynamic range to cover eight orders of magnitude with a proper selection of fragmentation light source is discussed. The maximum deviation between the CPFAAS technique and a reference measurement technique is found to be less than 5 %. In this study, potassium chloride vapor and atomic potassium are used as a target molecule and a probed atom, respectively.

  12. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy.

    PubMed

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-05

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  13. Piezo-locking a diode laser with saturated absorption spectroscopy

    SciTech Connect

    Debs, J. E.; Robins, N. P.; Lance, A.; Kruger, M. B.; Close, J. D

    2008-10-01

    We demonstrate modulation-based frequency locking of an external cavity diode laser, utilizing a piezo-electrically actuated mirror, external to the laser cavity, to create an error signal from saturated absorption spectroscopy. With this method, a laser stabilized to a rubidium hyperfine transition has a FWHM of 130 kHz over seconds, making the locked laser suitable for experiments in atomic physics, such as creating and manipulating Bose-Einstein condensates. This technique combines the advantages of low-amplitude modulation, simplicity, performance, and price, factors that are usually considered to be mutually exclusive.

  14. [Measurement of oxygen concentration using multimode diode laser absorption spectroscopy].

    PubMed

    Gao, Guang-zhen; Cai, Ting-dong; Hu, Bo; Jia, Tian-jun

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a widely used technique for high sensitivity, good selectivity and fast response. It is widely used in environment monitoring, industrial process control and biomedical sensing. In order to overcome the drawbacks of TDLAS including high cost, poor stability and center wavelength shift problem. A multi-mode diode laser system based on correlation spectroscopy and wavelength modulation spectroscopy (TMDL-COSPEC-WMS) was used to measure O2 concentration near 760nm at the 1%~30% range of near room temperature. During the experiment, the light is splitter into two beams, respectively through the sample and measuring cell, two receiving optical signal collection containing gas concentration information sent back stage treatment, invert the oxygen concentration through correlation and ratio between measured signal and reference signal, the correlation spectroscopy harmonic detection technique is used to improve the stability of the system and the signal to noise ratio. The result showed that, there was a good linear relationship between the measured oxygen concentration and the actual concentration value. A detection limit of 280 pmm. m in the 1 atmospheric which approved of the same sample. A continuous measurement for oxygen with the standard deviation of 0. 056% in ambient air during approximately 30 minutes confirms the stability and the capability of the system. The design of the system includes soft and hardware can meet the needs of oxygen online monitoring. The experimental device is simple and easy to use, easy to complex environment application.

  15. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  16. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  17. Azimuthal Doppler shift of absorption spectrum in optical vortex laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Ozawa, Naoya; Terasaka, Kenichiro; Tanaka, Masayoshi; Nagaoka, Kenichi; Morisaki, Tomohiro

    2016-10-01

    Laser spectroscopy is a powerful diagnostic tool for measuring the mean flow velocity of plasma particles. We have been developing a new laser spectroscopy method utilizing an optical vortex beam, which has helical phase fronts corresponding to the phase change in the azimuthal direction. Because of this phase change, a Doppler effect is experienced even by an atom crossing the beam vertically. The additional azimuthal Doppler shift is proportional to the topological charge of optical vortex and is inversely proportional to the distance from the beam axis in which the beam intensity is vanished by destructive interference or the phase singularity. In order to detect the azimuthal Doppler shift, we have performed a laser absorption spectroscopy experiment with the linear ECR plasma device HYPER-I. Since the azimuthal Doppler shift depends on a position in the beam cross section, the absorption spectra at various positions were reconstructed from the transmitted beam intensity measured by a beam profiler. We have observed a clear spatial dependence of the Doppler shift, which qualitatively agreed with theory. Detailed experimental results, as well as remaining issues and future prospect, will be discussed at the meeting. This study was partially supported by JAPS KAKENHI Grand Numbers 15K05365 and 25287152.

  18. Sensitive detection of weak absorption signals in photoacoustic spectroscopy by using derivative spectroscopy and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zheng, Jincun; Tang, Zhilie; He, Yongheng; Guo, Lina

    2008-05-01

    This report presents a practical analytical method of photoacoustic (PA) spectroscopy that is based on wavelet transform (WT) and the first-derivative PA spectrum. An experimental setup is specially designed to obtain the first-derivative spectrum, which aims to identify some unnoticeable absorption peaks in the normal PA spectrum. To enhance the detectability of overlapping spectral bands, the WT is used to decompose the PA spectrum signals into a series of localized contributions (details and approximation) on the basis of the frequency. For the decomposed contributions do not change the absorption peak position of PA spectrum, one can retrieve the weak absorption signals by the decomposed result of WT. Because of the use of derivative spectroscopy and WT, three unnoticeable absorption peaks that are hidden in the PA spectrum of carbon absorption are precisely retrieved, the wavelengths of which are 699.7, 752.7, and 775.5nm, respectively. This analytical method, which has the virtue of using a physical method and using a computer software method, can achieve great sensitivity and accuracy for PA spectral analysis.

  19. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  20. Precision atomic beam density characterization by diode laser absorption spectroscopy

    SciTech Connect

    Oxley, Paul; Wihbey, Joseph

    2016-09-15

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  1. Precision atomic beam density characterization by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  2. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    PubMed

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10(-5) are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10(4) atoms cm(-3). The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  3. Optical humidity detection based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Keke; Liu, Shixuan; Chen, Shizhe; Zhao, Qiang; Zhang, Lijuan; Li, Xuanqun; Wang, Wenyan; Wu, Yushang

    2017-02-01

    Humidity is an important environmental parameter, which is difficult to be measured accurately and quickly using traditional measurement methods. Under the environment of low temperature or high humidity, traditional humidity and temperature sensor has shortages in humidity measurement accuracy, corresponding time and wet fade speed. To solve these problems, this paper proposes a method to measure the environmental humidity with wavelength modulation technology and harmonic detection technology based on tunable diode laser absorption spectroscopy. H2O molecular absorption line near 1392 nm is selected as the characteristic spectra. The effects of temperature, pressure and water concentration on the absorption spectrum width, the wavelength modulation coefficient and the amplitude of the harmonic signal are analyzed. Humidity and temperature sensor is modified using temperature and pressure compensation model, and the influence of the water concentration variation is eliminated by the iterative algorithm. The new humidity and temperature sensor prototype is developed, and the structure of the optical system is simple, which is easy to be adjusted. The response frequency of the humidity detection is 40 Hz. The experiment was carried out for 3 months at Qingdao national basic weather station. Experimental results show that the consistency of the humidity and temperature data is very good, which can proves the validity of the humidity measurement technology.

  4. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  5. Optical re-injection in cavity-enhanced absorption spectroscopy.

    PubMed

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  6. Optical re-injection in cavity-enhanced absorption spectroscopy

    SciTech Connect

    Leen, J. Brian O’Keefe, Anthony

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  7. Optimization of a GFAAS method for determination of total inorganic arsenic in drinking water.

    PubMed

    Michon, Jérôme; Deluchat, Véronique; Al Shukry, Raad; Dagot, Christophe; Bollinger, Jean-Claude

    2007-01-15

    The new 10mugl(-1) arsenic standard in drinking water has been a spur to the search for reliable routine analytical methods with a limit of detection at the mugl(-1) level. These methods also need to be easy to handle due to the routine analyses that are required in drinking water monitoring. Graphite furnace atomic absorption spectrometry (GFAAS) meets these requirements, but the limit of detection is generally too high except for methods using a pre-concentration or separation step. The use of a high-intensity boosted discharge hollow-cathode lamp decreases the baseline noise level and therefore allows a lower limit of detection. The temperature program, chemical matrix modifier and thermal stabilizer additives were optimized for total inorganic arsenic determination with GFAAS, without preliminary treatment. The optimal furnace program was validated with a proprietary software. The limit of detection was 0.26mugAsl(-1) for a sample volume of 16mul corresponding to 4.2pgAs. This attractive technique is rapid as 20 samples can be analysed per hour. This method was validated with arsenic reference solutions. Its applicability was verified with artificial and natural groundwaters. Recoveries from 91 to 105% with relative standard deviation <5% can be easily achieved. The effect of interfering anions and cations commonly found in groundwater was studied. Only phosphates and silicates (respectively at 4 and 20mgl(-1)) lead to significant interferences in the determination of total inorganic arsenic at 4mugl(-1).

  8. Optical absorption and scattering spectroscopies of single nano-objects.

    PubMed

    Crut, Aurélien; Maioli, Paolo; Del Fatti, Natalia; Vallée, Fabrice

    2014-06-07

    Developments of optical detection and spectroscopy methods for single nano-objects are key advances for applications and fundamental understanding of the novel properties exhibited by nanosize systems. These methods are reviewed, focusing on far-field optical approaches based on light absorption and elastic scattering. The principles of the main linear and nonlinear methods are described and experimental results are illustrated in the case of metal nanoparticles, stressing the key role played by the object environment, such as the presence of a substrate, bound surface molecules or other nano-objects. Special attention is devoted to quantitative methods and correlation of the measured optical spectra of a nano-object with its morphology, characterized either optically or by electron microscopy, as this permits precise comparison with theoretical models. Application of these methods to optical detection and spectroscopy for single semiconductor nanowires and carbon nanotubes is also presented. Extension to ultrafast nonlinear extinction or scattering spectroscopies of single nano-objects is finally discussed in the context of investigation of their nonlinear optical response and their electronic, acoustic and thermal properties.

  9. Useful and Fast Method for Blood Lead and Cadmium Determination Using ICP-MS and GF-AAS; Validation Parameters.

    PubMed

    Trzcinka-Ochocka, Malgorzata; Brodzka, Renata; Janasik, Beata

    2016-03-01

    In case of clinical analysis, especially in blood lead (Pb-B) and cadmium (Cd-B) determination, the accuracy and precision of the method are crucial. The objective of this article is to present a simple and useful method for Pb-B and Cd-B determination using ICP-MS (inductively coupled plasma-mass spectrometry) as well as GF-AAS (graphite furnace-atomic absorption spectrometry). The principle of the method is based on the deproteinization of blood samples by addition of 5% nitric acid that eliminates the presence of the protein in the samples, thereby excluding the influence of the organic matrix on the result determinations. A comparison of the two techniques ICP-MS and GF-AAS was established for Pb and Cd determinations in the same 40 blood samples collected from lead workers. The results showed that validation parameters for ICP-MS and GF-AAS were similar, however better for ICP-MS for Pb-B determinations. The detection limit (3×SD) for Pb-B determinations for ICP-MS and GF-AAS was, respectively, 0.16 and 1.0 μg/l, and for Cd-B it was, respectively, 0.08 and 0.02 μg/l. Correlation coefficients (rs) for comparable Pb-B and Cd-B determinations, using these two techniques, showed very good statistically significant correlations and were r = 0.9988, P < 0.0001 for Pb-B and r = 0.9949, P < 0.0001 for Cd-B. The obtained results indicate that the method of deproteinization of blood samples is still the best way to eliminate spectral interferences and influence of the organic matter. The elaborated method is especially dedicated to clinical laboratories and determined low concentrations of lead and cadmium in biological samples. © 2014 Wiley Periodicals, Inc.

  10. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miller, Dennis D.; Rutzke, Michael A.

    Atomic spectroscopy has played a major role in the development of our current database for mineral nutrients and toxicants in foods. When atomic absorption spectrometers became widely available in the 1960s, the development of atomic absorption spectroscopy (AAS) methods for accurately measuring trace amounts of mineral elements in biological samples paved the way for unprecedented advances in fields as diverse as food analysis, nutrition, biochemistry, and toxicology (1). The application of plasmas as excitation sources for atomic emission spectroscopy (AES) led to the commercial availability of instruments for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) beginning in the late 1970s. This instrument has further enhanced our ability to measure the mineral composition of foods and other materials rapidly, accurately, and precisely. More recently, plasmas have been joined with mass spectrometers (MS) to form inductively coupled plasma-mass spectrometer ICP-MS instruments that are capable of measuring mineral elements with extremely low detection limits. These three instrumental methods have largely replaced traditional wet chemistry methods for mineral analysis of foods, although traditional methods for calcium, chloride, iron, and phosphorus remain in use today (see Chap. 12).

  11. Terahertz absorption spectroscopy of protein-containing reverse micellar solution

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Toyota, Y.; Nishi, T.; Nashima, S.

    2012-01-01

    Terahertz time-domain spectroscopy has been carried out for AOT/isooctane reverse micellar solution with myoglobin at the water-to-surfactant molar ratios ( w0) of 0.2 and 4.4. The amplitude of the absorption spectrum increases with increasing the protein concentration at w0 = 0.2, whereas it decreases at w0 = 4.4. The molar extinction coefficients of the protein-filled reverse micelle, and the constituents, i.e., myoglobin, water, and AOT, have been derived by use of the structural parameters of the micellar solution. The experimental results are interpreted in terms of hydration onto the protein and surfactant in the reverse micelle.

  12. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  13. Investigating DNA Radiation Damage Using X-Ray Absorption Spectroscopy

    PubMed Central

    Czapla-Masztafiak, Joanna; Szlachetko, Jakub; Milne, Christopher J.; Lipiec, Ewelina; Sá, Jacinto; Penfold, Thomas J.; Huthwelker, Thomas; Borca, Camelia; Abela, Rafael; Kwiatek, Wojciech M.

    2016-01-01

    The biological influence of radiation on living matter has been studied for years; however, several questions about the detailed mechanism of radiation damage formation remain largely unanswered. Among all biomolecules exposed to radiation, DNA plays an important role because any damage to its molecular structure can affect the whole cell and may lead to chromosomal rearrangements resulting in genomic instability or cell death. To identify and characterize damage induced in the DNA sugar-phosphate backbone, in this work we performed x-ray absorption spectroscopy at the P K-edge on DNA irradiated with either UVA light or protons. By combining the experimental results with theoretical calculations, we were able to establish the types and relative ratio of lesions produced by both UVA and protons around the phosphorus atoms in DNA. PMID:27028640

  14. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  15. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  16. La Saturated Absorption Spectroscopy for Applications in Quantum Information

    NASA Astrophysics Data System (ADS)

    Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  17. Stratospheric species measurements with tunable diode laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Webster, C. R.

    1983-01-01

    A balloon-borne instrument for stratospheric research has been developed with the capability to simultaneously measure several chemically related species in situ, for a full diurnal cycle. The instrument utilizes tunable infrared diode lasers (TDLs) to provide the radiation in selected wavelength regions for sensitive absorption spectroscopy over a one-km round-trip path. The TDL radiation is directed to a remote retroreflector which is lowered 500 m below the instrument gondola. A HeNe laser and co-aligned TV camera with CID imaging are used for retroreflector tracking. Currently the instrument operates with two TDLs, and the capability exists to measure four stratospheric species: NO, NO2, O3, and H2O. The number of operating TDLs can be expanded to four, resulting in the possibility of measuring several additional trace species.

  18. Antimony quantification in Leishmania by electrothermal atomic absorption spectroscopy.

    PubMed

    Roberts, W L; Rainey, P M

    1993-05-15

    Tri- and pentavalent antimony were quantified in Leishmania mexicana pifanoi amastigotes and promastigotes by atomic absorption spectroscopy with electrothermal atomization. Leishmania grown in axenic culture were treated with either potassium antimony tartrate [Sb(III)] or sodium stibogluconate [Sb(V)]. The parasites were collected, digested with nitric acid, and subjected to atomic absorption spectroscopy. The method was linear from 0 to 7 ng of antimony. The interassay coefficients of variation were 9.6 and 5.7% (N = 5) for 0.52 and 3.7-ng samples of leishmanial antimony, respectively. The limit of detection was 95 pg of antimony. The assay was used to characterize Sb(III) and Sb(V) influx and efflux kinetics. Influx rates were determined at antimony concentrations that produced a 50% inhibition of growth (IC50). The influx rates of Sb(V) into amastigotes and promastigotes were 4.8 and 12 pg/million cells/h, respectively, at 200 micrograms antimony/ml. The influx rate of Sb(III) into amastigotes was 41 pg/million cells/h at 20 micrograms antimony/ml. Influx of Sb(III) into promastigotes at 1 microgram antimony/ml was rapid and reached a plateau of 175 pg/million cells in 2 h. Efflux of Sb(III) and Sb(V) from amastigotes and promastigotes exhibited biphasic kinetics. The initial (alpha) half-life of Sb(V) efflux was less than 4 min and that of Sb(III) was 1-2 h. The apparent terminal (beta) half-lives ranged from 7 to 14 h.

  19. Absorption and emission spectroscopy in natural and synthetic corundum

    NASA Astrophysics Data System (ADS)

    Spinolo, G.; Palanza, V.; Ledonne, A.; Paleari, A.

    2009-04-01

    sapphires absorption spectra. In conclusion, both for metamorphic, synthetic and magmatic sapphires we reached a quite complete interpretation of the spectroscopic data in terms of "non interacting impurity ions". Orange, purple and green sapphires absorption spectra may also be discussed in terms of such interpretative approach. References Fontana I, LeDonne A, Palanza V, Binetti S and Spinolo G (2008) Optical spectroscopy study of type 1 natural and synthetic sapphires. J. Phys:Condens.Matter 20:125228-125232

  20. Acquisition and analysis of GFAAS data

    PubMed Central

    Adams, M. J.; Ewen, G. J.; Shand, C. A.

    1988-01-01

    Since its inception as an analytical technique some 30 years ago atomic absorption spectrometry has become a firmly established method for the analysis of trace metals. Graphite furnace atomic absorption spectrometry provides the analyst with the capability of analysis of solutions containing μg l-1 levels of the analyte, but, because of the transient nature of the signals, a sophisticated approach to the data aquisition and handling of data is required. Most modern commercial graphite furnace atomic absorption spectrometers have built in microprocessors for this purpose but they often have limited capability for extensible user programs and limited data storage facilities. In this communication we describe the use of an Apple IIe microcomputer for the acquisition of data from a Pye Unicam SP9 graphite furnace atomic absorption spectrometer. Details of the interface which utilizes an in-house designed AD converter, and an overview of the Pascal and assembler programs employed are given. The system allows the user to record, store and dump the graphical display of the furnace signalsfor all analyses performed. Files containing details of peak height, and area are formatted on an eight-column spreadsheet. Details of sample type, concentrations of standards, dilutions and replication are entered from the keyboard. The calibration graph is constructed using a moving quadratic fit routine and the concentrations of the analyte in unknown solutions calculated. In addition to this, greater processing power and integration of the data into other analytical schemes can be achieved by exporting the data to other software packages and computers. Details of data transfer between the Apple IIe and an Amstrad PC 1512 are given. Some examples of the use of the system in the development of an analytical methodfor silver in plant material are given. PMID:18925199

  1. Temperature and pressure measurement based on tunable diode laser absorption spectroscopy with gas absorption linewidth detection

    NASA Astrophysics Data System (ADS)

    Meng, Yunxia; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Wang, Tao; Wang, Ranran

    2014-11-01

    A gas temperature and pressure measurement method based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) detecting linewidth of gas absorption line was proposed in this paper. Combined with Lambert-Beer Law and ideal gas law, the relationship between temperature, pressure and gas linewidth with Lorentzian line shape was investigated in theory. Taking carbon monoxide (CO) at 1567.32 nm for example, the linewidths of gas absorption line in different temperatures and pressures were obtained by simulation. The relationship between the linewidth of second harmonic and temperature, pressure with the coefficient 0.025 pm/K and 0.0645 pm/kPa respectively. According to the relationship of simulation results and detected linewidth, the undefined temperature and pressure of CO gas were measured. The gas temperature and pressure measurement based on linewidth detection, avoiding the influence of laser intensity, is an effective temperature and pressure measurement method. This method also has the ability to detect temperature and pressure of other gases with Lorentzian line shape.

  2. Non-destructive plant health sensing using absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Bledsoe, Jim; Manukian, Ara; Pearce, Michael; Weiss, Lee

    1988-01-01

    The sensor group of the 1988 EGM 4001 class, working on NASA's Controlled Ecological Life Support Systems (CELSS) project, investigated many different plant health indicators and the technologies used to test them. The project selected by the group was to measure chlorophyll levels using absorption spectroscopy. The spectrometer measures the amount of chlorophyll in a leaf by measuring the intensity of light of a specific wavelength that is passed through a leaf. The three wavelengths of light being used corresponded to the near-IR absorption peaks of chlorophyll a, chlorophyll b, and chlorophyll-free structures. Experimentation showed that the sensor is indeed measuring levels of chlorophyll a and b and their changes before the human eye can see any changes. The detector clamp causes little damage to the leaf and will give fairly accurate readings on similar locations on a leaf, freeing the clamp from having to remain on the same spot of a leaf for all measurements. External light affects the readings only slightly so that measurements may be taken in light or dark environments. Future designs and experimentation will concentrate on reducing the size of the sensor and adapting it to a wider range of plants.

  3. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  4. Development of Experimental System for Optical Vortex Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asai, Shoma; Yoshimura, Shinji; Aramaki, Mitsutoshi; Ozawa, Naoya; Terasaka, Kenichiro; Tanaka, Masayoshi; Morisaki, Tomohiro

    2015-11-01

    We have been developing a new diagnostics using optical vortex for a linear ECR plasma device named HYPER-I at the National Institute for Fusion Science, Japan. Optical vortex is realized in laboratory as a cylindrically symmetric propagation mode of light beam known as the Laguerre-Gaussian (LG) mode. An atom moving in the LG beam is subjected to an additional azimuthal Doppler shift in contrast to conventionally used Hermite-Gaussian (HG) beams in which the atom experiences the axial Doppler shift alone. Therefore, it is promising that laser spectroscopy using LG beams have a sensitivity for traversing motion across the light path. Although there are several methods to produce optical vortex, we have adopted the holographic method due to its controllability. In the holographic method, the LG beams are obtained as the first-order diffracted light from the hologram displayed on the spatial light modulator. The quality of LG beams has been improved to be applied to optical vortex laser absorption spectroscopy by optimizing the hologram. The details of experimental system will be reported at the meeting. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.

  5. Comparison of absorption, fluorescence, and polarization spectroscopy of atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ashman, Seth; Stifler, Cayla; Romero, Joaquin

    2015-05-01

    An ongoing spectroscopic investigation of atomic rubidium utilizes a two-photon, single-laser excitation process. Transitions accessible with our tunable laser include 5P1 / 2F' <-- 5S1 / 2 F and 5P3 / 2F' <-- 5S1 / 2 F . The laser is split into a pump and probe beam to allow for Doppler-free measurements of transitions between hyperfine levels. The pump and probe beams are overlapped in a counter-propagating geometry and the laser frequency scans over a transition. Absorption, fluorescence and polarization spectroscopy techniques are applied to this basic experimental setup. The temperature of the vapor cell and the power of the pump and probe beams have been varied to explore line broadening effects and signal-to-noise of each technique. This humble setup will hopefully grow into a more robust experimental arrangement in which double resonance, two-laser excitations are used to explore hyperfine state changing collisions between rubidium atoms and noble gas atoms. Rb-noble gas collisions can transfer population between hyperfine levels, such as 5P3 / 2 (F' = 3) <-- Collision 5P3 / 2 (F ' = 2) , and the probe beam couples 7S1 / 2 (F'' = 2) <-- 5P3 / 2 (F' = 3) . Polarization spectroscopy signal depends on the rate of population transfer due to the collision as well as maintaining the orientation created by the pump laser. Fluorescence spectroscopy relies only on transfer of population due to the collision. Comparison of these techniques yields information regarding the change of the magnetic sublevels, mF, during hyperfine state changing collisions.

  6. Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Qin-Bin; Xu, Xue-Mei; Li, Chen-Jing; Ding, Yi-Peng; Cao, Can; Yin, Lin-Zi; Ding, Jia-Feng

    2016-11-01

    The expressions of the second harmonic (2f) signal are derived on the basis of absorption spectral and lock-in theories. A parametric study indicates that the phase shift between the intensity and wavelength modulation makes a great contribution to the 2f signal. A self-calibration wavelength modulation spectroscopy (WMS) method based on tunable diode laser absorption spectroscopy (TDLAS) is applied, combining the advantages of ambient pressure, temperature suppression, and phase-shift influences elimination. Species concentration is retrieved simultaneously from selected 2f signal pairs of measured and reference WMS-2f spectra. The absorption line of acetylene (C2H2) at 1530.36 nm near-infrared is selected to detect C2H2 concentrations in the range of 0-400 ppmv. System sensitivity, detection precision and limit are markedly improved, demonstrating that the self-calibration method has better detecting performance than the conventional WMS. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047, 61502538, and 61501525).

  7. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  8. Gas in Scattering Media Absorption Spectroscopy -- Laser Spectroscopy in Unconventional Environments

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2010-02-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The GASMAS technique combines narrow-band diode-laser spectroscopy with optical propagation in diffuse media. Whereas solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures. These are typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. Molecular oxygen and water vapor have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen gas, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the human sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen, while breathing normally through the mouth. A clinical study comprising 40 patients has been concluded.

  9. Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy.

    PubMed

    Brun, Pierre Hervé; DeGroot, Jennifer L; Dickson, Eva F Gudgin; Farahani, Mohsen; Pottier, Roy H

    2004-01-01

    Palladium-bacteriopheophorbide (WST09), a novel bacteriochlorophyll derivative, is currently being investigated for use as a photodynamic therapy (PDT) drug due to its strong absorption in the near-infrared region and its ability to efficiently generate singlet oxygen when irradiated. In this study, we determined the pharmacokinetics and tissue distribution of WST09 in female EMT6 tumour-bearing Balb/c mice in order to determine if selective accumulation of this drug occurs in tumour tissue. A total of 41 mice were administered WST09 by bolus injection into the tail vein at a dose level of 5.0 +/- 0.8 mg kg(-1). Three to six mice were sacrificed at each of 0.08, 0.25, 0.5, 1.0, 3.0, 6.0, 9.0, 12, 24, 48, 72, and 96 h post injection, and an additional three control mice were sacrificed without having been administered WST09. Terminal blood samples as well as liver, skin, muscle, kidney and tumour samples were obtained from each mouse and analyzed for palladium content (from WST09) using graphite furnace atomic absorption spectroscopy (GFAAS). The representative concentration of WST09 in the plasma and tissues was then calculated. Biphasic kinetics were observed in the plasma, kidney, and liver with clearance from each of these tissues being relatively rapid. Skin, muscle and tumour did not show any significant accumulation at all time points investigated. No selective drug accumulation was seen in the tumour and normal tissues, relative to plasma. Thus the results of this study indicate that vascular targeting resulting from WST09 in the circulation, as opposed to selective WST09 accumulation in tumour tissues, may be responsible for PDT effects in tumours that have been observed in other WST09 studies.

  10. Determination of Aluminum Concentration in Seawater by Colorimetry and Atomic Absorption Spectroscopy.

    DTIC Science & Technology

    1972-11-30

    this was also high. 5 . ,Irj ~ - • lri*; llo. TALLE 2 ATOMIC ABSORPTION SPECTROSCOPY DETEPIJINATION OF ALUMINU1 CONCENTRATIO11 OF SEAWATER OCEAN...Concentration in Seawater by Colorimetr-y and Atomic Absorption Spectroscopy Charles A. Greene, Jr. and Everett N. Jones Ocean Science Department T14

  11. Investigation of Diode Pumped Alkali Laser Atmospheric Transmission Using Tunable Diode Laser Absorption Spectroscopy

    DTIC Science & Technology

    2012-09-01

    101 325 Pa = 760 Torr † NIST 2006 CODATA recommended values 98 Appendix B. Alkali Data Potassium Properties Table 3. Potassium (K) physical...INVESTIGATION OF DIODE PUMPED ALKALI LASER ATMOSPHERIC TRANSMISSION USING TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY DISSERTATION Christopher A... ALKALI LASER ATMOSPHERIC TRANSMISSION USING TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY DISSERTATION Presented to the Faculty Graduate School of

  12. X-ray absorption spectroscopy of bacterial sulfur globules

    SciTech Connect

    George, Graham N.

    2002-08-01

    Sulfur K-edge X-ray absorption spectroscopy is a powerful in situ probe of sulfur biochemistry in intact cells and tissues. Under favorable circumstances the technique can provide quantitative information on the chemical identify of the sulfur species that are present in a sample. Prange et al. have recently reported an X-ray absorption spectroscopic study of bacterial sulfur storage globules. Unfortunately there are substantial problems with the experimental technique employed that, they contend, lead to completely erroneous conclusions. In the more recent of their two papers Prange et al. employed a curve-fitting method similar to that used by us (for more than 10 years). In essence, the method employs simply fitting a linear combination of the spectra of standard compounds to that of the unknown, in this case cultures of bacterial cells. This type of analysis can provide quantitative estimates of the individual sulfur types in the sample, but is critically dependent upon the choice of reference spectra. Prange et al. deduce substantial differences between the chemical forms of sulfur stored in the globules of different organisms; they conclude that the globules of Beggiatoa alba and Thiomargarita namibiensis contain cyclo-octasulfur (S{sub 8}), while those of other organisms contain polythionates (Acidithiobacillus ferrooxidans) and polymeric sulfur (e.g. Allochromatium vinosum). This is in contradiction with an earlier study, in which they found that sulfur in all globule species examined resembled that expected for various sized spherical particles of S{sub 8}. The discrepancy is due to an experimental artefact in the work of Prange et al. arising from their choice of transmittance detection, which is also discussed.

  13. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    PubMed

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  14. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Tittel, F. K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J.

    2014-12-01

    This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

  15. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally

  16. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  17. Diamond Photodetectors for X-Ray Absorption Spectroscopy Applications

    NASA Astrophysics Data System (ADS)

    Pace, Emanuele; De Sio, Antonio; Pan, Zhiyun; Wu, Ziyu; Marcelli, Augusto

    2010-06-01

    Synchrotron radiation (SR) is a fundamental tool for X-ray research. In particular, X-ray absorption spectroscopy (XAS) accesses information as electronic properties, local structure or chemical-physical state in condensed-matter studies. Ionization chambers (ICs) are the most widely used XAS detectors for transmission measurements because of their reliability, high linearity and good stability. Recently, solid-state detectors have been considered and Si p-i-n has been applied to high fluxes (1011 ph/s), where the linearity of ICs is no longer guaranteed. Silicon photodiodes exhibit an extremely linear response in at least 5 decades but show diffraction peaks. Diamond is an ideal substrate to produce radiation-hard, low dark current (<1 pA/cm2), visible-blind and fast-response X-ray detectors with a high S/N ratio. Diamond detectors were tested as SR monitor capable to withstand the high photon flux density of the 3rd generation SR sources. Being the lowest X-ray-absorbing solid-state dielectric material, diamond maximizes the flux through thin self-standing devices with minimal spectral effect down to the soft x-ray range. We will present results of X-ray tests of photoconductors based on different diamond substrates. The results will be compared to standard ICs for XAS applications in terms of spectral quality, noise and linearity in the 4-13 keV energy range.

  18. X-Ray Absorption Spectroscopy of Dinuclear Metallohydrolases

    PubMed Central

    Tierney, David L.; Schenk, Gerhard

    2014-01-01

    In this mini-review, we briefly discuss the physical origin of x-ray absorption spectroscopy (XAS) before illustrating its application using dinuclear metallohydrolases as exemplary systems. The systems we have selected for illustrative purposes present a challenging problem for XAS, one that is ideal to demonstrate the potential of this methodology for structure/function studies of metalloenzymes in general. When the metal ion is redox active, XAS provides a sensitive measure of oxidation-state-dependent differences. When the metal ion is zinc, XAS is the only spectroscopic method that will provide easily accessible structural information in solution. In the case of heterodimetallic sites, XAS has the unique ability to interrogate each metal site independently in the same sample. One of the strongest advantages of XAS is its ability to examine metal ion site structures with crystallographic precision, without the need for a crystal. This is key for studying flexible metal ion sites, such as those described in the selected examples, because it allows one to monitor structural changes that occur during substrate turnover. PMID:25229134

  19. Urban ozone measurements using differential optical absorption spectroscopy.

    PubMed

    Morales, J A; Treacy, J; Coffey, S

    2004-05-01

    In order to improve the air quality in Europe the European Commission has issued a number of directives with regard to acceptable levels of a range of gaseous pollutants, which includes ozone. Therefore, monitoring of this compound is necessary to comply with EU legislation, to provide improved pollution warnings for those who are sensitive to air pollutants as well as providing valuable data for environmental planning. Open-path spectroscopic techniques, such as differential optical absorption spectroscopy (DOAS), are ideal for monitoring pollutants because of the advantages they offer over classical methods and point-source analysers. A DOAS system has been installed in Dublin city centre to monitor a range of criteria pollutants including ozone. Observations of urban background ozone concentrations are presented. The measurements are compared with those obtained using a UV point-source analyser and are presented in the context of the current EU directive. The influence of trans-boundary pollution from mainland Europe leading to ozone episodes is also discussed. Observations of high ozone during this measurement campaign coincided with the influx of photochemically polluted air masses which originated over continental Europe. For the analysed time interval, the data suggest that the ground ozone level in Dublin might be significantly influenced by long-range transport from the United Kingdom and continental Europe.

  20. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  1. Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons under Interstellar Conditions

    NASA Technical Reports Server (NTRS)

    Stone, Bradley M.

    1996-01-01

    The presence and importance of polycyclic aromatic hydrocarbons (PAHs, a large family of organic compounds containing carbon and hydrogen) in the interstellar medium has already been well established. The Astrochemistry Laboratory at NASA Ames Research Center (under the direction of Louis Allamandola and Scott Sandford) has been the center of pioneering work in performing spectroscopy on these molecules under simulated interstellar conditions, and consequently in the identification of these species in the interstellar medium by comparison to astronomically obtained spectra. My project this summer was twofold: (1) We planned on obtaining absorption spectra of a number of PAHs and their cations in cold (4K) Ne matrices. The purpose of these experiments was to increase the number of different PAHs for which laboratory spectra have been obtained under these simulated interstellar conditions; and (2) I was to continue the planning and design of a new laser facility that is being established in the Astrochemistry laboratory. The laser-based experimental set-up will greatly enhance our capability in examining this astrophysically important class of compounds.

  2. Femtosecond XUV transient absorption spectroscopy of small organic molecules

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2015-05-01

    High-order harmonic generation has evolved as a powerful method for the generation of femtosecond XUV pulses with table-top laser systems. Femtosecond XUV transient absorption spectroscopy is an emerging application of these novel light sources for the investigation of molecular dynamics. Recording time-dependent XUV induced core-to-valence transitions traces a molecular response to an initial perturbation with IR, VIS or UV laser pulses from the perspective of distinct atomic sites. Preliminary results for sulfur and selenium containing organic molecules, such as thiophene (C4H4S) and selenophene(C4H4Se), are presented. While molecular orbital dynamics in thiophene will be monitored at the sulfur 2p edge around 165 eV, experiments at the Se 3d (57 eV) and Se 3p (163 eV) edges of selenophene will provide insight about the impact of specific inner-shell transitions within the same atom on the spectroscopic fingerprint of similar dynamics. The method's element-specificity and sensitivity to local valance electronic structures will be exploited to monitor the photo-induced opening of the aromatic rings at the S-C and Se-C bonds, thereby shining new light on the primary steps of photochemical reaction pathways in organic compounds.

  3. Near Edge X-ray Absorption Spectroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Dhez, Olivier; Ade, Harald; Urquhart, Stephen

    2001-03-01

    Synthetic and natural polymers exhibit a rich carbon, nitrogen and oxygen K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS). The spectroscopic variations with chemical structure and composition are interesting in their own right. In addition, the large spectroscopic variability can be utilized for the compositional analysis of materials. This is particularly useful for high spatial resolution NEXAFS microanalysis at lateral spatial resolutions exceeding that achievable with more traditional compositional analysis tools such as Infrared and NMR spectroscopy. To increase our understanding of NEXAFS spectra and to start a database for microanalysis, we acquired carbon NEXAFS spectra of the following polymers: polycarbonate, poly(oxybenzoate-co-2,6oxynaphthoate), poly (p-phenylene terephtalamide), toluene diisocyanate polyurethane, toluene diisocyanate polyurea, 4,4'-methylene di-p-phenylene isocyanate polyurethane, 4,4'-methylene di-p-phenylene isocyanate polyurea, poly(ether ether ketone), poly(alpha-methylstyrene), poly-styrene, poly bromostyrene, poly(2-vinyl styrene), polyethylene, poly(ethylene oxide), polypropylene, poly(propylene oxide), polyisobutylene, ethylene propylene rubber, poly(methyl -metacrylate). These spectra were obtained in transmission with an energy resolution of 150 meV. The energy scale was carefully calibrated in-situ utilizing C02 gas as a reference. Spectral assignments are made based on model compounds and theoretical calculations.

  4. X-ray Absorption Spectroscopy of the Rare Earth orthophosphates

    SciTech Connect

    Shuh, D.K.; Terminello, L.J.; Boatner, L.A.; Abraham, M.M.

    1993-06-01

    X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d{sup 10}4f{sup n} {yields} 3d-{sup 9}4f{sup n+1} transitions and these transitions exhibit a wealth of spectroscopic features. The XAS measurements of single crystal REPO{sub 4} (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) at the 3d edge were performed in the total yield mode at beam line 8-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble the XAS of the corresponding RE metal. This is not unexpected and emphasizes the major contribution of the trivalent state to the electronic transitions at the RE 3d edges. These spectra unequivocally identify the transitions originating from well-characterized RE cores and correlate well with previous theoretical investigations.

  5. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  6. Absorption Spectroscopy of Rubidium in an Alkali Metal Dispenser Cell and Bleached Wave Analysis

    DTIC Science & Technology

    2015-03-26

    ABSORPTION SPECTROSCOPY OF RUBIDIUM IN AN ALKALI METAL DISPENSER CELL AND BLEACHED WAVE ANALYSIS THESIS JAMES M. ROSENTHAL, 2 nd Lt...102 ABSORPTION SPECTROSCOPY OF RUBIDIUM IN AN ALKALI METAL DISPENSER CELL AND BLEACHED WAVE ANALYSIS THESIS Presented to the Faculty...SPECTROSCOPY OF RUBIDIUM IN AN ALKALI METAL DISPENSER CELL AND BLEACHED WAVE ANALYSIS James M. Rosenthal, BA 2 nd Lt, USAF Committee Membership

  7. Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy.

    PubMed

    Martinez-Cruz, Karla; Sepulveda-Jauregui, Armando; Escobar-Orozco, Nayeli; Thalasso, Frederic

    2012-10-01

    Methanogenic activity (MA) tests are commonly carried out to estimate the capability of anaerobic biomass to treat effluents, to evaluate anaerobic activity in bioreactors or natural ecosystems, or to quantify inhibitory effects on methanogenic activity. These activity tests are usually based on the measurement of the volume of biogas produced by volumetric, pressure increase or gas chromatography (GC) methods. In this study, we present an alternative method for non-invasive measurement of methane produced during activity tests in closed vials, based on Infrared Tunable Diode Laser Absorption Spectroscopy (MA-TDLAS). This new method was tested during model acetoclastic and hydrogenotrophic methanogenic activity tests and was compared to a more traditional method based on gas chromatography. From the results obtained, the CH(4) detection limit of the method was estimated to 60 ppm and the minimum measurable methane production rate was estimated to 1.09(.)10(-3) mg l(-1) h(-1), which is below CH(4) production rate usually reported in both anaerobic reactors and natural ecosystems. Additionally to sensitivity, the method has several potential interests compared to more traditional methods among which short measurements time allowing the measurement of a large number of MA test vials, non-invasive measurements avoiding leakage or external interferences and similar cost to GC based methods. It is concluded that MA-TDLAS is a promising method that could be of interest not only in the field of anaerobic digestion but also, in the field of environmental ecology where CH(4) production rates are usually very low. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Studies of cavity enhanced absorption spectroscopy for weak absorption gas measurements

    NASA Astrophysics Data System (ADS)

    Li, Liucheng; Duo, Liping; Gong, Deyu; Ma, Yanhua; Zhang, Zhiguo; Wang, Yuanhu; Zhou, Dongjian; Jin, Yuqi

    2017-01-01

    In order to determine the concentrations of trace amount metastable species in chemical lasers, an off-axis cavity enhanced absorption spectrometer for the detection of weak absorption gases has been built with a noise equivalent absorption sensitivity of 1.6x10-8 cm-1. The absorption spectrum of trace amount gaseous ammonia and water vapor was obtained with a spectral resolution of about 78 MHz. A multiple-line absorption spectroscopic method to determine the temperature of gaseous ammonia has been developed by use of multiple lines of ammonia molecule absorption spectrum.

  10. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  11. [Multi-harmonic analysis of quasi-continuous-wave laser modulation absorption spectroscopy].

    PubMed

    Qi, Ru-bin; Du, Zhen-hui; Meng, Fan-li; Li, Jin-yi; Gao, Dong-yu; Xu, Xiao-bin; Chen, Wen-liang; Xu, Ke-xin

    2012-03-01

    Numerous harmonic components such as multiple frequency, sum frequency and difference frequency of multiple modulation signals were found in quasi-continuous-wave (QCW) diode laser modulation absorption spectroscopy. Then, the authors analyzed these harmonic components' existence in terms of non-linear interactions of laser and gas absorption line. And the signals' characteristics were studied experimentally. The results shows that there are some sum frequency and difference frequency components that have larger amplitudes compared to the second harmonic wavelength modulation spectroscopy signal (2f-WMS) commonly used in tunable diode laser spectroscopy (TDLAS), and it may improve the detection sensitivity of QCW modulation spectroscopy.

  12. Determination of tin in poly(vinyl chloride) by atomic-absorption spectroscopy.

    PubMed

    Anwar, J; Marr, I L

    1982-10-01

    A simple procedure is described for the determination of tin in PVC by atomic-absorption spectroscopy with an air-hydrogen flame, after wet digestion of the sample with sulphuric acid and hydrogen peroxide.

  13. Aerosol particle absorption spectroscopy by photothermal modulation of Mie scattered light

    SciTech Connect

    Campillo, A.J.; Dodge, C.J.; Lin, H.B.

    1981-09-15

    Absorption spectroscopy of suspended submicron-sized aqueous ammonium-sulfate aerosol droplets has been performed by employing a CO/sub 2/ laser to photothermally modulate visible Mie scattered light. (AIP)

  14. [Development of ICP-OES, ICP-MS and GF-AAS Methods for Simultaneous Quantification of Lead, Total Arsenic and Cadmium in Soft Drinks].

    PubMed

    Kataoka, Yohei; Watanabe, Takahiro; Hayashi, Tomoko; Teshima, Reiko; Matsuda, Rieko

    2015-01-01

    In this study, we developed methods to quantify lead, total arsenic and cadmium contained in various kinds of soft drinks, and we evaluated their performance. The samples were digested by common methods to prepare solutions for measurement by ICP-OES, ICP-MS and graphite furnace atomic absorption spectrometry (GF-AAS). After digestion, internal standard was added to the digestion solutions for measurements by ICP-OES and ICP-MS. For measurement by GF-AAS, additional purification of the digestion solution was conducted by back-extraction of the three metals into nitric acid solution after extraction into an organic solvent with ammonium pyrrolidine dithiocarbamate. Performance of the developed methods were evaluated for eight kinds of soft drinks.

  15. [Measurement of the absorption coefficient of barium using cavity ringdown spectroscopy].

    PubMed

    Zhao, H; Liu, X; Zhan, M

    2001-06-01

    An apparatus for cavity ringdown spectroscopy was constructed and used for atomic absorption measurement. The transition probability for 6s6p1P1<--6s6s1S0 transition of barium atoms was obtained in the self-made apparatus. The relation between atomic absorption coefficient and atomic oven temperature was also analysed.

  16. VUV absorption spectroscopy of bacterial spores and DNA components

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2017-01-01

    Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.

  17. In situ Gas Temperature Measurements by UV-Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fateev, A.; Clausen, S.

    2009-02-01

    The absorption spectrum of the NO A2Σ+ ← X2Πγ-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in the range from 23 °C to 1,500 °C. The gas temperature was evaluated (1) from the analysis of the structure of selected NO high-resolution γ-absorption bands and (2) from the analysis of vibrational distribution in the NO γ-absorption system in the (211-238) nm spectral range. The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 °C over an optical absorption path length of 0.533 m.

  18. Miniaturized King furnace permits absorption spectroscopy of small samples

    NASA Technical Reports Server (NTRS)

    Ercoli, B.; Tompkins, F. S.

    1968-01-01

    Miniature King-type furnace, consisting of an inductively heated, small diameter tantalum tube supported in a radiation shield eliminates the disadvantages of the conventional furnace in obtaining absorption spectra of metal vapors.

  19. Direct and quantitative photothermal absorption spectroscopy of individual particulates

    SciTech Connect

    Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang; Zheng, Ruiting; Shen, Sheng

    2013-12-23

    Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

  20. The use of CNDO in spectroscopy. XV. Two photon absorption

    NASA Astrophysics Data System (ADS)

    Marchese, Francis T.; Seliskar, C. J.; Jaffé, H. H.

    1980-04-01

    Two-photon absorptivities have been calculated within the CNDO/S-CI molecular orbital framework of Del Bene and Jaffé utilizing the second order time dependent perturbation equations of Göppert-Mayer and polarization methods of McClain. Good agreement is found between this theory and experiment for transition energies, symmetries, and two-photon absorptivities for the following molecules: biphenyl, terphenyl, 2,2'-difluorobiphenyl, 2,2'-bipyridyl, phenanthrene, and the isoelectronic series: fluorene, carbazole, dibenzofuran.

  1. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  2. Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame

    NASA Astrophysics Data System (ADS)

    Scherer, J. J.; Rakestraw, D. J.

    1997-01-01

    The formyl radical has been detected via the ÖX˜ system in a low pressure CH 4/N 2/O 2 flame using cavity ringdown laser absorption spectroscopy. The direct absorption data obtained in these initial studies allows determination of the absolute HCO concentration in the flame of ca. 2.1(±0.9) × 10 13 mol cm -3, which is in excellent agreement with flame chemistry simulations. The extrapolated detection limit at 300 K of ≈ 1.4(±0.6) × 10 11 mol cm -3 is comparable to that of other methods, including intracavity laser absorption spectroscopy.

  3. High-Resolution Absorption Spectroscopy of NO2

    DTIC Science & Technology

    1987-08-31

    identify by block number) FIELD GROUP SUB-GROUP Atmospheric propagation, Laser spectroscopy, Nitrogen dioxide , Spectroscopy 19. RACT (Continue on reverse if...pulsed dye laser having a 0.05-A"-bandwidth (FWHM). This represents an improvement of at least a factor of three over the resolution employed in...concise interpretation of the observed features has yet to be made. Actual state-to-state assignments in the visible and near UV have been possible only

  4. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan; Santos Sousa, Joao; Stancu, Gabi Daniel; Hubertus van Helden, Jean-Pierre

    2015-10-01

    Absorption spectroscopy (AS) represents a reliable method for the characterization of cold atmospheric pressure plasma jets. The method’s simplicity stands out in comparison to competing diagnostic techniques. AS is an in situ, non-invasive technique giving absolute densities, free of calibration procedures, which other diagnostics, such as laser-induced fluorescence or optical emission spectroscopy, have to rely on. Ground state densities can be determined without the knowledge of the influence of collisional quenching. Therefore, absolute densities determined by absorption spectroscopy can be taken as calibration for other methods. In this paper, fundamentals of absorption spectroscopy are presented as an entrance to the topic. In the second part of the manuscript, a review of AS performed on cold atmospheric pressure plasma jets, as they are used e.g. in the field of plasma medicine, is presented. The focus is set on special techniques overcoming not only the drawback of spectrally overlapping absorbing species, but also the line-of-sight densities that AS usually provides or the necessity of sufficiently long absorption lengths. Where references are not available for measurements on cold atmospheric pressure plasma jets, other plasma sources including low-pressure plasmas are taken as an example to give suggestions for possible approaches. The final part is a table summarizing examples of absorption spectroscopic measurements on cold atmospheric pressure plasma jets. With this, the paper provides a ‘best practice’ guideline and gives a compendium of works by groups performing absorption spectroscopy on cold atmospheric pressure plasma jets.

  5. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  6. [Determination of lead in microemulsified rapeseed oil and bio-diesel oil by GFAAS].

    PubMed

    Li, Sheng-qing; He, Xiao-min; Du, Ping; Wang, Min; Chen, Hao; Wu, Mou-cheng

    2008-10-01

    Bio-diesel oil has attracted much attention as a substitutable energy sources for its renewable and eco-friendly property. However, problems of lead contamination in fuel are also emphasized increasingly at present. So it was of quite significance to determine the contents of lead in bio-diesel oil and its raw material rapeseed oil. An effective method was developed for the rapid determination of lead in rapeseed oil and bio-diesel oil by graphite furnace atomic absorption spectrometry (GFAAS) after their stabilization as microemulsions. In this research work, polyethyleneglycol octyl phenyl ether and n-butanol were used for emulsifier and auxiliary emulsifying agent, respectively. For Pb, efficient thermal stabilization was obtained using NH4H2PO4 as matrix modifier. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization and the influence of the microemulsion composition on the GFAAS response were observed by mixing different organic solvents. The ashing and atomization temperature and ramp rate influenced the sensitivity obtained for Ph. Take this into account, the optimum conditions of the graphite furnace atomic absorption spectrometric determination of Pb in rapeseed oil and bio-diesel oil samples were investigated. The results showed that the microemulsion was quite stable when the value of V(20% polyethyleneglycol octyl phenyl ether), V(n-butanol), V(oil) and V(water) was 0.1: 8.9: 0.5: 0.5, without matrix interference effect. The determination limit of the proposed method was 126.2 microg x L(-1) for Pb, comfortably below the values found in the analyzed samples. The recoveries were from 81.8% to 109.0%, which performed using the addition of different concentrations of lead to bio-diesel oil, rapeseed oil and petrochemical diesel samples. The relative standard deviation of determination was 5.84%. This work showed the great efficiency of the microemulsion

  7. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    DOEpatents

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  8. [Concentration calibration method of ambient trace-gas monitoring with tunable diode laser absorption spectroscopy].

    PubMed

    Kan, Rui-feng; Liu, Wen-qing; Zhang, Yu-jun; Liu, Jian-guo; Wang, Min; Gao, Shan-hu; Chen, Jun

    2006-03-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a new method to detect trace-gas qualitatively or quantificationally based on the scan characteristic of the diode laser used to obtain the absorption spectroscopy in the characteristic absorption region It needs to be combined with a long absorption path in the ambient trace-gas measurements. TDLAS is a new trace gas detective method developed with the combination of a tunable diode laser source and a long absorption path; it has significant advantages not only in the sensitivity but also in rapidity of response. It has been widely used in many atmospheric trace-gases detection, ground trace-gas detection and, gas leakage detection. On-line calibrating is necessary to most trace gas monitor, and in the present paper the authors introduced a simple and accurate method, analyzed it in the theory, and proved it's feasibility in the experiment.

  9. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  10. Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers.

    PubMed

    Sanghera, J S; Kung, F H; Pureza, P C; Nguyen, V Q; Miklos, R E; Aggarwal, I D

    1994-09-20

    We have used telluride glass fibers fabricated in house to measure the evanescent-absorption spectra of water, methanol, ethanol, isopropanol, acetone, ethanoic acid, hexane, and chloroform. Furthermore, detection limits of less than 2 vol. % solute were obtained for mixtures of water and methanol, ethanol, isopropanol, acetone, and ethanoic acid. Techniques to reduce the detection limits are discussed.

  11. Time-resolved pump-probe spectroscopy of intraband absorption by a semiconductor nanorod

    NASA Astrophysics Data System (ADS)

    Leonov, Mikhail Y.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory of time-resolved pump-probe optical spectroscopy of intraband absorption of a probe pulse inside an anisotropic semiconductor nanorod. The absorption is preceded by the absorption of the pump pulse resonant to an interband transition. It is assumed that the resonantly exited states of the nanorod are interrelated via the relaxation induced by their interaction with a bath. We reveal the conditions for which the absorption of the probe's pulse is governed by a simple formula regardless of the pulse's shape. This formula is useful for the analysis of the experimental data containing information on the relaxation parameters of the nanorod's electronic subsystem.

  12. Molecular characterization and fingerprinting of vanadyl porphyrin and non-porphyrin compounds in heavy crude petroleums using HPLC-GFAA analysis

    SciTech Connect

    Komlenic, J.J.; Vermeulen, T.; Fish, R.H.

    1982-12-01

    Element-specific high performance liquid chromatography-graphite furnace atomic absorption (HPLC-GFAA) analysis was used to classify vanadyl porphyrin and nonporphyrin compounds present in Boscan, Cerro Negro, Wilmington, and Prudhoe Bay heavy crude oils, containing 1100, 550, 49, and 19 ppM V. The crude oils and pyridine extraction products have been analyzed using the HPLC-GFAA technique with steric exclusion chromatography (SEC) and polar amino-cyano (PAC) columns to yield molecular weight and polarity distributions. 50% of the V present, in the form of low molecular weight vanadyl compounds, is extracted, primarily from the asphaltene fraction of each oil. HPLC-GFAA reveal two classes of extracted vanadyl nonporphyrin compounds. One class, present in Cerro Negro, Wilmington, and Prudhoe Bay pyrdine extract, consists of relatively nonpolar compound(s) with maximum uv-Vis absorbance at 300 nm. The other class, present in Boscan and Cerro Negro crude oils, consists of a more polar nonporphyrin compound(s) with maximum absorbance of 265 nm. The two Venezuelan, high sulfur crude oils contain proportionally greater percentages of vanadyl porphyrin compounds, while the two North American, low sulfur crude oils contain predominantly vanadyl nonporphyrin and nickel porphyrin compounds. A correlation relating V concentration and sulfur and asphaltene content has been observed, while correlations involving V content and depth of burial or age of deposit were not apparent. 21 figures, 5 tables.

  13. Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Rodica

    The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally

  14. Mapping of the Local Interstellar Medium using Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penprase, Bryan Edward

    2017-01-01

    Using the Yale SMARTS 1.5-meter telescope at CTIO and the CHIRON spectrograph, we have developed a program for mapping the local interstellar medium using a sample of over 200 newly observed B stars previously unobserved using Na I absorption lines. This sample includes stars that extend out to map beyond the local bubble to 500 pc. The sample has been observed using high resolution absorption lines, and when combined with previously observed stars with Na I and Ca II data provides a more complete picture of the local ISM than previous surveys. The distances to the stars using the new GAIA database also allows for more accurate determination of distances to features in the lcoal ISM, and new maps of the structure of the ISM hav been prepared with the data.

  15. Ultrafast Extreme Ultraviolet Absorption Spectroscopy of Methylammonium Lead Iodide Perovskite

    NASA Astrophysics Data System (ADS)

    Verkamp, Max A.; Lin, Ming-Fu; Ryland, Elizabeth S.; Vura-Weis, Josh

    2016-06-01

    Methylammonium lead iodide (perovskite) is a leading candidate for use in next-generation solar cell devices. However, the photophysics responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) absorption was used to investigate electron and hole dynamics in perovskite by observing transitions from a common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation with a broad spectrum (40-70 eV) were generated via high-harmonic generation using a tabletop instrument. Transient absorption measurements with visible pump and XUV probe directly observed the relaxation of charge carriers in perovskite after above-band excitation in the femtosecond and picosecond time ranges.

  16. Direct and Quantitative Photothermal Absorption Spectroscopy of Individual Particulates

    DTIC Science & Technology

    2013-01-01

    cantilever as a photothermal sensor.26–29 These cantilevers consist of two layers of materials with different thermal expansion coefficients . When a...microwire and the measurement of absorbed power for the power calibration. The theoretical spectral absorption efficiency for a uniform microwire with...coincide with ex- perimental conditions. First, a size average was performed to account for non- uniformity in the microwire. The standard deviation of this

  17. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    SciTech Connect

    Renaudin, P.; Blancard, C.; Cosse, P.; Faussurier, G.; Lecherbourg, L.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-02

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  18. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Renaudin, P.; Lecherbourg, L.; Blancard, C.; Cossé, P.; Faussurier, G.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  19. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  20. Non-coincident multi-wavelength emission absorption spectroscopy

    SciTech Connect

    Baumann, L.E.

    1995-02-01

    An analysis is presented of the effect of noncoincident sampling on the measurement of atomic number density and temperature by multiwavelength emission absorption. The assumption is made that the two signals, emission and transmitted lamp, are time resolved but not coincident. The analysis demonstrates the validity of averages of such measurements despite fluctuations in temperature and optical depth. At potassium-seeded MHD conditions, the fluctuations introduce additional uncertainty into measurements of potassium atom number density and temperature but do not significantly bias the average results. Experimental measurements in the CFFF aerodynamic duct with coincident and noncoincident sampling support the analysis.

  1. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  2. Total absorption spectroscopy of neutron-rich nuclei around the A = 100 mass region

    NASA Astrophysics Data System (ADS)

    Dombos, Alexander; Algora, Alejandro; Baumann, Thomas; Brett, Jaclyn; Crider, Benjamin; Ginter, Tom; Hager, Ulrike; Kwan, Elaine; Liddick, Sean; Marks, Braden; Naqvi, Farheen; Ong, Wei Jia; Pereira, Jorge; Prokop, Christopher; Quinn, Stephen; Simon, Anna; Scriven, Dustin; Spyrou, Artemis; Sumithrarachchi, Chandana; Deyoung, Paul

    2015-10-01

    Accurate modeling of the r-process requires knowledge of properties related to the β-decay of neutron-rich nuclei, such as β-decay half-lives and β-delayed neutron emission probabilities. These properties are related to the β-decay strength distribution, which can provide a sensitive constraint on theoretical models. Total absorption spectroscopy is a powerful technique to accurately measure quantities needed to calculate the β-decay strength distribution. In an effort to improve models of the r-process, the total absorption spectra of neutron-rich nuclei in the mass region around A = 100 were recently measured using the Summing NaI(Tl) (SuN) detector at the NSCL in the first ever total absorption spectroscopy measurement performed in a fragmentation facility. Total absorption spectra will be presented and the extracted β-decay feeding intensities will be compared to theoretical calculations.

  3. Quasi zero-background tunable diode laser absorption spectroscopy employing a balanced Michelson interferometer.

    PubMed

    Guan, Zuguang; Lewander, Märta; Svanberg, Sune

    2008-12-22

    Tunable diode laser spectroscopy (TDLS) normally observes small fractional absorptive reductions in the light flux. We show, that instead a signal increase on a zero background can be obtained. A Michelson interferometer, which is initially balanced out in destructive interference, is perturbed by gas absorption in one of its arms. Both theoretical analysis and experimental demonstration show that the proposed zero-background TDLS can improve the achievable signal-to-noise ratio.

  4. X-Ray Absorption Spectroscopy of Uranium Dioxide

    SciTech Connect

    Tobin, J G

    2010-12-10

    After the CMMD Seminar by Sung Woo Yu on the subject of the x-ray spectroscopy of UO2, there arose some questions concerning the XAS of UO2. These questions can be distilled down to these three issues: (1) The validity of the data; (2) The monchromator energy calibration; and (3) The validity of XAS component of the figure shown. The following will be shown: (1) The data is valid; (2) It is possible to calibrate the monchromator; and (3) The XAS component of the above picture is correct. The remainder of this document is in three sections, corresponding to these three issues.

  5. Absorption Spectroscopy through the Dark Zone of Solid Propellant Flames

    DTIC Science & Technology

    1992-04-01

    spectroscopy; nitric 16. PRICE COOE oxide 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMIITA TION OF ABSTRACT’ OF...Nitircellulose* JA-2 16% Nitroglycerin 2,791 @ 1.5 MPa 1,120 25% DEGDN M9 58% Nitrocellulose** 40% Nitroglycerin 3,019 @ 1.5 MPa 1,308 1.6% KNO3 HMX2 80...ATTN: E. Price Forrestal Campus Library W.C. Strahle ATTN: K Brezinsky B.T. Zinn I. Glassman Atlanta, GA 30332 P.O. Box 710 Princeton, NJ 08540

  6. Calibration of effective optical path length for hollow-waveguide based gas cell using absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Du, Zhenhui; Li, Jinyi

    2016-10-01

    The Hollow Waveguide (HWG) has emerged as a novel tool to transmit laser power. Owing to its long Effective Optical Path Length (EOPL) within a relatively small volume, it is suitable for the application as a gas cell in concentration measurement by using laser spectroscopy. The measurement of effective optical path length for a hollow waveguide, which possesses the physical length of 284.0 cm, by using Tunable Diode Laser Absorption Spectroscopy (TDLAS) was demonstrated. Carbon dioxide was used as a sample gas for a hollow waveguide calibration. A 2004 nm Distributed Feed-Back (DFB) laser was used as the light source to cover a CO2 line near 2003 nm, which was selected as the target line in the measurement. The reference direct absorption spectroscopy signal was obtained by delivering CO2 into a reference cell possessing a length of 29.4 cm. Then the effective optical path length of HWG was calculated by least-squares fitting the measured absorption signal to the reference absorption signal. The measured EOPL of HWG was 282.8 cm and the repeatability error of effective optical path length was calculated as 0.08 cm. A detection limit of 0.057 cm (with integral time 5 s) characterized by the Allan variance, was derived. The effective optical path length is obtained as the significant parameter to calculate the concentration of gases and it is of great importance to precise measurement of absorption spectroscopy.

  7. Analysis of the absorption layer of CIGS solar cell by laser-induced breakdown spectroscopy.

    PubMed

    Lee, Seok H; Shim, Hee S; Kim, Chan K; Yoo, Jong H; Russo, Richard E; Jeong, Sungho

    2012-03-01

    Laser induced breakdown spectroscopy (LIBS) was applied for the elemental analysis of the thin copper indium gallium diselenide (CuIn(1-x)Ga(x)Se(2) [CIGS]) absorption layer deposited on Mo-coated soda-lime glass by the co-evaporation technique. The optimal laser and detection parameters for LIBS measurement of the CIGS absorption layer (1.23 μm) were investigated. The calibration results of Ga/In ratio with respect to the concentration ratios measured by x-ray fluorescence and inductively coupled plasma optical emission spectroscopy showed good linearity. © 2012 Optical Society of America

  8. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-01-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The A(sub V)/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous

  9. Absorption of copper(II) by creosote bush (Larrea tridentata): use of atomic and x-ray absorption spectroscopy.

    PubMed

    Gardea-Torresdey, J L; Arteaga, S; Tiemann, K J; Chianelli, R; Pingitore, N; Mackay, W

    2001-11-01

    Larrea tridentata (creosote bush), a common North American native desert shrub, exhibits the ability to take up copper(II) ions rapidly from solution. Following hydroponic studies, U.S. Environmental Protection Agency method 200.3 was used to digest the plant samples, and flame atomic absorption spectroscopy (FAAS) was used to determine the amount of copper taken up in different parts of the plant. The amount of copper(II) found within the roots, stems, and leaves was 13.8, 1.1, and 0.6 mg/g, respectively, after the creosote bush was exposed to a 63.5-ppm copper(II) solution for 48 h. When the plant was exposed to a 635-ppm copper(II) solution, the roots, stems, and leaves contained 35.0, 10.5, and 3.8 mg/g, respectively. In addition to FAAS analysis, x-ray microfluorescence (XRMF) analysis of the plant samples provided further confirmation of copper absorption by the various plant parts. X-ray absorption spectroscopy (XAS) elucidated the oxidation state of the copper absorbed by the plants. The copper(II) absorbed from solution remained as copper(II) bound to oxygen-containing ligands within the plant samples. The results of this study indicate that creosote bush may provide a useful and novel method of removing copper(II) from contaminated soils in an environmentally friendly manner.

  10. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods which have been proposed for the detection of trace concentrations of gaseous contaminants include Raman backscattering (LIDAR) and passive radiometry (LOPAIR). Remote sensing techniques using laser spectrometry are presented and in particular a simple long-path laser absorption method (LOLA), which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels is discussed. A number of species were selected for study which are representative of those most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Computer programs were developed which will permit a real-time analysis of the monitored atmosphere. Estimates of the dynamic range of this monitoring technique for various system configurations, and comparison with other methods of analysis, are given.

  11. Total absorption spectroscopy of N = 51 nucleus 85Se

    NASA Astrophysics Data System (ADS)

    Goetz, K. C.; Grzywacz, R. K.; Rykaczewski, K. P.; Karny, M.; Fialkowska, A.; Wolinska-Cichocka, M.; Rasco, B. C.; Zganjar, E. F.; Johnson, J. W.; Gross, C. J.

    2014-09-01

    An experimental campaign utilizing the Modular Total Absorption Spectrometer (MTAS) was conducted at the HRIBF facility in January of 2012. The campaign studied 22 isotopes, many of which were identified as the highest priority for decay heat analysis during a nuclear fuel cycle, see the report by the OECD-IAEA Nuclear Energy Agency in 2007. The case of 85Se will be discussed. 85Se is a Z = 34, N = 51 nucleus with the valence neutron located in the positive parity sd single particle state. Therefore, its decay properties are determined by interplay between first forbidden decays of the valence neutron and Gamow-Teller decay of a 78Ni core. Analysis of the data obtained during the January 2012 run indicates a significant increase of the beta strength function when compared with previous measurements, see Ref..

  12. VUV Absorption Spectroscopy of Planetary Molecules at Low Temperature

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Benilan, Y.; Ferradaz, T.; Fray, N.; Schwell, M.

    2005-08-01

    A critical review of the available absorption coefficient in the vacuum ultraviolet domain (100-200 nm) has lead us to undertake new measurements at the Berlin synchrotron facility (BESSY). Many of the molecules detected in planetary atmospheres and in particular those which need to be synthesized in the laboratory, have never been measured at low temperature. The first molecules that we have studied are HCN, HC3N and C2N2. New absorption coefficients have been obtained including first spectra at low temperature (220 K). The effect of the temperature on the spectra can then be discussed in view of the application to the much colder atmosphere of Titan. The nitriles studied here play an important role in the chemistry taking place in Titan's atmosphere and are believed to be responsible for the formation of Titan's aerosols. From our measurements, we have calculated the photodissociation rates for each molecule which are essential to include in any photochemical model. This is true for Titan but also for cometary and interstellar medium models. To describe the formation of a solid phase, the models also need to include photodissociation rates for larger molecules which have not been detected yet. This will now be possible for HC5N since the first spectra of this molecule has been obtained by our team. Furthermore, the first stellar occultation measurement of Titan's atmosphere by the UV spectrometer (UVIS) on board the CASSINI spacecraft has permitted the detection of species not observed before in this wavelength domain. But it has also shown a lack of experimental data in this domain. So far, the model is not able to reproduce the observed spectral feature. C4H2 is the molecule that should explain some of the observed feature but absolute cross sections are missing. We will present our latest experimental measurements on this molecule.

  13. Difference Between Far-Infrared Photoconductivity Spectroscopy and Absorption Spectroscopy: Theoretical Evidence of the Electron Reservoir Mechanism

    NASA Astrophysics Data System (ADS)

    Toyoda, Tadashi; Fujita, Maho; Uchida, Tomohisa; Hiraiwa, Nobuyoshi; Fukuda, Taturo; Koizumi, Hideki; Zhang, Chao

    2013-08-01

    The intriguing difference between far-infrared photoconductivity spectroscopy and absorption spectroscopy in the measurement of the magnetoplasmon frequency in GaAs quantum wells reported by Holland et al. [Phys. Rev. Lett. 93, 186804 (2004)] remains unexplained to date. This Letter provides a consistent mechanism to solve this puzzle. The mechanism is based on the electron reservoir model for the integer quantum Hall effect in graphene [Phys. Lett. A 376, 616 (2012)]. We predict sharp kinks to appear in the magnetic induction dependence of the magnetoplasmon frequency at very low temperatures such as 14 mK in the same GaAs quantum well sample used by Holland et al..

  14. Examination of the local structure in composite and lowdimensional semiconductor by X-ray Absorption Spectroscopy

    SciTech Connect

    Lawniczak-Jablonska, K.; Demchenko, I.N.; Piskorska, E.; Wolska,A.; Talik, E.; Zakharov, D.N.; Liliental-Weber, Z.

    2006-09-25

    X-ray absorption methods have been successfully used to obtain quantitative information about local atomic composition of two different materials. X-ray Absorption Near Edge Structure analysis and X-Ray Photoelectron Spectroscopy allowed us to determine seven chemical compounds and their concentrations in c-BN composite. Use of Extended X-ray Absorption Fine Structure in combination with Transmission Electron Microscopy enabled us to determine the composition and size of buried Ge quantum dots. It was found that the quantum dots consisted out of pure Ge core covered by 1-2 monolayers of a layer rich in Si.

  15. Time-Resolved Broadband Cavity-Enhanced Absorption Spectroscopy behind Shock Waves.

    PubMed

    Matsugi, Akira; Shiina, Hiroumi; Oguchi, Tatsuo; Takahashi, Kazuo

    2016-04-07

    A fast and sensitive broadband absorption technique for measurements of high-temperature chemical kinetics and spectroscopy has been developed by applying broadband cavity-enhanced absorption spectroscopy (BBCEAS) in a shock tube. The developed method has effective absorption path lengths of 60-200 cm, or cavity enhancement factors of 12-40, over a wavelength range of 280-420 nm, and is capable of simultaneously recording absorption time profiles over an ∼32 nm spectral bandpass in a single experiment with temporal and spectral resolutions of 5 μs and 2 nm, respectively. The accuracy of the kinetic and spectroscopic measurements was examined by investigating high-temperature reactions and absorption spectra of formaldehyde behind reflected shock waves using 1,3,5-trioxane as a precursor. The rate constants obtained for the thermal decomposition reactions of 1,3,5-trioxane (to three formaldehyde molecules) and formaldehyde (to HCO + H) agreed well with the literature data. High-temperature absorption cross sections of formaldehyde between 280 and 410 nm have been determined at the post-reflected-shock temperatures of 955, 1265, and 1708 K. The results demonstrate the applicability of the BBCEAS technique to time- and wavelength-resolved sensitive absorption measurements at high temperatures.

  16. [High-order derivative spectroscopy of infrared absorption spectra of the reaction centers from Rhodobacter sphaeroides].

    PubMed

    2005-01-01

    The infrared absorption spectra of reduced and chemically oxidized reaction center preparations from the purple bacterium Rhodobacter sphaeroides were investigated by means of high-order derivative spectroscopy. The model Gaussian band with a maximum at 810 nm and a half-band of 15 nm found in the absorption spectrum of the reduced reaction center preparation is eliminated after the oxidation of photoactive bacteriochlorophyll dimer (P). This band was related to the absorption of the P(+)y excitonic band of P. On the basis of experimental results, it was concluded that the bleaching of the P(+)y absorption band at 810 nm in the oxidized reaction center preparations gives the main contribution to the blue shift of the 800 nm absorption band of Rb. sphaeroides reaction centers.

  17. Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes.

    PubMed

    Gao, Bo; Hartland, Gregory V; Huang, Libai

    2012-06-26

    Femtosecond transient absorption microscopy was employed to study the excited-state dynamics of individual semiconducting single-walled carbon nanotubes (SWNTs) with simultaneously high spatial (∼200 nm) and temporal (∼300 fs) resolution. Isolated SWNTs were located using atomic force microscopy, and Raman spectroscopy was employed to determine the chiral index of select nanotubes. This unique experimental approach removes sample heterogeneity in ultrafast measurements of these complex materials. Transient absorption spectra of the individual SWNTs were obtained by recording transient absorption images at different probe wavelengths. These measurements provide new information about the origin of the photoinduced absorption features of SWNTs. Transient absorption traces were also collected for individual SWNTs. The dynamics show a fast, ∼1 ps, decay for all the semiconducting nanotubes studied, which is significantly faster than the previously reported decay times for SWNT suspensions. We attributed this fast relaxation to coupling between the excitons created by the pump laser pulse and the substrate.

  18. Ultraviolet (UV)/visible absorption spectroscopy for atmospheric pollution measurements

    NASA Astrophysics Data System (ADS)

    Stergis, Christos G.

    1994-09-01

    The primary objective of this effort is the development of instrumentation and techniques for determining the species, concentrations and lifetimes of atmospheric pollutants that may be generated by U.S. Air Force operations. The instrumentation being developed covers the spectral range of 200 nm to 900 nm, namely, the middle ultraviolet, the near ultraviolet, the visible and a portion of the near infrared. It has the capability of scanning throughout this range to look for unknown pollutants and also to look in detail at one or more suspected pollutants. The advantages of looking in this wavelength range, as well as some limitations, are discussed. Among the characteristics of the instrumentation that are described are the focal length and aperture ratio of the spectrometer, the gratings used, the spectral resolution and spectral dispersion of the spectrometer, the CCD detector, the digitization of the video signal, and the computer with the software needed for controlling the instrumentation and for recording and analyzing the data. Special attention is placed on the sensitivity of the instrumentation which is expected to be in the parts per trillion range for those molecules that have a substantial absorption cross section.

  19. [Near infrared Cavity enhanced absorption spectroscopy study of NO2O].

    PubMed

    Wu, Zhi-wei; Dong, Yan-ting; Zhou, Wei-dong

    2014-08-01

    Using a tunable near infrared external cavity diode laser and a 650 mm long high finesse optical cavity consisting of two highly reflective (R=99.97% at 6561.39 cm(-1)) plan-concave mirrors of curvature radius approximately 1000 mm, a cavity enhanced absorption spectroscopy (CEAS) system was made. The absorption spectra centered at 6561.39 cm(-1) of pure N2O gas and gas mixtures of N2O and N2 were recorded. According to the absorption of N2O at 6561.39 cm(-1) in the cavity, the measured effective absorption path was about 1460 km. The spectra line intensity and line-width of N2O centered at 6561.39 cm(-1) were carefully studied. The relationship between the line-width of absorption spectra and the gas pressure was derived. The pressure broadening parameter of N2 gas for NO2O line centered at 6 561. 39 cm(-1) was deduced and given a value of approximately (0.114 +/- 0.004) cm(-1) x atm(-1). The possibility to detect trace N2O gas in mixture using this CEAS system was investigated. By recording the ab- sorption spectra of N2O gas mixtures at different concentration, the relationship between the line intensity and gas concentration was derived. The minimum detectable absorption was found to be 2.34 x 10(-7) cm(-1) using this cavity enhanced absorption spectroscopy system. And te measurement precision in terms of relative standard deviation (RSD) for N2O is approximately 1.73%, indicating the possibility of using the cavity enhanced absorption spectroscopy system for micro gas N2O analysis in the future.

  20. Determination of sub microgram amounts of selenium in rocks by atomic-absorption spectroscopy.

    PubMed

    Golembeski, T

    1975-06-01

    Atomic-absorption spectroscopy was used to determine trace amounts of selenium accurately in U.S. Geological Survey standard rocks, GSP-1, W-1 and BCR-1. The results obtained were compared with those obtained by neutron-activation analysis and excellent agreement was found; in addition, the selenium:sulphur ratio was calculated and agreed with results obtained by other workers.

  1. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  2. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  3. Application of x-ray absorption spectroscopy to the study of corrosion and inhibition

    SciTech Connect

    Davenport, A.J.; Isaacs, H.S.

    1991-01-01

    X-ray absorption spectroscopy is a powerful technique for determination of valency and coordination. Measurements can be made in air or in situ under electrochemical control. The technique will be described and its application to the analysis of passive oxide films, corrosion products, and inhibitors will be reviewed.

  4. Attosecond Transient Absorption Spectroscopy of doubly-excited states in helium

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Ott, Christian; Pfeifer, Thomas; Martín, Fernando

    2014-04-01

    Theoretical calculations of the XUV attosecond transient absorption spectrum (ATAS) of helium in the doubly-excited state region reproduce recent high-precision measurements, reveal novel means of controlling the dynamics of transiently-bound electronic wavepackets in intense laser fields, and indicates a possible extension of 2D-spectroscopies to the XUV range.

  5. Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames

    NASA Astrophysics Data System (ADS)

    Cheskis, Sergey

    1995-01-01

    Formyl radical, HCO, was monitored for the first time in an atmospheric pressure premixed hydrocarbon flame. Intracavity laser absorption spectroscopy based on quasi-(cw) argon-ion pumped dye laser was used. The sensitivity of the detection is ˜5×1012 cm-3 and can be improved with better flame and laser stabilization.

  6. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  7. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  8. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  9. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  10. Probing heme protein-ligand interactions by UV/visible absorption spectroscopy.

    PubMed

    Nienhaus, Karin; Nienhaus, G Ulrich

    2005-01-01

    Ultraviolet/visible (UV/vis) absorption spectroscopy is a powerful tool for steady-state and time-resolved studies of protein-ligand interactions. Prosthetic groups in proteins frequently have strong electronic absorbance bands that depend on the oxidation, ligation, and conformation states of the chromophores. They are also sensitive to conformational changes of the polypeptide chain into which they are embedded. Steady-state absorption spectroscopy provides information on ligand binding equilibria, from which the Gibbs free energy differences between the ligated and unligated states can be computed. Time-resolved absorption spectroscopy allows one to detect short-lived intermediate states that may not get populated significantly under equilibrium conditions, but may nevertheless be of crucial importance for biological function. Moreover, the energy barriers that have to be surmounted in the reaction can be determined. In this chapter, we present a number of typical applications of steady-state and ns time-resolved UV/vis absorption spectroscopy in the study of ligand binding to the central iron in heme proteins.

  11. Status of the X-Ray Absorption Spectroscopy (XAS) Beamline at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Glover, C.; McKinlay, J.; Clift, M.; Barg, B.; Boldeman, J.; Ridgway, M.; Foran, G.; Garret, R.; Lay, P.; Broadbent, A.

    2007-02-01

    We present herein the current status of the X-ray Absorption Spectroscopy (XAS) Beamline at the 3 GeV Australian Synchrotron. The optical design and performance, details of the insertion device (Wiggler), end station capabilities and construction and commissioning timeline are given.

  12. Synchrotron radiation based Mössbauer absorption spectroscopy of various nuclides

    NASA Astrophysics Data System (ADS)

    Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Yoda, Yoshitaka; Mitsui, Takaya; Seto, Makoto

    2016-12-01

    Synchrotron-radiation (SR) based Mössbauer absorption spectroscopy of various nuclides is reviewed. The details of the measuring system and analysis method are described. Especially, the following two advantages of the current system are described: the detection of internal conversion electrons and the close distance between the energy standard scatterer and the detector. Both of these advantages yield the enhancement of the counting rate and reduction of the measuring time. Furthermore, SR-based Mössbauer absorption spectroscopy of 40K, 151Eu, and 174Yb is introduced to show the wide applicability of this method. In addition to these three nuclides, SR-based Mössbauer absorption spectroscopy of 61Ni, 73Ge, 119Sn, 125Te, 127I, 149Sm, and 189Os has been performed. We continue to develop the method to increase available nuclides and to increase its ease of use. The complementary relation between the time-domain method using SR, such as nuclear forward scattering and the energy-domain methods such as SR-based Mössbauer absorption spectroscopy is also noted.

  13. LISA: the Italian CRG beamline for x-ray Absorption Spectroscopy at ESRF

    NASA Astrophysics Data System (ADS)

    d'Acapito, F.; Trapananti, A.; Puri, A.

    2016-05-01

    LISA is the acronym of Linea Italiana per la Spettroscopia di Assorbimento di raggi X (Italian beamline for X-ray Absorption Spectroscopy) and is the upgrade of the former GILDA beamline installed on the BM08 bending magnet port of European Synchrotron Radiation Facility (ESRF). Within this contribution a full description of the project is provided.

  14. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring.

  15. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    SciTech Connect

    Tilikin, I. N. Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-15

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  16. Characterization of strongly scattering nanoporous materials as miniaturized multipass cell for tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Venturini, F.; Schönherr, V.; Rey, J. M.; Adolfsson, E.

    2017-04-01

    Through the confinement of gas in nanoporous materials, it is possible to significantly increase the path length for light-gas interaction. This enables the observation of much stronger absorption features for the confined gas molecules. In this work, we systematically characterized a variety of disordered strongly scattering ZrO_2 and Al_2O_3 nanoporous ceramic materials to exploit the potential of gas in scattering media absorption spectroscopy. As a result, we identified a material with an unprecedented performance in terms of optical path length enhancement. In ZrO_2 with thicknesses above 6 mm, the path enhancement exceeds 1000. The results obtained with near-infrared absorption spectroscopy on oxygen were validated by time-of-flight measurements at 700 nm, thus demonstrating their robustness. Finally, we report quantitative oxygen concentration measurement using nanoporous materials as miniaturized random-scattering multipass cell with an extremely simple and low-cost setup.

  17. Solving the Structure of Reaction Intermediates by Time-Resolved Synchrotron X-ray Absorption Spectroscopy

    SciTech Connect

    Wang, Q.; Hanson, J; Frenkel, A

    2008-01-01

    We present a robust data analysis method of time-resolved x-ray absorption spectroscopy experiments suitable for chemical speciation and structure determination of reaction intermediates. Chemical speciation is done by principal component analysis (PCA) of the time-resolved x-ray absorption near-edge structure data. Structural analysis of intermediate phases is done by theoretical modeling of their extended x-ray absorption fine-structure data isolated by PCA. The method is demonstrated using reduction and reoxidation of Cu-doped ceria catalysts where we detected reaction intermediates and measured fine details of the reaction kinetics. This approach can be directly adapted to many time-resolved x-ray spectroscopy experiments where new rapid throughput data collection and analysis methods are needed.

  18. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  19. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    NASA Astrophysics Data System (ADS)

    Tilikin, I. N.; Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-01

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  20. [Influence of silver/silicon dioxide on infrared absorption spectroscopy of sodium nitrate].

    PubMed

    Yang, Shi-Ling; Yue, Li; Jia, Zhi-Jun

    2014-09-01

    Quickly detecting of ocean nutrient was one important task in marine pollution monitoring. We discovered the application of surface-enhanced infrared absorption spectroscopy in the detection of ocean nutrient through researching the evaporation of sodium nitrate solution. The silicon dioxide (SiO2) with highly dispersion was prepared by Stober method, The silver/silica (Ag/SiO2) composite materials were prepared by mixing ammonia solution and silicon dioxide aqueous solution. Three kinds of composite materials with different surface morphology were fabricated through optimizing the experimental parameter and changing the experimental process. The surface morphology, crystal orientation and surface plasmon resonance were investigated by means of the scanning electronic microscope (SEM), X-ray diffraction (XRD), UV-Visible absorption spectrum and infrared ab- sorption spectroscopy. The SEM images showed that the sample A was purified SiO2, sample B and sample C were mixture of silver nanoparticle and silicon dioxide, while sample D was completed nanoshell structure. The absorption spectroscopy showed that there was surface plasmon resonance in the UV-visible region, while there was possibility of surface plasmon resonance in the Infrared absorption region. The effect of Ag/SiO2 composite material on the infrared absorption spectra of sodium nitrite solution was investigated through systematically analyzing the infrared absorption spectroscopy of sodium nitrate solution during its evaporation, i. e. the peak integration area of nitrate and the peak integration area of water molecule. The experimental results show that the integration area of nitrate was enhanced greatly during the evaporation process while the integration area of water molecule decreased continuously. The integration area of nitrate comes from the anti-symmetric stretch vibration and the enhancement of the vibration is attributed to the interface effect of Ag/SiO2 which is consistent with Jensen T

  1. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  2. Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS).

    PubMed

    Shi, Zhenqi; Anderson, Carl A

    2010-12-01

    The number of near-infrared (NIR) spectroscopic applications in the pharmaceutical sciences has grown significantly in the last decade. Despite its widespread application, the fundamental interaction between NIR radiation and pharmaceutical materials is often not mechanistically well understood. Separation of absorption and scattering in near-infrared spectroscopy (NIRS) is intended to extract absorption and scattering spectra (i.e., absorption and reduced scattering coefficients) from reflectance/transmittance NIR measurements. The purpose of the separation is twofold: (1) to enhance the understanding of the individual roles played by absorption and scattering in NIRS and (2) to apply the separated absorption and scattering spectra for practical spectroscopic analyses. This review paper surveys the multiple techniques reported to date on the separation of NIR absorption and scattering within pharmaceutical applications, focusing on the instrumentations, mathematical approaches used to separate absorption and scattering and related pharmaceutical applications. This literature review is expected to enhance the understanding and thereby the utility of NIRS in pharmaceutical science. Further, the measurement and subsequent understanding of the separation of absorption and scattering is expected to increase not only the number of NIRS applications, but also their robustness.

  3. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    ERIC Educational Resources Information Center

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  4. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    ERIC Educational Resources Information Center

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  5. The temperature measurement research for high-speed flow based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao

    2013-09-01

    Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.

  6. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  7. Photocarrier dynamics in anatase TiO{sub 2} investigated by pump-probe absorption spectroscopy

    SciTech Connect

    Matsuzaki, H. E-mail: okamotoh@k.u-tokyo.ac.jp; Matsui, Y.; Uchida, R.; Yada, H.; Terashige, T.; Li, B.-S.; Sawa, A.; Kawasaki, M.; Tokura, Y.; Okamoto, H. E-mail: okamotoh@k.u-tokyo.ac.jp

    2014-02-07

    The dynamics of photogenerated electrons and holes in undoped anatase TiO{sub 2} were studied by femtosecond absorption spectroscopy from the visible to mid-infrared region (0.1–2.0 eV). The transient absorption spectra exhibited clear metallic responses, which were well reproduced by a simple Drude model. No mid-gap absorptions originating from photocarrier localization were observed. The reduced optical mass of the photocarriers obtained from the Drude-model analysis is comparable to theoretically expected one. These results demonstrate that both photogenerated holes and electrons act as mobile carriers in anatase TiO{sub 2}. We also discuss scattering and recombination dynamics of photogenerated electrons and holes on the basis of the time dependence of absorption changes.

  8. Intrawire absorption and emission spectroscopies of individual CdSe nanowires

    NASA Astrophysics Data System (ADS)

    Chatterjee, Rusha; McDonald, Matthew P.; Kuno, Masaru

    2015-08-01

    Concerted absorption and emission spectroscopies have been used to measure intrawire band edge absorption/emission energy variations along the length of individual CdSe nanowires (NWs). An effective mass model, previously used to explain the size-dependent linear absorption as well as Stokes shift of single CdSe NWs, has been used to rationalize the origin of observed absorption/emission heterogeneities. Associated intrawire Stokes shifts have likewise been used to estimate local exciton trap state densities as well as most probably trap depths. Mean densities of the order of 1020 and 1017 cm-3 have been obtained for small and large radii NWs, respectively, and represent the first exciton trap state density estimates for CdSe NWs. These concerted intrawire measurements broaden the scope of existing single wire microscopies and provide greater insight into the effects of size- and dielectric environment-induced inhomogeneities on the optical/electrical response of individual NWs.

  9. Intracavity absorption spectroscopy of formaldehyde from 6230 to 6420 cm-1

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Hellmig, Ortwin; Baev, Valery M.; Levinsky, Howard B.; Mokhov, Anatoli V.

    2017-05-01

    We apply intracavity absorption spectroscopy for measurements of the absorption spectrum of formaldehyde, CH2O, from 6230 to 6420 cm-1, of which only a small fraction (6351-6362 cm-1) has been recorded elsewhere. The measurements are performed in the cavity of a broadband Er3+-doped fiber laser, with a sensitivity corresponding to the effective absorption path length of 45 m and a spectral resolution of 0.1 cm-1. The noise-equivalent detection limit of CH2O achieved with the strongest absorption line at 6252.64 cm-1 is estimated to be 5 ppm. High tolerance to broadband losses and the accessible time resolution of 50 µs make it possible to apply this detection system for time-resolved monitoring of CH2O together with other molecules in harsh combustion environments, e.g., in combustion engines.

  10. Ultrafast carrier dynamics of titanic acid nanotubes investigated by transient absorption spectroscopy.

    PubMed

    Wang, Li; Zhao, Hui; Pan, Lin Yun; Weng, Yu Xiang; Nakato, Yoshihiro; Tamai, Naoto

    2010-12-01

    Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.

  11. Minute Concentration Measurements of Simple Hydrocarbon Species Using Supercontinuum Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Traina, Nicholas; Halloran, Michael; Lee, Tonghun

    2016-06-01

    Minute concentration measurements of simple hydrocarbon gases are demonstrated using near-infrared supercontinuum laser absorption spectroscopy. Absorption-based gas sensors, particularly when combined with optical fiber components, can significantly enhance diagnostic capabilities to unprecedented levels. However, these diagnostic techniques are subject to limitations under certain gas sensing applications where interference and harsh conditions dominate. Supercontinuum laser absorption spectroscopy is a novel laser-based diagnostic technique that can exceed the above-mentioned limitations and provide accurate and quantitative concentration measurement of simple hydrocarbon species while maintaining compatibility with telecommunications-grade optical fiber components. Supercontinuum radiation generated using a highly nonlinear photonic crystal fiber is used to probe rovibrational absorption bands of four hydrocarbon species using full-spectral absorption diagnostics. Absorption spectra of methane (CH4), acetylene (C2H2), and ethylene (C2H4) were measured in the near-infrared spectrum at various pressures and concentrations to determine the accuracy and feasibility of the diagnostic strategy. Absorption spectra of propane (C3H8) were subsequently probed between 1650 nm and 1700 nm, to demonstrate the applicability of the strategy. Measurements agreed very well with simulated spectra generated using the HITRAN database as well as with previous experimental results. Absorption spectra of CH4, C2H2, and C2H4 were then analyzed to determine their respective measurement accuracy and detection limit. Concentration measurements integrated from experimental results were in very good agreement with independent concentration measurements. Calculated detection limits of CH4, C2H2, and C2H4 at room temperature and atmospheric pressure are 0.1%, 0.09%, and 0.17%, respectively.

  12. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  13. Determining Concentrations and Temperatures in Semiconductor Manufacturing Plasmas via Submillimeter Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2016-06-01

    Plasmas used in the manufacturing processes of semiconductors are similar in pressure and temperature to plasmas used in studying the spectroscopy of astrophysical species. Likewise, the developed technology in submillimeter absorption spectroscopy can be used for the study of industrial plasmas and for monitoring manufacturing processes. An advantage of submillimeter absorption spectroscopy is that it can be used to determine absolute concentrations and temperatures of plasma species without the need for intrusive probes. A continuous wave, 500 - 750 GHz absorption spectrometer was developed for the purpose of being used as a remote sensor of gas and plasma species. An important part of this work was the optical design to match the geometry of existing plasma reactors in the manufacturing industry. A software fitting routine was developed to simultaneously fit for the background and absorption signal, solving for concentration, rotational temperature, and translational temperature. Examples of measurements made on inductively coupled plasmas will be demonstrated. We would like to thank the Texas Analog Center of Excellence/Semiconductor Research Corporation (TxACE/SRC) and Applied Materials for their support of this work.

  14. Rapid, time-division multiplexed, direct absorption- and wavelength modulation-spectroscopy.

    PubMed

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-11-14

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 µm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer.

  15. Absorption spectroscopy at the ultimate quantum limit from single-photon states

    NASA Astrophysics Data System (ADS)

    Whittaker, R.; Erven, C.; Neville, A.; Berry, M.; O’Brien, J. L.; Cable, H.; Matthews, J. C. F.

    2017-02-01

    Absorption spectroscopy is routinely used to characterise chemical and biological samples. For the state-of-the-art in laser absorption spectroscopy, precision is theoretically limited by shot-noise due to the fundamental Poisson-distribution of photon number in laser radiation. In practice, the shot-noise limit can only be achieved when all other sources of noise are eliminated. Here, we use wavelength-correlated and tuneable photon pairs to demonstrate how absorption spectroscopy can be performed with precision beyond the shot-noise limit and near the ultimate quantum limit by using the optimal probe for absorption measurement—single photons. We present a practically realisable scheme, which we characterise both the precision and accuracy of by measuring the response of a control feature. We demonstrate that the technique can successfully probe liquid samples and using two spectrally similar types of haemoglobin we show that obtaining a given precision in resolution requires fewer heralded single probe photons compared to using an idealised laser.

  16. Redox Chemisty of Tantalum Clusters on Silica Characterized by X-ray Absorption Spectroscopy

    SciTech Connect

    Nemana,S.; Gates, B.

    2006-01-01

    SiO{sub 2}-supported clusters of tantalum were synthesized from adsorbed Ta(CH{sub 2}Ph){sub 5} by treatment in H{sub 2} at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiOO{sub 2}-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H{sub 2} and reoxidized in O{sub 2}, the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO{sub 2} support and their chemistry in solution, as determined by the group of Cotton.

  17. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  18. Evaluation of ammonia absorption coefficients by photoacoustic spectroscopy for detection of ammonia levels in human breath

    NASA Astrophysics Data System (ADS)

    Dumitras, D. C.; Dutu, D. C.; Matei, C.; Cernat, R.; Banita, S.; Patachia, M.; Bratu, A. M.; Petrus, M.; Popa, C.

    2011-04-01

    Photoacoustic spectroscopy represents a powerful technique for measuring extremely low absorptions independent of the path length and offers a degree of parameter control that cannot be attained by other methods. We report precise measurements of the ammonia absorption coefficients at the CO2 laser wavelengths by using a photoacoustic (PA) cell in an extracavity configuration and we compare our results with other values reported in the literature. Ammonia presents a clear fingerprint spectrum and high absorption strengths in the CO2 wavelengths region. Because more than 250 molecular gases of environmental concern for atmospheric, industrial, medical, military, and scientific spheres exhibit strong absorption bands in the region 9.2-10.8 μm, we have chosen a frequency tunable CO2 laser. In the present work, ammonia absorption coefficients were measured at both branches of the CO2 laser lines by using a calibrated mixture of 10 ppm NH3 in N2. We found the maximum absorption in the 9 μm region, at 9R(30) line of the CO2 laser. One of the applications based on the ammonia absorption coefficients is used to measure the ammonia levels in exhaled human breath. This can be used to determine the exact time necessary at every session for an optimal degree of dialysis at patients with end-stage renal disease.

  19. Photodissociation of thioglycolic acid studied by femtosecond time-resolved transient absorption spectroscopy

    SciTech Connect

    Attar, Andrew R.; Blumling, Daniel E.; Knappenberger, Kenneth L. Jr.

    2011-01-14

    Steady-state and time-resolved spectroscopies were employed to study the photodissociation of both the neutral (HS-CH{sub 2}-COOH) and doubly deprotonated ({sup -}S-CH{sub 2}-COO{sup -}) forms of thioglycolic acid (TGA), a common surface-passivating ligand used in the aqueous synthesis and organization of semiconducting nanostructures. Room temperature UV-Vis absorption spectroscopy indicated strong absorption by the S{sub 1} and S{sub 2} excited states at 250 nm and 185 nm, respectively. The spectrum also contained a weaker absorption band that extended to approximately 550 nm, which was assigned to the {pi}{sub CO}{sup *}(leftarrow)n{sub O} transition. Femtosecond time-resolved transient absorption spectroscopy was performed on TGA using 400 nm excitation and a white-light continuum probe to provide the temporally and spectrally resolved data. Both forms of TGA underwent a photoinduced dissociation from the excited state to form an {alpha}-thiol-substituted acyl radical ({alpha}-TAR, S-CH{sub 2}-CO). For the acidic form of TGA, radical formation occurred with an apparent time constant of 60 {+-} 5 fs; subsequent unimolecular decay took 400 {+-} 60 fs. Similar kinetics were observed for the deprotonated form of TGA (70 {+-} 10 fs radical formation; 420 {+-} 40 fs decay). The production of the {alpha}-TAR was corroborated by the observation of its characteristic optical absorption. Time-resolved data indicated that the photoinduced dissociation of TGA via cleavage of the C-OH bond occurred rapidly ({<=}100 fs). The prevalence of TGA in aqueous semiconducting nanoparticles makes its absorption in the visible spectral region and subsequent dissociation key to understanding the behavior of nanoscale systems.

  20. Interactions of hypericin with a model mutagen - Acridine orange analyzed by light absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pietrzak, Monika; Szabelski, Mariusz; Kasparek, Adam; Wieczorek, Zbigniew

    2017-02-01

    The present study was designed to estimate the ability of hypericin to interact with a model mutagen - acridine orange. The hetero-association of hypericin and acridine orange was investigated with absorption and fluorescence spectroscopy methods in aqueous solution of DMSO. The data indicate that hypericin forms complexes with acridine orange and that the association constants are relatively high and depend on DMSO concentration. The absorption spectra of the hypericin - acridine orange complexes were examined as well. Owing to its ability to interact with flat aromatic compounds, hypericin may potentially be used as an interceptor molecule.

  1. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  2. Influence of temperature and turbidity on water COD detection by UV absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Kun-peng; Bi, Wei-hong; Zhang, Qi-hang; Fu, Xing-hu; Wu, Guo-qing

    2016-11-01

    Ultraviolet (UV) absorption spectroscopy is used to detect the concentration of water chemical oxygen demand (COD). The UV absorption spectra of COD solutions are analyzed qualitatively and quantitatively. The partial least square (PLS) algorithm is used to model COD solution and the modeling results are compared. The influence of environmental temperature and turbidity is analyzed. These results show that the influence of temperature on the predicted value can be ignored. However, the change of turbidity can affect the detection results of UV spectra, and the COD detection error can be effectively compensated by establishing the single-element regression model.

  3. Thin-film absorption coefficients by attenuated-total-reflection spectroscopy.

    PubMed

    Holm, R T; Palik, E D

    1978-02-01

    The application of attenuated-total-reflection spectroscopy to the measurement of the absorption coefficient of thin films is presented. For low absorption the sensitivity of ATR is discussed in terms of the concept of an effective thickness. Both the case in which the refractive index of the film is higher and the case in which it is lower than that of the ATR trapezoid are considered. Experimental ATR data for antireflection-coating materials for laser windows is analyzed and compared with calorimetric data.

  4. Two-Photon Absorption Spectroscopy of Rubidium with a Dual-Comb Tequnique

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Yoshida, Satoru; Hariki, Takuya; Nakajima, Yoshiaki; Minoshima, Kaoru

    2017-06-01

    Dual-comb spectroscopies have great potential for high-resolution molecular and atomic spectroscopies, thanks to the broadband comb spectrum consisting of dense narrow modes. In this study, we apply the dual-comb system to Doppler-free two-photon absorption spectroscopy. The outputs of two frequency combs excite several two-photon transitions of rubidium, and we obtained broadband Doppler-free spectra from dual-comb fluorescence signals. The fluorescence detection scheme circumvents the sensitivity limit which is effectively determined by the dynamic range of photodetectors in absorption-based dual-comb spectroscopies. Our system realized high-sensitive, Doppler-free high-resolution and broadband atomic spectroscopy. A part of observed spectra of 5S_{1/2} - 5D_{5/2} transition is shown in the figure. The hyperfine structures of the F" = 1 - F' = 3,2,1 transitions are fully-resolved and the spectral widths are approximately 5 MHz. The absolute frequency axis is precisely calibrated from comb mode frequencies which were stabilized to a GPS-disciplined clock. This work was supported by JST through the ERATO MINOSHIMA Intelligent Optical Synthesizer Project and Grant-in-Aid for JSPS Fellows (16J02345). A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, K. and Minoshima, Opt. Express 24, 25894 (2016). A. Hipke, S. A. Meek, T. Ideguchi, T.W. Hänsch, and N. Picqué, Phys. Rev. A 90, 011805(R) (2014).

  5. Molecular scale shock response: electronic absorption spectroscopy of laser shocked explosives

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn; Whitley, Von; Moore, David; Bolme, Cindy; Eakins, Daniel

    2009-06-01

    Single shot spectroscopies are being employed to answer questions fundamental to shock initiation of explosives. The goals are to: 1) determine the extent to which electronic excitations are, or are not, involved in shock induced reactions, 2) test the multiphonon up-pumping hypothesis in explosives, and 3) provide data on the initial evolution of temperature and chemistry following the shock loading of explosives on scales amenable to comparison to molecular dynamics simulations. The data presented in this talk are focused on answering the first question. Recent experimental results measuring the time history of ultraviolet/visible absorption spectroscopy of laser shocked explosive thin films and single crystals will be discussed.

  6. Ultrafast relaxation dynamics of nitric oxide synthase studied by visible broadband transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S.

    2017-09-01

    Ultrafast dynamics of endothelial nitric oxide synthase (eNOS) oxygenase domain was studied by transient absorption spectroscopy pumping at Soret band. The broadband visible probe spectrum has visualized the relaxation dynamics from the Soret band to Q-band and charge transfer (CT) band. Supported by two-dimensional correlation spectroscopy, global fitting analysis has successfully concluded the relaxation dynamics from the Soret band to be (1) electronic transition to Q-band (0.16 ps), (2) ligand dissociation and CT (0.94 ps), (3) relaxation of the CT state (4.0 ps), and (4) ligand rebinding (59 ps).

  7. Disentangling atomic-layer-specific x-ray absorption spectra by Auger electron diffraction spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi

    2009-11-01

    In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.

  8. Determination of copper, zinc and iron in broncho-alveolar lavages by atomic absorption spectroscopy.

    PubMed

    Harlyk, C; Mccourt, J; Bordin, G; Rodriguez, A R; van der Eeckhout, A

    1997-11-01

    Concentrations of Zn, Cu and Fe were measured in 157 broncho-alveolar lavages (BAL), before and after centrifugation, collected at the Leuven University Hospital (Belgium). Zn was measured by flame-atomic absorption spectroscopy, using direct calibration, while Cu and Fe were determined by electrothermal atomic absorption spectroscopy, using the method of standard additions. For Fe only 56 samples were measured. Most of the studied elements are present in the liquid phase (supernatant). About 90% of Cu concentrations lie between 0 and 15 micrograms/kg, while 90% of Zn concentrations are lower than 230 micrograms/kg, with 30% between 30 and 70 micrograms/kg, and 50% between 100 and 200 micrograms/kg. There seems to be a reverse relationship between Cu and Zn levels with high Cu going along with low Zn and vice versa.

  9. Submillimeter Absorption Spectroscopy in Semiconductor Manufacturing Plasmas and Comparison to Theoretical Models

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2015-06-01

    Plasmas used in the semiconductor manufacturing industry are of a similar nature to the environments often created for submillimeter spectroscopic study of astrophysical species. At the low operating pressures of these plasmas, submillimeter absorption spectroscopy is a method capable of measuring the abundances and temperatures of molecules, radicals, and ions without disturbing any of the properties of the plasma. These measurements provide details and insight into the interactions and reactions occurring within the plasma and their implications for semiconductor manufacturing processes. A continuous wave, 500 to 750 GHz, absorption spectrometer was designed and used to make measurements of species in semiconductor processing plasmas. Comparisons with expectations from theoretical plasma models provide a basis for validating and improving these models, which is a complex and difficult science itself. Furthermore, these comparisons are an evaluation for the use of submillimeter spectroscopy as a diagnostic tool in manufacturing processes.

  10. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy.

    PubMed

    Schwanke, C; Golnak, R; Xiao, J; Lange, K M

    2014-10-01

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl2 aqueous solution by X-ray absorption and emission spectroscopy is presented.

  11. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    SciTech Connect

    Schwanke, C.; Lange, K. M.; Golnak, R.; Xiao, J.

    2014-10-15

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl{sub 2} aqueous solution by X-ray absorption and emission spectroscopy is presented.

  12. Undistorted X-ray Absorption Spectroscopy Using s-Core-Orbital Emissions.

    PubMed

    Golnak, Ronny; Xiao, Jie; Atak, Kaan; Unger, Isaak; Seidel, Robert; Winter, Bernd; Aziz, Emad F

    2016-05-12

    Detection of secondary emissions, fluorescence yield (FY), or electron yield (EY), originating from the relaxation processes upon X-ray resonant absorption has been widely adopted for X-ray absorption spectroscopy (XAS) measurements when the primary absorption process cannot be probed directly in transmission mode. Various spectral distortion effects inherent in the relaxation processes and in the subsequent transportation of emitted particles (electron or photon) through the sample, however, undermine the proportionality of the emission signals to the X-ray absorption coefficient. In the present study, multiple radiative (FY) and nonradiative (EY) decay channels have been experimentally investigated on a model system, FeCl3 aqueous solution, at the excitation energy of the Fe L-edge. The systematic comparisons between the experimental spectra taken from various decay channels, as well as the comparison with the theoretically simulated Fe L-edge XA spectrum that involves only the absorption process, indicate that the detection of the Fe 3s → 2p partial fluorescence yield (PFY) gives rise to the true Fe L-edge XA spectrum. The two key characteristics generalized from this particular decay channel-zero orbital angular momentum (i.e., s orbital) and core-level emission-set a guideline for obtaining undistorted X-ray absorption spectra in the future.

  13. Application of microemulsions in determination of chromium naphthenate in gasoline by flame atomic absorption spectroscopy.

    PubMed

    Du, B; Wei, Q; Wang, S; Yu, W

    1997-10-01

    A new method using microemulsified samples is presented. It is for the determination of chromium naphthenate in gasoline by flame absorption spectroscopy. The method has the advantage of simplicity, speed and the use of aqueous standards for calibration instead of organic standards. Coexistent elements do not disturb the determination. Results obtained by this method were better than those obtained by other methods for the same samples.

  14. Quantitation of vitamin B 12 by first-derivative absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Karşilayan, Huriye

    1996-08-01

    Quantitation of vitamin B 12 by first-derivative absorption spectroscopy is described. Peak-to-peak (355 nm to 370 nm) amplitudes were measured from the first derivative spectra. The method permits rapid determination of vitamin B 12, and increases the detection limit while decreasing interference by impurities. The effects of the majority of other absorbing macromolecules which may also be present in biological samples are eliminated or very considerably minimized by this method.

  15. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    SciTech Connect

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  16. Intracavity Laser Absorption Spectroscopy of Platinum Nitride in the Near Infrared

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; Womack, Kaitlin A.; O'Brien, James J.; Whittemore, Sean

    2013-06-01

    The (2,0) band of the A^{2}Σ^{-} - X^{2}Π_{1/2} electronic transition of PtN has been recorded using intracavity laser absorption spectroscopy. Transitions from ^{194}PtN, ^{195}PtN, and ^{196}PtN isotopologues are observed, as well as the nuclear hyperfine splitting due to ^{195}Pt with I=1/2. The results of the analysis will be presented and compared with ab initio calculations.

  17. X-ray absorption spectroscopy beyond the core-hole lifetime

    SciTech Connect

    Haemaelaeinen, K.; Hastings, J.B.; Siddons, D.P.; Berman, L.

    1992-01-01

    A new technique to overcome the core-hole lifetime broadening in x-ray absorption spectroscopy is presented. It utilizes a high resolution fluorescence spectrometer which can be used to analyze the fluorescence photon energy with better resolution than the natural lifetime width. Furthermore, the high resolution spectrometer can also be used to select the final state in the fluorescence process which can offer spin selectivity even without long range magnetic order in the sample.

  18. X-ray absorption spectroscopy beyond the core-hole lifetime

    SciTech Connect

    Haemaelaeinen, K.; Hastings, J.B.; Siddons, D.P.; Berman, L.

    1992-10-01

    A new technique to overcome the core-hole lifetime broadening in x-ray absorption spectroscopy is presented. It utilizes a high resolution fluorescence spectrometer which can be used to analyze the fluorescence photon energy with better resolution than the natural lifetime width. Furthermore, the high resolution spectrometer can also be used to select the final state in the fluorescence process which can offer spin selectivity even without long range magnetic order in the sample.

  19. Conformational study of the chromophore of C-phycocyanin by resonance raman and electronic absorption spectroscopy.

    NASA Astrophysics Data System (ADS)

    Margulies, L.; Toporowicz, M.

    1988-05-01

    The conformation of the chromophore of C-phycocyanin (PC) was investigated by using electronic absorption and resonance Raman spectroscopy, and theoretical calculations. Using an A-dihydrobilindione as model compound, the syn, syn, syn conformation was established for the isolated chromophore in solution. For the native PC, the best results were obtained by considering the syn, syn, anti conformation, although the possibility of having a syn, anti, anti conformation could not be excluded.

  20. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Houmøller, J.; Brøndsted Nielsen, S.

    2016-09-01

    Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm-1) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.

  1. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    SciTech Connect

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  2. Low-temperature hydrogen absorption in metallic nanocontacts studied by point-contact spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Takata, H.; Islam, M. S.; Ienaga, K.; Inagaki, Y.; Hashizume, K.; Kawae, T.

    2017-09-01

    We report on hydrogen (H) and deuterium (D) atoms absorption below T = 20 K in metallic palladium (Pd) via quantum tunnelling (QT). When a small bias voltage is applied between Pd nanocontacts that are immersed in liquid H2 (D2), the differential conductance spectra measured by point-contact spectroscopy change enormously. The results indicate H (D) absorption in Pd nanocontacts at the temperature where H (D) absorption due to thermal hopping process is not expected, and can be explained by QT. The QT occurs when the energy level of the potential well trapping the H (D) atom coincides with those not trapping the H (D) atom, and is assisted by phonons induced by ballistic electrons.

  3. A sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode.

    PubMed

    Schreck, Simon; Gavrila, Gianina; Weniger, Christian; Wernet, Philippe

    2011-10-01

    A novel sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode based on sample cells with x-ray transparent silicon nitride membranes is introduced. The sample holder allows for a reliable preparation of ultrathin liquid films with an adjustable thickness in the nm-μm range. This enables measurements of high quality x-ray absorption spectra of liquids in transmission mode, as will be shown for the example of liquid H(2)O, aqueous solutions of 3d-transition metal ions and alcohol-water mixtures. The fine structure of the x-ray absorption spectra is not affected by the sample thickness. No effects of the silicon nitride membranes were observed in the spectra. It is shown how an inhomogeneous thickness of the sample affects the spectra and how this can be avoided.

  4. Photodissociation Structural Dynamics of TrirutheniumDodecacarbonyl Investigated by X-ray Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harpham, Michael R.; Stickrath, Andrew, B.; Zhang, Xiaoyi,; Huang, Jier; Mara, Michael W.; Chen, Lin X.; Liu, Di-Jia

    2013-10-01

    The molecular and electronic structures of the transient intermediates generated from the photolysis of trirutheniumdodecacarbonyl, Ru3(CO)12, by ultrafast UV (351 nm) laser excitation were investigated using X-ray transient absorption (XTA) spectroscopy. The electronic configuration change and nuclear rearrangement after the dissociation of carbonyls were observed at ruthenium K-edge X-ray absorption near edge structure and X-ray absorption fine structure spectra. Analysis of XTA data, acquired after 100, 200, and 400 ps and 300 ns time delay following the photoexcitation, identified the presence of three intermediate species with Ru3(CO)10 being the most dominating one. The results set an example of applying XTA in capturing both transient electronic and nuclear configurations in metal clusters simulating catalysts in chemical reactions.

  5. Gas trace detection with cavity enhanced absorption spectroscopy: a review of its process in the field

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Luo, Zhifu; Tan, Zhongqi; Long, Xingwu

    2016-11-01

    Cavity-enhanced absorption spectroscopy (CEAS) is a technology in which the intracavity absorption is deduced from the intensity of light transmitted by the high finesse optical cavity. Then the samples' parameters, such as their species, concentration and absorption cross section, would be detection. It was first proposed and demonstrated by Engeln R. [1] and O'Keefe[2] in 1998. This technology has extraordinary detection sensitivity, high resolution and good practicability, so it is used in many fields , such as clinical medicine, gas detection and basic physics research. In this paper, we focus on the use of gas trace detection, including the advance of CEAS over the past twenty years, the newest research progresses, and the prediction of this technology's development direction in the future.

  6. Deep ultraviolet Raman spectroscopy: A resonance-absorption trade-off illustrated by diluted liquid benzene

    NASA Astrophysics Data System (ADS)

    Chadwick, C. T.; Willitsford, A. H.; Philbrick, C. R.; Hallen, H. D.

    2015-12-01

    The magnitude of resonance Raman intensity, in terms of the real signal level measured on-resonance compared to the signal level measured off-resonance for the same sample, is investigated using a tunable laser source. Resonance Raman enhancements, occurring as the excitation energy is tuned through ultraviolet absorption lines, are used to examine the 1332 cm-1 vibrational mode of diamond and the 992 cm-1 ring-breathing mode of benzene. Competition between the wavelength dependent optical absorption and the magnitude of the resonance enhancement is studied using measured signal levels as a function of wavelength. Two system applications are identified where the resonance Raman significantly increases the real signal levels despite the presence of strong absorption: characterization of trace species in laser remote sensing and spectroscopy of the few molecules in the tiny working volumes of near-field optical microscopy.

  7. Supercontinuum high-speed cavity-enhanced absorption spectroscopy for sensitive multispecies detection.

    PubMed

    Werblinski, Thomas; Lämmlein, Bastian; Huber, Franz J T; Zigan, Lars; Will, Stefan

    2016-05-15

    Cavity-enhanced absorption spectroscopy is promising for many applications requiring a very high concentration sensitivity but often accompanied by low temporal resolution. In this Letter, we demonstrate a broadband cavity-enhanced absorption spectrometer capable of detection rates of up to 50 kHz, based on a spatially coherent supercontinuum (SC) light source and an in-house-built, high-speed near-infrared spectrograph. The SC spectrometer allows for the simultaneous quantitative detection of CO2, C2H2, and H2O within a spectral range from 1420 to 1570 nm. Using cavity mirrors with a specified reflectivity of R=98.0±0.3% a minimal spectrally averaged absorption coefficient of αmin=1·10-5  cm-1 can be detected at a repetition rate of 50 kHz.

  8. Electronic structure of warm dense copper studied by ultrafast x-ray absorption spectroscopy.

    PubMed

    Cho, B I; Engelhorn, K; Correa, A A; Ogitsu, T; Weber, C P; Lee, H J; Feng, J; Ni, P A; Ping, Y; Nelson, A J; Prendergast, D; Lee, R W; Falcone, R W; Heimann, P A

    2011-04-22

    We use time-resolved x-ray absorption spectroscopy to investigate the unoccupied electronic density of states of warm dense copper that is produced isochorically through the absorption of an ultrafast optical pulse. The temperature of the superheated electron-hole plasma, which ranges from 4000 to 10 000 K, was determined by comparing the measured x-ray absorption spectrum with a simulation. The electronic structure of warm dense copper is adequately described with the high temperature electronic density of state calculated by the density functional theory. The dynamics of the electron temperature is consistent with a two-temperature model, while a temperature-dependent electron-phonon coupling parameter is necessary.

  9. Absorption spectroscopy setup for determination of whole human blood and blood-derived materials spectral characteristics

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; Milewska, D.; Mitura, K.; Karpienko, K.

    2015-09-01

    A dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood samples, separated components: plasma, saline, washed erythrocytes in saline and human whole blood with biomarkers - biocompatible nanodiamonds (ND). Blood samples had been derived from a number of healthy donors. The results prove a correct setup arrangement, with adequate preprocessing of the data. The results of blood-ND mixtures measurements show no toxic effect on blood cells, which proves the NDs as a potential biocompatible biomarkers.

  10. Laser ablation absorption spectroscopy for isotopic analysis of plutonium: Spectroscopic properties and analytical performance

    NASA Astrophysics Data System (ADS)

    Miyabe, M.; Oba, M.; Jung, K.; Iimura, H.; Akaoka, K.; Kato, M.; Otobe, H.; Khumaeni, A.; Wakaida, I.

    2017-08-01

    Spectroscopic properties of atomic species of plutonium were investigated by combining laser ablation and resonance absorption techniques for the analysis of a plutonium oxide sample. For 17 transitions of Pu atoms and ions, the absorbance, isotope shift, and hyperfine splitting were determined via Voigt profile fitting of the recorded absorption spectra. Three transitions were selected as candidates for analytical use. Using these transitions, we investigated the analytical performance that was attainable and determined a correlation coefficient R2 between the absorbance and plutonium concentration of 0.9999, a limit of detection of 30-130 ppm, and a relative standard deviation of approximately 6% for an abundance of 240Pu of 2.4%. These results demonstrate that laser ablation absorption spectroscopy is applicable to the remote isotopic analysis of highly radioactive nuclear fuels and waste materials containing multiple actinide elements.

  11. Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy.

    PubMed

    Sun, Kai; Wang, Shengkai; Sur, Ritobrata; Chao, Xing; Jeffries, Jay B; Hanson, Ronald K

    2014-04-21

    We report the first application of cavity-enhanced absorption spectroscopy (CEAS) using a coherent light source for sensitive and rapid gaseous species time-history measurements in a shock tube. Off-axis alignment and fast scanning of the laser wavelength were used to minimize coupling noise in a low-finesse cavity. An absorption gain factor of 83 with a measurement time resolution of 20 µs was demonstrated for C2H2 detection using a near-infrared transition near 1537 nm, corresponding to a noise-equivalent detection limit of 20 ppm at 296 K and 76 ppm at 906 K at 50 kHz. This substantial gain in signal, relative to conventional single-pass absorption, will enable ultra-sensitive species detection in shock tube kinetics studies, particularly useful for measurements of minor species and for studies of dilute reactive systems.

  12. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy.

    PubMed

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-10-04

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures ("metasurfaces") can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent.

  13. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.

    PubMed

    Stiegler, Johannes M; Abate, Yohannes; Cvitkovic, Antonija; Romanyuk, Yaroslav E; Huber, Andreas J; Leone, Stephen R; Hillenbrand, Rainer

    2011-08-23

    Infrared absorption spectroscopy is a powerful and widely used tool for analyzing the chemical composition and structure of materials. Because of the diffraction limit, however, it cannot be applied for studying individual nanostructures. Here we demonstrate that the phase contrast in substrate-enhanced scattering-type scanning near-field optical microscopy (s-SNOM) provides a map of the infrared absorption spectrum of individual nanoparticles with nanometer-scale spatial resolution. We succeeded in the chemical identification of silicon nitride nanoislands with heights well below 10 nm, by infrared near-field fingerprint spectroscopy of the Si-N stretching bond. Employing a novel theoretical model, we show that the near-field phase spectra of small particles correlate well with their far-field absorption spectra. On the other hand, the spectral near-field contrast does not scale with the volume of the particles. We find a nearly linear scaling law, which we can attribute to the near-field coupling between the near-field probe and the substrate. Our results provide fundamental insights into the spectral near-field contrast of nanoparticles and clearly demonstrate the capability of s-SNOM for nanoscale chemical mapping based on local infrared absorption.

  14. Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Peng, Wen Yu; Strand, Christopher; Mitchell Spearrin, R.; Jeffries, Jay B.; Hanson, Ronald K.; Bekal, Anish; Halder, Purbasha; Poonacha, Samhitha P.; Vartak, Sameer; Sridharan, Arun K.

    2017-01-01

    A mid-infrared quantum cascade laser absorption sensor was developed for in-situ detection of NO2 in high-temperature gas environments. A cluster of spin-split transitions near 1599.9 cm-1 from the ν3 absorption band of NO2 was selected due to the strength of these transitions and the low spectral interference from water vapor within this region. Temperature- and species-dependent collisional broadening parameters of ten neighboring NO2 transitions with Ar, O2, N2, CO2 and H2O were measured and reported. The spectral model was validated through comparisons with direct absorption spectroscopy measurements of NO2 seeded in various bath gases. The performance of the scanned wavelength modulation spectroscopy (WMS)-based sensor was demonstrated in a combustion exhaust stream seeded with varying flow rates of NO2, achieving reliable detection of 1.45 and 1.6 ppm NO2 by mole at 600 K and 800 K, respectively, with a measurement uncertainty of ±11%. 2σ noise levels of 360 ppb and 760 ppb were observed at 600 K and 800 K, respectively, in an absorption path length of 1.79 m.

  15. Absorption edge determination of thick GaAs wafers using surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharma, T. K.; Porwal, S.; Kumar, R.; Kumar, Shailendra

    2002-04-01

    A procedure for choosing the appropriate chopping frequency (f) for the surface photovoltage spectroscopy (SPS) measurements in order to obtain the absorption related features is presented. We could obtain the absorption edge of thick n+ GaAs wafer (thickness ≈700 μm) by performing SPS measurements at f⩾1 kHz at room temperature (300 K). The similar information for semi-insulating (SI) GaAs could not be obtained due to the carrier trapping at deep levels or surface states at 300 K. However, we could obtain the absorption edge of SI-GaAs by performing SPS measurements at 395 K at f=3 kHz. Here, we demonstrate the capability of the SPS technique to measure large absorption coefficient (α) values for thick wafers by performing SPS measurements and normalizing this with the reported α value at one wavelength in the above band gap region. For comparison, we also perform quasisimultaneous SPS and transmission spectroscopy (TS) measurements. The SPS technique could provide α values up to 104cm-1 for 700-μm-thick GaAs wafers, whereas TS could only measure α values up to about 15 cm-1. An improved design of the sample holder for measuring the surface photovoltage in the chopped light geometry, which increases the signal strength by reducing the gap between the top electrode and the wafer in a controlled manner, is presented. This ensures that there is no sample damage or contamination.

  16. Investigation of Diode Pumped Alkali Laser atmospheric transmission using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, Christopher A.

    A field deployable ruggedized tunable diode laser absorption spectroscopy (TDLAS) device fiber coupled to a pair of 12.5" Ritchey-Chretien telescopes was used to study atmospheric propagation for open path lengths of 100 to 1,000 meters to estimate atmospheric transmission at key High Energy Laser (HEL) wavelengths. The potassium (K) version of the Diode Pumped Alkali Laser (DPAL) operates in between two of the sharp oxygen rotational features in the PP and the PQ branches. The device can be used to observe rotational temperature, concentrations, and atmospheric pressure. Molecular oxygen absorption lines near the potassium, and water vapor absorption lines near the rubidium and cesium DPALs at wavelengths near 770 nm, 795 nm, and 895 nm, respectively, were investigated using the Line-by-Line Radiative Transfer Model (LBLRTM) with the High Energy Laser End-to-End Simulation (HELEEOS). A tunable diode laser absorption spectroscopy (TDLAS) device was used to anchor simulations to actual outdoor atmospheric open-path collections. The implications of different laser gain cell configurations in DPAL systems are discussed, including spectral lineshape and atmospheric transmittance and are compared to existing high power laser systems.

  17. Single-ended retroreflection sensors for absorption spectroscopy in high-temperature environments

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Wang, Ze; Neal, Nicholas J.; Rothamer, David A.; Sanders, Scott T.

    2017-04-01

    Novel single-ended sensor arrangements are demonstrated for in situ absorption spectroscopy in combustion and related test articles. A single-ended optical access technique based on back-reflection from a polished test article surface is presented. H2O vapor absorption spectra were measured at 10 kHz in a homogeneous-charge compression-ignition engine using a sensor of this design collecting back-reflection from a polished piston surface. The measured spectra show promise for high-repetition-rate measurements in practical combustion devices. A second sensor was demonstrated based on a modification to this optical access technique. The sensor incorporates a nickel retroreflective surface as back-reflector to reduce sensitivity to beam steering and misalignment. In a propane-fired furnace, H2O vapor absorption spectra were obtained over the range 7315-7550 cm- 1 at atmospheric pressure and temperatures up to 775 K at 20 Hz using an external-cavity diode laser spectrometer. Gas properties of temperature and mole fraction were obtained from this furnace data using a band-shape spectral fitting technique. The temperature accuracy of the band-shape fitting was demonstrated to be ±1.3 K for furnace measurements at atmospheric pressure. These results should extend the range of applications in which absorption spectroscopy sensors are attractive candidates.

  18. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    EPA Science Inventory

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  19. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    EPA Science Inventory

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  20. Spectroscopy of CuN in the Near Infrared by Intracavity Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; Womack, Kaitlin A.; O'Brien, James J.

    2012-06-01

    Transitions with red-degraded bandheads have been identified at 13005, 12963, 12957, and 12948 cm-1. One P and one R branch are identified in each transition. We have tentatively assigned these transitions as absorption from the X 3Σ- ground state of CuN. Rotational analyses of these bands are in progress, and results will be presented. A strong perturbation is observed in one of the excited states. The electronic structure of CuN will be discussed and compared with predicted electronic states from theoretical calculations. The gas phase CuN molecules were produced using a copper hollow cathode in a plasma discharge.

  1. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes.

    PubMed

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2015-06-07

    We apply high-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) to study iron carbonyl complexes. Mono-, bi-, and tri-nuclear carbonyl complexes and pure carbonyl complexes as well as carbonyl complexes containing hydrocarbon ligands are considered. The HERFD-XANES spectra reveal multiple pre-edge peaks with individual signatures for each complex, which could not be detected previously with conventional XANES spectroscopy. These peaks are assigned and analysed with the help of TD-DFT calculations. We demonstrate that the pre-edge peaks can be used to distinguish the different types of iron-iron interactions in carbonyl complexes. This opens up new possibilities for applying HERFD-XANES spectroscopy to probe the electronic structure of iron catalysts.

  2. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  3. [On using tunable diode laser absorption spectroscopy to determine gas fluxes over cropland].

    PubMed

    Tian, Yong-zhi; Liu, Jian-guo; Zhang, Yu-jun; Lu, Yi-huai; He, Ying

    2012-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a compact, automated, high precision technique and fit for in-situ or field measurements. Two spectroscopy measurement systems, TDLAS and NDIR (non-dispersive infrared spectroscopy), were used to monitor trace gas emission over cropland at Fengqiu Agricultural Ecology Experimental Station for one month. The fluxes of carbon dioxide were estimated by flux-gradient and eddy covariance method, respectively. A footprint model was developed during experiment. Based on this model, the source areas of TDLAS and NDIR were investigated. The effects of different factors on the flux measurement were also analyzed. The authors concluded that the source areas for the two techniques are discrepant in most of the cases. The source areas increase with path length and detecting height. This result will help the installation of instruments.

  4. Determination of zinc in serum, blood, and ultrafiltrate fluid from patients on hemofiltration by graphite furnace/atomic absorption spectroscopy or flow injection analysis/atomic absorption spectroscopy.

    PubMed

    de Blas, O J; Rodriguez, R S; Mendez, J H; Tomero, J A; Gomez, B de L; Gonzalez, S V

    1994-01-01

    Two methods were optimized for the determination of zinc in samples of blood, serum, and ultrafiltrate fluid from patients with chronic renal impairment undergoing hemofiltration. In the first procedure, after acid digestion of the samples, Zn in blood and serum is determined by a system coupled to flow injection analysis and atomic absorption spectroscopy. The method is rapid, automated, simple, needs small amounts of sample, and has acceptable analytical characteristics. The analytical characteristics obtained were as follows: determination range of method, 0.05-2.0 ppm of Zn; precision as coefficient of variation (CV), 5.3%; recovery, 95-105%; and detection limit (DL), 0.02 ppm. The second method is optimized for ultrafiltrate fluid because the sensitivity of the first procedure is not suitable for the levels of Zn (ppb or ng/mL) in these samples. The technique chosen was atomic absorption spectroscopy with electrothermal atomization in a graphite furnace. The analytical characteristics obtained were as follows: determination range of method, 0.3-2.0 ppb Zn; CV, 5.7%; recovery, 93-107%; and DL, 0.12 ppb. The methods were used to determine zinc in samples of blood, serum, and ultrafiltrate fluid from 5 patients with chronic renal impairment undergoing hemofiltration to discover whether there were significant differences in the zinc contents of blood, serum, and ultrafiltrate fluid after the hemofiltration process. An analysis of variance of the experimental data obtained from a randomly selected group of 5 patients showed that zinc concentrations in the ultrafiltrate fluid, venous blood, and venous serum do not vary during hemofiltration (p < 0.05), whereas in arterial blood and serum, the time factor has a significant effect.

  5. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A

    2016-10-01

    This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The

  6. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    PubMed

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants.

  7. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy

    SciTech Connect

    Hager, J. D. Lanier, N. E.; Kline, J. L.; Flippo, K. A.; Bruns, H. C.; Schneider, M.; Saculla, M.; McCarville, T.

    2014-11-15

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO{sub 2} foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured.

  8. Cavity enhanced ultra-thin aluminum plasmonic resonator for surface enhanced infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Jiang, Xiao; Nong, Jinpeng; Chen, Na; Lan, Guilian; Tang, Linlong

    2016-11-01

    Owing to the advantages of natural abundance, low cost, and amenability to manufacturing processes, aluminum has recently been recognized as a highly promising plasmonic material that attracts extensive research interest. Here, we propose a cavity-enhanced ultra-thin plasmonic resonator for surface enhanced infrared absorption spectroscopy. The considered resonator consists of a patterned ultra-thin aluminum grating strips, a dielectric spacer layer and a reflective layer. In such structure, the resonance absorption is enhanced by the cavity formed between the patterned aluminum strips and the reflective layer. It is demonstrated that the spectral features of the resonator can be tuned by adjusting the structural parameters. Furthermore, in order to achieve a deep and broad spectral line shape, the spacer layer thickness should be properly designed to realize the simultaneous resonances for the electric and the magnetic excitations. The enhanced infrared absorption characteristics can be used for infrared sensing of the environment. When the resonator is covered with a molecular layer, the resonator can be used as a surface enhanced infrared absorption substrate to enhance the absorption signal of the molecules. A high enhanced factor of 1.15×105 can be achieved when the resonance wavelength of resonator is adjusted to match the desired vibrational mode of the molecules. Such a cavity-enhanced plasmonic resonator, which is easy for practical fabrication, is expected to have potential applications for infrared sensing with high-performance.

  9. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions.

    PubMed

    Zaera, Francisco

    2014-11-21

    Infrared absorption spectroscopy has proven to be one of the most powerful spectroscopic techniques available for the characterization of catalytic systems. Although the history of IR absorption spectroscopy in catalysis is long, the technique continues to provide key fundamental information about a variety of catalysts and catalytic reactions, and to also offer novel options for the acquisition of new information on both reaction mechanisms and the nature of the solids used as catalysts. In this review, an overview is provided of the main contributions that have been derived from IR absorption spectroscopy studies of catalytic systems, and a discussion is included on new trends and new potential directions of research involving IR in catalysis. We start by briefly describing the power of Fourier-transform IR (FTIR) instruments and the main experimental IR setups available, namely, transmission (TIR), diffuse reflectance (DRIFTS), attenuated total reflection (ATR-IR), and reflection-absorption (RAIRS), for advancing research in catalysis. We then discuss the different environments under which IR characterization of catalysts is carried out, including in situ and operando studies of typical catalytic processes in gas-phase, research with model catalysts in ultrahigh vacuum (UHV) and so-called high-pressure cell instruments, and work involving liquid/solid interfaces. A presentation of the type of information extracted from IR data follows in terms of the identification of adsorbed intermediates, the characterization of the surfaces of the catalysts themselves, the quantitation of IR intensities to extract surface coverages, and the use of probe molecules to identify and titrate specific catalytic sites. Finally, the different options for carrying out kinetic studies with temporal resolution such as rapid-scan FTIR, step-scan FTIR, and the use of tunable lasers or synchrotron sources, and to obtain spatially resolved spectra, by sample rastering or by 2D imaging, are

  10. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  11. [Second-harmonic detection with tunable diode laser absorption spectroscopy of CO and CO2 at 1.58 microm].

    PubMed

    Tu, Xing-Hua; Liu, Wen-Qing; Zhang, Yu-Jun; Dong, Feng-Zhong; Wang, Min; Wang, Tie-Dong; Wang, Xiao-Mei; Liu, Jian-Guo

    2006-07-01

    Tunable diode laser absorption spectroscopy has been applied in the fields of atmospheric chemistry and monitoring pollutant gases as a new method of measuring trace gases. The technique of remote sensing of CO and CO2 at 760 mm Hg pressure with tunable diode laser absorption spectroscopy in the near-infrared region is introduced. And the relationship between the second-harmonic spectrum of CO2 in Lorentzian line shape and the modulation amplitude is also presented.

  12. Surface arsenic speciation of a drinking-water treatment residual using X-ray absorption spectroscopy.

    PubMed

    Makris, Konstantinos C; Sarkar, Dibyendu; Parsons, Jason G; Datta, Rupali; Gardea-Torresdey, Jorge L

    2007-07-15

    Drinking-water treatment residuals (WTRs) present a low-cost geosorbent for As-contaminated waters and soils. Previous work has demonstrated the high affinity of WTRs for As, but data pertaining to the stability of sorbed As is missing. Sorption/desorption and X-ray absorption spectroscopy (XAS), both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) studies, were combined to determine the stability of As sorbed by an Fe-based WTR. Arsenic(V) and As(III) sorption kinetics were biphasic in nature, sorbing >90% of the initial added As (15,000 mg kg(-1)) after 48 h of reaction. Subsequent desorption experiments with a high P load (7500 mg kg(-1)) showed negligible As desorption for both As species, approximately <3.5% of sorbed As; the small amount of desorbed As was attributed to the abundance of sorption sites. XANES data showed that sorption kinetics for either As(III) or As(V) initially added to solution had no effect on the sorbed As oxidation state. EXAFS spectroscopy suggested that As added either as As(III) or as As(V) formed inner-sphere mononuclear, bidentate complexes, suggesting the stability of the sorbed As, which was further corroborated by the minimum As desorption from the Fe-WTR.

  13. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2014-03-04

    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.

  14. High Speed H2O Concentration Measurements Using Absorption Spectroscopy to Monitor Exhaust Gas

    SciTech Connect

    Kranendonk, Laura; Parks, II, James E; Prikhodko, Vitaly Y; Partridge Jr, William P

    2008-01-01

    This paper demonstrates the potential for fast absorption spectroscopy measurements in diesel-engine exhaust to track H2O concentration transients. Wavelength-agile absorption spectroscopy is an optical technique that measures broadband absorption spectra between 10kHz and 100 MHz. From these measured spectra, gas temperature and absorber concentration can be determined. The Fourier-domain mode-locking (FDML) laser is becoming recognized as one of the most robust and reliable wavelength-agile sources available. H2O concentration measurements during combustion events at crank angle resolved speeds are beneficial for a wide variety of applications, such as product improvements for industry, control and reliability checks for experimental researchers, and measures of fit for numerical simulations. The difficulties associated with measuring diesel exhaust compared to in-cylinder measurements are discussed. A full description of the experimental configuration and data processing is explained. Measurements of engine exhaust H2O transients with 10- s temporal resolution are presented for a range of engine conditions.

  15. UV-Vis Reflection-Absorption Spectroscopy at air-liquid interfaces.

    PubMed

    Rubia-Payá, Carlos; de Miguel, Gustavo; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-11-01

    UV-Visible Reflection-Absorption Spectroscopy (UVRAS) technique is reviewed with a general perspective on fundamental and applications. UVRAS is formally identical to IR Reflection-Absorption Spectroscopy (IRRAS), and therefore, the methodology developed for this IR technique can be applied in the UV-visible region. UVRAS can be applied to air-solid, air-liquid or liquid-liquid interfaces. This review focuses on the use of UVRAS for studying Langmuir monolayers. We introduce the theoretical framework for a successful understanding of the UVRAS data, and we illustrate the usage of this data treatment to a previous study from our group comprising an amphiphilic porphyrin. For ultrathin films with a thickness of few nm, UVRAS produces positive or negative bands when p-polarized radiation is used, depending on the incidence angle and the orientation of dipole absorption. UVRAS technique provides highly valuable information on tilt of chromophores at the air-liquid interface, and moreover allows the determination of optical parameters. We propose UVRAS as a powerful technique to investigate the in situ optical properties of Langmuir monolayers. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electronic relaxation dynamics of PCDA-PDA studied by transient absorption spectroscopy.

    PubMed

    Joung, Joonyoung F; Baek, Junwoo; Kim, Youngseo; Lee, Songyi; Kim, Myung Hwa; Yoon, Juyoung; Park, Sungnam

    2016-08-17

    Photo-curable polymers originating from 10,12-pentacosadiynoic acid (PCDA-PDA) are commonly used polydiacetylenes (PDAs). PCDA-PDA exhibits thermochromic properties undergoing a unique colorimetric transition from blue to red as the temperature is increased from low to high. In this work, we have carefully studied the temperature-dependent optical properties of PCDA-PDA by using UV-visible absorption, FTIR, Raman, and transient absorption (TA) spectroscopy in combination with quantum chemical calculations. Temperature-dependent UV-visible absorption spectra indicate that PCDA-PDA exhibits reversible thermochromic properties up to 60 °C and its thermochromic properties become irreversible above 60 °C. Such distinct thermochromic properties are also manifested in TA signals so that the electronically excited PCDA-PDA relaxes to the ground state via an intermediate state at 20 °C (blue form) but it relaxes directly back to the ground state at 80 °C (red form). The electronic relaxation dynamics of PCDA-PDA are comprehensively analyzed based on different kinetic models by using the global fitting analysis method. The intermediate state in the blue form of PCDA-PDA is clearly found to be responsible for fluorescence quenching. FTIR and Raman spectroscopy and quantum chemical calculations confirm that the H-bonds between the carboxylic acid groups in PCDA-PDA are broken at high temperatures leading to an irreversible structural change of PCDA-PDA.

  17. Time resolved metal line profile by near-ultraviolet tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vitelaru, C.; de Poucques, L.; Minea, T. M.; Popa, G.

    2011-03-01

    Pulsed systems are extensively used to produce active species such as atoms, radicals, excited states, etc. The tunable diode laser absorption spectroscopy (TD-LAS) is successfully used to quantify the density of absorbing species, but especially for stationary or slow changing systems. The time resolved-direct absorption profile (TR-DAP) measurement method by TD-LAS, with time resolution of μs is proposed here as an extension of the regular use of diode laser absorption spectroscopy. The spectral narrowness of laser diodes, especially in the blue range (˜0.01 pm), combined with the nanosecond fast trigger of the magnetron pulsed plasma and long trace recording on the oscilloscope (period of second scale) permit the detection of the sputtered titanium metal evolution in the afterglow (˜ms). TR-DAP method can follow the time-dependence of the temperature (Doppler profile) and the density (deduced from the absorbance) of any medium and heavy species in a pulsed system.

  18. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics.

    PubMed

    Neville, Simon P; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S

    2016-10-14

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L(2) method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  19. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  20. High-performance dispersive Raman and absorption spectroscopy as tools for drug identification

    NASA Astrophysics Data System (ADS)

    Pawluczyk, Olga; Andrey, Sam; Nogas, Paul; Roy, Andrew; Pawluczyk, Romuald

    2009-02-01

    Due to increasing availability of pharmaceuticals from many sources, a need is growing to quickly and efficiently analyze substances in terms of the consistency and accuracy of their chemical composition. Differences in chemical composition occur at very low concentrations, so that highly sensitive analytical methods become crucial. Recent progress in dispersive spectroscopy with the use of 2-dimensional detector arrays, permits for signal integration along a long (up to 12 mm long) entrance slit of a spectrometer, thereby increasing signal to noise ratio and improving the ability to detect small concentration changes. This is achieved with a non-scanning, non-destructive system. Two different methods using P&P Optica high performance spectrometers were used. High performance optical dispersion Raman and high performance optical absorption spectroscopy were employed to differentiate various acetaminophen-containing drugs, such as Tylenol and other generic brands, which differ in their ingredients. A 785 nm excitation wavelength was used in Raman measurements and strong Raman signals were observed in the spectral range 300-1800 cm-1. Measurements with the absorption spectrometer were performed in the wavelength range 620-1020 nm. Both Raman and absorption techniques used transmission light spectrometers with volume phase holographic gratings and provided sufficient spectral differences, often structural, allowing for drug differentiation.

  1. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  2. Graphite furnace atomic absorption elemental analysis of ecstasy tablets.

    PubMed

    French, Holly E; Went, Michael J; Gibson, Stuart J

    2013-09-10

    Six metals (copper, magnesium, barium, nickel, chromium and lead) were determined in two separate batches of seized ecstasy tablets by graphite furnace atomic absorption spectroscopy (GFAAS) following digestion with nitric acid and hydrogen peroxide. Large intra-batch variations were found as expected for tablets produced in clandestine laboratories. For example, nickel in batch 1 was present in the range 0.47-13.1 parts per million (ppm) and in batch 2 in the range 0.35-9.06 ppm. Although batch 1 had significantly higher 3,4-methylenedioxy-N-methamphetamine (MDMA) content than batch 2, barium was the only element which discriminated between the two ecstasy seizures (batch 1: 0.19-0.66 ppm, batch 2: 3.77-5.47 ppm).

  3. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.

    PubMed

    Lambrecht, Armin; Pfeifer, Marcel; Konz, Werner; Herbst, Johannes; Axtmann, Felix

    2014-05-07

    Laser spectroscopy is a powerful tool for analyzing small molecules, i.e. in the gas phase. In the mid-infrared spectral region quantum cascade lasers (QCLs) have been established as the most frequently used laser radiation source. Spectroscopy of larger molecules in the gas phase, of complex mixtures, and analysis in the liquid phase requires a broader tuning range and is thus still the domain of Fourier transform infrared (FTIR) spectroscopy. However, the development of tunable external cavity (EC) QCLs is starting to change this situation. The main advantage of QCLs is their high spectral emission power that is enhanced by a factor of 10(4) compared with thermal light sources. Obviously, transmission measurements with EC-QCLs in strongly absorbing samples are feasible, which can hardly be measured by FTIR due to detector noise limitations. We show that the high power of EC-QCLs facilitates spectroscopy beyond simple absorption measurements. Starting from QCL experiments with liquid samples, we show results of fiber evanescent field analysis (FEFA) to detect pesticides in drinking water. FEFA is a special case of attenuated total reflection spectroscopy. Furthermore, powerful CW EC-QCLs enable fast vibrational circular dichroism (VCD) spectroscopy of chiral molecules in the liquid phase - a technique which is very time consuming with standard FTIR equipment. We present results obtained for the chiral compound 1,1'-bi-2-naphthol (BINOL). Finally, powerful CW EC-QCLs enable the application of laser photothermal emission spectroscopy (LPTES). We demonstrate this for a narrowband and broadband absorber in the gas phase. All three techniques have great potential for MIR process analytical applications.

  4. [Concentration retrieving method of SO2 using differential optical absorption spectroscopy based on statistics].

    PubMed

    Liu, Bin; Sun, Chang-Ku; Zhang, Chi; Zhao, Yu-Mei; Liu, Jun-Ping

    2011-01-01

    A concentration retrieving method using statistics is presented, which is applied in differential optical absorption spectroscopy (DOAS) for measuring the concentration of SO2. The method uses the standard deviation of the differential absorption to represents the gas concentration. Principle component analysis (PCA) method is used to process the differential absorption spectrum. In the method, the basis data for the concentration retrieval of SO2 is the combination of the PCA processing result, the correlation coefficient, and the standard deviation of the differential absorption. The method is applied to a continuous emission monitoring system (CEMS) with optical path length of 0.3 m. Its measuring range for SO2 concentration is 0-5 800 mg x m(-3). The nonlinear calibration and the temperature compensation for the system were executed. The full scale error of the retrieving concentration is less than 0.7% FS. And the measuring result is -4.54 mg x m(-3) when the concentration of SO2 is zero.

  5. The analysis of time-resolved optical waveguide absorption spectroscopy based on positive matrix factorization.

    PubMed

    Liu, Ping; Li, Zhu; Li, Bo; Shi, Guolong; Li, Minqiang; Yu, Daoyang; Liu, Jinhuai

    2013-08-01

    Time-resolved optical waveguide absorption spectroscopy (OWAS) makes use of an evanescent field to detect the polarized absorption spectra of sub-monomolecular adlayers. This technique is suitable for the investigation of kinetics at the solid/liquid interface of dyes, pigments, fluorescent molecules, quantum dots, metallic nanoparticles, and proteins with chromophores. In this work, we demonstrate the application of positive matrix factorization (PMF) to analyze time-resolved OWAS for the first time. Meanwhile, PCA is researched to compare with PMF. The absorption/desorption kinetics of Rhodamine 6G (R6G) onto a hydrophilic glass surface and the dynamic process of Meisenheimer complex between Cysteine and TNT are selected as samples to verify experimental system and analytical methods. The results are shown that time-resolved OWAS can well record the absorption/desorption of R6G onto a hydrophilic glass surface and the dynamic formation process of Meisenheimer complexes. The feature of OWAS extracted by PMF is dynamic and consistent with the results analyzed by the traditional function of time/wavelength-absorbance. Moreover, PMF prevents the negative factors from occurring, avoids contradicting physical reality, and makes factors more easily interpretable. Therefore, we believe that PMF will provide a valuable analysis route to allow processing of increasingly large and complex data sets.

  6. a Study of the Hydroxycyclohexadienyl Radical Absorption Using Time-Resolved Resonance Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Donnell, Deanna M.; Tripathi, G. N. R.; Brinkmann, Nicole R.

    2009-06-01

    Thus far there has been little understanding of the vibrational spectra, structure and electronic absorption of hydroxycyclohexadienyl radicals in water. They are primary chemical species formed on interaction of radiation with aqueous solutions containing aromatic molecules. We have applied time- resolved resonance Raman (TR-RR) spectroscopy to structurally identify isomers of cyclohexadienyl radicals formed in the pulse radiolysis, using aqueous benzoate solutions as a model system. An early ESR study ((Eiben, K; Fessenden, R.W.; J. Phys. Chem. 1971, 75, 1186-1201) has shown that a mixture of three benzoate hydroxycyclohexadienyl radical isomers: ortho-, meta- and para- are formed upon electron irradiation of N_{2}O saturated benzoate solution. Their collective transient absorption is believed to exhibit a single broad band in the near UV region (λ_{max} = 330 nm, ɛ_{330} = 3800 M^{-1}cm^{-1}). To extract the single isomeric contribution to this collective absorption, we applied TR-RR at various wavelengths within the broad transient absorption range looking for the characteristic indication of each individual isomer. Raman signals of various para-substituted benzoates were also collected to aid in the vibrational studies of the aforementioned benzoate hydroxycyclohexadienyl radicals.

  7. Determining crystal phase purity in c-BP through X-ray absorption spectroscopy.

    PubMed

    Huber, S P; Medvedev, V V; Gullikson, E; Padavala, B; Edgar, J H; van de Kruijs, R W E; Bijkerk, F; Prendergast, D

    2017-02-02

    We employ X-ray absorption near-edge spectroscopy at the boron K-edge and the phosphorus L2,3-edge to study the structural properties of cubic boron phosphide (c-BP) samples. The X-ray absorption spectra are modeled from first-principles within the density functional theory framework using the excited electron core-hole (XCH) approach. A simple structural model of a perfect c-BP crystal accurately reproduces the P L2,3-edge, however it fails to describe the broad and gradual onset of the B K-edge. Simulations of the spectroscopic signatures in boron 1s excitations of intrinsic point defects and the hexagonal BP crystal phase show that these additions to the structural model cannot reproduce the broad pre-edge of the experimental spectrum. Calculated formation enthalpies show that, during the growth of c-BP, it is possible that amorphous boron phases can be grown in conjunction with the desired boron phosphide crystalline phase. In combination with experimental and theoretically obtained X-ray absorption spectra of an amorphous boron structure, which have a similar broad absorption onset in the B K-edge spectrum as the cubic boron phosphide samples, we provide evidence for the presence of amorphous boron clusters in the synthesized c-BP samples.

  8. Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications.

    PubMed

    Werblinski, Thomas; Engel, Sascha R; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2013-06-03

    The first supercontinuum (SC) absorption spectroscopy measurements showing the feasibility of quantitative temperature evaluation are presented to the best of the authors' knowledge. Temperature and multi-species measurements were carried out at a detection rate of ~2 MHz in a high-temperature flow cell within a temperature range from 450 K to 750 K at 0.22 MPa, representing conditions during the suction and compression stroke in an internal combustion (IC) engine. The broadband SC pulses were temporally dispersed into fast wavelength sweeps, covering the overtone absorption bands 2ν(1), 2ν(3), ν(1) + ν(3) of H2O and 3ν(3) of CO2 in the near-infrared region from 1330 nm to 1500 nm. The temperature information is inferred from the peak ratio of a temperature sensitive (1362.42 nm) and insensitive (1418.91 nm) absorption feature in the ν(1) + ν(3) overtone bands of water. The experimental results are in very good agreement with theoretical intensity ratios calculated from absorption spectra based on HiTran data.

  9. An x-ray absorption spectroscopy study of Mo oxidation in Pb at elevated temperatures

    SciTech Connect

    Liu, Shanshan; Olive, Daniel; Terry, Jeff; Segre, Carlo U.

    2009-06-30

    The corrosion of fuel cladding and structural materials by lead and lead-bismuth eutectic in the liquid state at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. In this work, lead corrosion studies of molybdenum were performed to investigate the interaction layer as a function of temperature by X-ray absorption spectroscopy. In situ X-ray absorption measurements on a Mo substrate with a 3-6 {micro}m layer of Pb deposited by thermal evaporation were performed at temperatures up to 900 C and at a 15{sup o} angle to the incident X-rays. The changes in the local atomic structure of the corrosion layer are visible in the difference extended X-ray absorption fine structure and the linear combination fitting of the X-ray absorption near-edge structure to as-deposited molybdenum sample and molybdenum oxide (MoO{sub 2} and MoO{sub 3}) standards. The data are consistent with the appearance of MoO{sub 3} in an intermediate temperature range (650-800 C) and the more stable MoO{sub 2} phase dominating at high and low temperatures.

  10. Diffuse reflectance spectroscopy as a tool to measure the absorption coefficient in skin: system calibration.

    PubMed

    Karsten, A E; Singh, A; Karsten, P A; Braun, M W H

    2013-02-01

    An individualised laser skin treatment may enhance the treatment and reduces risks and side-effects. The optical properties (absorption and scattering coefficients) are important parameters in the propagation of laser light in skin tissue. The differences in the melanin content of different skin phototypes influence the absorption of the light. The absorption coefficient at the treatment wavelength for an individual can be determined by diffuse reflectance spectroscopy, using a probe containing seven fibres. Six of the fibres deliver the light to the measurement site and the central fibre collects the diffused reflected light. This is an in vivo technique, offering benefits for near-real-time results. Such a probe, with an effective wavelength band from 450 to 800 nm, was used to calibrate skin-simulating phantoms consisting of intralipid and ink. The calibration constants were used to calculate the absorption coefficients from the diffuse reflectance measurements of three volunteers (skin phototypes, II, IV and V) for sun-exposed and non-exposed areas on the arm.

  11. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].

    PubMed

    Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng

    2014-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

  12. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    PubMed

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  13. [Study of remote sensing the flux of carbon dioxide gas with tunable diode laser absorption spectroscopy].

    PubMed

    Song, Xue-mei; Liu, Jian-guo; Zhang, Yu-jun; Lu, Yi-huai; Zeng, Zong-yong; He, Ying; Cui, Yi-ben; Tian, Yong-zhi; Tian, Lin

    2011-03-01

    Tunable diode laser absorption spectroscopy (TDLAS) technique is a new method to detect trace gas qualitatively or quantificationally based on the scan characteristic of the diode laser to obtain the absorption spectra in the characteristic absorption region. TDLAS is a highly sensitive, highly selective and fast time response trace gas detection technique. In the present paper, a DFB laser at room temperature was used as the light source, wavelength modulation method was employed, and the second harmonic signal of one absorption line near 1.578 microm of carbon dioxide molecule was measured. A system was built for online monitoring of carbon dioxide concentration within the optical path of more than 700 meters at different heights. Combined with Alonzo Mourning-Obukhov length and characteristic velocity detected by large aperture scintillometer, the flux of carbon dioxide gas calculated by the experiential formula is within -60-60 mg x m(-2) x s(-1). The comparison of the datea detected by TDLAS system and the eddy covariance showed that the change of the data detected by TDLAS had a similar trend to that detected by the eddy covariance, and the best results can be produced by this method, breaking through the phenomenon of only providing the flux of trace gases near the ground at present, and making the measurement of trace gas fluxes within a large area possible.

  14. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  15. Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source

    NASA Astrophysics Data System (ADS)

    Pertot, Yoann; Schmidt, Cédric; Matthews, Mary; Chauvet, Adrien; Huppert, Martin; Svoboda, Vit; von Conta, Aaron; Tehlar, Andres; Baykusheva, Denitsa; Wolf, Jean-Pierre; Wörner, Hans Jakob

    2017-01-01

    Time-resolved x-ray absorption spectroscopy (TR-XAS) has so far practically been limited to large-scale facilities, to subpicosecond temporal resolution, and to the condensed phase. We report the realization of TR-XAS with a temporal resolution in the low femtosecond range by developing a tabletop high-harmonic source reaching up to 350 electron volts, thus partially covering the spectral region of 280 to 530 electron volts, where water is transmissive. We used this source to follow previously unexamined light-induced chemical reactions in the lowest electronic states of isolated CF4+ and SF6+ molecules in the gas phase. By probing element-specific core-to-valence transitions at the carbon K-edge or the sulfur L-edges, we characterized their reaction paths and observed the effect of symmetry breaking through the splitting of absorption bands and Rydberg-valence mixing induced by the geometry changes.

  16. Experimental study of 100Tc β decay with total absorption γ -ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Guadilla, V.; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, D.; Montaner-Pizá, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.; Suhonen, J.; Civitarese, O.; ńystö, J.; Briz, J. A.; Cucoanes, A.; Eronen, T.; Estienne, M.; Fallot, M.; Fraile, L. M.; Ganioǧlu, E.; Gelletly, W.; Gorelov, D.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V.; Koponen, J.; Lebois, M.; Martinez, T.; Monserrate, M.; Moore, I.; Nácher, E.; Penttilä, H.; Pohjalainen, I.; Porta, A.; Reinikainen, J.; Reponen, M.; Rinta-Antila, S.; Rytkönen, K.; Shiba, T.; Sonnenschein, V.; Sonzogni, A. A.; Vedia, V.; Voss, A.; Wilson, J. N.; Zakari-Issoufou, A.-A.

    2017-07-01

    The β decay of 100Tc has been studied by using the total absorption γ -ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ -ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximation framework are also reported. Comparison of these calculations with our measurement serves as a benchmark for calculations of the double β decay of 100Mo.

  17. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    SciTech Connect

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.

  18. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Parker, Ron; Carr, Zak; MacLean, Mathew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  19. High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Dar, M. Ibrahim; Franckevičius, Marius; Arora, Neha; Redeckas, Kipras; Vengris, Mikas; Gulbinas, Vidmantas; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2017-09-01

    To understand the cause of the high open circuit photovoltage (VOC) achieved by todays' state of the art perovskite solar cells (PSCs), we examine formamidinium lead bromide CH(NH2)2PbBr3 films by ultrafast transient absorption spectroscopy (TAS). By using TiO2 and spiro-OMeTAD as charge extraction layers, the devices based on the CH(NH2)2PbBr3 films yield VOC as high as 1.5 V ascertaining their high quality. TAS establish that the presence of charge extraction layers has very little influences on the nature of a negative band at 535 nm corresponding to the bleaching of the absorption band edge and two positive bands in the CH(NH2)2PbBr3 films. Therefore, we contend that the VOC in PSC is predominantly determined by the quasi Fermi level splitting within the perovskite layer.

  20. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  1. Infrared and near infrared transient absorption spectroscopy of molecular free radicals

    SciTech Connect

    Sears, T.J.; Wu, M.; Hall, G.E.; Chang, B.C.; Hansford, G.; Bloch, J.C.; Field, R.W.

    1993-12-31

    The advantages of absorption spectroscopy at low absorbances include a linear relationship between signal size and number of absorbing molecules, line of sight measurement, and easily interpretable lineshape functions. The main disadvantage is due to the necessity of measuring a small change in light intensity, usually in the presence of a strong background, which limits the sensitivity. In this work, recent results obtained using absorption techniques with continuous wave lasers to measure vibrational and electronic spectra in the mid- and near-infrared of small free radicals are reported. The radical of interest was generated by excimer laser photolysis of a chemically stable precursor molecule and detected by measuring the transient decrease in power of a continuous wave probe laser that traversed the photolyzed volume before being imaged onto a detector.

  2. Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-01-01

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with <1E-3 absorbance noise for a 10 second measurement time.

  3. Differential Optical Absorption Spectroscopy (DOAS) using Targets: SO2 and NO2 Measurements in Montevideo City

    NASA Astrophysics Data System (ADS)

    Louban, Ilia; Píriz, Gustavo; Platt, Ulrich; Frins, Erna

    2008-04-01

    SO2 and NO2 were remotely measured in a main street of Montevideo city using Multiaxis-Differential Optical Absorption Spectroscopy (MAX-DOAS) combined with on-field selected targets. Target-based measurements are the basis of a new experimental procedure called Topographic Target Light scattering-DOAS (TOTAL-DOAS) that provides a well define absorption path to measure the near surface distribution of trace gases in the boundary layer. It combines the measurement principles of the long-path DOAS and zenith-scattered sunlight DOAS, within the near UV and VIS spectral range. We give a general description of the procedure and present first results of the 2006 campaign at Montevideo.

  4. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa

    PubMed Central

    Aquilanti, Giuliana; Trapananti, Angela; Karandikar, Amol; Kantor, Innokenty; Marini, Carlo; Mathon, Olivier; Pascarelli, Sakura; Boehler, Reinhard

    2015-01-01

    Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa. PMID:26371317

  5. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  6. Quantifying the effect of finite spectral bandwidth on extinction coefficient of species in laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.

    2016-11-01

    The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.

  7. Ablation-initiated Isotope-selective Atomic Absorption Spectroscopy of Lanthanide Elements

    SciTech Connect

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Maruyama, Y.; Wakaida, I.; Watanabe, K.

    2009-03-17

    For remote isotope analysis of low-decontaminated trans-uranium (TRU) fuel, absorption spectroscopy has been applied to a laser-ablated plume of lanthanide elements. To improve isotopic selectivity and detection sensitivity of the ablated species, various experimental conditions were optimized. Isotope-selective absorption spectra were measured by observing the slow component of the plume produced under low-pressure rare-gas ambient. The measured minimum line width of about 0.9 GHz was close to the Doppler width of the Gd atomic transition at room temperature. The relaxation rate of high-lying metastable state was found to be higher than that of the ground state, which suggests that higher analytical sensitivity can be obtained using low-lying state transition. Under helium gas environment, Doppler splitting was caused from particle motion. This effect was considered for optimization for isotope selection and analysis. Some analytical performances of this method were determined under optimum conditions and were discussed.

  8. First total-absorption spectroscopy measurement on the neutron-rich Cu isotopes

    NASA Astrophysics Data System (ADS)

    Naqvi, F.; Spyrou, A.; Liddick, S. N.; Larsen, A. C.; Guttormsen, M.; Bleuel, D. L.; Campo, L. C.; Couture, A.; Crider, B. P.; Dombos, A. C.; Ginter, T.; Lewis, R.; Mosby, S.; Perdikakis, G.; Prokop, C. P.; Quinn, S. J.; Renstrom, T.; Rubio, B.; Siem, S.

    2015-10-01

    The first beta-decay studies of 73-71Cu isotopes using the Total Absorption Spectroscopy (TAS) will be reported. The Cu isotopes have one proton outside the Z = 28 shell and hence are good candidates to probe the single-particle structure in the region.Theories predict weakening of the Z = 28 shell gap due to the tensor interaction between the valence πν single-particle orbitals. Comparing the beta-decay strength distributions in the daughter Zn isotopes to the theoretical calculations will provide a stringent test of the predictions. The experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) employing the TAS technique with the Summing NaI(Tl) detector, while beta decays were measured in the NSCL beta-counting system. The experimentally obtained total absorption spectra for the neutron-rich Cu isotopes will be presented and the implications of the extracted beta-feeding intensities will be discussed.

  9. Absorption spectroscopy of wire-array plasma at the non-radiative stage

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Durmaz, T.; Anderson, A.; Astanovitskiy, A.; Chalyy, O.; Altemara, S. D.; Papp, D.; McKee, E.; Chittenden, J. P.; Niasse, N.; Shevelko, A. P.

    2010-11-01

    Absorption spectroscopy was applied to 1 MA wire-array Z-pinches. The 50 TW Leopard laser was coupled with the Zebra generator for x-ray backlighting of wire arrays. Wire-array plasmas were investigated at the ablation and implosion stages. Broadband x-ray radiation from a laser produced Sm plasma was used to backlight Al star wire arrays in the range of 7-9 å. Two time-integrated x-ray conical spectrometers recorded reference and main spectra. The backlighting radiation was separated from the powerful Z-pinch x-ray burst by collimators. A comparison of the backlighting radiation spectra that passed through the plasma with reference spectra indicates absorption lines in the range of 8.2-8.4 å. A plasma density profile was simulated with a 3D resistive MHD code. Simulations with atomic kinetics models derived an electron temperature of Al wire-array plasma.

  10. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa.

    PubMed

    Aquilanti, Giuliana; Trapananti, Angela; Karandikar, Amol; Kantor, Innokenty; Marini, Carlo; Mathon, Olivier; Pascarelli, Sakura; Boehler, Reinhard

    2015-09-29

    Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa.

  11. The nature of arsenic in uranium mill tailings by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cutler, J. N.; Chen, N.; Jiang, D. T.; Demopoulos, G. P.; Jia, Y.; Rowson, J. W.

    2003-05-01

    In order to understand the evolving world of environmental issues, the ability to characterize and predict the stability and bioavailability of heavy métal contaminants in mine waste is becoming increasingly more important. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopies were used to characterize a series of synthetic and natural samples associated with mine tailings processing. XANES was shown to be excellent as a tool to rapidly differentiate oxidation states of arsenic within the samples. The EXAFS spectra provided information on the mineralogy of the precipitated raffinate and tailings and showed that these samples are composed of a mixture of amorphous ferric arsenates, adsorbed arsenates and a mixture of other poorly ordered arsenates.

  12. Measurement of exhaled nitric oxide in beef cattle using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Roller, C. B.; Holland, B. P.; McMillen, G.; Step, D. L.; Krehbiel, C. R.; Namjou, K.; McCann, P. J.

    2007-03-01

    Measurement of nitric oxide (NO) in the expired breath of crossbred calves received at a research facility was performed using tunable diode laser absorption spectroscopy. Exhaled NO (eNO) concentrations were measured using NO absorption lines at 1912.07 cm-1 and employing background subtraction. The lower detection limit and measurement precision were determined to be ˜330 parts in 1012 per unit volume. A custom breath collection system was designed to collect lower airway breath of spontaneously breathing calves while in a restraint chute. Breath was collected and analyzed from calves upon arrival and periodically during a 42 day receiving period. There was a statistically significant relationship between eNO, severity of bovine respiratory disease (BRD) in terms of number of times treated, and average daily weight gain over the first 15 days postarrival. In addition, breathing patterns and exhaled CO2 showed a statistically significant relationship with BRD morbidity.

  13. Application of terahertz absorption spectroscopy to evaluation of aging variation of medicine.

    PubMed

    Kawase, Masaya; Saito, Tadashi; Ogawa, Masafumi; Uejima, Hideki; Hatsuda, Yasutoshi; Kawanishi, Sonoyo; Hirotani, Yoshihiko; Myotoku, Michiaki; Ikeda, Kenji; Konishi, Hiroki; Iga, Ikumi; Yamakawa, Junji; Nishizawa, Seizi; Yamamoto, Kohji; Tani, Masahiko

    2011-01-01

    The absorption spectra of three kinds of medicines both before and after the expiration date: Amlodin OD(®) (5 mg), Basen OD(®) (0.2 mg) and Gaster D(®) (10 mg) have been measured by terahertz time domain spectroscopy (THz-TDS). All the medicines show some differences in the THz absorption spectra between medicines before and after the expiration dates. X-Ray powder diffraction (XRD) studies of all medicines suggest that the polymorph of the main effective compound is not changed before and after the expiration date. Therefore, the differences in the THz spectra between medicines before and after the expiration dates arise from aging variation of diluting agents and/or from modifications of intermolecular interaction between the effective compounds and diluting agents.

  14. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  15. Quantitative Determination of Absolute Organohalogen Concentrations in Environmental Samples by X-ray Absorption Spectroscopy

    SciTech Connect

    Leri,A.; Hay, M.; Lanzirotti, A.; Rao, W.; Myneni, S.

    2006-01-01

    An in situ procedure for quantifying total organic and inorganic Cl concentrations in environmental samples based on X-ray absorption near-edge structure (XANES) spectroscopy has been developed. Cl 1s XANES spectra reflect contributions from all Cl species present in a sample, providing a definitive measure of total Cl concentration in chemically heterogeneous samples. Spectral features near the Cl K-absorption edge provide detailed information about the bonding state of Cl, whereas the absolute fluorescence intensity of the spectra is directly proportional to total Cl concentration, allowing for simultaneous determination of Cl speciation and concentration in plant, soil, and natural water samples. Absolute Cl concentrations are obtained from Cl 1s XANES spectra using a series of Cl standards in a matrix of uniform bulk density. With the high sensitivity of synchrotron-based X-ray absorption spectroscopy, Cl concentration can be reliably measured down to the 5-10 ppm range in solid and liquid samples. Referencing the characteristic near-edge features of Cl in various model compounds, we can distinguish between inorganic chloride (Cl{sub inorg}) and organochlorine (Cl{sub org}), as well as between aliphatic Cl{sub org} and aromatic Cl{sub org}, with uncertainties in the range of {approx}6%. In addition, total organic and inorganic Br concentrations in sediment samples are quantified using a combination of Br 1s XANES and X-ray fluorescence (XRF) spectroscopy. Br concentration is detected down to {approx}1 ppm by XRF, and Br 1s XANES spectra allow quantification of the Br{sub inorg} and Br{sub org} fractions. These procedures provide nondestructive, element-specific techniques for quantification of Cl and Br concentrations that preclude extensive sample preparation.

  16. Absorption spectroscopy of oxygen, carbon dioxide and water species for applications in combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Mei, Anhua

    Laser absorption spectroscopy has been a useful tool applied in combustion diagnostics because of its capability to measure the species' concentration, particularly to measure concentration, temperature, and pressure simultaneously. These measurements provide the necessary information for dynamic combustion control. Due to its advantages such as fast response, non-intrusive nature and applicability under harsh environment like high temperature and high pressure, absorption laser spectroscopy makes it possible to monitor combustion system on-line and in situ. Since its development for more than thirty years, laser spectroscopy has matured, and the novel and advanced laser sensors have pushed it to be applied fast. On the other hand, industry still needs cheaper and more operable spectroscopy, which becomes an important consideration in the development and application of modern laser spectroscopy. This study presents an instrumental structure including the algorithm of the spectrum computation and the hardware configuration. The algorithm applied the central maximum value of the spectrum to simplify the computation. The whole calculation was done extensively using Beer-Lambert theory and HITRAN database which makes it efficient and applicable. This research conducted the simulations of high temperature species, such as CO2, H2O to carry out the algorithm, which were compared with published data. Also, this research designed and performed the experiments of measuring oxygen and its mixture with Helium by using a 760 nm diode laser and a 655 nm Helium/Neon laser sensor with fixed wavelength structures. The results of this research also conclude the following: (1) extensive literature survey, field research and laboratory work; (2) studying the significant theories and experimental methods of the laser spectroscopy; (3) developing efficient and simplified algorithm for spectrum calculation; (4) simulating high temperature species H2O and CO2; (5) designing and building

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  18. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  19. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  20. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  1. [Measurement of trace elements in blood serum by atomic absorption spectroscopy with electrothermal atomization].

    PubMed

    Rogul'skiĭ, Iu V; Danil'chenko, S N; Lushpa, A P; Sukhodub, L F

    1997-09-01

    Describes a method for measuring trace elements Cr, Mn, Co, Fe, Cu, Zn, and Mo in the blood serum using non-flame atomization (KAC 120.1 complex). Optimal conditions for preparing the samples were defined, temperature regimens for analysis of each element selected, and original software permitting automated assays created. The method permits analysis making use of the minimal samples: 0.1 ml per 10 parallel measurements, which is 100 times less than needed for atomic absorption spectroscopy with flame atomization of liquid samples. Metrological characteristics of the method are assessed.

  2. Transient absorption spectroscopy of ultra-low band gap polymers for organic electronic applications

    NASA Astrophysics Data System (ADS)

    Fallon, Kealan J.; Dimitrov, Stoichko; Durrant, James; Bronstein, Hugo; Clarke, Tracey M.

    2016-09-01

    In this paper two extremely narrow band-gap polymers, based on naturally occurring indigo with high thin film crystallinity, have been examined using transient absorption spectroscopy. This was done in order to assess their charge photogeneration and recombination characteristics in blends with PC71BM. Two charge photogeneration mechanisms are found to be operating, depending on which component of the blend is photoexcited. Despite virtually isoenergetic LUMO levels, photoexcitation of the polymer causes standard electron transfer, albeit with a relatively low efficiency of 17 %. Photoexcitation of the fullerene, however, produces an exceptionally slow nanosecond timescale hole transfer.

  3. Determination of launch conditions for Spacelab satisfying the constraints of an absorption spectroscopy project

    NASA Technical Reports Server (NTRS)

    Vercheval, J.

    1978-01-01

    The conditions for absorption spectroscopy of the homosphere between 20 and 100 km from a space platform such as Spacelab are considered. Using nominal orbital elements, and taking launch data and time as parameters of the problem, formula were established that give the data necessary for determining the flight plan. The geographical coordinates of the tangential points of the solar illumination boundaries were also calculated. It is shown that the latitude coverage of the observation is closely related to launch conditions. Expressions for the pointing angles referred to an instantaneous terrestrial trihedron are given. These angular elements are needed to determine the real pointing angles in a reference system linked to Spacelab.

  4. Diffuse-light absorption spectroscopy for beer classification and prediction of alcoholic content

    NASA Astrophysics Data System (ADS)

    Ciaccheri, L.; Samano Baca, E. E.; Russo, M. T.; Ottevaere, H.; Thienpont, H.; Mignani, A. G.

    2012-04-01

    A miscellaneous of 86 beers was characterized by non-destructive, fast and reagent-free optical measurements. Diffuselight absorption spectroscopy performed in the visible and near-infrared bands was used to gather a turbidity-free spectroscopic information. Also, conventional turbidity and refractive index measurements were added for completing the optical characterization. The near-infrared spectra provided a straightforward turbidity-free assessment of the alcoholic strength. Then, the entire optical data set was processed by means of multivariate analysis looking for a beer clustering according to the own character and identity. Good results were achieved, indicating that optical methods can be successfully used for beer authentication.

  5. Intracavity Laser Absorption Spectroscopy of Zirconium Fluoride in the Near Infrared

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; Harms, Jack C.; O'Brien, James J.

    2013-06-01

    A new band of ZrF has been recorded in the near-infrared with rotational resolution using intracavity laser absorption spectroscopy. A red-degraded bandhead is observed at 12527wn, and 2 R-branches and 2 P-branches have been identified. The results of the analysis will be presented. The gas phase ZrF molecules were produced using a zirconium-lined hollow cathode in an argon-based electric discharge with a small amount of SF_{6}.

  6. Tunable Diode Laser Absorption Spectroscopy of Metastable Atoms in Dusty Plasmas

    SciTech Connect

    Hoang Tung Do; Hippler, Rainer

    2008-09-07

    Spatial density profile of neon metastable produced in dusty plasma was investigated by means of tunable diode laser absorption spectroscopy. The line averaged measured density drops about 30% with the presence of dust particles. The observations provide evidence for a significant interaction between atoms and powder particles which are important for energy transfer from plasma to particles. The power per unit area absorbed by dust particles due to the collision of metastable atoms with dust particle surface is about some tens of mW/m{sup 2}.

  7. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-04

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

  8. Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview

    PubMed Central

    Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B.; Röpcke, Jürgen

    2010-01-01

    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry. PMID:22163581

  9. 2p X-ray Absorption Spectroscopy in the Earth Sciences.

    PubMed

    Schofield, P F; Henderson, C M; Cressey, G; van der Laan, G

    1995-03-01

    A complete knowledge of 3d transition-metal valencies, site occupancies and site symmetries is essential for a full understanding of mineral/melt energetics and behaviour. Over the last few years, significant advances in both instrumentation and theory associated with synchrotron radiation sources and experiments have enabled the development of 2p X-ray absorption spectroscopy as a sensitive, element-specific site and valency probe. The potential of this technique in the Earth sciences is discussed in this paper with examples reflecting the variety of problems set by 3d transition metals in natural systems.

  10. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    SciTech Connect

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  11. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    SciTech Connect

    Fara, M.; Novak, F.

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  12. A quality control technique based on UV-VIS absorption spectroscopy for tequila distillery factories

    NASA Astrophysics Data System (ADS)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Maldonado, J. L.; Pichardo Molina, J.; Meneses Nava, M. A.; Landgrave, Enrique; Cervantes, M. J.

    2006-02-01

    A low cost technique based on the UV-VIS absorption spectroscopy is presented for the quality control of the spirit drink known as tequila. It is shown that such spectra offer enough information to discriminate a given spirit drink from a group of bottled commercial tequilas. The technique was applied to white tequilas. Contrary to the reference analytic methods, such as chromatography, for this technique neither special personal training nor sophisticated instrumentations is required. By using hand-held instrumentation this technique can be applied in situ during the production process.

  13. X-Ray Absorption Spectroscopy as a Probe of Elemental Speciation

    SciTech Connect

    Pickering, Ingrid

    2003-09-25

    An effective bioremediation strategy for metals and metalloids must take the chemical state of the contaminants into account. The oxidation state and local atomic environment of contaminants critically affect such factors as their mobility, reactivity and toxicity, and hence the remediation strategy which might be applied. Since contamination exists in diverse environments, it is very likely that the chemical state of the contaminant will be site specific. X-ray absorption spectroscopy provides a unique tool for determining the chemical form of contaminants in most matrices with minimal pretreatment of the sample.

  14. Laser absorption spectroscopy based on a broadband external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Sun, Juan; Liu, Ningwu; Deng, Hao; Ding, Junya; Sun, Jiancha; Zhang, Lei; Li, Jingsong

    2017-02-01

    A tunable diode laser absorption spectroscopy (TDLAS) system based on a broad band external cavity quantum cascade laser (ECQCL) near 7.78 μm was used to study volatile organic compounds (VOCs) measurements. Instead of using a standard infrared mercury cadmium telluride (MCT) detector, a quartz crystal tuning fork (QCTF) as a light detector was successfully used for laser signal detection. Fast Fourier transform (FFT) was used to extract vibration intensity information of QCTF. Primary results indicate that the new developed system has a good reproducibility, and a good agreement was obtained by comparing with data taken from standard spectroscopic database.

  15. X-ray absorption spectroscopy studies of electrochemically deposited thin oxide films.

    SciTech Connect

    Balasubramanian, M.

    1998-06-02

    We have utilized ''in situ'' X-ray Absorption Fine Structure Spectroscopy to investigate the structure and composition of thin oxide films of nickel and iron that have been prepared by electrodeposition on a graphite substrate from aqueous solutions. The films are generally disordered. Structural information has been obtained from the analysis of the data. We also present initial findings on the local structure of heavy metal ions, e.g. Sr and Ce, incorporated into the electrodeposited nickel oxide films. Our results are of importance in a number of technological applications, among them, batteries, fuel cells, electrochromic and ferroelectric materials, corrosion protection, as well as environmental speciation and remediation.

  16. Determination of the melting temperature of palladium nanoparticles by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vlasenko, V. G.; Podsukhina, S. S.; Kozinkin, A. V.; Zubavichus, Ya. V.

    2016-02-01

    The anharmonicity parameters of the interatomic potential in ~4-nm palladium nanoparticles deposited on poly(tetra)fluoroethylene microgranules 0.2-0.5 μm in average size were studied by X-ray absorption spectroscopy from an analysis of temperature-dependent EXAFS Pd K edges. The parameters of the interatomic potential obtained were used to calculate melting temperature T melt = 1591 K and Debye temperature ΘD = 257 K of palladium nanoparticles; these temperatures are significantly lower than those in metallic palladium: 277 K and 1825 K, respectively.

  17. Quantification of aortic valve calcification using multislice spiral computed tomography: comparison with atomic absorption spectroscopy.

    PubMed

    Koos, Ralf; Mahnken, Andreas Horst; Kühl, Harald Peter; Mühlenbruch, Georg; Mevissen, Vera; Stork, Ludwig; Dronskowski, Richard; Langebartels, Georg; Autschbach, Rüdiger; Ortlepp, Jan R

    2006-05-01

    Multislice spiral computed tomography (MSCT) allows the in vivo detection of valvular calcification. The aim of this study was to validate the quantification of aortic valve calcification (AVC) by MSCT with in vitro measurements by atomic absorption spectroscopy. In 18 patients with severe aortic stenosis, 16 detector row MSCT (SOMATOM Sensation 16, Siemens, Forchheim, Germany with scan parameters as follows: 420 milliseconds tube rotation time, 12 x 0.75 mm collimation, tube voltage 120 KV) was performed before aortic valve replacement. Images were reconstructed at 60% of the RR interval with an effective slice thickness of 3 mm and a reconstruction increment of 2 mm. AVC was assessed using Agatston AVC score, mass AVC score, and volumetric AVC score. After valve replacement, the calcium content of the excised human stenotic aortic valves was determined in vitro using atomic absorption spectroscopy. The mean Agatston AVC score was 3,842 +/- 1,790, the mean volumetric AVC score was 3,061 +/- 1,406, and mass AVC score was 888 +/- 492 as quantified by MSCT. Atomic absorption spectroscopy showed a mean true calcification mass (Ca5(PO4)3OH) of 19 +/- 8 mass%. There was a significant correlation between in vivo AVC scores determined by MSCT and in vitro mean true calcification mass (r = 0.74, P = 0.0004 for mass AVC score, r = 0.79, P = 0.0001 for volumetric AVC score and r = 0.80, P = 0.0001 for Agatston AVC score) determined by atomic absorption spectroscopy. Linear regression analysis showed a significant association between the degree of hydroxyapatite (given in mass%) in the aortic valve and the degree of AVC (R = 0.74, F = 19.6, P = 0.0004 for mass AVC score, R = 0.80, F = 29.3, P = 0.0001 for Agatston AVC score and R = 0.79, F = 27.3, P = 0.0001 for volumetric AVC score) assessed by MSCT. MSCT allows accurate in vivo quantification of aortic valve calcifications.

  18. Metal release in metallothioneins induced by nitric oxide: X-ray absorption spectroscopy study.

    PubMed

    Casero, Elena; Martín-Gago, José A; Pariente, Félix; Lorenzo, Encarnación

    2004-12-01

    Metallothioneins (MTs) are low molecular weight proteins that include metal ions in thiolate clusters. The capability of metallothioneins to bind different metals has suggested their use as biosensors for different elements. We study here the interaction of nitric oxide with rat liver MTs by using in situ X-ray absorption spectroscopy techniques. We univocally show that the presence of NO induces the release of Zn atoms from the MT structure to the solution. Zn ions transform in the presence of NO from a tetrahedral four-fold coordinated environment in the MT into a regular octahedral six-fold coordinated state, with interatomic distances compatible with those of Zn solvated in water.

  19. Infrared reflection absorption spectroscopy investigation of carbon nanotube growth on cobalt catalyst surfaces

    NASA Astrophysics Data System (ADS)

    Kimura, Yasuo; Numasawa, Takeru; Nihei, Mizuhisa; Niwano, Michio

    2007-02-01

    To clarify the effect the oxygen has on the carbon nanotube (CNT) growth mechanisms, the authors use infrared absorption spectroscopy for the monitoring of CNT growth on cobalt catalyst surfaces. CNT grew when methanol was used as a reaction gas, while they did not grow when methane was used. The authors observed spectral changes due to the formation of cobalt oxides and methoxides on the cobalt catalyst surfaces only during the growth of CNT. The results indicate that partial oxidation of the cobalt catalyst surface increases the adsorption probability of the reaction gas and ultimately induces growth of CNT.

  20. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    PubMed

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  1. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  2. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy.

    PubMed

    Lai, Wei-Cheng; Chakravarty, Swapnajit; Zou, Yi; Chen, Ray T

    2013-10-01

    We experimentally demonstrate simultaneous selective detection of xylene and trichloroethylene (TCE) using multiplexed photonic crystal waveguides (PCWs) by near-infrared optical absorption spectroscopy on a chip. Based on the slow light effect of photonic crystal structure, the sensitivity of our device is enhanced to 1 ppb (v/v) for xylene and 10 ppb (v/v) for TCE in water. Multiplexing is enabled by multimode interference power splitters and Y-combiners that integrate multiple PCWs on a silicon chip in a silicon-on-insulator platform.

  3. X-Ray Absorption Spectroscopy of Cuprous-Thiolate Clusters in Saccharomyces Cerevisiae Metallothionein

    SciTech Connect

    Zhang, L.; Pickering, I.J.; Winge, D.R.; George, G.N.

    2009-05-28

    Copper (Cu) metallothioneins are cuprous-thiolate proteins that contain multimetallic clusters, and are thought to have dual functions of Cu storage and Cu detoxification. We have used a combination of X-ray absorption spectroscopy (XAS) and density-functional theory (DFT) to investigate the nature of Cu binding to Saccharomyces cerevisiae metallothionein. We found that the XAS of metallothionein prepared, containing a full complement of Cu, was quantitatively consistent with the crystal structure, and that reconstitution of the apo-metallothionein with stoichiometric Cu results in the formation of a tetracopper cluster, indicating cooperative binding of the Cu ions by the metallothionein.

  4. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  5. Solvation and Deprotonation Dynamics in Reverse Micelles via Broadband Femtoseond Transient Absorption (BFTA) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cole, Richard

    2009-10-01

    Broadband femtosecond transient absorption (BFTA) spectroscopy is a useful tool in characterizing femtosecond and picosecond physical and chemical dynamics such as solvation, electron transfer, and deprotonation dynamics. This presentation will focus on our most recent results, which utilize BFTA spectroscopy in the ultraviolet-visible (UV-vis) spectral range to probe deprotonation and solvation dynamics in the nanoscopic confinement of reverse micelles. In these studies, pyranine, a `photo-acid', probes both solvation and deprotonation dynamics in reverse micelles formed from cationic (cetyl trimethylammonium bromide, CTAB), anionic (sodium dioctyl sulfosuccinate, AOT), and neutral (polyoxyethylene nonylphenylether, Igepal) surfactants. Dynamic behavior will be discussed in terms of the degree of nanoscopic confinement (micellar size) and the impact of varying interfacial environments.

  6. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing.

    PubMed

    Li, Jingsong; Yu, Benli; Fischer, Horst

    2015-04-01

    This paper presents a novel methodology-based discrete wavelet transform (DWT) and the choice of the optimal wavelet pairs to adaptively process tunable diode laser absorption spectroscopy (TDLAS) spectra for quantitative analysis, such as molecular spectroscopy and trace gas detection. The proposed methodology aims to construct an optimal calibration model for a TDLAS spectrum, regardless of its background structural characteristics, thus facilitating the application of TDLAS as a powerful tool for analytical chemistry. The performance of the proposed method is verified using analysis of both synthetic and observed signals, characterized with different noise levels and baseline drift. In terms of fitting precision and signal-to-noise ratio, both have been improved significantly using the proposed method.

  7. [Simulation and analysis of second-harmonic signal based on tunable diode laser absorption spectroscopy].

    PubMed

    Li, Han; Liu, Jian-Guo; He, Ya-Bai; He, Jun-Feng; Yao, Lu; Xu, Zhen-Yu; Chen, Jiu-Ying; Yuan, Song; Kan, Rui-Feng

    2013-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a new gas detection technique developed recently with high spectral resolution, high sensitivity and fast time response. The second-harmonic signal of wavelength modulation spectroscopy (WMS) is often used as the detection signal for gas concentration inversion. Using Simulink, a visual modeling and simulation platform, the authors simulated the WMS signal based on TDLAS, and got the second-harmonic signal by using lock-in amplifier algorithm. Digital orthogonal algorithm was studied in this paper. The relationship between second-harmonic signals and the modulation indexes was analyzed by comparing changes of second-harmonic under different modulation indexes, in order to find out the optimized parameters for second-harmonic detection.

  8. Open-path tunable diode laser absorption spectroscopy for acquisition of fugitive emission flux data.

    PubMed

    Thoma, Eben D; Shores, Richard C; Thompson, Edgar L; Harris, D Bruce; Thorneloe, Susan A; Varma, Ravi M; Hashmonay, Ram A; Modrak, Mark T; Natschke, David F; Gamble, Heather A

    2005-05-01

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. Environmental Protection Agency (EPA) has developed a ground-based optical remote-sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transform infrared spectroscopy (OP-FTIR) has been the primary technique for acquisition of pollutant concentration data used in this emission measurement method. For a number of environmentally important compounds, such as ammonia and methane, open-path tunable diode laser absorption spectroscopy (OP-TDLAS) is shown to be a viable alternative to Fourier transform spectroscopy for pollutant concentration measurements. Near-IR diode laser spectroscopy systems offer significant operational and cost advantages over Fourier transform instruments enabling more efficient implementation of the measurement strategy. This article reviews the EPA's fugitive emission measurement method and describes its multipath tunable diode laser instrument. Validation testing of the system is discussed. OP-TDLAS versus OP-FTIR correlation testing results for ammonia (R2 = 0.980) and methane (R2 = 0.991) are reported. Two example applications of tunable diode laser-based fugitive emission measurements are presented.

  9. A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu.

    PubMed

    Ewels, Philip; Sikora, Thierry; Serin, Virginie; Ewels, Chris P; Lajaunie, Luc

    2016-06-01

    The electron energy-loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) database has been completely rewritten, with an improved design, user interface, and a number of new tools. The database is accessible at https://eelsdb.eu/ and can now be used without registration. The submission process has been streamlined to encourage spectrum submissions and the new design gives greater emphasis on contributors' original work by highlighting their papers. With numerous new filters and a powerful search function, it is now simple to explore the database of several hundred EELS and XAS spectra. Interactive plots allow spectra to be overlaid, facilitating online comparison. An application-programming interface has been created, allowing external tools and software to easily access the information held within the database. In addition to the database itself, users can post and manage job adverts and read the latest news and events regarding the EELS and XAS communities. In accordance with the ongoing drive toward open access data increasingly demanded by funding bodies, the database will facilitate open access data sharing of EELS and XAS spectra.

  10. Structural changes in a polyelectrolyte multilayer assembly investigated by reflection absorption infrared spectroscopy and sum frequency generation spectroscopy.

    PubMed

    Kett, Peter J N; Casford, Michael T L; Yang, Amanda Y; Lane, Thomas J; Johal, Malkiat S; Davies, Paul B

    2009-02-12

    The structure of polyelectrolyte multilayer films adsorbed onto either a per-protonated or per-deuterated 11-mercaptoundecanoic acid (h-MUA/d-MUA) self assembled monolayer (SAM) on gold was investigated in air using two surface vibrational spectroscopy techniques, namely, reflection absorption infrared spectroscopy (RAIRS) and sum frequency generation (SFG) spectroscopy. Determination of film masses and dissipation values were made using a quartz crystal microbalance with dissipation monitoring (QCM-D). The films, containing alternating layers of the polyanion poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and the polycation poly(ethylenimine) (PEI) built on the MUA SAM, were formed using the layer-by-layer electrostatic self-assembly method. The SFG spectrum of the SAM itself comprised strong methylene resonances, indicating the presence of gauche defects in the alkyl chains of the acid. The RAIRS spectrum of the SAM also contained strong methylene bands, indicating a degree of orientation of the methylene groups parallel to the surface normal. Changes in the SFG and RAIRS spectra when a PEI layer was adsorbed on the MUA monolayer showed that the expected electrostatic interaction between the polymer and the SAM, probably involving interpenetration of the PEI into the MUA monolayer, caused a straightening of the alkyl chains of the MUA and, consequently, a decrease in the number of gauche defects. When a layer of PAZO was subsequently deposited on the MUA/PEI film, further spectral changes occurred that can be explained by the formation of a complex PEI/PAZO interpenetrated layer. A per-deuterated MUA SAM was used to determine the relative contributions from the adsorbed polyelectrolytes and the MUA monolayer to the RAIRS and SFG spectra. Spectroscopic and adsorbed mass measurements combined showed that as further bilayers were constructed the interpenetration of PAZO into preadsorbed PEI layers was repeated, up to

  11. Total Absorption Spectroscopy of the 137Xe, 137I, and 92Rb β-Decays

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.; Fijałkowska, A.; Karny, M.; Rykaczewski, K. P.; Wolińska-Cichocka, M.; Goetz, K. C.; Grzywacz, R. K.; Gross, C. J.; Miernik, K.; Stracener, D.

    2015-10-01

    The NaI(Tl) based Modular Total Absorption Spectrometer (MTAS) was constructed to measure improved β-decay feeding patterns from neutron-rich nuclei. It is difficult to measure β-decay feeding intensities with high precision γ-ray measurements due to the low efficiency of high precision detectors. There are several important applications of improved measurements of β-decay feeding patterns by total absorption spectroscopy; improve understanding of elemental abundances in the universe, help with stockpile stewardship, contribute to understanding of underlying nuclear structure, and improve β-decay feeding measurements to calculate accurately the νe spectra needed to evaluate precisely reactor neutrino measurements. We present β-decay feeding results for two ``priority one'' measurements, 137Xe and 137I, and for 92Rb, which is a large individual contributor to the νe uncertainty of the reactor anomaly. In addition to β- γ decays, 137I has a β-neutron decay channel which is measurable in MTAS. We will demonstrate techniques for analyzing MTAS γ-decay data. We will also describe β and neutron spectroscopy in MTAS. This work was supported by the US DOE by Award No. DE-FG02- 96ER40978 and by US DOE, Office of Nuclear Physics.

  12. Evolution of Silver Nanoparticles in the Rat Lung Investigated by X-ray Absorption Spectroscopy

    PubMed Central

    2015-01-01

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. We found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period. PMID:25517690

  13. Adsorption of mercury on lignin: combined surface complexation modeling and X-ray absorption spectroscopy studies.

    PubMed

    Lv, Jitao; Luo, Lei; Zhang, Jing; Christie, Peter; Zhang, Shuzhen

    2012-03-01

    Adsorption of mercury (Hg) on lignin was studied at a range of pH values using a combination of batch adsorption experiments, a surface complexation model (SCM) and synchrotron X-ray absorption spectroscopy (XAS). Surface complexation modeling indicates that three types of acid sites on lignin surfaces, namely aliphatic carboxylic-, aromatic carboxylic- and phenolic-type surface groups, contributed to Hg(II) adsorption. The bond distance and coordination number of Hg(II) adsorption samples at pH 3.0, 4.0 and 5.5 were obtained from extended X-ray absorption fine structure (EXAFS) spectroscopy analysis. The results of SCM and XAS combined reveal that the predominant adsorption species of Hg(II) on lignin changes from HgCl(2)(0) to monodentate complex -C-O-HgCl and then bidentate complex -C-O-Hg-O-C- with increasing pH value from 2.0 to 6.0. The good agreement between SCM and XAS results provides new insight into understanding the mechanisms of Hg(II) adsorption on lignin.

  14. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    SciTech Connect

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.; Pinkerton, Kent E.; Guo, T.

    2014-12-16

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.

  15. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas

    SciTech Connect

    Winter, Jörn Hänel, Mattis; Reuter, Stephan

    2016-04-15

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90{sup ∘} off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s{sub 5}) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  16. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    PubMed

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  17. Interpretation of x-ray absorption spectroscopy in the presence of surface hybridization

    NASA Astrophysics Data System (ADS)

    Diller, Katharina; Maurer, Reinhard J.; Müller, Moritz; Reuter, Karsten

    2017-06-01

    X-ray absorption spectroscopy (XAS) yields direct access to the electronic and geometric structure of hybrid inorganic-organic interfaces formed upon adsorption of complex molecules at metal surfaces. The unambiguous interpretation of corresponding spectra is challenged by the intrinsic geometric flexibility of the adsorbates and the chemical interactions with the interface. Density-functional theory (DFT) calculations of the extended adsorbate-substrate system are an established tool to guide peak assignment in X-ray photoelectron spectroscopy of complex interfaces. We extend this to the simulation and interpretation of XAS data in the context of functional organic molecules on metal surfaces using dispersion-corrected DFT calculations within the transition potential approach. For the prototypical case of 2H-porphine adsorbed on Ag(111) and Cu(111) substrates, we follow the two main effects of the molecule/surface interaction onto the X-ray absorption signatures: (1) the substrate-induced chemical shift of the 1s core levels that dominates in physisorbed systems and (2) the hybridization-induced broadening and loss of distinct resonances that dominate in more chemisorbed systems.

  18. Chemometric analysis of femtosecond transient absorption spectroscopy data: Study of the photochromism of anils

    NASA Astrophysics Data System (ADS)

    Ruckebusch, Cyril; Mouton, Nicolas; Gladytz, Thomas; Rendelmann, Anika; Buntinx, Guy; Sliwa, Michel

    2010-06-01

    Chemometric methods are applied for the purpose of extracting relevant information from transient absorption spectroscopy data probing the photochromism of molecules from the family of salicylidene aniline. The process consists of an ultrafast excited state intramolecular proton transfer occurring from an enol form which is then followed by a cis-trans isomerization to finally reach a trans-keto photo-product. This work focuses on the potential of combining multivariate curve resolution for modeling pure profiles and two dimensional correlation spectroscopy data analysis for providing information on the dynamics of spectral features. The results obtained for one derivative of salicylidene aniline provide information regarding the number of species created after the proton transfer and characterization of their absorption spectra and their kinetics in the picosecond time scale. The spectral resolution of two cis-keto* forms is proposed for the first time. It is also found that both cis-keto* species are involved in the formation of the trans-keto photo-product. The main precursor of the trans-keto photo-product is the cis-keto* form which has the shortest characteristic time.

  19. X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications

    NASA Astrophysics Data System (ADS)

    Schmitz-Antoniak, Carolin

    2015-06-01

    X-ray absorption spectroscopy facilitated by state-of-the-art synchrotron radiation technology is presented as a powerful tool to study nanoscale systems, in particular revealing their static element-specific magnetic and electronic properties on a microscopic level. A survey is given on the properties of nanoparticles, nanocomposites and thin films covering a broad range of possible applications. It ranges from the ageing effects of iron oxide nanoparticles in dispersion for biomedical applications to the characterisation on a microscopic level of nanoscale systems for data storage devices. In this respect, new concepts for electrically addressable magnetic data storage devices are highlighted by characterising the coupling in a BaTiO3/CoFe2O4 nanocomposite as prototypical model system. But classical magnetically addressable devices are also discussed on the basis of tailoring the magnetic properties of self-assembled ensembles of FePt nanoparticles for data storage and the high-moment material Fe/Cr/Gd for write heads. For the latter cases, the importance is emphasised of combining experimental approaches in x-ray absorption spectroscopy with density functional theory to gain a more fundamental understanding.

  20. Combined characterization of bovine polyhemoglobin microcapsules by UV-Vis absorption spectroscopy and cyclic voltammetry.

    PubMed

    Knirsch, Marcos Camargo; Dell'Anno, Filippo; Salerno, Marco; Larosa, Claudio; Polakiewicz, Bronislaw; Eggenhöffner, Roberto; Converti, Attilio

    2017-03-01

    Polyhemoglobin produced from pure bovine hemoglobin by reaction with PEG bis(N-succynimidil succinate) as a cross-linking agent was encapsulated in gelatin and dehydrated by freeze-drying. Free carboxyhemoglobin and polyhemoglobin microcapsules were characterized by UV-Vis spectroscopy in the absorption range 450-650 nm and cyclic voltammetry in the voltage range from -0.8 to 0.6 mV to evaluate the ability to break the bond with carbon monoxide and to study the carrier's affinity for oxygen, respectively. SEM used to observe the shape of cross-linked gelatin-polyhemoglobin microparticles showed a regular distribution of globular shapes, with mean size of ~750 nm, which was ascribed to gelatin. Atomic absorption spectroscopy was also performed to detect iron presence in microparticles. Cyclic voltammetry using an Ag-AgCl electrode highlighted characteristic peaks at around -0.6 mV that were attributed to reversible oxygen bonding with iron in oxy-polyhemoglobin structure. These results suggest this technique as a powerful, direct and alternative method to evaluate the extent of hemoglobin oxygenation.

  1. Peroxy radical detection for airborne atmospheric measurements using absorption spectroscopy of NO2

    NASA Astrophysics Data System (ADS)

    Horstjann, M.; Andrés Hernández, M. D.; Nenakhov, V.; Chrobry, A.; Burrows, J. P.

    2014-05-01

    Development of an airborne instrument for the determination of peroxy radicals (PeRCEAS - peroxy radical chemical enhancement and absorption spectroscopy) is reported. Ambient peroxy radicals (HO2 and RO2, R being an organic chain) are converted to NO2 in a reactor using a chain reaction involving NO and CO. Provided that the amplification factor, called effective chain length (eCL), is known, the concentration of NO2 can be used as a proxy for the peroxy radical concentration in the sampled air. The eCL depends on radical surface losses and must thus be determined experimentally for each individual setup. NO2 is detected by continuous-wave cavity ring-down spectroscopy (cw-CRDS) using an extended cavity diode laser (ECDL) at 408.9 nm. Optical feedback from a V-shaped resonator maximizes transmission and allows for a simple detector setup. CRDS directly yields absorption coefficients, thus providing NO2 concentrations without additional calibration. The optimum 1σ detection limit is 0.3 ppbv at an averaging time of 40 s and an inlet pressure of 300 hPa. Effective chain lengths were determined for HO2 and CH3O2 at different inlet pressures. The 1σ detection limit at an inlet pressure of 300 hPa for HO2 is 3 pptv for an averaging time of 120 s.

  2. X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi.

    PubMed

    Fomina, Marina; Charnock, John; Bowen, Andrew D; Gadd, Geoffrey M

    2007-02-01

    Fungi can be highly efficient biogeochemical agents and accumulators of soluble and particulate forms of metals. This work aims to understand some of the physico-chemical mechanisms involved in toxic metal transformations focusing on the speciation of metals accumulated by fungi and mycorrhizal associations. The amorphous state or poor crystallinity of metal complexes within biomass and relatively low metal concentrations make the determination of metal speciation in biological systems a challenging problem but this can be overcome by using synchrotron-based element-specific X-ray absorption spectroscopy (XAS) techniques. In this research, we have exposed fungi and ectomycorrhizas to a variety of copper-, zinc- and lead-containing minerals. X-ray absorption spectroscopy studies revealed that oxygen ligands (phosphate, carboxylate) played a major role in toxic metal coordination within the fungal and ectomycorrhizal biomass during the accumulation of mobilized toxic metals. Coordination of toxic metals within biomass depended on the fungal species, initial mineral composition, the nitrogen source, and the physiological state/age of the fungal mycelium.

  3. Time-resolved postdischarge absolute silicon monoxide density measurement by resonant absorption spectroscopy in a nonthermal atmospheric plasma

    SciTech Connect

    Motret, Olivier; Coursimault, Fabien; Pouvesle, Jean-Michel

    2006-11-01

    In this study we present the technique of resonant absorption spectroscopy diagnostic developed to estimate the density of silicon monoxide (SiO) molecules during the postdischarge of an atmospheric dielectric barrier discharge plasma. The ultraviolet (0,0) rovibrational band of the SiO(A {sup 1}{pi}-X {sup 1}{sigma}{sup +}) electronic transition was investigated. Effective values of absorption coefficient and absorption cross section for the rotational transitions under consideration were calculated. The SiO concentration was estimated by comparison between experimental and computed spectra. The self-absorption in the probe reactor was taken into account in the computed spectra.

  4. Improved Sensitivity of Spectroscopic Quantification of Stable Isotope Content Using Capillary Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Moran, J.; Wilcox Freeburg, E.; Kriesel, J.; Linley, T. J.; Kelly, J.; Coleman, M. L.; Christensen, L. E.; Vance, S.

    2016-12-01

    Spectroscopy-based platforms have recently risen to the forefront for making stable isotope measurements of methane, carbon dioxide, water, or other analytes. These spectroscopy systems can be relatively straightforward to operate (versus a mass spectrometry platform), largely relieve the analyst of mass interference artifacts, and many can be used in the field. Despite these significant advantages, however, existing spectroscopy techniques suffer from a lack of measurement sensitivity that can ultimately limit select applications including spatially resolved and compound-specific measurements. Here we present a capillary absorption spectroscopy (CAS) system that is designed to mitigate sensitivity issues in spectroscopy-based stable isotope evaluation. The system uses mid-wave infrared excitation generated from a continuous wave quantum cascade laser. Importantly, the sample `chamber' is a flexible capillary with a total volume of less than one cc. Proprietary coatings on the internal surface of the fiber improve optical performance, guiding the light to a detector and facilitating high levels of interaction between the laser beam and gaseous analytes. We present data demonstrating that a tapered hollow fiber cell, with an internal diameter that broadens toward the detector, reduces optical feedback to further improve measurement sensitivity. Sensitivity of current hollow fiber / CAS systems enable measurements of only 10's of picomoles CO2 while theoretical improvements should enable measurements of as little as 10's of femtomoles. Continued optimization of sample introduction and improvements to optical feedback are being explored. Software is being designed to provide rapid integration of data and generation of processed isotope measurements using a graphical user interface. Taken together, the sensitivity improvements of the CAS system under development could, when coupled to a laser ablation sampling device, enable up to 2 µm spatial resolution (roughly the

  5. Exhaust gas monitoring based on absorption spectroscopy in the process industry

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Shu, Xiao-wen; Kan, Rui-feng; Cui, Yi-ben; He, Ying; Xu, Zhen-yu; Geng, Hui; Liu, Jian-guo

    2009-07-01

    This non-invasive gas monitor for exhaust gas monitoring must has high reliability and requires little maintenance. Monitor for in-situ measurements using tunable diode laser absorption spectroscopy (TDLAS) in the near infrared, can meet these requirements. TDLAS has evolved over the past decade from a laboratory especially to an accepted, robust and reliable technology for trace gas sensing. With the features of tunability and narrow linewidth of the distributed feedback (DFB) diode laser and by precisely tuning the laser output wavelength to a single isolated absorption line of the gas, TDLAS technique can be utilized to measure gas concentration with high sensitivity. Typical applications for monitoring of H2S, NH3, HC1 and HF are described here together by wavelength modulation spectroscopy with second-harmonic(WMS-2F) detection. This paper will illustrate the problems related to on-line applications, in particular, the overfall effects, automatic light intensity correction, temperature correction, which impacted on absorption coefficient and give details of how effect of automatic correction is necessary. The system mainly includes optics and electronics, optical system mainly composed of fiber, fiber coupler and beam expander, the electron part has been placed in safe analysis room not together with the optical part. Laser merely passes through one-meter-long pipes by the fiber coupling technology, so the system itself has anti-explosion. The results of the system are also presented in the end, the system's response time is only 0.5s, and can be achieved below 1×10-5 the detection limit at the volume fraction, it can entirely replace the traditional methods of detection exhaust gas in the process industry.

  6. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic

  7. Effects of Pulsed Electromagnetic Fields on Breast Cancer Cell Line MCF 7 Using Absorption Spectroscopy.

    PubMed

    Alcantara, Dominic Z; Soliman, Ian Jerry S; Pobre, Romeric F; Naguib, Raouf N G

    2017-07-01

    We present an analysis of the effects of pulsed electromagnetic fields (PEMF) with 3.3 MHz carrier frequency and modulated by audio resonant frequencies on the MCF-7 breast cancer cell line in vitro using absorption spectroscopy. This involves a fluorescence dye called PrestoBlue™ Cell Viability Reagent and a spectrophotometry to test the viability of MCF-7 breast cancer cells under different PEMF treatment conditions in terms of the cell absorption values. The DNA molecule of the MCF-7 breast cancer cells has an electric dipole property that renders it sensitive and reactive to applied electromagnetic fields. Resonant frequencies derived from four genes mutated in MCF-7 breast cancer cells [rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR), peroxisome proliferator-activated receptor (PPARG), Nijmegen breakage syndrome 1 (NBN) and checkpoint kinase 2 (CHEK2)] were applied in generating square pulsed electromagnetic waves. Effects were monitored through measurement of absorption of the samples with PrestoBlue™, and the significance of the treatment was determined using the t-test. There was a significant effect on MCF-7 cells after treatment with PEMF at the resonant frequencies of the following genes for specific durations of exposure: RICTOR for 10 min, PPARG for 10 min, NBN for 15 min, and CHEK2 for 5 min. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Identification of Uranyl Minerals Using Oxygen K-Edge X Ray Absorption Spectroscopy

    SciTech Connect

    Ward, Jesse D.; Bowden, Mark E.; Resch, Charles T.; Smith, Steven C.; McNamara, Bruce K.; Buck, Edgar C.; Eiden, Gregory C.; Duffin, Andrew M.

    2016-03-01

    Uranium analysis is consistently needed throughout the fuel cycle, from mining to fuel fabrication to environmental monitoring. Although most of the world’s uranium is immobilized as pitchblende or uraninite, there exists a plethora of secondary uranium minerals, nearly all of which contain the uranyl cation. Analysis of uranyl compounds can provide clues as to a sample’s facility of origin and chemical history. X-ray absorption spectroscopy is one technique that could enhance our ability to identify uranium minerals. Although there is limited chemical information to be gained from the uranium X-ray absorption edges, recent studies have successfully used ligand NEXAFS to study the physical chemistry of various uranium compounds. This study extends the use of ligand NEXAFS to analyze a suite of uranium minerals. We find that major classes of uranyl compounds (carbonate, oxyhydroxide, silicate, and phosphate) exhibit characteristic lineshapes in the oxygen K-edge absorption spectra. As a result, this work establishes a library of reference spectra that can be used to classify unknown uranyl minerals.

  9. ODS steel raw material local structure analysis using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cintins, A.; Anspoks, A.; Purans, J.; Kuzmin, A.; Timoshenko, J.; Vladimirov, P.; Gräning, T.; Hoffmann, J.

    2015-03-01

    Oxide dispersion strengthened (ODS) steels are promising materials for fusion power reactors, concentrated solar power plants, jet engines, chemical reactors as well as for hydrogen production from thermolysis of water. In this study we used X-ray absorption spectroscopy at the Fe and Cr K-edges as a tool to get insight into the local structure of ferritic and austenitic ODS steels around Fe and Cr atoms and its transformation during mechanical alloying process. Using the analysis of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) we found that for austenitic samples a transformation of ferritic steel to austenitic steel is detectable after 10 hours of milling and proceeds till 40 hours of milling; only small amount of a-phase remains after 80 hours of milling. We found that the Cr K-edge EXAFS can be used to observe distortions inside the material and to get an impression on the formation of chromium clusters. In-situ EXAFS experiments offer a reliable method to investigate the ferritic to austenitic transformation.

  10. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  11. Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy

    DOE PAGES

    Sneeden, Eileen Y.; Hackett, Mark J.; Cotelesage, Julien J. H.; ...

    2017-07-27

    Sulfur-based thiyl radicals are known to be involved in a wide range of chemical and biological processes, but they are often highly reactive, which makes them difficult to observe directly. We report herein X-ray absorption spectra and analysis that support the direct observation of two different thiyl species generated photochemically by X-ray irradiation. The thiyl radical sulfur K-edge X-ray absorption spectra of both species are characterized by a uniquely low energy transition at about 2465 eV, which occurs at a lower energy than any previously observed feature at the sulfur K-edge and corresponds to a 1s → 3p transition tomore » the singly occupied molecular orbital of the free radical. In conclusion, our results constitute the first observation of substantial levels of thiyl radicals generated by X-ray irradiation and detected by sulfur K-edge X-ray absorption spectroscopy.« less

  12. Study of acyl group migration by femtosecond transient absorption spectroscopy and computational chemistry.

    PubMed

    Pritchina, Elena A; Gritsan, Nina P; Burdzinski, Gotard T; Platz, Matthew S

    2007-10-25

    The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.

  13. Measurement of metastable Ar atom density in atmospheric-pressure microgap discharge using laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Shibata, Tomoyuki; Aramaki, Mitsutoshi

    2006-10-01

    Atmospheric-pressure Ar glow discharge in a microgap between two knife-edge electrodes (10-mm length, 100-μm gap separation) driven by 2.45-GHz microwave is being studied aiming at an application to VUV excimer light source. One of the knife-edge electrodes has a gas sink at its ridge, enabling introducing gas flow through the discharge plasma. The density of metastable Ar atoms, which are precursors of excimer molecules, is studied using laser absorption spectroscopy. The beam of a tunable diode laser at wavelengths around 696.5 nm is arranged to pass through the microgap obliquely to have an absorption path length of ˜1 mm. At a microwave power of 10 W, the observed absorption at the line center was ˜10% with a pressure broadened line width of ˜13 GHz, giving metastable Ar atom density of 3x10^13 cm-3. In a similar condition, the electron density measured using a laser Thomson scattering technique was 3x10^14 cm-3. The behavior of metastable atom density for varying discharge conditions is under investigation. (Work supported by Grant-in-aid 15075205 from MEXT Japan.)

  14. Collison-Induced Absorption of Oxygen Molecule as Studied by High Sensitivity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kashihara, Wataru; Shoji, Atsushi; Kawai, Akio

    2017-06-01

    Oxygen dimol is transiently generated when two oxygen molecules collide. At this short period, the electron clouds of molecules are distorted and some forbidden transition electronic transitions become partially allowed. This transition is called CIA (Collision-induced absorption). There are several CIA bands appearing in the spectral region from UV to near IR. Absorption of solar radiation by oxygen dimol is a small but significant part of the total budget of incoming shortwave radiation. However, a theory predicting the lineshape of CIA is still under developing. In this study, we measured CIA band around 630 nm that is assigned to optical transition, a^{1}Δ_{g}(v=0):a^{1}Δ_{g}(v=0)-X^{3}Σ_{g}^{-}(v=0):X^{3}Σ_{g}^{-}(v=0) of oxygen dimol. CRDS(Cavity Ring-down Spectroscopy) was employed to measure weak absorption CIA band of oxygen. Laser beam around 630 nm was generated by a dye laser that was pumped by a YAG Laser. Multiple reflection of the probe light was performed within a vacuum chamber that was equipped with two high reflective mirrors. We discuss the measured line shape of CIA on the basis of collision pair model.

  15. Investigating the speciation of copper in secondary fly ash by X-ray absorption spectroscopy.

    PubMed

    Tian, Shulei; Yu, Meijuan; Wang, Wei; Wang, Qi; Wu, Ziyu

    2009-12-15

    Although some researchers have reported that chlorides may play an important part in the evaporation of copper during heat treatment of municipal solid waste incinerators (MSWI) fly ash (1, 2) , details on the copper speciation in volatile matters (secondary fly ash, SFA) are still lacking. In this work, we used in situ X-ray absorption spectroscopy (XAS) experiments involving three types of SFA, which was collected from a high-temperature tubular electric furnace by thermal treatment of municipal solid waste incinerator (MSWI) fly ash at 1000, 1150, and 1250 degrees C. The results obtained by a linear combination fit (LCF) of X-ray absorption near edge structure (XANES) spectra revealed that in MSWI fly ash copper mainly exists as CuO and CuSO(4).5H(2)O while chloride almost dominated all the content of the SFA conformation, which was more than 80%. Extended X-ray absorption fine structure (EXAFS) data analysis indicated the presence of both Cu-O and Cu-Cl bonds in the first coordination shell of Cu ions in all SFA, while only Cu-O bonds occur in the MSWI fly ash. Consequently, in the MSWI fly ash during heat treatment copper evaporated as chloride, and the latter plays an important role in the formation of copper chloride.

  16. Initial Results of Optical Vortex Laser Absorption Spectroscopy in the HYPER-I Device

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Asai, Shoma; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Ozawa, Naoya; Tanaka, Masayoshi; Morisaki, Tomohiro

    2015-11-01

    Optical vortex beams have a potential to make a new Doppler measurement, because not only parallel but perpendicular movement of atoms against the beam axis causes the Doppler shift of their resonant absorption frequency. As the first step of a proof-of-principle experiment, we have performed the optical vortex laser absorption spectroscopy for metastable argon neutrals in an ECR plasma produced in the HYPER-I device at the National Institute for Fusion Science, Japan. An external cavity diode laser (TOPTICA, DL100) of which center wavelength was 696.735 nm in vacuum was used for the light source. The Hermite-Gaussian (HG) beam was converted into the Laguerre-Gaussian (LG) beam (optical vortex) by a computer-generated hologram displayed on the spatial light modulator (Hamamatsu, LCOS-SLM X10468-07). In order to make fast neutral flow across the LG beam, a high speed solenoid valve system was installed on the HYPER-I device. Initial results including the comparison of absorption spectra for HG and LG beams will be presented. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.

  17. [Monitoring of oxygen concentration based on tunable diode laser absorption spectroscopy].

    PubMed

    Zhang, Shuai; Dong, Feng-Zhong; Zhang, Zhi-Rong; Wang, Yu; Kan, Rui-Feng; Zhang, Yu-Jun; Liu, Jian-Guo; Liu, Wen-Qing

    2009-10-01

    Oxygen is a widely used important gas in the industrial process. It is very meaningful to on-line monitor the oxygen concentration for the enhancement of combustion efficiency and reduction in environmental pollution. Tunable diode laser absorption spectroscopy (TDLAS) is a highly sensitive, highly selective and fast time response trace gas detection technique. With the features of tunability and narrow linewidth of distributed feedback (DFB) diode laser and by precisely tuning the laser output wavelength to a single isolated absorption line of the gas, TDLAS technique can be utilized to accurately implement gas concentration measurement with very high sensitivity. In the present paper, the authors used a DFB laser was used as the light source, and by employing wavelength modulation method and measuring the second harmonic signal of one absorption line near 760 nm of oxygen molecule, the authors built a system for online monitoring of oxygen concentration. The characteristics of the system are as follows: the scope of detection is 0.01%-20%; detection accuracy is 0.1%, long term stability is 1%.

  18. Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Matsuba, Ayumi; Misono, Masatoshi

    2014-06-01

    Optical frequency combs are powerful tools for precise frequency measurements in various wavelength regions. The combs have been applied not only to metrology, but also to molecular spectroscopy. Recently, we studied high resolution spectroscopy of iodine molecule assisted by an optical frequency comb. In the study, the comb was used for frequency calibration of a scanning dye laser. In this study, we developed a frequency calibration scheme with a comb and an acousto-optic modulator to realize more precise frequency measurement in a wide frequency range. And the frequency calibration scheme was applied to Doppler-free two-photon absorption (DFTPA) spectroscopy of naphthalene. Naphthalene is one of the prototypical aromatic molecules, and its detailed structure and dynamics in excited states have been reported. We measured DFTPA spectra of A^1B1u(v4=1) ← X^1A_g(v=0) transition around 298 nm. A part of obtained spectra is shown in the figure. The spectral lines are rotationally resolved and the resolution is about 100 kHz. The horizontal axis was calibrated by the developed frequency calibration system employing the comb. The uncertainties of the calibrated frequencies were determined by the fluctuations of the comb modes which were stabilized to a GPS-disciplined clock. A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013).

  19. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  20. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    PubMed Central

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-01-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements. PMID:28186190

  1. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study.

    PubMed

    Chuang, Cheng-Hao; Ray, Sekhar C; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-10

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp(2)-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  2. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    DOE PAGES

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...

    2017-02-10

    Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less

  3. INTEGRAL FIELD SPECTROSCOPY OF AGN ABSORPTION OUTFLOWS: MRK 509 AND IRAS F04250–5718

    SciTech Connect

    Liu, Guilin; Arav, Nahum; Rupke, David S. N.

    2015-11-15

    Ultraviolet (UV) absorption lines provide abundant spectroscopic information enabling the probe of the physical conditions in active galactic nucleus (AGN) outflows, but the outflow radii (and the energetics consequently) can only be determined indirectly. We present the first direct test of these determinations using integral field unit (IFU) spectroscopy. We have conducted Gemini IFU mapping of the ionized gas nebulae surrounding two AGNs, whose outflow radii have been constrained by UV absorption line analyses. In Mrk 509, we find a quasi-spherical outflow with a radius of 1.2 kpc and a velocity of ∼290 km s{sup −1}, while IRAS F04250–5718 is driving a biconical outflow extending out to 2.9 kpc, with a velocity of ∼580 km s{sup −1} and an opening angle of ∼70°. The derived mass flow rate ∼5 and >1 M{sub ⊙} yr{sup −1}, respectively, and the kinetic luminosity ≳1 × 10{sup 41} erg s{sup −1} for both. Adopting the outflow radii and geometric parameters measured from IFU, absorption line analyses would yield mass flow rates and kinetic luminosities in agreement with the above results within a factor of ∼2. We conclude that the spatial locations, kinematics, and energetics revealed by this IFU emission-line study are consistent with pre-existing UV absorption line analyses, providing a long-awaited direct confirmation of the latter as an effective approach for characterizing outflow properties.

  4. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1997-01-01

    A pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode is described. The goal is to produce a {approximately}10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced fluorescence or absorption spectroscopy. A {approximately}10 ns full width at half-maximum (FWHM), 1.06 {mu}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately}1 {mu}s FWHM dye laser beam tuned to 5890 {Angstrom} is used for absorption measurement of the NaI resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated charge-coupled-device camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately}0.1 {Angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5{endash}2 eV. Laser-induced fluorescence from {approximately}1{times}10{sup 12} cm{sup {minus}3} NaI 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately}{plus_minus}0.06 {Angstrom} wavelength shift measurements in a mock-up of an ion diode experiment. {copyright} {ital 1997 American Institute of Physics.}

  5. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  6. Quantitative treatment of coarsely binned low-resolution recordings in molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Spietz, Peter; Martín, Juan Carlos Gómez; Burrows, John P.

    2006-06-01

    Optical multichannel detectors like photodiode arrays or CCD cameras combined with grating spectrometers are commonly used as detection systems in quantitative absorption spectroscopy. As a trade-off to broad spectral coverage, banded spectral features are sometimes recorded with insufficient spectral resolution and/or insufficiently fine detector binning. This renders the true physical spectrum of recorded intensities changed by instrumental and spectrum specific artefacts thus impeding comparability between results from different set-ups. In this work, it is demonstrated that in the case of a "well-behaved" - i.e. free of ro-vibronic structure - absorption band like the iodine monoxide IO(4 ← 0) transition, these effects can easily change the apparent peak absorption by up to 50%. Also deviations from the strict linearity (Beer-Lambert's law) between absorber concentration and apparent, i.e. pixelwise optical density occur. This can be critical in studies of chemical kinetics. It is shown that the observed non-linearity can cause errors of up to 50% in the determination of a second order rate coefficient for the IO self reaction. To overcome the problem, a consistent and rigorous integral approach for the treatment of intensity recordings is developed. Linearity between optical density and absorber concentration thereby is re-established. The method is validated using artificial test data as well as experimental data of the IO(4 ← 0) absorption transition, obtained in the context of I 2/O 3 photochemistry studies. The agreement is accurate to within ±2% (test data) and ±3% (experimental data) supporting the validity of the approach. Possible consequences for other spectroscopic work are indicated.

  7. [Measurement on gas temperature distribution by tunable diode laser absorption spectroscopy].

    PubMed

    Li, Ning; Yan, Jian-hua; Wang, Fei; Chi, Yong; Cen, Ke-fa

    2008-08-01

    The technique of tunable diode laser absorption spectroscopy (TDLAS) can be used for gas temperature distribution measurement by scanning multiple gas absorption lines with a tunable diode laser. The fundamental of gas temperature distribution measurement by TDLAS is introduced in the present paper, and the discretization strategy of equation for gas absorption is also given here. Using constrained linear least-square fitting method, the gas temperature distribution can be calculated with the help of physical constraints under the condition of uniform gas concentration and pressure. Based on the spectral parameters of four CO absorption lines near 6330 cm(-1) from HITRAN database, the model of two-temperature distribution at 300 and 600 K with each path length of 55 cm was set up. The effects of relative measurement error and different path length constraints of temperature bins on the gas temperature distribution measurement results were simulated by constrained linear least-square fitting. The results show that the temperature distribution calculation error increases as the relative measurement error rises. A measurement error of 5% could lead to a maximum relative error of 11%, and an average relative error of 2.2% for calculation result. And the weak physical constraints of path length for temperature bins could increase the calculation result error during the process of constrained linear least-square fitting. By setting up the model of two-temperature distribution with gas cells at room temperature as the cold section and in tube furnace as the hot section, the experiment of gas temperature distribution measurement in lab was carried out. Using four absorption lines of CO near 6330 cm(-1) scanned by VCSEL diode laser, and fitting the background laser intensity without absorption by the cubic polynomial to get the baseline signal, the integrals of spectral absorbance for gas temperature distribution measurement can be calculated. The relative calculation

  8. [Study on CO2 measurement using tunable multi-mode diode laser absorption spectroscopy].

    PubMed

    Gao, Guang-Zhen; Chen, Bao-Xue; Hu, Bo; Long, Xiu-Hui; Li, Ai-Ping; Li, Rong

    2013-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) technology is a kind of fast time response, large-range, continuous on-line monitoring gas detection technique. It is the mainstream technology of gas detection. In this paper the multimode laser diode was used as light source. Multi-mode laser combined with correlation spectroscopy can improve the test reliability and stability. It can also conquer the problem of the central wavelength change of the single mode diode laser due to thermal or mechanical fluctuations in durable working process. A FP laser was used as the light source in this research. A multi-mode diode laser system based on correlation spectroscopy and wavelength modulation spectroscopy (TMDL-COSPEC-WMS) was used to measure carbon dioxide in ambient air around 1 570 nm. The carbon dioxide concentrations were derived from the relationship between the normalized WMS-2f signal peak heights of the measurement and reference signals which selected based on high signal to noise ratio and correlation coefficient. All measurements were performed with controlled carbon dioxide and nitrogen mixtures in which carbon dioxide concentrations range from 0. 6% to 30%. The calculation results showed that there was a high linear relationship between the measured and actual carbon dioxide concentration, the linearity was 0. 998 7 and the fitted slope was 1. 061+/-0. 016 8 respectively over the tested range. A detection limit of 335 ppm m was achieved. The standard deviation of 0. 036 7% was achieved using 20 successive measurements with each measurement time taking approximately 10 s during 20 minutes, which demonstrated good stability of the system. Good agreements between the measurements of the system and actual values confirm the accuracy and potential utility of the system for carbon dioxide detection.

  9. Laser absorption spectroscopy using lead salt and quantum cascade tunable lasers

    NASA Astrophysics Data System (ADS)

    Namjou-Khales, Khosrow

    A new class of analytic instruments based on the detection of chemical species through their spectroscopic absorption 'fingerprint' is emerging based on the use of tunable semiconductor lasers as the excitation source. Advantages of this approach include compact device size, in-line measurement capability, and large signal-bandwidth product. To realize these advantages will require the marriage of laser devices with broad tunability in the infrared spectral range with sophisticated signal processing techniques. Currently, commercial devices based on short wavelength telecommunications type lasers exist but there is potential for much more versatile instruments based on longer wavelength operation. This thesis is divided into two parts. In the first part I present a theoretical analysis and experimental characterization of frequency and wavelength modulation spectroscopy using long wavelength infrared tunable lasers. The experimental measurements were carried out using commercially available lead salt lasers and excellent agreement is found between theoretically predicted performance and experimental verification. The lead salt laser has several important drawbacks as a source in practical instrumentation. In the second part of the thesis I report on the use of the quantum cascade (QC) laser for use in sensitive absorption spectroscopy. The QC laser is a new type of tunable device developed at Bell Laboratories. It features broad infrared tunability, single mode distributed feedback operation, and near room temperature lasing. Using the modulation techniques developed originally for the lead salt lasers, the QC laser was used to detect Nsb2O and other small molecules with absorption features near 8 mum wavelength. The noise equivalent absorption for our measurements was 5× 10sp{-5}/sqrt{Hz} which corresponds to a detection limit of ˜0.25 ppm-m/sqrt{Hz} for Nsb2O. The QC laser sensitivity was found to be limited by excess amplitude modulation in the detection

  10. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas.

    PubMed

    Adato, Ronen; Altug, Hatice

    2013-01-01

    Infrared absorption spectroscopy is a powerful biochemical analysis tool as it extracts detailed molecular structural information in a label-free fashion. Its molecular specificity renders the technique sensitive to the subtle conformational changes exhibited by proteins in response to a variety of stimuli. Yet, sensitivity limitations and the extremely strong absorption bands of liquid water severely limit infrared spectroscopy in performing kinetic measurements in biomolecules' native, aqueous environments. Here we demonstrate a plasmonic chip-based technology that overcomes these challenges, enabling the in-situ monitoring of protein and nanoparticle interactions at high sensitivity in real time, even allowing the observation of minute volumes of water displacement during binding events. Our approach leverages the plasmonic enhancement of absorption bands in conjunction with a non-classical form of internal reflection. These features not only expand the reach of infrared spectroscopy to a new class of biological interactions but also additionally enable a unique chip-based technology.

  11. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas

    PubMed Central

    Adato, Ronen; Altug, Hatice

    2013-01-01

    Infrared absorption spectroscopy is a powerful biochemical analysis tool as it extracts detailed molecular structural information in a label-free fashion. Its molecular specificity renders the technique sensitive to the subtle conformational changes exhibited by proteins in response to a variety of stimuli. Yet, sensitivity limitations and the extremely strong absorption bands of liquid water severely limit infrared spectroscopy in performing kinetic measurements in biomolecules’ native, aqueous environments. Here we demonstrate a plasmonic chip-based technology that overcomes these challenges, enabling the in-situ monitoring of protein and nanoparticle interactions at high sensitivity in real time, even allowing the observation of minute volumes of water displacement during binding events. Our approach leverages the plasmonic enhancement of absorption bands in conjunction with a non-classical form of internal reflection. These features not only expand the reach of infrared spectroscopy to a new class of biological interactions but also additionally enable a unique chip-based technology. PMID:23877168

  12. (n,m)-Specific Absorption Cross Sections of Single-Walled Carbon Nanotubes Measured by Variance Spectroscopy.

    PubMed

    Sanchez, Stephen R; Bachilo, Sergei M; Kadria-Vili, Yara; Lin, Ching-Wei; Weisman, R Bruce

    2016-11-09

    A new method based on variance spectroscopy has enabled the determination of absolute absorption cross sections for the first electronic transition of 12 (n,m) structural species of semiconducting single-walled carbon nanotubes (SWCNTs). Spectrally resolved measurements of fluorescence variance in dilute bulk samples provided particle number concentrations of specific SWCNT species. These values were converted to carbon concentrations and correlated with resonant components in the absorbance spectrum to deduce (n,m)-specific absorption cross sections (absorptivities) for nanotubes ranging in diameter from 0.69 to 1.03 nm. The measured cross sections per atom tend to vary inversely with nanotube diameter and are slightly greater for structures of mod 1 type than for mod 2. Directly measured and extrapolated values are now available to support quantitative analysis of SWCNT samples through absorption spectroscopy.

  13. Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.

  14. Visualizing interfacial charge transfer in dye sensitized nanoparticles using x-ray transient absorption spectroscopy.

    SciTech Connect

    Zhang, X. Y.; Smolentsev, G.; Guo, J.; Attenkofer, K.; Kurtz, C.; Jennings, G.; Lockard, J. V.; Stickrath, A. B.; Chen, L. X.

    2011-01-01

    A molecular level understanding of the structural reorganization accompanying interfacial electron transfer is important for rational design of solar cells. Here we have applied XTA (X-ray transient absorption) spectroscopy to study transient structures in a heterogeneous interfacial system mimicking the charge separation process in dye-sensitized solar cell (DSSC) with Ru(dcbpy){sub 2}(NCS){sub 2} (RuN3) dye adsorbed to TiO{sub 2} nanoparticle surfaces. The results show that the average Ru-NCS bond length reduces by 0.06 {angstrom}, whereas the average Ru-N(dcbpy) bond length remains nearly unchanged after the electron injection. The differences in bond-order change and steric hindrance between two types of ligands are attributed to their structural response in the charge separation. This study extends the application of XTA into optically opaque hybrid interfacial systems relevant to the solar energy conversion.

  15. Application of atomic absorption spectroscopy for detection of multimetal traces in low-voltage electrical marks.

    PubMed

    Jakubeniene, Marija; Zakaras, Algirdas; Minkuviene, Zita Nijole; Benoshys, Alvydas

    2006-08-10

    Application of atomic absorption spectroscopy to detect multimetal traces in injured skin is a promising tool for investigation of fatalities caused by electrocution. The present paper is aimed at testing the reliability of this method for metal traces detection in electric current marks and is focused on study of peculiarities of metal penetration into the skin exposed to a current impact. Bare aluminum wire, tin-lead coated copper multistrand wire, and zinc-plated steel rope were used to make electrical marks on pig skin. It is demonstrated that amount of copper, zinc, lead, and iron may serve as statistically reliable indicators for the type of wire, which caused the electrical mark, in spite of the background content of these metals in the skin without injury. Different penetration rates for different metals contained in the wire inflicting an electrical mark were observed.

  16. [Determination of trace selenium in edible fungi with graphite furnace atomic absorption spectroscopy].

    PubMed

    Tie, Mei; Zhang, Wei; Li, Jing; Jing, Kui; Zang, Shu-liang; Li, Hua-wei

    2006-01-01

    In the present article, samples were digested by a quartz high-pressure digestion pot, reducing the loss of selenium in digestion. The content of selenium in edible fungi was determined by using graphite furnace atomic absorption spectroscopy, and the results showed that when the content of selenium in edible fungi was determined by using 1% Ni(NO3)2 as a matrix modifier, ashing temperature of 500 degreed C, and atomization temperature of 2 500 degrees C, and rectifying background by deuterium light, the recovery was in the range of 92.1%-115.5%, the relative standard deviation of the method was 1.28%, and the limit of detection was 15.8 microg x L(-1). The method was suitable for the determination of trace selenium in edible fungi with the advantages of being simple, rapid, sensitive, stable and accurate etc., and the results were satisfactory.

  17. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Yingge; Chambers, Scott A.

    2014-10-01

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  18. Determination of tellurium in geochemical materials by flameless atomic-absorption spectroscopy.

    PubMed

    Sighinolfi, G P; Santos, A M; Martinelli, G

    1979-02-01

    A method is described for the determination of tellurium at nanogram levels in rocks and in other complex materials by the use of flameless atomic-absorption spectroscopy. A very selective organic extraction procedure is applied to avoid matrix interference effects during extraction of Te and the atomization stage in the graphite furnace. Prior separation of iron and other interfering elements is achieved by a combined cupferron-ethyl acetate extraction. Tellerium is extracted from 6M hydrochloric acid with MIBK and stripped into aqueous medium. Pipetting of the aqueous extract into the graphite furnace gives fairly good instrumental reproducibility (2-3% error). Detection limits of about 10 ppM Te for a 0.5-g sample have been achieved with the medium-performance apparatus used. Results for Te in some geochemical reference materials are reported. Indications are given for the determination of Sb and Mo in the same solutions.

  19. Determination of palladium by graphite furnace atomic absorption spectroscopy without matrix matching.

    PubMed

    Jia, X; Wang, T; Wu, J

    2001-05-30

    A graphite furnace atomic absorption spectroscopy method for the analysis of the palladium (Pd) content in bulk pharmaceutical drug substances and their intermediates prepared in aqueous solutions is extended to samples prepared in acetonitrile (ACN) and ACN-water mixtures as well to samples prepared in dimethyl sulfoxide (DMSO) and DMSO-water mixtures. The Pd content in samples solubilized in these solvents can be accurately determined with calibration established with standards prepared in aqueous solutions without matrix matching or using the method of standard additions. The validity of this method is demonstrated by spike recovery studies and by the agreement with results for the same samples prepared in these solvents, in concentrated nitric acid, and prepared by a microwave digestion system.

  20. Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials

    SciTech Connect

    Pelliccione, CJ; Timofeeva, EV; Katsoudas, JP; Segre, CU

    2014-12-01

    In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC.

  1. Total absorption spectroscopy study of the β decay of 86Br and 91Rb

    NASA Astrophysics Data System (ADS)

    Rice, S.; Algora, A.; Tain, J. L.; Valencia, E.; Agramunt, J.; Rubio, B.; Gelletly, W.; Regan, P. H.; Zakari-Issoufou, A.-A.; Fallot, M.; Porta, A.; Rissanen, J.; Eronen, T.; ńystö, J.; Batist, L.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Elomaa, V.-V.; Estevez, E.; Farrelly, G. F.; Garcia, A. R.; Gomez-Hornillos, B.; Gorlychev, V.; Hakala, J.; Jordan, M. D.; Jokinen, A.; Kolhinen, V. S.; Kondev, F. G.; Martínez, T.; Mason, P.; Mendoza, E.; Moore, I.; Penttilä, H.; Podolyák, Zs.; Reponen, M.; Sonnenschein, V.; Sonzogni, A. A.; Sarriguren, P.

    2017-07-01

    The beta decays of 86Br and 91Rb have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the Ion Guide Isotope Separator On-Line facility in Jyväskylä and further purified using the JYFLTRAP. 86Br and 91Rb are considered to be major contributors to the decay heat in reactors. In addition, 91Rb was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decay was well known from high-resolution measurements. Our results show that both decays were suffering from the Pandemonium effect and that the results of Rudstam et al. should be renormalized. The relative impact of the studied decays in the prediction of the decay heat and antineutrino spectrum from reactors has been evaluated.

  2. Accurate frequency of the 119 micron methanol laser from tunable far-infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Inguscio, M.; Zink, L. R.; Evenson, K. M.; Jennings, D. A.

    1990-01-01

    High-accuracy absorption spectroscopy of CH3OH in the far infrared is discussed. In addition to 22 transitions in the ground state, the frequency of the (n, tau, J, K), (0, 1, 16, 8) to (0, 2, 15, 7) transition in the nu5 excited vibrational level, which is responsible for the laser emission at 119 microns, was measured. The measured frequency is 2,522,782.57(10) MHz at zero pressure, with a pressure shift of 6.1(32) kHz/Pa (0.805/420/ MHz/torr). An accurate remeasurement of the laser emission frequency has also been performed, and the results are in good agreement.

  3. Uranium and thorium sorption on minerals studied by x-ray absorption spectroscopy

    SciTech Connect

    Hudson, E.A.; Terminello, L.J.; Viani, B.E.

    1995-12-01

    Several actinide-mineral sorption systems were studied by uranium and thorium L{sub 3}-edge x-ray absorption spectroscopy. A series of layer silicate minerals, including micas, were selected for their systematic variations in surface structure, e.g. degree of permanent negative charge on the basal planes. An expansible layer silicate, vermiculite, was treated to provide several different interlayer spacings, allowing variations in the accessibility of interior cation exchange sites. The finely powdered minerals were exposed to aqueous solutions of uranyl chloride or thorium chloride. Analysis of the EXAFS and XANES spectra indicates the influence of the mineral substrate upon the local structure of the bound actinide species. Trends in the data are interpreted based upon the known variations in mineral structure.

  4. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy

    SciTech Connect

    Aramaki, Mitsutoshi; Ogiwara, Kohei; Etoh, Shuzo; Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2009-05-15

    A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is {+-}2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

  5. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals, Final Technical Report

    DOE R&D Accomplishments Database

    Curl, Robert F.; Glass, Graham P.

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  6. Mercury transformations in chemical agent simulant as characterized by X-ray absorption fine spectroscopy.

    PubMed

    Skubal, Laura R; Biedron, Sandra G; Newville, Matthew; Schneider, John F; Milton, Stephen V; Pianetta, Piero; O'Neill, H Jack

    2005-10-15

    Chemical analyses of U.S. stockpiled mustard chemical warfare agent show some agent destined for destruction contains mercury [L. Ember, Chem. Eng. News 82 (2004) 8]. Because of its toxicity, mercury must be removed from agent prior to incineration or be scrubbed from incineration exhaust to prevent release into the atmosphere. Understanding mercury/agent interactions is critical if either atmospheric or aqueous treatment processes are used. We investigate and compare the state of mercury in water to that in thiodiglycol, a mustard simulant, as co-contaminants are introduced. The effects of sodium hypochlorite and sodium hydroxide, common neutralization chemicals, on mercury in water and simulant with and without co-contaminants present are examined using X-ray absorption fine spectroscopy (XAFS).

  7. High resolution absorption coefficients for Freon-12. [by using tunable diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Hoell, J. M.; Bair, C. H.; Williams, B.; Harward, C.

    1979-01-01

    The ultra high resolution absorption coefficients of the Q-branch of Freon-12 obtained with tunable diode laser spectroscopy are presented. Continuous spectra are presented from 1155/cm to 1163/cm, and absolute wavelength calibration was obtained using SO2 spectra as a standard and a 5 cm Ge etalon for relative calibration between SO2 lines. The Freon-12 data obtained at a pressure of 0.05 torr showed a rich and highly structured spectra, but with the exception of three isolated features, collisional broadening reduces the spectra to a structureless continuum for nitrogen pressures greater than 20 torr. The spectra at 1161/cm continue to exhibit structure at atmospheric pressure.

  8. Electronic topological transition in zinc under pressure: An x-ray absorption spectroscopy study

    SciTech Connect

    Aquilanti, G.; Trapananti, A.; Pascarelli, S.; Minicucci, M.; Principi, E.; Liscio, F.; Twarog, A.

    2007-10-01

    Zinc metal has been studied at high pressure using x-ray absorption spectroscopy. In order to investigate the role of the different degrees of hydrostaticity on the occurrence of structural anomalies following the electronic topological transition, two pressure transmitting media have been used. Results show that the electronic topological transition, if it exists, does not induce an anomaly in the local environment of compressed Zn as a function of hydrostatic pressure and any anomaly must be related to a loss of hydrostaticity of the pressure transmitting medium. The near-edge structures of the spectra, sensitive to variations in the electronic density of states above the Fermi level, do not show any evidence of electronic transition whatever pressure transmitting medium is used.

  9. The irradiation of ammonia ice studied by near edge x-ray absorption spectroscopy

    SciTech Connect

    Parent, Ph.; Bournel, F.; Lasne, J.; Laffon, C.; Carniato, S.; Lacombe, S.; Strazzulla, G.; Gardonio, S.; Lizzit, S.; Kappler, J.-P.; Joly, L.

    2009-10-21

    A vapor-deposited NH{sub 3} ice film irradiated at 20 K with 150 eV photons has been studied with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen K-edge. Irradiation leads to the formation of high amounts (12%) of molecular nitrogen N{sub 2}, whose concentration as a function of the absorbed energy has been quantified to 0.13 molecule/eV. The stability of N{sub 2} in solid NH{sub 3} has been also studied, showing that N{sub 2} continuously desorbs between 20 and 95 K from the irradiated ammonia ice film. Weak concentrations (<1%) of other photoproducts are also detected. Our NEXAFS simulations show that these features own to NH{sub 2}, N{sub 2}H{sub 2}, and N{sub 3}{sup -}.

  10. Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Medhi, G.; Muravjov, A. V.; Saxena, H.; Fredricksen, C. J.; Brusentsova, T.; Peale, R. E.; Edwards, O.

    2011-06-01

    Intracavity Laser Absorption Spectroscopy (ICLAS) at IR wavelengths offers an opportunity for spectral sensing with sufficient sensitivity to detect vapors of low vapor pressure compounds such as explosives. Reported here are key enabling technologies for this approach, including multi-mode external-cavity quantum cascade lasers and a scanning Fabry-Perot spectrometer to analyze the laser mode spectrum in the presence of a molecular intracavity absorber. Reported also is the design of a compact integrated data acquisition and control system. Applications include military and commercial sensing for threat compounds, chemical gases, biological aerosols, drugs, and banned or invasive plants or animals, bio-medical breath analysis, and terrestrial or planetary atmosphere science.

  11. Inside and Outside: X-ray Absorption Spectroscopy Mapping of Chemical Domains in Graphene Oxide.

    PubMed

    De Jesus, Luis R; Dennis, Robert V; Depner, Sean W; Jaye, Cherno; Fischer, Daniel A; Banerjee, Sarbajit

    2013-09-19

    The oxidative chemistry of graphite has been investigated for over 150 years and has attracted renewed interest given the importance of exfoliated graphene oxide as a precursor to chemically derived graphene. However, the bond connectivities, steric orientations, and spatial distribution of functional groups remain to be unequivocally determined for this highly inhomogeneous nonstoichiometric material. Here, we demonstrate the application of principal component analysis to scanning transmission X-ray microscopy data for the construction of detailed real space chemical maps of graphene oxide. These chemical maps indicate very distinct functionalization motifs at the edges and interiors and, in conjunction with angle-resolved near-edge X-ray absorption fine structure spectroscopy, enable determination of the spatial location and orientations of functional groups. Chemical imaging of graphene oxide provides experimental validation of the modified Lerf-Klinowski structural model. Specifically, we note increased contributions from carboxylic acid moieties at edge sites with epoxide and hydroxyl species dominant within the interior domains.

  12. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy

    SciTech Connect

    Salt, D.E.; Prince, R.C.; Baker, A.J.M.; Raskin, I.; Pickering, I.J.

    1999-03-01

    Using the noninvasive technique of X-ray absorption spectroscopy (XAS), the authors have been able to determine the ligand environment of Zn in different tissues of the Zn-hyperaccumulator Thlaspi caerulescens. The majority of intracellular Zn in roots of T. caerulescens was found to be coordinated with histidine. In the xylem sap Zn was found to be transported mainly as the free hydrated Zn{sup 2+} cation with a smaller proportion coordinated with organic acids. In the shoots, Zn coordination occurred mainly via organic acids, with a smaller proportion present as the hydrated cation and coordinated with histidine and the cell wall. Their data suggest that histidine plays an important role in Zn homeostasis in the roots, whereas organic acids are involved in xylem transport and Zn storage in shoots.

  13. The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.

    2017-01-01

    In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.

  14. X-ray absorption spectroscopy characterization of embedded and extracted nano-oxides

    DOE PAGES

    Stan, Tiberiu; Sprouster, David J.; Ofan, Avishai; ...

    2016-12-29

    Here, the chemistries and structures of both embedded and extracted Ysingle bondTisingle bondO nanometer-scale oxides in a nanostructured ferritic alloy (NFA) were probed by x-ray absorption spectroscopy (XAS). Y2Ti2O7 is the primary embedded phase, while the slightly larger extracted oxides are primarily Y2TiO5. Analysis of the embedded nano-oxides is difficult partly due to the multiple Ti environments associated with different oxides and those still residing in matrix lattice sites. Thus, bulk extraction followed by selective filtration was used to isolate the larger Y2TiO5 oxides for XAS, while the smaller predominant embedded phase Y2Ti2O7 oxides passed through the filters and weremore » analyzed using the log-ratio method.« less

  15. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    PubMed Central

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-01-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms. PMID:27658854

  16. Detection of the transient PNO molecule by infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bell, I. S.; Hamilton, P. A.; Davies, P. B.

    The PNO molecule has been observed in the gas phase for the first time. Some 200 vibrationrotation transitions were detected in the 1760cm-1 region using infrared diode laser absorption spectroscopy in a long path cell. Most of the lines can be assigned to the (001)←(000) stretching fundamental and (011)←(010) hot band transitions. The fundamental band exhibits a perturbation at high rotational levels which leads to a unique assignment of the rotational numbering. The effective rotational constants determined are in good agreement with ab initio predictions and the band origin, 1756.64586(24)cm-1, is very close to the matrix value. A tentative rotational assignment of the hot band transitions has been made which gives a band origin of 1748.388cm-1.

  17. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    SciTech Connect

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  18. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    SciTech Connect

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%, which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  19. [Genetic programming used for the measurement of CO concentration based on nondispersive infrared absorption spectroscopy].

    PubMed

    Chen, Jin; Duan, Fa-jie; Tong, Ying; Gao, Qiang

    2011-07-01

    Nondispersive infrared absorption spectroscopy(NDIR) is an important method to measure CO concentration in the air. In the present study, an open-path measurement system and continuous measuring device was developed, and genetic programming was used to establish the calibration model of subjects' light intensity sampling values. Continuous measurements were carried out in 10 different concentration of CO, and 40 sampled data were acquired and analyzed. For validation set, the correlation coefficient was 0.9997. The biggest relative error of validation was 4.00%, and the average relative error was 1.11%. Results show that genetic programming can be a good method for the modeling of gas concentration measurements equipped with NDIR systems.

  20. Structural analysis of sulfur in natural rubber using X-ray absorption near-edge spectroscopy.

    PubMed

    Pattanasiriwisawa, Wanwisa; Siritapetawee, Jaruwan; Patarapaiboolchai, Orasa; Klysubun, Wantana

    2008-09-01

    X-ray absorption near-edge spectroscopy (XANES) has been applied to natural rubber in order to study the local environment of sulfur atoms in sulfur crosslinking structures introduced in the vulcanization process. Different types of chemical accelerators in conventional, semi-efficient and efficient vulcanization systems were investigated. The experimental results show the good sensitivity and reproducibility of XANES to characterize the local geometry and electronic environment of the sulfur K-shell under various conditions of vulcanization and non-vulcanization of natural rubber. Several applications of XANES in this study demonstrate an alternative way of identifying sulfur crosslinks in treated natural rubber based on differences in their spectra and oxidation states.

  1. Fast transient absorption spectroscopy of the early events in photoexcited chiral benzophenone naphthalene dyads

    NASA Astrophysics Data System (ADS)

    Perez-Ruiz, Raul; Groeneveld, Michiel; van Stokkum, Ivo H. M.; Tormos, Rosa; Williams, René M.; Miranda, Miguel A.

    2006-09-01

    Photoinduced intra-molecular energy transfer in two ketoprofen(KP)-naproxol(NPX) diastereomers proceeds via two pathways. Very fast singlet-triplet energy transfer ( k = 1.2 × 10 11 s -1) from KP to NPX occurs for a small percentage (6%) and the major pathway is triplet-triplet energy transfer ( k ˜ 3 × 10 9 s -1). This was shown with femtosecond transient absorption spectroscopy and global and target analysis. Whereas the NPX triplet decay is strongly stereospecific (ratio of 1.6), the NPX triplet state formation for both dyads is very similar (ratio of 1 for the fast process and 1.2 for the slower process).

  2. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy

    PubMed Central

    Silatani, Mahsa; Lima, Frederico A.; Penfold, Thomas J.; Rittmann, Jochen; Reinhard, Marco E.; Rittmann-Frank, Hannelore M.; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J.; Chergui, Majed

    2015-01-01

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein’s function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump–probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center. PMID:26438842

  3. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    SciTech Connect

    Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J.

    2008-06-16

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.

  4. Xe nanocrystals in Si studied by x-ray absorption fine structure spectroscopy

    SciTech Connect

    Faraci, Giuseppe; Pennisi, Agata R.; Zontone, Federico

    2007-07-15

    The structural configuration of Xe clusters, obtained by ion implantation in a Si matrix, has been investigated as a function of the temperature by x-ray absorption fine structure spectroscopy. In contrast with previous results, we demonstrate that an accurate analysis of the data, using high order cumulants, gives evidence of Xe fcc nanocrystals at low temperature, even in the as-implanted Si; expansion of the Xe lattice is always found as a function of the temperature, with no appreciable overpressure. We point out that a dramatic modification of these conclusions can be induced by an incorrect analysis using standard symmetrical pair distribution function G(r); for this reason, all the results were checked by x-ray diffraction measurements.

  5. [Studies on the remote measurement of the emission of formaldehyde by mobile differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-Cheng; Xie, Pin-Hua; Li, Ang; Si, Fu-Qi; Dou, Ke; Liu, Yu; Xu, Jin; Wang, Jie

    2011-11-01

    Formaldehyde (HCHO) is the most abundant carbonyl compounds that play an important role in atmospheric chemistry and photochemical reactions. Formaldehyde is an important indicator of atmospheric reactivity and urban atmospheric aerosol precursors. In the present paper, the emission of formaldehyde from chemical area was measured using the mobile differential optical absorption spectroscopy (DOAS). This instrument uses the zenith scattered sunlight as the light source with successful sampling in the area loop. Vertical column density was retrieved by this system, combined with the meteorological wind field and car speed information, the emission of formaldehyde in the area was estimated. The authors carried out the measuring experiment in one chemical plant in Beijing using this technology. The result showed that the average value of the flux of formaldehyde in this area was 605 kg x h(-1) during the measuring period.

  6. IN SITU STUDIES OF CORROSION USING X-RAY ABSORPTION NEAR SPECTROSCOPY (XANES)

    SciTech Connect

    ISAACS, H.S.; SCHMUKI, P.; VIRTANEN, S.

    2001-03-25

    Applications of x-ray absorption near-edge spectroscopy (XANES) and the design of cells for in situ corrosion studies are reviewed. Passive films studies require very thin metal or alloy layers be used having a thickness of the order of the films formed because of penetration of the x-ray beam into the metal substrate. The depth of penetration in water also limits the thickness of solutions that can be used because of water reduces the x-ray intensity. Solution thickness must also be limited in studies of conversion layer formation studies because the masking of the Cr in solution. Illustrative examples are taken from the anodic behavior of Al-Cr alloys, the growth of passive films on Fe and stainless steels, and the formation of chromate conversion layers on Al.

  7. X-ray absorption spectroscopy on epitaxial BaTiO3 thin film

    NASA Astrophysics Data System (ADS)

    Panchal, Gyanendra; Shukla, D. K.; Choudhary, R. J.; Reddy, V. Raghavendra; Phase, D. M.

    2017-05-01

    We report the soft X-ray absorption spectroscopy (XAS) on pulsed laser deposition (PLD) grown epitaxial BaTiO3 thin film on (001) oriented SrTiO3 substrate. X-ray diffraction studies confirm that film is grown along the [001] direction and is compressed along surface normal. XAS around O K edge and Ti L3,2 edges performed on BaTiO3 thin film along with bulk BaTiO3 depicts considerable changes in crystal field parameters in thin film form due to strain present in the film. Modifications observed in t2g and eg sub bands of Ti ions are explained considering structural anisotropies present in the thin film.

  8. Studies of Y-Ba-Cu-O single crystals by x-ray absorption spectroscopy

    SciTech Connect

    Krol, A.; Ming, Z.H.; Kao, Y.H.; Nuecker, N.; Roth, G.; Fink, J.; Smith, G.C.; Erband, A.; Mueller-Vogt, G.; Karpinski, J.; Kaldis, E.; Schoenmann, K.

    1992-02-01

    The symmetry and density of unoccupied states of YBa{sub 2}Cu{sub 3}O{sub 7} YBa{sub 2}Cu{sub 4}O{sub 8} have been investigated by orientation dependent x-ray absorption spectroscopy on the O 1s edge using a bulk-sensitive fluorescence-yield-detection method. It has been found that the O 2p holes are distributed equally between the CuO{sub 2} planes and CuO chains and that the partial density of unoccupied O 2p states in the CuO{sub 2} planes are identical in both systems investigated. The upper Hubbard band has been observed in the planes but not in the chains in both systems. 18 refs.

  9. X-ray absorption spectroscopy study in the BaFe2As2 family

    NASA Astrophysics Data System (ADS)

    Koh, Yoonyoung; Kim, Yeongkwan; Yang, Wanli; Kim, Changyoung

    2012-02-01

    One of the representative Fe-based superconductor families, BaFe2As2 (Tc =38K) is a semimetal with the same number of hole and electron carriers, and is in a spin density wave state below 139K. It has been reported that various types of ``doped'' BaFe2As2 systems can obtained by substitution of Ba, Fe, and As atoms. However, an important issue has been recently raised regarding whether each type of substitution indeed induces effective charge doping or not. It is essential to clarify whether each type of substitution indeed induce an effective doping in BaFe2As2 system. To clarify the carrier doping issue, we performed high resolution X-ray absorption spectroscopy experiment on Ba(Fe,Co)2As2, Ba(Fe,Ru)2As2, BaFe2(As,P)2 which are representative ``doped'' BaFe2As2 systems.

  10. X-Ray absorption spectroscopy investigation of 1-alkyl-3-methylimidazolium bromide salts

    SciTech Connect

    D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Bodo, Enrico; Caminiti, Ruggero; Aquilanti, Giuliana; Hazemann, Jean Louis; Testemale, Denis; Mancini, Giordano

    2011-08-21

    X-ray absorption spectroscopy (XAS) has been used to unveil the bromide ion local coordination structure in 1-alkyl-3-methylimidazolium bromide [C{sub n}mim]Br ionic liquids (ILs) with different alkyl chains. The XAS spectrum of 1-ethyl-3-methylimidazolium bromide has been found to be different from those of the other members of the series, from the butyl to the decyl derivatives, that have all identical XAS spectra. This result indicates that starting from 1-buthyl-3-methylimidazolium bromide the local molecular arrangement around the bromide anion is the same independently from the length of the alkyl chain, and that the imidazolium head groups in the liquid ILs with long alkyl chains assume locally the same orientation as in the [C{sub 4}mim]Br crystal. With this study we show that the XAS technique is an effective direct tool for unveiling the local structural arrangements around selected atoms in ILs.

  11. Near-edge X-ray absorption fine structure spectroscopy of MDI and TDI polyurethane polymers

    SciTech Connect

    Urquhart, S.G.; Smith, A.P.; Ade, H.W.; Hitchcock, A.P.; Rightor, E.G.; Lidy, W.

    1999-06-03

    The sensitivity of near-edge X-ray absorption fine structure (NEXAFS) to differences in key chemical components of polyurethane polymers is presented. Carbon is NEXAFS spectra of polyurethane polymers made from 4,4{prime}-methylene di-p-phenylene isocyanate (MDI) and toluene diisocyanate (TDI) isocyanate monomers illustrate that there is an unambiguous spectroscopic fingerprint for distinguishing between MDI-based and TDI-based polyurethane polymers. NEXAFS spectra of MDI and TDI polyurea and polyurethane models show that the urea and carbamate (urethane) linkages in these polymers can be distinguished. The NEXAFS spectroscopy of the polyether component of these polymers is discussed, and the differences between the spectra of MDI and TDI polyurethanes synthesized with polyether polyols of different molecular composition and different molecular weight are presented. These polymer spectra reported herein provide appropriate model spectra to represent the pure components for quantitative microanalysis.

  12. Electronic absorption spectroscopy of polycyclic aromatic hydrocarbons (PAHs) radical cations generated in oleum: A superacid medium

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Iglesias-Groth, Susana; Manchado, Arturo

    2010-12-01

    Oleum (fuming sulphuric acid), a well known superacid, was used as medium for the generation of the radical cation of a series of selected PAHs. The resulting radical cation spectra were studied by electronic absorption spectroscopy. Not only common PAHs like naphthalene, anthracene, tetracene, pentacene, perylene, pyrene, benzo[ a]pyrene, phenanthrene and picene were studied but also the less common and very large PAHs relevant also for the astrochemical research, like coronene, hexabenzocoronene, quaterrylene, dicoronylene and a coronene oligomer. A correlation between the first ionization potential ( IP1) of the PAHs studied and the energy to the so-called A-type band of the radical cations observed in oleum has led to the equation IP1 = 1.30 EA + 4.39 (in eV) which permits to estimate the energy of the PAHs radical cation transition ( EA) in the VIS-NIR knowing the relative ionization potential or vice versa.

  13. Concurrent multiaxis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Leigh, Roland J.; Corlett, Gary K.; Friess, Udo; Monks, Paul S.

    2006-10-01

    The development of a new concurrent multiaxis (CMAX) sky viewing spectrometer to monitor rapidly changing urban concentrations of nitrogen dioxide is detailed. The CMAX differential optical absorption spectroscopy (DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sunlight. Trace-gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of NO2 in an urban environment is demonstrated. Three example data sets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62°N, 1.12°W). The data demonstrate the current capabilities and future potential of the CMAX DOAS method in terms of the ability to measure real-time spatially disaggregated urban NO2.

  14. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    SciTech Connect

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-10-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here two-dimensional atomic dysprosium density profiles are measured by means of laser absorption spectroscopy; the order of magnitude of the density is 10{sup 22} m{sup -3}. The radially resolved atomic density measurements show a hollow density profile. In the outer parts of the lamp molecules dominate, while the center is depleted of dysprosium atoms due to ionization. From the axial profiles the segregation parameter is determined. It is shown that the lamp operates on the right-hand side of the Fischer curve [J. Appl. Phys. 47, 2954 (1976)], i.e., a larger convection leads to less segregation.

  15. Infrared Reflection-Absorption Spectroscopy: Principles and Applications to Lipid-Protein Interaction in Langmuir Films

    PubMed Central

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R.

    2010-01-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  16. Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.

    SciTech Connect

    Sheps, Leonid; Chandler, David W.

    2013-04-01

    Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transient reaction intermediates in a simple, inexpensive, and robust experimental package.

  17. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  18. Broadband femtosecond transient absorption spectroscopy for a CVD Mo S2 monolayer

    NASA Astrophysics Data System (ADS)

    Aleithan, Shrouq H.; Livshits, Maksim Y.; Khadka, Sudiksha; Rack, Jeffrey J.; Kordesch, Martin E.; Stinaff, Eric

    2016-07-01

    Carrier dynamics in monolayer Mo S2 have been investigated using broadband femtosecond transient absorption spectroscopy (FTAS). A tunable pump pulse was used while a broadband probe pulse revealed ground and excited state carrier dynamics. Interestingly, for pump wavelengths both resonant and nonresonant with the A and B excitons, we observe a broad ground state bleach around 2.9 eV, with decay components similar to A and B. Associating this bleach with the band nesting region between K and Γ in the band structure indicates significant k-space delocalization and overlap among excitonic wave functions identified as A, B, C, and D. Comparison of time dynamics for all features in resonance and nonresonance excitation is consistent with this finding.

  19. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  20. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-09-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms.

  1. Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements

    NASA Astrophysics Data System (ADS)

    Lewicki, Rafal; Kosterev, Anatoliy A.; Toor, Fatima; Yao, Yu; Gmachl, Claire; Tsai, Tracy; Wysocki, Gerard; Wang, Xiaojun; Troccoli, Mariano; Fong, Mary; Tittel, Frank K.

    2010-01-01

    The ν1+ν3 combination band of uranium hexafluoride (UF6) is targeted to perform analytical enrichment measurements using laser absorption spectroscopy. A high performance widely tunable EC-QCL sources emitting radiation at 7.74 μm (1291 cm-1) is employed as an UF6-LAS optical source to measure the unresolved rotational-vibrational spectral structure of several tens of wavenumbers (cm-1). A preliminary spectroscopic measurement based on a direct laser absorption spectroscopy of methane (CH4) as an appropriate UF6 analyte simulant, was demonstrated.

  2. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  3. [Dithiobis-succinimidyl propionate on gold island films: surface-enhanced infrared absorption spectroscopy study].

    PubMed

    Guo, Hao; Ding, Li; Zhang, Tian-Jie; Mao, Yan-Li

    2013-05-01

    Dithiobis-succinimidyl propionate (DTSP), an important homobifunctional crosslinker, has been widely used for the covalent immobilization of proteins onto solid supports by amine coupling. In the present study, adsorption of DTSP on vacuum-deposited gold island films was analyzed by means of surface-enhanced infrared absorption spectroscopy (SEIRAS). For the sake of a reliable assignment of the vibrational spectra, IR intensity of the adsorption model of TSP on one gold surface was calculated using density functional theory (DFT) at the Beck' s three-parameter Lee-Yang-Parr (B3LYP) level with the LANL2DZ basis set. SEIRAS and multiple-angle-of-incidence polarization infrared reflection-absorption spectroscopy indicated that TSP is arranged orderly in a tilted fashion with a dihedral angle of 65 degrees between the plane of succinimidyl ring and the gold surface. The binding kinetics revealed that that the time constant of self-assembly of the TSP layer is 220 sec. Furthermore, the coupling process of amino-nitrilotriacetic acid (ANTA) with surface-bound TSP monolayer was monitored in situ by SEIRAS. Three negative bands observed at 1 807, 1 776, and 1 728 cm(-1) respectively provided direct evidence for the reaction of the succinimidyl ester. The appearance of one intense band at 1 566 cm(-1) gave a clear support for the presence of the cross-link between ANTA and TSP. We hope that the results in current investigation will contribute to the better understanding of properties of DTSP and related reactions at the molecular level.

  4. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    DOE PAGES

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.; ...

    2014-12-16

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less

  5. Site- and phase-selective x-ray absorption spectroscopy based on phase-retrieval calculation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Matsubara, Eiichiro

    2017-03-01

    Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase. At present, one of the major challenges for the practical application of RXDS is the rigorous determination of resonant terms from observed DAFS, as this requires somehow determining the phase change in the elastic scattering around the absorption edge from the scattering intensity. This is widely known in the field of XRD as the phase problem. The present review describes the basics of this problem, including the relevant background and theory for DAFS and a guide to a newly-developed phase-retrieval method based on the logarithmic dispersion relation that makes it possible to analyze DAFS without suffering from the intrinsic ambiguities of conventional iterative-fitting. Several matters relating to data collection and correction of RXDS are also covered, with a final emphasis on the great potential of powder-sample-based RXDS (P-RXDS) to be used in various applications relevant to practical materials, including antisite-defect-type electrode materials for lithium-ion batteries.

  6. Study on synchronous detection method of methane and ethane with laser absorption spectroscopy technology

    NASA Astrophysics Data System (ADS)

    He, Ying; Zhang, Yu-jun; You, Kun; Gao, Yan-wei; Chen, Chen; Liu, Jian-guo; Liu, Wen-qing

    2016-10-01

    The main ingredient of mash gas is alkenes, and methane is the most parts of mash gas and ethane is a small portion of it. Fast, accurate, real-time measurement of methane and ethane concentration is an important task for preventing coal mining disaster. In this research, a monitoring system with tunable diode laser absorption spectroscopy (TDLAS) technology has been set up for simultaneous measurement of methane and ethane, and a DFB laser at wavelength of 1.653μm was used as the laser source. The absorption spectroscopy information of methane and ethane, especially the characteristic of the spectrum peak positions and relative intensity were determined by available spectral structures from previous study and available database. Then, the concentration inversion algorithm method based on the spectral resolution and feature extraction was designed for methane and ethane synchronous detection. At last, the continuously experimental results obtained by different concentration of methane and ethane sample gases with the multiple reflection cell and the standard distribution system. In this experiment, the standard distribution system made with the standard gas and two high precision mass flow meters of D07 Sevenstar series whose flow velocity is 1l/min and 5l/min respectively. When the multiple reflection cell work stably, the biggest detection error of methane concentration inversion was 3.7%, and the biggest detection error of ethane was 4.8%. So it is verified that this concentration inversion algorithm works stably and reliably. Thus, this technology could realize the real-time, fast and continuous measurement requirement of mash gas and it will provide the effective technical support to coal mining production in safety for our country.

  7. Application of X-ray absorption spectroscopy and anomalous small angle scattering to RNA polymerase

    NASA Astrophysics Data System (ADS)

    Powers, L.; Wu, F. Y.-H.; Phillips, J. C.; Huang, W.-J.; Sinclair, R. B.

    1990-05-01

    X-ray absorption spectroscopy is ideally suited for the investigation of the electronic structure and the local environment (≤ ˜ 5 Å) of specific atoms in biomolecules. While the edge region provides information about the valence state of the absorbing atom, the chemical identity of neighboring atoms, and the coordination geometry, the EXAFS region contains information about the number and average distance of neighboring atoms and their relative disorder. The development of sensitive detection methods has allowed studies using near-physiological concentrations (as low as ˜ 100 μM). With careful choice of model compounds, judicious use of fitting procedures, and consideration of the results of biochemical and other spectroscopic results, this data has provided pivotal information about the structures of these active sites which store energy in their conformation changes or ligand exchanges. Although the application of anomalous small angle scattering to biomolecules has occurred more recently, it clearly provides a method of determining distances between active sites that are outside the range of X-ray absorption spectroscopy. The wavelength dependence of the X-ray scattering power varies rapidly near the edge of the absorbing atom in both amplitude and phase. This behavior selectively alters the contribution of the absorbing atom to the scattering pattern. The structure-function relationship of the intermediate states provide the key to understanding the mechanisms of these complex molecules. It is this precise structural information about the active sites that is not obtainable by other spectroscopic techniques. Combination of these techniques offers a unique approach to the determination of the organization of active sites in biomolecules, especially metalloenzymes. Application of these methods to the substrate and template binding sites of RNA polymerase which contain zinc atoms demonstrates the versatility of this approach.

  8. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy.

    PubMed

    Lin, Ming-Fu; Neumark, Daniel M; Gessner, Oliver; Leone, Stephen R

    2014-02-14

    Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH2=CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C2H3Br, the formation of C2H3Br(+) ions in their ground (X̃) and first excited (Ã) states, the production of C2H3Br(++) ions, and the appearance of neutral Br ((2)P3/2) atoms by dissociative ionization. The formation of free Br ((2)P3/2) atoms occurs on a timescale of 330 ± 150 fs. The ionic à state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the à state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C2H3Br(+) (Ã) ions undergoes intramolecular vibrational energy redistribution followed by the C-Br bond dissociation. The C2H3Br(+) (X̃) products and the majority of the C2H3Br(++) ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy.

  9. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.

    PubMed

    Van de Broek, Bieke; Grandjean, Didier; Trekker, Jesse; Ye, Jian; Verstreken, Kris; Maes, Guido; Borghs, Gustaaf; Nikitenko, Sergey; Lagae, Liesbet; Bartic, Carmen; Temst, Kristiaan; Van Bael, Margriet J

    2011-09-05

    The fields of bioscience and nanomedicine demand precise thermometry for nanoparticle heat characterization down to the nanoscale regime. Since current methods often use indirect and less accurate techniques to determine the nanoparticle temperature, there is a pressing need for a direct and reliable element-specific method. In-situ extended X-ray absorption fine structure (EXAFS) spectroscopy is used to determine the thermo-optical properties of plasmonic branched gold nanoparticles upon resonant laser illumination. With EXAFS, the direct determination of the nanoparticle temperature increase upon laser illumination is possible via the thermal influence on the gold lattice parameters. More specifically, using the change of the Debye-Waller term representing the lattice disorder, the temperature increase is selectively measured within the plasmonic branched nanoparticles upon resonant laser illumination. In addition, the signal intensity shows that the nanoparticle concentration in the beam more than doubles during laser illumination, thereby demonstrating that photothermal heating is a dynamic process. A comparable temperature increase is measured in the nanoparticle suspension using a thermocouple. This good correspondence between the temperature at the level of the nanoparticle and at the level of the suspension points to an efficient heat transfer between the nanoparticle and the surrounding medium, thus confirming the potential of branched gold nanoparticles for hyperthermia applications. This work demonstrates that X-ray absorption spectroscopy-based nanothermometry could be a valuable tool in the fast-growing number of applications of plasmonic nanoparticles, particularly in life sciences and medicine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Site- and phase-selective x-ray absorption spectroscopy based on phase-retrieval calculation.

    PubMed

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Matsubara, Eiichiro

    2017-03-22

    Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase. At present, one of the major challenges for the practical application of RXDS is the rigorous determination of resonant terms from observed DAFS, as this requires somehow determining the phase change in the elastic scattering around the absorption edge from the scattering intensity. This is widely known in the field of XRD as the phase problem. The present review describes the basics of this problem, including the relevant background and theory for DAFS and a guide to a newly-developed phase-retrieval method based on the logarithmic dispersion relation that makes it possible to analyze DAFS without suffering from the intrinsic ambiguities of conventional iterative-fitting. Several matters relating to data collection and correction of RXDS are also covered, with a final emphasis on the great potential of powder-sample-based RXDS (P-RXDS) to be used in various applications relevant to practical materials, including antisite-defect-type electrode materials for lithium-ion batteries.

  11. Probing Multiple Core Samples through the SN 1006 Remnant by UV Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Winkler, P. F.; Long, K. S.; Fesen, R. A.; Hamilton, A. J. S.

    2003-12-01

    Ejecta within young supernova remnants (SNRs) have been widely studied both through the X-ray emission from highly ionized plasma heated by fast shocks and through the optical emission from isolated dense filaments excited by secondary shocks. A full inventory of the ejecta, however, must also include cold, unshocked material within the SNR shell, which can be studied through UV absorption spectroscopy if suitable background ``UV lightbulbs'' can be identified. So far, this technique has been applied only in the remnant of SN 1006, where IUE and HST spectra of the Schweizer-Middleditch (S-M) star have probed a single sight line 3 arcmin from the projected center of the 15 arcmin radius shell (Hamilton et al. 1997, ApJ 481, 838 and references therein). We have identified at least two more background UV sources that enable us to probe additional core samples through the SN 1006 shell, corresponding to the sight lines to each of these sources, using spectra from HST-STIS. A QSO with V = 18.3 and z = 0.337, located 9 arcmin NE of the projected center, shows evidence of broad but asymmetric (primarily red-shifted) absorption in Si II and Si IV lines. There is only marginal evidence for absorption from Fe II at 2382 and 2599 Å with near zero velocity. Only a near-UV spectrum was obtained for a fainter (V = 19.5) QSO at z = 1.026, located within 2 arcmin of the SNR center. This shows strong evidence for broad Fe II absorption with a sharp blue edge at ˜ -3000 km/s and a more gradual red edge extending to > 8000 km/s. These profiles appear similar to those for the S-M star. Two A0 stars are probably more distant than SN 1006 but are located far from the center, within 3 arcmin of the shell rim. Neither appears to show evidence for absorption along the line of sight. These multiple cores through the SNR shell enable us to better map the distribution of ejecta. This research is based on observations with the Hubble Space Telescope and is directly supported through NASA

  12. Transient Absorption Spectroscopy of C1 and C2 Criegee Intermediates: UV Spectrum and Reaction Kinetics

    NASA Astrophysics Data System (ADS)

    Smith, M. C.; Chao, W.; Ting, A.; Chang, C. H.; Lin, L. C.; Takahashi, K.; Boering, K. A.; Lin, J. J. M.

    2015-12-01

    Atmospheric production and removal rates of Criegee intermediates produced in alkene ozonolysis must be understood to constrain the importance of these species in VOC oxidation and other processes. To estimate these rates, reliable detection methods and laboratory measurements of the UV absorption spectra and reaction kinetics of Criegee intermediates are needed. Here, transient absorption spectroscopy was used to directly measure the UV spectrum of the C2 Criegee intermediate CH3CHOO in a flow reactor at 295 K. The UV spectrum was scaled to the absolute absorption cross section at 308 nm determined by laser depletion measurements in a molecular beam, resulting in a peak UV cross section of (1.27±0.11) × 10-17 cm2 molecule-1 at 328 nm. This spectrum represents the absorption of the syn and anti conformers of CH3CHOO under near-atmospheric conditions, both of which contribute to CH3CHOO atmospheric removal due to UV photolysis. Transient UV absorption was also used to measure the kinetics of the reaction of the C1 Criegee intermediate CH2OO with water vapor at temperatures from 283 to 324 K. The observed CH2OO decay is quadratic with respect to the H2O concentration, indicating that reaction with water dimer is the primary process affecting CH2OO loss. The rate coefficient for the reaction of CH2OO with water dimer exhibits a strong negative temperature dependence with an Arrhenius activation energy of -8.1±0.6 kcal mol-1. The temperature dependence increases the effective loss rate for CH2OO (relative to 298 K) by a factor of ˜2.5 at 278 K and 70% relative humidity, and decreases the loss rate by a factor of ˜2 at 313 K and 30% humidity, which demonstrates that variations in reaction rate due to temperature differences should be included in estimates of Criegee intermediate removal via reactions with water dimer in the atmosphere.

  13. Extending differential optical absorption spectroscopy for limb measurements in the UV

    NASA Astrophysics Data System (ADS)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2010-05-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations. For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis

  14. Quantitation of a novel metalloporphyrin drug in plasma by atomic absorption spectroscopy.

    PubMed

    Hoffman, K L; Feng, M R; Rossi, D T

    1999-03-01

    A bioanalytical method to quantify cobalt mesoporphyrin (CoMP), a novel therapeutic agent, in plasma has been developed and validated. The approach involves atomic absorption spectroscopy to determine total cobalt in a sample and a back-calculation of the amount of compound present. Endogenous plasma cobalt concentrations were small ( <0.2 ng/ml(-1) Co in rat plasma) in comparison to the quantitation limit (4.5 ng/ml(-1) Co). The inter-day imprecision of the method was 10.0% relative standard deviation (RSD) and the inter-day bias was +/- 8.0% relative error (RE) over a standard curve range of 4.5- 45.0 ng/ml(-1) Co. Because it quantifies total cobalt, the method cannot differentiate between parent drug and metabolites, but negligible metabolism allows reliable estimates of the actual parent drug concentration. A correlation study between the atomic absorption method and 14C-radiometry demonstrated excellent agreement (r = 0.9868, slope = 1.041 +/- 0.028, intercept = 223.7 +/- 190.0) and further substantiated the accuracy of the methods. Methodology was successfully applied to a pharmacokinetic study of CoMP in rat, with pharmacokinetic parameter estimation. The elimination half-lives, after intra-muscular and subcutaneous administration, were 7.7 and 8.8 days, respectively.

  15. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy.

    PubMed

    Chen, Li; Ueta, Hirokazu; Bisson, Régis; Beck, Rainer D

    2013-05-01

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S(θ). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  16. Local structure and dynamics of hemeproteins by X-ray absorption near edge structure spectroscopy.

    PubMed

    Arcovito, Alessandro; della Longa, Stefano

    2012-07-01

    X-ray absorption near edge structure (XANES) spectroscopy is a synchrotron radiation technique sensitive to the local structure and dynamics around the metal site of a heme containing protein. Advances in detection techniques and theoretical/computational platforms in the last 15 years allowed the use of XANES as a quantitative probe of the key structural determinants driving functional changes, both in a concerted way with protein crystallography and EXAFS (extended X-ray absorption fine structure), or as a stand-alone method to apply in the crystal state as well as in solution. Moreover, the local dynamics of the heme site has been deeply investigated, on one hand, coupling XANES to classical photolysis experiments at cryogenic temperatures; on the other hand, the intrinsic property of the synchrotron radiation to induce radiolysis events, has been exploited to investigate specific cryotrapped intermediates, using X-rays both as a pump and a probe. Insights on the XANES method and some specific examples are presented to illustrate these topics. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Ultrafast intramolecular charge transfer of formyl perylene observed using femtosecond transient absorption spectroscopy.

    PubMed

    Mohammed, Omar F

    2010-11-04

    The excited-state photophysics of formylperylene (FPe) have been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of experimental and theoretical methods were employed including femtosecond transient absorption (fs-TA) spectroscopy with 130 fs temporal resolution. We report that the ultrafast intramolecular charge transfer from the perylene unit to the formyl (CHO) group can be facilitated drastically by hydrogen-bonding interactions between the carbonyl group oxygen of FPe and hydrogen-donating solvents in the electronically excited state. The excited-state absorption of FPe in methanol (MeOH) is close to the reported perylene radical cation produced by bimolecular quenching by an electron acceptor. This is a strong indication for a substantial charge transfer in the S(1) state in protic solvents. The larger increase of the dipole moment change in the protic solvents than that in aprotic ones strongly supports this observation. Relaxation mechanisms including vibrational cooling and solvation coupled to the charge-transfer state are also discussed.

  18. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules.

    PubMed

    Bui, Tung S; Dao, Thang D; Dang, Luu H; Vu, Lam D; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V

    2016-08-24

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes.

  19. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    PubMed Central

    Bui, Tung S.; Dao, Thang D.; Dang, Luu H.; Vu, Lam D.; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V.

    2016-01-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes. PMID:27555217

  20. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    NASA Astrophysics Data System (ADS)

    Bui, Tung S.; Dao, Thang D.; Dang, Luu H.; Vu, Lam D.; Ohi, Akihiko; Nabatame, Toshihide; Lee, Youngpak; Nagao, Tadaaki; Hoang, Chung V.

    2016-08-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3‧-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes.

  1. The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics

    NASA Astrophysics Data System (ADS)

    Hendricks, A. G.; Vandsburger, U.; Saunders, W. R.; Baumann, W. T.

    2006-01-01

    Tunable diode laser absorption spectroscopy was used to measure temperature fluctuations in acoustically forced laminar and turbulent flames. The absorption of two high-temperature water lines, at 7444.37 cm-1 (v1+v3 bands) and 7185.59 cm-1 (2v1, v1+v3 bands), yielded an instantaneous temperature measurement of the product stream. The instantaneous temperature of the gases was used as an indicator of the energy transferred to the product stream from the combustion process. The frequency response of product gas temperature to velocity perturbations was compared to the frequency response of OH* chemiluminescence, an indicator of the chemical heat release rate. Past measurements of flame dynamics used chemiluminescence as the sole indicator of heat release rate, in effect assuming that the energy input rate from the flame into the acoustic field is dynamically equivalent to the chemical reaction rate. Through the use of TDLAS, the unsteady enthalpy of the gases was measured, which includes the effects of thermal diffusion and heat transfer. The measurements show that the frequency response function of gas temperature differs significantly from the chemiluminescence frequency response.

  2. X-ray absorption spectroscopy as a probe of dissolved polysulfides in lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Pascal, Tod; Prendergast, David

    2015-03-01

    There has been enormous interest lately in lithium sulfur batteries, since they have 5 times the theoretical capacity of lithium ion batteries. Large-scale adoption of this technology has been hampered by numerous shortcomings, chiefly the poor utilization of the active cathode material and rapid capacity fading during cycling. Overcoming these limitations requires methods capable of identifying and quantifying the products of the poorly understood electrochemical reactions. One recent advance has been the use of X-ray absorption spectroscopy (XAS), an element-specific probe of the unoccupied energy levels around an excited atom upon absorption of an X-ray photon, to identify the reaction products and intermediates. In this talk, we'll present first principles molecular dynamics and spectral simulations of dissolved lithium polysulfide species, showing how finite temperature dynamics, molecular geometry, molecular charge state and solvent environment conspire to determine the peak positions and intensity of the XAS. We'll present a spectral analysis of the radical (-1e charge) species, and reveal a unique low energy feature that can be used to identify these species from their more common dianion (-2e charge) counterparts.

  3. Millisecond Kinetics of Nanocrystal Cation Exchange UsingMicrofluidic X-ray Absorption Spectroscopy

    SciTech Connect

    Chan, Emory M.; Marcus, Matthew A.; Fakra, Sirine; Elnaggar,Mariam S.; Mathies, Richard A.; Alivisatos, A. Paul

    2007-05-07

    We describe the use of a flow-focusing microfluidic reactorto measure the kinetics of theCdSe-to-Ag2Se nanocrystal cation exchangereaction using micro-X-ray absorption spectroscopy (mu XAS). The smallmicroreactor dimensions facilitate the millisecond mixing of CdSenanocrystal and Ag+ reactant solutions, and the transposition of thereaction time onto spatial coordinates enables the in situ observation ofthe millisecond reaction with mu XAS. XAS spectra show the progression ofCdSe nanocrystals to Ag2Se over the course of 100 ms without the presenceof long-lived intermediates. These results, along with supporting stoppedflow absorption experiments, suggest that this nanocrystal cationexchange reaction is highly efficient and provide insight into how thereaction progresses in individual particles. This experiment illustratesthe value and potential of in situ microfluidic X-ray synchrotrontechniques for detailed studies of the millisecond structuraltransformations of nanoparticles and other solution-phase reactions inwhich diffusive mixing initiates changes in local bond structures oroxidation states.

  4. Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ravel, B.; Attenkofer, K.; Bohon, J.; Muller, E.; Smedley, J.

    2013-10-01

    Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.

  5. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  6. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    NASA Astrophysics Data System (ADS)

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C.; de la Rosa, M. I.

    2014-10-01

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  7. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    SciTech Connect

    Andrews, J.C. |

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  8. [In situ temperature measurement by absorption spectroscopy based on time division multiplexing technology].

    PubMed

    Lou, Nan-zheng; Li, Ning; Weng, Chun-sheng

    2012-05-01

    Tunable diode laser absorption spectroscopy (TDLAS) technology is a kind of high sensitivity, high selectivity of non contacting gas in situ measurement technique. In the present paper, in situ gas temperature measurement of an open environment was achieved by means of direct scanning multiple characteristic lines of H2O and combined with least-squares algorithm. Through the use of HITRAN spectral database, the boundary effect on the gas temperature and concentration measurements was discussed in detail, and results showed that the combination of scanning multiple characteristic lines and least-squares algorithm can effectively reduce the boundary effect on the gas temperature measurements under the open environment. Experiments using time division multiplexing technology to simultaneously scan 7444.36, 7185.60, 7182.95 and 7447.48 cm(-1), the four characteristic H2O lines, the gas temperature of tubular furnace in the range of 573-973 K was measured under different conditions. The maximum temperature difference between absorption spectrum measurement and thermocouple signal was less than 52.4 K, and the maximum relative error of temperature measurement was 6.8%.

  9. Tunable diode laser absorption spectroscopy of common combustion gases at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Brand, Joel A.; Fetzer, Gregory J.; Groff, K. W.; Monlux, Garth; Zmarzly, Patrick

    1996-10-01

    Tunable diode laser absorption spectroscopy (TDLAS) shows promise for a number of environmental monitoring applications. This technique is advantageous over more classical methods because of excellent dynamic range, signal to noise ratios, and narrow bandwidth detection. With the rapid advances in the communications industry, lasers and optical components necessary for sensor technology are becoming affordable as well. One serious obstacle towards this effort is the paucity of spectroscopic data for the most useful, albeit weak, transitions near fiber optic communications wavelengths, especially at elevated temperatures. This data is important not only for species of monitoring interest, but also for those of possible interferants. In the near infrared, these are typically overtone and combination bands and hence accurate prediction of location, linestrength, and broadening coefficients is non-trivial. This is especially true for transitions arising from a highly excited rotational lower energy state. These are lines which may not be observable at room temperature but can play an important role for in-situ monitoring of a hot duct or smokestack. We have developed a system comprised of an extended cavity tunable diode laser and high temperature oven to characterize absorption spectra as a function of temperature and pressure. The experimental apparatus is described and data presented for water near 1.55 microns form 100 to 300 degrees C and 30 Torr.

  10. Tunable diode laser absorption spectroscopy of common combustion gases at elevated temperatures

    SciTech Connect

    Brand, J.A.; Fetzer, G.J.; Groff, K.; Monlux, G.; Zmarzly, P.

    1996-12-31

    Tunable diode laser absorption spectroscopy (TDLAS) shows promise for a number of environmental monitoring applications. This technique is advantageous over more classical methods because of excellent dynamic range, signal to noise ratios, and narrow bandwidth detection. With the rapid advances in the communications industry, lasers and optical components necessary for sensor technology are becoming affordable as well. One serious obstacle towards this effort is the paucity of spectroscopic data for the most useful, albeit weak, transitions near fiber optic communications wavelengths, especially at elevated temperatures. This data is important not only for species of monitoring interest, but also for those of possible interferents. In the near infrared, these are typically overtone and combination bands and hence accurate prediction of location, linestrength, and broadening coefficients is non-trivial. This is especially true for transitions arising from a highly excited rotational lower energy state. These are lines which may not be observable at room temperature but can play an important role for in-situ monitoring of a hot duct or smokestack. The authors have developed a system comprised of an extended cavity tunable diode laser and high temperature oven to characterize absorption spectra as a function of temperature and pressure. The experimental apparatus is described and data presented for water near 1.55 microns from 100 to 300 C and 30 Torr.

  11. Optical Measurement of Radiocarbon below Unity Fraction Modern by Linear Absorption Spectroscopy.

    PubMed

    Fleisher, Adam J; Long, David A; Liu, Qingnan; Gameson, Lyn; Hodges, Joseph T

    2017-09-21

    High-precision measurements of radiocarbon ((14)C) near or below a fraction modern (14)C of 1 (F(14)C ≤ 1) are challenging and costly. An accurate, ultrasensitive linear absorption approach to detecting (14)C would provide a simple and robust benchtop alternative to off-site accelerator mass spectrometry facilities. Here we report the quantitative measurement of (14)C in gas-phase samples of CO2 with F(14)C < 1 using cavity ring-down spectroscopy in the linear absorption regime. Repeated analysis of CO2 derived from the combustion of either biogenic or petrogenic sources revealed a robust ability to differentiate samples with F(14)C < 1. With a combined uncertainty of (14)C/(12)C = 130 fmol/mol (F(14)C = 0.11), initial performance of the calibration-free instrument is sufficient to investigate a variety of applications in radiocarbon measurement science including the study of biofuels and bioplastics, illicitly traded specimens, bomb dating, and atmospheric transport.

  12. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2012-05-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 levels in the Kowloon Tong and Mongkok district of Hong Kong and we compare the measurement results to mixing ratios reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time (13:30-14:30 LT - local time).

  13. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  14. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  15. The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions

    DOE PAGES

    Colletti, Lisa Michelle; Copping, Roy; Garduno, Katherine; ...

    2017-07-18

    Through assay analysis into an excess of 1 M H2SO4 at fixed temperature a technique has been developed for uranium concentration analysis by visible absorption spectroscopy over an assay concentration range of 1.8 – 13.4 mgU/g. Once implemented for a particular spectrophotometer and set of spectroscopic cells this technique promises to provide more rapid results than a classical method such as Davies-Gray (DG) titration analysis. While not as accurate and precise as the DG method, a comparative analysis study reveals that the spectroscopic method can analyze for uranium in well characterized uranyl(VI) solution samples to within 0.3% of the DGmore » results. For unknown uranium solutions in which sample purity is less well defined agreement between the developed spectroscopic method and DG analysis is within 0.5%. The technique can also be used to detect the presence of impurities that impact the colorimetric analysis, as confirmed through the analysis of ruthenium contamination. Finally, extending the technique to other assay solution, 1 M HNO3, HCl and Na2CO3, has also been shown to be viable. As a result, of the four aqueous media the carbonate solution yields the largest molar absorptivity value at the most intensely absorbing band, with the least impact of temperature.« less

  16. Strontium localization in bone tissue studied by X-ray absorption spectroscopy.

    PubMed

    Frankær, Christian Grundahl; Raffalt, Anders Christer; Stahl, Kenny

    2014-02-01

    Strontium has recently been introduced as a pharmacological agent for the treatment and prevention of osteoporosis. We determined the localization of strontium incorporated into bone matrix from dogs treated with Sr malonate by X-ray absorption spectroscopy. A new approach for analyzing the X-ray absorption spectra resulted in a compositional model and allowed the relative distribution of strontium in the different bone components to be estimated. Approximately 35-45% of the strontium present is incorporated into calcium hydroxyapatite (CaHA) by substitution of some of the calcium ions occupying highly ordered sites, and at least 30% is located at less ordered sites where only the first solvation shell is resolved, suggesting that strontium is surrounded by only oxygen atoms similar to Sr(2+) in solution. Strontium was furthermore shown to be absorbed in collagen in which it obtains a higher structural order than when present in serum but less order than when it is incorporated into CaHA. The total amount of strontium in the samples was determined by inductively coupled plasma mass spectrometry, and the amount of Sr was found to increase with increasing dose levels and treatment periods, whereas the relative distribution of strontium among the different components appears to be independent of treatment period and dose level.

  17. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  18. Molybdenum speciation in uranium mine tailings using X-ray absorption spectroscopy.

    PubMed

    Essilfie-Dughan, Joseph; Pickering, Ingrid J; Hendry, M Jim; George, Graham N; Kotzer, Tom

    2011-01-15

    Uranium (U) mill tailings in northern Saskatchewan, Canada, contain elevated concentrations of molybdenum (Mo). The potential for long-term (>10,000 years) mobilization of Mo from the tailings management facilities to regional groundwater systems is an environmental concern. To assist in characterizing long-term stability, X-ray absorption spectroscopy was used to define the chemical (redox and molecular) speciation of Mo in tailings samples from the Deilmann Tailings Management Facility (DTMF) at the Key Lake operations of Cameco Corporation. Comparison of Mo K near-edge X-ray absorption spectra of tailings samples and reference compounds of known oxidation states indicates Mo exists mainly as molybdate (+6 oxidation state). Principal component analysis of tailings samples spectra followed by linear combination fitting using spectra of reference compounds indicates that various proportions of NiMoO(4) and CaMoO(4) complexes, as well as molybdate adsorbed onto ferrihydrite, are the Mo species present in the U mine tailings. Tailings samples with low Fe/Mo (<708) and high Ni/Mo (>113) molar ratios are dominated by NiMoO(4), whereas those with high Fe/Mo (>708) and low Ni/Mo (<113) molar ratios are dominated by molybdate adsorbed onto ferrihydrite. This suggests that the speciation of Mo in the tailings is dependent in part on the chemistry of the original ore.

  19. Correlation-driven charge migration following double ionization and attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hollstein, Maximilian; Santra, Robin; Pfannkuche, Daniela

    2017-05-01

    We theoretically investigate charge migration following prompt double ionization. Thereby, we extend the concept of correlation-driven charge migration, which was introduced by Cederbaum and coworkers for single ionization [Chem. Phys. Lett. 307, 205 (1999), 10.1016/S0009-2614(99)00508-4], to doubly ionized molecules. This allows us to demonstrate that compared to singly ionized molecules, in multiply ionized molecules, electron dynamics originating from electronic relaxation and correlation are particularly prominent. In addition, we also discuss how these correlation-driven electron dynamics might be evidenced and traced experimentally using attosecond transient absorption spectroscopy. For this purpose, we determine the time-resolved absorption cross section and find that the correlated electron dynamics discussed are reflected in it with exceptionally great detail. Strikingly, we find that features in the cross section can be traced back to electron hole populations and time-dependent partial charges and hence, can be interpreted with surprising ease. By taking advantage of element-specific core-to-valence transitions even atomic spatial resolution can be achieved. Thus, with the theoretical considerations presented, not only do we predict particularly diverse and correlated electron dynamics in molecules to follow prompt multiple ionization but we also identify a promising route towards their experimental investigation.

  20. Photo-induced dynamics in heterocyclic aromatic molecules probed by femtosecond XUV transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, Chaitanya D.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-05-01

    We report on the ring-opening and dissociation dynamics of strong-field ionized selenophene (C4 H4 Se), studied by transient XUV absorption spectroscopy at the Se 3d edge. The table-top experiments are facilitated by high-order harmonic generation coupled with a gas phase transient XUV absorption setup that is optimized for the study of organic compounds. Employing element-specific core-to-valence transitions, the ultrafast molecular dynamics are monitored from the perspective of the well-localized Se atoms. Spectral features are assigned based on first principles TDDFT calculations for a large manifold of electronic states. We observe signatures of rapidly (~ 35 fs) decaying highly excited molecular cations, the formation of ring-opened products on a 100 fs time scale and, most notably, the elimination of bare Se+ ions in a very rapid multi-step process. A delayed onset of the Se+ ions provides direct evidence that both selenium-carbon bonds are broken within only ~ 130 fs and that a sequential mechanism, presumably an initial ring-opening followed by a subsequent breaking of the second bond, is required to eliminate the atomic fragments.