Science.gov

Sample records for absorption spectroscopy laser

  1. Absorption spectroscopy with quantum cascade lasers

    NASA Technical Reports Server (NTRS)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    2001-01-01

    Novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers operating near lambda=8 micrometers were used for detection and quantification of trace gases in ambient air by means of sensitive absorption spectroscopy. N2O, 12CH4, 13CH4, and different isotopic species of H2O were detected. Also, a highly selective detection of ethanol vapor in air with a sensitivity of 125 parts per billion by volume (ppb) was demonstrated.

  2. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  3. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  4. Applications of Absorption Spectroscopy Using Quantum Cascade Lasers.

    PubMed

    2014-10-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  5. Transient absorption spectroscopy of laser shocked explosives

    SciTech Connect

    Mcgrane, Shawn D; Dang, Nhan C; Whitley, Von H; Bolome, Cindy A; Moore, D S

    2010-01-01

    Transient absorption spectra from 390-890 nm of laser shocked RDX, PETN, sapphire, and polyvinylnitrate (PVN) at sub-nanosecond time scales are reported. RDX shows a nearly linear increase in absorption with time after shock at {approx}23 GPa. PETN is similar, but with smaller total absorption. A broad visible absorption in sapphire begins nearly immediately upon shock loading but does not build over time. PVN exhibits thin film interference in the absorption spectra along with increased absorption with time. The absorptions in RDX and PETN are suggested to originate in chemical reactions happening on picosecond time scales at these shock stresses, although further diagnostics are required to prove this interpretation.

  6. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis. PMID:25239063

  7. Diode laser absorption spectroscopy of lithium isotopes

    NASA Astrophysics Data System (ADS)

    Olivares, Ignacio E.; González, Iván A.

    2016-10-01

    We study Doppler-limited laser intensity absorption, in a thermal lithium vapor containing 7Li and 6Li atoms in a 9 to 1 ratio, using a narrow-linewidth single-longitudinal-mode tunable external cavity diode laser at the wavelength of 670.8 nm. The lithium vapor was embedded in helium or argon buffer gas. The spectral lineshapes were rigorously predicted for D_1 and D_2 for the lithium 6 and 7 isotope lines using reduced optical Bloch equations, specifically derived, from a density matrix analysis. Here, a detailed comparison is provided of the predicted lineshapes with the measured 7Li-D_2, 7Li-D_1, 6Li-D_2 and 6Li-D_1 lines, in the case of high vapor density and with intensity above the saturation intensity. To our knowledge, this is the first time that such detailed comparison is reported in the open literature. The calculations were also extended to saturated absorption spectra and compared to measured Doppler-free 7Li-D_2 and 6Li-D_2 hyperfine lines.

  8. Laser photothermal spectroscopy of light-induced absorption

    SciTech Connect

    Skvortsov, L A

    2013-01-31

    Basic methods of laser photothermal spectroscopy, which are used to study photoinduced absorption in various media, are briefly considered. Comparative analysis of these methods is performed and the latest results obtained in this field are discussed. Different schemes and examples of their practical implementation are considered. (review)

  9. Piezo-locking a diode laser with saturated absorption spectroscopy

    SciTech Connect

    Debs, J. E.; Robins, N. P.; Lance, A.; Kruger, M. B.; Close, J. D

    2008-10-01

    We demonstrate modulation-based frequency locking of an external cavity diode laser, utilizing a piezo-electrically actuated mirror, external to the laser cavity, to create an error signal from saturated absorption spectroscopy. With this method, a laser stabilized to a rubidium hyperfine transition has a FWHM of 130 kHz over seconds, making the locked laser suitable for experiments in atomic physics, such as creating and manipulating Bose-Einstein condensates. This technique combines the advantages of low-amplitude modulation, simplicity, performance, and price, factors that are usually considered to be mutually exclusive.

  10. Laser absorption spectroscopy system for vaporization process characterization and control

    NASA Astrophysics Data System (ADS)

    Galkowski, Joseph J.; Hagans, Karla G.

    1994-03-01

    In support of the Lawrence Livermore National Laboratory's (LLNL's) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multilaser system is capable of simultaneously measuring the line densities of 238U ground and metastable states, 235U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL's LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode- lasers has capabilities far beyond the requirements of its primary mission.

  11. Precision atomic beam density characterization by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  12. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  13. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  14. Intracavity laser absorption spectroscopy of platinum fluoride, PtF

    NASA Astrophysics Data System (ADS)

    Handler, Kimberly G.; Harris, Rachel A.; O'Brien, Leah C.; O'Brien, James J.

    2011-01-01

    Two vibrational bands of an electronic transition of PtF occurring at 11 940 cm -1 and 12 496 cm -1 were recorded and analyzed. These transitions are identified as the (0,0) and (1,0) bands of an [11.9] Ω = 3/2 - XΩ = 3/2 electronic transition. Gas phase PtF was produced in a copper hollow cathode lined with platinum foil using a trace amount of SF 6, and the spectrum was recorded at Doppler resolution by intracavity laser absorption spectroscopy. This work represents the first published spectroscopic data on PtF. Molecular constants for the ground and excited electronic states are presented.

  15. External Cavity Quantum Cascade Laser for Quartz Tuning Fork Photoacoustic Spectroscopy of Broad Absorption Features

    SciTech Connect

    Phillips, Mark C.; Myers, Tanya L.; Wojcik, Michael D.; Cannon, Bret D.

    2007-05-01

    We demonstrate mid-infrared spectroscopy of large molecules with broad absorption features using a tunable external cavity quantum cascade laser. Absorption spectra for two different Freons are measured over the range 1130-1185 cm-1 with 0.2 cm-1 resolution via laser photoacoustic spectroscopy with quartz tuning forks as acoustic transducers. The measured spectra are in excellent agreement with published reference absorption spectra.

  16. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    PubMed

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-01

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  17. Temperature and pressure measurement based on tunable diode laser absorption spectroscopy with gas absorption linewidth detection

    NASA Astrophysics Data System (ADS)

    Meng, Yunxia; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Wang, Tao; Wang, Ranran

    2014-11-01

    A gas temperature and pressure measurement method based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) detecting linewidth of gas absorption line was proposed in this paper. Combined with Lambert-Beer Law and ideal gas law, the relationship between temperature, pressure and gas linewidth with Lorentzian line shape was investigated in theory. Taking carbon monoxide (CO) at 1567.32 nm for example, the linewidths of gas absorption line in different temperatures and pressures were obtained by simulation. The relationship between the linewidth of second harmonic and temperature, pressure with the coefficient 0.025 pm/K and 0.0645 pm/kPa respectively. According to the relationship of simulation results and detected linewidth, the undefined temperature and pressure of CO gas were measured. The gas temperature and pressure measurement based on linewidth detection, avoiding the influence of laser intensity, is an effective temperature and pressure measurement method. This method also has the ability to detect temperature and pressure of other gases with Lorentzian line shape.

  18. Laser absorption spectroscopy using lead salt and quantum cascade tunable lasers

    NASA Astrophysics Data System (ADS)

    Namjou-Khales, Khosrow

    A new class of analytic instruments based on the detection of chemical species through their spectroscopic absorption 'fingerprint' is emerging based on the use of tunable semiconductor lasers as the excitation source. Advantages of this approach include compact device size, in-line measurement capability, and large signal-bandwidth product. To realize these advantages will require the marriage of laser devices with broad tunability in the infrared spectral range with sophisticated signal processing techniques. Currently, commercial devices based on short wavelength telecommunications type lasers exist but there is potential for much more versatile instruments based on longer wavelength operation. This thesis is divided into two parts. In the first part I present a theoretical analysis and experimental characterization of frequency and wavelength modulation spectroscopy using long wavelength infrared tunable lasers. The experimental measurements were carried out using commercially available lead salt lasers and excellent agreement is found between theoretically predicted performance and experimental verification. The lead salt laser has several important drawbacks as a source in practical instrumentation. In the second part of the thesis I report on the use of the quantum cascade (QC) laser for use in sensitive absorption spectroscopy. The QC laser is a new type of tunable device developed at Bell Laboratories. It features broad infrared tunability, single mode distributed feedback operation, and near room temperature lasing. Using the modulation techniques developed originally for the lead salt lasers, the QC laser was used to detect Nsb2O and other small molecules with absorption features near 8 mum wavelength. The noise equivalent absorption for our measurements was 5× 10sp{-5}/sqrt{Hz} which corresponds to a detection limit of ˜0.25 ppm-m/sqrt{Hz} for Nsb2O. The QC laser sensitivity was found to be limited by excess amplitude modulation in the detection

  19. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods which have been proposed for the detection of trace concentrations of gaseous contaminants include Raman backscattering (LIDAR) and passive radiometry (LOPAIR). Remote sensing techniques using laser spectrometry are presented and in particular a simple long-path laser absorption method (LOLA), which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels is discussed. A number of species were selected for study which are representative of those most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Computer programs were developed which will permit a real-time analysis of the monitored atmosphere. Estimates of the dynamic range of this monitoring technique for various system configurations, and comparison with other methods of analysis, are given.

  20. Gas in Scattering Media Absorption Spectroscopy -- Laser Spectroscopy in Unconventional Environments

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2010-02-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The GASMAS technique combines narrow-band diode-laser spectroscopy with optical propagation in diffuse media. Whereas solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures. These are typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. Molecular oxygen and water vapor have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen gas, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the human sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen, while breathing normally through the mouth. A clinical study comprising 40 patients has been concluded.

  1. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  2. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  3. Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers.

    PubMed

    Belkin, Mikhail A; Loncar, Marko; Lee, Benjamon G; Pflugl, Christian; Audet, Ross; Diehl, Laurent; Capasso, Federico; Bour, David; Corzine, Scott; Hofler, Gloria

    2007-09-01

    We demonstrate microfluidic laser intra-cavity absorption spectroscopy with mid-infrared lambda approximately 9mum quantum cascade lasers. A deepetched narrow ridge waveguide laser is placed in a microfluidic chamber. The evanescent tails of the laser mode penetrate into a liquid on both sides of the ridge. The absorption lines of the liquid modify the laser waveguide loss, resulting in significant changes in the laser emission spectrum and the threshold current. A volume of liquid as small as ~10pL may, in principle, be sufficient for sensing using the proposed technique. This method, similar to the related gas-phase technique, shows promise as a sensitive means of detecting chemicals in small volumes of solutions.

  4. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  5. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Renaudin, P.; Lecherbourg, L.; Blancard, C.; Cossé, P.; Faussurier, G.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  6. Quantum cascade laser absorption spectroscopy as a plasma diagnostic tool: an overview.

    PubMed

    Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B; Röpcke, Jürgen

    2010-01-01

    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry.

  7. Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview

    PubMed Central

    Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B.; Röpcke, Jürgen

    2010-01-01

    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry. PMID:22163581

  8. Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryu, Han Young; Lee, Won-Kyu; Moon, Han Seb; Suh, Ho Suhng

    2007-07-01

    We fabricate a low noise erbium-doped fiber ring laser that can be continuously tuned over 102 nm by insertion of the fiber Fabry-Perot tunable filter (FFP-TF) in the ring cavity with a novel cavity structure and the optimal gain medium length. As an application of this fiber ring laser, we performed the absorption spectroscopy of acetylene (13C2H2) and hydrogen cyanide (H13C14N) and measure the absorption spectra of more than 50 transition lines of these gases with an excellent signal to noise ratio (SNR). The pressure broadening coefficients of four acetylene transition lines are obtained using this fiber ring laser and an external cavity laser diode.

  9. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  10. Infrared-laser spectroscopy using a long-pathlength absorption cell

    SciTech Connect

    Kim, K.C.; Briesmeister, R.A.

    1983-01-01

    The absorption measurements in an ordinary cell may require typically a few torr pressure of sample gas. At these pressures the absorption lines are usually pressure-broadened and, therefore, closely spaced transitions are poorly resolved even at diode-laser resolution. This situation is greatly improved in Doppler-limited spectroscopy at extremely low sample pressures. Two very long-pathlength absorption cells were developed to be used in conjunction with diode lasers. They were designed to operate at controlled temperatures with the optical pathlength variable up to approx. 1.5 km. Not only very low sample pressures are used for studies with such cells but also the spectroscopic sensitivity is enhanced over conventional methods by a factor of 10/sup 3/ to 10/sup 4/, improving the analytical capability of measuring particle densities to the order of 1 x 10'' molecules/cm/sup 3/. This paper presents some analytical aspects of the diode laser spectroscopy using the long-pathlength absorption cells in the areas of absorption line widths, pressure broadening coefficients, isotope composition measurements and trace impurity analysis.

  11. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  12. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  13. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  14. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  15. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  16. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  17. Minute Concentration Measurements of Simple Hydrocarbon Species Using Supercontinuum Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Traina, Nicholas; Halloran, Michael; Lee, Tonghun

    2016-06-01

    Minute concentration measurements of simple hydrocarbon gases are demonstrated using near-infrared supercontinuum laser absorption spectroscopy. Absorption-based gas sensors, particularly when combined with optical fiber components, can significantly enhance diagnostic capabilities to unprecedented levels. However, these diagnostic techniques are subject to limitations under certain gas sensing applications where interference and harsh conditions dominate. Supercontinuum laser absorption spectroscopy is a novel laser-based diagnostic technique that can exceed the above-mentioned limitations and provide accurate and quantitative concentration measurement of simple hydrocarbon species while maintaining compatibility with telecommunications-grade optical fiber components. Supercontinuum radiation generated using a highly nonlinear photonic crystal fiber is used to probe rovibrational absorption bands of four hydrocarbon species using full-spectral absorption diagnostics. Absorption spectra of methane (CH4), acetylene (C2H2), and ethylene (C2H4) were measured in the near-infrared spectrum at various pressures and concentrations to determine the accuracy and feasibility of the diagnostic strategy. Absorption spectra of propane (C3H8) were subsequently probed between 1650 nm and 1700 nm, to demonstrate the applicability of the strategy. Measurements agreed very well with simulated spectra generated using the HITRAN database as well as with previous experimental results. Absorption spectra of CH4, C2H2, and C2H4 were then analyzed to determine their respective measurement accuracy and detection limit. Concentration measurements integrated from experimental results were in very good agreement with independent concentration measurements. Calculated detection limits of CH4, C2H2, and C2H4 at room temperature and atmospheric pressure are 0.1%, 0.09%, and 0.17%, respectively. PMID:27091905

  18. Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy.

    PubMed

    Kliner, D A; Koplow, J P; Goldberg, L

    1997-09-15

    Tunable, narrow-bandwidth (<200-MHz), ~215-nm radiation was produced by frequency quadrupling the ~860-nm output of a high-power, pulsed GaAlAs tapered amplifier seeded by an external-cavity diode laser. Pulsing the amplifier increased the 860 nm?215 nm conversion efficiency by 2 orders of magnitude with respect to cw operation. Detection of nitric oxide and sulfur dioxide by high-resolution absorption spectroscopy was demonstrated. PMID:18188256

  19. Infrared Cavity Ringdown Laser Absorption Spectroscopy of jet-cooled clusters

    NASA Astrophysics Data System (ADS)

    Provencal, Robert Allen

    Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS) employing stimulated Raman scattering (SRS) of pulsed dye lasers as the tunable IR source has been developed. This technique allows highly sensitive (ca. 1 ppm fractional absorption) direct absorption measurements to be performed in the 2-8 μm spectral range with complete wavelength coverage. Basic CR-LAS principles and essential SRS theory are reviewed. IR- CRLAS spectrometers based on both a Raman shifted dye laser and a pulsed Alexandrite ring laser are described. The IR-CRLAS spectrometer has been used in a comparative study of the O-H-stretching vibrations of small alcohol clusters. Results indicate an increase in the hydrogen bond strength as the alcohol chain length increases. An IR-CRLAS investigation of the aromatic C-H stretches of benzene and berizene/methane mixtures, performed in an effort to provide experimental support for a theoretically proposed ``antihydrogen bond'', produced negative results. Similarly, negative results from a visible CRLAS search for water cluster absorptions in connection with the anomalous atmospheric absorption of solar radiation are presented. Infrared laser spectroscopic studies of the structures and bonding in jet-cooled carbon clusters are discussed. The measurement and analysis of a rovibrational band at 2074 cm-1, tentatively assigned to linear C10 is presented. The astrophysical significance of carbon clusters is also discussed in conjunction with the first detection of a non polar molecule (C3) in a cold interstellar dust forming region, performed using far-infrared heterodyne spectroscopy aboard the Kuiper Airborne Observatory.

  20. In situ characterization of few-cycle laser pulses in transient absorption spectroscopy.

    PubMed

    Blättermann, Alexander; Ott, Christian; Kaldun, Andreas; Ding, Thomas; Stooß, Veit; Laux, Martin; Rebholz, Marc; Pfeifer, Thomas

    2015-08-01

    Attosecond transient absorption spectroscopy has thus far been lacking the capability to simultaneously characterize the intense laser pulses at work within a time-resolved quantum-dynamics experiment. However, precise knowledge of these pulses is key to extracting quantitative information in strong-field highly nonlinear light-matter interactions. Here, we introduce and experimentally demonstrate an ultrafast metrology tool based on the time-delay-dependent phase shift imprinted on a strong-field-driven resonance. Since we analyze the signature of the laser pulse interacting with the absorbing spectroscopy target, the laser pulse duration and intensity are determined in situ. As we also show, this approach allows for the quantification of time-dependent bound-state dynamics in one and the same experiment. In the future, such experimental data will facilitate more precise tests of strong-field dynamics theories.

  1. Laser-induced micro-plasmas in air for incoherent broadband cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruth, Albert; Dixneuf, Sophie; Orphal, Johannes

    2016-04-01

    Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) is an experimentally straightforward absorption method where the intensity of light transmitted by an optically stable (high finesse) cavity is measured. The technique is realized using broadband incoherent sources of radiation and therefore the amount of light transmitted by a cavity consisting of high reflectance mirrors (typically R > 99.9%) can be low. In order to find an alternative to having an incoherent light source outside the cavity, an experiment was devised, where a laser-induced plasma in ambient air was generated inside a quasi-confocal cavity by a high-power femtosecond laser. The emission from the laser-induced plasma was utilized as pulsed broadband light source. The time-dependent spectra of the light leaking from the cavity were compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses caused by the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S1 ← S0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air, as well as the strongly forbidden γ-band in molecular oxygen (b1Σ(2,0) ← X3Σ(0,0)).

  2. Time resolved metal line profile by near-ultraviolet tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vitelaru, C.; de Poucques, L.; Minea, T. M.; Popa, G.

    2011-03-01

    Pulsed systems are extensively used to produce active species such as atoms, radicals, excited states, etc. The tunable diode laser absorption spectroscopy (TD-LAS) is successfully used to quantify the density of absorbing species, but especially for stationary or slow changing systems. The time resolved-direct absorption profile (TR-DAP) measurement method by TD-LAS, with time resolution of μs is proposed here as an extension of the regular use of diode laser absorption spectroscopy. The spectral narrowness of laser diodes, especially in the blue range (˜0.01 pm), combined with the nanosecond fast trigger of the magnetron pulsed plasma and long trace recording on the oscilloscope (period of second scale) permit the detection of the sputtered titanium metal evolution in the afterglow (˜ms). TR-DAP method can follow the time-dependence of the temperature (Doppler profile) and the density (deduced from the absorbance) of any medium and heavy species in a pulsed system.

  3. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.

    PubMed

    Lambrecht, Armin; Pfeifer, Marcel; Konz, Werner; Herbst, Johannes; Axtmann, Felix

    2014-05-01

    Laser spectroscopy is a powerful tool for analyzing small molecules, i.e. in the gas phase. In the mid-infrared spectral region quantum cascade lasers (QCLs) have been established as the most frequently used laser radiation source. Spectroscopy of larger molecules in the gas phase, of complex mixtures, and analysis in the liquid phase requires a broader tuning range and is thus still the domain of Fourier transform infrared (FTIR) spectroscopy. However, the development of tunable external cavity (EC) QCLs is starting to change this situation. The main advantage of QCLs is their high spectral emission power that is enhanced by a factor of 10(4) compared with thermal light sources. Obviously, transmission measurements with EC-QCLs in strongly absorbing samples are feasible, which can hardly be measured by FTIR due to detector noise limitations. We show that the high power of EC-QCLs facilitates spectroscopy beyond simple absorption measurements. Starting from QCL experiments with liquid samples, we show results of fiber evanescent field analysis (FEFA) to detect pesticides in drinking water. FEFA is a special case of attenuated total reflection spectroscopy. Furthermore, powerful CW EC-QCLs enable fast vibrational circular dichroism (VCD) spectroscopy of chiral molecules in the liquid phase - a technique which is very time consuming with standard FTIR equipment. We present results obtained for the chiral compound 1,1'-bi-2-naphthol (BINOL). Finally, powerful CW EC-QCLs enable the application of laser photothermal emission spectroscopy (LPTES). We demonstrate this for a narrowband and broadband absorber in the gas phase. All three techniques have great potential for MIR process analytical applications.

  4. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  5. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  6. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (ΔE/E ∼ 5 × 10{sup −3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ∼3 × 10{sup −3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  7. Logarithmic conversion of absorption detection in wavelength modulation spectroscopy with a current-modulated diode laser.

    PubMed

    Wang, Yuntao; Cai, Haiwen; Geng, Jianxin; Fang, Zujie

    2009-07-20

    Logarithmic-conversion data processing used in wavelength modulation spectroscopy (WMS) with a current-modulated diode laser as its source is analyzed and compared with second-to-first ratio detection. Analytic Fourier coefficients of logarithmic-converted residual amplitude modulation (RAM) of a light source are given. An experimental setup for methane absorption detection at 1650 nm is described. It is shown theoretically and experimentally that logarithmic-converted WMS cannot only eliminate the fluctuation of received light power, but also improve the signal-to-noise ratio significantly. PMID:19623220

  8. Infrared laser absorption spectroscopy of the ν7 band of jet-cooled iron pentacarbonyl

    NASA Astrophysics Data System (ADS)

    Loroño, M.; Cruse, H. A.; Davies, P. B.

    2000-02-01

    The ν7 parallel band of Fe(CO) 5 has been measured in the 620 cm -1 region using high-resolution diode laser absorption spectroscopy in a free jet expansion. A comparison with simulated band profiles indicated a rotational temperature of between 2 and 3 K in the jet. At these temperatures the K-structure of the Q-branch is partly resolved. The following molecular parameters were obtained: ν0=619.95747(12) cm -1, B7=0.026743(2) cm -1, A7=0.030721(1) cm -1. Approximate values of the quartic centrifugal distortion constants were also obtained from fitting the spectra.

  9. Tunable Diode Laser Absorption Spectroscopy of Metastable Atoms in Dusty Plasmas

    SciTech Connect

    Hoang Tung Do; Hippler, Rainer

    2008-09-07

    Spatial density profile of neon metastable produced in dusty plasma was investigated by means of tunable diode laser absorption spectroscopy. The line averaged measured density drops about 30% with the presence of dust particles. The observations provide evidence for a significant interaction between atoms and powder particles which are important for energy transfer from plasma to particles. The power per unit area absorbed by dust particles due to the collision of metastable atoms with dust particle surface is about some tens of mW/m{sup 2}.

  10. Soft X-Ray Absorption Spectroscopy at an X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Higley, Daniel; Schlotter, William; Turner, Joshua; Moeller, Stefan; Mitra, Ankush; Tsukamoto, Arata; Marvel, Robert; Haglund, Richard; Durr, Hermann; Stohr, Joachim; Dakovski, Georgi

    2015-03-01

    X-ray free electron lasers, providing coherent, ultrafast, high intensity x-ray pulses, have enabled groundbreaking scattering experiments to probe the atomic structure of materials on femtosecond timescales. Nonetheless, x-ray absorption spectroscopy (XAS), one of the most fundamental and common x-ray techniques practiced at synchrotron light sources, has proven challenging to conduct with satisfactory signal-to-noise levels at soft x-ray energies using free electron laser sources. The ability to routinely collect high quality XAS spectra, especially in a time-resolved manner, will open many new scientific possibilities in the areas of ultrafast demagnetization, phase transitions and chemical dynamics to highlight a few. Here, we report how XAS using total fluorescence yield detection yields high signal-to-noise x-ray absorption spectra at an x-ray free electron laser source. Data were collected over multiple absorption edges on technologically relevant materials. These measurements were recorded on the Soft X-Ray Materials Science instrument at the Linac Coherent Light Source. The results are easily extendable to time-resolved measurements.

  11. Stability of widely tuneable, continuous wave external-cavity quantum cascade laser for absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kasyutich, Vasili L.; Raja Ibrahim, R. K.; Martin, Philip A.

    2010-09-01

    The performance of widely tuneable, continuous wave (cw) external-cavity quantum cascade laser (EC-QCL) has been evaluated for direct absorption spectroscopy measurements of nitric oxide (NO) in the wavenumber range 1872-1958 cm -1 and with a 13.5 cm long optical cell. In order to reduce the absorption measurement errors due to the large variations of laser intensity, normalisation with a reference channel was used. Wavelength stability within the scans was analysed using the Allan plot technique for the reduced wavenumber range of 1892.4-1914.5 cm -1. The Allan variances of the NO absorption peak centres and areas were observed to increase with successive scan averaging for all absorption peaks across the wavelength scan, thus revealing short- and long-term drifts of the cw EC-QCL wavelength between successive scans. As an example application, the cw EC-QCL was used for NO measurements in the exhaust of an atmospheric pressure packed-bed plasma reactor applied to the decomposition of dichloromethane in waste gas streams. Etalon noise was reduced by subtracting a reference spectrum recorded when the plasma was off. The NO limit of detection (SNR = 1) was estimated to be ˜2 ppm at atmospheric pressure in a 20.5 cm long optical cell with a double pass and a single 7 s scan over 1892.4-1914.5 cm -1.

  12. Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers.

    PubMed

    Karagiannopoulos, Solon; Cheadle, Edward; Wright, Paul; Tsekenis, Stylianos; McCann, Hugh

    2012-12-01

    A novel opto-electronic scheme for line-of-sight Near-IR gas absorption measurement based on direct absorption spectroscopy (DAS) is reported. A diode-laser-based, multiwavelength system is designed for future application in nonintrusive, high temporal resolution tomographic imaging of H2O in internal combustion engines. DAS is implemented with semiconductor optical amplifiers (SOAs) to enable wavelength multiplexing and to induce external intensity modulation for phase-sensitive detection. Two overtone water transitions in the Near-IR have been selected for ratiometric temperature compensation to enable concentration measurements, and an additional wavelength is used to account for nonabsorbing attenuation. A wavelength scanning approach was used to evaluate the new modulation technique, and showed excellent absorption line recovery. Fixed-wavelength, time-division-multiplexing operation with SOAs has also been demonstrated. To the best of our knowledge this is the first time SOAs have been used for modulation and switching in a spectroscopic application. With appropriate diode laser selection this scheme can be also used for other chemical species absorption measurements. PMID:23207374

  13. Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers.

    PubMed

    Karagiannopoulos, Solon; Cheadle, Edward; Wright, Paul; Tsekenis, Stylianos; McCann, Hugh

    2012-12-01

    A novel opto-electronic scheme for line-of-sight Near-IR gas absorption measurement based on direct absorption spectroscopy (DAS) is reported. A diode-laser-based, multiwavelength system is designed for future application in nonintrusive, high temporal resolution tomographic imaging of H2O in internal combustion engines. DAS is implemented with semiconductor optical amplifiers (SOAs) to enable wavelength multiplexing and to induce external intensity modulation for phase-sensitive detection. Two overtone water transitions in the Near-IR have been selected for ratiometric temperature compensation to enable concentration measurements, and an additional wavelength is used to account for nonabsorbing attenuation. A wavelength scanning approach was used to evaluate the new modulation technique, and showed excellent absorption line recovery. Fixed-wavelength, time-division-multiplexing operation with SOAs has also been demonstrated. To the best of our knowledge this is the first time SOAs have been used for modulation and switching in a spectroscopic application. With appropriate diode laser selection this scheme can be also used for other chemical species absorption measurements.

  14. Measurement of exhaled nitric oxide in beef cattle using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Roller, C. B.; Holland, B. P.; McMillen, G.; Step, D. L.; Krehbiel, C. R.; Namjou, K.; McCann, P. J.

    2007-03-01

    Measurement of nitric oxide (NO) in the expired breath of crossbred calves received at a research facility was performed using tunable diode laser absorption spectroscopy. Exhaled NO (eNO) concentrations were measured using NO absorption lines at 1912.07 cm-1 and employing background subtraction. The lower detection limit and measurement precision were determined to be ˜330 parts in 1012 per unit volume. A custom breath collection system was designed to collect lower airway breath of spontaneously breathing calves while in a restraint chute. Breath was collected and analyzed from calves upon arrival and periodically during a 42 day receiving period. There was a statistically significant relationship between eNO, severity of bovine respiratory disease (BRD) in terms of number of times treated, and average daily weight gain over the first 15 days postarrival. In addition, breathing patterns and exhaled CO2 showed a statistically significant relationship with BRD morbidity.

  15. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  16. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  17. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy

    SciTech Connect

    Aramaki, Mitsutoshi; Ogiwara, Kohei; Etoh, Shuzo; Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2009-05-15

    A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is {+-}2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

  18. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing.

    PubMed

    Li, Jingsong; Yu, Benli; Fischer, Horst

    2015-04-01

    This paper presents a novel methodology-based discrete wavelet transform (DWT) and the choice of the optimal wavelet pairs to adaptively process tunable diode laser absorption spectroscopy (TDLAS) spectra for quantitative analysis, such as molecular spectroscopy and trace gas detection. The proposed methodology aims to construct an optimal calibration model for a TDLAS spectrum, regardless of its background structural characteristics, thus facilitating the application of TDLAS as a powerful tool for analytical chemistry. The performance of the proposed method is verified using analysis of both synthetic and observed signals, characterized with different noise levels and baseline drift. In terms of fitting precision and signal-to-noise ratio, both have been improved significantly using the proposed method.

  19. Initial Results of Optical Vortex Laser Absorption Spectroscopy in the HYPER-I Device

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Asai, Shoma; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Ozawa, Naoya; Tanaka, Masayoshi; Morisaki, Tomohiro

    2015-11-01

    Optical vortex beams have a potential to make a new Doppler measurement, because not only parallel but perpendicular movement of atoms against the beam axis causes the Doppler shift of their resonant absorption frequency. As the first step of a proof-of-principle experiment, we have performed the optical vortex laser absorption spectroscopy for metastable argon neutrals in an ECR plasma produced in the HYPER-I device at the National Institute for Fusion Science, Japan. An external cavity diode laser (TOPTICA, DL100) of which center wavelength was 696.735 nm in vacuum was used for the light source. The Hermite-Gaussian (HG) beam was converted into the Laguerre-Gaussian (LG) beam (optical vortex) by a computer-generated hologram displayed on the spatial light modulator (Hamamatsu, LCOS-SLM X10468-07). In order to make fast neutral flow across the LG beam, a high speed solenoid valve system was installed on the HYPER-I device. Initial results including the comparison of absorption spectra for HG and LG beams will be presented. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.

  20. Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS) in low pressure flames

    SciTech Connect

    Scherer, J.J.; Rakestraw, D.J.

    1996-12-31

    The authors have employed Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS) as a diagnostic tool for combustion chemistry studies. High resolution rovibrational absorption spectra have been obtained in low pressure laminar flames in the mid-infrared employing a pulsed single mode optical parametric oscillator (OPO) laser system. The high sensitivity and generality of IR-CRLAS for combustion studies is demonstrated in a variety of flames and is shown to be robust even in sooting environments with high temperature gradients. The ability to obtain spatially resolved data is also demonstrated in one dimensional laminar flame studies. These preliminary results indicate the potential of IR-CRLAS as a combustion diagnostic which is capable of obtaining absolute concentrations of reactants, intermediates, and products simultaneously within a narrow spectral region. In this demonstration, two information rich mid-infrared spectral regions (1.6 and 3-4 microns) have been probed at Doppler-limited resolution with an effective laser bandwidth of < 0.007 cm{sup -1}.

  1. X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments

    NASA Astrophysics Data System (ADS)

    Harmand, M.; Ravasio, A.; Mazevet, S.; Bouchet, J.; Denoeud, A.; Dorchies, F.; Feng, Y.; Fourment, C.; Galtier, E.; Gaudin, J.; Guyot, F.; Kodama, R.; Koenig, M.; Lee, H. J.; Miyanishi, K.; Morard, G.; Musella, R.; Nagler, B.; Nakatsutsumi, M.; Ozaki, N.; Recoules, V.; Toleikis, S.; Vinci, T.; Zastrau, U.; Zhu, D.; Benuzzi-Mounaix, A.

    2015-07-01

    Taking advantage of the new opportunities provided by x-ray free electron laser (FEL) sources when coupled to a long laser pulse as available at the Linear Coherent Light Source (LCLS), we have performed x-ray absorption near-edge spectroscopy (XANES) of laser shock compressed iron up to 420 GPa (±50 ) and 10 800 K (±1390 ). Visible diagnostics coupled with hydrodynamic simulations were used to infer the thermodynamical conditions along the Hugoniot and the release adiabat. A modification of the pre-edge feature at 7.12 keV in the XANES spectra is observed above pressures of 260 GPa along the Hugoniot. Comparing with ab initio calculations and with previous laser-heated diamond cell data, we propose that such changes in the XANES pre-edge could be a signature of molten iron. This interpretation then suggests that iron is molten at pressures and temperatures higher than 260 GPa (±29 ) and 5680 K (±700 ) along the principal Fe Hugoniot.

  2. Standoff gas leak detectors based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Wainner, R. T.; Green, B. D.; Laderer, M. C.; Allen, M. G.

    2005-11-01

    Trace gas sensing and analysis by Tunable Diode Laser Absorption Spectroscopy (TDLAS) has become a robust and reliable technology accepted for industrial process monitoring and control, quality assurance, environmental sensing, plant safety, and infrastructure security. Sensors incorporating well-packaged wavelength-stabilized near-infrared (1.2 to 2.0 μm) laser sources sense over a dozen toxic or industrially-important gases. A large emerging application for TDLAS is standoff sensing of gas leaks, e.g. from natural gas pipelines. The Remote Methane Leak Detector (RMLD), a handheld standoff TDLAS leak survey tool that we developed, is replacing traditional leak detection tools that must be physically immersed within a leak to detect it. Employing a 10 mW 1.6 micron DFB laser, the RMLD illuminates a non-cooperative topographic surface, up to 30 m distant, and analyzes returned scattered light to deduce the presence of excess methane. The eye-safe, battery-powered, 6-pound handheld RMLD enhances walking pipeline survey rates by more than 30%. When combined with a spinning or rastering mirror, the RMLD serves as a platform for mobile leak mapping systems. Also, to enable high-altitude surveying and provide aerial disaster response, we are extending the standoff range to 3000 m by adding an EDFA to the laser transmitter.

  3. Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements

    NASA Astrophysics Data System (ADS)

    Lewicki, Rafal; Kosterev, Anatoliy A.; Toor, Fatima; Yao, Yu; Gmachl, Claire; Tsai, Tracy; Wysocki, Gerard; Wang, Xiaojun; Troccoli, Mariano; Fong, Mary; Tittel, Frank K.

    2010-01-01

    The ν1+ν3 combination band of uranium hexafluoride (UF6) is targeted to perform analytical enrichment measurements using laser absorption spectroscopy. A high performance widely tunable EC-QCL sources emitting radiation at 7.74 μm (1291 cm-1) is employed as an UF6-LAS optical source to measure the unresolved rotational-vibrational spectral structure of several tens of wavenumbers (cm-1). A preliminary spectroscopic measurement based on a direct laser absorption spectroscopy of methane (CH4) as an appropriate UF6 analyte simulant, was demonstrated.

  4. Time-resolved tunable diode laser absorption spectroscopy of pulsed plasma.

    PubMed

    Adámek, P; Olejníček, J; Čada, M; Kment, Š; Hubička, Z

    2013-07-15

    A method for time-resolved tunable diode laser absorption spectroscopy (LAS) has been developed. In this Letter, we describe in detail a developed electronic module that controls the time resolution of the LAS system. The transistor-transistor logic signal triggering the plasma pulse is used for generation of two signals: the first one triggers fine tuning of the laser wavelength and the second one controls time-defined signal sampling from the absorption detector. The described method and electronic system enable investigation of the temporal evolution of the density and temperature of selected particles in technological plasma systems. The high-power impulse magnetron sputtering system with a period of 10 ms and a duty cycle of 1% has been used to verify this method. The temporal evolution of argon metastable density was measured in the active part of the pulse and in the afterglow. The resulting density of Ar* displays a double-peak structure with a first peak in the plasma "ON" phase and a second peak in the afterglow approximately 1 ms after the end of the pulse.

  5. Direct single-mode fibre-coupled miniature White cell for laser absorption spectroscopy.

    PubMed

    Kühnreich, Benjamin; Höh, Matthias; Wagner, Steven; Ebert, Volker

    2016-02-01

    We present the design, setup, and characterization of a new lens-free fibre-coupled miniature White cell for extractive gas analysis using direct tunable diode laser absorption spectroscopy (dTDLAS). The construction of this cell is based on a modified White cell design and allows for an easy variation of the absorption length in the range from 29 cm to 146 cm. The design avoids parasitic absorption paths outside the cell by using direct, lensless fibre coupling and allows small physical cell dimensions and cell volumes. To characterize the cell performance, different H2O and CH4 concentration levels were measured using dTDLAS. Detection limits of 2.5 ppm ⋅ m for CH4 (at 1.65 μm) and 1.3 ppm ⋅ m for H2O (at 1.37 μm) were achieved. In addition, the gas exchange time and its flow-rate dependence were determined for both species and found to be less than 15 s for CH4 and up to a factor of thirteen longer for H2O. PMID:26931838

  6. Direct single-mode fibre-coupled miniature White cell for laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kühnreich, Benjamin; Höh, Matthias; Wagner, Steven; Ebert, Volker

    2016-02-01

    We present the design, setup, and characterization of a new lens-free fibre-coupled miniature White cell for extractive gas analysis using direct tunable diode laser absorption spectroscopy (dTDLAS). The construction of this cell is based on a modified White cell design and allows for an easy variation of the absorption length in the range from 29 cm to 146 cm. The design avoids parasitic absorption paths outside the cell by using direct, lensless fibre coupling and allows small physical cell dimensions and cell volumes. To characterize the cell performance, different H2O and CH4 concentration levels were measured using dTDLAS. Detection limits of 2.5 ppm ṡ m for CH4 (at 1.65 μm) and 1.3 ppm ṡ m for H2O (at 1.37 μm) were achieved. In addition, the gas exchange time and its flow-rate dependence were determined for both species and found to be less than 15 s for CH4 and up to a factor of thirteen longer for H2O.

  7. Impact of atmospheric state uncertainties on retrieved XCO2 columns from laser differential absorption spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Zaccheo, T. Scott; Pernini, Timothy; Snell, Hilary E.; Browell, Edward V.

    2014-01-01

    This work assesses the impact of uncertainties in atmospheric state knowledge on retrievals of carbon dioxide column amounts (XCO2) from laser differential absorption spectroscopy (LAS) measurements. LAS estimates of XCO2 columns are normally derived not only from differential absorption observations but also from measured or prior knowledge of atmospheric state that includes temperature, moisture, and pressure along the viewing path. In the case of global space-based monitoring systems, it is often difficult if not impossible to provide collocated in situ measurements of atmospheric state for all observations, so retrievals often rely on collocated remote-sensed data or values derived from numerical weather prediction (NWP) models to describe the atmospheric state. A radiative transfer-based simulation framework, combined with representative global upper-air observations and matched NWP profiles, was used to assess the impact of model differences on estimates of column CO2 and O2 concentrations. These analyses focus on characterizing these errors for LAS measurements of CO2 in the 1.57-μm region and of O2 in the 1.27-μm region. The results provide a set of signal-to-noise metrics that characterize the errors in retrieved values associated with uncertainties in atmospheric state and provide a method for selecting optimal differential absorption line pairs to minimize the impact of these noise terms.

  8. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    SciTech Connect

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-10-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here two-dimensional atomic dysprosium density profiles are measured by means of laser absorption spectroscopy; the order of magnitude of the density is 10{sup 22} m{sup -3}. The radially resolved atomic density measurements show a hollow density profile. In the outer parts of the lamp molecules dominate, while the center is depleted of dysprosium atoms due to ionization. From the axial profiles the segregation parameter is determined. It is shown that the lamp operates on the right-hand side of the Fischer curve [J. Appl. Phys. 47, 2954 (1976)], i.e., a larger convection leads to less segregation.

  9. Laser absorption spectroscopy diagnostics of helium metastable atoms generated in dielectric barrier discharge cryoplasmas

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Muneoka, Hitoshi; Stauss, Sven; Sakai, Osamu; Terashima, Kazuo

    2015-10-01

    Cryoplasmas, which are plasmas whose gas temperatures are below room temperature (RT), have shown dynamic changes in their physical and chemical characteristics when the gas temperature in the plasmas (Tgp) was decreased from RT. In this study, we measured the temporal behavior of helium metastable (Hem) atoms generated in a parallel-plate dielectric barrier discharge at ambient gas temperatures (Tga) of 300, 100, and 14 K and with a gas density similar to atmospheric conditions by laser absorption spectroscopy. The increments of Tgp to Tga were less than 20 K. We found from the results that the Hem lifetime and maximum density become longer and larger over one order of magnitude for lower Tga. The reasons for the long Hem lifetime at low Tga are decreases in the rate coefficients of three-body Hem quenching reactions and in the amounts of molecular impurities with boiling points higher than that of He.

  10. High resolution absorption coefficients for Freon-12. [by using tunable diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Hoell, J. M.; Bair, C. H.; Williams, B.; Harward, C.

    1979-01-01

    The ultra high resolution absorption coefficients of the Q-branch of Freon-12 obtained with tunable diode laser spectroscopy are presented. Continuous spectra are presented from 1155/cm to 1163/cm, and absolute wavelength calibration was obtained using SO2 spectra as a standard and a 5 cm Ge etalon for relative calibration between SO2 lines. The Freon-12 data obtained at a pressure of 0.05 torr showed a rich and highly structured spectra, but with the exception of three isolated features, collisional broadening reduces the spectra to a structureless continuum for nitrogen pressures greater than 20 torr. The spectra at 1161/cm continue to exhibit structure at atmospheric pressure.

  11. Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.

  12. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    PubMed

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  13. Measurement of tropospheric OH by laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Kraft, Michael; Perner, D.

    1994-01-01

    OH-radicals are measured by laser long-path absorption spectroscopy. A tunable Nd:YAG/dye laser system provides broadbanded light at 308 nm. The beam is expanded to 0.3 m and pointed to an array of retroreflectors placed at a distance of 2800 m. The returning beam is separated from the outgoing beam and focused into a spectrometer of 0.3 pm resolution. A 1024 element diode array is used as a detector. The signal is digitized by a 14 bit analog to digital converter. The ultimate aim is a detection limit of 10(exp 5) molecules cm(exp -3) of OH. However the measurements in 1991 allowed only the recognition of OH absorptions corresponding to 3 x 10(exp 6) OH cm(exp -3) with a signal to noise ratio of two. Improvements of the instrument are under way. The advantages of the DOAS method are: the accuracy of detection is guaranteed because loss of OH radicals within the device is avoided, the rate of OH production by the device is negligible, and absorptions of other trace gases could be corrected for; and the calibration procedure for the device is fast and easy. The disadvantages of the system are: time resolution is about minutes because about ten spectra had to be added to keep the noise level down, the OH concentration is averaged along the whole light path, weight (500 kg) and size (4x4 m) of the device; and approximately 10 l/min of coolant and supply of 8 kW electrical power are necessary.

  14. Non-invasive gas monitoring in newborn infants using diode laser absorption spectroscopy: a case study

    NASA Astrophysics Data System (ADS)

    Lundin, Patrik; Svanberg, Emilie K.; Cocola, Lorenzo; Lewander, Märta; Andersson-Engels, Stefan; Jahr, John; Fellman, Vineta; Svanberg, Katarina; Svanberg, Sune

    2012-03-01

    Non-invasive diode laser spectroscopy was, for the first time, used to assess gas content in the intestines and the lungs of a new-born, 4 kg, baby. Two gases, water vapor and oxygen, were studied with two low-power tunable diode lasers, illuminating the surface skin tissue and detecting the diffusely emerging light a few centimeters away. The light, having penetrated into the tissue, had experienced absorption by gas located in the lungs and in the intestines. Very distinct water vapor signals were obtained from the intestines while imprint from oxygen was lacking, as expected. Detectable, but minor, signals of water vapor were also obtained from the lungs, illuminating the armpit area and detecting below the collar bone. Water vapor signals were seen but again oxygen signals were lacking, now due to the difficulties of penetration of the oxygen probing light into the lungs of this full-term baby. Ultra-sound images were obtained both from the lungs and from the stomach of the baby. Based on dimensions and our experimental findings, we conclude, that for early pre-term babies, also oxygen should be detectable in the lungs, in addition to intestine and lung detection of water vapor. The present paper focuses on the studies of the intestines while the lung studies will be covered in a forthcoming paper.

  15. Field-rugged sensitive hydrogen peroxide sensor based on tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Morency, J. R.; Laderer, M. C.; Wainner, R. T.; Parameswaran, K. R.; Kessler, W. J.; Druy, M. A.

    2010-04-01

    This paper reports the development and initial testing of a field-portable sensor for monitoring hydrogen peroxide (H2O2) and water (H2O) vapor concentrations during building decontamination after accidental or purposeful exposure to hazardous biological materials. During decontamination, a sterilization system fills ambient air with water and peroxide vapor to near-saturation. The peroxide concentration typically exceeds several hundred ppm for tens of minutes, and subsequently diminishes below 1 ppm. The H2O2/ H2O sensor is an adaptation of a portable gas-sensing platform based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology. By capitalizing on its spectral resolution, the TDLAS analyzer isolates H2O2 and H2O spectral lines to measure both vapors using a single laser source. It offers a combination of sensitivity, specificity, fast response, dynamic range, linearity, ease of operation and calibration, ruggedness, and portability not available in alternative H2O2 detectors. The H2O2 range is approximately 0- 5,000 ppm. The autonomous and rugged instrument provides real-time data. It has been tested in a closed-loop liquid/vapor equilibrium apparatus and by comparison against electrochemical sensors.

  16. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers.

    PubMed

    Lu, Feng; Belkin, Mikhail A

    2011-10-10

    We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.

  17. Time- and space-resolved X-ray absorption spectroscopy of aluminum irradiated by a subpicosecond high-power laser

    NASA Astrophysics Data System (ADS)

    Tzortzakis, S.; Audebert, P.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J. P.; Chenais-Popovics, C.; Nagels, V.; Gary, S.; Shepherd, R.; Girard, F.; Matsushima, I.; Peyrusse, O.; Gauthier, J.-C.

    2006-05-01

    The ionization and recombination dynamics of transient aluminum plasmas was measured using point projection K-shell absorption spectroscopy. An aluminum plasma was produced with a subpicosecond beam of the 100-TW laser at the LULI facility and probed at different times with a picosecond X-ray backlighter created with a synchronized subpicosecond laser beam. Fourier-Domain-Interferometry (FDI) was used to measure the electron temperature at the peak of the heating laser pulse. Absorption X-ray spectra at early times are characteristic of a dense and rather homogeneous plasma, with limited longitudinal gradients as shown by hydrodynamic simulations. The shift of the Al K-edge was measured in the cold dense plasma located at the edge of the heated plasma. From the 1s 2p absorption spectra, the average ionization was measured as a function of time and was also modeled with a collisional-radiative atomic physics code coupled with hydrodynamic simulations.

  18. Concentration-modulated absorption spectroscopy.

    PubMed

    Langley, A J; Beaman, R A; Baran, J; Davies, A N; Jones, W J

    1985-07-01

    Concentration modulation is demonstrated to be a technique capable of markedly extending sensitivity limits in absorption spectroscopy. The gain generated relates in such a manner to sample transmittance that for the first reported time direct spectroscopic concentration measurements become possible. When concentration modulation is used with picosecond lasers, state lifetimes can be determined to a limit of approximately 20 psec.

  19. Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser.

    PubMed

    Karpf, Andreas; Rao, Gottipaty N

    2009-01-10

    The absorption spectra and wavelength modulation spectroscopy (WMS) of NO(2) using a tunable, external cavity CW quantum cascade laser operating at room temperature in the region of 1625 to 1645 cm(-1) are reported. The external cavity quantum cascade laser enabled us to record continuous absorption spectra of low concentrations of NO(2) over a broad range (approximately 16 cm(-1)), demonstrating the potential for simultaneously recording the complex spectra of multiple species. This capability allows the identification of a particular species of interest with high sensitivity and selectivity. The measured spectra are in excellent agreement with the spectra from the high-resolution transmission molecular absorption database [J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005)]. We also conduct WMS for the first time using an external cavity quantum cascade laser, a technique that enhances the sensitivity of detection. By employing WMS, we could detect low-intensity absorption lines, which are not visible in the simple absorption spectra, and demonstrate a minimum detection limit at the 100 ppb level with a short-path absorption cell. Details of the tunable, external cavity quantum cascade laser system and its performance are discussed.

  20. [Monitoring the change in CO concentration in combustion with tunable diode laser absorption spectroscopy].

    PubMed

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Chen, Dong; Cui, Yi-Ben; He, Ying; Chen, Jiu-Ying; Wang, Min; Wang, Tie-Dong

    2008-11-01

    In the present paper, the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with the open path multi-pass Herriot cell and the new-style detection method of auto-balanced detection combined with wavelength modulation technology were used, and the concentration of CO produced in combustion of alcohol blowtorch was measured. It was found in the measured result that the change in CO concentration in the flame of alcohol blowtorch presented a stated periodicity in the process of combustion and the average concentration of CO was calculated to be 49.4 (10(-6) ratio by volume). The experiment is showed that with the conjunction of auto-balanced detection and the second harmonics detection method, adopting the open path multi-pass Herrriot cell to detect the concentration of CO in the combustion of alcohol blowtorch is accurate and contents the detection requirement. It was proved that the system made for measuring the concentration of CO in the flame of alcohol blowtorch in combustion establishes foundation well for developing on-line combustion monitoring based on TDLAS. PMID:19271470

  1. The Optical Absorption Coefficient of Barley Seeds Investigated by Photoacoustic Spectroscopy and Their Effects by Laser Biostimulation

    NASA Astrophysics Data System (ADS)

    Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.

    2015-09-01

    Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.

  2. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  3. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  4. Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy.

    PubMed

    Lang, N; Macherius, U; Wiese, M; Zimmermann, H; Röpcke, J; van Helden, J H

    2016-03-21

    We report on sensitive detection of atmospheric methane employing quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS). An instrument has been built utilizing a continuous-wave distributed feedback quantum cascade laser (cw-QCL) with a V-shaped cavity, a common arrangement that reduces feedback to the laser from non-resonant reflections. The spectrometer has a noise equivalent absorption coefficient of 3.6 × 10-9 cm-1 Hz-1/2 for a spectral scan of CH4 at 7.39 μm. From an Allan-Werle analysis a detection limit of 39 parts per trillion of CH4 at atmospheric pressure within 50 s acquisition time was found.

  5. Quantum cascade laser absorption spectroscopy with the amplitude-to-time conversion technique for atmospheric-pressure plasmas

    SciTech Connect

    Yumii, Takayoshi; Kimura, Noriaki; Hamaguchi, Satoshi

    2013-06-07

    The NO{sub 2} concentration, i.e., density, in a small plasma of a nitrogen oxide (NOx) treatment reactor has been measured by highly sensitive laser absorption spectroscopy. The absorption spectroscopy uses a single path of a quantum cascade laser beam passing through a plasma whose dimension is about 1 cm. The high sensitivity of spectroscopy is achieved by the amplitude-to-time conversion technique. Although the plasma reactor is designed to convert NO in the input gas to NO{sub 2}, it has been demonstrated by this highly sensitive absorption spectroscopy that NO{sub 2} in a simulated exhaust gas that enters the reactor is decomposed by the plasma first and then NO{sub 2} is formed again, possibly more than it was decomposed, through a series of gas-phase reactions by the time the gas exits the reactor. The observation is consistent with that of an earlier study on NO decomposition by the same type of a plasma reactor [T. Yumii et al., J. Phys. D 46, 135202 (2013)], in which a high concentration of NO{sub 2} was observed at the exit of the reactor.

  6. A reaction cell with sample laser heating for in situ soft X-ray absorption spectroscopy studies under environmental conditions.

    PubMed

    Escudero, Carlos; Jiang, Peng; Pach, Elzbieta; Borondics, Ferenc; West, Mark W; Tuxen, Anders; Chintapalli, Mahati; Carenco, Sophie; Guo, Jinghua; Salmeron, Miquel

    2013-05-01

    A miniature (1 ml volume) reaction cell with transparent X-ray windows and laser heating of the sample has been designed to conduct X-ray absorption spectroscopy studies of materials in the presence of gases at atmospheric pressures. Heating by laser solves the problems associated with the presence of reactive gases interacting with hot filaments used in resistive heating methods. It also facilitates collection of a small total electron yield signal by eliminating interference with heating current leakage and ground loops. The excellent operation of the cell is demonstrated with examples of CO and H2 Fischer-Tropsch reactions on Co nanoparticles.

  7. Tunable single-longitudinal-mode operation of an injection-locked TEA CO2 laser. [ozone absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Megie, G.; Menzies, R. T.

    1979-01-01

    The tunable single-longitudinal-mode operation of a TEA CO2 laser by an injection technique using a CW waveguide laser as the master oscillator is reported. With the experimental arrangement described, in which the waveguide laser frequency is tuned to correspond to one of the oscillating longitudinal modes of the TEA laser, single-longitudinal-mode operation was achieved with no apparent reduction in the TEA output energy, on various CO2 lines with frequency offsets from the line center as large as 300 MHz. The capability of this technique for high-resolution spectroscopy or atmospheric lidar studies is demonstrated by the recording of the absorption spectrum of a strong ozone line.

  8. Laser-induced plasmas in ambient air for incoherent broadband cavity-enhanced absorption spectroscopy.

    PubMed

    Ruth, Albert A; Dixneuf, Sophie; Orphal, Johannes

    2015-03-01

    The emission from a laser-induced plasma in ambient air, generated by a high power femtosecond laser, was utilized as pulsed incoherent broadband light source in the center of a quasi-confocal high finesse cavity. The time dependent spectra of the light leaking from the cavity was compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses of the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S(1) ← S(0) absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air as well as the strongly forbidden γ-band in molecular oxygen: b(1)Σ(g)(+)(ν'=2)←X(3)Σ(g)(-)(ν''=0). PMID:25836833

  9. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit

    NASA Astrophysics Data System (ADS)

    Gorrotxategi-Carbajo, P.; Fasci, E.; Ventrillard, I.; Carras, M.; Maisons, G.; Romanini, D.

    2013-03-01

    We report on the first application of Optical Feedback-Cavity Enhanced Absorption Spectroscopy to formaldehyde trace gas analysis at mid-infrared wavelengths. A continuous-wave room-temperature, distributed-feedback quantum cascade laser emitting around 1,769 cm-1 has been successfully coupled to an optical cavity with finesse 10,000 in an OF-CEAS spectrometer operating on the ν2 fundamental absorption band of formaldehyde. This compact setup (easily transportable) is able to monitor H2CO at ambient concentrations within few seconds, presently limited by the sample exchange rate. The minimum detectable absorption is 1.6 × 10-9 cm-1 for a single laser scan (100 ms, 100 data points), with a detectable H2CO mixing ratio of 60 pptv at 10 Hz. The corresponding detection limit at 1 Hz is 5 × 10-10 cm-1, with a normalized figure of merit of 5 × 10-11cm^{-1}/sqrtHz (100 data points recorded in each spectrum taken at 10 Hz rate). A preliminary Allan variance analysis shows white noise averaging down to a minimum detection limit of 5 pptv at an optimal integration time of 10 s, which is significantly better than previous results based on multi-pass or cavity-enhanced tunable QCL absorption spectroscopy.

  10. Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy.

    PubMed

    Koplow, J P; Kliner, D A; Goldberg, L

    1998-06-20

    A compact, lightweight, low-power-consumption source of tunable, narrow-bandwidth blue and UV radiation is described. In this source, a single-longitudinal-mode diode laser seeds a pulsed, GaAlAs tapered amplifier whose ~860-nm output is frequency quadrupled by two stages of single-pass frequency doubling. Performance of the laser system is characterized over a wide range of amplifier duty cycles (0.1-1.0), pulse durations (50 ns-1.0 mus), peak currents (absorption spectra of nitric oxide and sulfur dioxide near 215 nm; the SO(2) spectrum was found to have significantly more structure and higher peak absorption cross sections than previously reported. PMID:18273363

  11. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser.

    PubMed

    Namjou, K; Cai, S; Whittaker, E A; Faist, J; Gmachl, C; Capasso, F; Sivco, D L; Cho, A Y

    1998-02-01

    We report what we believe are the first spectroscopic measurements to be made with a room-temperature quantum-cascade distributed-feedback laser. Using wavelength modulation spectroscopy, we detected N(2)O and CH(4) in the chemical fingerprint wavelength range near 8microm . The noise equivalent absorbance for our measurement was 5 parts in 10(5), limited by excess amplitude modulation on the laser output, which corresponds to a 1-Hz bandwidth detection limit of 250 parts N(2)O in 10(9) parts N(2) in a 1-m path length.

  12. Looking into the volcano with a Mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy.

    PubMed

    Kassi, S; Chenevier, M; Gianfrani, L; Salhi, A; Rouillard, Y; Ouvrard, A; Romanini, D

    2006-11-13

    We report on the first application of extended-wavelength DFB diode lasers to Cavity-Enhanced Absorption Spectroscopy in-situ trace measurements on geothermal gases. The emission from the most active fumarole at the Solfatara volcano near Naples (Italy) was probed for the presence of CO and CH(4). After passing through a gas dryer and cooler, the volcanic gas flow (98% CO(2)) was analysed in real time for the concentration of these species, whose relatively strong absorption lines could be monitored simultaneously by a single Distributed Feed-Back (DFB) GaSb-based diode laser emitting around 2.33 mum (4300 cm(-1)) at room temperature. The concentrations were found to be about 3 ppm and 75 ppm, respectively, while actual detection limits for these molecules are around 1 ppb. We discuss the possibility of detecting other species of interest for volcanic emission monitoring. PMID:19529562

  13. Measurement of nitrous acid (HONO) by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Maamary, Rabih; Gao, Xiaoming; Sigrist, Markus W.; Fertein, Eric; Chen, Weidong

    2016-04-01

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm-1 was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ~40 mm3) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by simultaneous measurements of direct HONO absorption spectra in a 109.5 m multipass cell using a distributed feedback (DBF) QCL. A minimum detection limit (MDL @ SNR=1) of 66 ppbv HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6×10-8 cm-1.W/Hz1/2. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding minimum detected absorption coefficient (SNR=1) is ~1.1×10-7 cm-1 (MDL: ~3 ppbv) in 1 s and ~1.1×10-8 cm-1 (MDL~330 pptv) in 150 s, respectively, with 1 W laser power. Acknowledgements The authors acknowledge financial supports from the CaPPA project (ANR-10-LABX-005) and the CPER CLIMIBIO program. References H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, W. Chen, "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106 (2015) 101109

  14. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    SciTech Connect

    Dorchies, F. Fedorov, N.; Lecherbourg, L.

    2015-07-15

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%–20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  15. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy.

    PubMed

    Dorchies, F; Fedorov, N; Lecherbourg, L

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  16. Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy.

    PubMed

    Spearrin, R M; Goldenstein, C S; Jeffries, J B; Hanson, R K

    2014-03-20

    A tunable quantum cascade laser sensor, based on wavelength modulation absorption spectroscopy near 4.8 μm, was developed to measure CO concentration in harsh, high-pressure combustion gases. The sensor employs a normalized second harmonic detection technique (WMS-2f/1f) at a modulation frequency of 50 kHz. Wavelength selection at 2059.91  cm⁻¹ targets the P(20) transition within the fundamental vibrational band of CO, chosen for absorption strength and relative isolation from infrared water and carbon dioxide absorption. The CO spectral model is defined by the Voigt line-shape function, and key line-strength and line-broadening spectroscopic parameters were taken from the literature or measured. Sensitivity analysis identified the CO-N₂ collisional broadening coefficient as most critical for uncertainty mitigation in hydrocarbon/air combustion exhaust measurements, and this parameter was experimentally derived over a range of combustion temperatures (1100-2600 K) produced in a shock tube. Accuracy of the wavelength-modulation-spectroscopy-based sensor, using the refined spectral model, was validated at pressures greater than 40 atm in nonreactive shock-heated gas mixtures. The laser was then free-space coupled to an indium-fluoride single-mode fiber for remote light delivery. The fiber-coupled sensor was demonstrated on an ethylene/air pulse detonation combustor, providing time-resolved (~20  kHz), in situ measurements of CO concentration in a harsh flow field.

  17. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method.

    PubMed

    Sun, Lanxiang; Yu, Haibin

    2009-07-15

    A simplified procedure for correcting self-absorption effect was proposed in calibration-free laser-induced breakdown spectroscopy (CF-LIBS). In typical LIBS measurement conditions, the plasma produced is often optically thick, especially for the strong lines of major elements. The selection of self-absorption lines destroys the performance of CF-LIBS, and the familiar correction method based on the curve of growth is complex in implementation. The procedure we proposed, named internal reference for self-absorption correction (IRSAC), first chose an internal reference line for each species, then compared other spectral line intensity of the same species with the reference line to estimate the self-absorption degrees of other spectral lines, and finally achieved an optimal correction by a regressive algorithm. The self-absorption effect of the selected reference line can be ignored, since the reference line with high excitation energy of the upper level is slightly affected by the self-absorption. Through the IRSAC method, the points on the Boltzmann plot become more regular, and the evaluations of the plasma temperature and material composition are more accurate than the basic CF-LIBS.

  18. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-01

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  19. Multi-mode absorption spectroscopy using a quantum cascade laser for simultaneous detection of NO and H2O

    NASA Astrophysics Data System (ADS)

    O'Hagan, S.; Pinto, T.; Ewart, P.; Ritchie, G. A. D.

    2016-08-01

    Detection of multiple transitions in NO and H2O using multi-mode absorption spectroscopy, MUMAS, with a quantum cascade laser, QCL, operating at 5.3 μm at scan rates up to 10 kHz is reported. The linewidth of longitudinal modes of the QCL is derived from pressure-dependent fits to experimental MUMAS data. Variations in the spectral structure of the broadband, multi-mode, output of the commercially available QCL employed are analysed to provide accurate fits of modelled MUMAS signatures to the experimental data.

  20. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  1. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  2. Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.

    2015-01-01

    In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.

  3. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  4. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  5. Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis

    NASA Astrophysics Data System (ADS)

    Richard, Lucile; Ventrillard, Irene; Chau, Guilmin; Jaulin, Kevin; Kerstel, Erik; Romanini, Daniele

    2016-09-01

    The combination of interband cascade lasers (ICL) with cavity-enhanced absorption spectroscopy (CEAS) offers new perspectives in trace analysis and isotope ratio measurements. ICLs cover a mid-infrared spectral window (3-4 µm), in between those covered by Ga(InAs)Sb diode lasers and quantum cascade lasers (QCL), where strong molecular transitions can be found. While ICLs have lower emission power than QCLs, their thermal dissipation is much closer to that of telecom diode lasers and their current tuning range larger, which are both major advantages for developing compact instruments. We present an OF-CEAS implementation with an ICL at 4.015 µm, in which optical feedback (OF) enables efficient injection into the high-finesse cavity. In this paper, we also discuss a procedure allowing to obtain an accurate measurement of the OF rate. With regard to performance, we obtain a rms noise-equivalent absorption of 7.7 × 10-9 cm-1 for one acquired spectrum (80 ms) with a cavity of finesse 3900, which translates to a normalized figure of merit of 2.2 × 10-9 cm-1/√Hz, allowing for SO2 trace analysis down to ppbv levels with a response time of seconds.

  6. Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy

    SciTech Connect

    Scherer, J.J.; Aniolek, K.W.; Cernansky, N.P.; Rakestraw, D.J.

    1997-10-01

    Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS) is employed to determine absolute methyl radical concentrations in a 37.5 Torr laminar methane/air flame. IR-CRLAS rovibrational absorption spectra of the {nu}{sub 3} fundamental band system near 3200thinspcm{sup {minus}1} are combined with N{sub 2}-CARS temperature measurements to obtain methyl radical concentrations as a function of height above the burner surface. These data are compared with flame chemistry simulations under both stoichiometric and rich flame conditions. Issues regarding the applicability of IR-CRLAS for combustion studies are discussed, including the uncertainties present for the specific case of methyl radical. These IR-CRLAS measurements indicate the ability to monitor reactants, intermediates, and products within a narrow spectral window, and, to our knowledge, constitute the first infrared detection of a polyatomic radical in a flame. {copyright} {ital 1997 American Institute of Physics.}

  7. Photothermal absorption correlation spectroscopy.

    PubMed

    Octeau, Vivien; Cognet, Laurent; Duchesne, Laurence; Lasne, David; Schaeffer, Nicolas; Fernig, David G; Lounis, Brahim

    2009-02-24

    Fluorescence correlation spectroscopy (FCS) is a popular technique, complementary to cell imaging for the investigation of dynamic processes in living cells. Based on fluorescence, this single molecule method suffers from artifacts originating from the poor fluorophore photophysics: photobleaching, blinking, and saturation. To circumvent these limitations we present here a new correlation method called photothermal absorption correlation spectroscopy (PhACS) which relies on the absorption properties of tiny nano-objects. PhACS is based on the photothermal heterodyne detection technique and measures akin FCS, the time correlation function of the detected signals. Application of this technique to the precise determination of the hydrodynamic sizes of different functionalized gold nanoparticles are presented, highlighting the potential of this method. PMID:19236070

  8. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    SciTech Connect

    Nakano, H. Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  9. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes.

    PubMed

    Tsukizaki, Ryudo; Koizumi, Hiroyuki; Nishiyama, Kazutaka; Kuninaka, Hitoshi

    2011-12-01

    In order to reveal the physical processes taking place within the "μ10" microwave discharge ion thruster, internal plasma diagnosis is indispensable. However, the ability of metallic probes to access microwave plasmas biased at a high voltage is limited from the standpoints of the disturbance created in the electric field and electrical isolation. In this study, the axial density profiles of excited neutral xenon were successfully measured under ion beam acceleration by using a novel laser absorption spectroscopy system. The target of the measurement was metastable Xe I 5p(5)((2)P(0) (3/2))6s[3/2](0) (2) which absorbed a wavelength of 823.16 nm. Signals from laser absorption spectroscopy that swept a single-mode optical fiber probe along the line of sight were differentiated and converted into axial number densities of the metastable neutral particles in the plasma source. These measurements revealed a 10(18) m(-3) order of metastable neutral particles situated in the waveguide, which caused two different modes during the operation of the μ10 thruster. This paper reports a novel spectroscopic measurement system with axial resolution for microwave plasma sources utilizing optical fiber probes.

  10. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes

    SciTech Connect

    Tsukizaki, Ryudo; Koizumi, Hiroyuki; Nishiyama, Kazutaka; Kuninaka, Hitoshi

    2011-12-15

    In order to reveal the physical processes taking place within the ''{mu}10'' microwave discharge ion thruster, internal plasma diagnosis is indispensable. However, the ability of metallic probes to access microwave plasmas biased at a high voltage is limited from the standpoints of the disturbance created in the electric field and electrical isolation. In this study, the axial density profiles of excited neutral xenon were successfully measured under ion beam acceleration by using a novel laser absorption spectroscopy system. The target of the measurement was metastable Xe I 5p{sup 5}({sup 2}P{sup 0}{sub 3/2})6s[{sup 3}/{sub 2}]{sup 0}{sub 2} which absorbed a wavelength of 823.16 nm. Signals from laser absorption spectroscopy that swept a single-mode optical fiber probe along the line of sight were differentiated and converted into axial number densities of the metastable neutral particles in the plasma source. These measurements revealed a 10{sup 18} m{sup -3} order of metastable neutral particles situated in the waveguide, which caused two different modes during the operation of the {mu}10 thruster. This paper reports a novel spectroscopic measurement system with axial resolution for microwave plasma sources utilizing optical fiber probes.

  11. Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy.

    PubMed

    Paci, Paolo; Zvinevich, Yury; Tanimura, Shinobu; Wyslouzil, Barbara E; Zahniser, Mark; Shorter, Joanne; Nelson, David; McManus, Barry

    2004-11-22

    We used a tunable diode laser absorption spectrometer to follow the condensation of D(2)O in a supersonic Laval nozzle. We measured both the concentration of the condensible vapor and the spectroscopic temperature as a function of position and compared the results to those inferred from static pressure measurements. Upstream and in the early stages of condensation, the quantitative agreement between the different experimental techniques is good. Far downstream, the spectroscopic results predict a lower gas phase concentration, a higher condensate mass fraction, and a higher temperature than the pressure measurements. The difference between the two measurement techniques is consistent with a slight compression of the boundary layers along the nozzle walls during condensation. PMID:15549871

  12. Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy.

    PubMed

    Kosterev, A A; Curl, R F; Tittel, F K; Gmachl, C; Capasso, F; Sivco, D L; Baillargeon, J N; Hutchinson, A L; Cho, A Y

    2000-08-20

    A variable duty cycle quasi-cw frequency scanning technique was applied to reduce thermal effects resulting from the high heat dissipation of type I quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero-air background-subtraction technique to enhance detection sensitivity to a parts-in-10(9) (ppb) concentration level for spectroscopic trace-gas detection of CH4, N2O, H2O, and C2H5OH in ambient air at 7.9 micrometers. A new technique for analysis of dense high resolution absorption spectra was applied to detection of ethanol in ambient air, yielding a 125-ppb detection limit.

  13. Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser

    SciTech Connect

    Manfred, K. M.; Ritchie, G. A. D.; Lang, N.; Röpcke, J.; Helden, J. H. van

    2015-06-01

    The development of interband cascade lasers (ICLs) has made the strong C-H transitions in the 3 μm spectral region increasingly accessible. We present the demonstration of a single mode distributed feedback ICL coupled to a V-shaped optical cavity in an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) experiment. We achieved a minimum detectable absorption coefficient, α{sub min}, of (7.1±0.2)×10{sup −8} cm{sup −1} for a spectrum of CH{sub 4} at 3.24 μm with a two second acquisition time (100 scans averaged). This corresponds to a detection limit of 3 ppb CH{sub 4} at atmospheric pressure, which is comparable to previously reported OF-CEAS instruments with diode lasers or quantum cascade lasers. The ability to frequency lock an ICL source in the important 3 μm region to an optical cavity holds great promise for future spectroscopic applications.

  14. Infrared-absorption spectroscopy with color-center lasers. Progress report, April 1, 1980-March 31, 1981

    SciTech Connect

    Curl, R.F.

    1981-01-01

    A color center laser spectrometer for the observation of the absorption spectra of small free radicals of importance in flames and discharges has been developed and several methods for increasing sensitivity explored. The computer controlled spectrometer is capable of scanning long frequency regions continuously while acquiring data in five channels. The fine structure transition of atomic Br has been observed with a high signal-to-noise ratio using the sensitivity enhancement obtainable by magnetic rotation spectroscopy. The utility of the spectrometer for broad band high resolution spectroscopy has been established by study of the spectra of nitrogen dioxide and methanol. The noise spectrum of the laser has been studied by observations of the signal-to-noise ratios of the Stark modulation spectra of acetonitrile and methanol as a function of modulation frequency. A marked improvement in sensitivity is obtained as the modulation frequency is increased from 100 Hz to 1 kHz, but the improvement obtained by increasing the modulation frequency from 1 kHz to 100 kHz is at most a factor of two with an argon laser pump. (MGW)

  15. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Douglass, K. O.; Olson, D. A.

    2016-06-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5% with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12% for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5% on average. The pressures measured using WMS have an average difference of 0.6% from the absolute pressure measured with a capacitance diaphragm sensor.

  16. Sensor for headspace pressure and H2O concentration measurements in closed vials by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cai, Tingdong; Wang, Guishi; Cao, Zhensong; Zhang, Weijun; Gao, Xiaoming

    2014-07-01

    The concentration of H2O and the pressure in the headspace of vials are simultaneously measured by a tunable diode laser sensor based on absorption spectroscopy techniques. The 7168.437 cm-1 spectral line of H2O is chosen as the sensing transition for its strong absorption strength and being reasonably far away from its neighboring molecular transitions. In order to prevent interference absorption by ambient water vapor in the room air, a difference between the measured signal and the referenced signal is used to calculate the pressure and H2O concentration in the headspace of vials, eliminating the need for inert gas purges and calibration with known gas. The validation of the sensor is conducted in a static vial, yielding an accuracy of 1.23% for pressure and 3.81% for H2O concentration. The sensitivity of the sensor is estimated to be about 2.5 Torr for pressure and 400 ppm for H2O concentration over a 3 cm absorption path length respectively. Accurate measurements for commercial freeze-dried products demonstrate the in-line applications of the sensor for the pharmaceutical industry.

  17. Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hollberg, Leo; Bergquist, James Charles; Kasevich, Mark A.

    2008-04-01

    Degenerate gases. Probing vortex pair sizes in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-Einstein condensates / V. Schweikhard ... [et al.]. Interacting Bose-Einstein condensates in random potentials / P. Bouyer ... [et al.]. Towards quantum magnetism with ultracold atoms in optical lattices / I. Bloch -- Precision measurement and fundamental physics. T-violation and the search for a permanent electric dipole moment of the mercury atom / E. N. Fortson -- Quantum information and control I. Quantum information processing and ramsey spectroscopy with trapped ions / C. F. Roos ... [et al.]. Quantum non-demolition counting of photons in a cavity / S. Haroche ... [et al.] -- Ultra-fast control and spectroscopy. Frequency-Comb- assisted mid-infrared spectroscopy / P. de Natale ... [et al.] -- Precision measurement and applications. Precision gravity tests by atom interferometry / G. M. Tino ... [et al.] -- Novel spectroscopic applications. On a variation of the proton-electron mass ratio / W. Ubachs ... [et al.] -- Quantum information and control II. Quantum interface between light and atomic ensembles / H. Krauter ... [et al.] -- Degenerate Fermi gases. An atomic Fermi gas near a P-wave Feshbach resonance / D. S. Jin, J. P. Gaebler and J. T. Stewart. Bragg scattering of correlated atoms from a degenerate Fermi gas / R. J. Ballagh, K. J. Challis and C. W. Gardiner -- Spectroscopy and control of atoms and molecules. Stark and Zeeman deceleration of neutral atoms and molecules / S. D. Hogan ... [et al.]. Generation of coherent, broadband and tunable soft x-ray continuum at the leading edge of the driver laser pulse / A. Jullien ... [et al.]. Controlling neural atoms and photons with optical conveyor belts and ultrathin optical fibers / D. Meschede. W. Alt and A. Rauschenbeutel -- Spectroscopy on the small scale. Wide-field cars-microscopy / C. Heinrich ... [et al.]. Atom nano-optics and nano-lithography / V. I. Balykin ... [et al

  18. Core-level attosecond transient absorption spectroscopy of laser-dressed solid films of Si and Zr

    NASA Astrophysics Data System (ADS)

    Seres, Enikoe; Seres, Jozsef; Serrat, Carles; Namba, Shinichi

    2016-10-01

    We investigated experimentally as well as theoretically the ultrafast response of the wave function of the conduction band (CB) of Si and Zr to a near-infrared laser field using extreme ultraviolet (XUV) absorption spectroscopy in the spectral range of 80-220 eV. The measured dynamics of the XUV transmission demonstrates that the wave function of the CB follows the electric field of the dressing laser pulse. In these terms, laser dressing was earlier mainly studied on gases. Measurements with two-femtosecond and 200-attosecond temporal steps were performed in the vicinity of the Si L2 ,3 edge near 100 eV, the Si L1 edge near 150 eV, and the Zr M4 ,5 edge near 180 eV. The observed changes were dependent on the core states being excited by the XUV probe pulse. At the 2 p to CB transitions of Si, the XUV transmission increased via the effect of the dressing laser pulse, while at the 2 s to CB transition of Si and the 3 d to CB transition of Zr, the XUV transmission decreased. Furthermore, beats between the transition from 2 p1 /2 and 2 p3 /2 levels of Si and from 3 d3 /2 and 3 d5 /2 levels of Zr were observed with 20.7 fs and 3.6 fs periods.

  19. Laser ablation plume thermalization dynamics in background gases: Combined imaging, optical absorption and emission spectroscopy, and ion probe measurements

    SciTech Connect

    Geohegan, D.B.; Puretzky, A.A. |

    1995-02-01

    Combined diagnostic measurements are employed to characterize the penetration of energetic ablation plumes through background gases during a key transitional regime in which the ion flux is observed to split into distinct fast and slowed components. This apparently general phenomenon occurs over a limited range of distances at ambient pressures typically used for PLD (pulsed laser deposition) and may be important to film growth by PLD because a ``fast`` component of ions can arrive at the probe (or substrate) with little or no delay compared to propagation in vacuum. At longer distances, this ``fast`` component is completely attenuated, and only slowed distributions of ions are observed. Interestingly, this ``fast`` component is easily overlooked in imaging studies because the bright plume luminescence occurs in the slowed distribution. Time- and spatially-resolved optical absorption and emission spectroscopy are applied to experimentally determine the composition of the ``fast`` and ``slow`` propagating plume components for a single-component target ablation (yttrium) into an inert gas (argon) for correlation with quantitative imaging and ion probe measurements. The yttrium/argon system was chosen because optical absorption spectroscopy of both Y and Y+ was simultaneously possible and the inert nature of argon. Experimental results for several other systems, including Si/Ar, Si/He, YBCO/O{sub 2} are presented to illustrate variations in scattering mechanisms.

  20. Quantification Of Cesium In Negative Hydrogen Ion Sources By Laser Absorption Spectroscopy

    SciTech Connect

    Fantz, U.; Wimmer, Ch.

    2011-09-26

    The use of cesium in negative hydrogen ion sources and the resulting cesium dynamics caused by the evaporation and redistribution in the vacuum and plasma phase makes a reliable and on-line monitoring of the cesium amount in the source highly desirable. For that purpose, a robust and compact laser absorption setup suitable for the ion source environment has been developed utilizing the Cs D{sub 2} resonance line at 852.1 nm. First measurements are taken in a small laboratory plasma chamber with cesium evaporation. A detection limit of {approx_equal}5x10{sup 13} m{sup -3} at a typical path length of 15 cm has been obtained with a dynamic range of more than three orders of magnitude, limited by line saturation at high densities. For on-line monitoring an automatic data analysis is established achieving a temporal resolution of 100 ms. The setup has then been applied to the ITER prototype ion sources developed at IPP. It is been shown that the method is well suited for routine measurements revealing a new insight into the cesium dynamics during source operation and cesium conditioning.

  1. High-resolution laser absorption spectroscopy of ozone near 1129.4 cm (-1)

    NASA Technical Reports Server (NTRS)

    Majorana, L. N.

    1981-01-01

    A Beer's Law experiment was performed with a tunable diode laser to determine self broadened line shape parameters of one infrared absorption ozone line in the nu1 band for ten pressures from 0.26 to 6.29 torr at 285 K. The SO2 line positions were used for wavelength calibration. Line shapes were iteratively fitted to the Voigt function at a Doppler width of 29.54 MHz (HWHM) resulting in values for the integrated line strength, (S), of (0.144 +/- 0.007) x 10 to the minus 20th/cm molecule/cu cm, line center frequency, nu sub o, of 1129.426/cm and the Lorentzian contributions to halfwidth. A linear least squares fit of (alpha sub L)5 as a function of pressure yielded a zero intercept of 15.27 +/- 0.29 MHz (rho = 0.99) and a broadening parameter, (alpha sub L)5, of 5.71 +/- 0.29 MHz/Torr. This results in a line width (FWHM) of 0.144 +/- .007/cm at 760 torr and 285 K.

  2. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  3. Absolute I(asterisk) quantum yields for the ICN A state by diode laser gain-vs-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.

  4. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    DOE PAGES

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Timothy G.

    2016-04-13

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less

  5. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    PubMed Central

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Scott Zaccheo, T.; Pernini, Timothy G.

    2016-01-01

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant rate giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement. PMID:27453761

  6. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    NASA Astrophysics Data System (ADS)

    Levine, Z. H.; Pintar, A. L.; Dobler, J.; Blume, N.; Braun, M.; Zaccheo, T. S.; Pernini, T. G.

    2015-11-01

    Laser Absorption Spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from pointlike sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant rate giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and a preliminary measurement.

  7. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    NASA Astrophysics Data System (ADS)

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Timothy G.

    2016-04-01

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant rate giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.

  8. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    SciTech Connect

    Sawada, H.; Regan, S.P.; Radha, P.B.; Epstein, R.; Li, D.; Goncharov, V.N.; Hu, S.X.; Meyerhofer, D.D.; Delettrez, J.A.; Jaanimagi, P.A.; Smalyuk, V.A.; Boehly, T.R.; Sangster, T.C.; Yaakobi, B.; Mancini, R.C.

    2009-05-19

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra were analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.

  9. Jet cooled NO 2 intra cavity laser absorption spectroscopy (ICLAS) between 11200 and 16150 cm -1

    NASA Astrophysics Data System (ADS)

    Georges, R.; Delon, A.; Bylicki, F.; Jost, R.; Campargue, A.; Charvat, A.; Chenevier, M.; Stoeckel, F.

    1995-01-01

    We have combined the high sensitivity of the ICLAS technique with the rotational cooling effect of a slit jet expansion in order to observe and to understand the visible and near infrared NO 2 spectrum. By this way, an equivalent absorption pathlength of several kilometers through rotationally cooled molecules has been achieved. Due to the vibronic interaction between the two lowest electronic states, X˜ 2A 1 and à 2B 2, this spectrum is vibronically dense and complex. Moreover, the dense room temperature rotational structure is perturbed by additional rovibronic interactions. In contrast, the rotational analysis of our jet cooled spectrum is straightforward. The NO 2 absorption spectrum is vanishing to the IR but, owing to the high sensitivity of the ICLAS technique, we have been able to record the NO 2 spectrum down to 11200 cm -1 with a new Ti:sapphire ICLAS spectrometer. As a result 249 2B 2 vibronic bands have been observed (175 cold bands and 74 hot bands) in the 11200-16150 cm -1 energy range. Due to the cooling effect of the slit jet we have reduced the rotational temperature down to about 12 K and at this temperature the K = 0 subbands are dominant. Consequently, we have analysed only the K = 0 manifold for N ⩽ 7 of each vibronic band. The dynamical range of the band intensities is about one thousand. Due to the strong vibronic interaction between the X˜ 2A 1 and à 2B 2 electronic states, we observed not only the a 1 vibrational levels of the à 2B 2 state but also the b 2 vibrational levels of the X˜ 2A 1 state interacting with the previous ones. By comparison with the calculated density of states, we conclude that we have observed about 65% of the total number of 2B 2 vibronic levels located in the studied range. However, there are more missing levels in the IR because of the weakness of the spectrum in this range. The correlation properties of this set of vibronic levels have been analysed calculating the power spectrum of the absorption stick

  10. Using of laser spectroscopy and chemometrics methods for identification of patients with lung cancer, patients with COPD and healthy people from absorption spectra of exhaled air

    NASA Astrophysics Data System (ADS)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.

  11. Absorption spectroscopy: technique provides extremely high sensitivity.

    PubMed

    Provencal, R A; Paul, J B; Michael, E; Saykally, R J

    1998-06-01

    Technology associated with cavity ringdown laser absorption spectroscopy is reviewed. The technique is used to study general trace analysis, free radicals in flames and chemical reactors, molecular ions in electrical discharges, biological molecules and water clusters in supersonic jets, and vibrational overtones of stable molecules. Its specific enough to detect about 1-ppm fractional absorption by a gaseous sample in about 10 microseconds. The use of mirrors in ringdown sepctroscopy is explained. Other topics include the generation of pulsed infrared rays and the adaptation of ringdown spectroscopy for use with narrow-bandwidth continuous-wave lasers. PMID:11541906

  12. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation.

    PubMed

    Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D

    2014-12-15

    The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890  cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3)  Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.

  13. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Namjou, K.; Roller, C. B.; Reich, T. E.; Jeffers, J. D.; McMillen, G. L.; McCann, P. J.; Camp, M. A.

    2006-11-01

    A liquid-nitrogen free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system equipped with a folded-optical-path astigmatic Herriott cell was used to measure levels of exhaled nitric oxide (eNO) and exhaled carbon dioxide (eCO2) in breath. Quantification of absolute eNO concentrations was performed using NO/CO2 absorption ratios measured by the TDLAS system coupled with absolute eCO2 concentrations measured with a non-dispersive infrared sensor. This technique eliminated the need for routine calibrations using standard cylinder gases. The TDLAS system was used to measure eNO in children and adults (n=799, ages 5 to 64) over a period of more than one year as part of a field study. Volunteers for the study self-reported data including age, height, weight, and health status. The resulting data were used to assess system performance and to generate eNO and eCO2 distributions, which were found to be log-normal and Gaussian, respectively. There were statistically significant differences in mean eNO levels for males and females as well as for healthy and steroid naïve asthmatic volunteers not taking corticosteroid therapies. Ambient NO levels affected measured eNO concentrations only slightly, but this effect was not statistically significant.

  14. A novel method of carbon dioxide clumped isotope analysis with tunable infra-red laser direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2016-04-01

    Precise clumped isotopes analysis of carbon dioxide opens up new horizons of atmospheric and biogeochemical research. Recent advances in laser and spectroscopic techniques provides us necessary instrumentation to access extremely low sub-permill variations of multiply-substituted isotopologues. We present an advanced analysis method of carbon dioxide clumped isotopes using direct absorption spectroscopy. Our assessments predict the ultimate precision of the new method on the sub-permill level comparable to state of the art mass spectrometry. Among the most auspicious intrinsic properties of this method we highlight genuine Δ16O13C18O and Δ16O13C18O measurements without isobaric interference, measurement cycle duration of several minutes versus hours for mass spectrometric analysis, reduced sample size of ˜ 10 μmol and high flexibility, allowing us to perform in-situ measurements. The pilot version of the instrument is being developed in an international collaboration framework between Heidelberg University, Germany and Pierre and Marie Curie University, Paris, France. It employs two continuous interband quantum cascade lasers tuned at 4.439 μm and 4.329 μm to measure doubly ( 16O13C18O, 16O13C17O) and singly ( 16O12C16O, 16O13C16O, 16O12C17O, 16O12C18O) substituted isotopologues, respectively. Two identical Herriot cells are filled with dry pure CO2 sample and reference gas at working pressure of 1 ‑ 10 mbar. Cells provide optical path lengths of ˜ 17 m for the laser tuned at doubly substituted isotopologues lines and use a single pass for the laser tuned at the stronger lines of singly substituted isotopologues. Light outside of the gas cells is coupled into optical fiber to avoid absorption by ambient air CO2. Simulations predict sub-permill precision at working pressure of 1 mbar and room temperature stabilised at the ±10 mK level. Our prime target is to apply the proposed method for continuous in-situ analysis of CO2. We are foreseeing potential

  15. A novel method of carbon dioxide clumped isotope analysis with tunable infra-red laser direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2016-04-01

    Precise clumped isotopes analysis of carbon dioxide opens up new horizons of atmospheric and biogeochemical research. Recent advances in laser and spectroscopic techniques provides us necessary instrumentation to access extremely low sub-permill variations of multiply-substituted isotopologues. We present an advanced analysis method of carbon dioxide clumped isotopes using direct absorption spectroscopy. Our assessments predict the ultimate precision of the new method on the sub-permill level comparable to state of the art mass spectrometry. Among the most auspicious intrinsic properties of this method we highlight genuine Δ16O13C18O and Δ16O13C18O measurements without isobaric interference, measurement cycle duration of several minutes versus hours for mass spectrometric analysis, reduced sample size of ˜ 10 μmol and high flexibility, allowing us to perform in-situ measurements. The pilot version of the instrument is being developed in an international collaboration framework between Heidelberg University, Germany and Pierre and Marie Curie University, Paris, France. It employs two continuous interband quantum cascade lasers tuned at 4.439 μm and 4.329 μm to measure doubly ( 16O13C18O, 16O13C17O) and singly ( 16O12C16O, 16O13C16O, 16O12C17O, 16O12C18O) substituted isotopologues, respectively. Two identical Herriot cells are filled with dry pure CO2 sample and reference gas at working pressure of 1 - 10 mbar. Cells provide optical path lengths of ˜ 17 m for the laser tuned at doubly substituted isotopologues lines and use a single pass for the laser tuned at the stronger lines of singly substituted isotopologues. Light outside of the gas cells is coupled into optical fiber to avoid absorption by ambient air CO2. Simulations predict sub-permill precision at working pressure of 1 mbar and room temperature stabilised at the ±10 mK level. Our prime target is to apply the proposed method for continuous in-situ analysis of CO2. We are foreseeing potential

  16. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    SciTech Connect

    Sawada, H.; Regan, S. P.; Radha, P. B.; Epstein, R.; Li, D.; Goncharov, V. N.; Hu, S. X.; Meyerhofer, D. D.; Delettrez, J. A.; Jaanimagi, P. A.; Smalyuk, V. A.; Boehly, T. R.; Sangster, T. C.; Yaakobi, B.; Mancini, R. C.

    2009-05-15

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.

  17. Far wing depolarization of light - Generalized absorption profiles. [in laser fluorescence spectroscopy of Sr vapor

    NASA Technical Reports Server (NTRS)

    Thomann, P.; Burnett, K.; Cooper, J.

    1981-01-01

    An absorption (and/or emission) event which takes place during a strong collision is called a 'correlated event'. It is discussed how correlated events affect the far red wing depolarization of fluorescence. Attention is given to an atomic vapor which is irradiated by linearly polarized light of a frequency on the red side of the resonance line. Two limiting cases are considered, corresponding to excitation in the impact region and in the quasi-static wing. In the quasi-static wing, absorption of a photon followed by fluorescence (rather than Rayleigh scattering), occurs mostly during a collision. Correlated events dominate the scattering process. Expressions derived for the polarization of the fluorescent light are applied to far red wing depolarization. It is found that the polarization of the fluorescent light does not go to zero in the far wing, but depends crucially on the detailed nature of the anisotropy in the long-range part of the interatomic potential.

  18. Pulse laser photolysis of aqueous ozone in the microsecond range studied by time-resolved far-ultraviolet absorption spectroscopy.

    PubMed

    Goto, Takeyoshi; Morisawa, Yusuke; Higashi, Noboru; Ikehata, Akifumi; Ozaki, Yukihiro

    2013-05-01

    Chemical dynamics of an ozone (O3) pulse-photolytic reaction in aqueous solutions were studied with pump-probe transient far-ultraviolet (FUV) absorption spectroscopy. With a nanosecond pulse laser of 266 nm as pump light, transient spectra of O3 aqueous solutions (78-480 μM, pH 2.5-11.3) were acquired in the time range from -50 to 50 μs in the wavelength region from 190 to 225 nm. The measured transient spectra were linearly decomposed into the molar absorption coefficients and the concentration-time profiles of constituted chemical components with a multivariate curve resolution method. From the dependences of the time-averaged concentrations for 20 μs of the constituted chemicals on the initial concentration of O3, it was found that the transient spectra involve the decomposition of O3 and the formation of hydrogen peroxide (H2O2) and a third component that is assigned to hydroxyl radical (OH) or perhydroxyl radical (HO2). Furthermore, the pH dependence of the time-averaged concentration of the third components indicates that HO2 is more probable than OH as the third component. The time-averaged concentration ratio of each chemical component to the initial O3 concentration depends on the pH conditions from -0.95 to -0.60 for O3, 0.98 to 1.2 for H2O2, 0.002 to 0.29 for OH, and 0.012 to 0.069 for HO2.

  19. Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers

    NASA Astrophysics Data System (ADS)

    O'Hagan, S.; Northern, J. H.; Gras, B.; Ewart, P.; Kim, C. S.; Kim, M.; Merritt, C. D.; Bewley, W. W.; Canedy, C. L.; Vurgaftman, I.; Meyer, J. R.

    2016-06-01

    The application of an interband cascade laser, ICL, to multi-mode absorption spectroscopy, MUMAS, in the mid-infrared region is reported. Measurements of individual mode linewidths of the ICL, derived from the pressure dependence of lineshapes in MUMAS signatures of single, isolated, lines in the spectrum of HCl, were found to be in the range 10-80 MHz. Multi-line spectra of methane were recorded using spectrally limited bandwidths, of approximate width 27 cm-1, defined by an interference filter, and consist of approximately 80 modes at spectral locations spanning the 100 cm-1 bandwidth of the ICL output. Calibration of the methane pressures derived from MUMAS data using a capacitance manometer provided measurements with an uncertainty of 1.1 %. Multi-species sensing is demonstrated by the simultaneous detection of methane, acetylene and formaldehyde in a gas mixture. Individual partial pressures of the three gases are derived from best fits of model MUMAS signatures to the data with an experimental error of 10 %. Using an ICL, with an inter-mode interval of ~10 GHz, MUMAS spectra were recorded at pressures in the range 1-10 mbar, and, based on the data, a potential minimum detection limit of the order of 100 ppmv is estimated for MUMAS at atmospheric pressure using an inter-mode interval of 80 GHz.

  20. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  1. Measurement of nitrogen dioxide in cigarette smoke using quantum cascade tunable infrared laser differential absorption spectroscopy (TILDAS)

    NASA Astrophysics Data System (ADS)

    Shorter, Joanne H.; Nelson, David D.; Zahniser, Mark S.; Parrish, Milton E.; Crawford, Danielle R.; Gee, Diane L.

    2006-04-01

    Although nitrogen dioxide (NO 2) has been previously reported to be present in cigarette smoke, the concentration estimates were derived from kinetic calculations or from measurements of aged smoke, where NO 2 was formed some time after the puff was taken. The objective of this work was to use tunable infrared laser differential absorption spectroscopy (TILDAS) equipped with a quantum cascade (QC) laser to determine if NO 2 could be detected and quantified in a fresh puff of cigarette smoke. A temporal resolution of ˜0.16 s allowed measurements to be taken directly as the NO 2 was formed during the puff. Sidestream cigarette smoke was sampled to determine if NO 2 could be detected using TILDAS. Experiments were conducted using 2R4F Kentucky Reference cigarettes with and without a Cambridge filter pad. NO 2 was detected only in the lighting puff of whole mainstream smoke (without a Cambridge filter pad), with no NO 2 detected in the subsequent puffs. The measurement precision was ˜1.0 ppbV Hz -1/2, which allows a detection limit of ˜0.2 ng in a 35 ml puff volume. More NO 2 was generated in the lighting puff using a match or blue flame lighter (29 ± 21 ng) than when using an electric lighter (9 ± 3 ng). In the presence of a Cambridge filter pad, NO 2 was observed in the gas phase mainstream smoke for every puff (total of 200 ± 30 ng/cigarette) and is most likely due to smoke chemistry taking place on the Cambridge filter pad during the smoke collection process. Nitrogen dioxide was observed continuously in the sidestream smoke starting with the lighting puff.

  2. Measurement of nitrogen dioxide in cigarette smoke using quantum cascade tunable infrared laser differential absorption spectroscopy (TILDAS).

    PubMed

    Shorter, Joanne H; Nelson, David D; Zahniser, Mark S; Parrish, Milton E; Crawford, Danielle R; Gee, Diane L

    2006-04-01

    Although nitrogen dioxide (NO(2)) has been previously reported to be present in cigarette smoke, the concentration estimates were derived from kinetic calculations or from measurements of aged smoke, where NO(2) was formed some time after the puff was taken. The objective of this work was to use tunable infrared laser differential absorption spectroscopy (TILDAS) equipped with a quantum cascade (QC) laser to determine if NO(2) could be detected and quantified in a fresh puff of cigarette smoke. A temporal resolution of approximately 0.16s allowed measurements to be taken directly as the NO(2) was formed during the puff. Sidestream cigarette smoke was sampled to determine if NO(2) could be detected using TILDAS. Experiments were conducted using 2R4F Kentucky Reference cigarettes with and without a Cambridge filter pad. NO(2) was detected only in the lighting puff of whole mainstream smoke (without a Cambridge filter pad), with no NO(2) detected in the subsequent puffs. The measurement precision was approximately 1.0 ppbVHz(-1/2), which allows a detection limit of approximately 0.2 ng in a 35 ml puff volume. More NO(2) was generated in the lighting puff using a match or blue flame lighter (29+/-21 ng) than when using an electric lighter (9+/-3 ng). In the presence of a Cambridge filter pad, NO(2) was observed in the gas phase mainstream smoke for every puff (total of 200+/-30 ng/cigarette) and is most likely due to smoke chemistry taking place on the Cambridge filter pad during the smoke collection process. Nitrogen dioxide was observed continuously in the sidestream smoke starting with the lighting puff.

  3. Monitoring of Atmospheric Hydrogen Peroxide in Houston Using Long Path-Length Laser-Based Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Cao, Y.; Jiang, W.; Tittel, F. K.; Griffin, R. J.

    2014-12-01

    Hydrogen peroxide (H2O2) is a relevant atmospheric species mainly formed by recombination of hydroperoxyl radicals. H2O2 participates in the formation of sulfate aerosol by in-cloud oxidation of S(IV) to S(VI) and has been associated with the generation of multi-functional water soluble organic compounds in atmospheric particulate matter. Furthermore, H2O2 plays an important role in the oxidative capacity of the atmosphere as it acts as a reservoir for HOx radicals (OH and HO2). Particular conditions in the Houston area (e.g. extensive presence of petrochemical industry and high ozone and humidity levels) indicate the potential relevance of this species at this location. Despite its atmospheric relevance, no reports on the levels of H2O2 in Houston have been presented previously in the scientific literature. Determination of atmospheric H2O2 usually has been conducted based on transfer of the gas-phase H2O2 to the liquid phase prior to quantification by techniques such as fluorescence spectroscopy. Although these methods allow detection of H2O2 at the sub-ppb level, they present some limitations including the interference from other atmospheric constituents and potential sampling artifacts. In this study, a high sensitivity sensor based on long-path absorption spectroscopy using a distributed-feedback quantum cascade laser was developed and used to conduct direct gas-phase H2O2 monitoring in Houston. The sensor, which targets a strong H2O2 absorption line (~7.73 μm) with no interference from other atmospheric species, was deployed at a ground level monitoring station near the University of Houston main campus during summer 2014. The performance of this novel sensor was evaluated by side-by-side comparison with a fluorescence-based instrument typically used for atmospheric monitoring of H2O2. H2O2 levels were determined, and time series of H2O2 mixing ratios were generated allowing insight into the dynamics, trends, and atmospheric inter-relations of H2O2 in the

  4. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    PubMed Central

    Zhao, Gang; Tan, Wei; Jia, Mengyuan; Hou, Jiajuan; Ma, Weiguang; Dong, Lei; Zhang, Lei; Feng, Xiaoxia; Wu, Xuechun; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-01

    A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. PMID:27657082

  5. A novel measurement method of microorganism growth by tunable diode laser-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiang, Jindong; Shao, Jie; Ying, Chaofu; Wang, Liming; Guo, Jie

    2015-05-01

    The objective of this work was to attain essential parameters by using a Gompertz model that employed a new approach of wavelength modulation spectroscopy (WMS) to describe the microorganism growth. The measurement method of WMS introduces noninvasive technique instead of complicated invasive microorganism operation analysis and quickly obtains the accurate real-time measurement results. By using the WMS measurement, the specific growth curve of microorganism growth clearly displayed every three minute, which has characteristics of high sensitivity, high spectral resolution, fast time response and overcomes the randomness and error operation of traditional analysis methods. The measurement value of BF and AF in the range of 1.008 to 1.043 and the lower MSE showed that Gompertz model can fit the data well and be capable of describing bacteria growth rate and lag time. The results of experiment data suggested that the specific growth rate of microorganism depends on the temperature. With the increase of temperature ranging from 25 °C to 42 °C , the lag time of bacteria growth has been shortened. And the suitable temperature of bacteria growth is about 37 °C . Judging from the growth rate of microorganisms, we can identify the microbial species, not only to improve the precision and efficiency, but also to provides a rapidly sensitive way for microbial detection. The lag time of microorganism growth also provides a great application prospect for shelf life of the food safety.

  6. Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shuang; Su, Tie; Li, Zhong-Shan; Bai, Han-Chen; Yan, Bo; Yang, Fu-Rong

    2016-10-01

    An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence (LIF) methods is developed to quantitatively measure the concentrations of hydroxyl in CH4/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338), the Science and Technology on Scramjet Key Laboratory Funding, China (Grant No. STSKFKT 2013004), and the China Scholarship Council.

  7. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    SciTech Connect

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th.; Heimann, P. A.; Dorchies, F.

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  8. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE PAGES

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; et al

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  9. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-04-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called ``molecular movie'' within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  10. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments.

    PubMed

    Gaudin, J; Fourment, C; Cho, B I; Engelhorn, K; Galtier, E; Harmand, M; Leguay, P M; Lee, H J; Nagler, B; Nakatsutsumi, M; Ozkan, C; Störmer, M; Toleikis, S; Tschentscher, Th; Heimann, P A; Dorchies, F

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called "molecular movie" within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  11. Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles

    2013-06-01

    A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.

  12. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  13. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  14. Simulation studies of multi-line line-of-sight tunable-diode-laser absorption spectroscopy performance in measuring temperature probability distribution function

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Le; Liu, Jian-Guo; Kan, Rui-Feng; Xu, Zhen-Yu

    2014-12-01

    Line-of-sight tunable-diode-laser absorption spectroscopy (LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss—Seidel iteration method is used to measure temperature probability distribution function (PDF) along the line-of-sight (LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and 15 well-selected absorption lines are used for the simulation study. The Gauss—Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.

  15. Tunable diode laser absorption spectroscopy on 2.05 μm for the CO2 concentration measurement

    NASA Astrophysics Data System (ADS)

    Pranovich, Alina; Divoky, Martin; Prochazka, Ivan; Mocek, Tomas

    2015-05-01

    An experimental setup for the CO2 concentration measurement operating at 2.05 μm in pulsed mode and its characterization are presented. The system consists of a light source, which is a tunable laser diode operating in pulse mode. The initial radiation from the diode laser is divided into two parts: the first part of the beam is directed to a retro reflector, and the second part is used for diode output power monitoring. The receiving system consists of a focusing optic and a photodiode. The absorption is determined by comparing the intensities of the detected light on wavelengths absorbed and not absorbed by CO2 molecules. The prospects of the system change to a differential absorption lidar (DIAL) with a parametric generator as a light source that increases precision and range of generated wavelengths up to 10 μm are outlined.

  16. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser.

    PubMed

    Higley, Daniel J; Hirsch, Konstantin; Dakovski, Georgi L; Jal, Emmanuelle; Yuan, Edwin; Liu, Tianmin; Lutman, Alberto A; MacArthur, James P; Arenholz, Elke; Chen, Zhao; Coslovich, Giacomo; Denes, Peter; Granitzka, Patrick W; Hart, Philip; Hoffmann, Matthias C; Joseph, John; Le Guyader, Loïc; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Shafer, Padraic; Stöhr, Joachim; Tsukamoto, Arata; Nuhn, Heinz-Dieter; Reid, Alex H; Dürr, Hermann A; Schlotter, William F

    2016-03-01

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L(3,2)-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature. PMID:27036761

  17. Optical absorption spectroscopy study of the role of plasma chemistry in YBa sub 2 Cu sub 3 O sub 7 pulsed laser deposition

    SciTech Connect

    Sakeek, H.F.; Morrow, T.; Graham, W.G.; Walmsley, D.G. )

    1991-12-30

    Time-resolved optical absorption spectroscopy techniques were used to study Ba, metastable Ba{sup +}, and YO {ital absorptions} in the laser-produced plasma plume from a YBa{sub 2}Cu{sub 3}O{sub 7} target. Results obtained indicate an initial explosive removal of material from the target surface followed by a subsequent evaporation process. Some YO is ejected from the target in molecular form, particularly at laser fluence {lt}6 J/cm{sup 2}, whilst additional YO is formed in subsequent reactions of Y with oxygen at the plasma plume edges. The formation of metastable Ba{sup +} (5{sup 2}{ital D}{sub 5/2}) is also observed in the outer reactive layers of the plasma plume.

  18. Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy

    SciTech Connect

    Seuthe, T.; Eberstein, M.; Hoefner, M.; Eichler, H. J.; Grehn, M.; Reinhardt, F.; Tsai, W. J.; Bonse, J.

    2012-05-28

    The effects of femtosecond laser pulse irradiation on the glass structure of alkaline silicate glasses were investigated by x-ray absorption near edge structure spectroscopy using the beamline of the Physikalisch-Technische Bundesanstalt at the electron synchrotron BESSY II in Berlin (Germany) by analyzing the magnesium K-edge absorption peak for different laser fluences. The application of fluences above the material modification threshold (2.1 J/cm{sup 2}) leads to a characteristic shift of {approx}1.0 eV in the K-edge revealing a reduced ({approx}3%) mean magnesium bond length to the ligated oxygen ions (Mg-O) along with a reduced average coordination number of the Mg ions.

  19. Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube.

    PubMed

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2016-01-11

    We report the first application of cavity-enhanced absorption spectroscopy (CEAS) with a ps-pulsed UV laser for sensitive and rapid gaseous species time-history measurements in a transient environment (in this study, a shock tube). The broadband nature of the ps pulses enabled instantaneous coupling of the laser beam into roughly a thousand cavity modes, which grants excellent immunity to laser-cavity coupling noise in environments with heavy vibrations, even with an on-axis alignment. In this proof-of-concept experiment, we demonstrated an absorption gain of 49, which improved the minimum detectable absorbance by ~20 compared to the conventional single-pass strategy at similar experimental conditions. For absorption measurements behind reflected shock waves, an effective time-resolution of ~2 μs was achieved, which enabled time-resolved observations of transient phenomena, such as the vibrational relaxation of O(2) demonstrated here. The substantial improvement in detection sensitivity, together with microsecond measurement resolution implies excellent potential for studies of transient physical and chemical processes in nonequilibrium situations, particularly via measurements of weak absorptions of trace species in dilute reactive systems. PMID:26832262

  20. Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube.

    PubMed

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2016-01-11

    We report the first application of cavity-enhanced absorption spectroscopy (CEAS) with a ps-pulsed UV laser for sensitive and rapid gaseous species time-history measurements in a transient environment (in this study, a shock tube). The broadband nature of the ps pulses enabled instantaneous coupling of the laser beam into roughly a thousand cavity modes, which grants excellent immunity to laser-cavity coupling noise in environments with heavy vibrations, even with an on-axis alignment. In this proof-of-concept experiment, we demonstrated an absorption gain of 49, which improved the minimum detectable absorbance by ~20 compared to the conventional single-pass strategy at similar experimental conditions. For absorption measurements behind reflected shock waves, an effective time-resolution of ~2 μs was achieved, which enabled time-resolved observations of transient phenomena, such as the vibrational relaxation of O(2) demonstrated here. The substantial improvement in detection sensitivity, together with microsecond measurement resolution implies excellent potential for studies of transient physical and chemical processes in nonequilibrium situations, particularly via measurements of weak absorptions of trace species in dilute reactive systems.

  1. K-edge x-ray-absorption spectroscopy of laser-generated Kr{sup +} and Kr{sup 2+}

    SciTech Connect

    Southworth, S. H.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Hoehr, C.; Kanter, E. P.; Kraessig, B.; Landahl, E. C.; Peterson, E. R.; Rudati, J.; Santra, R.; Walko, D. A.; Young, L.

    2007-10-15

    Tunable, polarized, microfocused x-ray pulses were used to record x-ray absorption spectra across the K edges of Kr{sup +} and Kr{sup 2+} produced by laser ionization of Kr. Prominent 1s{yields}4p and 5p excitations are observed below the 1s ionization thresholds in accord with calculated transition energies and probabilities. Due to alignment of 4p hole states in the laser-ionization process, the Kr{sup +} 1s{yields}4p cross section varies with respect to the angle between the laser and x-ray polarization vectors. This effect is used to determine the Kr{sup +} 4p{sub 3/2} and 4p{sub 1/2} quantum state populations, and these are compared with results of an adiabatic strong-field ionization theory that includes spin-orbit coupling.

  2. K-edge x-ray absorption spectroscopy of laser-generated Kr{sup +} and Kr{sup 2+}.

    SciTech Connect

    Southworth, S. H.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Hoehr, C.; Kanter, E. P.; Krassig, B.; Landahl, E. C.; Peterson, E. R.; Rudati, J.; Santra, R.; Walko, D. A.; Young, L.

    2007-10-01

    Tunable, polarized, microfocused x-ray pulses were used to record x-ray absorption spectra across the K edges of Kr{sup +} and Kr{sup 2+} produced by laser ionization of Kr. Prominent 1s {yields} 4p and 5p excitations are observed below the 1s ionization thresholds in accord with calculated transition energies and probabilities. Due to alignment of 4p hole states in the laser-ionization process, the Kr{sup +} 1s {yields} 4p cross section varies with respect to the angle between the laser and x-ray polarization vectors. This effect is used to determine the Kr{sup +} 4p{sub 3/2} and 4p{sub 1/2} quantum state populations, and these are compared with results of an adiabatic strong-field ionization theory that includes spin-orbit coupling.

  3. In situ measurements of H2O from a stratospheric balloon by diode laser direct-differential absorption spectroscopy at 1.39 microm.

    PubMed

    Durry, G; Megie, G

    2000-10-20

    A distributed-feedback InGaAs laser diode emitting near 1.393 microm is used in conjunction with an optical multipass cell that is open to the atmosphere to yield ambient water-vapor measurements by infrared absorption spectroscopy. To obtain the high dynamic range for the measurements that is required for continuous water-vapor monitoring in the upper troposphere and the lower stratosphere, we used a simple circuit that combined differential and direct detection. Furthermore, the laser emission wavelength was tuned to balance the steep decrease in H2O concentration with altitude by sweeping molecular transitions of stronger line strengths. The technique was implemented by use of the Spectromètre à Diodes Laser Accordables (SDLA), a tunable diode laser spectrometer operated from a stratospheric balloon. Absorption spectra of H2O in the 5-30-km altitude range obtained at 1-s intervals during recent balloon flights are reported. Water-vapor mixing ratios were retrieved from the absorption spectra by a fit to the full molecular line shape in conjunction with in situ pressure and temperature measurements, with a precision error ranging from 5% to 10%.

  4. Ultrasensitive, real-time analysis of biomarkers in breath using tunable external cavity laser and off-axis cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bayrakli, Ismail; Akman, Hatice

    2015-03-01

    A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm-1 for the spectral range between 6890 and 6170 cm-1 is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm-1 is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm-1, a minimum detectable absorption coefficient of approximately 1×10-8 cm-1 is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10-10 cm-1 Hz-1/2. Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.

  5. Comparison of Fourier Transform Infrared Spectroscopy (FTIR) and Tunable Diode Laser Absorption Spectroscopy (TDLAS) Methods for Determining Stable Isotope Ratios of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Ubierna Lopez, N.; Cambaliza, M. L.; Griffith, D. W.; Mount, G. H.; Cousins, A. B.

    2011-12-01

    Worldwide, biosphere-atmosphere carbon exchange and net ecosystem exchange (NEE) are determined using eddy-covariance methods. Information from isotopic CO2 measurements provides valuable constraints to partition NEE into its component fluxes. Stable isotope measurements have traditionally been constrained in frequency by the need to collect and analyze field samples in a laboratory using isotope ratio mass spectrometry (MS). New techniques based on absorption spectroscopy allow for high temporal sampling resolution in the field, but with concerns about precision and accuracy of the isotope-ratios. We tested two absorption spectroscopy systems, a Fourier transformed infrared analyzer (FTIR, Vector 22, Bruker Optics, Ettlingen, Germany) and a tunable diode laser absorption spectrometer (TDLAS, model TGA 100, Campbell Scientific, Inc. Logan, UT, USA), by comparing them with continuous-flow MS (Delta plus XP IRMS, ThermoFinnigan, Bremen, Germany). We conducted a laboratory comparison of gases mixed with various CO2 concentrations and isotopic signatures as well as field-collected samples. The mixed tanks were balanced in ultra-zero air with CO2 concentrations ranging from 353 to 553 ppm, and isotopic compositions (δ13C) between -11.7% to -39.3%. The field samples were collected at four different locations (forest, wheat field, dairy farm, and paper mill) by pumping ambient air into 44- L tanks. Gas from each sample tank was simultaneously delivered to the FTIR and TDLAS systems and subsequently analyzed with continuous-flow MS. The [CO2] determined with the TDLAS or FTIR differed by <1 ppm for CO2-tanks and <2.4 ppm for ambient air samples. The δ13C offset of the CO2 tanks between the MS and the TDLAS and FTIR were on average 0.1% and 0.3%, respectively. However, the offset in TDLAS δ13C values increased for ambient air samples to values of 0.4%, with a maximum of 0.9% for the dairy farm and paper mill samples. Ambient air samples analyzed with the FTIR were on

  6. In-situ diagnostics of hydrocarbon dusty plasmas using quantum cascade laser absorption spectroscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ouaras, K.; Delacqua, L. Colina; Lombardi, G.; Röpcke, J.; Wartel, M.; Bonnin, X.; Redolfi, M.; Hassouni, K.; Hassouni

    2014-12-01

    The formation of carbon nanoparticles in low pressure magnetized H2/CH4 and H2/C2H2 plasmas is investigated using infrared quantum cascade laser absorption, mass spectrometry, and electrostatic probe measurements. Results showed that dust formation is correlated to the presence of a significant amount of large positively charged hydrocarbon ions. Large negative ions or neutral hydrocarbon were not observed. These results, along with a qualitative comparison of diffusion and reaction characteristic, suggest that a positive ion may contribute to the growth of nanoparticles in hydrocarbon magnetized plasmas.

  7. Advances in the Measurement of CO2 using Swept-Frequency, Intensity-Modulated, Continuous-Wave Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harrison, F. W.; Ismail, S.; Nehrir, A. R.; Lin, B.; Browell, E. V.; McGregor, D.; Kooi, S. A.; Dobler, J. T.; Collins, J. E.; Choi, Y.; Obland, M. D.

    2013-12-01

    Understanding the carbon balance in the environment is critical to projections of the future evolution of the Earth's climate. Large uncertainties in the forecast of future atmospheric carbon dioxide (CO2) concentrations and carbon sources and sinks persist due to the limited set of observations from the current network of in-situ and surface measurements. Global, spaceborne measurements of atmospheric CO2 can reduce these uncertainties. Feasibility studies of space column CO2 mixing ratio (XCO2) measurements using laser remote sensing have been initiated by NASA. The XCO2 measurement requires the simultaneous measurement of both CO2 and O2 number density columns weighted to the near surface and that biases from aerosols or clouds be minimized. This paper discusses the latest flight test results from the Multi-Functional Fiber Laser Lidar (MFLL), a laser absorption spectrometer (LAS) system under development by Exelis, Inc. in partnership with NASA Langley Research Center (LaRC) for the ASCENDS mission. The MFLL uses Intensity-Modulated, Continuous-Wave narrow-band lasers operated on and off of a CO2 absorption feature to measure the differential absorption of atmospheric CO2. By simultaneously modulating the laser beam with range-encoded signals, the retrieval of column CO2 concentrations to the Earth's surface, to the top of optically thick clouds, and through optically thin clouds is enabled. In early 2013, MFLL participated in an intensive flight campaign designed to flight test three ASCENDS prototype instruments onboard the NASA DC-8. The campaign consisted of nine flights of the NASA DC-8 over surfaces of varying reflectivity and in atmospheric conditions including clouds. Here we report on the evaluation of MFLL remote measurements of CO2 column concentrations as compared to the CO2 columns derived from contemporaneous airborne in situ CO2 profile measurements. This paper describes the modulation techniques employed by MFLL, presents algorithms for

  8. Demonstration of a portable near-infrared CH4 detection sensor based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Chuan-Tao; Huang, Jian-Qiang; Ye, Wei-Lin; Lv, Mo; Dang, Jing-Min; Cao, Tian-Shu; Chen, Chen; Wang, Yi-Ding

    2013-11-01

    A portable near-infrared (NIR) CH4 detection sensor based on a distributed feedback (DFB) laser modulated at 1.654 μm is experimentally demonstrated. Intelligent temperature controller with an accuracy of -0.07 to +0.09 °C as well as a scan and modulation module generating saw-wave and cosine-wave signals are developed to drive the DFB laser, and a cost effective lock-in amplifier used to extract the second harmonic signal is integrated. Thorough experiments are carried out to obtain detection performances, including detection range, accuracy, stability and the minimum detection limit (MDL). Measurement results show that the absolute detection error relative to the standard value is less than 7% within the range of 0-100%, and the MDL is estimated to be about 11 ppm under an absorption length of 0.2 m and a noise level of 2 mVpp. Twenty-four hours monitoring on two gas samples (0.1% and 20%) indicates that the absolute errors are less than 7% and 2.5%, respectively, suggesting good long term stability. The sensor reveals competitive characteristics compared with other reported portable or handheld sensors. The developed sensor can also be used for the detection of other gases by adopting other DFB lasers with different center-wavelength using the same hardware and slightly modified software.

  9. Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy

    SciTech Connect

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi; Nakano, Hidetoshi

    2007-10-19

    We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensed liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.

  10. Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    SciTech Connect

    Yi, Hongming; Maamary, Rabih; Fertein, Eric; Chen, Weidong; Gao, Xiaoming; Sigrist, Markus W.

    2015-03-09

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm{sup −1} was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ∼40 mm{sup 3}) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by direct absorption spectroscopy involving a ∼109.5 m multipass cell and a distributed feedback QCL. A minimum detection limit (MDL) of 66 ppbv (1 σ) HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6 × 10{sup −8 }cm{sup −1} W/Hz{sup 1/2}. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding 1σ minimum detected absorption coefficient is ∼1.1 × 10{sup −7 }cm{sup −1} (MDL ∼ 3 ppbv) in 1 s and ∼1.1 × 10{sup −8 }cm{sup −1} (MDL ∼ 330 pptv) in 150 s, respectively, with 1 W laser power.

  11. Open-path quantum cascade laser-based system for simultaneous remote sensing of methane, nitrous oxide, and water vapor using chirped-pulse differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Castillo, Paulo; Diaz, Adrian; Thomas, Benjamin; Gross, Barry; Moshary, Fred

    2015-10-01

    Methane and Nitrous Oxide are long-lived greenhouse gases in the atmosphere with significant global warming effects. We report on application of chirped-pulsed quantum cascade lasers (QCLs) to simultaneous measurements of these trace gases in both open-path fence-line and backscatter systems. The intra-pulse thermal frequency chip in a QCL can be time resolved and calibrated to allow for high resolution differential optical absorption spectroscopy over the spectral window of the chip, which for a DFB-QCL can be reach ~2cm-1 for a 500 nsec pulse. The spectral line-shape of the output from these lasers are highly stable from pulse to pulse over long period of time (> 1 day), and the system does not require frequent calibrations.

  12. Femtosecond time-resolved X-ray absorption spectroscopy of liquid using a hard X-ray free electron laser in a dual-beam dispersive detection method.

    PubMed

    Obara, Yuki; Katayama, Tetsuo; Ogi, Yoshihiro; Suzuki, Takayuki; Kurahashi, Naoya; Karashima, Shutaro; Chiba, Yuhei; Isokawa, Yusuke; Togashi, Tadashi; Inubushi, Yuichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2014-01-13

    We present femtosecond time-resolved X-ray absorption spectroscopy of aqueous solution using a hard x-ray free electron laser (SACLA) and a synchronized Ti:sapphire laser. The instrumental response time is 200 fs, and the repetition rate of measurement is 10 Hz. A cylindrical liquid beam 100 μm in diameter of aqueous ammonium iron(III) oxalate solution is photoexcited at 400 nm, and the transient X-ray absorption spectra are measured in the K-edge region of iron, 7.10 - 7.26 keV, using a dual X-ray beam dispersive detection method. Each of the dual beams has the pulse energy of 1.4 μJ, and pump-induced absorbance change on the order of 10(-3) is successfully detected. The photoexcited iron complex exhibits a red shifted iron K-edge with the appearance time constant of 260 fs. The X-ray absorption difference spectra, with and without the pump pulses, are independent of time delay after 1.5 ps up to 100 ps, indicating that the photoexcited species is long-lived.

  13. Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy.

    PubMed

    Liu, Y-S; Galvin, T C; Hawkins, T; Ballato, J; Dong, L; Foy, P R; Dragic, P D; Eden, J G

    2012-06-18

    Ultraviolet absorption measurements and laser excitation spectroscopy in the vicinity of 248 nm provide compelling evidence for linkages between the oxygen deficiency center (ODC) and rare earth concentrations in Yb and Er-doped glass optical fibers. Investigations of YAG-derived and solution-doped glass fibers are described. For both Yb and Er-doped fibers, the dependence of Type II ODC absorption on the rare earth number density is approximately linear, but the magnitude of the effect is greater for Yb-doped fibers. Furthermore, laser excitation spectra demonstrate unambiguously the existence of an energy transfer mechanism coupling an ODC with Yb(3+). Photopumping glass fibers with a Ti:sapphire laser/optical parametric amplifier system, tunable over the 225-265 nm region, or with a KrF laser at 248.4 nm show: 1) emission features in the 200-1100 nm interval attributable only to the ODC (Type II) defect or Yb(3+), and 2) the excitation spectra for ODC (II) emission at ~280 nm and Yb(3+) fluorescence (λ ~1.03 μm) to be, within experimental uncertainty, identical. The latter demonstrates that, when irradiating Yb-doped silica fibers between ~240 and 255 nm, the ODC (II) defect is at least the primary precursor to Yb(3+) emission. Consistent with previous reports in the literature, the data show the ODC (II) absorption spectrum to have a peak wavelength and breadth of ~246 nm and ~19 nm (FWHM). Experiments also reveal that, in the absence of Yb, incorporating either Al(2)O(3) or Y(2)O(3) into glass fibers has a negligible impact on the ODC concentration. Not only do the data reported here demonstrate the relationship between the ODC (II) number density and the Yb doping concentration, but they also suggest that the appearance of ODC defects in the fiber is associated with the introduction of Yb and the process by which the fiber is formed.

  14. Application of an InGaAsP diode laser to probe photodissociation dynamics - I(asterisk) quantum yields from n- and i-C3F7I and CH3I by laser gain vs absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, W. P.; Kohler, S. J.; Haugen, H. K.; Leone, S. R.

    1986-01-01

    Initial measurements on I-asterisk yields of alkyl iodides at 266 nm are reported using gain vs. absorption spectroscopy with an InGaAsP diode probe laser. The results are 102 percent + or - 4 percent, 102 percent + or - 7 percent, and 73 percent + or - 4 percent for n-C3F7I, i-C3F7I, and CH3I respectively. Future prospects for the development of diode laser systems and for their use in dynamical studies are discussed.

  15. Sensitive detection of CO2 concentration and temperature for hot gases using quantum-cascade laser absorption spectroscopy near 4.2 μm

    NASA Astrophysics Data System (ADS)

    Wu, Kuijun; Li, Faquan; Cheng, Xuewu; Yang, Yong; Lin, Xin; Xia, Yuan

    2014-06-01

    Mid-infrared quantum-cascade laser (QCL) absorption spectroscopy of CO2 near 4.2 μm has been developed for measurement of temperature and concentration in hot gases. With stronger absorption line-strengths than transitions near 1.5, 2.0, and 2.7 μm used previously, the fundamental band (0001-0000) of CO2 near 4.2 μm provides greatly enhanced sensitivity and accuracy to sense CO2 in high-temperature gases. Line R(74) and line R(96) are chosen as optimum pair for sensitive temperature measurements due to their high-temperature sensitivity, equal signal-to-noise ratio (SNR), weak interference of H2O transitions, as well as relatively strong line-strengths in high temperature and weak absorption in room temperature. The high-resolution absorption spectrum of the far wings of the R-branch (R56-R100) in the fundamental vibrational band of CO2 is measured in a heated cell over the range 2,384-2,396 cm-1 at different temperatures from 700 to 1,200 K. Taking three factors into consideration, including SNR, concentration detectability, and uncertainty sensitivity, the absorption line R(74) is selected to calculate CO2 concentration. The tunable QCL absorption sensor is validated in mixtures of CO2 and N2 in a static cell for temperature range of 700-1,200 K, achieving an accuracy of ±6 K for temperature and ±5 % for concentration measurements.

  16. Measurement of nonuniform temperature and concentration distributions by combining line-of-sight tunable diode laser absorption spectroscopy with regularization methods.

    PubMed

    Liu, Chang; Xu, Lijun; Cao, Zhang

    2013-07-10

    Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy (TDLAS) to measure nonuniform temperature and concentration distributions along the laser path when a priori information of the temperature distribution tendency is available. Relying on measurements of 12 absorption transitions of water vapor from 1300 to 1350 nm, the nonuniform temperature and concentration distributions were retrieved by making the use of nonlinear and linear regularization methods, respectively. To examine the effectiveness of regularization methods, a simulated annealing algorithm for nonlinear regularization was implemented to reconstruct the temperature distribution, while three linear regularization methods, namely truncated singular value decomposition, Tikhonov regularization, and a revised Tikhonov regularization method, were implemented to retrieve the concentration distribution. The results show that regularization methods not only can be used to retrieve temperature and concentration distributions closer to the original but also are less sensitive to measurement noise. When no sufficient optical access is available for TDLAS tomography, the methods proposed in the paper can be used to obtain more details of the combustion field with higher accuracy and robustness, which are expected to play a more important role in combustion diagnosis.

  17. Observation of femtosecond-laser-induced ablation plumes of aluminum using space- and time-resolved soft x-ray absorption spectroscopy

    SciTech Connect

    Okano, Yasuaki; Oguri, Katsuya; Nishikawa, Tadashi; Nakano, Hidetoshi

    2006-11-27

    The dynamics of the laser ablation plume expansion of aluminum was investigated by using space- and time-resolved soft x-ray absorption spectroscopy. Blueshifts of the Al L-shell photoabsorption edge indicating the state of aluminum were observed in the plumes, which were generated by irradiating an aluminum target with 120 fs near-infrared pulses at an intensity of 10{sup 14} W/cm{sup 2}. The spatiotemporal evolution of the plumes exhibited a multilayer structure consisting of vaporized aluminum and condensed aluminum particles, following the expansion of plasma, with expansion velocities of 10{sup 4} m/s for the atomic state and 10{sup 3} m/s for the condensed state.

  18. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  19. Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy.

    PubMed

    Parsons, Matthew T; Sydoryk, Ihor; Lim, Alan; McIntyre, Thomas J; Tulip, John; Jäger, Wolfgang; McDonald, Karen

    2011-02-01

    We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 μm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.

  20. Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy.

    PubMed

    Parsons, Matthew T; Sydoryk, Ihor; Lim, Alan; McIntyre, Thomas J; Tulip, John; Jäger, Wolfgang; McDonald, Karen

    2011-02-01

    We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 μm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system. PMID:21283225

  1. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  2. Graphene intracavity spaser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Nechepurenko, I. A.; Dorofeenko, A. V.

    2016-09-01

    We propose an intracavity plasmon absorption spectroscopy method based on graphene active plasmonics. It is shown that the plasmonic cavity contribution to the sensitivity is proportional to the quality factor Q of the graphene plasmonic cavity and reaches two orders of magnitude. The addition of gain medium into the cavity increases the sensitivity of method. Maximum sensitivity is reached in the vicinity of the plasmon generation threshold. The gain contribution to the sensitivity is proportional to Q1/2. The giant amplification of sensitivity in the graphene plasmon generator is associated with a huge path length, limited only by the decoherence processes. An analytical estimation of the sensitivity to loss caused by analyzed particles (molecules, nanoparticles, etc.) normalized by the single pass plasmon scheme is derived. Usage of graphene nanoflakes as plasmonic cavity allows a high spatial resolution to be reached, in addition to high sensitivity.

  3. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  4. Monitoring water stable isotope composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-04-01

    -permeable polypropylene tubing and a cavity ring-down laser absorption spectrometer. By analyzing water vapor δ2H and δ18O sampled with the tubing from a fine sand for temperatures ranging between 8-24° C, we demonstrate that (i) our new method is capable of monitoring δ2H and δ18O in soils online with high precision and, after calibration, also with high accuracy, (ii) our sampling protocol enabled detecting changes of δ2H and δ18O following non-fractionating addition and removal of liquid water and water vapor of different isotopic compositions, and (iii) the time needed for the tubing to monitor these changes is compatible with the observed variations of δ2H and δ18O in soils under natural conditions.

  5. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  6. Measurement of H and H/sub 2/ populations in-situ in a low-temperature plasma by vacuum-ultraviolet laser-absorption spectroscopy

    SciTech Connect

    Schlachter, A.S.; Young, A.T.; Stutzin, G.C.; Stearns, J.W.; Doebele, H.G.; Leung, K.N.; Kunkel, W.B.

    1988-12-01

    A new technique, vacuum-ultraviolet laser-absorption spectroscopy, has been developed to quantitatively determine the absolute density of H and H/sub 2/ within a plasma. The technique is particularly well suited to measurement in a plasma, where high charged particle and photon background complicate other methods of detection. The high selectivity and sensitivity of the technique allows for the measurement of the rotational-vibrational state distribution of H/sub 2/ as well as the translational temperature of the atoms and molecules. The technique has been used to study both pulsed and continuous H/sup /minus// ion-source plasma discharges. H/sub 2/ state distributions in a multicusp ''volume'' H/sup /minus// ion- source plasma show a high degree of internal excitation, with levels up to v = 5 and J = 8 being observed. The method is applicable for a very wide range of plasma conditions. Emission measurements from excited states of H are also reported. 17 refs., 9 figs.

  7. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    PubMed

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling. PMID:19504575

  8. Rapid response of leaf photosynthesis in two fern species Pteridium aquilinum and Thelypteris dentata to changes in CO2 measured by tunable diode laser absorption spectroscopy.

    PubMed

    Nishida, Keisuke; Kodama, Naomi; Yonemura, Seiichiro; Hanba, Yuko T

    2015-09-01

    We investigated stomatal conductance (g(s)) and mesophyll conductance (g(m)) in response to atmospheric CO2 concentration [CO2] in two primitive land plants, the fern species Pteridium aquilinum and Thelypteris dentata, using the concurrent measurement of leaf gas exchange and carbon isotope discrimination. [CO2] was initially decreased from 400 to 200 μmol mol(-1), and then increased from 200 to 700 μmol mol(-1), and finally decreased from 700 to 400 μmol mol(-1). Analysis by tunable diode laser absorption spectroscopy (TDLAS) revealed a rapid and continuous response in g m within a few minutes. In most cases, both ferns showed rapid and significant responses of g m to changes in [CO2]. The largest changes (quote % decrease) were obtained when [CO2] was decreased from 400 to 200 μmol mol(-1). This is in contrast to angiosperms where an increase in g(m) is commonly observed at low [CO2]. Similarly, fern species observed little or no response of g(s) to changes in [CO2] whereas, a concomitant decline of g(m) and g(s) with [CO2] is often reported in angiosperms. Together, these results suggest that regulation of g(m) to [CO2] may differ between angiosperms and ferns.

  9. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  10. Comparison of Tunable Diode Laser Absorption Spectroscopy and Isothermal Micro-calorimetry for Non-invasive Detection of Microbial Growth in Media Fills

    PubMed Central

    Brueckner, David; Roesti, David; Zuber, Ulrich Georg; Schmidt, Rainer; Kraehenbuehl, Stefan; Bonkat, Gernot; Braissant, Olivier

    2016-01-01

    Two methods were investigated for non-invasive microbial growth-detection in intact glass vials as possible techniques for automated inspection of media-filled units. Tunable diode laser absorption spectroscopy (TDLAS) was used to determine microbially induced changes in O2 and CO2 concentrations within the vial headspaces. Isothermal microcalorimetry (IMC) allowed the detection of metabolic heat production. Bacillus subtilis and Streptococcus salivarius were chosen as test organisms. Parameters as robustness, sensitivity, comparability and time to detection (TtD) were evaluated to assess method adequacy. Both methods robustly detected growth of the tested microorganisms within less than 76 hours using an initial inoculum of <10CFU. TDLA turned out to be less sensitive than TDLA and IMC, as some false negative results were observed. Compared to the visual media-fill examination of spiked samples, the investigated techniques were slightly slower regarding TtD. Although IMC showed shorter TtD than TDLAS the latter is proposed for automating the media-fill inspection, as larger throughput can be achieved. For routine use either TDLA or a combination of TDLA and TDLA should be considered. IMC may be helpful for replacing the sterility assessment of commercial drug products before release. PMID:27282661

  11. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor.

    PubMed

    Pogány, Andrea; Wagner, Steven; Werhahn, Olav; Ebert, Volker

    2015-01-01

    Simultaneous detection of two analytes, carbon dioxide (CO2) and water vapor (H2O), has been realized using tunable diode laser absorption spectroscopy (TDLAS) with a single distributed feedback diode laser at 2.7 μm. The dynamic range of the spectrometer is extended from the low parts per million to the percentage range using two gas cells, a single-pass cell with 0.77 m, and a Herriott-type multipass cell with 76 m path length. Absolute measurements were carried out, i.e., amount fractions of the analytes were calculated based on previously determined spectral line parameters, without the need for an instrument calibration using gas standards. A thorough metrological characterization of the spectrometer is presented. We discuss traceability of all parameters used for amount fraction determination and provide a comprehensive uncertainty assessment. Relative expanded uncertainties (k = 2, 95% confidence level) of the measured amount fractions are shown to be in the 2-3% range for both analytes. Minimum detectable amount fractions are 0.16 μmol/mol for CO2 and 1.1 μmol/mol for H2O for 76 m path length and 5 s averaging time. This corresponds to normalized detection limits of 27 μmol/mol m Hz(-1/2) for CO2 and 221 μmol/mol m Hz(-1/2) for H2O. Precision of the spectrometer, determined using Allan variance analysis, is 3.3 nmol/mol for CO2 and 21 nmol/mol for H2O. The spectrometer has been validated using reference gas mixtures with known CO2 and H2O amount fractions. An application example of the absolute TDLAS spectrometer as a reference instrument to validate other sensors is also presented.

  12. Precision Saturated Absorption Spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong

    2016-06-01

    In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).

  13. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  14. Multiphoton cascade absorption in single molecule fluorescence saturation spectroscopy.

    PubMed

    Winckler, Pascale; Jaffiol, Rodolphe

    2013-05-01

    Saturation spectroscopy is a relevant method to investigate photophysical parameters of single fluorescent molecules. Nevertheless, the impact of a gradual increase, over a broad range, of the laser excitation on the intramolecular dynamics is not completely understood, particularly concerning their fluorescence emission (the so-called brightness). Thus, we propose a comprehensive theoretical and experimental study to interpret the unexpected evolution of the brightness with the laser power taking into account the cascade absorption of two and three photons. Furthermore, we highlight the key role played by the confocal observation volume in fluorescence saturation spectroscopy of single molecules in solution.

  15. Molecular shock response of explosives: electronic absorption spectroscopy

    SciTech Connect

    Mcgrne, Shawn D; Moore, David S; Whitley, Von H; Bolme, Cindy A; Eakins, Daniel E

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  16. Explosive detection using infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Hildenbrand, J.; Herbst, J.; Wöllenstein, J.; Lambrecht, A.

    2009-01-01

    Stand-off and extractive explosive detection methods for short distances are investigated using mid-infrared laser spectroscopy. A quantum cascade laser (QCL) system for TATP-detection by open path absorption spectroscopy in the gas phase was developed. In laboratory measurements a detection limit of 5 ppm*m was achieved. For explosives with lower vapor pressure an extractive hollow fiber based measurement system was investigated. By thermal desorption gaseous TATP or TNT is introduced into a heated fiber. The small sample volume and a fast gas exchange rate enable fast detection. TNT and TATP detection levels below 100 ng are feasible even in samples with a realistic contaminant background.

  17. Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 µm.

    PubMed

    Sun, Kai; Wang, Shengkai; Sur, Ritobrata; Chao, Xing; Jeffries, Jay B; Hanson, Ronald K

    2014-10-01

    Cavity-enhanced absorption spectroscopy (CEAS) using a mid-infrared DFB quantum-cascade laser is reported for sensitive time-resolved (10 μs) in situ CO measurements in a shock tube. Off-axis alignment and fast scanning of the laser wavelength were used to minimize coupling noise in a low-finesse cavity. An absorption gain factor of 91 was demonstrated, which enabled sub-ppm detection sensitivity for gas temperatures of 1000-2100K in a 15 cm diameter shock tube. This substantial improvement in detection sensitivity compared to conventional single-pass absorption measurements, shows great potential for the study of reaction pathways of high-temperature combustion kinetics mechanisms in shock tubes.

  18. New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    NASA Astrophysics Data System (ADS)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-07-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (-210 to 0 ‰ for δ D and -27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass

  19. New on-line method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    NASA Astrophysics Data System (ADS)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-01-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us to simultaneously measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the on-line water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δD reliability. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water resulting in an artificial water background with well-known δD and δ18O values. The speleothem sample is placed into a copper tube, attached to the line and after system stabilisation is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain δD and δ18O isotopic composition of measured water aliquots. Precision is better than 1.5‰ for δD and 0.4‰ for δ18O for water measurement for an extended range (-210 to 0‰ for δD and -27 to 0‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to Isotope Ratio Mass Spectrometry (IRMS) technique.

  20. In situ measurement of CO2 and water vapour isotopic compositions at a forest site using mid-infrared laser absorption spectroscopy.

    PubMed

    Wada, Ryuichi; Matsumi, Yutaka; Takanashi, Satoru; Nakai, Yuichiro; Nakayama, Tomoki; Ouchi, Mai; Hiyama, Tetsuya; Fujiyoshi, Yasushi; Nakano, Takashi; Kurita, Naoyuki; Muramoto, Kenichiro; Kodama, Naomi

    2016-12-01

    We conducted continuous, high time-resolution measurements of CO2 and water vapour isotopologues ((16)O(12)C(16)O, (16)O(13)C(16)O and (18)O(12)C(16)O for CO2, and H2(18)O for water vapour) in a red pine forest at the foot of Mt. Fuji for 9 days from the end of July 2010 using in situ absorption laser spectroscopy. The δ(18)O values in water vapour were estimated using the δ(2)H-δ(18)O relationship. At a scale of several days, the temporal variations in δ(18)O-CO2 and δ(18)O-H2O are similar. The orders of the daily Keeling plots are almost identical. A possible reason for the similar behaviour of δ(18)O-CO2 and δ(18)O-H2O is considered to be that the air masses with different water vapour isotopic ratios moved into the forest, and changed the atmosphere of the forest. A significant correlation was observed between δ(18)O-CO2 and δ(13)C-CO2 values at nighttime (r(2)≈0.9) due to mixing between soil (and/or leaf) respiration and tropospheric CO2. The ratios of the discrimination coefficients (Δa/Δ) for oxygen (Δa) and carbon (Δ) isotopes during photosynthesis were estimated in the range of 0.7-1.2 from the daytime correlations between δ(18)O-CO2 and δ(13)C-CO2 values. PMID:27142631

  1. Rapid, online quantification of H2S in JP-8 fuel reformate using near-infrared cavity-enhanced laser absorption spectroscopy.

    PubMed

    Dong, Feng; Junaedi, Christian; Roychoudhury, Subir; Gupta, Manish

    2011-06-01

    One of the key challenges in reforming military fuels for use with fuel cells is their high sulfur content, which can poison the fuel cell anodes. Sulfur-tolerant fuel reformers can convert this sulfur into H(2)S and then use a desulfurizing bed to remove it prior to the fuel cell. In order to optimize and verify this desulfurization process, a gas-phase sulfur analyzer is required to measure H(2)S at low concentrations (<1 ppm(v)) in the presence of other reforming gases (e.g., 25-30% H(2), 10-15% H(2)O, 15% CO, 5% CO(2), 35-40% N(2), and trace amounts of light hydrocarbons). In this work, we utilize near-infrared cavity-enhanced optical absorption spectroscopy (off-axis ICOS) to quantify H(2)S in a JP-8 fuel reformer product stream. The sensor provides rapid (2 s), highly precise (±0.1 ppm(v)) measurements of H(2)S in reformate gases over a wide dynamic range (0-1000 ppm(v)) with a low detection limit (3σ = ±0.09 ppm(v) in 1 s) and minimal cross-interferences from other present species. It simultaneously quantifies CO(2) (±0.2%), CH(4) (±150 ppm(v)), C(2)H(4) (±30 ppm(v)), and H(2)O (±300 ppm(v)) in the reformed gas for a better characterization of the fuel reforming process. Other potential applications of this technology include measurement of coal syngas and H(2)S in natural gas. By including additional near-infrared, distributive feedback diode lasers, the instrument can also be extended to other reformate species, including CO and H(2). PMID:21486070

  2. Atomic Spectroscopy for Soft-X Lasers

    NASA Astrophysics Data System (ADS)

    Pedrotti, Kenneth Donald

    The realization of lasers in the extreme ultraviolet (XUV) is hampered by a lack of knowledge concerning the location and properties of useful atomic levels. This dissertation presents the results of experimental investigations of core-excited levels in alkali-metal atoms and alkaline -earth ions. A novel hollow-cathode discharge device has been developed for production of excited atoms of interest for laser construction. This device has been used to find new levels in Na I and Mg II using emission spectroscopy. A novel high-resolution laser technique called extinction spectroscopy has been demonstrated in Li by the measurement of the lifetime of an autoionizing level. A tunable coherent radiation source at 110 nm was also developed and used to make high-resolution absorption measurements on Cs transitions considered for use in the creation of a VUV Laser.

  3. Laser Spectroscopy and Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hänsch, Theodor W.; Picqué, Nathalie

    2013-12-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation.

  4. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  5. In Situ Investigations of Laser-Generated Ligand-Free Platinum Nanoparticles by X-ray Absorption Spectroscopy: How Does the Immediate Environment Influence the Particle Surface?

    PubMed

    Fischer, Mathias; Hormes, Josef; Marzun, Galina; Wagener, Philipp; Hagemann, Ulrich; Barcikowski, Stephan

    2016-09-01

    Pulsed laser ablation in liquid (PLAL) has proven its usefulness as a nanoparticle (NP) synthesis method alternative to traditional chemical reduction methods, where the absence of any molecular ligands or residual reactants makes laser-generated nanoparticles ideal reference materials for charge-transfer experiments. We synthesized additive-free platinum nanoparticles by PLAL and in-situ characterized their interaction with H2O, sodium phosphate buffer, and sodium citrate as well as a TiO2 support by X-ray absorption fine structure (XAFS), i.e., X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). Differences in the white-line intensity among the colloidal particles in the three liquids indicate that the respective NP-solvent interaction varies in strength. The ions added ex situ diffuse through the particles' electric double layer and interact electrostatically with the Stern plane. Consequently, these ions weaken the interaction of the functional OH groups that are bound to the partially oxidized platinum surfaces and cause their partial reduction. Comparing XAFS spectra of laser-generated Pt NPs in citrate with wet-chemically synthesized ones (both ligand-covered) indicates different types of Pt-O bonds: a Pt(IV)O2 type in the case of wet-chemical NPs and a Pt(II)O type in the case of laser-generated NPs. A comparison of unsupported laser-generated platinum NPs in H2O with TiO2-supported ones shows no white-line intensity differences and also an identical number of Pt-O bonds in both cases. This suggests that in the deposition process at least part of the double-layer coating stays intact and that the ligand-free Pt particle properties are preserved in the TiO2-supported Pt particles, relevant for heterogeneous catalysis. PMID:27489980

  6. Multipass optical absorption spectroscopy: a fast-scanning laser spectrometer for the in situ determination of atmospheric trace-gas components, in particular OH.

    PubMed

    Armerding, W; Spiekermann, M; Walter, J; Comes, F J

    1996-07-20

    The optical design of an absorption spectrometer for in situ measurements of atmospheric trace gases is reported. The light source is a rapidly tuned and power-stabilized dye-ring laser, which is frequency doubled by an intracavity BBO crystal. The second harmonic and the fundamental are used simultaneously for measurement of OH, SO(2), CH(2)O, and naphthalene in the UV and of NO(2) in the visible. The 1.2-km absorption path is folded within a 6-m White-cell-type multiple-reflection system with an open-path setup. The absorption sensitivity of the spectrometer is better than 1 part in 10(-5) under tropospheric conditions (integration time 1 min., signal-to-noise ratio 1).

  7. Analysis of the absorption spectra of gas emission of patients with lung cancer and chronic obstructive pulmonary disease by laser optoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yurii V.; Kuzmin, Dmitry A.; Tuzikov, Sergei A.; Yumov, Evgenii L.

    2013-02-01

    It is important to identify patients with chronic obstructive pulmonary disease (COPD) and lung cancer in the early stages of the disease. The method of laser opto-acoustic gas analysis, in this case, can act as a promising tool for diagnostics. The material for this study were the gas emission samples collected from patients and healthy volunteers - samples of exhaled air, swabs from teeth and cheeks. A set of material was formed three groups: healthy volunteers, patients with COPD, lung cancer patients. The resulting samples were analyzed by means of laser opto-acoustic gas analyzers: with intracavity location detector (ILPA-1), with extracavity location detector (LGA-2). Presentation of the results in an easy to visual form was performed using the method of elastic maps, based on the principal component analysis. The results of analysis show potentialities of usage of laser optoacoustic spectroscopy application to assess the status of patients with chronic obstructive pulmonary disease and lung cancer.

  8. Laser physics and laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Byer, Robert L.

    1990-04-01

    Two essential difficulties must be addressed in any low-power frequency conversion device; boosting the efficiency above that of simple single-pass bulk devices (which are typically less than 1 percent/W) and achieving phase-matching for the desired interaction. Waveguide interactions were used to increase the conversion efficiency, and explored quasi-phase-matching (QPM) as a broadly applicable approach to meeting the phasematching condition. Both oxide forrelectrics like LiNbO3 and quantum-wells in III-V semiconductors have been investigated for these applications. Second harmonic generation (SHG) of near-infrared lasers to produce green and blue radiation, as well as SHG of the 9 to 11 micrometer output of a CO2 laser have been demonstrated in these materials. These media together constitute a significant step towards the goal of generic nonlinear media for the far infrared - ultraviolet, based on readily available materials and fabricated with standard technologies, applicable to essentially any frequency conversion application.

  9. X-ray absorption spectroscopy of metalloproteins.

    PubMed

    Ward, Jesse; Ollmann, Emily; Maxey, Evan; Finney, Lydia A

    2014-01-01

    Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.

  10. Triplet absorption spectroscopy and electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  11. Multispecies absorption spectroscopy of detonation events at 100  kHz using a fiber-coupled, time-division-multiplexed quantum-cascade-laser system.

    PubMed

    Rein, Keith D; Roy, Sukesh; Sanders, Scott T; Caswell, Andrew W; Schauer, Frederick R; Gord, James R

    2016-08-10

    A mid-infrared fiber-coupled laser system constructed around three time-division-multiplexed quantum-cascade lasers capable of measuring the absorption spectra of CO, CO2, and N2O at 100 kHz over a wide range of operating pressures and temperatures is demonstrated. This system is first demonstrated in a laboratory burner and then used to measure temperature, pressure, and concentrations of CO, CO2, and N2O as a function of time in a detonated mixture of N2O and C3H8. Both fuel-rich and fuel-lean detonation cases are outlined. High-temperature fluctuations during the blowdown are observed. Concentrations of CO are shown to decrease with time for fuel-lean conditions and increase for fuel-rich conditions.

  12. Pressure-broadening and narrowing coefficients and temperature dependence measurements of CO2 at 2.68 μm by laser diode absorption spectroscopy for atmospheric applications.

    PubMed

    Ghysels, M; Durry, G; Amarouche, N

    2013-04-15

    By using a tunable diode laser absorption spectrometer in conjunction with a cryogenically cooled multipath cell, we have revisited the air-induced pressure-broadening coefficients and the narrowing coefficients related to the Dicke effect, as well as the temperature dependences, for the R(18) and R(20) lines of the (10°1)I←(00°0) vibrational band at 2.68 μm of carbon dioxide. The selected transitions are used to probe in situ CO2 in the troposphere and the lower stratosphere by using balloon-borne laser sensors. The achieved measurements are thoroughly compared to existing former determinations. The impact of processing the in situ atmospheric CO2 spectra with this new set of molecular data is reported.

  13. Multispecies absorption spectroscopy of detonation events at 100  kHz using a fiber-coupled, time-division-multiplexed quantum-cascade-laser system.

    PubMed

    Rein, Keith D; Roy, Sukesh; Sanders, Scott T; Caswell, Andrew W; Schauer, Frederick R; Gord, James R

    2016-08-10

    A mid-infrared fiber-coupled laser system constructed around three time-division-multiplexed quantum-cascade lasers capable of measuring the absorption spectra of CO, CO2, and N2O at 100 kHz over a wide range of operating pressures and temperatures is demonstrated. This system is first demonstrated in a laboratory burner and then used to measure temperature, pressure, and concentrations of CO, CO2, and N2O as a function of time in a detonated mixture of N2O and C3H8. Both fuel-rich and fuel-lean detonation cases are outlined. High-temperature fluctuations during the blowdown are observed. Concentrations of CO are shown to decrease with time for fuel-lean conditions and increase for fuel-rich conditions. PMID:27534467

  14. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers

    SciTech Connect

    Cai, Weiwei; Kaminski, Clemens F.

    2014-01-20

    This paper proposes a technique that can simultaneously retrieve distributions of temperature, concentration of chemical species, and pressure based on broad bandwidth, frequency-agile tomographic absorption spectroscopy. The technique holds particular promise for the study of dynamic combusting flows. A proof-of-concept numerical demonstration is presented, using representative phantoms to model conditions typically prevailing in near-atmospheric or high pressure flames. The simulations reveal both the feasibility of the proposed technique and its robustness. Our calculations indicate precisions of ∼70 K at flame temperatures and ∼0.05 bars at high pressure from reconstructions featuring as much as 5% Gaussian noise in the projections.

  15. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: A new cell for X-ray absorption spectroscopy study under high pressure

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Rong; Che, Rong-Zheng; Liu, Jing; Du, Yong-Hua; Zhou, Ying-Li; Hu, Tian-Dou

    2009-08-01

    X-ray absorption fine structure (XAFS) spectroscopy is a powerful technique for the investigation of the local environment around selected atoms in condensed matter. XAFS under pressure is an important method for the synchrotron source. We design a cell for a high pressure XAFS experiment. Sintered boron carbide is used as the anvils of this high pressure cell in order to obtain a full XAFS spectrum free from diffraction peaks. In addition, a hydraulic pump was adopted to make in-suit pressure modulation. High quality XAFS spectra of ZrH2 under high pressure (up to 13 GPa) were obtained by this cell.

  16. Laser absorption phenomena in flowing gas devices

    NASA Technical Reports Server (NTRS)

    Chapman, P. K.; Otis, J. H.

    1976-01-01

    A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.

  17. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    PubMed Central

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  18. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. PMID:27091946

  19. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy

    DOE PAGES

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Perfetto, Anthony; Geckler, Sam; Partridge, William P.

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is thus crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compressionmore » ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. Lastly, the probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines.« less

  20. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines.

  1. Infrared microcalorimetric spectroscopy using quantum cascade lasers

    SciTech Connect

    Morales Rodriguez, Marissa E; Senesac, Larry R; Rajic, Slobodan; Lavrik, Nickolay V; Smith, Barton; Datskos, Panos G

    2013-01-01

    We have investigated an infrared (IR) microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the IR photothermal spectra of molecules absorbed on the surface of uncooled thermal micromechanical detectors. IR microcalorimetric spectroscopy requires no chemical specific coatings and the chemical specificity of the presented method is a consequence of the wavelength-specific absorption of IR photons from tunable quantum cascade lasers due to vibrational spectral bands of the analyte. We have obtained IR photothermal spectra for trace concentrations of RDX and a monolayer of 2-mercaptoethanol, over the wavelength region from 6 to 10 m. We found that in this wavelength region both chemicals exhibit a number of photothermal absorption features that are in good agreement with their respective IR spectra.

  2. Infrared microcalorimetric spectroscopy using quantum cascade lasers.

    PubMed

    Morales-Rodríguez, M E; Senesac, L R; Rajic, S; Lavrik, N V; Smith, D B; Datskos, P G

    2013-02-15

    We have investigated an IR microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the IR photothermal spectra of molecules adsorbed on the surface of uncooled thermal micromechanical detectors. Although we use a chemical layer to absorb target molecules, IR microcalorimetric spectroscopy requires no chemical specific coatings. The chemical specificity of the presented method is a consequence of the wavelength-specific absorption of IR photons from tunable quantum cascade lasers due to vibrational spectral bands of the analyte. We have obtained IR photothermal spectra for trace concentrations of 1,3,5-Trinitroperhydro-1,3,5-triazine and a monolayer of 2-Sulfanylethan-1-ol (2-mercaptoethanol) over the wavelength region from 6 to 10 μm. We found that both chemicals exhibit a number of photothermal absorption features that are in good agreement with their respective IR spectra.

  3. Ultrasensitive Laser Spectroscopy.

    ERIC Educational Resources Information Center

    Kliger, David S.

    1985-01-01

    Examines techniques used to make ultrasensitive spectroscopic measurements. They include excitation, thermal lens, photo acoustic, and ionization spectroscopies. Guidelines and methods are provided for each technique; common uses and applications are explained. (DH)

  4. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  5. Measurement of the D/H, ¹⁸O/¹⁶O, and ¹⁷O/¹⁶O isotope ratios in water by laser absorption spectroscopy at 2.73 μm.

    PubMed

    Wu, Tao; Chen, Weidong; Fertein, Eric; Masselin, Pascal; Gao, Xiaoming; Zhang, Weijun; Wang, Yingjian; Koeth, Johannes; Brückner, Daniela; He, Xingdao

    2014-05-21

    A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated.

  6. Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm

    PubMed Central

    Wu, Tao; Chen, Weidong; Fertein, Eric; Masselin, Pascal; Gao, Xiaoming; Zhang, Weijun; Wang, Yingjian; Koeth, Johannes; Brückner, Daniela; He, Xingdao

    2014-01-01

    A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 μm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated. PMID:24854363

  7. Combined time-resolved laser fluorescence spectroscopy and extended X-ray absorption fine structure spectroscopy study on the complexation of trivalent actinides with chloride at T = 25-200 °C.

    PubMed

    Skerencak-Frech, Andrej; Fröhlich, Daniel R; Rothe, Jörg; Dardenne, Kathy; Panak, Petra J

    2014-01-21

    The complexation of trivalent actinides (An(III)) with chloride is studied in the temperature range from 25 to 200 °C by spectroscopic methods. Time-resolved laser fluorescence spectroscopy (TRLFS) is applied to determine the thermodynamic data of Cm(III)-Cl(-) complexes, while extended X-ray absorption fine structure spectroscopy (EXAFS) is used to determine the structural data of the respective Am(III) complexes. The experiments are performed in a custom-built high-temperature cell which is modified for the respective spectroscopic technique. The TRLFS results show that at 25 °C the speciation is dominated mainly by the Cm(3+) aquo ion. Only a minor fraction of the CmCl(2+) complex is present in solution. As the temperature increases, the fraction of this species decreases further. Simultaneously, the fraction of the CmCl2(+) complex increases strongly with the temperature. Also, the CmCl3 complex is formed to a minor extent at T > 160 °C. The conditional stability constant log β'2 is determined as a function of the temperature and extrapolated to zero ionic strength with the specific ion interaction theory approach. The log β°2(T) values increase by more than 3 orders of magnitude in the studied temperature range. The temperature dependency of log β°2 is fitted by the extended van't Hoff equation to determine ΔrH°m, ΔrS°m, and ΔrC°p,m. The EXAFS results support these findings. The results confirm the absence of americium(III) chloride complexes at T = 25 and 90 °C ([Am(III)] = 10(-3) m, [Cl(-)] = 3.0 m), and the spectra are described by 9-10 oxygen atoms at a distance of 2.44-2.48 Å. At T = 200 °C two chloride ligands are present in the inner coordination sphere of Am(III) at a distance of 2.78 Å.

  8. Stabilized master laser system for differential absorption lidar.

    PubMed

    Dinovitser, Alex; Hamilton, Murray W; Vincent, Robert A

    2010-06-10

    Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry-Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved.

  9. Rapid Scan Absorption Spectroscopy with Applications for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Douglass, K.; Maxwell, S. E.; Truong, G.; Van Zee, R. D.; Hodges, J. T.; Plusquellic, D.; Long, D.; Whetstone, J. R.

    2013-12-01

    Our objective is to develop accurate and reliable methods for quantifying distributed carbon sources and sinks to support both mitigation efforts and climate change research. The presentation will describe a method for rapid step-scan absorption spectroscopy in the near-infrared wavelength range for the measurement of greenhouse gases. The method utilizes a fiber coupled laser system and a free space confocal cavity to effectively scan the laser system over a bandwidth of 37.5 GHz (1.25 cm-1), with a step size of 300 MHz (0.01 cm-1) and a scan rate of 40 kHz. The laser system is scanned with microwave precision over a full absorption lineshape profile. Measurements have been demonstrated in a 45 m long multipass cell for detection of carbon dioxide near 1602.4 nm (6240.6 cm-1) and for methane near 1645.5 nm (6077.2 cm 1). Ambient level detection is demonstrated using the multipass cell with a signal-to-noise ratio of ~5:1 in a 5 ms integration time. The scan speed, resolution and bandwidth are well suited for remote sensing using integrated path and differential absorption LIDAR techniques.

  10. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  11. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  12. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  13. Laser spectroscopy and its applications

    SciTech Connect

    Radziemski, L.J.; Solarz, R.W.; Paisner, J.A.

    1987-01-01

    Laser spectroscopy has applications in diverse fields ranging from combustion studies and trace-sample detection to biological research. At the same time, it has also contributed greatly to the discovery of hundreds of new lasers. This symbiotic relationship has promoted an especially rapid expansion of the field. This book provides a review of the subject. It includes, for example, chapters on laser isotope separation techniques, enabling scientists to compare their relative advantages and drawbacks. This volume also gives numerous tables that summarize important features of lasers, experiments, and parameters for quick reference. In addition, it presents diagrams for visualizing rotational molecular energy levels of high J in order to enhance our understanding of molecular motions and their relationship to molecular energy levels. Offering insights into how experts think this technology will improve, it considers research and development in each topic discussed.

  14. Simultaneous high-speed gas property measurements at the exhaust gas recirculation cooler exit and at the turbocharger inlet of a multicylinder diesel engine using diode-laser-absorption spectroscopy.

    PubMed

    Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P

    2015-02-10

    A diode-laser-absorption-spectroscopy-based sensor system was used to perform high-speed (100 Hz to 5 kHz) measurements of gas properties (temperature, pressure, and H(2)O vapor concentration) at the turbocharger inlet and at the exhaust gas recirculation (EGR) cooler exit of a diesel engine. An earlier version of this system was previously used for high-speed measurements of gas temperature and H(2)O vapor concentration in the intake manifold of the diesel engine. A 1387.2 N m tunable distributed feedback diode laser was used to scan across multiple H(2)O absorption transitions, and the direct absorption signal was recorded using a high-speed data acquisition system. Compact optical connectors were designed to conduct simultaneous measurements in the intake manifold, the EGR cooler exit, and the turbocharger inlet of the engine. For measurements at the turbocharger inlet, these custom optical connectors survived gas temperatures as high as 800 K using a simple and passive arrangement in which the temperature-sensitive components were protected from high temperatures using ceramic insulators. This arrangement reduced system cost and complexity by eliminating the need for any active water or oil cooling. Diode-laser measurements performed during steady-state engine operation were within 5% of the thermocouple and pressure sensor measurements, and within 10% of the H(2)O concentration values derived from the CO(2) gas analyzer measurements. Measurements were also performed in the engine during transient events. In one such transient event, where a step change in fueling was introduced, the diode-laser sensor was able to capture the 30 ms change in the gas properties; the thermocouple, on the other hand, required 7.4 s to accurately reflect the change in gas conditions, while the gas analyzer required nearly 600 ms. To the best of our knowledge, this is the first implementation of such a simple and passive arrangement of high-temperature optical connectors as well

  15. La Saturated Absorption Spectroscopy for Applications in Quantum Information

    NASA Astrophysics Data System (ADS)

    Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  16. Infrared absorption of fs-laser textured CVD diamond

    NASA Astrophysics Data System (ADS)

    Calvani, P.; Bellucci, A.; Girolami, M.; Orlando, S.; Valentini, V.; Polini, R.; Mezzetti, A.; Di Fonzo, F.; Trucchi, D. M.

    2016-03-01

    Nanoscale periodic texturing on polycrystalline CVD diamond surface was performed to obtain a significant increase in optical absorptance to visible and near-infrared radiation. Surface texturing, obtained by the use of fs-laser ultrashort pulses, has been demonstrated to induce a controlled periodicity of ripples of about 170 nm and length of several µm, able to drastically increase the diamond capability of interacting with solar radiation from its intrinsic visible blindness. Ultraviolet and visible Raman spectroscopy has been used to confirm the absence of non-diamond phases resulting from the process for the fs-laser-textured sample. Moreover, here we investigate the optical properties in the range 200 nm-25 µm. Absorbance of fs-laser-textured CVD diamond is considerably higher than the untreated one at every wavelength, resulting in a remarkable increase in the emittance: It points out the need for an optimization of process parameters to enhance the selective absorption capability.

  17. High-resolution laser absorption spectroscopy of ozone near 1129. 4 cm (-1). Final report, 25 October 1979 - 24 October 1981

    SciTech Connect

    Majorana, L.N.

    1981-03-01

    A Beer's Law experiment was performed with a tunable diode laser to determine self broadened line shape parameters of one infrared absorption ozone line in the nu1 band for ten pressures from 0.26 to 6.29 torr at 285 K. The SO2 line positions were used for wavelength calibration. Line shapes were iteratively fitted to the Voigt function at a Doppler width of 29.54 MHz (HWHM) resulting in values for the integrated line strength, (S), of (0.144 +/- 0.007) x 10 to the minus 20th/cm molecule/cu cm, line center frequency, nu sub o, of 1129.426/cm and the Lorentzian contributions to halfwidth. A linear least squares fit of (alpha sub L)5 as a function of pressure yielded a zero intercept of 15.27 +/- 0.29 MHz (rho 0.99) and a broadening parameter, (alpha sub L)5, of 5.71 +/- 0.29 MHz/Torr. This results in a line width (FWHM) of 0.144 +/- .007/cm at 760 torr and 285 K.

  18. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hormes, J.; Roy, A.; Bovenkamp, G.-L.; Simon, K.; Kim, C.-Y.; Börste, N.; Gai, S.

    2013-04-01

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile—the most stable form of TiO2—but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds.

  19. Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities

    SciTech Connect

    Shepherd, R; Chen, H; Ping, Y; Dyer, G; Wilks, S; Chung, H; Kemp, A; Hanson, S; Widmann, K; Fournier, K; Faenov, A; Pikuz, T; Niles, A; Beiersdorfer, P

    2007-02-27

    We have performed experiments at the COMET and Calisto short pulse laser facilities to make the first comprehensive measurements of the laser absorption and energy partition in solid targets heated with an ultrashort laser pulse focused to relativistic laser intensities (>10 10{sup 17} W/cm{sup 2}). The measurements show an exceedingly high absorption for P polarized laser-target interactions above 10{sup 19} W/cm{sup 2}. Additionally, the hot electron population is observed to markedly increase at the same intensity range. An investigation of the relaxation process was initiated u using time sing time-resolved K{sub {alpha}} spectroscopy. Measurements of the time time-resolved K{sub {alpha}} radiation suggest a 10-20 ps relativistic electron relaxation time. However modeling difficulties of these data are apparent and a more detailed investigation on this subject matter is warranted.

  20. Biomedical applications of laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    1999-07-01

    Very soon after the invention of the laser, the use of the thermal effects of the radiation was introduced. Such techniques have been refined and the laser is now routinely used for treatment in many specialities. Photodynamic therapy (PDT) is a non-thermal modality employing the combination of a tumor-seeking agent and activating laser light. During the last 15 years laser spectroscopic techniques have also been developed providing powerful means for non-intrusive medical diagnostics of tissue in real time. At the beginning only few groups were involved in exploratory work, but successively the field has developed now to occupy a large number of research teams, which meet at large specialized conferences. We will here consider three aspects of laser diagnostics: fluorescence, Raman and near-IR, and elastic scattering spectroscopy, and we will also briefly discuss PDT. The activity in the field is very extensive, and rather than trying to give a full overview, illustrations from work performed at the Lund University Medical Laser Center will be given.

  1. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  2. Ultraviolet photochemical reaction of [Fe(III)(C2O4)3](3-) in aqueous solutions studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser.

    PubMed

    Ogi, Y; Obara, Y; Katayama, T; Suzuki, Y-I; Liu, S Y; Bartlett, N C-M; Kurahashi, N; Karashima, S; Togashi, T; Inubushi, Y; Ogawa, K; Owada, S; Rubešová, M; Yabashi, M; Misawa, K; Slavíček, P; Suzuki, T

    2015-05-01

    Time-resolved X-ray absorption spectroscopy was performed for aqueous ammonium iron(III) oxalate trihydrate solutions using an X-ray free electron laser and a synchronized ultraviolet laser. The spectral and time resolutions of the experiment were 1.3 eV and 200 fs, respectively. A femtosecond 268 nm pulse was employed to excite [Fe(III)(C2O4)3](3-) in solution from the high-spin ground electronic state to ligand-to-metal charge transfer state(s), and the subsequent dynamics were studied by observing the time-evolution of the X-ray absorption spectrum near the Fe K-edge. Upon 268 nm photoexcitation, the Fe K-edge underwent a red-shift by more than 4 eV within 140 fs; however, the magnitude of the redshift subsequently diminished within 3 ps. The Fe K-edge of the photoproduct remained lower in energy than that of [Fe(III)(C2O4)3](3-). The observed red-shift of the Fe K-edge and the spectral feature of the product indicate that Fe(III) is upon excitation immediately photoreduced to Fe(II), followed by ligand dissociation from Fe(II). Based on a comparison of the X-ray absorption spectra with density functional theory calculations, we propose that the dissociation proceeds in two steps, forming first [(CO2 (•))Fe(II)(C2O4)2](3-) and subsequently [Fe(II)(C2O4)2](2-). PMID:26798796

  3. Ultraviolet photochemical reaction of [Fe(III)(C2O4)3](3-) in aqueous solutions studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser.

    PubMed

    Ogi, Y; Obara, Y; Katayama, T; Suzuki, Y-I; Liu, S Y; Bartlett, N C-M; Kurahashi, N; Karashima, S; Togashi, T; Inubushi, Y; Ogawa, K; Owada, S; Rubešová, M; Yabashi, M; Misawa, K; Slavíček, P; Suzuki, T

    2015-05-01

    Time-resolved X-ray absorption spectroscopy was performed for aqueous ammonium iron(III) oxalate trihydrate solutions using an X-ray free electron laser and a synchronized ultraviolet laser. The spectral and time resolutions of the experiment were 1.3 eV and 200 fs, respectively. A femtosecond 268 nm pulse was employed to excite [Fe(III)(C2O4)3](3-) in solution from the high-spin ground electronic state to ligand-to-metal charge transfer state(s), and the subsequent dynamics were studied by observing the time-evolution of the X-ray absorption spectrum near the Fe K-edge. Upon 268 nm photoexcitation, the Fe K-edge underwent a red-shift by more than 4 eV within 140 fs; however, the magnitude of the redshift subsequently diminished within 3 ps. The Fe K-edge of the photoproduct remained lower in energy than that of [Fe(III)(C2O4)3](3-). The observed red-shift of the Fe K-edge and the spectral feature of the product indicate that Fe(III) is upon excitation immediately photoreduced to Fe(II), followed by ligand dissociation from Fe(II). Based on a comparison of the X-ray absorption spectra with density functional theory calculations, we propose that the dissociation proceeds in two steps, forming first [(CO2 (•))Fe(II)(C2O4)2](3-) and subsequently [Fe(II)(C2O4)2](2-).

  4. Ultraviolet photochemical reaction of [Fe(III)(C2O4)3]3− in aqueous solutions studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser

    PubMed Central

    Ogi, Y.; Obara, Y.; Katayama, T.; Suzuki, Y.-I.; Liu, S. Y.; Bartlett, N. C.-M.; Kurahashi, N.; Karashima, S.; Togashi, T.; Inubushi, Y.; Ogawa, K.; Owada, S.; Rubešová, M.; Yabashi, M.; Misawa, K.; Slavíček, P.; Suzuki, T.

    2015-01-01

    Time-resolved X-ray absorption spectroscopy was performed for aqueous ammonium iron(III) oxalate trihydrate solutions using an X-ray free electron laser and a synchronized ultraviolet laser. The spectral and time resolutions of the experiment were 1.3 eV and 200 fs, respectively. A femtosecond 268 nm pulse was employed to excite [Fe(III)(C2O4)3]3− in solution from the high-spin ground electronic state to ligand-to-metal charge transfer state(s), and the subsequent dynamics were studied by observing the time-evolution of the X-ray absorption spectrum near the Fe K-edge. Upon 268 nm photoexcitation, the Fe K-edge underwent a red-shift by more than 4 eV within 140 fs; however, the magnitude of the redshift subsequently diminished within 3 ps. The Fe K-edge of the photoproduct remained lower in energy than that of [Fe(III)(C2O4)3]3−. The observed red-shift of the Fe K-edge and the spectral feature of the product indicate that Fe(III) is upon excitation immediately photoreduced to Fe(II), followed by ligand dissociation from Fe(II). Based on a comparison of the X-ray absorption spectra with density functional theory calculations, we propose that the dissociation proceeds in two steps, forming first [(CO2•)Fe(II)(C2O4)2]3− and subsequently [Fe(II)(C2O4)2]2−. PMID:26798796

  5. Optical re-injection in cavity-enhanced absorption spectroscopy.

    PubMed

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  6. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  7. Optical re-injection in cavity-enhanced absorption spectroscopy

    SciTech Connect

    Leen, J. Brian O’Keefe, Anthony

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  8. Two-dimensional fluorescence spectroscopy of laser-produced plasmas.

    PubMed

    Harilal, S S; LaHaye, N L; Phillips, M C

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of a solid aluminum target at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous wave (cw) Ti:sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the cw laser at one transition. Time-delayed, gated detection of the emission spectrum is used to isolate resonantly excited fluorescence emission from thermally excited emission from the plasma. In addition, the tunable cw laser measures the absorption spectrum of the Al transition with ultrahigh resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing cw laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods. PMID:27472615

  9. Laser Absorption by Over-Critical Plasmas

    NASA Astrophysics Data System (ADS)

    May, J.; Tonge, J.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Mori, W. B.

    2015-11-01

    Absorption of high intensity laser light by matter has important applications to emerging sciences and technology, such as Fast Ignition ICF and ion acceleration. As such, understanding the underlying mechanisms of this absorption is key to developing these technologies. Critical features which distinguish the interaction of high intensity light - defined here as a laser field having a normalized vector potential greater than unity - are that the reaction of the material to the fields results in sharp high-density interfaces; and that the movement of the electrons is in general relativistic, both in a fluid and a thermal sense. The results of these features are that the absorption mechanisms are qualitatively distinct from those at lower intensities. We will review previous work, by our group and others, on the absorption mechanisms, and highlight current research. We will show that the standing wave structure of the reflected laser light is key to particle dynamics for normally incident lasers. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  10. Laser produced plasma diagnostics by cavity ringdown spectroscopy and applications

    SciTech Connect

    Milosevic, S.

    2012-05-25

    Laser-produced plasmas have many applications for which detailed characterization of the plume is requested. Cavity ring-down spectroscopy is a versatile absorption method which provides data on the plume and its surroundings, with spatial and temporal resolution. The measured absorption line shapes contain information about angular and velocity distributions within the plume. In various plasmas we have observed molecules or metastable atoms which were not present in the emission spectra.

  11. Dual-wavelength quantum cascade laser for trace gas spectroscopy

    SciTech Connect

    Jágerská, J.; Tuzson, B.; Mangold, M.; Emmenegger, L.; Jouy, P.; Hugi, A.; Beck, M.; Faist, J.; Looser, H.

    2014-10-20

    We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.

  12. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS

    NASA Astrophysics Data System (ADS)

    Lins, B.; Zinn, P.; Engelbrecht, R.; Schmauss, B.

    2010-08-01

    A simulative investigation of noise effects in wavelength modulation spectroscopy (WMS) and direct absorption diode laser absorption spectroscopy is presented. Special attention is paid to the impact of quantization noise of the analog-to-digital conversion (ADC) of the photodetector signal in the two detection schemes with the goal of estimating the necessary ADC resolution for each technique. With laser relative intensity noise (RIN), photodetector shot noise and thermal amplifier noise included, the strategies used for noise reduction in direct and wavelength modulation spectroscopy are compared by simulating two respective systems. Results show that because of the combined effects of dithering by RIN and signal averaging, the resolutions required for the direct absorption setup are only slightly higher than for the WMS setup. Only for small contributions of RIN an increase in resolution will significantly improve signal quality in the direct scheme.

  13. Properties of Liquid Silicon Observed by Time-Resolved X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, S. L.; Heimann, P. A.; Lindenberg, A. M.; Jeschke, H. O.; Garcia, M. E.; Chang, Z.; Lee, R. W.; Rehr, J. J.; Falcone, R. W.

    2003-10-01

    Time-resolved x-ray spectroscopy at the Si L edges is used to probe the electronic structure of an amorphous Si foil as it melts following absorption of an ultrafast laser pulse. Picosecond temporal resolution allows observation of the transient liquid phase before vaporization and before the liquid breaks up into droplets. The melting causes changes in the spectrum that match predictions of molecular dynamics and ab initio x-ray absorption codes.

  14. Accurate convergence of transient-absorption spectra using pulsed lasers.

    PubMed

    Brazard, Johanna; Bizimana, Laurie A; Turner, Daniel B

    2015-05-01

    Transient-absorption spectroscopy is a common and well-developed technique for measuring time-dependent optical phenomena. One important aspect, especially for measurements using pulsed lasers, is how to average multiple data acquisition events. Here, we use a mathematical analysis method based on covariance to evaluate various averaging schemes. The analysis reveals that the baseline and the signal converge to incorrect values without balanced detection of the probe, shot-by-shot detection, and a specific method of averaging. Experiments performed with sub-7 fs pulses confirm the analytic results and reveal insights into molecular excited-state vibrational dynamics.

  15. Laser engines operating by resonance absorption.

    PubMed

    Garbuny, M; Pechersky, M J

    1976-05-01

    The coherence properties and power levels of lasers available at present lend themselves to the remote operation of mechanical engines by resonance absorption in a working gas. Laser radiation is capable of producing extremely high temperatures in a gas. Limits to the achievable temperatures in the working gas of an engine are imposed by the solid walls and by loss of resonance absorption due to thermal saturation, bleaching, and dissociation. However, it is shown that by proper control of the laser beam in space, time, and frequency, as well as by choice of the absorbing gas, these limits are to a great extent removed so that very high temperatures are indeed attainable. The working gas is largely monatomic, preferably helium with the addition of a few volume percent of an absorber. Such a gas mixture, internally heated, permits an optimization of the expansion ratio, with resulting thermal efficiencies and work ratios, not achievable in conventional engines. A relationship between thermal efficiency and work ratio is derived that is quite general for the optimization condition. The performance of laser piston engines, turbines, and the Stirling cycle based on these principles is discussed and compared with conventional engine operation. Finally, a brief discussion is devoted to the possibility and concepts for the direct conversion of selective vibrational or electronic excitation into mechanical work, bypassing the translational degrees of freedom. PMID:20165143

  16. Laser engines operating by resonance absorption.

    PubMed

    Garbuny, M; Pechersky, M J

    1976-05-01

    The coherence properties and power levels of lasers available at present lend themselves to the remote operation of mechanical engines by resonance absorption in a working gas. Laser radiation is capable of producing extremely high temperatures in a gas. Limits to the achievable temperatures in the working gas of an engine are imposed by the solid walls and by loss of resonance absorption due to thermal saturation, bleaching, and dissociation. However, it is shown that by proper control of the laser beam in space, time, and frequency, as well as by choice of the absorbing gas, these limits are to a great extent removed so that very high temperatures are indeed attainable. The working gas is largely monatomic, preferably helium with the addition of a few volume percent of an absorber. Such a gas mixture, internally heated, permits an optimization of the expansion ratio, with resulting thermal efficiencies and work ratios, not achievable in conventional engines. A relationship between thermal efficiency and work ratio is derived that is quite general for the optimization condition. The performance of laser piston engines, turbines, and the Stirling cycle based on these principles is discussed and compared with conventional engine operation. Finally, a brief discussion is devoted to the possibility and concepts for the direct conversion of selective vibrational or electronic excitation into mechanical work, bypassing the translational degrees of freedom.

  17. Frequency modulation spectroscopy with a THz quantum-cascade laser.

    PubMed

    Eichholz, R; Richter, H; Wienold, M; Schrottke, L; Hey, R; Grahn, H T; Hübers, H-W

    2013-12-30

    We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening.

  18. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    EPA Science Inventory

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  19. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  20. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan; Santos Sousa, Joao; Stancu, Gabi Daniel; Hubertus van Helden, Jean-Pierre

    2015-10-01

    Absorption spectroscopy (AS) represents a reliable method for the characterization of cold atmospheric pressure plasma jets. The method’s simplicity stands out in comparison to competing diagnostic techniques. AS is an in situ, non-invasive technique giving absolute densities, free of calibration procedures, which other diagnostics, such as laser-induced fluorescence or optical emission spectroscopy, have to rely on. Ground state densities can be determined without the knowledge of the influence of collisional quenching. Therefore, absolute densities determined by absorption spectroscopy can be taken as calibration for other methods. In this paper, fundamentals of absorption spectroscopy are presented as an entrance to the topic. In the second part of the manuscript, a review of AS performed on cold atmospheric pressure plasma jets, as they are used e.g. in the field of plasma medicine, is presented. The focus is set on special techniques overcoming not only the drawback of spectrally overlapping absorbing species, but also the line-of-sight densities that AS usually provides or the necessity of sufficiently long absorption lengths. Where references are not available for measurements on cold atmospheric pressure plasma jets, other plasma sources including low-pressure plasmas are taken as an example to give suggestions for possible approaches. The final part is a table summarizing examples of absorption spectroscopic measurements on cold atmospheric pressure plasma jets. With this, the paper provides a ‘best practice’ guideline and gives a compendium of works by groups performing absorption spectroscopy on cold atmospheric pressure plasma jets.

  1. Laser Spectroscopy for Atmospheric and Environmental Sensing

    PubMed Central

    Fiddler, Marc N.; Begashaw, Israel; Mickens, Matthew A.; Collingwood, Michael S.; Assefa, Zerihun; Bililign, Solomon

    2009-01-01

    Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF), cavity ring-down spectroscopy (CRDS), and photoluminescence (PL) techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs). PMID:22303184

  2. A Laser Absorption Spectroscopy System for 2D Mapping of CO2 Over Large Spatial Areas for Monitoring, Reporting and Verification of Ground Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Braun, M.; Blume, N.; McGregor, D.; Zaccheo, T. S.; Pernini, T.; Botos, C.

    2014-12-01

    We will present the development of the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE). GreenLITE consists of two laser based transceivers and a number of retro-reflectors to measure differential transmission (DT) of a number of overlapping chords in a plane over the site being monitored. The transceivers use the Intensity Modulated Continuous Wave (IM-CW) approach, which is a technique that allows simultaneous transmission/reception of multiple fixed wavelength lasers and a lock-in, or matched filter, to measure amplitude and phase of the different wavelengths in the digital domain. The technique was developed by Exelis and has been evaluated using an airborne demonstrator for the past 10 years by NASA Langley Research Center. The method has demonstrated high accuracy and high precision measurements as compared to an in situ monitor tracable to WMO standards, agreeing to 0.65 ppm +/-1.7 ppm. The GreenLITE system is coupled to a cloud-based data storage and processing system that takes the measured chord data, along with auxiliary data to retrieve an average CO2 concentration per chord and which combines the chords to provide an estimate of the spatial distribution of CO2 concentration in the plane. A web-based interface allows users to view real-time CO2 concentrations and 2D concentration maps of the area being monitored. The 2D maps can be differenced as a function of time for an estimate of the flux across the plane measured by the system. The system is designed to operate autonomously from semi-remote locations with a very low maintenance cycle. Initial instrument tests, conducted in June, showed signal to noise in the measured ratio of >3000 for 10 s averages. Additional local field testing and a quantifiable field testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, MT are planned for this fall. We will present details on the instrument and software tools that have been developed, along with results from the local

  3. Absorption and fluorescence spectroscopy on a smartphone

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    A self-powered smartphone-based field-portable "dual" spectrometer has been developed for both absorption and fluorescence measurements. The smartphone's existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.

  4. Blackbody absorption efficiencies for six lamp pumped Nd laser materials

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.

  5. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu. A.; Romanovskii, Yu. V.

    2015-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review.

  6. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  7. New on-line method for water isotope analysis of fluid inclusions in speleothems using laser absorption spectroscopy: Application to stalagmites from Borneo and Switzerland

    NASA Astrophysics Data System (ADS)

    Affolter, Stéphane; Fleitmann, Dominik; Nele Meckler, Anna; Leuenberger, Markus

    2014-05-01

    Speleothems are recognised as key continental archives for paleoclimate reconstructions. They contain fluid inclusions representing past drip water trapped in the calcite structure. Speleothem can be precisely dated and therefore the oxygen (δ18O) and hydrogen (δD) isotopes of fluid inclusions constitute powerful proxies for paleotemperature or to investigate changes in the moisture source over several interglacial-glacial cycles. To liberate fluid inclusion water and to analyse its isotopic composition, a new online extraction method developed at Bern is used. The principle can be summarised as follows: Prior to crushing, the sample is placed into a copper tube, fixed to the line previously heated to 140° C and flushed with a nitrogen and standard water mixture. Thereafter, the speleothem sample is crushed using a simple hydraulic crushing device and the released water from fluid inclusions is transferred by the nitrogen-standard water mixture flow to a Picarro L1102-i isotopic liquid water and water vapor analyser. The measuring principle is based on wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology that allows us to simultaneously monitor hydrogen and oxygen isotopes. Reproducibility of standard water measurements is typically better than 1.5 o for δD and 0.4 o for δ18O. With this method, we successfully analysed δD and δ18O isotopic composition of a stalagmite from Northern Borneo (tropical West Pacific) covering almost two glacial-interglacial cycles from MIS 12 to early MIS 9 (460-330 ka) as well as recent samples from Switzerland and Borneo. These results are used in combination with calcite δ18O to reconstruct paleotemperature. Currently, we are measuring a stalagmite from Milandre cave (Jura, Switzerland) covering the Bølling-Allerød, Younger Dryas cold phase and the Holocene.

  8. Fibre lasers for photo-acoustic gas spectroscopy

    NASA Astrophysics Data System (ADS)

    Arsad, Norhana; Stewart, George

    2011-05-01

    We report here on the use of fiber lasers for recovery of gas absorption line shapes by photo-acoustic spectroscopy. We demonstrate the principle of operation using an erbium-doped fiber, stabilized using a length of un-pumped doped fibre as a saturable absorber. Intensity modulation of the laser output for phase sensitive detection is performed by modulation of the pump current while the wavelength is scanned through the absorption line by a PZT on a fibre Bragg grating. This avoids the distortions that arise in recovered signals due to simultaneous wavelength and intensity modulation, as is the case with conventional DFB diode lasers. Furthermore, the near zero off-line signals with photo-acoustic spectroscopy means that high modulation indices can be used with simple intensity modulation of the fiber laser output. The modulation frequency is set to the acoustic resonance frequency of the gas cell and measurements are made on the P17 absorption line of acetylene at 1535.39nm showing good agreement with the theoretical line-shape profile.

  9. [Study of retrieving formaldehyde with differential optical absorption spectroscopy].

    PubMed

    Li, Yu-Jin; Xie, Pin-Hua; Qin, Min; Qu, Xiao-Ying; Hu, Lin

    2009-01-01

    The present paper introduces the method of retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS). The authors measured ambient HCHO in Beijing region with the help of differential optical absorption spectroscopy instrument made by ourself, and discussed numerous factors in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), especially, the choice of HCHO wave band, how to avoid absorption of ambient SO2, NO2 and O3, and the influence of the Xenon lamp spectrum structure on the absorption of ambient HCHO. The authors achieved the HCHO concentration by simultaneously retrieving the concentrations of HCHO, SO2, NO2 and O3 with non-linear least square fitting method, avoiding the effect of choosing narrow wave of HCHO and the residual of SO2, NO2, O3 and the Xenon lamp spectrum structure in retrieving process to attain the concentration of HCHO, Finally the authors analyzed the origin of error in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), and the total error is within 13.7% in this method. PMID:19385238

  10. Atomic absorption spectroscopy with high temperature flames.

    PubMed

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed.

  11. CO2 laser light absorption characteristics of metal powders

    NASA Astrophysics Data System (ADS)

    Haag, M.; Hügel, H.; Albright, C. E.; Ramasamy, S.

    1996-04-01

    Absorption characteristics of metal powders for 10.6 μm CO2 laser radiation were examined. Using a calorimetric method, absorptance measurements were performed on four different powder materials, including aluminum, copper, iron, and titanium aluminide. The experimental results showed that laser absorptance depends on powder porosity and material. The measured absorptance values at low laser intensities ranged between 28% and 43%. The titanium aluminide powders showed the highest absorptance values, and aluminum powders the lowest. As laser intensity was increased, the copper and iron powders showed strong signs of oxidation when irradiated in air, resulting in an increase in absorptance. Neither oxidation nor increased absorptance were observed when helium or argon were used as shielding gas.

  12. High-intensity laser heating in liquids: Multiphoton absorption

    SciTech Connect

    Longtin, J.P.; Tien, C.L.

    1995-12-31

    At high laser intensities, otherwise transparent liquids can absorb strongly by the mechanism of multiphoton absorption, resulting in absorption and heating several orders of magnitude greater than classical, low-intensity mechanisms. The use of multiphoton absorption provides a new mechanism for strong, controlled energy deposition in liquids without bulk plasma formation, shock waves, liquid ejection, etc., which is of interest for many laser-liquid applications, including laser desorption of liquid films, laser particle removal, and laser water removal from microdevices. This work develops a microscopically based model of the heating during multiphoton absorption in liquids. The dependence on pulse duration, intensity, wavelength, repetition rate, and liquid properties is discussed. Pure water exposed to 266 nm laser radiation is investigated, and a novel heating mechanism for water is proposed that uses multiple-wavelength laser pulses.

  13. Laser frequency stabilization using bichromatic crossover spectroscopy

    SciTech Connect

    Jeong, Taek; Seb Moon, Han

    2015-03-07

    We propose a Doppler-free spectroscopic method named bichromatic crossover spectroscopy (BCS), which we then use for the frequency stabilization of an off-resonant frequency that does not correspond to an atomic transition. The observed BCS in the 5S{sub 1/2} → 5P{sub 1/2} transition of {sup 87}Rb is related to the hyperfine structure of the conventional saturated absorption spectrum of this transition. Furthermore, the Doppler-free BCS is numerically calculated by considering all of the degenerate magnetic sublevels of the 5S{sub 1/2} → 5P{sub 1/2} transition in an atomic vapor cell, and is found to be in good agreement with the experimental results. Finally, we successfully achieve modulation-free off-resonant locking at the center frequency between the two 5S{sub 1/2}(F = 1 and 2) → 5P{sub 1/2}(F′ = 1) transitions using a polarization rotation of the BCS. The laser frequency stability was estimated to be the Allan variance of 2.1 × 10{sup −10} at 1 s.

  14. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90∘ off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  15. Deep ultraviolet Raman spectroscopy: A resonance-absorption trade-off illustrated by diluted liquid benzene

    NASA Astrophysics Data System (ADS)

    Chadwick, C. T.; Willitsford, A. H.; Philbrick, C. R.; Hallen, H. D.

    2015-12-01

    The magnitude of resonance Raman intensity, in terms of the real signal level measured on-resonance compared to the signal level measured off-resonance for the same sample, is investigated using a tunable laser source. Resonance Raman enhancements, occurring as the excitation energy is tuned through ultraviolet absorption lines, are used to examine the 1332 cm-1 vibrational mode of diamond and the 992 cm-1 ring-breathing mode of benzene. Competition between the wavelength dependent optical absorption and the magnitude of the resonance enhancement is studied using measured signal levels as a function of wavelength. Two system applications are identified where the resonance Raman significantly increases the real signal levels despite the presence of strong absorption: characterization of trace species in laser remote sensing and spectroscopy of the few molecules in the tiny working volumes of near-field optical microscopy.

  16. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    SciTech Connect

    Tilikin, I. N. Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-15

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  17. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    NASA Astrophysics Data System (ADS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  18. Diode laser absorption tomography using data compression techniques

    NASA Astrophysics Data System (ADS)

    Lindstrom, Chad; Tam, Chung-Jen; Givens, Ryan; Davis, Doug; Williams, Skip

    2008-02-01

    Tunable diode laser absorption spectroscopy (TDLAS) shows promise for in situ monitoring in high-speed flows. However, the dynamic nature of typical flows of supersonic combustors, gas turbine engines and augmenters can also lead to inhomogenities that cannot be captured by a single line-of-sight TDLAS measurement. Instead, multiple measurements varied over several spatial locations need to be made. In the current study, shock train structure in the isolator section of the Research Cell 18 supersonic combustion facility at Wright-Patterson AFB is measured. Although only two view angles are available for measurement, multiple absorption features along with a priori computational fluid dynamics (CFD) simulations enable estimates of two dimensional flow features to be formed. Vector quantization/kmeans data clustering is used to identify key flow features from the temporal history of the raw sinograms. Through the use of multiple absorption features that are measured nearly simultaneously, an approximate two-dimensional image can be formed. This image can be further refined through the use of an optimal set of basis functions that can be derived from a set of CFD simulations that describes the flow shapes.

  19. Infrared and near infrared transient absorption spectroscopy of molecular free radicals

    SciTech Connect

    Sears, T.J.; Wu, M.; Hall, G.E.; Chang, B.C.; Hansford, G.; Bloch, J.C.; Field, R.W.

    1993-12-31

    The advantages of absorption spectroscopy at low absorbances include a linear relationship between signal size and number of absorbing molecules, line of sight measurement, and easily interpretable lineshape functions. The main disadvantage is due to the necessity of measuring a small change in light intensity, usually in the presence of a strong background, which limits the sensitivity. In this work, recent results obtained using absorption techniques with continuous wave lasers to measure vibrational and electronic spectra in the mid- and near-infrared of small free radicals are reported. The radical of interest was generated by excimer laser photolysis of a chemically stable precursor molecule and detected by measuring the transient decrease in power of a continuous wave probe laser that traversed the photolyzed volume before being imaged onto a detector.

  20. Calculation of laser absorption by metal powders in additive manufacturing.

    PubMed

    Boley, C D; Khairallah, S A; Rubenchik, A M

    2015-03-20

    We have calculated the absorption of laser light by a powder of metal spheres, typical of the powder employed in laser powder-bed fusion additive manufacturing. Using ray-trace simulations, we show that the absorption is significantly larger than its value for normal incidence on a flat surface, due to multiple scattering. We investigate the dependence of absorption on powder content (material, size distribution, and geometry) and on beam size.

  1. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  2. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  3. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  4. [Infrared spectroscopy based on quantum cascade lasers].

    PubMed

    Wen, Zhong-Quan; Chen, Gang; Peng, Chen; Yuan, Wei-Qing

    2013-04-01

    Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 microm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.

  5. Laser-supported solid-state absorption fronts in silica

    NASA Astrophysics Data System (ADS)

    Carr, C. W.; Bude, J. D.; Demange, P.

    2010-11-01

    We develop a model based on simulation and extensive experimentation that explains the behavior of solid-state laser-supported absorption fronts generated in fused silica during high intensity (up to 5GW/cm2 ) laser exposure. Both experiments and simulations show that the absorption front velocity is constant in time and is nearly linear in laser intensity. Further, this model can explain the dependence of laser damage site size on these parameters. We show that these absorption fronts naturally result from the combination of high-temperature-activated deep subband-gap optical absorptivity, free-electron transport, and thermal diffusion in defect-free silica for temperatures up to 15000K and pressures <10GPa . The regime of parameter space critical to this problem spans and extends that measured by other means. It serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  6. Laser Induced Breakdown Spectroscopy of Metals

    NASA Astrophysics Data System (ADS)

    Palmer, Andria; Lawhead, Carlos; Ujj, Laszlo

    2015-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a very practical spectroscopy to determine the chemical composition of materials. Recent technical developments resulted in equipment used on the MARS Rover by NASA. It is capable of measuring the emission spectra of laser induced plasma created by energetic laser pulses focused on the sample (rocks, metals, etc.). We have develop a Laser Induced Breakdown Spectroscopy setup and investigated the necessary experimental and methodological challenges needed to make such material identification measurements. 355 and 532 nm laser pulses with 5 ns temporal duration was used to generate micro-plasma from which compositions can be determined based on known elemental and molecular emission intensities and wavelengths. The performance of LIBS depends on several parameters including laser wavelength, pulse energy, pulse duration, time interval of observation, geometrical configuration of collecting optics, and the properties of ambient medium. Spectra recorded from alloys (e.g. US penny coin) and pure metals will be presented. Special thanks for the financial support of the Office of Undergraduate Research of UWF.

  7. Tunable diode-laser absorption measurements of methane at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Nagali, V.; Chou, S. I.; Baer, D. S.; Hanson, R. K.; Segall, J.

    1996-07-01

    A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2 nu 3 band near 1.646 mu m, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH 4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.

  8. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  9. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  10. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    NASA Astrophysics Data System (ADS)

    Drescher, L.; Galbraith, M. C. E.; Reitsma, G.; Dura, J.; Zhavoronkov, N.; Patchkovskii, S.; Vrakking, M. J. J.; Mikosch, J.

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  11. Biological X-ray absorption spectroscopy and metalloproteomics.

    PubMed

    Ascone, Isabella; Strange, Richard

    2009-05-01

    In the past seven years the size of the known protein sequence universe has been rapidly expanding. At present, more then five million entries are included in the UniProtKB/TrEMBL protein database. In this context, a retrospective evaluation of recent X-ray absorption studies is undertaken to assess its potential role in metalloproteomics. Metalloproteomics is the structural and functional characterization of metal-binding proteins. This is a new area of active research which has particular relevance to biology and for which X-ray absorption spectroscopy is ideally suited. In the last three years, biological X-ray absorption spectroscopy (BioXAS) has been included among the techniques used in post-genomics initiatives for metalloprotein characterization. The emphasis of this review is on the progress in BioXAS that has emerged from recent meetings in 2007-2008. Developments required to enable BioXAS studies to better contribute to metalloproteomics throughput are also discussed. Overall, this paper suggests that X-ray absorption spectroscopy could have a higher impact on metalloproteomics, contributing significantly to the understanding of metal site structures and of reaction mechanisms for metalloproteins. PMID:19395808

  12. Laser Spectroscopy of Iridium Monochloride

    NASA Astrophysics Data System (ADS)

    Linton, Colan; Adam, Allan G.; Foran, Samantha; Ma, Tongmei; Steimle, Timothy

    2016-06-01

    Iridium monochloride (IrCl) molecules have been produced in the gas phase using laser ablation sources at the University of New Brunswick (UNB) and Arizona State University (ASU). Low resolution laser induced fluorescence (LIF) spectra, obtained at UNB using a pulsed dye laser, showed three bands at 557, 545 and 534 nm which appeared to form an upper state vibrational progression. Dispersed fluorescence (DF) spectra, obtained by exciting each band at its band head frequency, showed a ground state vibrational progression extending from v=0 to 6. High resolution spectra (FWHM=0.006 wn), taken using a cw ring dye laser, showed resolved rotational lines, broadened by unresolved Ir (I=3/2) hyperfine structure, in both the 193Ir35Cl and 191Ir35Cl isotopologues. Vibrational assignments of 0-0, 1-0 and 2-0 for the three bands were determined from the isotope structure and the rotational analysis showed the transition to be ^3Φ_4 - ^3Φ_4, similar to that previously observed in IrF. Higher resolution spectra (FWHM=0.001 wn) of the 1-0 band, obtained at ASU, showed resolved hyperfine structure from which the magnetic and quadrupole hyperfine parameters in the ground and excited states were determined. The interpretation of the hyperfine parameters in terms of the electron configurations will be presented along with a comparison of the properties of IrCl and IrF.

  13. Laser spectroscopy and dynamics of transient species

    SciTech Connect

    Clouthier, D.J.

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  14. Electron Wavepacket Interference Observed by Attosecond Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gallmann, L.; Holler, M.; Schapper, F.; Keller, U.

    Attosecond time-resolved transient absorption spectroscopy is performed in a dense helium target by superimposing an attosecond pulse train (APT) with a moderately strong infrared field. We observe rapid oscillations of the absorption of the individual harmonics as a function of time-delay between the APT and IR field even for harmonic energies well below the ionization threshold. The phase dependence of these modulations on atto-chirp and IR intensity yields direct evidence for the interference of transiently bound electronic wavepackets as the underlying mechanism.

  15. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    NASA Astrophysics Data System (ADS)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    * Mixing Frequency Generation of 271.0 - 291.5 nm in β - BaB2O4 * Low Temperature Absorption Steps Near Ultraviolet Intrinsic Edge in Beta Barium Metaborate * The Growth and Properties of BaTiO3 Crystals * High-order Phenomena Accompanied with Self-pumped Phase Conjugation in BaTiO * Growth and Laser Damage Estimation of Potassium Dihydrogen Phosphate Crystals for Laser Fusion * Noncritically Phase-matched KTP for Diode-pumped Lasers (400-700 nm) * Potassium Titanyl Phosphate (KTP): Properties and New Applications * A Kind of New Defect in KTP Crystal and its SHG Enhanced Effect * Nucleation and Growth of the Non-linear Optical Crystal Potassium Pentaborate Tetrahydrate * Quasi-periodic Oscillations in Photoinduced Conical Light Scattering from LiNbO3 : Fe Crystals * Laser Excited Photoreflectance of GaxIn1-xAs/InP Multiple Quantum Wells * Growth, Spectroscopic Properties and Applications of Doped LiNbO3 Crystals * Photorefractive and Photovoltaic Effect in Doped LiNbO3 * Recent Advances in Photorefractive Nonlinear Optics * Study on the Doubling-frequency and Anti-photorefractive Property of Heavily Magnesium-doped Lithium-rich Lithium Niobate Crystals * A New Technique for Increasing Two-wave Mixing Gain in Photorefractive Bi12SiO20 Crystals * Experimental Proof: There Existing Another Mechanism of Photorefractive Index in Crystal Ce-SBN * Effect of Crystal Annealing on Holographic Recording in Bismuth Silicon Oxide * Two Wave Coupling in KNbO3 Photorefractive Crystal * Photorefractive Effects in Nd-Doped Ferroelectric (KxNa1-x)0.4-(SryBa1-y)0.8 Nb2O6 Single Crystal * High Pressure Raman Spectra and the Effect of Pressure to the Ferroelastic Phase Transition in LnP5O15 * Time-delay Four-wave Mixing with Incoherent Light in Absorption Bands Treated as a Multi-level System * Pulsed Laser Induced Dislocation Structure in Lithium Fluoride Single Crystals * Laser Spectroscopy * Nonclassical Radiation from Single-atom Oscillators * Laser Spectroscopic Studies of Molecules in

  16. Laser photoelectron spectroscopy of ions

    SciTech Connect

    Ellison, G.B.

    1993-12-01

    During the last year the author has (a) completed a review article that critically contrasts three methods to measure R-H bond energies, (b) finished a spectroscopic study of the phenylnitrene anion, and (c) successfully completed an overhaul of the light source of the photodetachment spectrometer. The new light source is based on an Ar III laser that provides approximately 100 W of 3.531 eV photons.

  17. Optimizing ultrashort laser pulse compression by two photon absorption

    NASA Astrophysics Data System (ADS)

    Welch, G.; Frisch, J.; Smith, S.; Glownia, J. M.; Fry, A.

    2016-02-01

    Demonstrated is an approach for relative optimization of ultrashort pulses using two-photon generated photocurrent in a GaAsP photodiode. Two-photon absorption is a nonlinear process, allowing for highly sensitive tuning of ultrashort laser systems.

  18. Absorption spectroscopy of wire-array plasma at the non-radiative stage

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Durmaz, T.; Anderson, A.; Astanovitskiy, A.; Chalyy, O.; Altemara, S. D.; Papp, D.; McKee, E.; Chittenden, J. P.; Niasse, N.; Shevelko, A. P.

    2010-11-01

    Absorption spectroscopy was applied to 1 MA wire-array Z-pinches. The 50 TW Leopard laser was coupled with the Zebra generator for x-ray backlighting of wire arrays. Wire-array plasmas were investigated at the ablation and implosion stages. Broadband x-ray radiation from a laser produced Sm plasma was used to backlight Al star wire arrays in the range of 7-9 å. Two time-integrated x-ray conical spectrometers recorded reference and main spectra. The backlighting radiation was separated from the powerful Z-pinch x-ray burst by collimators. A comparison of the backlighting radiation spectra that passed through the plasma with reference spectra indicates absorption lines in the range of 8.2-8.4 å. A plasma density profile was simulated with a 3D resistive MHD code. Simulations with atomic kinetics models derived an electron temperature of Al wire-array plasma.

  19. Laser supported solid state absorption fronts in silica

    SciTech Connect

    Carr, C W; Bude, J D

    2010-02-09

    We develop a model based on simulation and experiment that explains the behavior of solid-state laser-supported absorption fronts generated in fused silica during high intensity (up to 5GW/cm{sup 2}) laser exposure. We find that the absorption front velocity is constant in time and is nearly linear in laser intensity. Further, this model can explain the dependence of laser damage site size on these parameters. This behavior is driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. The regime of parameter space critical to this problem spans and extends that measured by other means. It serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  20. Nonlinear absorption of short intense laser pulse in multispecies plasma

    NASA Astrophysics Data System (ADS)

    Kargarian, A.; Hajisharifi, K.; Mehdian, H.

    2016-08-01

    In the present paper, the detailed investigation concerning the effect of inclusion of heavy negative ions into the finite background plasma on the laser absorption has been carried out by employing particle-in-cell simulation method. For this purpose, in this configuration, the laser energy absorption relying on the nonlinear phenomena such as phase-mixing, wave-breaking, and scattering has been studied in the Raman-Brillouin regime. It is shown that the inclusion of heavy negative ions suppresses the scattering while increases the phase-mixing time. Moreover, it is illustrated that this inclusion can increase the laser absorption in finite plasma environment, after saturation. The obtained results are expected to be relevant to the experiments on the mass spectrometry with laser desorption techniques as well as on the laser-plasma interaction with application to particles acceleration.

  1. Beta-decay studies using total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    GSI-TAS Collaboration; LUCRECIA-TAgS Collaboration; Algora, A.; Batist, L.; Borge, M. J. G.; Cano-Ott, D.; Collatz, R.; Courtin, S.; Dessagne, Ph; Fraile, L. M.; Gadea, A.; Gelletly, W.; Hellström, M.; Janas, Z.; Jungclaus, A.; Kirchner, R.; Karny, M.; Le Scornet, G.; Miehé, Ch; Maréchal, F.; Moroz, F.; Nácher, E.; Poirier, E.; Roeckl, E.; Rubio, B.; Rykaczewski, K.; Tain, J. L.; Tengblad, O.; Wittmann, V.

    2003-04-01

    . Beta-decay experiments are a primary source of information for nuclear-structure studies and at the same time complementary to in-beam investigations of nuclei far from stability. Although both types of experiment are mainly based on γ -ray spectroscopy, they face different experimental problems. The so-called Pandemonium effect is a critical problem in β -decay if we are to test theoretically calculated transition probabilities. In this contribution we will present a solution to this problem using total absorption spectroscopy methods. We will also present some examples of experiments carried out with the Total Absorption Spectrometer (TAS) at GSI an describe a new device LUCRECIA recently installed at CERN.

  2. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  3. Terahertz vibrational absorption spectroscopy using microstrip-line waveguides

    NASA Astrophysics Data System (ADS)

    Byrne, M. B.; Cunningham, J.; Tych, K.; Burnett, A. D.; Stringer, M. R.; Wood, C. D.; Dazhang, L.; Lachab, M.; Linfield, E. H.; Davies, A. G.

    2008-11-01

    We demonstrate that terahertz microstrip-line waveguides can be used to measure absorption spectra of polycrystalline materials with a high frequency resolution (˜2 GHz) and with a spatial resolution that is determined by the microstrip-line dimensions, rather than the free-space wavelength. The evanescent terahertz-bandwidth electric field extending above the microstrip line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. As an example, the terahertz absorption spectrum of polycrystalline lactose monohydrate was investigated; the lowest lying mode was observed at 534(±2) GHz, in excellent agreement with free-space measurements. This microstrip technique offers both a higher spatial and frequency resolution than free-space terahertz time-domain spectroscopy and requires no contact between the waveguide and sample.

  4. Laser spectroscopy of iridium monoboride

    NASA Astrophysics Data System (ADS)

    Ye, Jianjun; Pang, H. F.; Wong, A. M.-Y.; Leung, J. W.-H.; Cheung, A. S.-C.

    2008-04-01

    High resolution laser induced fluorescence spectrum of IrB in the spectral region between 545 and 610nm has been recorded and analyzed. Reacting laser-ablated iridium atoms with 1% B2H6 seeded in argon produced the IrB molecule. This is the first experimental observation of the IrB molecule. Four vibronic transition bands, (v,0) with v =0-3 of an electronic transition system, have been observed. Spectra of all four isotopic molecules, Ir191B10, Ir193B10, Ir191B11, and Ir193B11, were recorded. Isotopic relationships confirmed the carrier of the spectra and the vibrational quantum number assignment. Preliminary analysis of rotational lines showed that these vibronic bands are with Ω'=2 and Ω″=3. The electronic transition identified is assigned as the [16.5]Π23-XΔ33 system. Partially resolved hyperfine structure which conforms to the Hund's case aβ coupling scheme has been observed and analyzed. The bond length r0 of the lower XΔ33 state of IrB was determined to be 1.7675Å.

  5. Use of absorption spectroscopy for refined petroleum product discrimination

    NASA Astrophysics Data System (ADS)

    Short, Michael

    1991-07-01

    On-line discrimination between arbitrary petroleum products is necessary for optimal control of petroleum refinery and pipeline operation and process control involving petroleum distillates. There are a number of techniques by which petroleum products can be distinguished from one another. Among these, optical measurements offer fast, non-intrusive, real-time characterization. The application examined here involves optically monitoring the interface between dissimilar batches of fluids in a gasoline pipeline. After examination of near- infrared and mid-infrared absorption spectroscopy and Raman spectroscopy, Fourier transform mid-infrared (FTIR) spectroscopy was chosen as the best candidate for implementation. On- line FTIR data is presented, verifying the applicability of the technique for batch interface detection.

  6. Laser spectroscopy of muonic deuterium.

    PubMed

    Pohl, Randolf; Nez, François; Fernandes, Luis M P; Amaro, Fernando D; Biraben, François; Cardoso, João M R; Covita, Daniel S; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Giesen, Adolf; Gouvea, Andrea L; Graf, Thomas; Hänsch, Theodor W; Indelicato, Paul; Julien, Lucile; Knowles, Paul; Kottmann, Franz; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A M; Ludhova, Livia; Monteiro, Cristina M B; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; dos Santos, Joaquim M F; Schaller, Lukas A; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David; Veloso, João F C A; Antognini, Aldo

    2016-08-12

    The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ(-). We measured three 2S-2P transitions in μd and obtain r(d) = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value r(d) = 2.1424(21) fm. The μd value is also 3.5σ smaller than the r(d) value from electronic deuterium spectroscopy. The smaller r(d), when combined with the electronic isotope shift, yields a "small" proton radius r(p), similar to the one from muonic hydrogen, amplifying the proton radius puzzle. PMID:27516595

  7. Laser spectroscopy of muonic deuterium

    NASA Astrophysics Data System (ADS)

    Pohl, Randolf; Nez, François; Fernandes, Luis M. P.; Amaro, Fernando D.; Biraben, François; Cardoso, João M. R.; Covita, Daniel S.; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Giesen, Adolf; Gouvea, Andrea L.; Graf, Thomas; Hänsch, Theodor W.; Indelicato, Paul; Julien, Lucile; Knowles, Paul; Kottmann, Franz; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A. M.; Ludhova, Livia; Monteiro, Cristina M. B.; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; dos Santos, Joaquim M. F.; Schaller, Lukas A.; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David; Veloso, João F. C. A.; Antognini, Aldo

    2016-08-01

    The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ-. We measured three 2S-2P transitions in μd and obtain rd = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value rd = 2.1424(21) fm. The μd value is also 3.5σ smaller than the rd value from electronic deuterium spectroscopy. The smaller rd, when combined with the electronic isotope shift, yields a “small” proton radius rp, similar to the one from muonic hydrogen, amplifying the proton radius puzzle.

  8. Laser spectroscopy of muonic deuterium

    NASA Astrophysics Data System (ADS)

    Pohl, Randolf; Nez, François; Fernandes, Luis M. P.; Amaro, Fernando D.; Biraben, François; Cardoso, João M. R.; Covita, Daniel S.; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Giesen, Adolf; Gouvea, Andrea L.; Graf, Thomas; Hänsch, Theodor W.; Indelicato, Paul; Julien, Lucile; Knowles, Paul; Kottmann, Franz; Le Bigot, Eric-Olivier; Liu, Yi-Wei; Lopes, José A. M.; Ludhova, Livia; Monteiro, Cristina M. B.; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; dos Santos, Joaquim M. F.; Schaller, Lukas A.; Schuhmann, Karsten; Schwob, Catherine; Taqqu, David; Veloso, João F. C. A.; Antognini, Aldo

    2016-08-01

    The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ–. We measured three 2S-2P transitions in μd and obtain rd = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value rd = 2.1424(21) fm. The μd value is also 3.5σ smaller than the rd value from electronic deuterium spectroscopy. The smaller rd, when combined with the electronic isotope shift, yields a “small” proton radius rp, similar to the one from muonic hydrogen, amplifying the proton radius puzzle.

  9. Laser-induced breakdown spectroscopy in Asia

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Zhen; Deguchi, Yoshihiro; Zhang, Zhen-Zhen; Wang, Zhe; Zeng, Xiao-Yan; Yan, Jun-Jie

    2016-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

  10. Radiant energy absorption studies for laser propulsion. [gas dynamics

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.

    1975-01-01

    A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.

  11. X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse

    NASA Astrophysics Data System (ADS)

    Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.

    2007-05-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.

  12. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  13. Quantum cascade laser linewidth investigations for high resolution photoacoustic spectroscopy.

    PubMed

    Germer, Markus; Wolff, Marcus

    2009-02-01

    High detection selectivity is extremely important for gas analyzers in order to correctly identify the measured compound. Therefore, laser-based systems require a high optical resolution, which primarily depends on the spectral linewidth of the radiation source. This study examines the effective linewidth (chirp) of a pulsed distributed feedback (DFB) quantum cascade laser (QCL) in a photoacoustic (PA) gas detection system. The influence of the QCL operating parameters pulse duration and pulse current as well as the impact of the modulation technique are investigated. Effective QCL linewidths for pulse gate modulation, pulse frequency modulation, and chopper modulation are compared. The investigations are performed by measuring the PA spectra of nitrogen monoxide absorption lines. The results prove the strong influence of pulse duration and pulse current. They also demonstrate that the modulation technique has a considerable influence and, consequently, affects the detection selectivity of the PA analyzer. The aim of this research is to determine optimum operational parameters for high resolution PA spectroscopy.

  14. Use of laser diodes in cavity ring-down spectroscopy

    SciTech Connect

    Zare, R.N.; Paldus, B.A.; Ma, Y.; Xie, J.

    1997-12-31

    We have demonstrated that cavity ring-down spectroscopy (CRDS), a highly sensitive absorption technique, is versatile enough to serve as a complete diagnostic for materials process control. In particular, we have used CRDS in the ultraviolet to determine the concentration profile of methyl radicals in a hot-filament diamond reactor; we have applied CRDS in the mid-infrared to detect 50 ppb of methane in a N{sub 2} environment; and, we have extended CRDS so that we can use continuous-wave diode laser sources. Using a laser diode at 810 nm, we were able to achieve a sensitivity of 2 x 10{sup -8} cm{sup -1}. Thus, CRDS can be used not only as an in situ diagnostic for investigating the chemistry of diamond film deposition, but it can also be used as a gas purity diagnostic for any chemical vapor deposition system.

  15. Resonant excited state absorption and relaxation mechanisms in Tb3+-doped calcium aluminosilicate glasses: an investigation by thermal mirror spectroscopy.

    PubMed

    Bianchi, G S; Zanuto, V S; Astrath, F B G; Malacarne, L C; Terra, I A A; Catunda, T; Nunes, L A O; Jacinto, C; Andrade, L H C; Lima, S M; Baesso, M L; Astrath, N G C

    2013-11-15

    Resonant excited state absorption (ESA) and relaxation processes in Tb(3+)-doped aluminosilicate glasses are quantitatively evaluated. A model describing the excitation steps and upconversion emission is developed and applied to interpret the results from laser-induced surface deformation using thermal mirror spectroscopy. The fluorescence quantum efficiency of level (5)D(4) was found to be close to unity and concentration independent while, for the level (5)D(3), it decreases with Tb(3+) concentration. Emission spectroscopy measurements supported these results. ESA cross sections are found to be more than three orders of magnitude higher than the ground state absorption cross section. PMID:24322101

  16. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  17. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    SciTech Connect

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  18. Transient absorption and laser output of YAG : Nd

    NASA Astrophysics Data System (ADS)

    Kvapil, Jiří; Kvapil, Jos; Kubelka, J.; Kubeček, V.

    1981-06-01

    YAG : Nd grown under 98% Ar 2% H2 protective atmosphere free of nitrogen or hydrocarbons showed after UV irradiation broad absorption peaked at ˜1·9×104 cm-1 which disappeared relatively slowly at room temperature. It was more intensive in oxygen treated samples than in those annealed in hydrogsn. Transient absorption suppresses laser output by the increase of absorption at 0·94×104 cm-1 (1064 nm) and, particularly in CW mode, by the anomalous rod deformation. YAG : Nd containing Fe ions (≲2·10-4 wt%) showed no transient absorption.

  19. Exhaust gas monitoring based on absorption spectroscopy in the process industry

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Shu, Xiao-wen; Kan, Rui-feng; Cui, Yi-ben; He, Ying; Xu, Zhen-yu; Geng, Hui; Liu, Jian-guo

    2009-07-01

    This non-invasive gas monitor for exhaust gas monitoring must has high reliability and requires little maintenance. Monitor for in-situ measurements using tunable diode laser absorption spectroscopy (TDLAS) in the near infrared, can meet these requirements. TDLAS has evolved over the past decade from a laboratory especially to an accepted, robust and reliable technology for trace gas sensing. With the features of tunability and narrow linewidth of the distributed feedback (DFB) diode laser and by precisely tuning the laser output wavelength to a single isolated absorption line of the gas, TDLAS technique can be utilized to measure gas concentration with high sensitivity. Typical applications for monitoring of H2S, NH3, HC1 and HF are described here together by wavelength modulation spectroscopy with second-harmonic(WMS-2F) detection. This paper will illustrate the problems related to on-line applications, in particular, the overfall effects, automatic light intensity correction, temperature correction, which impacted on absorption coefficient and give details of how effect of automatic correction is necessary. The system mainly includes optics and electronics, optical system mainly composed of fiber, fiber coupler and beam expander, the electron part has been placed in safe analysis room not together with the optical part. Laser merely passes through one-meter-long pipes by the fiber coupling technology, so the system itself has anti-explosion. The results of the system are also presented in the end, the system's response time is only 0.5s, and can be achieved below 1×10-5 the detection limit at the volume fraction, it can entirely replace the traditional methods of detection exhaust gas in the process industry.

  20. Absorption spectroscopy with sub-angstrom beams: ELS in STEM

    NASA Astrophysics Data System (ADS)

    Spence, John C. H.

    2006-03-01

    Electron-energy loss spectroscopy (EELS) performed using a modern transmission scanning electron microscope (STEM) now offers sub-nanometre spatial resolution and an energy resolution down to 200 meV or less, in favourable cases. The absorption spectra, which probe empty states, cover the soft x-ray region and may be obtained under conditions of well-defined momentum transfer (angle-resolved), providing a double projection onto crystallographic site and symmetry within the density of states. By combining the very high brightness of field-emission electron sources (brighter than a synchrotron) with the high cross-section of electron scattering, together with parallel detection (not possible with scanning x-ray absorption spectroscopy), a form of spectroscopy ideally suited to the study of nanostructures, interfacial states and defects in materials is obtained with uniquely high spatial resolution. We review the basic theory, the relationship of EELS to optical properties and the dielectric response function, the removal of multiple scattering artefacts and channelling effects. We consider applications in the light of recent developments in aberration corrector and electron monochromator design. Examples are cited of inner-shell spectra obtained from individual atoms within thin crystals, of the detection of interfacial electronic states in semiconductors, of inner-shell near edge structure mapped with sub-nanometre spatial resolution in glasses and of spectra obtained from individual carbon nanotubes, amongst many others.

  1. X-Ray Absorption Spectroscopy Study of Copper Doped ZnO Thin Films

    SciTech Connect

    Ma Qing

    2007-02-02

    X-ray absorption spectroscopy technique is used to study copper-doped ZnO thin films, prepared by pulsed-laser deposition. The samples with various doping levels are examined. It is found that the samples contain metallic clusters with the sizes {<=} 2 nm as well as Cu1+ and Cu2+ states. The Cu1+ states exist as stable oxide clusters, while the Cu2+ ones participate in the ZnO lattice some of which may be pertaining to the surfaces of the Cu clusters as well. The copper clusters of {approx}1 nm are unstable and fragment under monochromatic x-ray beam illumination.

  2. Transient absorption spectroscopy detection of sensitized delayed fluorescence in chiral benzophenone/naphthalene systems

    NASA Astrophysics Data System (ADS)

    Bonancía, Paula; Jiménez, M. Consuelo; Miranda, Miguel A.

    2011-10-01

    Transient absorption spectroscopy has proven to be a powerful tool to investigate the formation and decay of excited singlet states upon triplet-triplet annihilation, following T-T energy transfer from a selectively excited sensitizer. Thus, upon selective excitation of benzophenone (BZP) by laser flash photolysis (LFP) at λ = 355 nm in the presence of naphthalene (NPT), a negative band centered at 340 nm has been detected, with growth and decay in the microsecond timescale. It has been assigned to the P-type NPT delayed-fluorescence. In the case of chiral BZP/NPT systems, stereodifferentiation has been observed in the kinetics of the involved photophysical processes.

  3. Absorption of femtosecond laser pulses in interaction with solid targets.

    PubMed

    Dong, Q L; Zhang, J; Teng, H

    2001-08-01

    We have studied the effects of the plasma density scale length on the absorption mechanism of the femtosecond (fs) laser pulses interacting with solid targets. Experiments and particle-in-cell (PIC) simulations demonstrate that the vacuum heating is the main absorption in the plasma in the interaction of fs laser pulses with solid targets when no prepulses are applied. The energy spectrum of hot electrons ejected out of or injected into the plasma show a bitemperature distribution. While the first temperature of the two groups of hot electrons can be attributed to the "pull-and-push" exertion of the laser field, the second temperature refers to the electrons accelerated by the static part (in front of the target) and the oscillating part (in the plasma layer) of the laser-induced electric field, respectively. PIC simulations also show that with an appropriate density scale length, the femtosecond laser energy can be absorbed locally through different mechanisms.

  4. Ultra-Short Laser Absorption In Solid Targets

    SciTech Connect

    Harfouche, A.; Bendib, A.

    2008-09-23

    With the rapid development and continuously improving technology of subpicosecond laser pulse generation, new interesting physical problems are now investigated. Among them the laser light absorption in solid targets. During the interaction with solid targets, high intensity laser pulses are absorbed by electrons in optical skin depths, leading to rapid ionization before that significant ablation of solid material takes place. The ultra-short laser is absorbed in the overdense plasma through the electron-ion collisions (normal skin effect) or collisionless mechanisms (anomalous skin effect or sheath inverse bremsstrahlung). These two regimes depend on the laser intensity, the plasma temperature and the ionization state Z. In this work we solve numerically the Fokker-Planck equation to compute the electron distribution function in the skin layer. In the second step we compute the surface impedance and we deduce the absorption coefficient.

  5. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    SciTech Connect

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  6. Suppression of excited-state absorption in laser crystals

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena; Kolesov, Roman; Kocharovskaya, Olga

    2004-10-01

    Currently, a lot of experimental effort in solid-state optics is devoted to searching for laser materials suitable for tunable lasing, primarily in UV and VUV spectral regions. Researchers mainly focus on optical crystals doped with either transition metal or rare-earth ions. The latter ones doped into wide bandgap dielectric crystals have spectrally broad vibronic emission bands associated with 4fn-15d â" 4fn interconfigurational transitions, whose energies lie mostly in UV and VUV regions of the spectrum. The transitions are electric-dipole-allowed, therefore have large absorption and emission cross-sections, and are promising for efficient tunable laser action. However, in almost all promising crystals laser action in UV and VUV is hindered or completely prohibited due to excited-state absorption (ESA), i.e. absorption from metastable laser levels to higher-energy states, which occurs at emission or/and pump wavelengths. A method of suppression of losses due to excited-state absorption (ESA) in laser crystals is proposed, based on a well-known phenomenon of electromagnetically induced transparency (EIT). Absorption from a populated excited electronic state can be reduced under the action of an additional driving coherent field, resonantly coupling the terminal state of ESA to some intermediate discrete state.

  7. Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene

    NASA Astrophysics Data System (ADS)

    Khachatrian, A.; Dagdigian, P. J.

    2009-09-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of a polymer (polystyrene) with laser irradiation in the mid-infrared (mid-IR) spectral region is presented. A particular goal of this study is to determine whether the LIBS signals are enhanced when the laser wavelength is tuned to that of a vibrational transition of the polymer. Significant enhancements were indeed observed upon irradiation on the C-H stretch fundamental vibrational transitions. In addition, mode-specific effects were observed; the signals were stronger, compared to the relative intensities in the one-photon absorption spectrum, for irradiation on the aromatic (phenyl) C-H stretch transitions, rather than those involving aliphatic (backbone) C-H modes. The applicability of mid-IR resonance enhanced LIBS for detection of residues on surfaces is discussed.

  8. Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts

    SciTech Connect

    Carr, C W; Bude, J D; Shen, N; Demange, P

    2010-10-26

    Previously we have shown that the size of laser induced damage sites in both KDP and SiO{sub 2} is largely governed by the duration of the laser pulse which creates them. Here we present a model based on experiment and simulation that accounts for this behavior. Specifically, we show that solid-state laser-supported absorption fronts are generated during a damage event and that these fronts propagate at constant velocities for laser intensities up to 4 GW/cm{sup 2}. It is the constant absorption front velocity that leads to the dependence of laser damage site size on pulse duration. We show that these absorption fronts are driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport, and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. In addition to the practical application of selecting an optimal laser for pre-initiation of large aperture optics, this work serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  9. Photoacoustic-based detector for infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Scholz, L.; Palzer, S.

    2016-07-01

    In this contribution, we present an alternative detector technology for use in direct absorption spectroscopy setups. Instead of a semiconductor based detector, we use the photoacoustic effect to gauge the light intensity. To this end, the target gas species is hermetically sealed under excess pressure inside a miniature cell along with a MEMS microphone. Optical access to the cell is provided by a quartz window. The approach is particularly suitable for tunable diode laser spectroscopy in the mid-infrared range, where numerous molecules exhibit large absorption cross sections. Moreover, a frequency standard is integrated into the method since the number density and pressure inside the cell are constant. We demonstrate that the information extracted by our method is at least equivalent to that achieved using a semiconductor-based photon detector. As exemplary and highly relevant target gas, we have performed direct spectroscopy of methane at the R3-line of the 2v3 band at 6046.95 cm-1 using both detector technologies in parallel. The results may be transferred to other infrared-active transitions without loss of generality.

  10. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  11. X-ray absorption spectroscopy of liquid surface

    NASA Astrophysics Data System (ADS)

    Watanabe, Iwao; Tanida, Hajime; Kawauchi, Sigehiro; Harada, Makoto; Nomura, Masaharu

    1997-09-01

    An apparatus has been constructed for x-ray absorption spectroscopy of elements at air/aqueous solution interface. Its surface sensitivity is gained from glancing incidence of synchrotron radiation under total reflection condition. The absorption is detected by total conversion He ion-yield method. This apparatus was operated at the beam line 7C of Photon Factory, where the incident photon beam comes from a sagittal focus double-crystal monochromator via a 70-cm-long bent mirror. The mirror focuses the beam vertically and changes the beam direction downward by 1 mrad to irradiate solution surface. The essential requirement of this technique, ripple-free liquid surface at accurate position, was attained by introducing a trough on a floating boat, continuous surface level monitoring, and an automatic Z-stage control. The x-ray absorption edge jump demonstrated that surface concentration of bromide ion follows the Langmuir type adsorption for tetraalkylammonuim bromide solution. By comparing the jump values for surface-active and -inactive bromide salt solutions, the detecting depth of the present technique was determined to be 8.8 nm. An extended x-ray absorption fine structure analysis of bromide ion segregated to the surface by stearyltrimethylammonium cation indicated that its solvation structure is different from that of bulk.

  12. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  13. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  14. Fraunhofer-type absorption lines in double-pulse laser-induced plasma.

    PubMed

    Nagli, Lev; Gaft, Michael; Gornushkin, Igor

    2012-03-01

    We studied the confocal double-pulse laser-induced plasma in the very beginning of its life. It was found that the second laser pulse fired 0.7 to 5 µs after the first pulse produces plasma which, during the first 0 to 20 ns, resembles solar configuration. There is a very hot and compact plasma core that radiates a broad continuum spectrum and a much larger and cooler outer shell. The light from the hot core passes through the cold outer shell and is partly absorbed by atoms and ions that are in ground (or close to ground) states. This produces absorption lines that are similar to Fraunhofer lines observed in the sun spectrum. The possibility to use these absorption lines for new direct and calibration free laser-induced breakdown spectroscopy analytical applications, both in laboratory and industrial conditions, is proved.

  15. Monitoring of catalyst performance in CO2 lasers using frequency modulation spectroscopy with diode lasers

    NASA Technical Reports Server (NTRS)

    Wang, Liang-Guo; Sachse, Glen

    1990-01-01

    Closed-cycle CO2 laser operation with removal of O2 and regeneration of CO2 can be achieved by catalytic CO-O2 recombination. Both parametric studies of the optimum catalyst formulation and long-term performance tests require on line monitoring of CO, O2 and CO2 concentrations. There are several existing methods for molecular oxygen detection. These methods are either intrusive (such as electrochemical method or mass spectrometry) or very expensive (such as CARS, UV laser absorption). Researchers demonstrated a high-sensitivity spectroscopic measurement of O2 using the two-tone frequency modulation spectroscopy (FMS) technique with a near infrared GaAlAs diode laser. Besides its inexpensive cost, fast response time, nonintrusive measurements and high sensitivity, this technique may also be used to differentiate between isotopes due to its high spectroscopic resolution. This frequency modulation spectroscopy technique could also be applied for the on-line monitoring of CO and CO2 using InGaAsP diode lasers operation in the 1.55 microns region and H2O in the 1.3 microns region. The existence of single mode optical fibers at the near infrared region makes it possible to combine FMS with optical fiber technology. Optical fiber FMS is particularly suitable for making point-measurements at one or more locations in the CO2 laser/catalyst system.

  16. Spatially resolved concentration measurements based on backscatter absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Sanders, Scott T.; Robinson, Michael A.

    2016-06-01

    We demonstrate the feasibility of spatially resolved measurements of gas properties using direct absorption spectroscopy in conjunction with backscattered signals. We report a 1-D distribution of H2O mole fraction with a spatial resolution of 5 mm. The peak and average discrepancy between the measured and expected mole fraction are 21.1 and 8.0 %, respectively. The demonstration experiment is related to a diesel aftertreatment system; a selective catalytic reduction brick made of cordierite is used. The brick causes volume scattering interference; advanced baseline fitting based on a genetic algorithm is used to reduce the effects of this interference by a factor of 2.3.

  17. Atmospheric absorption spectroscopy using Tm: fiber sources around two microns

    NASA Astrophysics Data System (ADS)

    Kadwani, Pankaj; Chia, Jeffrey; Altal, Faleh; Sims, Robert A.; Willis, Christina; Shah, Lawrence; Killinger, Dennis; Richardson, Martin C.

    2011-03-01

    We report on a thulium doped silica fiber ASE source for absorption spectroscopy of CO2. The average spectral power of this source was 2.3-6.1 μW/nm. This low spectral power of this source posed limitation in the sensitivity of the system which was overcome by using an ultrashort pulsed Raman amplifier system with 50-125 μW/nm average spectral power. This system produced CO2 sensitivity better than 300 ppm making measurement of CO2 possible at standard atmospheric concentrations.

  18. Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusiona)

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Li, D.; Radha, P. B.; Sawada, H.; Seka, W.; Boehly, T. R.; Delettrez, J. A.; Gotchev, O. V.; Knauer, J. P.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Sangster, T. C.; Shvarts, D.; Skupsky, S.; Smalyuk, V. A.; Yaakobi, B.; Mancini, R. C.

    2007-05-01

    Direct-drive laser absorption, mass ablation rate, and shock heating are experimentally studied on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] to validate hydrodynamics simulations. High-gain, direct-drive inertial confinement fusion target implosions require accurate predictions of the shell adiabat α (entropy), defined as the pressure in the main fuel layer to the Fermi-degenerate pressure, and the implosion velocity of the shell. The laser pulse shape determines the shell adiabat and the hydrodynamic efficiency determines the implosion velocity. A comprehensive set of measurements tracking the flow of energy from the laser to the target was conducted. Time-resolved measurements of laser absorption in the corona are performed on spherical implosion experiments. The mass ablation rate is inferred from time-resolved Ti K-shell spectroscopic measurements of nonaccelerating, solid CH spherical targets with a buried tracer layer of Ti. Shock heating is diagnosed in planar-CH-foil targets using time-resolved x-ray absorption spectroscopy and noncollective spectrally resolved x-ray scattering. The highly reproducible experimental results achieved with a high level of laser drive uniformity [S. P. Regan et al., J. Opt. Soc. Am. B 22, 998 (2005)] constrain the modeling of direct-drive energy coupling. A detailed comparison of the experimental results and the simulations reveals that a single-value flux limiter in the thermal transport model cannot explain all of the experimental observables. Simulations of laser absorption measurements need a time-dependent flux limiter to match the data. Modeling of both resonance absorption and nonlocal effects in the electron thermal conduction from the critical density to the ablation front are underway to resolve the observed discrepancies.

  19. Ultrafast laser spectroscopy in complex solid state materials

    SciTech Connect

    Li, Tianqi

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  20. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    NASA Astrophysics Data System (ADS)

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-10-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural—including strongly scattering and nonfluorescent—materials.

  1. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy.

    PubMed

    Hager, J D; Lanier, N E; Kline, J L; Flippo, K A; Bruns, H C; Schneider, M; Saculla, M; McCarville, T

    2014-11-01

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO2 foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured. PMID:25430177

  2. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy

    SciTech Connect

    Hager, J. D. Lanier, N. E.; Kline, J. L.; Flippo, K. A.; Bruns, H. C.; Schneider, M.; Saculla, M.; McCarville, T.

    2014-11-15

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO{sub 2} foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured.

  3. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa

    PubMed Central

    Aquilanti, Giuliana; Trapananti, Angela; Karandikar, Amol; Kantor, Innokenty; Marini, Carlo; Mathon, Olivier; Pascarelli, Sakura; Boehler, Reinhard

    2015-01-01

    Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa. PMID:26371317

  4. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa.

    PubMed

    Aquilanti, Giuliana; Trapananti, Angela; Karandikar, Amol; Kantor, Innokenty; Marini, Carlo; Mathon, Olivier; Pascarelli, Sakura; Boehler, Reinhard

    2015-09-29

    Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa.

  5. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  6. Picosecond time-resolved X-ray absorption spectroscopy of ultrafast aluminum plasmas.

    PubMed

    Audebert, P; Renaudin, P; Bastiani-Ceccotti, S; Geindre, J-P; Chenais-Popovics, C; Tzortzakis, S; Nagels-Silvert, V; Shepherd, R; Matsushima, I; Gary, S; Girard, F; Peyrusse, O; Gauthier, J-C

    2005-01-21

    We have used point-projection K-shell absorption spectroscopy to infer the ionization and recombination dynamics of transient aluminum plasmas. Two femtosecond beams of the 100 TW laser at the LULI facility were used to produce an aluminum plasma on a thin aluminum foil (83 or 50 nm), and a picosecond x-ray backlighter source. The short-pulse backlighter probed the aluminum plasma at different times by adjusting the delay between the two femtosecond driving beams. Absorption x-ray spectra at early times are characteristic of a dense and rather homogeneous plasma. Collisional-radiative atomic physics coupled with hydrodynamic simulations reproduce fairly well the measured average ionization as a function of time. PMID:15698184

  7. Electronic structure investigation of highly compressed aluminum with K edge absorption spectroscopy.

    PubMed

    Benuzzi-Mounaix, A; Dorchies, F; Recoules, V; Festa, F; Peyrusse, O; Levy, A; Ravasio, A; Hall, T; Koenig, M; Amadou, N; Brambrink, E; Mazevet, S

    2011-10-14

    The electronic structure evolution of highly compressed aluminum has been investigated using time resolved K edge x-ray absorption spectroscopy. A long laser pulse (500 ps, I(L)≈8×10(13) W/cm(2)) was used to create a uniform shock. A second ps pulse (I(L)≈10(17)  W/cm(2)) generated an ultrashort broadband x-ray source near the Al K edge. The main target was designed to probe aluminum at reshocked conditions up to now unexplored (3 times the solid density and temperatures around 8 eV). The hydrodynamical conditions were obtained using rear side visible diagnostics. Data were compared to ab initio and dense plasma calculations, indicating potential improvements in either description. This comparison shows that x-ray-absorption near-edge structure measurements provide a unique capability to probe matter at these extreme conditions and severally constrains theoretical approaches currently used. PMID:22107398

  8. Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses

    NASA Astrophysics Data System (ADS)

    Grismayer, T.; Vranic, M.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.

    2016-05-01

    A model for laser light absorption in electron-positron plasmas self-consistently created via QED cascades is described. The laser energy is mainly absorbed due to hard photon emission via nonlinear Compton scattering. The degree of absorption depends on the laser intensity and the pulse duration. The QED cascades are studied with multi-dimensional particle-in-cell simulations complemented by a QED module and a macro-particle merging algorithm that allows to handle the exponential growth of the number of particles. Results range from moderate-intensity regimes ( ˜ 10 PW ) where the laser absorption is negligible to extreme intensities ( > 100 PW ) where the degree of absorption reaches 80%. Our study demonstrates good agreement between the analytical model and simulations. The expected properties of the hard photon emission and the generated pair-plasma are investigated, and the experimental signatures for near-future laser facilities are discussed.

  9. Sensitive detection of weak absorption signals in photoacoustic spectroscopy by using derivative spectroscopy and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zheng, Jincun; Tang, Zhilie; He, Yongheng; Guo, Lina

    2008-05-01

    This report presents a practical analytical method of photoacoustic (PA) spectroscopy that is based on wavelet transform (WT) and the first-derivative PA spectrum. An experimental setup is specially designed to obtain the first-derivative spectrum, which aims to identify some unnoticeable absorption peaks in the normal PA spectrum. To enhance the detectability of overlapping spectral bands, the WT is used to decompose the PA spectrum signals into a series of localized contributions (details and approximation) on the basis of the frequency. For the decomposed contributions do not change the absorption peak position of PA spectrum, one can retrieve the weak absorption signals by the decomposed result of WT. Because of the use of derivative spectroscopy and WT, three unnoticeable absorption peaks that are hidden in the PA spectrum of carbon absorption are precisely retrieved, the wavelengths of which are 699.7, 752.7, and 775.5nm, respectively. This analytical method, which has the virtue of using a physical method and using a computer software method, can achieve great sensitivity and accuracy for PA spectral analysis.

  10. Excited-state molecular structures captured by X-ray transient absorption spectroscopy: a decade and beyond.

    PubMed

    Chen, Lin X; Zhang, Xiaoyi; Lockard, Jenny V; Stickrath, Andrew B; Attenkofer, Klaus; Jennings, Guy; Liu, Di-Jia

    2010-03-01

    Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes have been studied in disordered media from homogeneous solutions to heterogeneous solution-solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled. PMID:20164647

  11. Excited-state molecular structures captured by x-ray transient absorption spectroscopy : a decade and beyond.

    SciTech Connect

    Chen, L. X.; Zhang, X.; Lockard, J. V.; Stickrath, A. B.; Attenkofer, K.; Jennings, G.; Liu, D.-J.; Northwestern Univ.

    2010-03-02

    Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes have been studied in disordered media from homogeneous solutions to heterogeneous solution-solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled.

  12. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  13. Laser-absorption sensing of gas composition of products from coal gasification

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.

    2014-06-01

    A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.

  14. On the possibility of measuring atmospheric OH using intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Mcmanus, J. Barry; Kolb, C. E.

    1994-01-01

    Intracavity laser spectroscopy (ILS) has been demonstrated to be useful for measuring extremely weak absorption produced by gases in air. ILS is based on the observation that when there are spectrally narrow losses within the cavity of a broadband laser, the laser output has corresponding spectral holes where the laser oscillation is partially quenched. The depth of the laser output dips can be enhanced by a factor of 10(exp 5) over the depth of the initial cavity loss, and absorptivities of 10(exp -8) cm(exp -1) have been measured in lasers only one meter long. With ILS, one can achieve in a compact space a spectral contrast that would otherwise require kilometers of pathlength. ILS systems typically use quasi-continuous wave dye lasers operating close to threshold. The pump laser is modulated from just below to just above the threshold level for the dye laser, and the dye laser output is spectroscopically observed during a well defined time interval after the onset of lasing (the generation time). The spectral contrast of an intracavity absorber is equivalent to that produced by absorption through a path length equal to the generation time multiplied by the speed of light (assuming the cavity is completely filed with the absorber) up to some limiting time. Thus, if one measures the spectrum after 33 microseconds, the effective path length is 10,000 meters.

  15. Cavity Enhanced absorption spectroscopy with an Optical Comb: Detection of atmospheric radicals in the near UV.

    NASA Astrophysics Data System (ADS)

    Méjean, G.; Kassi, S.; Romanini, D.

    2009-04-01

    The atmospheric chemistry community suffers a lack of fast, reliable and space resolved measurement for a wide set of very reactive molecules (e.g. radicals such as OH, NO3, BrO, IO, etc.). Due to their high reactivity, these molecules largely control the lifetime and concentration of numerous key atmospheric species. The concentrations of radicals are extremely low (ppbv or less) and highly variable in time and space. Measuring their concentration is often extremely laborious, expensive and requires heavy equipment (chemical sampling and treatment followed by mass spectrometry and/or chromatography). We recently introduced an optical spectroscopy technique based on a femtosecond laser oscillator, "Mode-Locked Cavity-Enhanced Absorption Spectroscopy", that we propose to develop into an instrument for in situ measurement of local concentration of traces of reactive molecules [1-3]. We have already demonstrated the possibility of measuring part in 1E12 by volume concentrations of radicals of high atmospheric interest, such as IO or BrO [4], as needed for monitoring these species in the environment. We apply cavity-enhanced absorption spectroscopy in the near UV range using a frequency-doubled Ti:Sa modelocked femtosecond laser. Efficient broadband injection of a high finesse cavity is obtained by matching this optical frequency-comb source to the comb of cavity transmission resonances. A grating spectrograph and a detector array disperse and detect the spectrum transmitted by the cavity carrying the absorption features of intracavity molecules. IO traces were obtained by mixing together controlled flows of gaseous iodine and ozone inside a high finesse cavity (F~6000). A Chameleon Ultra II ML-Laser (gracefully lent during 1 month by Coherent Inc.) was frequency doubled to address an absorption band of IO at 436 nm. A locking scheme allowed the cavity transmission to be smooth and stable. The transmitted light was dispersed using a high resolution (0.07nm) grating

  16. Measurement of Apparent Thermal Conductivity and Laser Absorptivity of Individual Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Liu, Jin-hui; Wang, Hai-dong; Hu, Yu-dong; Ma, Wei-gang; Zhang, Xing

    2015-11-01

    The apparent thermal conductivity (ATC) and laser absorptivity (α ) are important properties of miro/nano materials but a challenge to measure due to their small size. In this paper, a simple and effective method employing Raman spectroscopy together with electrical heating is developed to measure thermal properties of micro/nano wires. The sample used in the experiment is very simple and easy to fabricate. The ATC is obtained by measuring the temperature difference induced by changing the electrical heating power; the laser heating power is neither neglected nor needed. Using the laser heating temperature rise and the measured ATC, the absorbed laser power can be calculated. Three individual carbon fibers were studied using the presented method.

  17. HCl yield and chemical kinetics study of the reaction of Cl atoms with CH3I at the 298 K temperature using the infra-red tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharma, R. C.; Blitz, M.; Wada, R.; Seakins, P. W.

    2014-07-01

    Pulsed ArF excimer laser (193 nm) - CW infrared(IR) tunable diode laser Herriott type absorption spectroscopic technique has been made for the detection of product hydrochloric acid HCl. Absorption spectroscopic technique is used in the reaction chlorine atoms with methyl iodide (Cl + CH3I) to the study of kinetics on reaction Cl + CH3I and the yield of (HCl). The reaction of Cl + CH3I has been studied with the support of the reaction Cl + C4H10 (100% HCl) at temperature 298 K. In the reaction Cl + CH3I, the total pressure of He between 20 and 125 Torr at the constant concentration of [CH3I] 7.0 × 1014 molecule cm-3. In the present work, we estimated adduct formation is very important in the reaction Cl + CH3I and reversible processes as well and CH3I molecule photo-dissociated in the methyl [CH3] radical. The secondary chemistry has been studied as CH3 + CH3ICl = product, and CH3I + CH3ICl = product2. The system has been modeled theoretically for secondary chemistry in the present work. The calculated and experimentally HCl yield nearly 65% at the concentration 1.00 × 1014 molecule cm-3 of [CH3I] and 24% at the concentration 4.0 × 1015 molecule cm-3 of [CH3I], at constant concentration 4.85 × 1012 molecule cm-3 of [CH3], and at 7.3 × 1012 molecule cm-3 of [Cl]. The pressure dependent also studied product of HCl at the constant [CH3], [Cl] and [CH3I]. The experimental results are also very good matching with the modelling work at the reaction CH3 + CH3ICl = product (k = (2.75 ± 0.35) × 10-10 s-1) and CH3I + CH3ICl = product2 (k = 1.90 ± 0.15) × 10-12 s-1. The rate coefficients of the reaction CH3 + CH3ICl and CH3I + CH3ICl has been made in the present work. The experimental results has been studied by two method (1) phase locked and (2) burst mode.

  18. HCl yield and chemical kinetics study of the reaction of Cl atoms with CH3I at the 298K temperature using the infra-red tunable diode laser absorption spectroscopy.

    PubMed

    Sharma, R C; Blitz, M; Wada, R; Seakins, P W

    2014-07-15

    Pulsed ArF excimer laser (193 nm)-CW infrared (IR) tunable diode laser Herriott type absorption spectroscopic technique has been made for the detection of product hydrochloric acid HCl. Absorption spectroscopic technique is used in the reaction chlorine atoms with methyl iodide (Cl+CH3I) to the study of kinetics on reaction Cl+CH3I and the yield of (HCl). The reaction of Cl+CH3I has been studied with the support of the reaction Cl+C4H10 (100% HCl) at temperature 298 K. In the reaction Cl+CH3I, the total pressure of He between 20 and 125 Torr at the constant concentration of [CH3I] 7.0×10(14) molecule cm(-3). In the present work, we estimated adduct formation is very important in the reaction Cl+CH3I and reversible processes as well and CH3I molecule photo-dissociated in the methyl [CH3] radical. The secondary chemistry has been studied as CH3+CH3ICl = product, and CH3I+CH3ICl = product2. The system has been modeled theoretically for secondary chemistry in the present work. The calculated and experimentally HCl yield nearly 65% at the concentration 1.00×10(14) molecule cm(-3) of [CH3I] and 24% at the concentration 4.0×10(15) molecule cm(-3) of [CH3I], at constant concentration 4.85×10(12) molecule cm(-3) of [CH3], and at 7.3×10(12) molecule cm(-3) of [Cl]. The pressure dependent also studied product of HCl at the constant [CH3], [Cl] and [CH3I]. The experimental results are also very good matching with the modelling work at the reaction CH3+CH3ICl = product (k = (2.75±0.35)×10(-10) s(-1)) and CH3I+CH3ICl = product2 (k = 1.90±0.15)×10(-12) s(-1). The rate coefficients of the reaction CH3+CH3ICl and CH3I+CH3ICl has been made in the present work. The experimental results has been studied by two method (1) phase locked and (2) burst mode.

  19. Planar laser-driven ablation model for nonlocalized absorption

    SciTech Connect

    Dahmani, F.; Kerdja, T. )

    1991-05-01

    A model for planar laser-driven ablation is presented. Nonlocalized inverse bremsstrahlung absorption of laser energy at a density {ital n}{sub 1}{lt}{ital n}{sub {ital c}} is assumed. A steady-state solution in the conduction zone is joined to a rarefaction wave in the underdense plasma. The calculations relate all steady-state fluid quantities to only the material, absorbed intensity, and laser wavelength. The theory agrees well with results from a computer hydrodynamics code MEDUSA (Comput. Phys. Commun. {bold 7}, 271 (1974)) and experiments.

  20. Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Fikri, Mustapha; Schulz, Christof; Hellmig, Ortwin; Baev, Valery M.

    2016-06-01

    In this paper, we demonstrate the first application of intracavity absorption spectroscopy (ICAS) for monitoring species concentration, total pressure, and temperature in shock-tube experiments. ICAS with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of absorption spectra of shock-heated C2H2. The measurements are performed in a spectral range between 6512 and 6542 cm-1, including many absorption lines of C2H2, with a time resolution of 100 µs and an effective absorption path length of 15 m. Up to 18-times increase of the total pressure and a temperature rise of up to 1200 K have been monitored. Due to the ability of simultaneously recording many absorption lines in a broad spectral range, the presented technique can also be applied to multi-component analysis of transient single-shot processes in reactive gas mixtures in shock tubes, pulse detonation engines, or explosions.

  1. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  2. High Speed H2O Concentration Measurements Using Absorption Spectroscopy to Monitor Exhaust Gas

    SciTech Connect

    Kranendonk, Laura; Parks, II, James E; Prikhodko, Vitaly Y; Partridge Jr, William P

    2008-01-01

    This paper demonstrates the potential for fast absorption spectroscopy measurements in diesel-engine exhaust to track H2O concentration transients. Wavelength-agile absorption spectroscopy is an optical technique that measures broadband absorption spectra between 10kHz and 100 MHz. From these measured spectra, gas temperature and absorber concentration can be determined. The Fourier-domain mode-locking (FDML) laser is becoming recognized as one of the most robust and reliable wavelength-agile sources available. H2O concentration measurements during combustion events at crank angle resolved speeds are beneficial for a wide variety of applications, such as product improvements for industry, control and reliability checks for experimental researchers, and measures of fit for numerical simulations. The difficulties associated with measuring diesel exhaust compared to in-cylinder measurements are discussed. A full description of the experimental configuration and data processing is explained. Measurements of engine exhaust H2O transients with 10- s temporal resolution are presented for a range of engine conditions.

  3. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    SciTech Connect

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C. Rosa, M. I. de la

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  4. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  5. Laser-Raman spectroscopy of living cells

    NASA Astrophysics Data System (ADS)

    Webb, Sydney J.

    1980-04-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1, has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1, from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced “collective” Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell “time clock” may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis.

  6. Use of X-ray absorption spectroscopy in the search for the best LIGO mirror coatings

    NASA Astrophysics Data System (ADS)

    McGuire, Stephen C.

    2008-03-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) seeks to improve its sensitivity for gravity-wave detection by a factor of ten during its next phase of operation, Advanced LIGO. In order to achieve this goal it is necessary to design and fabricate test mass mirrors that help minimize the noise in the interferometers and in doing so maximize gravity-wave detection capability. In this talk we will present recent results from our program of X-ray absorption spectroscopy measurements to obtain detailed chemical composition and structure of titania (TiO2)-doped tantala (Ta2O5) multilayers fabricated via ion beam sputtering on SiO2 substrates. Our investigations focus on how the microscopic features of the coatings influence their macroscopic mechanical loss properties. Our goal is to obtain correlations between chemical impurities and/or dopants and the optical absorption and mechanical loss characteristics of these multilayer coatings. To examine our samples we use synchrotron-based X-ray absorption Spectroscopy (XAS) techniques including Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES) and X-ray Fluorescence (XRF). We present chemical and structural data obtained at the titanium K-edge and tantalum LIII-edge as well as relative elemental distribution information (Ti/Ta, Fe/Ta, and Cr/Ta) obtained via XRF. Following a brief description of the LIGO experiment, our program of research in optical materials for use in advanced versions of the interferometer will be described.

  7. Low Level Laser Therapy: laser radiation absorption in biological tissues

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  8. Correlation between laser absorption and radiation conversion efficiency in laser produced tin plasma

    SciTech Connect

    Matsukuma, Hiraku Hosoda, Tatsuya; Fujioka, Shinsuke; Nishimura, Hiroaki; Sunahara, Atsushi; Yanagida, Tatsuya; Tomuro, Hiroaki; Kouge, Kouichiro; Kodama, Takeshi

    2015-09-21

    The correlation between the laser absorption and the conversion efficiency (CE) for 13.5 nm extreme ultraviolet (EUV) light in a laser-produced tin plasma was investigated. The absorption rate α and the CE were measured simultaneously for a laser-pre-formed low-density tin target as a function of the time delay between the pre-pulse and the main laser pulse. A clear and positive correlation between α and CE was found with increasing delay time; however, the CE decreases rapidly at longer delay times. This result is partly attributed to a reduction in the absorption rate, but is mainly attributed to the self-absorption of EUV light in excessively long-scale plasmas.

  9. Spatially resolved argon microplasma diagnostics by diode laser absorption

    SciTech Connect

    Miura, Naoto; Hopwood, Jeffrey

    2011-01-01

    Microplasmas were diagnosed by spatially resolved diode laser absorption using the Ar 801.4 nm transition (1s{sub 5}-2p{sub 8}). A 900 MHz microstrip split ring resonator was used to excite the microplasma which was operated between 100-760 Torr (13-101 kPa). The gas temperatures and the Ar 1s{sub 5} line-integrated densities were obtained from the atomic absorption lineshape. Spatially resolved data were obtained by focusing the laser to a 30 {mu}m spot and translating the laser path through the plasma with an xyz microdrive. At 1 atm, the microplasma has a warm core (850 K) that spans 0.2 mm and a steep gradient to room temperature at the edge of the discharge. At lower pressure, the gas temperature decreases and the spatial profiles become more diffuse.

  10. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  11. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals

    SciTech Connect

    Curl, Robert F; Glass, Graham

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  12. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  13. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  14. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Serrano, A.; Rodríguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Monton, C.; Castro, G. R.; García, M. A.

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10-3 to 10-5, depending on the particular experiment.

  15. Performance assessment and signal processing for range-integrated concentration measurement of gas species using supercontinuum absorption spectroscopy.

    PubMed

    Dobroc, Alexandre; Cézard, Nicolas

    2012-12-10

    In this paper, we propose signal-processing tools adapted to supercontinuum absorption spectroscopy, in order to predict the precision of gas species concentration estimation. These tools are based on Cramer-Rao bounds computations. A baseline-insensitive concentration estimation algorithm is proposed. These calculations are validated by statistical tests on simulated supercontinuum signals as well as experimental data using a near-infrared supercontinuum laser and a grating spectrometer.

  16. Ultrasensitive laser spectroscopy for breath analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Bielecki, Z.; Stacewicz, T.; Mikołajczyk, J.; Nowakowski, M.

    2012-03-01

    At present there are many reasons for seeking new methods and technologies that aim to develop new and more perfect sensors for different chemical compounds. However, the main reasons are safety ensuring and health care. In the paper, recent advances in the human breath analysis by the use of different techniques are presented. We have selected non-invasive ones ensuring detection of pathogenic changes at a molecular level. The presence of certain molecules in the human breath is used as an indicator of a specific disease. Thus, the analysis of the human breath is very useful for health monitoring. We have shown some examples of diseases' biomarkers and various methods capable of detecting them. Described methods have been divided into non-optical and optical methods. The former ones are the following: gas chromatography, flame ionization detection, mass spectrometry, ion mobility spectrometry, proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry. In recent twenty years, the optical methods have become more popular, especially the laser techniques. They have a great potential for detection and monitoring of the components in the gas phase. These methods are characterized by high sensitivity and good selectivity. The spectroscopic sensors provide the opportunity to detect specific gases and to measure their concentration either in a sampling place or a remote one. Multipass spectroscopy, cavity ring-down spectroscopy, and photo-acoustic spectroscopy were characterised in the paper as well.

  17. Non-destructive plant health sensing using absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Bledsoe, Jim; Manukian, Ara; Pearce, Michael; Weiss, Lee

    1988-01-01

    The sensor group of the 1988 EGM 4001 class, working on NASA's Controlled Ecological Life Support Systems (CELSS) project, investigated many different plant health indicators and the technologies used to test them. The project selected by the group was to measure chlorophyll levels using absorption spectroscopy. The spectrometer measures the amount of chlorophyll in a leaf by measuring the intensity of light of a specific wavelength that is passed through a leaf. The three wavelengths of light being used corresponded to the near-IR absorption peaks of chlorophyll a, chlorophyll b, and chlorophyll-free structures. Experimentation showed that the sensor is indeed measuring levels of chlorophyll a and b and their changes before the human eye can see any changes. The detector clamp causes little damage to the leaf and will give fairly accurate readings on similar locations on a leaf, freeing the clamp from having to remain on the same spot of a leaf for all measurements. External light affects the readings only slightly so that measurements may be taken in light or dark environments. Future designs and experimentation will concentrate on reducing the size of the sensor and adapting it to a wider range of plants.

  18. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs.

    PubMed

    Villares, Gustavo; Hugi, Andreas; Blaser, Stéphane; Faist, Jérôme

    2014-10-13

    Dual-comb spectroscopy performed in the mid-infrared-where molecules have their strongest rotovibrational absorption lines-offers the promise of high spectral resolution broadband spectroscopy with very short acquisition times (μs) and no moving parts. Recently, we demonstrated frequency comb operation of a quantum-cascade-laser. We now use that device in a compact, dual-comb spectrometer. The noise properties of the heterodyne beat are close to the shot noise limit. Broadband (15 cm(-1)) high-resolution (80 MHz) absorption spectroscopy of both a GaAs etalon and water vapour is demonstrated, showing the potential of quantum-cascade-laser frequency combs as the basis for a compact, all solid-state, broadband chemical sensor.

  19. Automatic Locking of Laser Frequency to an Absorption Peak

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.

    2006-01-01

    An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that

  20. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  1. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    DOE R&D Accomplishments Database

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  2. Two photon absorption in high power broad area laser diodes

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet; Michael, Christopher P.; Zheng, Yan; Zhu, Lin; Jacob, Jonah H.

    2014-03-01

    Recent advances in thermal management and improvements in fabrication and facet passivation enabled extracting unprecedented optical powers from laser diodes (LDs). However, even in the absence of thermal roll-over or catastrophic optical damage (COD), the maximum achievable power is limited by optical non-linear effects. Due to its non-linear nature, two-photon absorption (TPA) becomes one of the dominant factors that limit efficient extraction of laser power from LDs. In this paper, theoretical and experimental analysis of TPA in high-power broad area laser diodes (BALD) is presented. A phenomenological optical extraction model that incorporates TPA explains the reduction in optical extraction efficiency at high intensities in BALD bars with 100μm-wide emitters. The model includes two contributions associated with TPA: the straightforward absorption of laser photons and the subsequent single photon absorption by the holes and electrons generated by the TPA process. TPA is a fundamental limitation since it is inherent to the LD semiconductor material. Therefore scaling the LDs to high power requires designs that reduce the optical intensity by increasing the mode size.

  3. Laser modulation of optical absorption in ZnSe

    NASA Technical Reports Server (NTRS)

    Major, R. W.

    1971-01-01

    The possibility of producing and detecting laser induced modulation of absorption (LIMA) in ZnSe crystals using a moderate laser intensity of about 6 mw output was investigated. The modulation is smaller than that previously obtained with higher laser photon flux, but is not too difficult to detect. Modulation of the order of a few parts in 10 to the 5th power, up to one part in 10 to the 4th power appears typical at the present. LIMA pulse shapes were recorded with varying system resolutions at a half dozen wavelengths in the visible, from 4800 A to 6000 A. Detailed data were taken, particularly at 5000 A, for a range of time intervals following laser pulse turn-on. Quantitative study of the excitation and decay kinetics of these is underway, though analysis is not complete. Major features are discussed with attention centered upon the detailed measurements made most recently at 5000 A.

  4. Mid-infrared photothermal heterodyne spectroscopy in a liquid crystal using a quantum cascade laser

    PubMed Central

    Mërtiri, Alket; Jeys, Thomas; Liberman, Vladimir; Hong, M. K.; Mertz, Jerome; Altug, Hatice; Erramilli, Shyamsunder

    2012-01-01

    We report a technique to measure the mid-infrared photothermal response induced by a tunable quantum cascade laser in the neat liquid crystal 4-octyl-4′-cyanobiphenyl (8CB), without any intercalated dye. Heterodyne detection using a Ti:sapphire laser of the response in the solid, smectic, nematic and isotropic liquid crystal phases allows direct detection of a weak mid-infrared normal mode absorption using an inexpensive photodetector. At high pump power in the nematic phase, we observe an interesting peak splitting in the photothermal response. Tunable lasers that can access still stronger modes will facilitate photothermal heterodyne mid-infrared vibrational spectroscopy. PMID:22912508

  5. Laser-induced breakdown spectroscopy in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Yuan, Ting-Bi; Hou, Zong-Yu; Zhou, Wei-Dong; Lu, Ji-Dong; Ding, Hong-Bin; Zeng, Xiao-Yan

    2014-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been regarded as a future superstar for chemical analysis for years due to its unique features such as little or no sample preparation, remote sensing, and fast and multi-element analysis. Chinese LIBS community is one of the most dynamically developing communities in the World. The aim of the work is to inspect what have been done in China for LIBS development and, based on the understanding of the overall status, to identify the challenges and opportunities for the future development. In this paper, the scientific contributions from Chinese LIBS community are reviewed for the following four aspects: fundamentals, instrumentation, data processing and modeling, and applications; and the driving force of LIBS development in China is analyzed, the critical issues for successful LIBS application are discussed, and in our opinion, the potential direction to improve the technology and to realize large scale commercialization in China is proposed.

  6. Explosives detection using quantum cascade laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Castro-Suarez, John R.; Pollock, Yadira S.; Hernandez-Rivera, Samuel P.

    2013-05-01

    An infrared spectroscopy based explosives detection system using a quantum cascade laser (QCL) as excitation source was used to record mid infrared spectral signals of highly energetic materials (HEM) deposited on real world substrates such as travel baggage, cardboard and wood. The HEMs used were nitroaromatic military explosive trinitrotoluene (TNT), aliphatic nitrate ester pentaerythritol tetranitrate (PETN) and aliphatic nitramine hexahydrotrinitrotriazine (RDX). Various deposition methods including sample smearing, spin coating, spray deposition and partial immersion were evaluated for preparing samples and standards used as part of the study. Chemometrics statistical routines such as principal component analysis (PCA) regression with various preprocessing steps were applied to the recorded infrared spectra of explosives deposited as trace contaminants on target substrates. The results show that the dispersive infrared vibrational technique investigated using QCL is useful for detection of HEMs in the types of substrates studied.

  7. Tunable diode and fibre laser spectroscopy in the near-IR for measurement of gas parameters

    NASA Astrophysics Data System (ADS)

    Stewart, George; Johnstone, Walter; Arsad, Norhana; Duffin, Kevin

    2008-04-01

    There has been much research performed in recent years on tunable diode laser spectroscopy for detection of gases such as methane, carbon dioxide, acetylene, etc., which possess near-IR absorption lines. To attain adequate sensitivity with weak near-IR lines, wavelength modulation spectroscopy with phase-sensitive detection is normally employed. However injection current modulation of diode lasers produces both wavelength and amplitude modulation, with a phase shift dependent on the modulation frequency. This results in residual amplitude modulation on the output and in distortion of the harmonic signals derived from the absorption line. These are important issues for calibration and where it is desired to accurately recover the line-shape function in order to make simultaneous measurements of gas concentration, pressure or temperature in industrial applications. Here we discuss how calibration-free measurements may be obtained with diode lasers and explore the implications for fibre laser based systems for spectroscopy which conventionally employ thermal or piezoelectric tuning of the wavelength. In particular, we consider modulation techniques which may be applied to ring fibre lasers which use un-pumped erbium fibre as a saturable absorber to prevent mode-hopping or to DFB fibre lasers which use a short cavity with a Bragg grating to ensure single mode operation.

  8. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  9. Source X-UV pour la spectroscopie d'absorption en régime femtoseconde

    NASA Astrophysics Data System (ADS)

    Lecherbourg, L.; Fourmaux, S.; Kieffer, J. C.; Martin, F.; Pépin, H.; Chaker, M.; Magnan, S.; Coté, C. Y.

    2006-12-01

    Les processus dynamiques se produisant lors de transitions de phase ultra-rapide peuvent être déduits à partir de mesures de diffraction ou d'absorption de rayonnement X. Les lasers femtosecondes ont récemment été utilisés pour étudier la dynamiques de la matière au moyen d'une pompe optique et d'une sonde X : du rayonnement X K alpha produit par interaction laser plasma. Nous présentons nos plus récents résultats concernant le développement d'un sytème de spectroscopie d'absorption du rayonnement X (XAS) basée sur une source laser-plasma large bande dans la gamme 1-5 nm permettant d'atteindre une résolution temporelle femtoseconde. Le système est conçu pour sonder les dynamiques électroniques ayant lieu durant la transion de phase semiconducteur-métal du dyoxide de vanadium (VO2) lorsque celle-ci est initiée par une impulsion laser femtoseconde. Dans la présente expérience, un spectre large bande proche du seuil L du vanadium (511 eV) et du seuil K de l'oxygène (525 eV) du VO2 a été généré et mesuré avec un haut rapport signal sur bruit (100), une grande résolution spectrale (Δ E/E = 4.2× 10-3), et une résolution temporelle de 1,2 ps.

  10. Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy.

    PubMed

    Gornushkin, Igor B; Smith, Ben W; Panne, Ulrich; Omenetto, Nicoló

    2014-01-01

    A spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter. The main advantage is high throughput, about 200 times higher than that of dispersive spectrometers used in LIBS. This makes LIBS-SHS a promising technique for low-light standoff applications. The output signal of the SHS is an interferogram that is Fourier-transformed to retrieve the original plasma spectrum. In this proof-of-principle study, we investigate the potential of LIBS-SHS for material classification and quantitative analysis. Brass standards with broadly varying concentrations of Cu and Zn were tested. Classification via principal component analysis (PCA) shows distinct groupings of materials according to their origin. The quantification via partial least squares regression (PLS) shows good precision (relative standard deviation < 10%) and accuracy (within ± 5% of nominal concentrations). It is possible that LIBS-SHS can be developed into a portable, inexpensive, rugged instrument for field applications. PMID:25226262

  11. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  12. X-Ray Absorption Spectroscopy of Strontium(II) Coordination.

    PubMed

    Sahai; Carroll; Roberts; O'Day

    2000-02-15

    Sorption of dissolved strontium on kaolinite, amorphous silica, and goethite was studied as a function of pH, aqueous strontium concentration, the presence or absence of atmospheric CO(2) or dissolved phosphate, and aging over a 57-day period. Selected sorption samples ([Sr(aq)](i) approximately 0.5-1x10(-3) m) were examined with synchrotron X-ray absorption spectroscopy (XAS) at low (13-23 K) and room temperatures to determine the local molecular coordination around strontium. Quantitative analyses of the extended X-ray absorption fine structure (EXAFS) of kaolinite, amorphous silica, and most goethite sorption samples showed a single first shell of 9-10 (+/-1) oxygen atoms around strontium at an average Sr-O bond-distance of 2.61 (+/-0.02) Å, indicating hydrated surface complexes. The EXAFS spectra were unchanged after reaction for up to 57 days. Likewise, in kaolinite sorption samples prepared in 100% nitrogen atmosphere, the presence of dissolved phosphate (0.5x10(-3) m) in addition to strontium did not change the local coordination around strontium. In two goethite sorption samples reacted in air at pH approximately 8.5, the EXAFS spectra (collected at low and room temperature) clearly showed that the local structure around strontium is that of strontianite (SrCO(3)(s)). We also noted an increase in strontium uptake on goethite in the presence of atmospheric CO(2) in batch experiments, relative to CO(2)-free experiments. These observations suggest that sorption of carbonate may nucleate the precipitation of SrCO(3) in the pH range in which carbonate sorption on goethite is near a maximum. At higher pH, carbonate surface sorption decreases as dissolved CO(2) decreases. For goethite sorption samples above pH 8.6, hydrated surface complexes, rather than a precipitate, were observed in the EXAFS spectra. Copyright 2000 Academic Press.

  13. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Tittel, F. K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J.

    2014-12-01

    This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

  14. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  15. Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system.

    PubMed

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D; Long, Marshall B

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16  GW/cm^{2}, the scattering cross section of TiO_{2} clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal Sl_{E}, Peclet Pe_{E}, and Damköhler Da_{E} numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where Sl_{E}≫1, Pe_{E}≫1, and Da_{E}≪1, the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption.

  16. Absorption-Ablation-Excitation Mechanism of Laser-Cluster Interactions in a Nanoaerosol System

    NASA Astrophysics Data System (ADS)

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D.; Long, Marshall B.

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16 GW /cm2 , the scattering cross section of TiO2 clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal SlE , Peclet PeE , and Damköhler DaE numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where SlE≫1 , PeE≫1 , and DaE≪1 , the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption.

  17. Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system.

    PubMed

    Ren, Yihua; Li, Shuiqing; Zhang, Yiyang; Tse, Stephen D; Long, Marshall B

    2015-03-01

    The absorption-ablation-excitation mechanism in laser-cluster interactions is investigated by measuring Rayleigh scattering of aerosol clusters along with atomic emission from phase-selective laser-induced breakdown spectroscopy. For 532 nm excitation, as the laser intensity increases beyond 0.16  GW/cm^{2}, the scattering cross section of TiO_{2} clusters begins to decrease, concurrent with the onset of atomic emission of Ti, indicating a scattering-to-ablation transition and the formation of nanoplasmas. With 1064 nm laser excitation, the atomic emissions are more than one order of magnitude weaker than that at 532 nm, indicating that the thermal effect is not the main mechanism. To better clarify the process, time-resolved measurements of scattering signals are examined for different excitation laser intensities. For increasing laser intensity, the cross section of clusters decreases during a single pulse, evincing the shorter ablation delay time and larger ratios of ablation clusters. Assessment of the electron energy distribution during the ablation process is conducted by nondimensionalizing the Fokker-Planck equation, with analogous Strouhal Sl_{E}, Peclet Pe_{E}, and Damköhler Da_{E} numbers defined to characterize the laser-induced aerothermochemical environment. For conditions where Sl_{E}≫1, Pe_{E}≫1, and Da_{E}≪1, the electrons are excited to the conduction band by two-photon absorption, then relax to the bottom of the conduction band by electron energy loss to the lattice, and finally serve as the energy transfer media between laser field and lattice. The relationship between delay time and excitation intensity is well correlated by this simplified model with quasisteady assumption. PMID:25793812

  18. Laser tweezers Raman spectroscopy of single cells

    NASA Astrophysics Data System (ADS)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  19. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally

  20. Improvement of differential optical absorption spectroscopy with a multichannel scanning technique.

    PubMed

    Brauers, T; Hausmann, M; Brandenburger, U; Dorn, H P

    1995-07-20

    Differential optical absorption spectroscopy (DOAS) of atmospheric trace gases requires the detection of optical densities below 0.1%. Photodiode arrays are used more and more as detectors for DOAS because they allow one to record larger spectral intervals simultaneously. This type of optical multichannel analyzer (OMA), however, shows sensitivity differences among the individual photodiodes (pixels), which are of the order of 1%. To correct for this a sensitivity reference spectrum is usually recorded separately from the trace-gas measurements. Because of atmospheric turbulence the illumination of the detector while an atmospheric absorption spectrum is being recorded is different from the conditions during the reference measurement. As a result the sensitivity patterns do not exactly match, and the corrected spectra still show a residual structure that is due to the sensitivity difference. This effect usually limits the detection of optical densities to approximately 3 × 10(-4). A new method for the removal of the sensitivity pattern is presented in this paper: Scanning the spectrometer by small wavelength increments after each readout of the OMA allows one to separate the OMA-fixed pattern and the wavelength-fixed structures (absorption lines). The properties of the new method and its applicability are demonstrated with simulated spectra. Finally, first atmospheric measurements with a laser long-path instrument demonstrate a detection limit of 3 × 10(-5) of a DOAS experiment. PMID:21052280

  1. High temperature kinetic study of the reactions H + O2 = OH + O and O + H2 = OH + H in H2/O2 system by shock tube-laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Dewitt, Kenneth J.

    1995-01-01

    The reactions: (1) H + O2 = OH + O; and (2) O + H2 = OH + H are the most important elementary reactions in gas phase combustion. They are the main chain-branching reaction in the oxidation of H2 and hydrocarbon fuels. In this study, rate coefficients of the reactions and have been measured over a wide range of composition, pressure, density and temperature behind the reflected shock waves. The experiments were performed using the shock tube - laser absorption spectroscopic technique to monitor OH radicals formed in the shock-heated H2/O2/Ar mixtures. The OH radicals were detected using the P(1)(5) line of (0,0) band of the A(exp 2) Sigma(+) from X(exp 2) Pi transition of OH at 310.023 nm (air). The data were analyzed with the aid of computer modeling. In the experiments great care was exercised to obtain high time resolution, linearity and signal-to-noise. The results are well represented by the Arrhenius expressions. The rate coefficient expression for reaction (1) obtained in this study is k(1) = (7.13 +/- 0.31) x 10(exp 13) exp(-6957+/- 30 K/T) cu cm/mol/s (1050 K less than or equal to T less than or equal to 2500 K) and a consensus expression for k(1) from a critical review of the most recent evaluations of k(1) (including our own) is k(1) = 7.82 x 10(exp 13) exp(-7105 K/T) cu cm/mol/s (960 K less than or equal to T less than or equal to 5300 K). The rate coefficient expression of k(2) is given by k(2) = (1.88 +/- 0.07) x 10(exp 14) exp(-6897 +/- 53 K/T) cu cm/mol/s (1424 K less than or equal to T less than or equal to 2427 K). For k(1), the temperature dependent A-factor and the correlation between the values of k(1) and the inverse reactant densities were not found. In the temperature range of this study, non-Arrhenius expression of k(2) which shows the upward curvature was not supported.

  2. Near Edge X-ray Absorption Spectroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Dhez, Olivier; Ade, Harald; Urquhart, Stephen

    2001-03-01

    Synthetic and natural polymers exhibit a rich carbon, nitrogen and oxygen K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS). The spectroscopic variations with chemical structure and composition are interesting in their own right. In addition, the large spectroscopic variability can be utilized for the compositional analysis of materials. This is particularly useful for high spatial resolution NEXAFS microanalysis at lateral spatial resolutions exceeding that achievable with more traditional compositional analysis tools such as Infrared and NMR spectroscopy. To increase our understanding of NEXAFS spectra and to start a database for microanalysis, we acquired carbon NEXAFS spectra of the following polymers: polycarbonate, poly(oxybenzoate-co-2,6oxynaphthoate), poly (p-phenylene terephtalamide), toluene diisocyanate polyurethane, toluene diisocyanate polyurea, 4,4'-methylene di-p-phenylene isocyanate polyurethane, 4,4'-methylene di-p-phenylene isocyanate polyurea, poly(ether ether ketone), poly(alpha-methylstyrene), poly-styrene, poly bromostyrene, poly(2-vinyl styrene), polyethylene, poly(ethylene oxide), polypropylene, poly(propylene oxide), polyisobutylene, ethylene propylene rubber, poly(methyl -metacrylate). These spectra were obtained in transmission with an energy resolution of 150 meV. The energy scale was carefully calibrated in-situ utilizing C02 gas as a reference. Spectral assignments are made based on model compounds and theoretical calculations.

  3. Urban ozone measurements using differential optical absorption spectroscopy.

    PubMed

    Morales, J A; Treacy, J; Coffey, S

    2004-05-01

    In order to improve the air quality in Europe the European Commission has issued a number of directives with regard to acceptable levels of a range of gaseous pollutants, which includes ozone. Therefore, monitoring of this compound is necessary to comply with EU legislation, to provide improved pollution warnings for those who are sensitive to air pollutants as well as providing valuable data for environmental planning. Open-path spectroscopic techniques, such as differential optical absorption spectroscopy (DOAS), are ideal for monitoring pollutants because of the advantages they offer over classical methods and point-source analysers. A DOAS system has been installed in Dublin city centre to monitor a range of criteria pollutants including ozone. Observations of urban background ozone concentrations are presented. The measurements are compared with those obtained using a UV point-source analyser and are presented in the context of the current EU directive. The influence of trans-boundary pollution from mainland Europe leading to ozone episodes is also discussed. Observations of high ozone during this measurement campaign coincided with the influx of photochemically polluted air masses which originated over continental Europe. For the analysed time interval, the data suggest that the ground ozone level in Dublin might be significantly influenced by long-range transport from the United Kingdom and continental Europe. PMID:14963627

  4. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  5. X-ray absorption study of pulsed laser deposited boron nitride films

    SciTech Connect

    Chaiken, A.; Terminello, L.J.; Wong, J.; Doll, G.L.; Sato, T.

    1994-02-02

    B and N K-edge x-ray absorption spectroscopy measurements have been performed on three BN thin films grown on Si substrates using ion- assisted pulsed laser deposition. Comparison of the films` spectra to those of several single-phase BN powder standards shows that the films consist primarily of sp{sup 2} bonds. Other features in the films`s spectra suggest the presence of secondary phases, possibly cubic or rhombohedral BN. Films grown at higher deposition rates and higher ion-beam voltages are found to be more disordered, in agreement with previous work.

  6. Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Matsuba, Ayumi; Misono, Masatoshi

    2014-06-01

    Optical frequency combs are powerful tools for precise frequency measurements in various wavelength regions. The combs have been applied not only to metrology, but also to molecular spectroscopy. Recently, we studied high resolution spectroscopy of iodine molecule assisted by an optical frequency comb. In the study, the comb was used for frequency calibration of a scanning dye laser. In this study, we developed a frequency calibration scheme with a comb and an acousto-optic modulator to realize more precise frequency measurement in a wide frequency range. And the frequency calibration scheme was applied to Doppler-free two-photon absorption (DFTPA) spectroscopy of naphthalene. Naphthalene is one of the prototypical aromatic molecules, and its detailed structure and dynamics in excited states have been reported. We measured DFTPA spectra of A^1B1u(v4=1) ← X^1A_g(v=0) transition around 298 nm. A part of obtained spectra is shown in the figure. The spectral lines are rotationally resolved and the resolution is about 100 kHz. The horizontal axis was calibrated by the developed frequency calibration system employing the comb. The uncertainties of the calibrated frequencies were determined by the fluctuations of the comb modes which were stabilized to a GPS-disciplined clock. A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013).

  7. Hydrogen Balmer Series Self-Absorption Measurement in Laser-Induced Air Plasma

    NASA Astrophysics Data System (ADS)

    Gautam, Ghaneshwar; Parigger, Christian

    2015-05-01

    In experimental studies of laser-induced plasma, we use focused Nd:YAG laser radiation to generate optical breakdown in laboratory air. A Czerny-Turner type spectrometer and an ICCD camera are utilized to record spatially and temporally resolved spectra. Time-resolved spectroscopy methods are employed to record plasma dynamics for various time delays in the range of 0.300 microsecond to typically 10 microsecond after plasma initiation. Early plasma emission spectra reveal hydrogen alpha and ionized nitrogen lines for time delays larger than 0.3 microsecond, the hydrogen beta line emerges from the free-electron background radiation later in the plasma decay for time delays in excess of 1 microsecond. The self-absorption analyses include comparisons of recorded data without and with the use of a doubling mirror. The extent of self-absorption of the hydrogen Balmer series is investigated for various time delays from plasma generation. There are indications of self-absorption of hydrogen alpha by comparison with ionized nitrogen lines at a time delay of 0.3 microsecond. For subsequent time delays, self-absorption effects on line-widths are hardly noticeable, despite the fact of the apparent line-shape distortions. Of interest are comparisons of inferred electron densities from hydrogen alpha and hydrogen beta lines as the plasma decays, including assessments of spatial variation of electron density.

  8. Molecular dispersion spectroscopy--new capabilities in laser chemical sensing.

    PubMed

    Nikodem, Michal; Wysocki, Gerard

    2012-07-01

    Laser spectroscopic techniques suitable for molecular dispersion sensing enable new applications and strategies in chemical detection. This paper discusses the current state of the art and provides an overview of recently developed chirped laser dispersion spectroscopy (CLaDS)-based techniques. CLaDS and its derivatives allow for quantitative spectroscopy of trace gases and enable new capabilities, such as extended dynamic range of concentration measurements, high immunity to photodetected intensity fluctuations, or capability of direct processing of spectroscopic signals in optical domain. Several experimental configurations based on quantum cascade lasers and examples of molecular spectroscopic data are presented to demonstrate capabilities of molecular dispersion spectroscopy in the mid-infrared spectral region.

  9. Review of Tm and Ho Materials; Spectroscopy and Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2008-01-01

    A review of Tm and Ho materials is presented, covering some fundamental aspects on the spectroscopy and laser dynamics in both single and co-doped systems. Following an introduction to 2- m lasers, applications and historical development, the physics of quasi-four level lasers, energy transfer and modeling are discussed in some detail. Recent developments in using Tm lasers to pump Ho lasers are discussed, and seen to offer some advantages over conventional Tm:Ho lasers. This article is not intended as a complete review, but as a primer for introducing concepts and a resource for further study.

  10. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    SciTech Connect

    Mcgrane, Shawn David; Bolme, Cindy B; Whitley, Von H; Moore, David S

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  11. Remote sensing of atmospheric trace gases by diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Kan, Ruifeng; He, Yabai; He, Ying; Zhang, Yujun; Xie, Pinhua; liu, Wenqing

    2016-04-01

    Gaseous ammonia is the most abundant alkaline trace gas in the atmosphere. In order to study its role in acid deposition and aerosol formation, as well as its influence on the regional air quality and atmospheric visibility, several instruments has been developed based on TDLAS (Tunable Diode Laser Absorption Spectroscopy) techniques. In this paper, a long open path TDLAS system and a continuous-wave CRDS (Cavity-Ring down Spectroscopy) system are presented. The long open path system has been developed for NH3 in-situ monitoring by combining wavelength modulation with harmonic detection techniques to obtain the necessary detection sensitivity. The prototype instrument has been used to monitor atmospheric NH3 concentration at an urban site near Beijing National Stadium during Beijing Olympics in 2008, and recently used to measure the fluxes of NH3 from farm fields by flux-gradient method. The detection limit for ammonia is proved approximately 3ppb for a total path length of 456m. The continuous-wave, rapidly swept CRDS system has been developed for localized atmospheric sensing of trace gases at remote sites. Passive open-path optical sensor units could be coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia at atmospheric pressure. The developed instruments are deployable in agricultural, industrial, and natural atmospheric environments.

  12. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    NASA Astrophysics Data System (ADS)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  13. Doppler-free spectroscopy on the Cs D1 line with a dual-frequency laser.

    PubMed

    Hafiz, Moustafa Abdel; Coget, Grégoire; De Clercq, Emeric; Boudot, Rodolphe

    2016-07-01

    We report on Doppler-free laser spectroscopy in a Cs vapor cell using a dual-frequency laser system tuned on the Cs D1 line. Using counter-propagating beams with crossed linear polarizations, an original sign reversal of the usual saturated absorption dip and large increase in Doppler-free atomic absorption is observed. This phenomenon is explained by coherent population trapping (CPT) effects. The impact of laser intensity and light polarization on absorption profiles is reported in both single-frequency and dual-frequency regimes. In the latter, frequency stabilization of two diode lasers was performed, yielding a beat note fractional frequency stability at the level of 3×10-12 at 1 s averaging time. These performances are about an order of magnitude better than those obtained using a conventional single-frequency saturated absorption scheme.

  14. Medical Applications of Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  15. Nocturnal Measurements of HONO by Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wojtal, P.; McLaren, R.

    2011-12-01

    Differential optical absorption spectroscopy (DOAS) was used to quantify the concentration of HONO, NO2 and SO2 in the nocturnal urban atmosphere at York University over a period of one year. These measurements form a comprehensive HONO data set, including a large range of temperatures, relative humidity, surface conditions (snow, water, dry, etc.) and NO2 concentrations. Laboratory studies and observations within the nocturnal boundary layer reported in the literature suggest heterogeneous conversion of NO2 on surface adsorbed water as the major nighttime source of HONO. HONO formation and photolysis is believed to represent a major source term in the hydroxyl radical budget in polluted continental regions. Currently, most air quality models tend to significantly underpredict HONO, caused by the lack of understanding of HONO formation processes and the parameters that affect its concentration. Recently, we reported nocturnal pseudo steady states (PSS) of HONO in an aqueous marine environment and a conceptual model for HONO formation on aqueous surfaces was proposed. The data set collected at York University is being analyzed with a view towards further understanding the nighttime HONO formation mechanism and testing several hypotheses: 1) A HONO PSS can exist during certain times at night in an urban area in which the HONO concentration is independent of NO2, given the surface contains sufficient water coverage and is saturated with nitrogen containing precursors; 2) The concentration of HONO is positively correlated with temperature during periods where a PSS exists; 3) Different conversion efficiencies of NO2 to HONO exist on dry, wet and snow surfaces; 4) HONO formation has a NO2 order dependence between 0 and 2nd order, dependant on NO2 concentration, relative humidity, etc. The data set will be presented along with statistical analysis that sheds new light on the source of HONO in urban areas at night.

  16. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    SciTech Connect

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-µm diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance

  17. Transient absorption spectra of the laser-dressed hydrogen atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  18. Compact supercontinuum sources based on tellurite suspended core fibers for absorption spectroscopy beyond 2 μm

    NASA Astrophysics Data System (ADS)

    Strutynski, Clément; Picot-Clémente, Jérémy; Désévédavy, Frédéric; Jules, Jean-Charles; Gadret, Grégory; Kibler, Bertrand; Smektala, Frédéric

    2016-07-01

    We present the experimental development of two compact supercontinuum laser sources based on tellurite suspended core fibers with and without tapering post-processing. The pumping scheme makes use of commercially-available nJ-level femtosecond and picosecond fiber lasers at 1.56 and 2.06 μm respectively. The resulting spectral broadening that occurs in a few tens-of-centimeters of tellurite fiber allows coverage of the convenient molecular fingerprint region between 2 and 3 μm. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements in the mid-infrared by means of the supercontinuum absorption spectroscopy technique. Experimental results are in fairly good agreement with both numerical simulations of supercontinuum generation and spectroscopic predictions of the HITRAN database.

  19. Saturation dynamics and working limits of saturated absorption cavity ringdown spectroscopy.

    PubMed

    Sadiek, Ibrahim; Friedrichs, Gernot

    2016-08-17

    Cavity ringdown spectroscopy (CRDS) in the linear absorption regime is a well-established method for sensitive trace gas detection, but only a few studies have addressed quantitative measurements in the presence of a saturated sample. In fact, saturation is usually avoided in order to escape from the required complex modeling of the saturation process that depends on the characteristics of the absorbing species, its interaction with the surrounding gas as well as on the temporal and spectral characteristics of the cavity excitation. Conversely, the novel saturated-absorption cavity ringdown spectroscopy approach (SCAR/Sat-CRDS) takes advantage of sample saturation in order to allow one to extract both the gas absorption and the empty cavity loss rates from a single ringdown event. Using a new continuous-wave infrared CRD spectrometer equipped with a tunable narrow-bandwidth high-power OPO laser system and a 18 bit digitizer, the transient dynamics of absorption saturation and the working limits of the Sat-CRDS approach in terms of its ability to extract reliable trace gas concentrations have been experimentally studied in this work. Using a strong methane transition as a test case, the excitation power P0 and saturation power PS have been systematically varied to explore a wide range of saturation regimes. At pressures 5 μbar < p < 2 mbar, the saturation intensity revealed a nearly linear pressure dependence showing that non-collisional processes contribute to the overall relaxation. A ratio of P0/PS ≈ 15 turned out to be optimal with working limits of 5 < P0/PS < 300. Moreover, the ratio of the absorption and empty cavity loss rates, γg/γc, has been varied to test the dynamic range of the method. At γg > γc, a pronounced coupling between the two parameters has been observed. Finally, a standard error analysis was performed revealing that the Sat-CRDS approach holds its advantages over conventional CRDS implementations in particular when the attainable

  20. Dual beam photoacoustic infrared spectroscopy of solids using an external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Dehghany, M.; Michaelian, K. H.

    2012-06-01

    Quantum cascade laser-based instrumentation for dual beam photoacoustic (PA) spectroscopy is described in this article. Experimental equipment includes a 4.55 μm (2141-2265 cm-1) continuous wave external cavity quantum cascade laser (EC-QCL), two gas-microphone PA cells, and two lock-in amplifiers. Correction for the time and wavenumber dependence of the laser output is effected through real-time division of the PA signals derived from the sample and reference channels. Source-compensated mid-infrared absorption spectra of carbon black powder and aromatic hydrocarbon solids were obtained to confirm the reliability of the method. Absorption maxima in the EC-QCL PA spectra of hydrocarbons are better defined than those in Fourier transform infrared spectra acquired under similar conditions, enabling the detection of several previously unknown bands.

  1. Dual beam photoacoustic infrared spectroscopy of solids using an external cavity quantum cascade laser.

    PubMed

    Dehghany, M; Michaelian, K H

    2012-06-01

    Quantum cascade laser-based instrumentation for dual beam photoacoustic (PA) spectroscopy is described in this article. Experimental equipment includes a 4.55 μm (2141-2265 cm(-1)) continuous wave external cavity quantum cascade laser (EC-QCL), two gas-microphone PA cells, and two lock-in amplifiers. Correction for the time and wavenumber dependence of the laser output is effected through real-time division of the PA signals derived from the sample and reference channels. Source-compensated mid-infrared absorption spectra of carbon black powder and aromatic hydrocarbon solids were obtained to confirm the reliability of the method. Absorption maxima in the EC-QCL PA spectra of hydrocarbons are better defined than those in Fourier transform infrared spectra acquired under similar conditions, enabling the detection of several previously unknown bands.

  2. Laser Induced Breakdown Spectroscopy:. AN Application on Multilayered Archeological Ceramics

    NASA Astrophysics Data System (ADS)

    Ponterio, R.; Trusso, S.; Vasi, C.; Aragona, S.; Mavilia, L.

    2004-10-01

    In this work we show an example of application of Laser Induced Breakdown Spectroscopy (LIBS) in combination with another laser-based technique: Raman micro-spectroscopy for the identification of pigments and glaze on pottery found archaeological excavations in Amendolea castle site (south of Italy in Calabrian peninsula); the objects belong to medieval period. The spectral data indicates the qualitative elemental composition of the examined materials and, in addition, give us useful information on the stratigraphy of the paint layers.

  3. Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Meng; Zhang, Weigang; Zhang, Qi; Liu, Yaping; Liu, Bo

    2010-01-01

    An improved ring-down measurement principle for optical waveguides is presented. Fiber loop ring-down spectroscopy allows for measurement of minute optical losses in high-finesse fiber-optic cavities and immunity to the fluctuation of laser source. The evanescent wave absorption losses dependent on the absorption and the refractive index of ambient solution have been theoretically analyzed. The complex refractive index is introduced into our model and extinction coefficient can be calculated accurately through finite element analysis by setting the boundaries of the fiber and the ambient conditions. Using this method, the refractive index of environment can be taken into consideration. Our principle is validated by the highly-sensitive measurement of evanescent wave absorption loss. By chemically processing the surface of sensing segment along an extending ring-down cavity, the concentration of small volume Diethyl Sulphoxide solution where the etched fiber immersed into has been successfully measured and discussed.

  4. Detection of harmonics and recovery of the absorption line profile using logarithmic-transformed wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Cong, Menglong; Sun, Dandan

    2016-07-01

    A versatile signal processing strategy for eliminating the residual amplitude modulation (RAM) and distortion in tunable diode laser wavelength modulation spectroscopy is theoretically demonstrated and experimentally validated. The strategy involves logarithmic transformation and differential detection, which are achieved using a homemade circuit. Through the logarithmic transformation, the optical intensity modulation of the laser, which performs as the source of RAM and distortion, is separated from the absorption-induced power attenuation and further balanced during the differential detection. The first harmonic, which is proportional to the first-order derivative of the absorption line profile in the case of a small modulation index, is extracted along with the second harmonic and is integrated for the recovery of the absorption line profile. The experiments are carried out for CH4 at its R(3) absorption line of the 2ν3 overtone for validation of the system, and the derived results are found to be in good agreement with the theoretical simulations. These promising results indicate the high potential of the strategy for absorption spectrum-based determination of gas properties.

  5. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.

  6. TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements.

    PubMed

    Hübner, M; Welzel, S; Marinov, D; Guaitella, O; Glitsch, S; Rousseau, A; Röpcke, J

    2011-09-01

    A compact and transportable three channel quantum cascade laser system (TRIPLE Q) based on mid-infrared absorption spectroscopy has been developed for time-resolved plasma diagnostics. The TRIPLE Q spectrometer encompasses three independently controlled quantum cascade lasers (QCLs), which can be used for chemical sensing, particularly for gas phase analysis of plasmas. All three QCLs are operated in the intra-pulse mode with typical pulse lengths of the order of 150 ns. Using a multiplexed detection, a time resolution shorter than 1 μs can be achieved. Hence, the spectrometer is well suited to study kinetic processes of multiple infrared active compounds in reactive plasmas. A special data processing and analysis technique has been established to account for time jitter effects of the infrared emission of the QCLs. The performance of the TRIPLE Q system has been validated in pulsed direct current plasmas containing N(2)O/air and NO(2)/air.

  7. Oxygen detection using the laser diode absorption technique

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C. W.

    1991-01-01

    Accurate measurement of the concentration and flow rate of gaseous oxygen is becoming of greater importance. The detection technique presented is based on the principal of light absorption by the Oxygen A-Band. Oxygen molecules have characteristics which attenuate radiation in the 759-770 nm wavelength range. With an ability to measure changes in the relative light transmission to less than 0.01 percent, a sensitive optical gas detection system was configured. This system is smaller in size and light in weight, has low energy requirements and has a rapid response time. In this research program, the application of temperature tuning laser diodes and their ability to be wavelength shifted to a selected absorption spectral peak has allowed concentrations as low as 1300 ppm to be detected.

  8. Laser spectroscopy of sub-micrometre- and micrometre-thick caesium-vapour layers

    SciTech Connect

    Cartaleva, S; Krasteva, A; Slavov, D; Todorov, P; Vaseva, K; Moi, L; Sargsyan, A; Sarkisyan, D

    2013-09-30

    We present high resolution laser spectroscopy of Cs vapours confined in a unique optical cell of sub-micrometric and micrometric thickness, where a strong spatial anisotropy is present for the time of interaction between the atoms and laser radiation. Similarly to the spectra of selective specular reflection, the Doppler-free spectra of absorption and fluorescence are observed, not revealing cross-over resonances that will be useful for frequency stabilisation, provided the cell is cheap and compact. A new resonance in the fluorescence of closed transition is studied, demonstrating its high sensitivity to elastic atom – atom and atom – dielectric surface collisions. The theoretical modelling performed is in agreement with the experimental observations. (laser spectroscopy)

  9. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser

    PubMed Central

    Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas

    2013-01-01

    Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy. PMID:23346368

  10. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.

    PubMed

    Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas

    2013-01-01

    Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy.

  11. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; van Neste, Charles; Jeon, Sangmin; Thundat, Thomas

    2013-01-01

    Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy.

  12. Terahertz spectroscopy and laser induced infrared emission spectroscopy of nitromethane and optical properties of laser-induced carriers on semiconductor surfaces probed by a 10.6 micron wavelength carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Toyoda, Yoshimasa

    This work consists of two parts, (1) Terahertz (THz) spectroscopy and laser-induced infrared emission spectroscopy of nitromethane and (2) optical properties of laser-induced carriers on semiconductor surfaces probed by a 10.6 mum wavelength CO2 laser. In the spectroscopic study of nitromethane, previously unreported low resolution rotational-torsional spectra in the THz frequency were obtained by a Bruker IFS 66 v/S Fourier transform spectrometer. The acquired spectra were then compared with a calculation based on a rotational-torsional Hamiltonian which includes centrifugal distortions and rotational-torsional coupling terms. Even though the constants used in the calculation were a result of fitting the microwave spectrum, a discrepancy was observed between the calculated and the experimentally obtained spectrum. In addition, gaseous nitromethane was irradiated with a c.w. CO 2 laser (˜20 W cm-2 intensity, 10.6 mum wavelength) and the laser-induced steady state emission spectrum was analyzed with the IFS 66 v/S spectrometer. The laser-induced emission spectrum showed the characteristics consistent with the laser-heated thermal emission. The decay constant of the emission followed by a 100 ms CO2 laser pulse was measured with a pyroelectric detector and determined to be 0.3 s. In part II, several polycrystalline semiconductors [silicon (Si), germanium (Ge), gallium arsenide (GaAs), and cadmium telluride (CdTe)] were irradiated with a 150 Ps Nd:YAG laser (532/1064 nm wavelength) and induced changes in the optical properties were monitored by measuring the time-resolved reflectance and transmittance of a low power CO2 laser incident on the samples at the Brewster angle. The experimental results showed a sub-nanosecond increase in the reflectance and a longer increase in the absorption as a result of electron-hole pairs (i.e. carriers) generated by absorption of the incident Nd:YAG laser pulses.

  13. Pulsed laser linescanner for a backscatter absorption gas imaging system

    DOEpatents

    Kulp, Thomas J.; Reichardt, Thomas A.; Schmitt, Randal L.; Bambha, Ray P.

    2004-02-10

    An active (laser-illuminated) imaging system is described that is suitable for use in backscatter absorption gas imaging (BAGI). A BAGI imager operates by imaging a scene as it is illuminated with radiation that is absorbed by the gas to be detected. Gases become "visible" in the image when they attenuate the illumination creating a shadow in the image. This disclosure describes a BAGI imager that operates in a linescanned manner using a high repetition rate pulsed laser as its illumination source. The format of this system allows differential imaging, in which the scene is illuminated with light at least 2 wavelengths--one or more absorbed by the gas and one or more not absorbed. The system is designed to accomplish imaging in a manner that is insensitive to motion of the camera, so that it can be held in the hand of an operator or operated from a moving vehicle.

  14. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  15. Laser spectroscopy applied to energy, environmental and medical research

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    1988-01-01

    Applications of laser spectroscopy to the fields of combustion diagnostics, environmental remote sensing, and medicine are discussed. The techniques emphasized are CARS and laser-induced fluorescence. The monitoring of atmospheric trace gases, the treatment of tumors, and the detection and characterization of atherosclerotic plaques are addressed.

  16. Diode laser spectroscopy of methyl chloride overtones at 850-860 nm

    NASA Astrophysics Data System (ADS)

    Lucchesini, A.; Gozzini, S.

    2016-01-01

    By using a tunable diode laser (TDL) spectrometer 156 CH3Cl overtone absorption lines have been detected in the range between 11,590 and 11,760 cm-1 (8500-8625 Å). Their strengths range around 10-26 -10-27 cm / molecule and have been measured by utilizing commercial AlGaAs/GaAs laser diodes through the wavelength modulation spectroscopy (WMS) and the 2nd harmonic (2f) detection techniques. For one line the self-broadening coefficient has been obtained.

  17. Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser

    SciTech Connect

    Consolino, L. Campa, A.; Ravaro, M.; Mazzotti, D.; Bartalini, S.; De Natale, P.; Vitiello, M. S.

    2015-01-12

    We report on the evidence of saturation effects in a rotational transition of CH{sub 3}OH around 2.5 THz, induced by a free-running continuous-wave quantum cascade laser (QCL). The QCL emission is used for direct-absorption spectroscopy experiments, allowing to study the dependence of the absorption coefficient on gas pressure and laser intensity. A saturation intensity of 25 μW/mm{sup 2}, for a gas pressure of 17 μbar, is measured. This result represents the initial step towards the implementation of a QCL-based high-resolution sub-Doppler THz spectroscopy, which is expected to improve by orders of magnitude the precision of THz spectrometers.

  18. [Intra-pulse spectroscopy based on room-temperature pulsed quantum-cascade laser for N2O detection].

    PubMed

    Wang, Min; Zhang, Yu-Jun; Liu, Wen-Qing; Kan, Rui-Feng; Chen, Zhen-Yi; Tang, Yuan-Yuan; Liu, Jian-Guo

    2009-12-01

    Mid-infrared lasers are very suitable for high-sensitive trace-gases detection in that their wavelengths cover the fundamental absorption lines of most gases. Quantum-cascade lasers have been demonstrated to be ideal light sources with their especially high power, wide range of tuning capability and favorable operating condition on room-temperature. The intra-pulse spectroscopy based on a room-temperature distributed-feedback pulsed QC laser is a simple and effective trace gas detective method to detect trace-gas qualitatively or quantificationally. When a long excitation pulse is applied to a QC laser, the laser frequency tunes almost linearly to lower wave number (lower frequency) as a function of time so all absorption spectral elements are recorded during a single laser pulse. In the present paper, the method was introduced, and identification of N2O spectral fingerprint using this spectroscopy was demonstrated experimentally. The thermal chirp from a 500 ns long excitation pulse was applied to a quantum-cascade laser to get a fast wavelength scanning, thus a wave number tuning of about 1 cm(-1) was produced. The N2O absorption spectrum centered at 1 273.7 cm(-1) was also obtained. The measured absorption spectrum is consistent with HITRAN data precisely.

  19. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-01

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy. PMID:26458177

  20. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-01

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  1. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  2. A cavity type absorption cell for double resonance microwave spectroscopy.

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; White, W. F.

    1972-01-01

    Description of an experimental dual resonant cavity absorption cell for observing microwave spectroscopic double-resonance effects. The device is composed of two Fabry-Perot interferometers excited by independent microwave sources and mounted at right angles in a suitable vacuum enclosure. The pumping transition is modulated by one source and the modulation induced on the rf absorption in the orthogonal cavity is detected.

  3. Continuous in-situ methane measurements at paddy fields in a rural area of India with poor electric infrastructure, using a low-cost instrument based on open-path near-IR laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hidemori, T.; Matsumi, Y.; Nakayama, T.; Kawasaki, M.; Sasago, H.; Takahashi, K.; Imasu, R.; Takeuchi, W.; Adachi, M.; Machida, T.; Terao, Y.; Nomura, S.; Dhaka, S. K.; Singh, J.

    2015-12-01

    In southeast and south Asia, the previous satellite observations suggest that the methane emission from rice paddies is significant and important source of methane during rainy season. Since it is difficult to measure methane stably and continuously at rural areas such as the paddy fields in terms of infrastructures and maintenances, there are large uncertainties in quantitative estimation of methane emission in these areas and there are needs for more certification between satellite and ground based measurements. To measure methane concentrations continuously at difficult situations such as the center of paddy fields and wetlands, we developed the continuous in-situ measurement system, not to look for your lost keys under the streetlight. The methane gas sensor is used an open-path laser based measurement instrument (LaserMethane, ANRITSU CORPORATION), which can quickly and selectively detect average methane concentrations on the optical path of the laser beam. The developed system has the power supply and telecommunication system to run the laser gas sensor in rural areas with poor electricity infrastructure.The methane measurement system was installed at paddy fields of Sonepat, Haryana on the north of Delhi in India and has been operated from the end of 2014. The air sampling along with our measurement has been carried out once a week during daytime to calibrate the laser instrument. We found that the seasonal variation of methane concentrations was different from the satellite observations and there were significant diurnal variations, which it was difficult to detect from occasional air samplings. We will present details of the measurement system and recent results of continuous methane measurements in India.

  4. Trace metal mapping by laser-induced breakdown spectroscopy

    SciTech Connect

    Kaiser, Jozef; Novotny, Dr. Karel; Hrdlicka, A; Malina, R; Hartl, M; Kizek, R; Adam, V

    2012-01-01

    Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.

  5. Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mouawad, O.; Béjot, P.; Billard, F.; Mathey, P.; Kibler, B.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Faucher, O.; Smektala, F.

    2016-10-01

    We report on the generation of multiple-octave supercontinuum laser source spanning from 0.5 μm to 11 μm induced by multi-filamentation in a ZnSe crystal. The generated supercontinuum is both spatially and spectrally characterized. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements by means of the supercontinuum absorption spectroscopy technique. The entire absorption spectrum is successfully recorded within the whole spectral bandwidth of the supercontinuum. Experimental results are in fairly good agreement with the HITRAN database, confirming the reliability and stability over several hours of the generated supercontinuum.

  6. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  7. Analytical methods of laser spectroscopy for biomedical applications

    NASA Astrophysics Data System (ADS)

    Martyshkin, Dmitri V.

    Different aspects of the application of laser spectroscopy in biomedical research have been considered. A growing demand for molecular sensing techniques in biomedical and environmental research has led the introduction of existing spectroscopic techniques, as well as development of new methods. The applications of laser-induced fluorescence, Raman scattering, cavity ring-down spectroscopy, and laser-induced breakdown spectroscopy for the monitoring of superoxide dismutase (SOD) and hemoglobin levels, the study of the characteristics of light-curing dental restorative materials, and the environmental monitoring of levels of toxic metal ion is presented. The development of new solid-state tunable laser sources based on color center crystals for these applications is presented as well.

  8. Near infrared laser penetration and absorption in human skin

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-02-01

    For understanding the mechanisms of low level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. In this paper, we present a three dimensional, multi-layer Monte Carlo simulation tool for studying light penetration and absorption in human skin. The skin is modeled as a three-layer participating medium, namely epidermis, dermis, and subcutaneous, where its geometrical and optical properties are obtained from the literature. Both refraction and reflection are taken into account at the boundaries according to Snell's law and Fresnel relations. A forward Monte Carlo method was implemented and validated for accurately simulating light penetration and absorption in absorbing and anisotropically scattering media. Local profiles of light penetration and volumetric absorption densities were simulated for uniform as well as Gaussian profile beams with different spreads at 155 mW average power over the spectral range from 1000 nm to 1900 nm. The results show the effects of beam profiles and wavelength on the local fluence within each skin layer. Particularly, the results identify different wavelength bands for targeted deposition of power in different skin layers. Finally, we show that light penetration scales well with the transport optical thickness of skin. We expect that this tool along with the results presented will aid researchers resolve issues related to dose and targeted delivery of energy in tissues for LLLT.

  9. UV-UV hole burning and IR dip spectroscopy of homophenylalanine by laser desorption supersonic jet technique

    NASA Astrophysics Data System (ADS)

    Sohn, Woon Yong; Ishiuchi, Shun-ichi; Çarçabal, Pierre; Oba, Hikari; Fujii, Masaaki

    2014-12-01

    Conformer selected electronic and vibrational spectra of homophenylalanine, phenylalanine analogue molecule, were measured by UV-UV hole burning and IR dip spectroscopy combined with laser desorption technique. 10 conformers were found by UV-UV hole burning spectroscopy and their structures were assigned by IR dip and UV absorption spectra with aid of quantum chemical calculations in both S0 and S1. This study shows that the combination of simulated IR and UV spectra is powerful to assign flexible molecules.

  10. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    PubMed

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.

  11. The use of UV-Vis absorption spectroscopy for studies of natively disordered proteins.

    PubMed

    Permyakov, Eugene A

    2012-01-01

    Absorption spectroscopy can be used to monitor structural changes upon transitions from ordered to disordered state in proteins. Changes in environment of tryptophan, tyrosine, and phenylalanine residues result in changes of their absorption spectra. In most cases the changes are small and can be measured only in a differential mode.

  12. Direct and quantitative photothermal absorption spectroscopy of individual particulates

    SciTech Connect

    Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang; Zheng, Ruiting; Shen, Sheng

    2013-12-23

    Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

  13. High power laser heating of low absorption materials

    SciTech Connect

    Olson, K.; Talghader, J.; Ogloza, A.; Thomas, J.

    2014-09-28

    A model is presented and confirmed experimentally that explains the anomalous behavior observed in continuous wave (CW) excitation of thermally isolated optics. Distributed Bragg Reflector (DBR) high reflective optical thin film coatings of HfO₂ and SiO₂were prepared with a very low absorption, about 7 ppm, measured by photothermal common-path interferometry. When illuminated with a 17 kW CW laser for 30 s, the coatings survived peak irradiances of 13 MW/cm², on 500 μm diameter spot cross sections. The temperature profile of the optical surfaces was measured using a calibrated thermal imaging camera for illuminated spot sizes ranging from 500 μm to 5 mm; about the same peak temperatures were recorded regardless of spot size. This phenomenon is explained by solving the heat equation for an optic of finite dimensions and taking into account the non-idealities of the experiment. An analytical result is also derived showing the relationship between millisecond pulse to CW laser operation where (1) the heating is proportional to the laser irradiance (W/m²) for millisecond pulses, (2) the heating is proportional to the beam radius (W/m) for CW, and (3) the heating is proportional to W/m∙ tan⁻¹(√(t)/m) in the transition region between the two.

  14. X-ray absorption spectroscopy for wire-array Z-pinches at the non-radiative stage

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Chittenden, J. P.; Anderson, A.; Shevelko, A. P.; Wiewior, P.; Durmaz, T.; Altemara, S. D.; Papp, D.; Astanovitskiy, A. L.; Nalajala, V.; Chalyy, O.; Dmitriev, O.

    2011-12-01

    Absorption spectroscopy was applied to wire-array Z-pinches on the 1 MA pulsed-power Zebra generator at the Nevada Terawatt Facility (NTF). The 50 TW Leopard laser was coupled with the Zebra generator for X-ray backlighting of wire arrays at the ablation stage. Broadband X-ray emission from a laser-produced Sm plasma was used to backlight Al star wire arrays in the range of 7-9 Å. Two time-integrated X-ray conical spectrometers recorded reference and absorption spectra. The spectrometers were shielded from the bright Z-pinch X-ray burst by collimators. The comparison of plasma-transmitted spectra with reference spectra indicates absorption lines in the range of 8.1-8.4 Å. Analysis of Al K-shell absorption spectra with detailed atomic kinetics models shows a distribution of electron temperature in the range of 10-30 eV that was fitted with an effective two-temperature model. Temperature and density distributions in wire-array plasma were simulated with a three-dimension magneto-hydrodynamic code. Post-processing of this code's output yields synthetic transmission spectrum which is in general agreement with the data.

  15. The use of CNDO in spectroscopy. XV. Two photon absorption

    NASA Astrophysics Data System (ADS)

    Marchese, Francis T.; Seliskar, C. J.; Jaffé, H. H.

    1980-04-01

    Two-photon absorptivities have been calculated within the CNDO/S-CI molecular orbital framework of Del Bene and Jaffé utilizing the second order time dependent perturbation equations of Göppert-Mayer and polarization methods of McClain. Good agreement is found between this theory and experiment for transition energies, symmetries, and two-photon absorptivities for the following molecules: biphenyl, terphenyl, 2,2'-difluorobiphenyl, 2,2'-bipyridyl, phenanthrene, and the isoelectronic series: fluorene, carbazole, dibenzofuran.

  16. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  17. Laser Infrared Desorption Spectroscopy to Detect Complex Organic Molecules on Icy Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Sollit, Luke S.; Beegle, Luther W.

    2008-01-01

    Laser Desorption-Infrared Spectroscopy (LD-IR) uses an IR laser pulse to desorb surface materials while a spectrometer measures the emission spectrum of the desorbed materials (Figure 1). In this example, laser desorption operates by having the incident laser energy absorbed by near surface material (10 microns in depth). This desorption produces a plume that exists in an excited state at elevated temperatures. A natural analog for this phenomenon can be observed when comets approach the sun and become active and individual molecular emission spectra can be observed in the IR [1,2,3,4,5]. When this occurs in comets, the same species that initially emit radiation down to the ground state are free to absorb it, reducing the amount of detectable emission features. The nature of our technique results in absorption not occurring, because the laser pulse could easily be moved away form the initial desorption plume, and still have better spatial resolution then reflectance spectroscopy. In reflectance spectroscopy, trace components have a relatively weak signal when compared to the entire active nature of the surface. With LDIR, the emission spectrum is used to identify and analyze surface materials.

  18. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Mehravar, S.; Norwood, R. A.; Peyghambarian, N.; Kieu, K.

    2016-06-01

    Dual-comb technique has enabled exciting applications in high resolution spectroscopy, precision distance measurements, and 3D imaging. Major advantages over traditional methods can be achieved with dual-comb technique. For example, dual-comb spectroscopy provides orders of magnitude improvement in acquisition speed over standard Fourier-transform spectroscopy while still preserving the high resolution capability. Wider adoption of the technique has, however, been hindered by the need for complex and expensive ultrafast laser systems. Here, we present a simple and robust dual-comb system that employs a free-running bidirectionally mode-locked fiber laser operating at telecommunication wavelength. Two femtosecond frequency combs (with a small difference in repetition rates) are generated from a single laser cavity to ensure mutual coherent properties and common noise cancellation. As the result, we have achieved real-time absorption spectroscopy measurements without the need for complex servo locking with accurate frequency referencing, and relatively high signal-to-noise ratio.

  19. Beam Cooling and Laser Spectroscopy (BECOLA) Project at NSCL

    NASA Astrophysics Data System (ADS)

    Minamisono, K.; Barquest, B. R.; Bollen, G.; Mantica, P. F.; Morrissey, D. J.; Ringle, R.; Schwarz, S.

    2009-10-01

    A new beam line for beam cooling and laser spectroscopy (BECOLA) has been designed and is being installed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The BECOLA beam line will be capable of accepting ions of energy up to 60 keV. A linear Radio Frequency Quadrupole (RFQ) ion trap [1] will be used to cool and bunch the beam upstream of the BECOLA beam line. This beam line will have two dedicated experimental legs, one for collinear-laser spectroscopy with the bunched beam and another for polarization by optical pumping of low energy atoms/ions for β-NMR experiments. Initial studies at NSCL will include the measurement of μ, Q and of light- and medium-mass refractory isotopes, using both the laser spectroscopy and the β-NMR technique. A frequency doubled light of Ti:Sapphire ring laser pumped by diode-pumped solid state laser will be used for spectroscopy and optical pumping for polarization. The present status of BECOLA beam line as well as the laser system will be presented. [4pt] [1] G. Bollen et al., Nucl. Instr. and Meth. A 532, 203 (2004).

  20. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. V.; Garanin, Sergey G.; Zhidkov, N. V.; Pinegin, A. V.; Suslov, N. A.

    2012-01-01

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 — 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s — 2p transitions in Al atoms and the 2p — 3d transitions in Ge atoms are presented.

  1. Influence of nanorod absorption spectrum width on superluminality effect for laser pulse propagation

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.

    2016-03-01

    We investigate the influence of the finite absorption spectrum width on the soliton formation and superluminality phenomenon at a femtosecond pulse propagation in a medium with noble nanoparticles. These effects take place if a positive phase-amplitude grating is induced by laser radiation. We take into account the two-photon absorption (TPA) of laser radiation by nanorods, and time-dependent nanorod aspect ratio changing due to their melting or reshaping because of laser energy absorption, and the nanorod absorption spectrum width. On the basis of computer simulation we demonstrate these effects in a medium with positive phase-amplitude grating, induced by laser radiation, if a weak laser energy absorption takes place on the laser pulse dispersion length.

  2. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    SciTech Connect

    Bolme, Cynthia A; Mc Grane, Shawn D; Dang, Nhan C; Whitley, Von H; Moore, David S.

    2011-01-20

    Ultrafast dynamic ellipsometry is used to measure the material motion and changes in the optical refractive index of laser shock compressed materials. This diagnostic has shown us that the ultrafast laser driven shocks are the same as shocks on longer timescales and larger length scales. We have added spectroscopic diagnostics of infrared absorption, ultra-violet - visible transient absorption, and femtosecond stimulated Raman scattering to begin probing the initiation chemistry that occurs in shock reactive materials. We have also used the femtosecond stimulated Raman scattering to measure the vibrational temperature of materials using the Stokes gain to anti-Stokes loss ratio.

  3. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  4. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  5. Double conical crystal x-ray spectrometer for high resolution ultrafast x-ray absorption near-edge spectroscopy of Al K edge

    SciTech Connect

    Levy, A.; Dorchies, F.; Fourment, C.; Harmand, M.; Hulin, S.; Santos, J. J.; Descamps, D.; Petit, S.; Bouillaud, R.

    2010-06-15

    An x-ray spectrometer devoted to dynamical studies of transient systems using the x-ray absorption fine spectroscopy technique is presented in this article. Using an ultrafast laser-induced x-ray source, this optical device based on a set of two potassium acid phthalate conical crystals allows the extraction of x-ray absorption near-edge spectroscopy structures following the Al absorption K edge. The proposed experimental protocol leads to a measurement of the absorption spectra free from any crystal reflectivity defaults and shot-to-shot x-ray spectral fluctuation. According to the detailed analysis of the experimental results, a spectral resolution of 0.7 eV rms and relative fluctuation lower than 1% rms are achieved, demonstrated to be limited by the statistics of photon counting on the x-ray detector.

  6. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    SciTech Connect

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  7. Combining a DS-DBR laser with QPM-DFG for mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Whittaker, K. E.; Ciaffoni, L.; Hancock, G.; Islam, M.; Peverall, R.; Ritchie, G. A. D.

    2012-11-01

    Studies into the suitability of a novel, widely tunable telecom L-band (1563-1613 nm) digital supermode distributed Bragg reflector (DS-DBR) laser for spectroscopy in the mid-IR are presented. Light from the DS-DBR laser was mixed with 1064 nm radiation in a periodically poled lithium niobate (PPLN) crystal to generate mid-IR light by quasi phase matching difference frequency generation (QPM-DFG). The resultant continuous wave radiation covered the range 3000-3200 cm-1 with powers of up to 2.6 μW. The use of such laser light for spectroscopic applications was illustrated by performing absorption experiments on both narrow-band and broad-band absorbers, namely methane (CH4) and methanethiol (CH3SH). Wavelength modulation spectroscopy (WMS) on CH4 demonstrated that the modulation characteristics of the DS-DBR laser observed in the near-IR were transposed to the mid-IR and yielded a sensitivity of 3.1×10-6 cm-1 Hz-1/2 over a 47 cm path length. In the CH3SH spectrum, the absorption feature at 3040 cm-1 was identified as a potential useful region for monitoring this biomarker in exhaled breath at reduced pressures.

  8. NO_2 Trace Measurements by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ventrillard-Courtillot, I.; Desbois, Th.; Foldes, T.; Romanini, D.

    2009-06-01

    In order to reach the sub-ppb NO_2 detection level required for environmental applications in remote areas, we develop a spectrometer based on a technique introduced a few years ago, named Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) [1]. It allows very sensitive and selective measurements, together with the realization of compact and robust set-ups as was subsequently demonstrated during measurements campaigns in harsh environments [2]. OF-CEAS benefits from the optical feedback to efficiently inject a cw-laser in a V-shaped high finesse cavity (typically 10 000). Cavity-enhanced absorption spectra are acquired on a small spectral region (˜1 cm^{-1}) that enables selective and quantitative measurements at a fast acquisition rate with a detection limit of several 10^{-10} cm^{-1} as reported in this work. Spectra are obtained with high spectral definition (150 MHz highly precisely spaced data points) and are self calibrated by cavity rind-down measurements regularly performed (typically every second). NO_2 measurements are performed with a commercial extended cavity diode laser around 411 nm, spectral region where intense electronic transitions occur. We will describe the set-up developed for in-situ measurements allowing real time concentration measurements at typically 5 Hz; and then report on the measurements performed with calibrated NO_2 reference samples to evaluate the linearity of the apparatus. The minimum detectable absorption loss is estimated by considering the standard deviation of the residual of one spectrum. We achieved 2x10^{-10} cm^{-1} for a single spectrum recorded in less than 100 ms at 100 mbar. It leads to a potential detection limit of 3x10^8 molecules/cm^3, corresponding to about 150 pptv at this pressure. [1] J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B, 80, 1027 (2005). [2] D. Romanini, M. Chenevrier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B, 83, 659

  9. Laser spectroscopy for totally non-intrusive detection of oxygen in modified atmosphere food packages

    NASA Astrophysics Data System (ADS)

    Cocola, L.; Fedel, M.; Poletto, L.; Tondello, G.

    2015-04-01

    A device for measuring the oxygen concentration inside packages in modified atmosphere working in a completely non-intrusive way has been developed and tested. The device uses tunable diode laser spectroscopy in a geometry similar to a short distance LIDAR: A laser beam is sent through the top film of a food package, and the absorption is measured by detecting the light scattered by the bottom of the container or by a portion of the food herein contained. The device can operate completely in a contactless way from the package, and the distances of absorption both outside and inside the package are measured with a triangulation system. The performances of the device have been tested for various types of containers, and absolute values for the oxygen concentration have been compared with standard albeit destructive measurements.

  10. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  11. Tropospheric ozone distributions measured with an airborne laser absorption spectrometer

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1978-01-01

    Measurements of tropospheric ozone have been made in the southern and middle California regions and over the Pacific Ocean during two series of flights in February and May 1977. The data were obtained by using a laser absorption spectrometer, a nadir-viewing instrument which remotely measures the ozone column abundance between ground level and aircraft altitude by interacting with ozone at specific wavelengths near 9.5 microns. The measurements indicate significantly lower ozone abundances above the Mojave Desert region as compared with farm, forest, and urban areas. The average tropospheric column density was found to be 0.0027 atm cm/km over the California region and 0.0035 atm cm/km over the Pacific Ocean region 1000-2000 km west of the coast of Mexico.

  12. Wavelength dependence of laser induced breakdown spectroscopy (LIBS) on questioned document investigation.

    PubMed

    Elsherbiny, Nany; Aied Nassef, O

    2015-07-01

    The fast and nearly non-destructive criteria of laser induced breakdown spectroscopy (LIBS) technique has been exploited for forensic purposes, specifically, document investigation. The dependence of the optical emission spectra of different black gel ink samples on the excitation laser wavelength, namely the visible wavelength at λ=532 nm and the IR wavelength at λ=1064 nm, was studied. The inks of thirty black gel-ink pens comprising ten brands were analyzed to determine the variation of the chemical composition of ink and to discriminate among them with minimum mass removal and minimum damage to the document's paper. Under the adopted experimental conditions, the ability of the visible LIBS to differentiate among the different ink samples was successful compared to IR LIBS at the same laser pulse energy (~25 mJ/pulse, laser fluence is ~1400J·cm(-2) for visible laser and ~1100J·cm(-2) for IR laser) which could be attributed to the IR absorption effects by the black ink. However, the visible LIBS produces deeper crater with respect to that produced by IR LIBS. Applying IR LIBS with higher pulse energy of ~87mJ (laser fluence is ~4100J·cm(-2)), identification and differentiation of the adopted samples was performed with producing a larger-diameter but superficial crater. The plasma parameters are discussed at the adopted experimental conditions. The results support the potential of LIBS technique using both the visible and IR lasers to be commercially developed for forensic document examination. PMID:26087873

  13. Molecular dispersion spectroscopy – new capabilities in laser chemical sensing

    PubMed Central

    Nikodem, Michal; Wysocki, Gerard

    2012-01-01

    Laser spectroscopic techniques suitable for molecular dispersion sensing enable new applications and strategies in chemical detection. This paper discusses the current state-of-the art and provides an overview of recently developed chirped laser dispersion spectroscopy (CLaDS) based techniques. CLaDS and its derivatives allow for quantitative spectroscopy of trace-gases and enable new capabilities such as extended dynamic range of concentration measurements, high immunity to photodetected intensity fluctuations, or capability of direct processing of spectroscopic signals in optical domain. Several experimental configurations based on quantum cascade lasers and examples of molecular spectroscopic data are presented to demonstrate capabilities of molecular dispersion spectroscopy in the mid-infrared spectral region. PMID:22809459

  14. Molecular dispersion spectroscopy--new capabilities in laser chemical sensing.

    PubMed

    Nikodem, Michal; Wysocki, Gerard

    2012-07-01

    Laser spectroscopic techniques suitable for molecular dispersion sensing enable new applications and strategies in chemical detection. This paper discusses the current state of the art and provides an overview of recently developed chirped laser dispersion spectroscopy (CLaDS)-based techniques. CLaDS and its derivatives allow for quantitative spectroscopy of trace gases and enable new capabilities, such as extended dynamic range of concentration measurements, high immunity to photodetected intensity fluctuations, or capability of direct processing of spectroscopic signals in optical domain. Several experimental configurations based on quantum cascade lasers and examples of molecular spectroscopic data are presented to demonstrate capabilities of molecular dispersion spectroscopy in the mid-infrared spectral region. PMID:22809459

  15. Band edge identification and carrier dynamics of CVD MoS2 monolayer measured by broadband Femtosecond Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aleithan, Shrouq; Livshits, Maksim; Rack, Jeffrey; Kordesch, Martin; Stinaff, Eric

    Two-dimensional atomic crystals of transition metal dichalcogenides are considered promising candidates for optoelectronics, valleytronics, and energy harvesting devices. These materials exhibit excitonic features with high binding energy as a result of confinement effect and reduced screening when the material is thinned to monolayer. However, previous theoretical and experimental studies report different binding energy results. This work further examines the electronic structure and binding energy in this material using broadband Femtosecond Transient Absorption Spectroscopy. Samples of MoS2 were grown by chemical vapor deposition, pumped with femtosecond laser, and probed by femtosecond white light resulting in broadband differential absorption spectra with three distinct features related to the three dominant absorption peaks in the material: A, B, and C. The dependence of the transient absorption spectra on excitation wavelength and layer number provides evidence of a band gap located at C (2.9 eV) and therefore an excitonic binding energy of 1 eV. Additional features in the spectra identified as a broadening of the absorption features caused by carrier scattering, surface defects and trap states.

  16. Laser Spectroscopy of Atoms and Molecules.

    ERIC Educational Resources Information Center

    Schawlow, Arthur L.

    1978-01-01

    Surveys new laser techniques and a variety of spectroscopic experiments that can be used to detect, measure and study very small numbers of atoms on molecules. The range of applicability of these techniques is also included. (HM)

  17. Time-resolved diffuse optical spectroscopy: a differential absorption approach

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Bassi, Andrea; Spinelli, Lorenzo; Cubeddu, Rinaldo; Pifferi, Antonio

    2009-07-01

    A method was developed to estimate spectral changes of the absorption properties of turbid media from time-resolved reflectance/transmittance measurements. It was derived directly from the microscopic Beer-Lambert law, and tested against simulations and phantom measurements.

  18. Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Hancock, G.; van Helden, J. H.; Peverall, R.; Ritchie, G. A. D.; Walker, R. J.

    2009-05-01

    A continuous wave external cavity quantum cascade laser (EC-QCL) operating between 1872 and 1958 cm-1 has been used to make rotationally resolved measurements in the fundamental band of nitric oxide at 140 mTorr, and the ν2 band of water at atmospheric pressure. These measurements demonstrate the advantages of wide tunability and high resolution of the EC-QCL system. From direct absorption spectroscopy on nitric oxide a laser bandwidth of 20 MHz has been deduced and a sensitivity of 8.4×10-4 cm-1 Hz-1/2 was achieved. Wavelength modulation spectroscopy using current modulation enhances the sensitivity by a factor of 23 to 3.7×10-5 cm-1 Hz-1/2.

  19. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers

    SciTech Connect

    Wang, Yin; Wang, Wen; Wysocki, Gerard; Soskind, Michael G.

    2014-01-20

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

  20. Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.

    2015-01-01

    Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.

  1. Decay-Assisted Laser Spectroscopy of Neutron-Deficient Francium

    NASA Astrophysics Data System (ADS)

    Lynch, K. M.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Cocolios, T. E.; De Groote, R. P.; De Schepper, S.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Marsh, B. A.; Neyens, G.; Procter, T. J.; Rossel, R. E.; Rothe, S.; Strashnov, I.; Stroke, H. H.; Wendt, K. D. A.

    2014-01-01

    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes Fr202-206 performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay-spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes Fr202-206, in addition to the identification of the low-lying states of Fr202,204 performed at the CRIS experiment.

  2. Absorption of laser radiation by femtosecond laser-induced plasma of air and its emission characteristics

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.

    2015-11-01

    The energy absorbed by femtosecond laser plasma has nonlinear dependence on incident laser energy. The threshold power for plasma formation is 5.2 GW. Emission of nitrogen molecule, nitrogen molecule ion, atomic oxygen (unresolved triplet O I 777 nm) and nitrogen (triplet N I 742.4, 744.3 and 746.8 nm) lines is detected. Molecular emission consists of second positive and firs negative systems of nitrogen. Time-resolved spectroscopy of plasmas shows short molecular line emission (up to 1 ns) and long atomic line emission (up to 150 ns).

  3. Perspectives for laser spectroscopy of the element nobelium

    NASA Astrophysics Data System (ADS)

    Laatiaoui, M.; Backe, H.; Block, M.; Chhetri, P.; Lautenschläger, F.; Lauth, W.; Walther, Th.

    2014-06-01

    Strong efforts are undertaken at GSI in Darmstadt preparing for laser spectroscopy of the synthetic element nobelium. Several excimer- and dye lasers will be used in the forthcoming search for the -level in 254No. Based on the highly-efficient Radiation Detected Resonance Ionization Spectroscopy (RADRIS) technique, the identification of this excited state predicted around 3.8 eV becomes possible within a relatively short period of beam-time. This will form the basis for future studies of the atomic structure of the heaviest elements.

  4. Sensitive absorption measurements of hydrogen sulfide at 1.578 μm using wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Xia, Hua; Dong, Feng-Zhong; Wu, Bian; Zhang, Zhi-Rong; Pang, Tao; Sun, Peng-Shuai; Cui, Xiao-Juan; Han, Luo; Wang, Yu

    2015-03-01

    Sensitive detection of hydrogen sulfide (H2S) has been performed by means of wavelength modulation spectroscopy (WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into account, the response time is 4 s for a 0.8 L multi-pass cell with a 56.7 m effective optical path length. Moreover, the linearity has been tested in the 0-50 ppmv range. The detection limit achievable by the Allan variance is 224 ppb within 24 s under room temperature and ambient pressure conditions. This tunable diode laser absorption spectroscopy (TDLAS) system for H2S detection has the feasibility of real-time online monitoring in many applications. Project supported by the Special Fund for Basic Research on Scientific Instruments of the Chinese Academy of Sciences (Grant No. YZ201315) and the National Natural Science Foundation of China (Grant Nos. 11204320, 41405034, and 11204319).

  5. Laser Absorption and Particle Acceleration at the Critical Surface

    NASA Astrophysics Data System (ADS)

    May, J.; Tonge, J.; Mori, W. B.; Fiuza, F.; Fonseca, R.; Silva, L. O.

    2014-10-01

    Using high intensity lasers (I >= 5 ×1019 W /cm2) to accelerate particles at the critical surface offers the potential to deliver high fluence particle beams into dense matter. Potential applications include Fast Ignition Inertial Confinement Fusion, Radiation Pressure Acceleration, and probing high-density matter for basic plasma research. In order to tailor the beam characteristics of laser conversion efficiency, energy spectrum, beam divergence, and accelerated species (ions or electrons) to the given application - and of course to interpret the results of experiments - it is key to have an understanding of the underlying absorption and acceleration mechanisms. Much theoretical and simulation work has been done on this regime in recent years, and although it has become clear that mechanisms often invoked at lower intensities (i.e. JxB and Bruenel heating) are less or unimportant in these systems, debate still exists as to exactly what mechanisms will play the dominant role in laboratory relevant scenarios. We present recent results of simulations with the Particle-in-Cell code OSIRIS which sheds light on these issues. The authors acknowledge the support of the DOE Fusion Science Center for Extreme States of Matter and Fast Ignition Physics under DOE Contract No. FC02-04ER54789 and DOE contracts DE-NA0001833 and DE-SC-0008316, and NSF grant ACI-13398893.

  6. Infrared Absorption Spectroscopy of Acetylene in the Lecture

    ERIC Educational Resources Information Center

    Briggs, Thomas E.; Sanders, Scott T.

    2006-01-01

    Lecture-based experimental methods that include topics ranging from basic signal processing to the proper use of thermocouples to advanced optical techniques such as laser-induced fluorescence are described. The data obtained from this demonstration could be provided to the students in digital form to obtain useful engineering results such as an…

  7. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  8. Indoor carbon dioxide monitoring with diode laser absorption at 2 μm

    NASA Astrophysics Data System (ADS)

    Li, Jinyi; Du, Zhenhui; Ma, Yiwen; Liu, Jingwang

    2015-05-01

    In order to investigate the variation of indoor carbon dioxide concentration and how it changes with human activities, a tunable diode laser absorption spectroscopy (TDLAS) system was used to monitor the indoor CO2 concentration. Based on Wavelength Modulation Spectroscopy double frequency detection (WMS-2f), the 2v1+v3 characteristic line (4991.26 cm-1) of CO2 was measured by a DFB laser. The measured concentration values were calibrated by means of a cell filled with reference gas. The results show that the daily average indoor CO2 concentrations is about 419ppm which is slightly higher than that of the outdoor and the changing range is between 380ppm and 510ppm in a day. The indoor CO2 concentration was influenced by the change of ventilation and indoor staff. The respiration of the indoor staff makes a greater impact on a relatively confined indoor CO2 concentration. The CO2 increasing rate is measured to be 80ppm/hour in the case of occupant density of 0.06 people/m3. Therefore, the staff crowded indoor should ventilate timely to prevent excessive CO2 causing people discomfort.

  9. Nonlinear absorption mechanisms during femtosecond laser surface ablation of silica glass

    NASA Astrophysics Data System (ADS)

    Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Startseva, E. D.; Khmelnitskii, R. A.

    2016-03-01

    Spatial profiles of single-shot microcraters produced by tightly focused femtosecond laser pulses with variable pulse energies are measured by means of a laser confocal microscope. Dependences of crater depth on laser intensity at different pulse energies appear as overlapping saturating curves with the same threshold, indicating the presence of nonlinear absorption and absence of nonlocal ablation effects. A monotonic twofold increase in absorption nonlinearity is related to the transition from minor defect-band absorption to fundamental band-to-band absorption.

  10. Temperature-dependent 780-nm laser absorption by engineering grade aluminum, titanium, and steel alloy surfaces

    SciTech Connect

    Rubenchik, Alexander M.; Wu, Sheldon S. Q.; Kanz, V. Keith; LeBlanc, Mary M.; Lowdermilk, W. Howard; Rotter, Mark D.; Stanley, Joel R.

    2014-07-17

    When modeling laser interaction with metals for various applications it requires a knowledge of absorption coefficients for real, commercially available materials with engineering grade (unpolished, oxidized) surfaces. But, most currently available absorptivity data pertain to pure metals with polished surfaces or vacuum-deposited thin films in controlled atmospheres. A simple laboratory setup is developed for the direct calorimetric absorptivity measurements using a diode-array laser emitting at 780 nm. A scheme eliminating the effect of convective and radiative losses is implemented. Futhermore, the obtained absorptivity results differ considerably from existing data for polished pure metals and are essential for the development of predictive laser-material interaction models.

  11. Sub-kilohertz laser linewidth narrowing using polarization spectroscopy.

    PubMed

    Torrance, Joshua S; Sparkes, Ben M; Turner, Lincoln D; Scholten, Robert E

    2016-05-30

    We identify several beneficial characteristics of polarization spectroscopy as an absolute atomic reference for frequency stabilization of lasers, and demonstrate sub-kilohertz laser spectral linewidth narrowing using polarization spectroscopy with high-bandwidth feedback. Polarization spectroscopy provides a highly dispersive velocity-selective absolute atomic reference based on frequency-dependent birefringence in an optically pumped atomic gas. The pumping process leads to dominance of the primary closed transition, suppressing closely-spaced subsidiary resonances which reduce the effective capture range for conventional atomic references. The locking signal is based on subtraction of two orthogonal polarization signals, reducing the effect of laser intensity noise to the shot noise limit. We measure noise-limited servo bandwidth comparable to that of a high-finesse optical cavity without the frequency limit or complexity imposed by optical modulation normally associated with high bandwidth laser frequency stabilization. We demonstrate narrowing to 600±100 Hz laser linewidth using the beatnote between two similarly locked external cavity diode lasers. PMID:27410068

  12. X-ray absorption spectroscopy of chicken sulfite oxidase crystals

    SciTech Connect

    George, G.N.; Pickering, I.J.; Kisker, C.

    1999-05-17

    Sulfite oxidase catalyzes the physiologically vital oxidation of sulfite to sulfate. Recently, the crystal structure of chicken sulfite oxidase has been reported at 1.9 {angstrom} resolution. In contrast to the information available from previous X-ray absorption spectroscopic studies, the active site indicated by crystallography was a mono-oxo species. Because of this the possibility that the crystals did in fact contain a reduced molybdenum species was considered in the crystallographic work. The authors report herein an X-ray absorption spectroscopic study of polycrystalline sulfite oxidase prepared in the same manner as the previous single-crystal samples, and compare this with data for frozen solutions of oxidized and reduced enzyme.

  13. Differential optical spectroscopy for absorption characterization of scattering media.

    PubMed

    Billet, Cyril; Sablong, Raphaël

    2007-11-15

    Reflectance techniques are commonly used to characterize the optical properties of tissues. However, the precise determination of local chromophore concentrations in turbid media is usually difficult because of the nonlinear dependence of light intensity as a function of scattering and absorption coefficients. A technique is presented to easily determine absorbent compound concentration ratios in a turbid media from three optical reflectance spectra, in the visible range, measured for source-detector distances less than 1cm. The validity of the method is experimentally established, in cases of sets of diluted milk containing absorbent inks, over a relatively wide range of absorption (0.05-0.5 cm(-1)) and reduced scattering (10-20 cm(-1)) coefficients.

  14. Ultrafast Extreme Ultraviolet Absorption Spectroscopy of Methylammonium Lead Iodide Perovskite

    NASA Astrophysics Data System (ADS)

    Verkamp, Max A.; Lin, Ming-Fu; Ryland, Elizabeth S.; Vura-Weis, Josh

    2016-06-01

    Methylammonium lead iodide (perovskite) is a leading candidate for use in next-generation solar cell devices. However, the photophysics responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) absorption was used to investigate electron and hole dynamics in perovskite by observing transitions from a common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation with a broad spectrum (40-70 eV) were generated via high-harmonic generation using a tabletop instrument. Transient absorption measurements with visible pump and XUV probe directly observed the relaxation of charge carriers in perovskite after above-band excitation in the femtosecond and picosecond time ranges.

  15. Two-photon absorption spectroscopy of rubrene single crystals

    NASA Astrophysics Data System (ADS)

    Irkhin, Pavel; Biaggio, Ivan

    2014-05-01

    We determine the wavelength dependence of the two-photon absorption cross section in rubrene single crystals both by direct measurement of nonlinear transmission and from the two-photon excitation spectrum of the photoluminescence. The peak two-photon absorption coefficient for b-polarized light was found to be (4.6±1)×10-11 m/W at a wavelength of 850±10 nm. It is 2.3 times larger for c-polarized light. The lowest energy two-photon excitation peak corresponds to an excited state energy of 2.92±0.04 eV and it is followed by a vibronic progression of higher energy peaks separated by ˜0.14 eV.

  16. Time-dependent gain and absorption in a 5 J U preionized Xe Cl laser

    SciTech Connect

    Taylor, R.S.; Alcock, A.J.; Corkum, P.B.; Leopold, K.E.; Watanabe, S.

    1983-03-01

    The operating characteristics of a wide aperture (5 X 4.5 cm/sup 2/), high output energy (5 J), UV preionized XeCl lasers are described. The time dependence of the gain and absorption have been measured for both He and Ne based laser gas mixes. These measurements were correlated with the discharge current and voltage waveforms. For optimized laser gas mixes and pressures, the absorption for He based laser mixes was ten times higher than for Ne based mixes. Absorption data are also presented for the component gas mixes.

  17. Ultrafast holography and transient absorption spectroscopy in charge-transfer polymers

    SciTech Connect

    McBranch, D.W.; Maniloff, E.S.; Vacar, D.; Heeger, A.J.

    1997-10-01

    Charge-transfer polymers are a new class of nonlinear optical materials which can be used for generating femtosecond holographic gratings. Using semiconducting polymers sensitized with varying concentrations of C{sub 60}, holographic gratings were recorded by individual ultrafast laser pulses; the diffraction efficiency and time decay of the gratings were measured using non-degenerate four-wave mixing. Using a figure of merit for dynamic data processing, the temporal diffraction efficiency, this new class of materials exhibits between two and 12 orders of magnitude higher response than previous reports. The charge transfer range at polymer/C{sub 60} interfaces was further studied using transient absorption spectroscopy. The fact that charge-transfer occurs in the picosecond-time scale in bilayer structures (thickness 200 {angstrom}) implies that diffusion of localized excitations to the interface is not the dominant mechanism; the charge transfer range is a significant fraction of the film thickness. From analysis of the excited state decay curves, we estimate the charge transfer range to be 80 {angstrom} and interpret that range as resulting from quantum delocalization of the photoexcitations.

  18. Interband cascade laser based absorption sensor for ppb-level formaldehyde detection

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Luo, Longqiang; Cao, Yingchun; Jiang, Wenzhe; Tittel, Frank K.

    2015-01-01

    A trace gas absorption sensor for formaldehyde (H2CO) detection was developed using a continuous wave, room temperature, low-power consumption interband cascade laser (ICL) at 3.6 μm. The recent availability of ICLs with wavelength ranged between 3-4 μm enables the sensitive detection of trace gases such as formaldehyde that possesses a strong absorption band in this particular wavelength region. This absorption sensor detected a strong formaldehyde line at 2778.5 cm-1 in its v1 fundamental band. Wavelength modulation spectroscopy with second harmonic detection (WMS-2f) combined with a compact and novel multipass gas cell (7.6 cm physical length, 32 ml sampling volume, and 3.7 m optical path length) was utilized to achieve a sensitivity of ~6 ppbv for H2CO measurements at 1 Hz sampling rate. The Allan- Werle deviation plot reveals that a minimum detection limit of ~1.5 ppbv can be achieved for an averaging time of 140 seconds.

  19. Optical spectroscopy of laser plasma in a deep crater

    SciTech Connect

    Kononenko, Taras V; Konov, Vitalii I; Walter, D; Dausinger, F

    2009-04-30

    The time dynamics of plasma-emission spectra is studied experimentally at different stages of the drilling of a steel plate by 100-fs and 5-ps laser pulses: from a shallow crater to a hole. The change in the time dependence of the plasma temperature caused by variations in the irradiated surface geometry is analysed. It is found that the time interval needed to reach a particular temperature (about 8000 K) drastically increases from 40-50 to 150-200 ns when a specific crater depth is achieved. The opposite tendency is observed as the crater depth grows further and a hole is produced. Strong self-absorption in a plasma plume inside a deep crater is experimentally confirmed which results in the appearance of line absorption against a continuous emission spectrum. (interaction of laser radiation with matter. laser plasma)

  20. Theory of absorption rate of carriers in fused silica under intense laser irradiation

    SciTech Connect

    Deng, Hongxiang; Xiang, Xia; Zheng, WG; Yuan, XD; Wu, SY; Jiang, XD; Gao, Fei; Zu, Xiaotao T.; Sun, Kai

    2010-11-15

    A quantum non-perturbation theory for phonon-assisted photon absorption of conduction band electron in intense laser was developed. By carrying out the calculation in fused silica at wavelengths from ultraviolet to infrared in terawatt intensity laser, we show that the Non-perturbation approach can make a uniform description of energy absorption rate at both short wavelengths and long wavelengths on TW / cm2 intensity laser.