Science.gov

Sample records for absorption spectroscopy technique

  1. A quality control technique based on UV-VIS absorption spectroscopy for tequila distillery factories

    NASA Astrophysics Data System (ADS)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Maldonado, J. L.; Pichardo Molina, J.; Meneses Nava, M. A.; Landgrave, Enrique; Cervantes, M. J.

    2006-02-01

    A low cost technique based on the UV-VIS absorption spectroscopy is presented for the quality control of the spirit drink known as tequila. It is shown that such spectra offer enough information to discriminate a given spirit drink from a group of bottled commercial tequilas. The technique was applied to white tequilas. Contrary to the reference analytic methods, such as chromatography, for this technique neither special personal training nor sophisticated instrumentations is required. By using hand-held instrumentation this technique can be applied in situ during the production process.

  2. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  3. Soliton absorption spectroscopy

    PubMed Central

    Kalashnikov, V. L.; Sorokin, E.

    2010-01-01

    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique. PMID:21151755

  4. Probing local structure of pyrochlore lead zinc niobate with synchrotron x-ray absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Kanchiang, Kanokwan; Pramchu, Sittichain; Yimnirun, Rattikorn; Pakawanit, Phakkhananan; Ananta, Supon; Laosiritaworn, Yongyut

    2013-08-01

    Local structure of lead zinc niobate (PZN) ceramic, synthesized via B-site oxide precursor route in atmospheric pressure, was investigated using synchrotron x-ray absorption spectroscopy (XAS) technique. The x-ray absorption near-edge structure (XANES) simulation was first carried out. The XANES simulation results indicate that the PZN ceramic is in pyrochlore phase having Zn2+ substituted on Nb5+ site. Afterwards, the extended x-ray absorption fine structure (EXAFS) analysis was performed to extract the bond length information between Zn2+ and its neighboring atoms. From the EXAFS fitting, the bond length between Zn2+ and Pb2+ in the pyrochlore phase was found to be longer than the previously reported bond length in the perovskite phase. Further, with the radial distribution information of Zn2+'s neighboring atoms, the formation energies along the precursor-to-pyrochlore and precursor-to-perovskite reaction paths were calculated using the density functional theory (DFT). The calculated results show that the formation energy of the perovskite phase is noticeably higher than that of the pyrochlore phase, which is influenced by the presence of energetic Pb2+ lone pair, as the perovskite phase has shorter Zn2+ to Pb2+ bonding. This therefore suggests the steric hindrance of Pb2+ lone pair and the mutual interactions between Pb2+ lone pair and Zn2+ are main causes of the instability of lead zinc niobate in the perovskite structure and confirm the efficacy of XAS and DFT analysis in revealing local structural details of complex pyrochlore materials.

  5. Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy

    SciTech Connect

    O'Neill, D.M.; Lewis, C.L.S.; Neely, D.; Davidson, S.J. ); Rose, S.J. ); Lee, R.W. )

    1991-08-15

    The technique of point-projection spectroscopy has been shown to be applicable to the study of expanding aluminum plasmas generated by {similar to}80 ps laser pulses incident on massive, aluminum stripe targets of {similar to}125 {mu}m width. Targets were irradiated at an intensity of 2.5{plus minus}0.5{times}10{sup 13} W/cm{sup 2} in a line focus geometry and under conditions similar to those of interest in x-ray laser schemes. Hydrogenic and heliumlike aluminum resonance lines were observed in absorption using a quasicontinuous uranium backlighter plasma. Using a pentaerythrital Bragg crystal as the dispersive element, a resolving power of {similar to}3500 was achieved with spatial resolution at the 5-{mu}m level in frame times of the order of 100 ps. Reduction of the data for times up to 150 ps after the peak of the incident laser pulse produced estimates of the temperature and ion densities present, as a function of space and time. The one-dimensional Lagrangian hydrodynamic code MEDUSA coupled to the atomic physics non-local-thermodynamic-equilibrium ionized material package was used to simulate the experiment in planar geometry and has been shown to be consistent with the measurements.

  6. Broadband absorption spectroscopy by combining frequency-domain and steady-state techniques

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Bevilacqua, Frederic; Jakubowski, Dorota B.; Cerussi, Albert E.; Butler, John A.; Hsiang, D.; Tromberg, Bruce J.

    2001-06-01

    A technique for measuring broadband near-infrared absorption spectra of turbid media is presented using a combination of frequency-domain (FD) and steady-state (SS) reflectance methods. Most of the wavelength coverage is provided by a white-light SS measurement, while the FD data are acquired at a few selected wavelengths. Coefficients of absorption ((mu) a) and reduced scattering ((mu) s') derived from the FD data are used to intensity-calibrate the SS measurements and to estimate (mu) s' at all wavelengths in the spectral window of interest. After these steps are performed, (mu) a can be determined by comparing the SS reflectance values to the predictions of diffusion theory, wavelength by wavelength. We present an application of this method to breast tumor characterization. A case study of a fibroadenoma is shown, where different absorption spectra were found between the normal and the tumor sides.

  7. X-ray absorption spectroscopy of Mn doped ZnO thin films prepared by rf sputtering technique

    SciTech Connect

    Yadav, Ashok Kumar; Jha, S. N.; Bhattacharyya, D.; Haque, Sk Maidul; Shukla, Dinesh; Choudhary, Ram Janay

    2015-11-15

    A set of r.f. sputter deposited ZnO thin films prepared with different Mn doping concentrations have been characterised by Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Spectroscopy (XANES) measurements at Zn, Mn and O K edges and at Mn L{sub 2,3} edges apart from long range structural characterisation by Grazing Incident X-ray Diffraction (GIXRD) technique. Magnetic measurements show room temperature ferromagnetism in samples with lower Mn doping which is however, gets destroyed at higher Mn doping concentration. The results of the magnetic measurements have been explained using the local structure information obtained from EXAFS and XANES measurements.

  8. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  9. Screening Technique for Lead and Cadmium in Toys and Other Materials Using Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Brouwer, Henry

    2005-01-01

    A simple procedure to quickly screen different consumer products for the presence of lead, cadmium, and other metals is described. This screening technique avoids expending a lot of preparation time on samples known to contain low levels of hazardous metals where only samples testing positive for the desired elements need to be analyzed…

  10. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  11. An indoor test campaign of the tomography long path differential optical absorption spectroscopy technique.

    PubMed

    Mettendorf, K U; Hartl, A; Pundt, I

    2006-02-01

    In this study we validate the two-dimensional long path DOAS tomography measurement technique by means of an indoor experiment with well-known concentration distributions. The experiment was conducted over an area of 10 m x 15 m using one and two cylindrical polycarbonate containers of diameter 2 m, respectively, filled with NO2. The setup was realized with three of the multibeam instruments recently developed by Pundt and Mettendorf (Appl. Opt., 2005, in press), which allow the simultaneous measurement along at least four light paths each. The configuration consisted of twelve simultaneous light beams, 39 horizontal light paths in total, and 18 different cylinder positions inside the field. It was found that for the discretization and inversion technique shown here reconstructions of the concentration distributions from experimental data agree well with simulated reconstructions. In order to draw conclusions for atmospheric applications, numerical studies including instrumental errors were carried out. It was found that with the presented measurement setup it is possible to measure and reconstruct one or two NO2 plumes of 600 m diameter and average concentrations above 4.2 ppbv each, on a scale of 13.5 km2. Theoretical investigations show that it should be possible to localize and quantify 600 m diameter plumes of SO2 > 1.5 ppbv, H2CO > 6.3 ppbv, HONO > 3.2 ppbv, and ozone > 46.2 ppbv. Larger plumes can be measured with higher precision.

  12. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  13. Standardization and validation of a new atomic absorption spectroscopy technique for determination and quantitation of aluminium adjuvant in immunobiologicals.

    PubMed

    Mishra, Arti; Bhalla, Sumir Rai; Rawat, Sameera; Bansal, Vivek; Sehgal, Rakesh; Kumar, Sunil

    2007-10-01

    In the present study, Aluminium quantification in immunobiologicals has been described using atomic absorption spectroscopy (AAS) technique. The assay was found to be linear in 25-125 microg/ml Aluminium range. The procedure was found to be accurate for different vaccines with recoveries of external additions ranging between 93.26 and 103.41%. The mean Limit of Variation (L.V.) for both intra- and inter-assay precision was calculated to be 1.62 and 2.22%, respectively. Further the procedure was found to be robust in relation to digestion temperature, alteration in acid (HNO(3) and H(2)SO(4)) ratio used for sample digestion and storage of digested vaccine samples up to a period of 15 days. After validation, AAS method was compared for its equivalency with routinely used complexometric titration method. On simultaneously applying on seven different groups of both bacterial and viral vaccines, viz., DPT, DT, TT, Hepatitis-A and B, Antirabies vaccine (cell culture) and tetravalent DPT-Hib, a high degree of positive correlation (+0.85-0.998) among AAS and titration methods was observed. Further AAS method was found to have an edge over complexometric titration method that a group of vaccines, viz., ARV (cell culture, adsorbed) and Hepatitis-A, in which Aluminium estimation is not feasible by pharmacopoeial approved complexometric titration method (possibly due to some interference in the sample matrix), this newly described and validated AAS assay procedure delivered accurate and reproducible results.

  14. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  15. Bioacoustic Absorption Spectroscopy

    DTIC Science & Technology

    2016-06-07

    seas in co-operation with fisheries biologists. The first planned experiment will be in the seas off California in co-operation with the Southwest... Fisheries Science Center of NOAA’s National Marine Fisheries Service. These experiments will be designed to investigate the “signatures” of the two major...formulating environmental adaptation strategies for tactical sonars. Fisheries applications: These results suggest that bioacoustic absorptivity can be used to

  16. Cavity Enhanced Ultrafast Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K.; Reber, Melanie Roberts; Chen, Yuning

    2015-06-01

    Ultrafast spectroscopy on gas phase systems is typically restricted to techniques involving photoionization, whereas solution phase experiments utilize the detection of light. At Stony Brook, we are developing new techniques for performing femtosecond time-resolved spectroscopy using frequency combs and high-finesse optical resonators. A large detection sensitivity enhancement over traditional methods enables the extension of all-optical ultrafast spectroscopies, such as broad-band transient absorption spectroscopy (TAS) and 2D spectroscopy, to dilute gas phase samples produced in molecular beams. Here, gas phase data can be directly compared to solution phase data. Initial demonstration experiments are focusing on the photodissociation of iodine in small neutral argon clusters, where cluster size strongly influences the effects solvent-caging and geminate recombination. I will discuss these initial results, our high power home-built Yb:fiber laser systems, and also extensions of the methods to the mid-IR to study the vibrational dynamics of hydrogen bonded clusters.

  17. Highly sensitive detection using Herriott cell for laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Chongyi; Song, Guangming; Du, Yang; Zhao, Xiaojun; Wang, Wenju; Zhong, Liujun; Hu, Mai

    2016-11-01

    The tunable diode laser absorption spectroscopy combined with the long absorption path technique is a significant method to detect harmful gas. The long optical path could come true by Herriott cell reducing the size of the spectrometers. A 15 cm long Herriott cell with 28.8 m optical absorption path after 96 times reflection was designed that enhanced detection sensitivity of absorption spectroscopy. According to the theory data of calculation, Herriott cell is analyzed and simulated by softwares Matlab and Lighttools.

  18. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  19. Absorption Spectroscopy in Homogeneous and Micellar Solutions.

    ERIC Educational Resources Information Center

    Shah, S. Sadiq; Henscheid, Leonard G.

    1983-01-01

    Describes an experiment which has helped physical chemistry students learn principles of absorption spectroscopy, the effect of solvent polarity on absorption spectra, and some micellar chemistry. Background information and experimental procedures are provided. (JN)

  20. Atomic absorption spectroscopy in ion channel screening.

    PubMed

    Stankovich, Larisa; Wicks, David; Despotovski, Sasko; Liang, Dong

    2004-10-01

    This article examines the utility of atomic absorption spectroscopy, in conjunction with cold flux assays, to ion channel screening. The multiplicity of ion channels that can be interrogated using cold flux assays and atomic absorption spectroscopy is summarized. The importance of atomic absorption spectroscopy as a screening tool is further elaborated upon by providing examples of the relevance of ion channels to various physiological processes and targeted diseases.

  1. Methane overtone absorption by intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Obrien, James J.

    1990-01-01

    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres.

  2. Double point contact single molecule absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Howard, John Brooks

    Our primary objective with the presentation of this thesis is to utilize superconducting transport through microscopic objects to both excite and analyze the vibrational degrees of freedom of various molecules of a biological nature. The technique stems from a Josephson junction's ability to generate radiation that falls in the terahertz gap (≈ 10 THz) and consequently can be used to excite vibrational modes of simple and complex molecules. Analysis of the change in IV characteristics coupled with the differential conductance dIdV allows determination of both the absorption spectra and the vibrational modes of biological molecules. Presented here are both the theoretical foundations of superconductivity relevant to our experimental technique and the fabrication process of our samples. Comparisons between our technique and that of other absorption spectroscopy techniques are included as a means of providing a reference upon which to judge the merits of our novel procedure. This technique is meant to improve not only our understanding of the vibrational degrees of freedom of useful biological molecules, but also these molecule's structural, electronic and mechanical properties.

  3. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  4. Light Absorption Spectroscopy as a Paleoclimate and Correlation Technique for the CRP and CIROS-1 Drill Cores, McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Vanden Berg, M. D.; Jarrard, R. D.

    2001-12-01

    Coring at CIROS-1 and at the three drillsites of the Cape Roberts Project (CRP) provided a record of glacial influence in McMurdo Sound, Antarctica, during the Late Eocene and Oligocene. All four sites have well established sequence stratigraphies. Prior analyses of one CRP site, CRP-2, suggested a correlation between sequence stratigraphy and provenance, attributed to a link between local sea level and climate. However, sampling density was low. We have used light absorption spectroscopy (LAS) for high-resolution (0.5-1.0 m spacing) determination of downcore mineralogic variations at the four sites. LAS is a rapid, nondestructive mineral identification technique that measures the absorption spectrum, in visible and near-infrared bands (350-2500 nm), of light reflected from any surface. At these drillsites, relative abundance of smectite and illite is thought to reflect warm/humid (smectite-rich) versus cold/dry (illite-rich) paleoclimates. The 3300 LAS-based measurements of smectite/illite variations, confirmed by widely spaced XRD determinations, exhibit a pattern of generally higher smectite contents within highstand system tracts, suggesting that warmer climates correspond to higher local sea levels. Conversion of these high-resolution records from core depth to age is hampered by correlation uncertainties between the CIROS-1 and CRP cores. The smectite/illite curves, as well as other spectral characteristics, are very useful in correlating these Antarctic drill cores.

  5. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  6. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.

    PubMed

    Berera, Rudi; van Grondelle, Rienk; Kennis, John T M

    2009-01-01

    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.

  7. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  8. Optoacoustic spectroscopy and its application to molecular and particle absorption

    NASA Astrophysics Data System (ADS)

    Trees, Charles C.; Voss, Kenneth J.

    1990-09-01

    Light absorption in the ocean has been the least studied optical property because of the difficulties in making accurate measurements. With the previously used techniques, large differences have been reported for the specific absorption coefficient of phytoplankton (cultures and natural assemblages). It is difficult to determine if the diversity in these values are methodological or a function of actual variations in absorption. With the renewed interest and activity in optoacoustic spectroscopy (OAS), which accurately measures absorption, some of these discrepancies should be resolved. In this method, as molecules and particles absorb light from a modulated source, they thermally expand and contract, thereby generating acoustic waves, at the modulation frequency, which are detected by a hydrophone. Optoacoustic spectroscopy is ideally suited for measuring dissolved organic material and particle absorptions because of its high sensitivity (105m1) and the egligible effect of scattered light. In this paper the instrumental design for an optoacoustic spectrophotometer (OAS), which pecifically measures phytoplankton absorption (420-S5Onm), is described. The spectral absorption of dissolved organic material and a phytoplankton culture is presented. OAS holds promise in being able to measure absorption without use of either filtration or concentration techniques.

  9. [Digestion-flame atomic absorption spectroscopy].

    PubMed

    Xu, Liang; Hu, Jian-Guo; Liu, Rui-Ping; Wang, Zhi-Min; Narenhua

    2008-01-01

    A microwave digestion-flame atomic absorption spectroscopy (FAAS) method was developed for the determination of metal elements Na, Zn, Cu, Fe, Mn, Ca and Mg in Mongolian patents. The instrument parameters for the determination were optimized, and the appropriate digestion solvent was selected. The recovery of the method was between 95.8% and 104.3%, and the RSD was between 1.6% and 4.2%. The accuracy and precision of the method was tested by comparing the values obtained from the determination of the standard sample, bush twigs and leaves (GSV-1) by this method with the reference values of GSV-1. The determination results were found to be basically consistent with the reference values. The microwave digestion technique was applied to process the samples, and the experimental results showed that compared to the traditional wet method, the present method has the merits of simplicity, saving agents, rapidness, and non-polluting. The method was accurate and reliable, and could be used to determine the contents of seven kinds of metal elements in mongolian patents.

  10. Triplet absorption spectroscopy and electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  11. In situ soft X-ray absorption spectroscopy of flames

    NASA Astrophysics Data System (ADS)

    Frank, Jonathan H.; Shavorskiy, Andrey; Bluhm, Hendrik; Coriton, Bruno; Huang, Erxiong; Osborn, David L.

    2014-10-01

    The feasibility of in situ soft X-ray absorption spectroscopy for imaging carbonaceous species in hydrocarbon flames is demonstrated using synchrotron radiation. Soft X-rays are absorbed by core level electrons in all carbon atoms regardless of their molecular structure. Core electron spectroscopy affords distinct advantages over valence spectroscopy, which forms the basis of traditional laser diagnostic techniques for combustion. In core level spectroscopy, the transition linewidths are predominantly determined by the instrument response function and the decay time of the core-hole, which is on the order of a femtosecond. As a result, soft X-ray absorption measurements can be performed in flames with negligible Doppler and collisional broadening. Core level spectroscopy has the further advantage of measuring all carbonaceous species regardless of molecular structure in the far-edge region, whereas near-edge features are molecule specific. Interferences from non-carbon flame species are unstructured and can be subtracted. In the present study, absorption measurements in the carbon K-edge region are demonstrated in low-pressure ( P total = 20-30 Torr) methane jet flames. Two-dimensional imaging of the major carbonaceous species, CH4, CO2, and CO, is accomplished by tuning the synchrotron radiation to the respective carbon K-edge, near-edge X-ray absorption fine structure (NEXAFS) transitions and scanning the burner.

  12. Absorption/emission spectroscopy and applications using shock tubes

    NASA Astrophysics Data System (ADS)

    Sulzmann, K. G. P.

    1988-09-01

    A historical overview is presented about the important contributions made by Penner, his co-workers, and his students to the application of shock-tube techniques for quantitative emission and absorption spectroscopy and its applications to chemical kinetics studies in high-temperature gases. The discussions address critical aspects related to valid determinations of quantitative spectroscopic data and chemical rate parameters and stress the requirements for uniformly heated gas samples, temperature determinations, gas-mixture preparations, selection of useful spectral intervals, verification of LTE conditions, time resolutions for concentration histories, uniqueness of kinetic measurements, as well as accuracies and reproducibilities of measurement results.The potential of absorption spectroscopy by molecule and/or radical resonance radiation and by laser transmission techniques is highlighted for kinetic studies in mixtures with very small reactant concentrations.Besides the work by the honoree and his school, the references include books, monographs and key articles related to the subjects discussed.

  13. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  14. Remote laser evaporative molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis

    2016-09-01

    We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.

  15. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  16. Use of absorption spectroscopy for refined petroleum product discrimination

    NASA Astrophysics Data System (ADS)

    Short, Michael

    1991-07-01

    On-line discrimination between arbitrary petroleum products is necessary for optimal control of petroleum refinery and pipeline operation and process control involving petroleum distillates. There are a number of techniques by which petroleum products can be distinguished from one another. Among these, optical measurements offer fast, non-intrusive, real-time characterization. The application examined here involves optically monitoring the interface between dissimilar batches of fluids in a gasoline pipeline. After examination of near- infrared and mid-infrared absorption spectroscopy and Raman spectroscopy, Fourier transform mid-infrared (FTIR) spectroscopy was chosen as the best candidate for implementation. On- line FTIR data is presented, verifying the applicability of the technique for batch interface detection.

  17. Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 μm: new sensitivity limits for absorption measurements in passive optical cavities

    NASA Astrophysics Data System (ADS)

    Engel, Gregory S.; Drisdell, Walter S.; Keutsch, Frank N.; Moyer, Elisabeth J.; Anderson, James G.

    2006-12-01

    A robust absorption spectrometer using the off-axis integrated cavity output spectroscopy (ICOS) technique in a passive cavity is presented. The observed sensitivity, conceptually the detection threshold for the absorption cross section (cm2) multiplied by the concentration (cm-3) and normalized by the averaging time, is measured to be 1.9×10-12 (1/cm√Hz). This high sensitivity arises from using the optical cavity to amplify the observed path length in the spectrometer while avoiding cavity resonances by careful design of the spot pattern within the cavity. The instrument is ideally suited for routine monitoring of trace gases in the near-infrared region. A spectrum showing ambient carbon monoxide at 1.57 μm is presented.

  18. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  19. Principles and calibration of collinear photofragmentation and atomic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sorvajärvi, Tapio; Toivonen, Juha

    2014-06-01

    The kinetics of signal formation in collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) are discussed, and theoretical equations describing the relation between the concentration of the target molecule and the detected atomic absorption in case of pure and impure samples are derived. The validity of the equation for pure samples is studied experimentally by comparing measured target molecule concentrations to concentrations determined using two other independent techniques. Our study shows that CPFAAS is capable of measuring target molecule concentrations from parts per billion (ppb) to hundreds of parts per million (ppm) in microsecond timescale. Moreover, the possibility to extend the dynamic range to cover eight orders of magnitude with a proper selection of fragmentation light source is discussed. The maximum deviation between the CPFAAS technique and a reference measurement technique is found to be less than 5 %. In this study, potassium chloride vapor and atomic potassium are used as a target molecule and a probed atom, respectively.

  20. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  1. Nearedge Absorption Spectroscopy of Interplanetary Dust Particles

    SciTech Connect

    Brennan, S.; Luening, K.; Pianetta, P.; Bradley, J.; Graham, G.; Westphal, A.; Snead, C.; Dominguez, G.; /SLAC, SSRL

    2006-10-25

    Interplanetary Dust Particles (IDPs) are derived from primitive Solar System bodies like asteroids and comets. Studies of IDPs provide a window onto the origins of the solar system and presolar interstellar environments. We are using Total Reflection X-ray Fluorescence (TXRF) techniques developed for the measurement of the cleanliness of silicon wafer surfaces to analyze these particles with high detection sensitivity. In addition to elemental analysis of the particles, we have collected X-ray Absorption Near-Edge spectra in a grazing incidence geometry at the Fe and Ni absorption edges for particles placed on a silicon wafer substrate. We find that the iron is dominated by Fe{sub 2}O{sub 3}.

  2. Precision Saturated Absorption Spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong

    2016-06-01

    In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).

  3. Atmospheric and environmental sensing by photonic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, T.; Zhao, W.; Wysocki, G.; Cui, X.; Lengignon, C.; Maamary, R.; Fertein, E.; Coeur, C.; Cassez, A.; Wang, Y.; Zhang, W.; Gao, X.; Liu, W.; Dong, F.; Zha, G.; Zheng, Xu; Wang, T.

    2013-01-01

    Chemically reactive short-lived species play a crucial role in tropospheric processes affecting regional air quality and global climate change. Contrary to long-lived species (such as greenhouse gases), fast, accurate and precise monitoring changes in concentration of atmospheric short-lived species represents a real challenge due to their short life time (~1 s for OH radical) and very low concentration in the atmosphere (down to 106 molecules/cm3, corresponding to 0.1 pptv at standard temperature and pressure). We report on our recent progress in instrumentation developments for spectroscopic sensing of trace reactive species. Modern photonic sources such as quantum cascade laser (QCL), distributed feedback (DFB) diode laser, light emitting diode (LED), difference-frequency generation (DFG) parametric source are implemented in conjunction with highsensitivity spectroscopic measurement techniques for : (1) nitrous acid (HONO) monitoring by QCL-based long optical pathlength absorption spectroscopy and LED-based IBBCEAS (incoherent broadband cavity-enhanced absorption spectroscopy); (2) DFB laser-based hydroxyl free radical (OH) detection using WM-OA-ICOS (wavelength modulation off-axis integrated cavity output spectroscopy) and FRS (Faraday rotation spectroscopy), respectively; (3) nitrate radical (NO3) and nitrogen dioxide (NO2) simultaneous measurements with IBBCEAS approach. Applications in field observation and in smog chamber study will be presented.

  4. Precision atomic beam density characterization by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  5. Transient absorption spectroscopy of laser shocked explosives

    SciTech Connect

    Mcgrane, Shawn D; Dang, Nhan C; Whitley, Von H; Bolome, Cindy A; Moore, D S

    2010-01-01

    Transient absorption spectra from 390-890 nm of laser shocked RDX, PETN, sapphire, and polyvinylnitrate (PVN) at sub-nanosecond time scales are reported. RDX shows a nearly linear increase in absorption with time after shock at {approx}23 GPa. PETN is similar, but with smaller total absorption. A broad visible absorption in sapphire begins nearly immediately upon shock loading but does not build over time. PVN exhibits thin film interference in the absorption spectra along with increased absorption with time. The absorptions in RDX and PETN are suggested to originate in chemical reactions happening on picosecond time scales at these shock stresses, although further diagnostics are required to prove this interpretation.

  6. Quantitative analysis of immobilized metalloenzymes by atomic absorption spectroscopy.

    PubMed

    Opwis, Klaus; Knittel, Dierk; Schollmeyer, Eckhard

    2004-12-01

    A new, sensitive assay for the quantitative determination of immobilized metal containing enzymes has been developed using atomic absorption spectroscopy (AAS). In contrast with conventionally used indirect methods the described quantitative AAS assay for metalloenzymes allows more exact analyses, because the carrier material with the enzyme is investigated directly. As an example, the validity and reliability of the method was examined by fixing the iron-containing enzyme catalase on cotton fabrics using different immobilization techniques. Sample preparation was carried out by dissolving the loaded fabrics in sulfuric acid before oxidising the residues with hydrogen peroxide. The iron concentrations were determined by flame atomic absorption spectrometry after calibration of the spectrometer with solutions of the free enzyme at different concentrations.

  7. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    SciTech Connect

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  8. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    PubMed Central

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-01-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy. PMID:28262765

  9. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-03-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy.

  10. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  11. UV-VIS absorption spectroscopy: Lambert-Beer reloaded.

    PubMed

    Mäntele, Werner; Deniz, Erhan

    2017-02-15

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  12. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    NASA Astrophysics Data System (ADS)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  13. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Requejo, Olga Mena; Quigg, Chris

    2005-04-15

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21}-10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the line shape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  14. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  15. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  16. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique

    PubMed Central

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-01-01

    Purpose: To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Methods: Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. Results: The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. Conclusion: The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases. PMID:27478794

  17. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan; Santos Sousa, Joao; Stancu, Gabi Daniel; Hubertus van Helden, Jean-Pierre

    2015-10-01

    Absorption spectroscopy (AS) represents a reliable method for the characterization of cold atmospheric pressure plasma jets. The method’s simplicity stands out in comparison to competing diagnostic techniques. AS is an in situ, non-invasive technique giving absolute densities, free of calibration procedures, which other diagnostics, such as laser-induced fluorescence or optical emission spectroscopy, have to rely on. Ground state densities can be determined without the knowledge of the influence of collisional quenching. Therefore, absolute densities determined by absorption spectroscopy can be taken as calibration for other methods. In this paper, fundamentals of absorption spectroscopy are presented as an entrance to the topic. In the second part of the manuscript, a review of AS performed on cold atmospheric pressure plasma jets, as they are used e.g. in the field of plasma medicine, is presented. The focus is set on special techniques overcoming not only the drawback of spectrally overlapping absorbing species, but also the line-of-sight densities that AS usually provides or the necessity of sufficiently long absorption lengths. Where references are not available for measurements on cold atmospheric pressure plasma jets, other plasma sources including low-pressure plasmas are taken as an example to give suggestions for possible approaches. The final part is a table summarizing examples of absorption spectroscopic measurements on cold atmospheric pressure plasma jets. With this, the paper provides a ‘best practice’ guideline and gives a compendium of works by groups performing absorption spectroscopy on cold atmospheric pressure plasma jets.

  18. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  19. Optical re-injection in cavity-enhanced absorption spectroscopy

    SciTech Connect

    Leen, J. Brian O’Keefe, Anthony

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  20. Optical re-injection in cavity-enhanced absorption spectroscopy.

    PubMed

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  1. Comparison of absorption, fluorescence, and polarization spectroscopy of atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ashman, Seth; Stifler, Cayla; Romero, Joaquin

    2015-05-01

    An ongoing spectroscopic investigation of atomic rubidium utilizes a two-photon, single-laser excitation process. Transitions accessible with our tunable laser include 5P1 / 2F' <-- 5S1 / 2 F and 5P3 / 2F' <-- 5S1 / 2 F . The laser is split into a pump and probe beam to allow for Doppler-free measurements of transitions between hyperfine levels. The pump and probe beams are overlapped in a counter-propagating geometry and the laser frequency scans over a transition. Absorption, fluorescence and polarization spectroscopy techniques are applied to this basic experimental setup. The temperature of the vapor cell and the power of the pump and probe beams have been varied to explore line broadening effects and signal-to-noise of each technique. This humble setup will hopefully grow into a more robust experimental arrangement in which double resonance, two-laser excitations are used to explore hyperfine state changing collisions between rubidium atoms and noble gas atoms. Rb-noble gas collisions can transfer population between hyperfine levels, such as 5P3 / 2 (F' = 3) <-- Collision 5P3 / 2 (F ' = 2) , and the probe beam couples 7S1 / 2 (F'' = 2) <-- 5P3 / 2 (F' = 3) . Polarization spectroscopy signal depends on the rate of population transfer due to the collision as well as maintaining the orientation created by the pump laser. Fluorescence spectroscopy relies only on transfer of population due to the collision. Comparison of these techniques yields information regarding the change of the magnetic sublevels, mF, during hyperfine state changing collisions.

  2. Photoelectron and X-ray Absorption Spectroscopy Of Pu

    SciTech Connect

    Tobin, J; Chung, B; Schulze, R; Farr, J; Shuh, D

    2003-11-12

    We have performed Photoelectron Spectroscopy and X-Ray Absorption Spectroscopy upon highly radioactive samples of Plutonium at the Advanced Light Source in Berkeley, CA, USA. First results from alpha and delta Plutonium are reported as well as plans for future studies of actinide studies.

  3. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  4. Recent improvements in PDS technique for low-absorption measurements

    NASA Astrophysics Data System (ADS)

    Montecchi, Marco; Masetti, Enrico; Emiliani, Gabriele

    1990-08-01

    Photothermal Deflection Spectroscopy (PDS) is a recently developed technique that is finding a useful application in the measurement of low optical absorptance of thin films. Among the noise sources affecting the PDS measurement, probe beam pointing instability and mechanical vibration play a considerable role. In this work an optoelectronic system for the reduction of their influence is described. Moreover, PDS measurements are typically performed keeping the sample immersed in a deflecting liquid; thus measured values of absorptance must be corrected when other surrounding media, as air, are considered. This correction is an easy task for single film coatings. Here the general case of an unknown multiplayer coating is analysed; a range of values containing the true absorptance in air is obtained by theoretical analysis and a practical method to evaluate the absorptance in air is discussed. Finally, deflecting liquids alternative to the commonly used CCI4 have been examined. Useful optical range, thermal diffusivity and "relative deflecting power" of CCI4, CS2, Iso-octane and Aceton are reported.

  5. Molecular shock response of explosives: electronic absorption spectroscopy

    SciTech Connect

    Mcgrne, Shawn D; Moore, David S; Whitley, Von H; Bolme, Cindy A; Eakins, Daniel E

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  6. Molecular Shock Response of Explosives: Electronic Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGrane, S. D.; Moore, D. S.; Whitley, V. H.; Bolme, C. A.; Eakins, D. E.

    2009-12-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference as well as broadband increased absorption. Relation to shock initiation and the need for time dependent absorption (future experiments) is briefly discussed.

  7. Analysis of the absorption layer of CIGS solar cell by laser-induced breakdown spectroscopy.

    PubMed

    Lee, Seok H; Shim, Hee S; Kim, Chan K; Yoo, Jong H; Russo, Richard E; Jeong, Sungho

    2012-03-01

    Laser induced breakdown spectroscopy (LIBS) was applied for the elemental analysis of the thin copper indium gallium diselenide (CuIn(1-x)Ga(x)Se(2) [CIGS]) absorption layer deposited on Mo-coated soda-lime glass by the co-evaporation technique. The optimal laser and detection parameters for LIBS measurement of the CIGS absorption layer (1.23 μm) were investigated. The calibration results of Ga/In ratio with respect to the concentration ratios measured by x-ray fluorescence and inductively coupled plasma optical emission spectroscopy showed good linearity.

  8. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  9. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  10. [Burner head with high sensitivity in atomic absorption spectroscopy].

    PubMed

    Feng, X; Yang, Y

    1998-12-01

    This paper presents a burner head with gas-sample separate entrance and double access, which is used for atomic absorption spectroscopy. According to comparison and detection, the device can improve sensitivity by a factor of 1 to 5. In the meantime it has properties of high stability and resistance to interference.

  11. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  12. Combined surface plasmon resonance and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia, Miguel Angel; Serrano, Aida; Rodriguez de La Fuente, Oscar; Castro, German R.

    2012-02-01

    We present a system for the excitation and measurement of surface plasmons in metallic films based on the Kretschmann-Raether configuration that can be installed in a synchrotron beamline. The device was mounted an tested in a hard X-ray Absorption beamline, BM25 Spline at ESRF. Whit this device it is possible to carry on experiments combining surface plasmon and X-ray absorption spectroscopies. The surface plasmons can be use to monitor in situ changes induced by the X-rays in the metallic films or the dielectric overlayer. Similarly, the changes in the electronic configuration of the material when surface plasmons are excited can be measured by X-ray absorption spectroscopy. The resolution of the system allows to observe changes in the signals of the order of 10-3 to 10-5 depending on the particular experiment and used configuration. The system is available for experiments at the beamline.

  13. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    experiments with controlled the temperature were performed to validate the sensing strategy. Here the Wavelength Modulation Spectroscopy (WMS) strategy was usually used to measure lower gas concentration for high noise immunity to the non-absorption transmission losses. The great agreement 2f signal with the calibrated concentration is within the uncertainty at different temperatures by using simple digital signal processing such as multiple averages, wavelet analysis and so on. The denoise processing has a great advantage in application and implementation over other noise suppression techniques. The result provided a good basis for trace ammonia escape detection based on tunable diode laser absorption spectroscopy.

  14. Polarization-enhanced absorption spectroscopy for laser stabilization.

    PubMed

    Kunz, Paul D; Heavner, Thomas P; Jefferts, Steven R

    2013-11-20

    We demonstrate a variation of pump-probe spectroscopy that is particularly useful for laser frequency stabilization. The polarization-enhanced absorption spectroscopy (POLEAS) signal provides a significant improvement in signal-to-noise ratio over saturated absorption spectroscopy (SAS) for the important and commonly used atomic cycling transitions. The improvements can directly increase the short-term stability of a laser frequency lock, given sufficient servo loop bandwidth. The long-term stability of the POLEAS method, which is limited by environmental sensitivities, is comparable to that of SAS. The POLEAS signal is automatically Doppler-free, without requiring a separate Doppler subtraction beam, and lends itself to straightforward compact packaging. Finally, by increasing the amplitude of the desired (cycling) peak, while reducing the amplitude of all other peaks in the manifold, the POLEAS method eases the implementation of laser auto-locking schemes.

  15. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  16. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation.

    PubMed

    Drescher, L; Galbraith, M C E; Reitsma, G; Dura, J; Zhavoronkov, N; Patchkovskii, S; Vrakking, M J J; Mikosch, J

    2016-07-07

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ(*) excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  17. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    NASA Astrophysics Data System (ADS)

    Drescher, L.; Galbraith, M. C. E.; Reitsma, G.; Dura, J.; Zhavoronkov, N.; Patchkovskii, S.; Vrakking, M. J. J.; Mikosch, J.

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  18. Time-Resolved Broadband Cavity-Enhanced Absorption Spectroscopy behind Shock Waves.

    PubMed

    Matsugi, Akira; Shiina, Hiroumi; Oguchi, Tatsuo; Takahashi, Kazuo

    2016-04-07

    A fast and sensitive broadband absorption technique for measurements of high-temperature chemical kinetics and spectroscopy has been developed by applying broadband cavity-enhanced absorption spectroscopy (BBCEAS) in a shock tube. The developed method has effective absorption path lengths of 60-200 cm, or cavity enhancement factors of 12-40, over a wavelength range of 280-420 nm, and is capable of simultaneously recording absorption time profiles over an ∼32 nm spectral bandpass in a single experiment with temporal and spectral resolutions of 5 μs and 2 nm, respectively. The accuracy of the kinetic and spectroscopic measurements was examined by investigating high-temperature reactions and absorption spectra of formaldehyde behind reflected shock waves using 1,3,5-trioxane as a precursor. The rate constants obtained for the thermal decomposition reactions of 1,3,5-trioxane (to three formaldehyde molecules) and formaldehyde (to HCO + H) agreed well with the literature data. High-temperature absorption cross sections of formaldehyde between 280 and 410 nm have been determined at the post-reflected-shock temperatures of 955, 1265, and 1708 K. The results demonstrate the applicability of the BBCEAS technique to time- and wavelength-resolved sensitive absorption measurements at high temperatures.

  19. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piletic, Ivan R.; Matthews, Thomas E.; Warren, Warren S.

    2009-11-01

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain ˜46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  20. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy.

    PubMed

    Piletic, Ivan R; Matthews, Thomas E; Warren, Warren S

    2009-11-14

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750 nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain approximately 46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  1. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Yongjun

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  2. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  3. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  4. [Second-harmonic detection with tunable diode laser absorption spectroscopy of CO and CO2 at 1.58 microm].

    PubMed

    Tu, Xing-Hua; Liu, Wen-Qing; Zhang, Yu-Jun; Dong, Feng-Zhong; Wang, Min; Wang, Tie-Dong; Wang, Xiao-Mei; Liu, Jian-Guo

    2006-07-01

    Tunable diode laser absorption spectroscopy has been applied in the fields of atmospheric chemistry and monitoring pollutant gases as a new method of measuring trace gases. The technique of remote sensing of CO and CO2 at 760 mm Hg pressure with tunable diode laser absorption spectroscopy in the near-infrared region is introduced. And the relationship between the second-harmonic spectrum of CO2 in Lorentzian line shape and the modulation amplitude is also presented.

  5. Temperature dependent soft x-ray absorption spectroscopy of liquids.

    PubMed

    Meibohm, Jan; Schreck, Simon; Wernet, Philippe

    2014-10-01

    A novel sample holder is introduced which allows for temperature dependent soft x-ray absorption spectroscopy of liquids in transmission mode. The setup is based on sample cells with x-ray transmissive silicon nitride windows. A cooling circuit allows for temperature regulation of the sample liquid between -10 °C and +50 °C. The setup enables to record soft x-ray absorption spectra of liquids in transmission mode with a temperature resolution of 0.5 K and better. Reliability and reproducibility of the spectra are demonstrated by investigating the characteristic temperature-induced changes in the oxygen K-edge x-ray absorption spectrum of liquid water. These are compared to the corresponding changes in the oxygen K-edge spectra from x-ray Raman scattering.

  6. Fourier transform infrared spectroscopy as a surface science technique

    NASA Astrophysics Data System (ADS)

    Celio, Hugo; Trenary, Michael

    1998-06-01

    A central goal of modern surface science is to obtain atomic and molecular level information about the structural and chemical properties of solid surfaces. For many, if not most, problems in surface science it is necessary to work under ultra high vacuum (UHV) conditions to obtain meaningful and reproducible results. A wide array of highly specialized and hence expensive UHV surface sensitive techniques have been developed to probe the gas-solid interface. Most of these techniques rely on the finite penetration depth of charge particles to achieve surface sensitivity. In contrast, surface sensitivity can also be achieved with reflection absorption infrared spectroscopy using unmodified low-cost commercial FTIR spectrometers. In this paper we show how a variety of problems in surface chemistry can be effectively addressed with FTIR spectroscopy.

  7. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  8. X-ray absorption spectroscopy beyond the core-hole lifetime

    SciTech Connect

    Haemaelaeinen, K.; Hastings, J.B.; Siddons, D.P.; Berman, L.

    1992-01-01

    A new technique to overcome the core-hole lifetime broadening in x-ray absorption spectroscopy is presented. It utilizes a high resolution fluorescence spectrometer which can be used to analyze the fluorescence photon energy with better resolution than the natural lifetime width. Furthermore, the high resolution spectrometer can also be used to select the final state in the fluorescence process which can offer spin selectivity even without long range magnetic order in the sample.

  9. X-ray absorption spectroscopy beyond the core-hole lifetime

    SciTech Connect

    Haemaelaeinen, K.; Hastings, J.B.; Siddons, D.P.; Berman, L.

    1992-10-01

    A new technique to overcome the core-hole lifetime broadening in x-ray absorption spectroscopy is presented. It utilizes a high resolution fluorescence spectrometer which can be used to analyze the fluorescence photon energy with better resolution than the natural lifetime width. Furthermore, the high resolution spectrometer can also be used to select the final state in the fluorescence process which can offer spin selectivity even without long range magnetic order in the sample.

  10. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    SciTech Connect

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  11. Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS).

    PubMed

    Shi, Zhenqi; Anderson, Carl A

    2010-12-01

    The number of near-infrared (NIR) spectroscopic applications in the pharmaceutical sciences has grown significantly in the last decade. Despite its widespread application, the fundamental interaction between NIR radiation and pharmaceutical materials is often not mechanistically well understood. Separation of absorption and scattering in near-infrared spectroscopy (NIRS) is intended to extract absorption and scattering spectra (i.e., absorption and reduced scattering coefficients) from reflectance/transmittance NIR measurements. The purpose of the separation is twofold: (1) to enhance the understanding of the individual roles played by absorption and scattering in NIRS and (2) to apply the separated absorption and scattering spectra for practical spectroscopic analyses. This review paper surveys the multiple techniques reported to date on the separation of NIR absorption and scattering within pharmaceutical applications, focusing on the instrumentations, mathematical approaches used to separate absorption and scattering and related pharmaceutical applications. This literature review is expected to enhance the understanding and thereby the utility of NIRS in pharmaceutical science. Further, the measurement and subsequent understanding of the separation of absorption and scattering is expected to increase not only the number of NIRS applications, but also their robustness.

  12. Minute Concentration Measurements of Simple Hydrocarbon Species Using Supercontinuum Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Traina, Nicholas; Halloran, Michael; Lee, Tonghun

    2016-06-01

    Minute concentration measurements of simple hydrocarbon gases are demonstrated using near-infrared supercontinuum laser absorption spectroscopy. Absorption-based gas sensors, particularly when combined with optical fiber components, can significantly enhance diagnostic capabilities to unprecedented levels. However, these diagnostic techniques are subject to limitations under certain gas sensing applications where interference and harsh conditions dominate. Supercontinuum laser absorption spectroscopy is a novel laser-based diagnostic technique that can exceed the above-mentioned limitations and provide accurate and quantitative concentration measurement of simple hydrocarbon species while maintaining compatibility with telecommunications-grade optical fiber components. Supercontinuum radiation generated using a highly nonlinear photonic crystal fiber is used to probe rovibrational absorption bands of four hydrocarbon species using full-spectral absorption diagnostics. Absorption spectra of methane (CH4), acetylene (C2H2), and ethylene (C2H4) were measured in the near-infrared spectrum at various pressures and concentrations to determine the accuracy and feasibility of the diagnostic strategy. Absorption spectra of propane (C3H8) were subsequently probed between 1650 nm and 1700 nm, to demonstrate the applicability of the strategy. Measurements agreed very well with simulated spectra generated using the HITRAN database as well as with previous experimental results. Absorption spectra of CH4, C2H2, and C2H4 were then analyzed to determine their respective measurement accuracy and detection limit. Concentration measurements integrated from experimental results were in very good agreement with independent concentration measurements. Calculated detection limits of CH4, C2H2, and C2H4 at room temperature and atmospheric pressure are 0.1%, 0.09%, and 0.17%, respectively.

  13. Disentangling atomic-layer-specific x-ray absorption spectra by Auger electron diffraction spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi

    2009-11-01

    In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.

  14. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  15. Imide photodissociation investigated by X-ray absorption spectroscopy.

    PubMed

    Johnson, Phillip S; Cook, Peter L; Liu, Xiaosong; Yang, Wanli; Bai, Yiqun; Abbott, Nicholas L; Himpsel, F J

    2012-06-21

    X-ray absorption spectroscopy is used to investigate the photodissociation of the imides PMDI (pyromellitic diimide) and SSMCC (sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate). PMDI contains only one type of imide, and its photodissociation can be explained by a simple conversion from imide to a mix of imine and nitrile after desorption of the oxygens from the imide. SSMCC contains two different imides. One reacts like PMDI, the other in a more complex multistep process. Eventually, N(2) is formed in the bulk of the sample at high radiation density. The sequence of reactions is inferred from the π* peaks in total electron yield and fluorescence yield absorption spectra at the N 1s and O 1s edges. First-order rate equations are used to model the evolution of the peak areas versus radiation dose.

  16. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy.

    PubMed

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-05

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  17. [On using tunable diode laser absorption spectroscopy to determine gas fluxes over cropland].

    PubMed

    Tian, Yong-zhi; Liu, Jian-guo; Zhang, Yu-jun; Lu, Yi-huai; He, Ying

    2012-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a compact, automated, high precision technique and fit for in-situ or field measurements. Two spectroscopy measurement systems, TDLAS and NDIR (non-dispersive infrared spectroscopy), were used to monitor trace gas emission over cropland at Fengqiu Agricultural Ecology Experimental Station for one month. The fluxes of carbon dioxide were estimated by flux-gradient and eddy covariance method, respectively. A footprint model was developed during experiment. Based on this model, the source areas of TDLAS and NDIR were investigated. The effects of different factors on the flux measurement were also analyzed. The authors concluded that the source areas for the two techniques are discrepant in most of the cases. The source areas increase with path length and detecting height. This result will help the installation of instruments.

  18. Absorption spectroscopy at the ultimate quantum limit from single-photon states

    NASA Astrophysics Data System (ADS)

    Whittaker, R.; Erven, C.; Neville, A.; Berry, M.; O’Brien, J. L.; Cable, H.; Matthews, J. C. F.

    2017-02-01

    Absorption spectroscopy is routinely used to characterise chemical and biological samples. For the state-of-the-art in laser absorption spectroscopy, precision is theoretically limited by shot-noise due to the fundamental Poisson-distribution of photon number in laser radiation. In practice, the shot-noise limit can only be achieved when all other sources of noise are eliminated. Here, we use wavelength-correlated and tuneable photon pairs to demonstrate how absorption spectroscopy can be performed with precision beyond the shot-noise limit and near the ultimate quantum limit by using the optimal probe for absorption measurement—single photons. We present a practically realisable scheme, which we characterise both the precision and accuracy of by measuring the response of a control feature. We demonstrate that the technique can successfully probe liquid samples and using two spectrally similar types of haemoglobin we show that obtaining a given precision in resolution requires fewer heralded single probe photons compared to using an idealised laser.

  19. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  20. UV-Vis Reflection-Absorption Spectroscopy at air-liquid interfaces.

    PubMed

    Rubia-Payá, Carlos; de Miguel, Gustavo; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-11-01

    UV-Visible Reflection-Absorption Spectroscopy (UVRAS) technique is reviewed with a general perspective on fundamental and applications. UVRAS is formally identical to IR Reflection-Absorption Spectroscopy (IRRAS), and therefore, the methodology developed for this IR technique can be applied in the UV-visible region. UVRAS can be applied to air-solid, air-liquid or liquid-liquid interfaces. This review focuses on the use of UVRAS for studying Langmuir monolayers. We introduce the theoretical framework for a successful understanding of the UVRAS data, and we illustrate the usage of this data treatment to a previous study from our group comprising an amphiphilic porphyrin. For ultrathin films with a thickness of few nm, UVRAS produces positive or negative bands when p-polarized radiation is used, depending on the incidence angle and the orientation of dipole absorption. UVRAS technique provides highly valuable information on tilt of chromophores at the air-liquid interface, and moreover allows the determination of optical parameters. We propose UVRAS as a powerful technique to investigate the in situ optical properties of Langmuir monolayers.

  1. Evaluation of ammonia absorption coefficients by photoacoustic spectroscopy for detection of ammonia levels in human breath

    NASA Astrophysics Data System (ADS)

    Dumitras, D. C.; Dutu, D. C.; Matei, C.; Cernat, R.; Banita, S.; Patachia, M.; Bratu, A. M.; Petrus, M.; Popa, C.

    2011-04-01

    Photoacoustic spectroscopy represents a powerful technique for measuring extremely low absorptions independent of the path length and offers a degree of parameter control that cannot be attained by other methods. We report precise measurements of the ammonia absorption coefficients at the CO2 laser wavelengths by using a photoacoustic (PA) cell in an extracavity configuration and we compare our results with other values reported in the literature. Ammonia presents a clear fingerprint spectrum and high absorption strengths in the CO2 wavelengths region. Because more than 250 molecular gases of environmental concern for atmospheric, industrial, medical, military, and scientific spheres exhibit strong absorption bands in the region 9.2-10.8 μm, we have chosen a frequency tunable CO2 laser. In the present work, ammonia absorption coefficients were measured at both branches of the CO2 laser lines by using a calibrated mixture of 10 ppm NH3 in N2. We found the maximum absorption in the 9 μm region, at 9R(30) line of the CO2 laser. One of the applications based on the ammonia absorption coefficients is used to measure the ammonia levels in exhaled human breath. This can be used to determine the exact time necessary at every session for an optimal degree of dialysis at patients with end-stage renal disease.

  2. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  3. Azimuthal Doppler shift of absorption spectrum in optical vortex laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Ozawa, Naoya; Terasaka, Kenichiro; Tanaka, Masayoshi; Nagaoka, Kenichi; Morisaki, Tomohiro

    2016-10-01

    Laser spectroscopy is a powerful diagnostic tool for measuring the mean flow velocity of plasma particles. We have been developing a new laser spectroscopy method utilizing an optical vortex beam, which has helical phase fronts corresponding to the phase change in the azimuthal direction. Because of this phase change, a Doppler effect is experienced even by an atom crossing the beam vertically. The additional azimuthal Doppler shift is proportional to the topological charge of optical vortex and is inversely proportional to the distance from the beam axis in which the beam intensity is vanished by destructive interference or the phase singularity. In order to detect the azimuthal Doppler shift, we have performed a laser absorption spectroscopy experiment with the linear ECR plasma device HYPER-I. Since the azimuthal Doppler shift depends on a position in the beam cross section, the absorption spectra at various positions were reconstructed from the transmitted beam intensity measured by a beam profiler. We have observed a clear spatial dependence of the Doppler shift, which qualitatively agreed with theory. Detailed experimental results, as well as remaining issues and future prospect, will be discussed at the meeting. This study was partially supported by JAPS KAKENHI Grand Numbers 15K05365 and 25287152.

  4. Time-resolved postdischarge absolute silicon monoxide density measurement by resonant absorption spectroscopy in a nonthermal atmospheric plasma

    SciTech Connect

    Motret, Olivier; Coursimault, Fabien; Pouvesle, Jean-Michel

    2006-11-01

    In this study we present the technique of resonant absorption spectroscopy diagnostic developed to estimate the density of silicon monoxide (SiO) molecules during the postdischarge of an atmospheric dielectric barrier discharge plasma. The ultraviolet (0,0) rovibrational band of the SiO(A {sup 1}{pi}-X {sup 1}{sigma}{sup +}) electronic transition was investigated. Effective values of absorption coefficient and absorption cross section for the rotational transitions under consideration were calculated. The SiO concentration was estimated by comparison between experimental and computed spectra. The self-absorption in the probe reactor was taken into account in the computed spectra.

  5. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  6. Optical absorption and scattering spectroscopies of single nano-objects.

    PubMed

    Crut, Aurélien; Maioli, Paolo; Del Fatti, Natalia; Vallée, Fabrice

    2014-06-07

    Developments of optical detection and spectroscopy methods for single nano-objects are key advances for applications and fundamental understanding of the novel properties exhibited by nanosize systems. These methods are reviewed, focusing on far-field optical approaches based on light absorption and elastic scattering. The principles of the main linear and nonlinear methods are described and experimental results are illustrated in the case of metal nanoparticles, stressing the key role played by the object environment, such as the presence of a substrate, bound surface molecules or other nano-objects. Special attention is devoted to quantitative methods and correlation of the measured optical spectra of a nano-object with its morphology, characterized either optically or by electron microscopy, as this permits precise comparison with theoretical models. Application of these methods to optical detection and spectroscopy for single semiconductor nanowires and carbon nanotubes is also presented. Extension to ultrafast nonlinear extinction or scattering spectroscopies of single nano-objects is finally discussed in the context of investigation of their nonlinear optical response and their electronic, acoustic and thermal properties.

  7. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  8. Tone-burst technique measures high-intensity sound absorption

    NASA Technical Reports Server (NTRS)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  9. Infrared intracavity laser absorption spectroscopy with a continuous-scan Fourier-transform interferometer.

    PubMed

    Cheng, J; Lin, H; Hu, S; He, S; Zhu, Q; Kachanov, A

    2000-05-01

    High-quality broadband infrared high-resolution spectra were obtained by use of the intracavity laser absorption spectroscopy technique with a Ti:sapphire laser in combination with a continuous-scan Fourier-transform (FT) interferometer. With electronic filtering used to smooth out the fluctuations of the laser power, the absorption of atmospheric water vapor in the range of 12,450-12,700 cm(-1) was recorded at a resolution of 0.05 cm(-1). A signal-to-noise ratio of greater than 300 was observed in this spectrum, corresponding to a minimum detectable absorption of approximately 2 x 10(-9) cm(-1). Comparison with previous measurements by use of a conventional FT technique shows that this method gives absorption spectra with highly accurate line positions along with reasonable line intensities. Investigation of the evolution of intracavity laser absorption spectra with the generation time is also shown to be possible with a continuous-scan FT spectrometer by use of the interleave rapid-scan method.

  10. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    PubMed

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants.

  11. Spectroscopy techniques for human disease diagnosis

    NASA Astrophysics Data System (ADS)

    Navas-Moreno, Maria

    2011-12-01

    Modern medicine would benefit from the pursuit of new, more specific and easier to implement diagnosis tools. In recent years, Raman scattering, surface-enhanced Raman scattering and fluorescence spectroscopy have proven to be successful diagnostic techniques for a wide range of diseases including atherosclerosis, kidney stones, bone diseases, diabetes, and a wide collection of neoplasms. Optical spectroscopy has several advantages over more traditional diagnostic methods (i.e., histopathology, quantitative PCR, etc.) such as faster data analysis, nonspecific sample preparation, nonspecific labels/reagents/antibodies usage requirements, and immediate on-site implementation. In the present work, label-free in vitro fluorescence and surface enhanced Raman scattering (SERS) spectroscopy have been used to differentiate between blood cells of patients affected with myeloproliferative neoplasms (MPN) and those of healthy subjects. The SERS technique has also been applied to hemoglobin variants as well as to serum obtained from patients affected with chronic heart failure who positively or negatively responded to the seasonal influenza vaccine. We found that spectral ratios of the background fluorescence intensity that accompanies the SERS spectra of granulocytes serve as excellent markers for the presence of MPNs. In addition, we also found expression dysregulation of two hypoxia induced factor regulated genes, which correlates with our results obtained by SERS spectroscopy assay in MPN patients and supports the presence of the Warburg effect in MPNs. We hypothesize that SERS measures metabolic change in granulocytes through two possible mechanisms: (i) Changes in dielectric properties of the environment surrounding the silver-cell interface; and (ii) changes in flavin adenine dinucleotide concentrations, which in turn changes the relative contribution of the autofluorescence to the emission spectrum. These hypotheses are supported by SERS measurement of 2-deoxy

  12. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miller, Dennis D.; Rutzke, Michael A.

    Atomic spectroscopy has played a major role in the development of our current database for mineral nutrients and toxicants in foods. When atomic absorption spectrometers became widely available in the 1960s, the development of atomic absorption spectroscopy (AAS) methods for accurately measuring trace amounts of mineral elements in biological samples paved the way for unprecedented advances in fields as diverse as food analysis, nutrition, biochemistry, and toxicology (1). The application of plasmas as excitation sources for atomic emission spectroscopy (AES) led to the commercial availability of instruments for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) beginning in the late 1970s. This instrument has further enhanced our ability to measure the mineral composition of foods and other materials rapidly, accurately, and precisely. More recently, plasmas have been joined with mass spectrometers (MS) to form inductively coupled plasma-mass spectrometer ICP-MS instruments that are capable of measuring mineral elements with extremely low detection limits. These three instrumental methods have largely replaced traditional wet chemistry methods for mineral analysis of foods, although traditional methods for calcium, chloride, iron, and phosphorus remain in use today (see Chap. 12).

  13. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  14. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  15. Terahertz absorption spectroscopy of protein-containing reverse micellar solution

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Toyota, Y.; Nishi, T.; Nashima, S.

    2012-01-01

    Terahertz time-domain spectroscopy has been carried out for AOT/isooctane reverse micellar solution with myoglobin at the water-to-surfactant molar ratios ( w0) of 0.2 and 4.4. The amplitude of the absorption spectrum increases with increasing the protein concentration at w0 = 0.2, whereas it decreases at w0 = 4.4. The molar extinction coefficients of the protein-filled reverse micelle, and the constituents, i.e., myoglobin, water, and AOT, have been derived by use of the structural parameters of the micellar solution. The experimental results are interpreted in terms of hydration onto the protein and surfactant in the reverse micelle.

  16. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  17. Investigating DNA Radiation Damage Using X-Ray Absorption Spectroscopy

    PubMed Central

    Czapla-Masztafiak, Joanna; Szlachetko, Jakub; Milne, Christopher J.; Lipiec, Ewelina; Sá, Jacinto; Penfold, Thomas J.; Huthwelker, Thomas; Borca, Camelia; Abela, Rafael; Kwiatek, Wojciech M.

    2016-01-01

    The biological influence of radiation on living matter has been studied for years; however, several questions about the detailed mechanism of radiation damage formation remain largely unanswered. Among all biomolecules exposed to radiation, DNA plays an important role because any damage to its molecular structure can affect the whole cell and may lead to chromosomal rearrangements resulting in genomic instability or cell death. To identify and characterize damage induced in the DNA sugar-phosphate backbone, in this work we performed x-ray absorption spectroscopy at the P K-edge on DNA irradiated with either UVA light or protons. By combining the experimental results with theoretical calculations, we were able to establish the types and relative ratio of lesions produced by both UVA and protons around the phosphorus atoms in DNA. PMID:27028640

  18. La Saturated Absorption Spectroscopy for Applications in Quantum Information

    NASA Astrophysics Data System (ADS)

    Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  19. Antimony quantification in Leishmania by electrothermal atomic absorption spectroscopy.

    PubMed

    Roberts, W L; Rainey, P M

    1993-05-15

    Tri- and pentavalent antimony were quantified in Leishmania mexicana pifanoi amastigotes and promastigotes by atomic absorption spectroscopy with electrothermal atomization. Leishmania grown in axenic culture were treated with either potassium antimony tartrate [Sb(III)] or sodium stibogluconate [Sb(V)]. The parasites were collected, digested with nitric acid, and subjected to atomic absorption spectroscopy. The method was linear from 0 to 7 ng of antimony. The interassay coefficients of variation were 9.6 and 5.7% (N = 5) for 0.52 and 3.7-ng samples of leishmanial antimony, respectively. The limit of detection was 95 pg of antimony. The assay was used to characterize Sb(III) and Sb(V) influx and efflux kinetics. Influx rates were determined at antimony concentrations that produced a 50% inhibition of growth (IC50). The influx rates of Sb(V) into amastigotes and promastigotes were 4.8 and 12 pg/million cells/h, respectively, at 200 micrograms antimony/ml. The influx rate of Sb(III) into amastigotes was 41 pg/million cells/h at 20 micrograms antimony/ml. Influx of Sb(III) into promastigotes at 1 microgram antimony/ml was rapid and reached a plateau of 175 pg/million cells in 2 h. Efflux of Sb(III) and Sb(V) from amastigotes and promastigotes exhibited biphasic kinetics. The initial (alpha) half-life of Sb(V) efflux was less than 4 min and that of Sb(III) was 1-2 h. The apparent terminal (beta) half-lives ranged from 7 to 14 h.

  20. Absorption and emission spectroscopy in natural and synthetic corundum

    NASA Astrophysics Data System (ADS)

    Spinolo, G.; Palanza, V.; Ledonne, A.; Paleari, A.

    2009-04-01

    sapphires absorption spectra. In conclusion, both for metamorphic, synthetic and magmatic sapphires we reached a quite complete interpretation of the spectroscopic data in terms of "non interacting impurity ions". Orange, purple and green sapphires absorption spectra may also be discussed in terms of such interpretative approach. References Fontana I, LeDonne A, Palanza V, Binetti S and Spinolo G (2008) Optical spectroscopy study of type 1 natural and synthetic sapphires. J. Phys:Condens.Matter 20:125228-125232

  1. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy.

    PubMed

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-10-04

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures ("metasurfaces") can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent.

  2. Non-destructive plant health sensing using absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Bledsoe, Jim; Manukian, Ara; Pearce, Michael; Weiss, Lee

    1988-01-01

    The sensor group of the 1988 EGM 4001 class, working on NASA's Controlled Ecological Life Support Systems (CELSS) project, investigated many different plant health indicators and the technologies used to test them. The project selected by the group was to measure chlorophyll levels using absorption spectroscopy. The spectrometer measures the amount of chlorophyll in a leaf by measuring the intensity of light of a specific wavelength that is passed through a leaf. The three wavelengths of light being used corresponded to the near-IR absorption peaks of chlorophyll a, chlorophyll b, and chlorophyll-free structures. Experimentation showed that the sensor is indeed measuring levels of chlorophyll a and b and their changes before the human eye can see any changes. The detector clamp causes little damage to the leaf and will give fairly accurate readings on similar locations on a leaf, freeing the clamp from having to remain on the same spot of a leaf for all measurements. External light affects the readings only slightly so that measurements may be taken in light or dark environments. Future designs and experimentation will concentrate on reducing the size of the sensor and adapting it to a wider range of plants.

  3. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Houmøller, J.; Brøndsted Nielsen, S.

    2016-09-01

    Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm-1) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.

  4. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  5. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions.

    PubMed

    Zaera, Francisco

    2014-11-21

    Infrared absorption spectroscopy has proven to be one of the most powerful spectroscopic techniques available for the characterization of catalytic systems. Although the history of IR absorption spectroscopy in catalysis is long, the technique continues to provide key fundamental information about a variety of catalysts and catalytic reactions, and to also offer novel options for the acquisition of new information on both reaction mechanisms and the nature of the solids used as catalysts. In this review, an overview is provided of the main contributions that have been derived from IR absorption spectroscopy studies of catalytic systems, and a discussion is included on new trends and new potential directions of research involving IR in catalysis. We start by briefly describing the power of Fourier-transform IR (FTIR) instruments and the main experimental IR setups available, namely, transmission (TIR), diffuse reflectance (DRIFTS), attenuated total reflection (ATR-IR), and reflection-absorption (RAIRS), for advancing research in catalysis. We then discuss the different environments under which IR characterization of catalysts is carried out, including in situ and operando studies of typical catalytic processes in gas-phase, research with model catalysts in ultrahigh vacuum (UHV) and so-called high-pressure cell instruments, and work involving liquid/solid interfaces. A presentation of the type of information extracted from IR data follows in terms of the identification of adsorbed intermediates, the characterization of the surfaces of the catalysts themselves, the quantitation of IR intensities to extract surface coverages, and the use of probe molecules to identify and titrate specific catalytic sites. Finally, the different options for carrying out kinetic studies with temporal resolution such as rapid-scan FTIR, step-scan FTIR, and the use of tunable lasers or synchrotron sources, and to obtain spatially resolved spectra, by sample rastering or by 2D imaging, are

  6. Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Qin-Bin; Xu, Xue-Mei; Li, Chen-Jing; Ding, Yi-Peng; Cao, Can; Yin, Lin-Zi; Ding, Jia-Feng

    2016-11-01

    The expressions of the second harmonic (2f) signal are derived on the basis of absorption spectral and lock-in theories. A parametric study indicates that the phase shift between the intensity and wavelength modulation makes a great contribution to the 2f signal. A self-calibration wavelength modulation spectroscopy (WMS) method based on tunable diode laser absorption spectroscopy (TDLAS) is applied, combining the advantages of ambient pressure, temperature suppression, and phase-shift influences elimination. Species concentration is retrieved simultaneously from selected 2f signal pairs of measured and reference WMS-2f spectra. The absorption line of acetylene (C2H2) at 1530.36 nm near-infrared is selected to detect C2H2 concentrations in the range of 0-400 ppmv. System sensitivity, detection precision and limit are markedly improved, demonstrating that the self-calibration method has better detecting performance than the conventional WMS. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047, 61502538, and 61501525).

  7. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods which have been proposed for the detection of trace concentrations of gaseous contaminants include Raman backscattering (LIDAR) and passive radiometry (LOPAIR). Remote sensing techniques using laser spectrometry are presented and in particular a simple long-path laser absorption method (LOLA), which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels is discussed. A number of species were selected for study which are representative of those most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Computer programs were developed which will permit a real-time analysis of the monitored atmosphere. Estimates of the dynamic range of this monitoring technique for various system configurations, and comparison with other methods of analysis, are given.

  8. Emerging techniques for soil analysis via mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Linker, R.; Shaviv, A.

    2009-04-01

    Transmittance and diffuse reflectance (DRIFT) spectroscopy in the mid-IR range are well-established methods for soil analysis. Over the last five years, additional mid-IR techniques have been investigated, and in particular: 1. Attenuated total reflectance (ATR) Attenuated total reflectance is commonly used for analysis of liquids and powders for which simple transmittance measurements are not possible. The method relies on a crystal with a high refractive index, which is in contact with the sample and serves as a waveguide for the IR radiation. The radiation beam is directed in such a way that it hits the crystal/sample interface several times, each time penetrating a few microns into the sample. Since the penetration depth is limited to a few microns, very good contact between the sample and the crystal must be ensured, which can be achieved by working with samples close to water saturation. However, the strong absorbance of water in the mid-infrared range as well as the absorbance of some soil constituents (e.g., calcium carbonate) interfere with some of the absorbance bands of interest. This has led to the development of several post-processing methods for analysis of the spectra. The FTIR-ATR technique has been successfully applied to soil classification as well as to determination of nitrate concentration [1, 6-8, 10]. Furthermore, Shaviv et al. [12] demonstrated the possibility of using fiber optics as an ATR devise for direct determination of nitrate concentration in soil extracts. Recently, Du et al. [5] showed that it is possible to differentiate between 14N and 15N in such spectra, which opens very promising opportunities for developing FTIR-ATR based methods for investigating nitrogen transformation in soils by tracing changes in N-isotopic species. 2. Photo-acoustic spectroscopy Photoacoustic spectroscopy (PAS) is based on absorption-induced heating of the sample, which produces pressure fluctuations in a surrounding gas. These fluctuations are

  9. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas

    PubMed Central

    Adato, Ronen; Altug, Hatice

    2013-01-01

    Infrared absorption spectroscopy is a powerful biochemical analysis tool as it extracts detailed molecular structural information in a label-free fashion. Its molecular specificity renders the technique sensitive to the subtle conformational changes exhibited by proteins in response to a variety of stimuli. Yet, sensitivity limitations and the extremely strong absorption bands of liquid water severely limit infrared spectroscopy in performing kinetic measurements in biomolecules’ native, aqueous environments. Here we demonstrate a plasmonic chip-based technology that overcomes these challenges, enabling the in-situ monitoring of protein and nanoparticle interactions at high sensitivity in real time, even allowing the observation of minute volumes of water displacement during binding events. Our approach leverages the plasmonic enhancement of absorption bands in conjunction with a non-classical form of internal reflection. These features not only expand the reach of infrared spectroscopy to a new class of biological interactions but also additionally enable a unique chip-based technology. PMID:23877168

  10. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas.

    PubMed

    Adato, Ronen; Altug, Hatice

    2013-01-01

    Infrared absorption spectroscopy is a powerful biochemical analysis tool as it extracts detailed molecular structural information in a label-free fashion. Its molecular specificity renders the technique sensitive to the subtle conformational changes exhibited by proteins in response to a variety of stimuli. Yet, sensitivity limitations and the extremely strong absorption bands of liquid water severely limit infrared spectroscopy in performing kinetic measurements in biomolecules' native, aqueous environments. Here we demonstrate a plasmonic chip-based technology that overcomes these challenges, enabling the in-situ monitoring of protein and nanoparticle interactions at high sensitivity in real time, even allowing the observation of minute volumes of water displacement during binding events. Our approach leverages the plasmonic enhancement of absorption bands in conjunction with a non-classical form of internal reflection. These features not only expand the reach of infrared spectroscopy to a new class of biological interactions but also additionally enable a unique chip-based technology.

  11. Process stability assessed by selecting Shewhart's psi statistical analysis technique of the influence of matrix modifier and furnace program in the optimization and precision of zinc determinations by graphite furnace atomic absorption spectroscopy.

    PubMed

    Al-Tufail, M; Akram, M; Haq, A

    1999-03-01

    The method previously used in the Toxicology Laboratories of King Faisal Specialist Hospital and Research Center for determining the zinc concentration in serum by Zeeman atomic absorption spectrometer was improved by modifying the matrix modifier and by changing the heated graphite furnace atomization (HGA) program. After trying several methods we failed to achieve the required precision and the accuracy of methods for serum zinc determination. We changed the matrix modifier to a fifty percent mixture (v/v) of 3.90 grams per liter of ammonium phosphate in Type 1 water with 0.2% nitric acid and 1.0 gram per liter of magnesium nitrate in acidic water (0.2% HNO3) with 0.1% triton X-100 was used as matrix modifier. A twenty-five fold dilution of the sample in matrix modifier was injected on the L'vov's platform of the furnace. In order to reduce the high sensitivity of Zn the furnace program was modified. The method is found very robust. The average reproducibility between inter-runs and intra-run is less than 1.59% with a high degree of accuracy. We used two levels of controls i.e. normal or low level and abnormal or high level. The linearity and the detection limit of the assay were 0.9992 and 0.010 micromol/L respectively. Average recovery of the analyte was 98.65%. The X-Bar and R charts were constructed by using Shewhart's statistical analysis technique to assess the test methodology. It was found that the assay is capable and stable for routine clinical and research analysis. The capability index (C(P)) of the assay, an indicator of the precision, was calculated.

  12. Metal release in metallothioneins induced by nitric oxide: X-ray absorption spectroscopy study.

    PubMed

    Casero, Elena; Martín-Gago, José A; Pariente, Félix; Lorenzo, Encarnación

    2004-12-01

    Metallothioneins (MTs) are low molecular weight proteins that include metal ions in thiolate clusters. The capability of metallothioneins to bind different metals has suggested their use as biosensors for different elements. We study here the interaction of nitric oxide with rat liver MTs by using in situ X-ray absorption spectroscopy techniques. We univocally show that the presence of NO induces the release of Zn atoms from the MT structure to the solution. Zn ions transform in the presence of NO from a tetrahedral four-fold coordinated environment in the MT into a regular octahedral six-fold coordinated state, with interatomic distances compatible with those of Zn solvated in water.

  13. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    SciTech Connect

    Fara, M.; Novak, F.

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  14. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    PubMed

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  15. Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview

    PubMed Central

    Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B.; Röpcke, Jürgen

    2010-01-01

    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry. PMID:22163581

  16. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.

    PubMed

    Lambrecht, Armin; Pfeifer, Marcel; Konz, Werner; Herbst, Johannes; Axtmann, Felix

    2014-05-07

    Laser spectroscopy is a powerful tool for analyzing small molecules, i.e. in the gas phase. In the mid-infrared spectral region quantum cascade lasers (QCLs) have been established as the most frequently used laser radiation source. Spectroscopy of larger molecules in the gas phase, of complex mixtures, and analysis in the liquid phase requires a broader tuning range and is thus still the domain of Fourier transform infrared (FTIR) spectroscopy. However, the development of tunable external cavity (EC) QCLs is starting to change this situation. The main advantage of QCLs is their high spectral emission power that is enhanced by a factor of 10(4) compared with thermal light sources. Obviously, transmission measurements with EC-QCLs in strongly absorbing samples are feasible, which can hardly be measured by FTIR due to detector noise limitations. We show that the high power of EC-QCLs facilitates spectroscopy beyond simple absorption measurements. Starting from QCL experiments with liquid samples, we show results of fiber evanescent field analysis (FEFA) to detect pesticides in drinking water. FEFA is a special case of attenuated total reflection spectroscopy. Furthermore, powerful CW EC-QCLs enable fast vibrational circular dichroism (VCD) spectroscopy of chiral molecules in the liquid phase - a technique which is very time consuming with standard FTIR equipment. We present results obtained for the chiral compound 1,1'-bi-2-naphthol (BINOL). Finally, powerful CW EC-QCLs enable the application of laser photothermal emission spectroscopy (LPTES). We demonstrate this for a narrowband and broadband absorber in the gas phase. All three techniques have great potential for MIR process analytical applications.

  17. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  18. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  19. Deconvolution of CPM absorption spectra: A new technique

    NASA Astrophysics Data System (ADS)

    Jensen, Pablo

    1990-12-01

    We have found a new technique for deconvoluting absorption spectra obtained with the constant photocurrent method on hydrogenated amorphous silicon samples. We have shown that our method is simpler and more accurate than those used until now. Finally, examples of spectra deconvolution for one sample after various thermal treatments are provided.

  20. Determination of Aluminum Concentration in Seawater by Colorimetry and Atomic Absorption Spectroscopy.

    DTIC Science & Technology

    1972-11-30

    this was also high. 5 . ,Irj ~ - • lri*; llo. TALLE 2 ATOMIC ABSORPTION SPECTROSCOPY DETEPIJINATION OF ALUMINU1 CONCENTRATIO11 OF SEAWATER OCEAN...Concentration in Seawater by Colorimetr-y and Atomic Absorption Spectroscopy Charles A. Greene, Jr. and Everett N. Jones Ocean Science Department T14

  1. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally

  2. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    SciTech Connect

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.

  3. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  4. Infrared and near infrared transient absorption spectroscopy of molecular free radicals

    SciTech Connect

    Sears, T.J.; Wu, M.; Hall, G.E.; Chang, B.C.; Hansford, G.; Bloch, J.C.; Field, R.W.

    1993-12-31

    The advantages of absorption spectroscopy at low absorbances include a linear relationship between signal size and number of absorbing molecules, line of sight measurement, and easily interpretable lineshape functions. The main disadvantage is due to the necessity of measuring a small change in light intensity, usually in the presence of a strong background, which limits the sensitivity. In this work, recent results obtained using absorption techniques with continuous wave lasers to measure vibrational and electronic spectra in the mid- and near-infrared of small free radicals are reported. The radical of interest was generated by excimer laser photolysis of a chemically stable precursor molecule and detected by measuring the transient decrease in power of a continuous wave probe laser that traversed the photolyzed volume before being imaged onto a detector.

  5. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa

    PubMed Central

    Aquilanti, Giuliana; Trapananti, Angela; Karandikar, Amol; Kantor, Innokenty; Marini, Carlo; Mathon, Olivier; Pascarelli, Sakura; Boehler, Reinhard

    2015-01-01

    Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa. PMID:26371317

  6. High-performance dispersive Raman and absorption spectroscopy as tools for drug identification

    NASA Astrophysics Data System (ADS)

    Pawluczyk, Olga; Andrey, Sam; Nogas, Paul; Roy, Andrew; Pawluczyk, Romuald

    2009-02-01

    Due to increasing availability of pharmaceuticals from many sources, a need is growing to quickly and efficiently analyze substances in terms of the consistency and accuracy of their chemical composition. Differences in chemical composition occur at very low concentrations, so that highly sensitive analytical methods become crucial. Recent progress in dispersive spectroscopy with the use of 2-dimensional detector arrays, permits for signal integration along a long (up to 12 mm long) entrance slit of a spectrometer, thereby increasing signal to noise ratio and improving the ability to detect small concentration changes. This is achieved with a non-scanning, non-destructive system. Two different methods using P&P Optica high performance spectrometers were used. High performance optical dispersion Raman and high performance optical absorption spectroscopy were employed to differentiate various acetaminophen-containing drugs, such as Tylenol and other generic brands, which differ in their ingredients. A 785 nm excitation wavelength was used in Raman measurements and strong Raman signals were observed in the spectral range 300-1800 cm-1. Measurements with the absorption spectrometer were performed in the wavelength range 620-1020 nm. Both Raman and absorption techniques used transmission light spectrometers with volume phase holographic gratings and provided sufficient spectral differences, often structural, allowing for drug differentiation.

  7. Femtosecond XUV transient absorption spectroscopy of small organic molecules

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2015-05-01

    High-order harmonic generation has evolved as a powerful method for the generation of femtosecond XUV pulses with table-top laser systems. Femtosecond XUV transient absorption spectroscopy is an emerging application of these novel light sources for the investigation of molecular dynamics. Recording time-dependent XUV induced core-to-valence transitions traces a molecular response to an initial perturbation with IR, VIS or UV laser pulses from the perspective of distinct atomic sites. Preliminary results for sulfur and selenium containing organic molecules, such as thiophene (C4H4S) and selenophene(C4H4Se), are presented. While molecular orbital dynamics in thiophene will be monitored at the sulfur 2p edge around 165 eV, experiments at the Se 3d (57 eV) and Se 3p (163 eV) edges of selenophene will provide insight about the impact of specific inner-shell transitions within the same atom on the spectroscopic fingerprint of similar dynamics. The method's element-specificity and sensitivity to local valance electronic structures will be exploited to monitor the photo-induced opening of the aromatic rings at the S-C and Se-C bonds, thereby shining new light on the primary steps of photochemical reaction pathways in organic compounds.

  8. X-ray Absorption Spectroscopy of the Rare Earth orthophosphates

    SciTech Connect

    Shuh, D.K.; Terminello, L.J.; Boatner, L.A.; Abraham, M.M.

    1993-06-01

    X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d{sup 10}4f{sup n} {yields} 3d-{sup 9}4f{sup n+1} transitions and these transitions exhibit a wealth of spectroscopic features. The XAS measurements of single crystal REPO{sub 4} (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) at the 3d edge were performed in the total yield mode at beam line 8-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble the XAS of the corresponding RE metal. This is not unexpected and emphasizes the major contribution of the trivalent state to the electronic transitions at the RE 3d edges. These spectra unequivocally identify the transitions originating from well-characterized RE cores and correlate well with previous theoretical investigations.

  9. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  10. Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Fikri, Mustapha; Schulz, Christof; Hellmig, Ortwin; Baev, Valery M.

    2016-06-01

    In this paper, we demonstrate the first application of intracavity absorption spectroscopy (ICAS) for monitoring species concentration, total pressure, and temperature in shock-tube experiments. ICAS with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of absorption spectra of shock-heated C2H2. The measurements are performed in a spectral range between 6512 and 6542 cm-1, including many absorption lines of C2H2, with a time resolution of 100 µs and an effective absorption path length of 15 m. Up to 18-times increase of the total pressure and a temperature rise of up to 1200 K have been monitored. Due to the ability of simultaneously recording many absorption lines in a broad spectral range, the presented technique can also be applied to multi-component analysis of transient single-shot processes in reactive gas mixtures in shock tubes, pulse detonation engines, or explosions.

  11. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    PubMed

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  12. Diffuse reflectance spectroscopy as a tool to measure the absorption coefficient in skin: system calibration.

    PubMed

    Karsten, A E; Singh, A; Karsten, P A; Braun, M W H

    2013-02-01

    An individualised laser skin treatment may enhance the treatment and reduces risks and side-effects. The optical properties (absorption and scattering coefficients) are important parameters in the propagation of laser light in skin tissue. The differences in the melanin content of different skin phototypes influence the absorption of the light. The absorption coefficient at the treatment wavelength for an individual can be determined by diffuse reflectance spectroscopy, using a probe containing seven fibres. Six of the fibres deliver the light to the measurement site and the central fibre collects the diffused reflected light. This is an in vivo technique, offering benefits for near-real-time results. Such a probe, with an effective wavelength band from 450 to 800 nm, was used to calibrate skin-simulating phantoms consisting of intralipid and ink. The calibration constants were used to calculate the absorption coefficients from the diffuse reflectance measurements of three volunteers (skin phototypes, II, IV and V) for sun-exposed and non-exposed areas on the arm.

  13. The analysis of time-resolved optical waveguide absorption spectroscopy based on positive matrix factorization.

    PubMed

    Liu, Ping; Li, Zhu; Li, Bo; Shi, Guolong; Li, Minqiang; Yu, Daoyang; Liu, Jinhuai

    2013-08-01

    Time-resolved optical waveguide absorption spectroscopy (OWAS) makes use of an evanescent field to detect the polarized absorption spectra of sub-monomolecular adlayers. This technique is suitable for the investigation of kinetics at the solid/liquid interface of dyes, pigments, fluorescent molecules, quantum dots, metallic nanoparticles, and proteins with chromophores. In this work, we demonstrate the application of positive matrix factorization (PMF) to analyze time-resolved OWAS for the first time. Meanwhile, PCA is researched to compare with PMF. The absorption/desorption kinetics of Rhodamine 6G (R6G) onto a hydrophilic glass surface and the dynamic process of Meisenheimer complex between Cysteine and TNT are selected as samples to verify experimental system and analytical methods. The results are shown that time-resolved OWAS can well record the absorption/desorption of R6G onto a hydrophilic glass surface and the dynamic formation process of Meisenheimer complexes. The feature of OWAS extracted by PMF is dynamic and consistent with the results analyzed by the traditional function of time/wavelength-absorbance. Moreover, PMF prevents the negative factors from occurring, avoids contradicting physical reality, and makes factors more easily interpretable. Therefore, we believe that PMF will provide a valuable analysis route to allow processing of increasingly large and complex data sets.

  14. Determination of zinc in serum, blood, and ultrafiltrate fluid from patients on hemofiltration by graphite furnace/atomic absorption spectroscopy or flow injection analysis/atomic absorption spectroscopy.

    PubMed

    de Blas, O J; Rodriguez, R S; Mendez, J H; Tomero, J A; Gomez, B de L; Gonzalez, S V

    1994-01-01

    Two methods were optimized for the determination of zinc in samples of blood, serum, and ultrafiltrate fluid from patients with chronic renal impairment undergoing hemofiltration. In the first procedure, after acid digestion of the samples, Zn in blood and serum is determined by a system coupled to flow injection analysis and atomic absorption spectroscopy. The method is rapid, automated, simple, needs small amounts of sample, and has acceptable analytical characteristics. The analytical characteristics obtained were as follows: determination range of method, 0.05-2.0 ppm of Zn; precision as coefficient of variation (CV), 5.3%; recovery, 95-105%; and detection limit (DL), 0.02 ppm. The second method is optimized for ultrafiltrate fluid because the sensitivity of the first procedure is not suitable for the levels of Zn (ppb or ng/mL) in these samples. The technique chosen was atomic absorption spectroscopy with electrothermal atomization in a graphite furnace. The analytical characteristics obtained were as follows: determination range of method, 0.3-2.0 ppb Zn; CV, 5.7%; recovery, 93-107%; and DL, 0.12 ppb. The methods were used to determine zinc in samples of blood, serum, and ultrafiltrate fluid from 5 patients with chronic renal impairment undergoing hemofiltration to discover whether there were significant differences in the zinc contents of blood, serum, and ultrafiltrate fluid after the hemofiltration process. An analysis of variance of the experimental data obtained from a randomly selected group of 5 patients showed that zinc concentrations in the ultrafiltrate fluid, venous blood, and venous serum do not vary during hemofiltration (p < 0.05), whereas in arterial blood and serum, the time factor has a significant effect.

  15. Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy.

    PubMed

    Martinez-Cruz, Karla; Sepulveda-Jauregui, Armando; Escobar-Orozco, Nayeli; Thalasso, Frederic

    2012-10-01

    Methanogenic activity (MA) tests are commonly carried out to estimate the capability of anaerobic biomass to treat effluents, to evaluate anaerobic activity in bioreactors or natural ecosystems, or to quantify inhibitory effects on methanogenic activity. These activity tests are usually based on the measurement of the volume of biogas produced by volumetric, pressure increase or gas chromatography (GC) methods. In this study, we present an alternative method for non-invasive measurement of methane produced during activity tests in closed vials, based on Infrared Tunable Diode Laser Absorption Spectroscopy (MA-TDLAS). This new method was tested during model acetoclastic and hydrogenotrophic methanogenic activity tests and was compared to a more traditional method based on gas chromatography. From the results obtained, the CH(4) detection limit of the method was estimated to 60 ppm and the minimum measurable methane production rate was estimated to 1.09(.)10(-3) mg l(-1) h(-1), which is below CH(4) production rate usually reported in both anaerobic reactors and natural ecosystems. Additionally to sensitivity, the method has several potential interests compared to more traditional methods among which short measurements time allowing the measurement of a large number of MA test vials, non-invasive measurements avoiding leakage or external interferences and similar cost to GC based methods. It is concluded that MA-TDLAS is a promising method that could be of interest not only in the field of anaerobic digestion but also, in the field of environmental ecology where CH(4) production rates are usually very low.

  16. Quantitative Determination of Absolute Organohalogen Concentrations in Environmental Samples by X-ray Absorption Spectroscopy

    SciTech Connect

    Leri,A.; Hay, M.; Lanzirotti, A.; Rao, W.; Myneni, S.

    2006-01-01

    An in situ procedure for quantifying total organic and inorganic Cl concentrations in environmental samples based on X-ray absorption near-edge structure (XANES) spectroscopy has been developed. Cl 1s XANES spectra reflect contributions from all Cl species present in a sample, providing a definitive measure of total Cl concentration in chemically heterogeneous samples. Spectral features near the Cl K-absorption edge provide detailed information about the bonding state of Cl, whereas the absolute fluorescence intensity of the spectra is directly proportional to total Cl concentration, allowing for simultaneous determination of Cl speciation and concentration in plant, soil, and natural water samples. Absolute Cl concentrations are obtained from Cl 1s XANES spectra using a series of Cl standards in a matrix of uniform bulk density. With the high sensitivity of synchrotron-based X-ray absorption spectroscopy, Cl concentration can be reliably measured down to the 5-10 ppm range in solid and liquid samples. Referencing the characteristic near-edge features of Cl in various model compounds, we can distinguish between inorganic chloride (Cl{sub inorg}) and organochlorine (Cl{sub org}), as well as between aliphatic Cl{sub org} and aromatic Cl{sub org}, with uncertainties in the range of {approx}6%. In addition, total organic and inorganic Br concentrations in sediment samples are quantified using a combination of Br 1s XANES and X-ray fluorescence (XRF) spectroscopy. Br concentration is detected down to {approx}1 ppm by XRF, and Br 1s XANES spectra allow quantification of the Br{sub inorg} and Br{sub org} fractions. These procedures provide nondestructive, element-specific techniques for quantification of Cl and Br concentrations that preclude extensive sample preparation.

  17. Diode laser absorption tomography using data compression techniques

    NASA Astrophysics Data System (ADS)

    Lindstrom, Chad; Tam, Chung-Jen; Givens, Ryan; Davis, Doug; Williams, Skip

    2008-02-01

    Tunable diode laser absorption spectroscopy (TDLAS) shows promise for in situ monitoring in high-speed flows. However, the dynamic nature of typical flows of supersonic combustors, gas turbine engines and augmenters can also lead to inhomogenities that cannot be captured by a single line-of-sight TDLAS measurement. Instead, multiple measurements varied over several spatial locations need to be made. In the current study, shock train structure in the isolator section of the Research Cell 18 supersonic combustion facility at Wright-Patterson AFB is measured. Although only two view angles are available for measurement, multiple absorption features along with a priori computational fluid dynamics (CFD) simulations enable estimates of two dimensional flow features to be formed. Vector quantization/kmeans data clustering is used to identify key flow features from the temporal history of the raw sinograms. Through the use of multiple absorption features that are measured nearly simultaneously, an approximate two-dimensional image can be formed. This image can be further refined through the use of an optimal set of basis functions that can be derived from a set of CFD simulations that describes the flow shapes.

  18. Sandwich concept: enhancement for direct absorption measurements by laser-induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Bublitz, S.; Paa, W.

    2012-11-01

    The new sandwich concept for absolute photo-thermal absorption measurements using the laser induced deflection (LID) technique is introduced and tested in comparison to the standard LID concept. The sandwich concept's idea is the decoupling of the optical materials for the pump and probe beams by placing a sample of investigation in between two optical (sandwich) plates. The pump beam is guided through the sample whereas the probe beams are deflected within the sandwich plates by the thermal lens that is generated by heat transfer from the irradiated sample. Electrical simulation and laser experiments reveal that using appropriate optical materials for the sandwich plates, the absorption detection limit for photo-thermally insensitive materials can be lowered by up to two orders of magnitude. Another advantage of the sandwich concept, the shrinking of the currently required minimum sample size, was used to investigate the laser induced absorption change in a Nd:YVO4 crystal at 1030nm. It was found that the absorption in Nd:YVO4 lowers due to the laser irradiation but partially recovers during irradiation breaks. Furthermore, absorption spectroscopy has been performed at two LBO crystals in the wavelength range 410...600nm to study the absorption structure around the SHG wavelengths of common high power lasers based on Neodymium doped laser crystals.

  19. X-ray Absorption Spectroscopy Characterization of Electrochemical Processes in Renewable Energy Storage and Conversion Devices

    SciTech Connect

    Farmand, Maryam

    2013-05-19

    The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopy (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.

  20. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  1. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  2. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  3. Studies of cavity enhanced absorption spectroscopy for weak absorption gas measurements

    NASA Astrophysics Data System (ADS)

    Li, Liucheng; Duo, Liping; Gong, Deyu; Ma, Yanhua; Zhang, Zhiguo; Wang, Yuanhu; Zhou, Dongjian; Jin, Yuqi

    2017-01-01

    In order to determine the concentrations of trace amount metastable species in chemical lasers, an off-axis cavity enhanced absorption spectrometer for the detection of weak absorption gases has been built with a noise equivalent absorption sensitivity of 1.6x10-8 cm-1. The absorption spectrum of trace amount gaseous ammonia and water vapor was obtained with a spectral resolution of about 78 MHz. A multiple-line absorption spectroscopic method to determine the temperature of gaseous ammonia has been developed by use of multiple lines of ammonia molecule absorption spectrum.

  4. X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi.

    PubMed

    Fomina, Marina; Charnock, John; Bowen, Andrew D; Gadd, Geoffrey M

    2007-02-01

    Fungi can be highly efficient biogeochemical agents and accumulators of soluble and particulate forms of metals. This work aims to understand some of the physico-chemical mechanisms involved in toxic metal transformations focusing on the speciation of metals accumulated by fungi and mycorrhizal associations. The amorphous state or poor crystallinity of metal complexes within biomass and relatively low metal concentrations make the determination of metal speciation in biological systems a challenging problem but this can be overcome by using synchrotron-based element-specific X-ray absorption spectroscopy (XAS) techniques. In this research, we have exposed fungi and ectomycorrhizas to a variety of copper-, zinc- and lead-containing minerals. X-ray absorption spectroscopy studies revealed that oxygen ligands (phosphate, carboxylate) played a major role in toxic metal coordination within the fungal and ectomycorrhizal biomass during the accumulation of mobilized toxic metals. Coordination of toxic metals within biomass depended on the fungal species, initial mineral composition, the nitrogen source, and the physiological state/age of the fungal mycelium.

  5. Combined characterization of bovine polyhemoglobin microcapsules by UV-Vis absorption spectroscopy and cyclic voltammetry.

    PubMed

    Knirsch, Marcos Camargo; Dell'Anno, Filippo; Salerno, Marco; Larosa, Claudio; Polakiewicz, Bronislaw; Eggenhöffner, Roberto; Converti, Attilio

    2017-03-01

    Polyhemoglobin produced from pure bovine hemoglobin by reaction with PEG bis(N-succynimidil succinate) as a cross-linking agent was encapsulated in gelatin and dehydrated by freeze-drying. Free carboxyhemoglobin and polyhemoglobin microcapsules were characterized by UV-Vis spectroscopy in the absorption range 450-650 nm and cyclic voltammetry in the voltage range from -0.8 to 0.6 mV to evaluate the ability to break the bond with carbon monoxide and to study the carrier's affinity for oxygen, respectively. SEM used to observe the shape of cross-linked gelatin-polyhemoglobin microparticles showed a regular distribution of globular shapes, with mean size of ~750 nm, which was ascribed to gelatin. Atomic absorption spectroscopy was also performed to detect iron presence in microparticles. Cyclic voltammetry using an Ag-AgCl electrode highlighted characteristic peaks at around -0.6 mV that were attributed to reversible oxygen bonding with iron in oxy-polyhemoglobin structure. These results suggest this technique as a powerful, direct and alternative method to evaluate the extent of hemoglobin oxygenation.

  6. Total Absorption Spectroscopy of the 137Xe, 137I, and 92Rb β-Decays

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.; Fijałkowska, A.; Karny, M.; Rykaczewski, K. P.; Wolińska-Cichocka, M.; Goetz, K. C.; Grzywacz, R. K.; Gross, C. J.; Miernik, K.; Stracener, D.

    2015-10-01

    The NaI(Tl) based Modular Total Absorption Spectrometer (MTAS) was constructed to measure improved β-decay feeding patterns from neutron-rich nuclei. It is difficult to measure β-decay feeding intensities with high precision γ-ray measurements due to the low efficiency of high precision detectors. There are several important applications of improved measurements of β-decay feeding patterns by total absorption spectroscopy; improve understanding of elemental abundances in the universe, help with stockpile stewardship, contribute to understanding of underlying nuclear structure, and improve β-decay feeding measurements to calculate accurately the νe spectra needed to evaluate precisely reactor neutrino measurements. We present β-decay feeding results for two ``priority one'' measurements, 137Xe and 137I, and for 92Rb, which is a large individual contributor to the νe uncertainty of the reactor anomaly. In addition to β- γ decays, 137I has a β-neutron decay channel which is measurable in MTAS. We will demonstrate techniques for analyzing MTAS γ-decay data. We will also describe β and neutron spectroscopy in MTAS. This work was supported by the US DOE by Award No. DE-FG02- 96ER40978 and by US DOE, Office of Nuclear Physics.

  7. Aerosol particle absorption spectroscopy by photothermal modulation of Mie scattered light

    SciTech Connect

    Campillo, A.J.; Dodge, C.J.; Lin, H.B.

    1981-09-15

    Absorption spectroscopy of suspended submicron-sized aqueous ammonium-sulfate aerosol droplets has been performed by employing a CO/sub 2/ laser to photothermally modulate visible Mie scattered light. (AIP)

  8. Determination of tin in poly(vinyl chloride) by atomic-absorption spectroscopy.

    PubMed

    Anwar, J; Marr, I L

    1982-10-01

    A simple procedure is described for the determination of tin in PVC by atomic-absorption spectroscopy with an air-hydrogen flame, after wet digestion of the sample with sulphuric acid and hydrogen peroxide.

  9. Identification of Uranyl Minerals Using Oxygen K-Edge X Ray Absorption Spectroscopy

    SciTech Connect

    Ward, Jesse D.; Bowden, Mark E.; Resch, Charles T.; Smith, Steven C.; McNamara, Bruce K.; Buck, Edgar C.; Eiden, Gregory C.; Duffin, Andrew M.

    2016-03-01

    Uranium analysis is consistently needed throughout the fuel cycle, from mining to fuel fabrication to environmental monitoring. Although most of the world’s uranium is immobilized as pitchblende or uraninite, there exists a plethora of secondary uranium minerals, nearly all of which contain the uranyl cation. Analysis of uranyl compounds can provide clues as to a sample’s facility of origin and chemical history. X-ray absorption spectroscopy is one technique that could enhance our ability to identify uranium minerals. Although there is limited chemical information to be gained from the uranium X-ray absorption edges, recent studies have successfully used ligand NEXAFS to study the physical chemistry of various uranium compounds. This study extends the use of ligand NEXAFS to analyze a suite of uranium minerals. We find that major classes of uranyl compounds (carbonate, oxyhydroxide, silicate, and phosphate) exhibit characteristic lineshapes in the oxygen K-edge absorption spectra. As a result, this work establishes a library of reference spectra that can be used to classify unknown uranyl minerals.

  10. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    PubMed

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPRMAX), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS).

  11. Diagnosis of a two wire X-pinch by X-ray absorption spectroscopy utilizing a doubly curved ellipsoidal crystal

    SciTech Connect

    Cahill, A. D. Hoyt, C. L. Shelkovenko, T. A. Pikuz, S. A. Hammer, D. A.

    2014-12-15

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emitted by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here initial absorption spectra obtained from an aluminum x-pinch plasma.

  12. Influence of the cavity parameters on the output intensity in incoherent broadband cavity-enhanced absorption spectroscopy.

    PubMed

    Fiedler, Sven E; Hese, Achim; Heitmann, Uwe

    2007-07-01

    The incoherent broadband cavity-enhanced absorption spectroscopy is a technique in measuring small absorptions over a broad wavelength range. The setup consists of a conventional absorption spectrometer using an incoherent lamp and a charge coupled device detector, as well as a linear optical cavity placed around the absorbing sample, which enhances the effective path length through the sample. In this work the consequences of cavity length, mirror curvature, reflectivity, different light injection geometries, and spot size of the light source on the output intensity are studied and the implications to the signal-to-noise ratio of the absorption measurement are discussed. The symmetric confocal resonator configuration is identified as a special case with optimum imaging characteristics but with higher requirements for mechanical stability. Larger spot sizes of the light source were found to be favorable in order to reduce the negative effects of aberrations on the intensity.

  13. Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo.

    PubMed

    Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J

    2017-02-01

    Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.

  14. Analytical application of 2f-wavelength modulation for isotope selective diode laser graphite furnace atomic absorption spectroscopy.

    PubMed

    Wizemann, H D

    2000-01-01

    Experiences in the analytical application of the 2f-wavelength modulation technique for isotope selective atomic absorption spectroscopy in a graphite furnace are reported. Experimental as well as calculated results are presented, mainly for the natural lithium isotopes. Sensitivity, linearity, and (isotope) selectivity are studied by intensity modulation and wavelength modulation. High selectivities can be attained, however, on the cost of detection power. It is shown that the method enables the measurement of lithium isotope ratios larger than 2000 by absorption in a low-pressure graphite tube atomizer.

  15. Wear-metal analysis in engine oil by microwave digestion and atomic absorption spectroscopy. Final report, August 1987-January 1988

    SciTech Connect

    Muse, W.T.

    1990-05-01

    Digestion procedures are described for the analysis of wear metals in National Bureau of Standards (NBS) oil samples by a closed vessel microwave digestion system. Samples were analyzed by flame atomic absorption spectroscopy. Recoveries of Al, Fe, Ni, Cu, and Pb in the 300-ppm NBS oil ranged from 98 to 103% with standard deviations from 3 to 14%. This method serves as a relatively quick matrix destruction technique for the quantitation of metals in oil.

  16. Two-Dimensional UV Absorption Correlation Spectroscopy as a Method for the Detection of Thiamethoxam Residue in Tea

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhao, Zh.; Wang, L.; Zhu, X.; Shen, L.; Yu, Y.

    2015-05-01

    Two-dimensional correlation spectroscopy (2D-COS) combined with UV absorption spectroscopy was evaluated as a technique for the identification of spectral regions associated with the residues of thiamethoxam in tea. There is only one absorption peak at 275 nm in the absorption spectrum of a mixture of thiamethoxam and tea, which is the absorption peak of tea. Based on 2D-COS, the absorption peak of thiamethoxam at 250 nm is extracted from the UV spectra of the mixture. To determine the residue of thiamethoxam in tea, 250 nm is selected as the measured wavelength, at which the fitting result is as follows: the residual sum of squares is 0.01375, standard deviation R2 is 0.99068, and F value is 426. Statistical analysis shows that there is a significant linear relationship between the concentration of thiamethoxam in tea and the absorbance at 250 nm in the UV spectra of the mixture. Moreover, the average prediction error is 0.0033 and the prediction variance is 0.1654, indicating good predictive result. Thus, the UV absorption spectrum can be used as a measurement method for rapid detection of thiamethoxam residues in tea.

  17. Direct and quantitative photothermal absorption spectroscopy of individual particulates

    SciTech Connect

    Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang; Zheng, Ruiting; Shen, Sheng

    2013-12-23

    Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

  18. VUV absorption spectroscopy of bacterial spores and DNA components

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2017-01-01

    Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.

  19. In situ Gas Temperature Measurements by UV-Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fateev, A.; Clausen, S.

    2009-02-01

    The absorption spectrum of the NO A2Σ+ ← X2Πγ-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in the range from 23 °C to 1,500 °C. The gas temperature was evaluated (1) from the analysis of the structure of selected NO high-resolution γ-absorption bands and (2) from the analysis of vibrational distribution in the NO γ-absorption system in the (211-238) nm spectral range. The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 °C over an optical absorption path length of 0.533 m.

  20. Structural changes in a polyelectrolyte multilayer assembly investigated by reflection absorption infrared spectroscopy and sum frequency generation spectroscopy.

    PubMed

    Kett, Peter J N; Casford, Michael T L; Yang, Amanda Y; Lane, Thomas J; Johal, Malkiat S; Davies, Paul B

    2009-02-12

    The structure of polyelectrolyte multilayer films adsorbed onto either a per-protonated or per-deuterated 11-mercaptoundecanoic acid (h-MUA/d-MUA) self assembled monolayer (SAM) on gold was investigated in air using two surface vibrational spectroscopy techniques, namely, reflection absorption infrared spectroscopy (RAIRS) and sum frequency generation (SFG) spectroscopy. Determination of film masses and dissipation values were made using a quartz crystal microbalance with dissipation monitoring (QCM-D). The films, containing alternating layers of the polyanion poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and the polycation poly(ethylenimine) (PEI) built on the MUA SAM, were formed using the layer-by-layer electrostatic self-assembly method. The SFG spectrum of the SAM itself comprised strong methylene resonances, indicating the presence of gauche defects in the alkyl chains of the acid. The RAIRS spectrum of the SAM also contained strong methylene bands, indicating a degree of orientation of the methylene groups parallel to the surface normal. Changes in the SFG and RAIRS spectra when a PEI layer was adsorbed on the MUA monolayer showed that the expected electrostatic interaction between the polymer and the SAM, probably involving interpenetration of the PEI into the MUA monolayer, caused a straightening of the alkyl chains of the MUA and, consequently, a decrease in the number of gauche defects. When a layer of PAZO was subsequently deposited on the MUA/PEI film, further spectral changes occurred that can be explained by the formation of a complex PEI/PAZO interpenetrated layer. A per-deuterated MUA SAM was used to determine the relative contributions from the adsorbed polyelectrolytes and the MUA monolayer to the RAIRS and SFG spectra. Spectroscopic and adsorbed mass measurements combined showed that as further bilayers were constructed the interpenetration of PAZO into preadsorbed PEI layers was repeated, up to

  1. The use of CNDO in spectroscopy. XV. Two photon absorption

    NASA Astrophysics Data System (ADS)

    Marchese, Francis T.; Seliskar, C. J.; Jaffé, H. H.

    1980-04-01

    Two-photon absorptivities have been calculated within the CNDO/S-CI molecular orbital framework of Del Bene and Jaffé utilizing the second order time dependent perturbation equations of Göppert-Mayer and polarization methods of McClain. Good agreement is found between this theory and experiment for transition energies, symmetries, and two-photon absorptivities for the following molecules: biphenyl, terphenyl, 2,2'-difluorobiphenyl, 2,2'-bipyridyl, phenanthrene, and the isoelectronic series: fluorene, carbazole, dibenzofuran.

  2. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    SciTech Connect

    Chen Li; Ueta, Hirokazu; Beck, Rainer D.; Bisson, Regis

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  3. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy.

    PubMed

    Chen, Li; Ueta, Hirokazu; Bisson, Régis; Beck, Rainer D

    2013-05-01

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S(θ). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  4. Retrieval of Aerosol Profiles using Multi Axis Differential Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, S.; Friess, U.; Apituley, A.; de Leeuw, G.; Platt, U.

    2009-04-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties like single scattering albedo, phase function and Angström exponent. In the scope of a joint research activity of the EU funded project EUSAAR (European Supersites for Atmospheric Aerosol Research) we have developed a new kind of DOAS instrument, which uses three miniature spectrometers to cover the near-ultraviolet to visible wavelength range (290-790nm), enabling to capture all absorption bands of the oxygen-dimer O4. Additionally, it is possible to point to any direction in the sky with a 2D telescope unit which is connected to the spectrometers via fiber optics. In May 2008, an intercomparison campaign with established aerosol measurement techniques took place in Cabauw/Netherlands, where simultaneous DOAS, LIDAR, Sun photometer and Nephelometer measurements were performed. We present first results of selected days from this period. The optical properties of aerosols retrieved by the DOAS measurement technique show very promising qualitative agreement with the established measurement techniques demonstrating the progress towards our goal of establishing the MAX-DOAS technique for retrieving optical properties of atmospheric aerosols. Quantitative comparison is ongoing.

  5. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  6. X-Ray absorption spectroscopy investigation of 1-alkyl-3-methylimidazolium bromide salts

    SciTech Connect

    D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Bodo, Enrico; Caminiti, Ruggero; Aquilanti, Giuliana; Hazemann, Jean Louis; Testemale, Denis; Mancini, Giordano

    2011-08-21

    X-ray absorption spectroscopy (XAS) has been used to unveil the bromide ion local coordination structure in 1-alkyl-3-methylimidazolium bromide [C{sub n}mim]Br ionic liquids (ILs) with different alkyl chains. The XAS spectrum of 1-ethyl-3-methylimidazolium bromide has been found to be different from those of the other members of the series, from the butyl to the decyl derivatives, that have all identical XAS spectra. This result indicates that starting from 1-buthyl-3-methylimidazolium bromide the local molecular arrangement around the bromide anion is the same independently from the length of the alkyl chain, and that the imidazolium head groups in the liquid ILs with long alkyl chains assume locally the same orientation as in the [C{sub 4}mim]Br crystal. With this study we show that the XAS technique is an effective direct tool for unveiling the local structural arrangements around selected atoms in ILs.

  7. The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.

    2017-01-01

    In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.

  8. Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.

    SciTech Connect

    Sheps, Leonid; Chandler, David W.

    2013-04-01

    Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transient reaction intermediates in a simple, inexpensive, and robust experimental package.

  9. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy

    SciTech Connect

    Salt, D.E.; Prince, R.C.; Baker, A.J.M.; Raskin, I.; Pickering, I.J.

    1999-03-01

    Using the noninvasive technique of X-ray absorption spectroscopy (XAS), the authors have been able to determine the ligand environment of Zn in different tissues of the Zn-hyperaccumulator Thlaspi caerulescens. The majority of intracellular Zn in roots of T. caerulescens was found to be coordinated with histidine. In the xylem sap Zn was found to be transported mainly as the free hydrated Zn{sup 2+} cation with a smaller proportion coordinated with organic acids. In the shoots, Zn coordination occurred mainly via organic acids, with a smaller proportion present as the hydrated cation and coordinated with histidine and the cell wall. Their data suggest that histidine plays an important role in Zn homeostasis in the roots, whereas organic acids are involved in xylem transport and Zn storage in shoots.

  10. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    SciTech Connect

    Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J.

    2008-06-16

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.

  11. Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.

  12. Infrared Reflection-Absorption Spectroscopy: Principles and Applications to Lipid-Protein Interaction in Langmuir Films

    PubMed Central

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R.

    2010-01-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  13. New analytical technique for carbon dioxide absorption solvents

    SciTech Connect

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive index models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.

  14. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic

  15. Laser absorption spectroscopy using lead salt and quantum cascade tunable lasers

    NASA Astrophysics Data System (ADS)

    Namjou-Khales, Khosrow

    A new class of analytic instruments based on the detection of chemical species through their spectroscopic absorption 'fingerprint' is emerging based on the use of tunable semiconductor lasers as the excitation source. Advantages of this approach include compact device size, in-line measurement capability, and large signal-bandwidth product. To realize these advantages will require the marriage of laser devices with broad tunability in the infrared spectral range with sophisticated signal processing techniques. Currently, commercial devices based on short wavelength telecommunications type lasers exist but there is potential for much more versatile instruments based on longer wavelength operation. This thesis is divided into two parts. In the first part I present a theoretical analysis and experimental characterization of frequency and wavelength modulation spectroscopy using long wavelength infrared tunable lasers. The experimental measurements were carried out using commercially available lead salt lasers and excellent agreement is found between theoretically predicted performance and experimental verification. The lead salt laser has several important drawbacks as a source in practical instrumentation. In the second part of the thesis I report on the use of the quantum cascade (QC) laser for use in sensitive absorption spectroscopy. The QC laser is a new type of tunable device developed at Bell Laboratories. It features broad infrared tunability, single mode distributed feedback operation, and near room temperature lasing. Using the modulation techniques developed originally for the lead salt lasers, the QC laser was used to detect Nsb2O and other small molecules with absorption features near 8 mum wavelength. The noise equivalent absorption for our measurements was 5× 10sp{-5}/sqrt{Hz} which corresponds to a detection limit of ˜0.25 ppm-m/sqrt{Hz} for Nsb2O. The QC laser sensitivity was found to be limited by excess amplitude modulation in the detection

  16. High-Resolution Absorption Spectroscopy of NO2

    DTIC Science & Technology

    1987-08-31

    identify by block number) FIELD GROUP SUB-GROUP Atmospheric propagation, Laser spectroscopy, Nitrogen dioxide , Spectroscopy 19. RACT (Continue on reverse if...pulsed dye laser having a 0.05-A"-bandwidth (FWHM). This represents an improvement of at least a factor of three over the resolution employed in...concise interpretation of the observed features has yet to be made. Actual state-to-state assignments in the visible and near UV have been possible only

  17. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  18. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    DOEpatents

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  19. Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selami; Frieß, Udo; Apituley, Arnoud; Henzing, Bas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Adam, Mariana; Putaud, Jean-Philippe; Zieger, Paul; Platt, Ulrich

    2010-05-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities and relative intensities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties such as single scattering albedo, phase function and Angström exponent. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw/Netherlands, Melpitz/Germany, Ispra/Italy and Leipzig/Germany, where simultaneous DOAS, lidar, Sun photometer and Nephelometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical spatial development of the boundary layer is reproduced with a lower resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties will be discussed as well.

  20. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.

    2000-01-01

    Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis

  1. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking

    NASA Astrophysics Data System (ADS)

    Morville, J.; Kassi, S.; Chenevier, M.; Romanini, D.

    2005-06-01

    A new technique of cavity enhanced absorption spectroscopy is described. Molecular absorption spectra are obtained by recording the transmission maxima of the successive TEMoo resonances of a high-finesse optical cavity when a Distributed Feedback Diode Laser is tuned across them. A noisy cavity output is usually observed in such a measurement since the resonances are spectrally narrower than the laser. We show that a folded (V-shaped) cavity can be used to obtain selective optical feedback from the intracavity field which builds up at resonance. This induces laser linewidth reduction and frequency locking. The linewidth narrowing eliminates the noisy cavity output, and allows measuring the maximum mode transmissions accurately. The frequency locking permits the laser to scan stepwise through the successive cavity modes. Frequency tuning is thus tightly optimized for cavity mode injection. Our setup for this technique of Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) includes a 50 cm folded cavity with finesse ˜20 000 (ringdown time ˜20 μs) and allows recording spectra of up to 200 cavity modes (2 cm-1) using 100 ms laser scans. We obtain a noise equivalent absorption coefficient of ˜5×10-10 cm-1 for 1 s averaging over scans, with a dynamic range of four orders of magnitude.

  2. Time-resolved pump-probe spectroscopy of intraband absorption by a semiconductor nanorod

    NASA Astrophysics Data System (ADS)

    Leonov, Mikhail Y.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory of time-resolved pump-probe optical spectroscopy of intraband absorption of a probe pulse inside an anisotropic semiconductor nanorod. The absorption is preceded by the absorption of the pump pulse resonant to an interband transition. It is assumed that the resonantly exited states of the nanorod are interrelated via the relaxation induced by their interaction with a bath. We reveal the conditions for which the absorption of the probe's pulse is governed by a simple formula regardless of the pulse's shape. This formula is useful for the analysis of the experimental data containing information on the relaxation parameters of the nanorod's electronic subsystem.

  3. Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Rodica

    The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally

  4. [In situ temperature measurement by absorption spectroscopy based on time division multiplexing technology].

    PubMed

    Lou, Nan-zheng; Li, Ning; Weng, Chun-sheng

    2012-05-01

    Tunable diode laser absorption spectroscopy (TDLAS) technology is a kind of high sensitivity, high selectivity of non contacting gas in situ measurement technique. In the present paper, in situ gas temperature measurement of an open environment was achieved by means of direct scanning multiple characteristic lines of H2O and combined with least-squares algorithm. Through the use of HITRAN spectral database, the boundary effect on the gas temperature and concentration measurements was discussed in detail, and results showed that the combination of scanning multiple characteristic lines and least-squares algorithm can effectively reduce the boundary effect on the gas temperature measurements under the open environment. Experiments using time division multiplexing technology to simultaneously scan 7444.36, 7185.60, 7182.95 and 7447.48 cm(-1), the four characteristic H2O lines, the gas temperature of tubular furnace in the range of 573-973 K was measured under different conditions. The maximum temperature difference between absorption spectrum measurement and thermocouple signal was less than 52.4 K, and the maximum relative error of temperature measurement was 6.8%.

  5. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  6. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  7. Use of flameless atomic absorption spectroscopy in immune cytolysis for nonradioactive determination of killer cell activity.

    PubMed

    Borella, P; Bargellini, A; Salvioli, S; Cossarizza, A

    1996-02-01

    We describe here a novel method to evaluate natural killer (NK) cytolytic activity by use of flameless atomic absorption spectroscopy (GF-AAS). This technique may be adopted for use in laboratories equipped with electrothermal atomic absorption spectrometers. Nonradioactive Cr as Na2CrO4 was used to label target cells (K562), and cell lysis was evaluated by measuring Cr released after 4 h of incubation with the effectors. We selected 520 micrograms/L as the optimal dose for labeling targets, between 12 and 20 h as the optimal incubation time, and 10(4) cells as the optimal target size. Advantages of this method include: (a) exclusion of radioactive tracer, with no risk for workers; (b) limited costs; (c) high sensitivity and reproducibility; (d) possibility to store samples; and (e) better control of Cr used for labeling cells due to well-determined, fixed Cr concentrations in the range of nontoxic and linear cellular uptake. Comparison with data obtained by conventional 51Cr labeling of targets killed by the same effectors was excellent, yielding comparable results and corroborating the method.

  8. Ultrafast Extreme Ultraviolet Absorption Spectroscopy of Methylammonium Lead Iodide Perovskite

    NASA Astrophysics Data System (ADS)

    Verkamp, Max A.; Lin, Ming-Fu; Ryland, Elizabeth S.; Vura-Weis, Josh

    2016-06-01

    Methylammonium lead iodide (perovskite) is a leading candidate for use in next-generation solar cell devices. However, the photophysics responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) absorption was used to investigate electron and hole dynamics in perovskite by observing transitions from a common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation with a broad spectrum (40-70 eV) were generated via high-harmonic generation using a tabletop instrument. Transient absorption measurements with visible pump and XUV probe directly observed the relaxation of charge carriers in perovskite after above-band excitation in the femtosecond and picosecond time ranges.

  9. Mapping of the Local Interstellar Medium using Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penprase, Bryan Edward

    2017-01-01

    Using the Yale SMARTS 1.5-meter telescope at CTIO and the CHIRON spectrograph, we have developed a program for mapping the local interstellar medium using a sample of over 200 newly observed B stars previously unobserved using Na I absorption lines. This sample includes stars that extend out to map beyond the local bubble to 500 pc. The sample has been observed using high resolution absorption lines, and when combined with previously observed stars with Na I and Ca II data provides a more complete picture of the local ISM than previous surveys. The distances to the stars using the new GAIA database also allows for more accurate determination of distances to features in the lcoal ISM, and new maps of the structure of the ISM hav been prepared with the data.

  10. Direct and Quantitative Photothermal Absorption Spectroscopy of Individual Particulates

    DTIC Science & Technology

    2013-01-01

    photovoltaics and photo detectors.17,22,23 To predict the absorptive properties of an individual silicon microwire, the well-established Mie theory was... silicon microwire is frequency limiting .43 It was also observed that vibration, thermal drift, and electrical noise were significant below 100 Hz. In...NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 7

  11. Aerosol particle microphotography and glare-spot absorption spectroscopy.

    PubMed

    Arnold, S; Holler, S; Li, J H; Serpengüzel, A; Auffermann, W F; Hill, S C

    1995-04-01

    The relative intensities of glare spots in the image of an electrodynamically trapped aerosol droplet are measured experimentally with an aerosol particle microscope and calculated theoretically. The theoretical calculations are in good agreement with these experiments and indicate that the intensities of these spots are extremely sensitive to the imaginary part of the refractive index. Experimentally, we obtain the molecular absorption spectrum of an impurity within a droplet by recording the spectrum of an individual glare spot produced by broadband illumination.

  12. Nonlinear deconvolution with deblending: a new analyzing technique for spectroscopy

    NASA Astrophysics Data System (ADS)

    Sennhauser, C.; Berdyugina, S. V.; Fluri, D. M.

    2009-12-01

    Context: Spectroscopy data in general often deals with an entanglement of spectral line properties, especially in the case of blended line profiles, independently of how high the quality of the data may be. In stellar spectroscopy and spectropolarimetry, where atomic transition parameters are usually known, the use of multi-line techniques to increase the signal-to-noise ratio of observations has become common practice. These methods extract an average line profile by means of either least squares deconvolution (LSD) or principle component analysis (PCA). However, only a few methods account for the blending of line profiles, and when they do, they assume that line profiles add linearly. Aims: We abandon the simplification of linear line-adding for Stokes I and present a novel approach that accounts for the nonlinearity in blended profiles, also illuminating the process of a reasonable deconvolution of a spectrum. Only the combination of those two enables us to treat spectral line variables independently, constituting our method of nonlinear deconvolution with deblending (NDD). The improved interpretation of a common line profile achieved compensates for the additional expense in calculation time, especially when it comes to the application to (Zeeman) doppler imaging (ZDI). Methods: By examining how absorption lines of different depths blend with each other and describing the effects of line-adding in a mathematically simple, yet physically meaningful way, we discover how it is possible to express a total line depth in terms of a (nonlinear) combination of contributing individual components. Thus, we disentangle blended line profiles and underlying parameters in a truthful manner and strongly increase the reliability of the common line patterns retrieved. Results: By comparing different versions of LSD with our NDD technique applied to simulated atomic and molecular intensity spectra, we are able to illustrate the improvements provided by our method to the

  13. Site- and phase-selective x-ray absorption spectroscopy based on phase-retrieval calculation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Matsubara, Eiichiro

    2017-03-01

    Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase. At present, one of the major challenges for the practical application of RXDS is the rigorous determination of resonant terms from observed DAFS, as this requires somehow determining the phase change in the elastic scattering around the absorption edge from the scattering intensity. This is widely known in the field of XRD as the phase problem. The present review describes the basics of this problem, including the relevant background and theory for DAFS and a guide to a newly-developed phase-retrieval method based on the logarithmic dispersion relation that makes it possible to analyze DAFS without suffering from the intrinsic ambiguities of conventional iterative-fitting. Several matters relating to data collection and correction of RXDS are also covered, with a final emphasis on the great potential of powder-sample-based RXDS (P-RXDS) to be used in various applications relevant to practical materials, including antisite-defect-type electrode materials for lithium-ion batteries.

  14. Site- and phase-selective x-ray absorption spectroscopy based on phase-retrieval calculation.

    PubMed

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Matsubara, Eiichiro

    2017-03-22

    Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase. At present, one of the major challenges for the practical application of RXDS is the rigorous determination of resonant terms from observed DAFS, as this requires somehow determining the phase change in the elastic scattering around the absorption edge from the scattering intensity. This is widely known in the field of XRD as the phase problem. The present review describes the basics of this problem, including the relevant background and theory for DAFS and a guide to a newly-developed phase-retrieval method based on the logarithmic dispersion relation that makes it possible to analyze DAFS without suffering from the intrinsic ambiguities of conventional iterative-fitting. Several matters relating to data collection and correction of RXDS are also covered, with a final emphasis on the great potential of powder-sample-based RXDS (P-RXDS) to be used in various applications relevant to practical materials, including antisite-defect-type electrode materials for lithium-ion batteries.

  15. Improved preparation of small biological samples for mercury analysis using cold vapor atomic absorption spectroscopy.

    PubMed

    Adair, B M; Cobb, G P

    1999-05-01

    Concentrations of mercury in biological samples collected for environmental studies are often less than 0.1 microgram/g. Low mercury concentrations and small organ sizes in many wildlife species (approximately 0.1 g) increase the difficulty of mercury determination at environmentally relevant concentrations. We have developed a digestion technique to extract mercury from small (0.1 g), biological samples at these relevant concentrations. Mean recoveries (+/- standard error) from validation trials of mercury fortified tissue samples using cold vapor atomic absorption spectroscopy for analysis ranged from 102 +/- 4.3% (2.5 micrograms/L, n = 15) to 108 +/- 1.4% (25 micrograms/L, n = 15). Recoveries of inorganic mercury were 99 +/- 5 (n = 19) for quality assurance samples analyzed during environmental evaluations conducted during a 24 month period. This technique can be used to determine total mercury concentrations of 60 ng Hg/g sample. Samples can be analyzed in standard laboratories in a short time, at minimal cost. The technique is versatile and can be used to determine mercury concentrations in several different matrices, limiting the time and expense of method development and validation.

  16. Hemodynamic measurements in rat brain combining diffuse near-infrared absorption and correlation spectroscopies

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Durduran, Turgut; Furuya, Daisuke; Greenberg, Joel H.; Yodh, Arjun G.

    2002-09-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An instrument has been built that combines two near-infrared diffuse optical techniques to simultaneously monitor blood flow, blood volume and blood oxygen saturation. Diffuse correlation spectroscopy (DCS) monitors blood flow by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave (DPDW) spectroscopy measured tissue absorption and scattering. The modularized design of the instrument provides the instrument great flexibility for trading off the temporal, spectral and spatial resolution by selecting the number of source-detector pairs and wavelengths. The frame acquisition rate of the current instrument is 0.2 Hz with 3l (wavelengths) x 15s (source positions) x 4d (detectors) for DPDW measurement in the frequency domain, and 1λ x 3s; x 9d for DCS. Higher frame acquisition rate could be achieved by reducing the spatial resolution, for example, 2 Hz with 3λ x 1s x 4d for DPDW and 1l x 1s x 9d for DCS. The unique non-contact probe mounted on the back of a camera allows non-contact measurement that avoids potentially altering blood flow. We used this instrument to monitor in vivo the hemodynamic responses in rat brain during KCl induced cortical spreading depression (CSD).

  17. Examination of arsenic speciation in sulfidic solutions using X-ray absorption spectroscopy.

    PubMed

    Beak, Douglas G; Wilkin, Richard T; Ford, Robert G; Kelly, Shelly D

    2008-03-01

    Both thioarsenites and thioarsenates have been demonstrated to exist in sulfidic waters, yet there is uncertainty regarding the geochemical conditions that govern the formation of these arsenic species. The purpose of this research was to use advanced spectroscopy techniques, speciation modeling, and chromatography to elucidate the chemical speciation of arsenic in sulfidic solutions initially containing arsenite and sulfide. Results of X-ray absorption spectroscopy (XAS) show that experimental solutions contained mixtures of arsenite and thioarsenites with increasing substitution of sulfur for oxygen on arsenic as the sulfide concentration increased. Experimental samples showed no evidence of polymeric arsenic species, or transformation of thioarsenites to thioarsenates. The arsenic speciation measured using XAS was similar to predictions obtained from a thermodynamic model for arsenic speciation, excluding thioarsenate species in sulfidic systems. Our data cast some doubt on the application of chromatographic methods for determining thioarsenates and thioarsenites (or mixtures) in natural waters in cases where the arsenic oxidation state cannot be independently verified. The same chromatographic peak positions proposed for thioarsenates can be explained bythioarsenite species. Furthermore, sample dilution was shown to change the species distribution and care should be taken to avoid sample dilution prior to chromatographic analysis.

  18. Examination of arsenic speciation in sulfidic solutions using x-ray absorption spectroscopy.

    SciTech Connect

    Beak, D. G.; Wilkin, R. T.; Ford, R. G.; Kelly, S. D.; Biosciences Division; EPA

    2008-03-01

    Both thioarsenites and thioarsenates have been demonstrated to exist in sulfidic waters, yet there is uncertainty regarding the geochemical conditions that govern the formation of these arsenic species. The purpose of this research was to use advanced spectroscopy techniques, speciation modeling, and chromatography to elucidate the chemical speciation of arsenic in sulfidic solutions initially containing arsenite and sulfide. Results of X-ray absorption spectroscopy (XAS) show that experimental solutions contained mixtures of arsenite and thioarsenites with increasing substitution of sulfur for oxygen on arsenic as the sulfide concentration increased. Experimental samples showed no evidence of polymeric arsenic species, or transformation of thioarsenites to thioarsenates. The arsenic speciation measured using XAS was similar to predictions obtained from a thermodynamic model for arsenic speciation, excluding thioarsenate species in sulfidic systems. Our data cast some doubt on the application of chromatographic methods for determining thioarsenates and thioarsenites (or mixtures) in natural waters in cases where the arsenic oxidation state cannot be independently verified. The same chromatographic peak positions proposed for thioarsenates can be explained by thioarsenite species. Furthermore, sample dilution was shown to change the species distribution and care should be taken to avoid sample dilution prior to chromatographic analysis.

  19. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    SciTech Connect

    Renaudin, P.; Blancard, C.; Cosse, P.; Faussurier, G.; Lecherbourg, L.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-02

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  20. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Renaudin, P.; Lecherbourg, L.; Blancard, C.; Cossé, P.; Faussurier, G.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  1. [Identification of Six Isomers of Dimethylbenzoic Acid by Using Terahertz Time-Domain Spectroscopy Technique].

    PubMed

    Liu, Jian-wei; Shen, Jing-ling; Zhang, Bo

    2015-11-01

    In this paper, the absorption spectra of 6 isomers of dimethylbenzoic acid, which were widely used in chemical and pharmaceutical production as intermediate substance, were measured by using the terahertz time-domain spectroscopy (THz-TDS) system in the range 0.2-2.2 THz at room temperature. The experimental results show that the six measured isomers present apparent different spectral response. However, the results of using infrared spectroscopy indicates that different isomers show high similarity in absorption spectra in the range 1450-1700 cm⁻¹. The vibrational frequencies are calculated by using the density functional theory (DFT), and identification of vibrational modes are given. It is clear that the absorption peaks of the 6 isomers in the range 1450-1700 cm⁻¹ come from the stretching vibration of benzene ring and C==O, while the absorption peaks in the terahertz range are caused by the relative wagging of benzene ring and all the chains out of plane, which lead to the different absorption characteristics of the 6 isomers in the range 0.2-2.2 THz. The results suggest that the difference and similarity of the absorption spectra observed in the two different frequency range are resulted from the difference and similarity of the molecular structures of the six isomers. By using the different absorption characteristics, we can identify the six isomers of dimethylbenzoic acid effectively. Our study indicates that it is feasible to distinguish the isomers by using terahertz and infrared spectroscopy technique. It provides an effective way to identify different isomers and test the purity of the intermediate substance in the process of production quickly and accurately.

  2. New techniques for diffusing-wave spectroscopy

    NASA Technical Reports Server (NTRS)

    Mason, T. G.; Gang, HU; Krall, A. H.; Weitz, David A.

    1994-01-01

    We present two new types of measurements that can be made with diffusing-wave spectroscopy (DWS), a form of dynamic light scattering that applies in limit of strong multiple scattering. The first application is to measure the frequency-dependent linear viscoelastic moduli of complex fluids using light scattering. This is accomplished by measuring the mean square displacement of probe particles using DWS. Their response to thermal fluctuations is determined by the fluctuation-dissipation relation, and is controlled by the response of the surrounding complex fluid. This response can be described in terms of a memory function, which is directly related to the complex elastic modulus of the system. Thus by measuring the mean square displacement, we are able to determine the frequency dependent modulus. The second application is the measurement of shape fluctuations of scattering particles. This is achieved by generalizing the theory for DWS to incorporate the effects if amplitude fluctuations in the scattering intensity of the particles. We apply this new method to study the thermally induced fluctuations in the shape of spherical emulsion droplets whose geometry is controlled by surface tension.

  3. Non-coincident multi-wavelength emission absorption spectroscopy

    SciTech Connect

    Baumann, L.E.

    1995-02-01

    An analysis is presented of the effect of noncoincident sampling on the measurement of atomic number density and temperature by multiwavelength emission absorption. The assumption is made that the two signals, emission and transmitted lamp, are time resolved but not coincident. The analysis demonstrates the validity of averages of such measurements despite fluctuations in temperature and optical depth. At potassium-seeded MHD conditions, the fluctuations introduce additional uncertainty into measurements of potassium atom number density and temperature but do not significantly bias the average results. Experimental measurements in the CFFF aerodynamic duct with coincident and noncoincident sampling support the analysis.

  4. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  5. Probing Multiple Core Samples through the SN 1006 Remnant by UV Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Winkler, P. F.; Long, K. S.; Fesen, R. A.; Hamilton, A. J. S.

    2003-12-01

    Ejecta within young supernova remnants (SNRs) have been widely studied both through the X-ray emission from highly ionized plasma heated by fast shocks and through the optical emission from isolated dense filaments excited by secondary shocks. A full inventory of the ejecta, however, must also include cold, unshocked material within the SNR shell, which can be studied through UV absorption spectroscopy if suitable background ``UV lightbulbs'' can be identified. So far, this technique has been applied only in the remnant of SN 1006, where IUE and HST spectra of the Schweizer-Middleditch (S-M) star have probed a single sight line 3 arcmin from the projected center of the 15 arcmin radius shell (Hamilton et al. 1997, ApJ 481, 838 and references therein). We have identified at least two more background UV sources that enable us to probe additional core samples through the SN 1006 shell, corresponding to the sight lines to each of these sources, using spectra from HST-STIS. A QSO with V = 18.3 and z = 0.337, located 9 arcmin NE of the projected center, shows evidence of broad but asymmetric (primarily red-shifted) absorption in Si II and Si IV lines. There is only marginal evidence for absorption from Fe II at 2382 and 2599 Å with near zero velocity. Only a near-UV spectrum was obtained for a fainter (V = 19.5) QSO at z = 1.026, located within 2 arcmin of the SNR center. This shows strong evidence for broad Fe II absorption with a sharp blue edge at ˜ -3000 km/s and a more gradual red edge extending to > 8000 km/s. These profiles appear similar to those for the S-M star. Two A0 stars are probably more distant than SN 1006 but are located far from the center, within 3 arcmin of the shell rim. Neither appears to show evidence for absorption along the line of sight. These multiple cores through the SNR shell enable us to better map the distribution of ejecta. This research is based on observations with the Hubble Space Telescope and is directly supported through NASA

  6. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu. A.; Romanovskii, Yu. V.

    2015-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review.

  7. Image Recognition Techniques for Gamma Spectroscopy

    SciTech Connect

    Vlachos, D. S.; Tsabaris, C. G.

    2007-12-26

    Photons, after generated from a radioactive source and before they deposit their energy in a photo detector, are subsequent to multiple scattering mechanisms. As a result, the measured energy from the photo detector is different from the energy the photon had when generated. This is known as folding of the photon energy. Moreover, statistical fluctuation inside the detector contribute to energy folding. In this work, a new method is presented for unfolding the gamma ray spectrum. The method uses a 2-dimensional representation of the measured spectrum (image) and then uses image recognition techniques, and especially differential edge detection, to generate the original spectrum.

  8. X-Ray Absorption Spectroscopy of Uranium Dioxide

    SciTech Connect

    Tobin, J G

    2010-12-10

    After the CMMD Seminar by Sung Woo Yu on the subject of the x-ray spectroscopy of UO2, there arose some questions concerning the XAS of UO2. These questions can be distilled down to these three issues: (1) The validity of the data; (2) The monchromator energy calibration; and (3) The validity of XAS component of the figure shown. The following will be shown: (1) The data is valid; (2) It is possible to calibrate the monchromator; and (3) The XAS component of the above picture is correct. The remainder of this document is in three sections, corresponding to these three issues.

  9. Quasi zero-background tunable diode laser absorption spectroscopy employing a balanced Michelson interferometer.

    PubMed

    Guan, Zuguang; Lewander, Märta; Svanberg, Sune

    2008-12-22

    Tunable diode laser spectroscopy (TDLS) normally observes small fractional absorptive reductions in the light flux. We show, that instead a signal increase on a zero background can be obtained. A Michelson interferometer, which is initially balanced out in destructive interference, is perturbed by gas absorption in one of its arms. Both theoretical analysis and experimental demonstration show that the proposed zero-background TDLS can improve the achievable signal-to-noise ratio.

  10. Calibration of effective optical path length for hollow-waveguide based gas cell using absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Du, Zhenhui; Li, Jinyi

    2016-10-01

    The Hollow Waveguide (HWG) has emerged as a novel tool to transmit laser power. Owing to its long Effective Optical Path Length (EOPL) within a relatively small volume, it is suitable for the application as a gas cell in concentration measurement by using laser spectroscopy. The measurement of effective optical path length for a hollow waveguide, which possesses the physical length of 284.0 cm, by using Tunable Diode Laser Absorption Spectroscopy (TDLAS) was demonstrated. Carbon dioxide was used as a sample gas for a hollow waveguide calibration. A 2004 nm Distributed Feed-Back (DFB) laser was used as the light source to cover a CO2 line near 2003 nm, which was selected as the target line in the measurement. The reference direct absorption spectroscopy signal was obtained by delivering CO2 into a reference cell possessing a length of 29.4 cm. Then the effective optical path length of HWG was calculated by least-squares fitting the measured absorption signal to the reference absorption signal. The measured EOPL of HWG was 282.8 cm and the repeatability error of effective optical path length was calculated as 0.08 cm. A detection limit of 0.057 cm (with integral time 5 s) characterized by the Allan variance, was derived. The effective optical path length is obtained as the significant parameter to calculate the concentration of gases and it is of great importance to precise measurement of absorption spectroscopy.

  11. Speciation of mercury compounds by differential atomization - atomic absorption spectroscopy

    SciTech Connect

    Robinson, J.W.; Skelly, E.M.

    1982-01-01

    This paper describes the dual stage atomization technique which allows speciation of several mercury-containing compounds in aqueous solution and in biological fluids. The technique holds great promise for further speciation studies. Accurate temperature control, expecially at temperatures less than 200/sup 0/C, is needed to separate the extremely volatile mercury halides and simple organomercurials from each other. Studies with mercury salts and EDTA, L-cysteine and dithioxamide demonstrate that this technique may be used to study the extent of complex formation. Investigations of biological fluids indicate that there is a single predominant form of mercury in sweat and a single predominant form of mercury in urine. The mercury compound in urine is more volatile than that in sweat. Both quantitative and qualitative analyses are possible with this technique.

  12. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-01-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The A(sub V)/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous

  13. Total absorption spectroscopy of N = 51 nucleus 85Se

    NASA Astrophysics Data System (ADS)

    Goetz, K. C.; Grzywacz, R. K.; Rykaczewski, K. P.; Karny, M.; Fialkowska, A.; Wolinska-Cichocka, M.; Rasco, B. C.; Zganjar, E. F.; Johnson, J. W.; Gross, C. J.

    2014-09-01

    An experimental campaign utilizing the Modular Total Absorption Spectrometer (MTAS) was conducted at the HRIBF facility in January of 2012. The campaign studied 22 isotopes, many of which were identified as the highest priority for decay heat analysis during a nuclear fuel cycle, see the report by the OECD-IAEA Nuclear Energy Agency in 2007. The case of 85Se will be discussed. 85Se is a Z = 34, N = 51 nucleus with the valence neutron located in the positive parity sd single particle state. Therefore, its decay properties are determined by interplay between first forbidden decays of the valence neutron and Gamow-Teller decay of a 78Ni core. Analysis of the data obtained during the January 2012 run indicates a significant increase of the beta strength function when compared with previous measurements, see Ref..

  14. VUV Absorption Spectroscopy of Planetary Molecules at Low Temperature

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Benilan, Y.; Ferradaz, T.; Fray, N.; Schwell, M.

    2005-08-01

    A critical review of the available absorption coefficient in the vacuum ultraviolet domain (100-200 nm) has lead us to undertake new measurements at the Berlin synchrotron facility (BESSY). Many of the molecules detected in planetary atmospheres and in particular those which need to be synthesized in the laboratory, have never been measured at low temperature. The first molecules that we have studied are HCN, HC3N and C2N2. New absorption coefficients have been obtained including first spectra at low temperature (220 K). The effect of the temperature on the spectra can then be discussed in view of the application to the much colder atmosphere of Titan. The nitriles studied here play an important role in the chemistry taking place in Titan's atmosphere and are believed to be responsible for the formation of Titan's aerosols. From our measurements, we have calculated the photodissociation rates for each molecule which are essential to include in any photochemical model. This is true for Titan but also for cometary and interstellar medium models. To describe the formation of a solid phase, the models also need to include photodissociation rates for larger molecules which have not been detected yet. This will now be possible for HC5N since the first spectra of this molecule has been obtained by our team. Furthermore, the first stellar occultation measurement of Titan's atmosphere by the UV spectrometer (UVIS) on board the CASSINI spacecraft has permitted the detection of species not observed before in this wavelength domain. But it has also shown a lack of experimental data in this domain. So far, the model is not able to reproduce the observed spectral feature. C4H2 is the molecule that should explain some of the observed feature but absolute cross sections are missing. We will present our latest experimental measurements on this molecule.

  15. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    NASA Astrophysics Data System (ADS)

    Collingwood, J. F.; Mikhaylova, A.; Davidson, M. R.; Batich, C.; Streit, W. J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R. S.; Dobson, J.

    2005-01-01

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (<5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterise anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution ~5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  16. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    SciTech Connect

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J.

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  17. Difference Between Far-Infrared Photoconductivity Spectroscopy and Absorption Spectroscopy: Theoretical Evidence of the Electron Reservoir Mechanism

    NASA Astrophysics Data System (ADS)

    Toyoda, Tadashi; Fujita, Maho; Uchida, Tomohisa; Hiraiwa, Nobuyoshi; Fukuda, Taturo; Koizumi, Hideki; Zhang, Chao

    2013-08-01

    The intriguing difference between far-infrared photoconductivity spectroscopy and absorption spectroscopy in the measurement of the magnetoplasmon frequency in GaAs quantum wells reported by Holland et al. [Phys. Rev. Lett. 93, 186804 (2004)] remains unexplained to date. This Letter provides a consistent mechanism to solve this puzzle. The mechanism is based on the electron reservoir model for the integer quantum Hall effect in graphene [Phys. Lett. A 376, 616 (2012)]. We predict sharp kinks to appear in the magnetic induction dependence of the magnetoplasmon frequency at very low temperatures such as 14 mK in the same GaAs quantum well sample used by Holland et al..

  18. [Spectroscopy technique and ruminant methane emissions accurate inspecting].

    PubMed

    Shang, Zhan-Huan; Guo, Xu-Sheng; Long, Rui-Jun

    2009-03-01

    The increase in atmospheric CH4 concentration, on the one hand through the radiation process, will directly cause climate change, and on the other hand, cause a lot of changes in atmospheric chemical processes, indirectly causing climate change. The rapid growth of atmospheric methane has gained attention of governments and scientists. All countries in the world now deal with global climate change as an important task of reducing emissions of greenhouse gases, but the need for monitoring the concentration of methane gas, in particular precision monitoring, can be scientifically formulated to provide a scientific basis for emission reduction measures. So far, CH4 gas emissions of different animal production systems have received extensive research. The methane emission by ruminant reported in the literature is only estimation. This is due to the various factors that affect the methane production in ruminant, there are various variables associated with the techniques for measuring methane production, the techniques currently developed to measure methane are unable to accurately determine the dynamics of methane emission by ruminant, and therefore there is an urgent need to develop an accurate method for this purpose. Currently, spectroscopy technique has been used and is relatively a more accurate and reliable method. Various spectroscopy techniques such as modified infrared spectroscopy methane measuring system, laser and near-infrared sensory system are able to achieve the objective of determining the dynamic methane emission by both domestic and grazing ruminant. Therefore spectroscopy technique is an important methane measuring technique, and contributes to proposing reduction methods of methane.

  19. [High-order derivative spectroscopy of infrared absorption spectra of the reaction centers from Rhodobacter sphaeroides].

    PubMed

    2005-01-01

    The infrared absorption spectra of reduced and chemically oxidized reaction center preparations from the purple bacterium Rhodobacter sphaeroides were investigated by means of high-order derivative spectroscopy. The model Gaussian band with a maximum at 810 nm and a half-band of 15 nm found in the absorption spectrum of the reduced reaction center preparation is eliminated after the oxidation of photoactive bacteriochlorophyll dimer (P). This band was related to the absorption of the P(+)y excitonic band of P. On the basis of experimental results, it was concluded that the bleaching of the P(+)y absorption band at 810 nm in the oxidized reaction center preparations gives the main contribution to the blue shift of the 800 nm absorption band of Rb. sphaeroides reaction centers.

  20. Infrared Absorption Spectroscopy of Acetylene in the Lecture

    ERIC Educational Resources Information Center

    Briggs, Thomas E.; Sanders, Scott T.

    2006-01-01

    Lecture-based experimental methods that include topics ranging from basic signal processing to the proper use of thermocouples to advanced optical techniques such as laser-induced fluorescence are described. The data obtained from this demonstration could be provided to the students in digital form to obtain useful engineering results such as an…

  1. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    DOE R&D Accomplishments Database

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  2. Observation of phycoerythrin-containing cyanobacteria and other phytoplankton groups from space using Differential Optical Absorption Spectroscopy on SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Bracher, Astrid; Dinter, Tilman; Burrows, John P.; Vountas, Marco; Röttgers, Rüdiger; Peeken, Ilka

    In order to understand the marine phytoplankton's role in the global marine ecosystem and biogeochemical cycles it is necessary to derive global information on the distribution of major functional phytoplankton types (PFT) in the world oceans. In our study we use instead of the common ocean color sensors such as CZCS, SeaWiFS, MODIS, MERIS, with rather low spectral resolution, the Differential Optical Absorption Spectroscopy (DOAS) to study the retrieval of phytoplankton distribution and absorption with the satellite sensor Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). SCIAMACHY measures back scattered solar radiation in the UV-Vis-NIR spectral region with a high spectral resolution (0.2 to 1.5 nm). We used in-situ measured phytoplankton absorption spectra from two different RV Polarstern expeditions where different phytoplankton groups were representing or dominating the phytoplankton composition in order to identify these characteristic absorption spectra in SCIAMACHY data in the range of 430 to 500 nm and also to identify absorption from cyanobacterial photosynthetic pigment phycoerythrin. Our results show clearly these absorptions in the SCIAMACHY data. The conversion of these differential absorptions by including the information of the light penetration depth (according to Vountas et al., Ocean Science, 2007) globally distributed pigment concentrations for these characteristic phytoplankton groups for two monthly periods (Feb-March 2004, Oct-Nov 2005 and Oct-Nov 2007) are derived. The satellite retrieved information on cyanobacteria (Synechococcus sp. and Prochlorococcus sp.) and diatoms distribution matches well with the concentration measured from collocated water samples with HPLC technique and also to global model analysis with the NASA Ocean Biogeochemical Model (NOBM from http://reason.gsfc.nasa.gov/OPS/Giovanni/) according to Gregg and Casey 2006 and Gregg 2006. Results are of great importance for global modelling of

  3. Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mouawad, O.; Béjot, P.; Billard, F.; Mathey, P.; Kibler, B.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Faucher, O.; Smektala, F.

    2016-10-01

    We report on the generation of multiple-octave supercontinuum laser source spanning from 0.5 μm to 11 μm induced by multi-filamentation in a ZnSe crystal. The generated supercontinuum is both spatially and spectrally characterized. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements by means of the supercontinuum absorption spectroscopy technique. The entire absorption spectrum is successfully recorded within the whole spectral bandwidth of the supercontinuum. Experimental results are in fairly good agreement with the HITRAN database, confirming the reliability and stability over several hours of the generated supercontinuum.

  4. [Near infrared Cavity enhanced absorption spectroscopy study of NO2O].

    PubMed

    Wu, Zhi-wei; Dong, Yan-ting; Zhou, Wei-dong

    2014-08-01

    Using a tunable near infrared external cavity diode laser and a 650 mm long high finesse optical cavity consisting of two highly reflective (R=99.97% at 6561.39 cm(-1)) plan-concave mirrors of curvature radius approximately 1000 mm, a cavity enhanced absorption spectroscopy (CEAS) system was made. The absorption spectra centered at 6561.39 cm(-1) of pure N2O gas and gas mixtures of N2O and N2 were recorded. According to the absorption of N2O at 6561.39 cm(-1) in the cavity, the measured effective absorption path was about 1460 km. The spectra line intensity and line-width of N2O centered at 6561.39 cm(-1) were carefully studied. The relationship between the line-width of absorption spectra and the gas pressure was derived. The pressure broadening parameter of N2 gas for NO2O line centered at 6 561. 39 cm(-1) was deduced and given a value of approximately (0.114 +/- 0.004) cm(-1) x atm(-1). The possibility to detect trace N2O gas in mixture using this CEAS system was investigated. By recording the ab- sorption spectra of N2O gas mixtures at different concentration, the relationship between the line intensity and gas concentration was derived. The minimum detectable absorption was found to be 2.34 x 10(-7) cm(-1) using this cavity enhanced absorption spectroscopy system. And te measurement precision in terms of relative standard deviation (RSD) for N2O is approximately 1.73%, indicating the possibility of using the cavity enhanced absorption spectroscopy system for micro gas N2O analysis in the future.

  5. Status of the X-Ray Absorption Spectroscopy (XAS) Beamline at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Glover, C.; McKinlay, J.; Clift, M.; Barg, B.; Boldeman, J.; Ridgway, M.; Foran, G.; Garret, R.; Lay, P.; Broadbent, A.

    2007-02-01

    We present herein the current status of the X-ray Absorption Spectroscopy (XAS) Beamline at the 3 GeV Australian Synchrotron. The optical design and performance, details of the insertion device (Wiggler), end station capabilities and construction and commissioning timeline are given.

  6. Synchrotron radiation based Mössbauer absorption spectroscopy of various nuclides

    NASA Astrophysics Data System (ADS)

    Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Yoda, Yoshitaka; Mitsui, Takaya; Seto, Makoto

    2016-12-01

    Synchrotron-radiation (SR) based Mössbauer absorption spectroscopy of various nuclides is reviewed. The details of the measuring system and analysis method are described. Especially, the following two advantages of the current system are described: the detection of internal conversion electrons and the close distance between the energy standard scatterer and the detector. Both of these advantages yield the enhancement of the counting rate and reduction of the measuring time. Furthermore, SR-based Mössbauer absorption spectroscopy of 40K, 151Eu, and 174Yb is introduced to show the wide applicability of this method. In addition to these three nuclides, SR-based Mössbauer absorption spectroscopy of 61Ni, 73Ge, 119Sn, 125Te, 127I, 149Sm, and 189Os has been performed. We continue to develop the method to increase available nuclides and to increase its ease of use. The complementary relation between the time-domain method using SR, such as nuclear forward scattering and the energy-domain methods such as SR-based Mössbauer absorption spectroscopy is also noted.

  7. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  8. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  9. Attosecond Transient Absorption Spectroscopy of doubly-excited states in helium

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Ott, Christian; Pfeifer, Thomas; Martín, Fernando

    2014-04-01

    Theoretical calculations of the XUV attosecond transient absorption spectrum (ATAS) of helium in the doubly-excited state region reproduce recent high-precision measurements, reveal novel means of controlling the dynamics of transiently-bound electronic wavepackets in intense laser fields, and indicates a possible extension of 2D-spectroscopies to the XUV range.

  10. Determination of sub microgram amounts of selenium in rocks by atomic-absorption spectroscopy.

    PubMed

    Golembeski, T

    1975-06-01

    Atomic-absorption spectroscopy was used to determine trace amounts of selenium accurately in U.S. Geological Survey standard rocks, GSP-1, W-1 and BCR-1. The results obtained were compared with those obtained by neutron-activation analysis and excellent agreement was found; in addition, the selenium:sulphur ratio was calculated and agreed with results obtained by other workers.

  11. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  12. LISA: the Italian CRG beamline for x-ray Absorption Spectroscopy at ESRF

    NASA Astrophysics Data System (ADS)

    d'Acapito, F.; Trapananti, A.; Puri, A.

    2016-05-01

    LISA is the acronym of Linea Italiana per la Spettroscopia di Assorbimento di raggi X (Italian beamline for X-ray Absorption Spectroscopy) and is the upgrade of the former GILDA beamline installed on the BM08 bending magnet port of European Synchrotron Radiation Facility (ESRF). Within this contribution a full description of the project is provided.

  13. Low-level optical absorption phenomena in organic thin films for solar cell applications investigated by highly sensitive photocurrent and photothermal techniques

    NASA Astrophysics Data System (ADS)

    Goris, Ludwig J.; Haenen, Ken; Nesladek, Milos; Poruba, A.; Vanecek, M.; Wagner, P.; Lutsen, Laurence J.; Manca, Jean; Vanderzande, Dirk; De Schepper, Luc

    2004-09-01

    Optical absorption phenomena and in particular sub band gap absorption features are of great importance in the understanding of processes of charge generation and transport in organic pure and composite semiconductor films. To come towards this objective, an alternative and high sensitive spectroscopic approach is introduced to examine the absorption of light in pure and compound organic semiconductors. Because sub band gap absorption features are typically characterized by very low absorption coefficients, it is not possible to resolve them using common transmission and reflection measurements and high sensitive alternatives are needed. Therefore, a combination of photocurrent (Constant Photocurrent Method CPM/Fourier Transform Photocurrent Spectroscopy FT-PS) and photothermal techniques (Photothermal Deflection Spectroscopy PDS) has been used, increasing sensitivity by a factor of thousand, reaching detectable absorption coefficients ((E) down to 0.1 cm-1. In this way, the dynamic range of measurable absorption coefficients is increased by several orders of magnitude compared to transmission/reflection measurements. These techniques have been used here to characterize ground state absorption of thin films of MDMO-PPV, PCBM and a mixture of both materials in a 1:4 ratio, as typically used in a standard active layer in a fully organic solar cell. The spectra reveal defect related absorption phenomena and significant indication of existing interaction in the ground state between both materials, contrary to the widely spread conviction that this is not the case. Experimental details of the techniques and measurement procedures are explained.

  14. Electronic absorption spectroscopy of PAHs in supersonic jets and ultracold liquid helium droplets

    NASA Astrophysics Data System (ADS)

    Huisken, Friedrich; Staicu, Angela; Krasnokutski, Serge; Henning, Thomas

    Neutral and cationic polycyclic aromatic hydrocarbons (PAHs) are discussed as possible carriers of the diffuse interstellar bands (DIBs), still unassigned astrophysical absorption features observed in the spectra of reddened stars (Salama et al. 1999). Despite the importance of this class of molecules for astrophysics and nanophysics (PAHs can be regarded as nanoscale fragments of a sheet of graphite), the spectroscopic characterization of PAHs under well-defined conditions (low temperature and collision-free environment) has remained a challenge. Recently we have set up a cavity ring-down spectrometer combined with a pulsed supersonic jet expansion to study neutral and cationic PAHs under astrophysical conditions. PAHs studied so far include the neutral molecules anthracene (Staicu et al. 2004) and pyrene (Rouillé et al. 2004) as well as the cationic species naphthalene+ and anthracene+ (Sukhorukov et al. 2004). Employing another molecular beam apparatus, the same molecules (except of the cationic species) were also studied in liquid helium droplets (Krasnokutski et al. 2005, Rouillé et al. 2004). This novel technique combines several advantages of conventional matrix spectroscopy with those of gas phase spectroscopy. Notable advantages are the possibility to study molecules with low vapor pressure and to use a mass spectrometer facilitating spectral assignments. The most recent studies were devoted to phenanthrene and the more complicated (2,3)-benzofluorene. These molecules were investigated in the gas phase by cavity ring-down spectroscopy and in liquid helium droplets using depletion spectroscopy. For benzofluorene the present studies constitute the first reported measurements both in the gas phase and in helium droplets. The origin of the S1 ← S0 gas phase transition could be located at 29 894.3 cm-1, and a series of vibronic bands was recorded below 31 500 cm-1. In contrast to previously studied PAHs, the shift induced by the helium droplets was very

  15. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    SciTech Connect

    Tilikin, I. N. Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-15

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  16. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    NASA Astrophysics Data System (ADS)

    Tilikin, I. N.; Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-01

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  17. Solving the Structure of Reaction Intermediates by Time-Resolved Synchrotron X-ray Absorption Spectroscopy

    SciTech Connect

    Wang, Q.; Hanson, J; Frenkel, A

    2008-01-01

    We present a robust data analysis method of time-resolved x-ray absorption spectroscopy experiments suitable for chemical speciation and structure determination of reaction intermediates. Chemical speciation is done by principal component analysis (PCA) of the time-resolved x-ray absorption near-edge structure data. Structural analysis of intermediate phases is done by theoretical modeling of their extended x-ray absorption fine-structure data isolated by PCA. The method is demonstrated using reduction and reoxidation of Cu-doped ceria catalysts where we detected reaction intermediates and measured fine details of the reaction kinetics. This approach can be directly adapted to many time-resolved x-ray spectroscopy experiments where new rapid throughput data collection and analysis methods are needed.

  18. [Influence of silver/silicon dioxide on infrared absorption spectroscopy of sodium nitrate].

    PubMed

    Yang, Shi-Ling; Yue, Li; Jia, Zhi-Jun

    2014-09-01

    Quickly detecting of ocean nutrient was one important task in marine pollution monitoring. We discovered the application of surface-enhanced infrared absorption spectroscopy in the detection of ocean nutrient through researching the evaporation of sodium nitrate solution. The silicon dioxide (SiO2) with highly dispersion was prepared by Stober method, The silver/silica (Ag/SiO2) composite materials were prepared by mixing ammonia solution and silicon dioxide aqueous solution. Three kinds of composite materials with different surface morphology were fabricated through optimizing the experimental parameter and changing the experimental process. The surface morphology, crystal orientation and surface plasmon resonance were investigated by means of the scanning electronic microscope (SEM), X-ray diffraction (XRD), UV-Visible absorption spectrum and infrared ab- sorption spectroscopy. The SEM images showed that the sample A was purified SiO2, sample B and sample C were mixture of silver nanoparticle and silicon dioxide, while sample D was completed nanoshell structure. The absorption spectroscopy showed that there was surface plasmon resonance in the UV-visible region, while there was possibility of surface plasmon resonance in the Infrared absorption region. The effect of Ag/SiO2 composite material on the infrared absorption spectra of sodium nitrite solution was investigated through systematically analyzing the infrared absorption spectroscopy of sodium nitrate solution during its evaporation, i. e. the peak integration area of nitrate and the peak integration area of water molecule. The experimental results show that the integration area of nitrate was enhanced greatly during the evaporation process while the integration area of water molecule decreased continuously. The integration area of nitrate comes from the anti-symmetric stretch vibration and the enhancement of the vibration is attributed to the interface effect of Ag/SiO2 which is consistent with Jensen T

  19. Quantitation of DNA and RNA with Absorption and Fluorescence Spectroscopy.

    PubMed

    Gallagher, Sean R

    2017-02-02

    Quantitation of nucleic acids is a fundamental tool in molecular biology that requires accuracy, reliability, and the use of increasingly smaller sample volumes. This unit describes the traditional absorbance measurement at 260 nm and three more sensitive fluorescence techniques employing Hoechst 33258, ethidium bromide, and PicoGreen. The range of the assays covers 25 pg/ml to 50 µg/ml. Absorbance at 260 nm has an effective range from 1 to 50 µg/ml; Hoechst 33258 from 0.01 to 15 µg/ml; ethidium bromide from 0.1 to 10 µg/ml; and PicoGreen from 25 to 1000 pg/ml. © 2017 by John Wiley & Sons, Inc.

  20. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    ERIC Educational Resources Information Center

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  1. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    DOE PAGES

    Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; ...

    2016-01-11

    The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br₋) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface duringmore » the charge/discharge processes make the capacity decay. Lastly, a modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.« less

  2. Optical feedback cavity enhanced absorption spectroscopy: effective adjustment of the feedback-phase

    NASA Astrophysics Data System (ADS)

    Habig, J. C.; Nadolny, J.; Meinen, J.; Saathoff, H.; Leisner, T.

    2012-02-01

    Optical-feedback cavity enhanced absorption spectroscopy (OF-CEAS) is a very sensitive technique for the detection of trace amounts of gaseous absorbers. The most crucial parameter in an OF-CEAS setup is the optical phase of the light fed back into the laser source, which is usually controlled by the position of a piezo driven mirror. Various approaches for the analysis of the cavity transmitted light with respect to feedback-phase are presented, and tested on simulated phase and frequency dependent cavity transmission. Finally, we present the performance of a digital signal processor based regulator—employing one of these approaches—in a real OF-CEAS experiment. The results of the simulation show that several algorithms are well suited for the task of control signal generation. They confirm also that with the presented approach, a mode by mode correction of the feedback-phase is possible. Consequently, a regulatory bandwidth of 37 Hz was achieved. This maximum control frequency was limited by the piezo system.

  3. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  4. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    PubMed Central

    Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; Feng, Bingmei; Liu, Yi-Sheng; Marcus, Matthew A.; Feng, Jun; Cairns, Elton J.; Guo, Jinghua; Zhu, Junfa

    2016-01-01

    The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We have investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br−) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface during the charge/discharge processes make the capacity decay. A modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies. PMID:28344271

  5. Cavity-enhanced absorption spectroscopy to characterize atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    van Helden, Jean-Pierre; Nave, Andy; Reuter, Stephan; Roepcke, Juergen; Gianella, Michele; Ritchie, Grant

    2016-09-01

    Non-equilibrium atmospheric pressure plasma jets gain more and more interest as their technological applications increase in diverse fields such as material processing and plasma medicine. Hence, it is essential to diagnose the fluxes of the species generated by these plasma sources to identify relevant fundamental processes and to improve process efficiency. Especially for a comprehensive understanding of the kinetics of the transient species involved, high precision measurements of reactive molecular precursors, free radicals and to identify of any short lived species are of crucial importance. However, the detection of transient species in these type of plasmas poses a challenge for diagnostic techniques as the plasmas typically have small dimensions and high density gradients in space and time. We have overcome these limitations by using cavity-enhanced absorption spectroscopy (CEAS). In this contribution, the latest results concerning the detection of transient species in two types of plasma jets employing CEAS in the near- and mid-infrared spectral range will be presented. We will show that with these methods spatially resolved investigations of concentrations in the mm sized effluent of the plasma jet can be achieved.

  6. X-ray absorption spectroscopy of lithium sulfur battery reaction intermediates

    NASA Astrophysics Data System (ADS)

    Wujcik, Kevin; Pascal, Tod; Prendergast, David; Balsara, Nitash

    2015-03-01

    Lithium sulfur batteries have a theoretical energy density nearly five times greater than current lithium ion battery standards, but questions still remain regarding the reaction pathways through which soluble lithium polysulfide (Li2Sx, ``x'' ranging from 2 to 8) reaction intermediates are formed. Complicating spectroelectrochemical approaches to elucidate redox pathways is the challenge of obtaining spectral standards for individual Li2Sx species. Lithium polysulfides cannot be isolated as individual component and exist only in solution as a distribution of different Li2Sx molecules formed via disproportionation reactions (e.g. 2Li2S4 goes to Li2S3 + Li2S5). X-ray absorption spectroscopy (XAS) at the sulfur K-edge has recently been employed as a technique to study Li-S chemistry. We have recently obtained XAS standards for individual Li2Sx species via first principles DFT simulations and the excited electron and core hole approach. Here, experimental sulfur K-edge XAS of Li2Sx species dissolved in poly(ethylene oxide) are compared to spectra obtained from analogous theoretical calculations. The impact that polysulfide solution concentration and the presence of other lithium salts (e.g. LiNO3) have on X-ray spectra of Li2Sx species is explored via experiment and theory.

  7. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    SciTech Connect

    Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; Feng, Bingmei; Liu, Yi-Sheng; Marcus, Matthew A.; Feng, Jun; Cairns, Elton J.; Guo, Jinghua; Zhu, Junfa

    2016-01-11

    The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br₋) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface during the charge/discharge processes make the capacity decay. Lastly, a modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.

  8. Highly sensitive fiber grating chemical sensors: An effective alternative to atomic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Laxmeshwar, Lata. S.; Jadhav, Mangesh S.; Akki, Jyoti. F.; Raikar, Prasad; Kumar, Jitendra; prakash, Om; Raikar, U. S.

    2017-06-01

    Accuracy in quantitative determination of trace elements like Zinc, present in drinking water in ppm level, is a big challenge and optical fiber gratings as chemical sensors may provide a promising solution to overcome the same. This paper presents design of two simple chemical sensors based on the principle of shift in characteristic wavelength of gratings with change in their effective refractive index, to measure the concentration of Zinc in drinking water using etched short period grating (FBG) and Long period grating (LPG) respectively. Three samples of drinking water from different places have been examined for presence of Zinc. Further, the results obtained by our sensors have also been verified with the results obtained by a standard method, Atomic absorption spectroscopy (AAS). The whole experiment has been performed by fixing the fibers in a horizontal position with the sensor regions at the center of the fibers, making it less prone to disturbance and breaking. The sensitivity of LPG sensor is about 205 times that of the FBG sensor. A few advantages of Fiber grating sensors, besides their regular features, over AAS have also been discussed, that make our sensors potential alternatives for existing techniques in determination of trace elements in drinking water.

  9. The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL.

    PubMed

    de Oliveira, Nelson; Joyeux, Denis; Roudjane, Mourad; Gil, Jean François; Pilette, Bertrand; Archer, Lucy; Ito, Kenji; Nahon, Laurent

    2016-07-01

    A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV-VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm(-1) on a large spectral window, ΔE/E = 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility.

  10. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    PubMed

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure.

  11. Shock-Tube Measurement of Acetone Dissociation Using Cavity-Enhanced Absorption Spectroscopy of CO.

    PubMed

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-07-16

    A direct measurement for the rate constant of the acetone dissociation reaction (CH3COCH3 = CH3CO + CH3) was conducted behind reflected shock wave, utilizing a sub-ppm sensitivity CO diagnostic achieved by cavity-enhanced absorption spectroscopy (CEAS). The current experiment eliminated the influence from secondary reactions and temperature change by investigating the clean pyrolysis of <20 ppm acetone in argon. For the first time, the acetone dissociation rate constant (k1) was directly measured over 5.5 orders of magnitude with a high degree of accuracy: k1 (1004-1494 K, 1.6 atm) = 4.39 × 10(55) T(-11.394) exp(-52 140K/T) ± 24% s(-1). This result was seen to agree with most previous studies and has bridged the gap between their temperature and pressure conditions. The current work also served as an example demonstration of the potential of using the CEAS technique in shock-tube kinetics studies.

  12. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    PubMed

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

  13. Laser induced deflection technique for absolute thin film absorption measurement: optimized concepts and experimental results

    SciTech Connect

    Muehlig, Christian; Kufert, Siegfried; Bublitz, Simon; Speck, Uwe

    2011-03-20

    Using experimental results and numerical simulations, two measuring concepts of the laser induced deflection (LID) technique are introduced and optimized for absolute thin film absorption measurements from deep ultraviolet to IR wavelengths. For transparent optical coatings, a particular probe beam deflection direction allows the absorption measurement with virtually no influence of the substrate absorption, yielding improved accuracy compared to the common techniques of separating bulk and coating absorption. For high-reflection coatings, where substrate absorption contributions are negligible, a different probe beam deflection is chosen to achieve a better signal-to-noise ratio. Various experimental results for the two different measurement concepts are presented.

  14. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    SciTech Connect

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-02-15

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges, recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.

  15. Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences

    DOE PAGES

    Northrup, Paul; Leri, Alessandra; Tappero, Ryan

    2016-02-15

    The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less

  16. Photocarrier dynamics in anatase TiO{sub 2} investigated by pump-probe absorption spectroscopy

    SciTech Connect

    Matsuzaki, H. E-mail: okamotoh@k.u-tokyo.ac.jp; Matsui, Y.; Uchida, R.; Yada, H.; Terashige, T.; Li, B.-S.; Sawa, A.; Kawasaki, M.; Tokura, Y.; Okamoto, H. E-mail: okamotoh@k.u-tokyo.ac.jp

    2014-02-07

    The dynamics of photogenerated electrons and holes in undoped anatase TiO{sub 2} were studied by femtosecond absorption spectroscopy from the visible to mid-infrared region (0.1–2.0 eV). The transient absorption spectra exhibited clear metallic responses, which were well reproduced by a simple Drude model. No mid-gap absorptions originating from photocarrier localization were observed. The reduced optical mass of the photocarriers obtained from the Drude-model analysis is comparable to theoretically expected one. These results demonstrate that both photogenerated holes and electrons act as mobile carriers in anatase TiO{sub 2}. We also discuss scattering and recombination dynamics of photogenerated electrons and holes on the basis of the time dependence of absorption changes.

  17. Ultrafast carrier dynamics of titanic acid nanotubes investigated by transient absorption spectroscopy.

    PubMed

    Wang, Li; Zhao, Hui; Pan, Lin Yun; Weng, Yu Xiang; Nakato, Yoshihiro; Tamai, Naoto

    2010-12-01

    Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.

  18. Quantification of rapid environmental redox processes with quick-scanning x-ray absorption spectroscopy (Q-XAS).

    PubMed

    Ginder-Vogel, Matthew; Landrot, Gautier; Fischel, Jason S; Sparks, Donald L

    2009-09-22

    Quantification of the initial rates of environmental reactions at the mineral/water interface is a fundamental prerequisite to determining reaction mechanisms and contaminant transport modeling and predicting environmental risk. Until recently, experimental techniques with adequate time resolution and elemental sensitivity to measure initial rates of the wide variety of environmental reactions were quite limited. Techniques such as electron paramagnetic resonance and Fourier transform infrared spectroscopies suffer from limited elemental specificity and poor sensitivity to inorganic elements, respectively. Ex situ analysis of batch and stirred-flow systems provides high elemental sensitivity; however, their time resolution is inadequate to characterize rapid environmental reactions. Here we apply quick-scanning x-ray absorption spectroscopy (Q-XAS), at sub-second time-scales, to measure the initial oxidation rate of As(III) to As(V) by hydrous manganese(IV) oxide. Using Q-XAS, As(III) and As(V) concentrations were determined every 0.98 s in batch reactions. The initial apparent As(III) depletion rate constants (t < 30 s) measured with Q-XAS are nearly twice as large as rate constants measured with traditional analytical techniques. Our results demonstrate the importance of developing analytical techniques capable of analyzing environmental reactions on the same time scale as they occur. Given the high sensitivity, elemental specificity, and time resolution of Q-XAS, it has many potential applications. They could include measuring not only redox reactions but also dissolution/precipitation reactions, such as the formation and/or reductive dissolution of Fe(III) (hydr)oxides, solid-phase transformations (i.e., formation of layered-double hydroxide minerals), or almost any other reaction occurring in aqueous media that can be measured using x-ray absorption spectroscopy.

  19. Spatially resolved measurements of nitrogen dioxide in an urban environment using concurrent multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Leigh, R. J.; Corlett, G. K.; Frieß, U.; Monks, P. S.

    2006-12-01

    A novel system using the technique of concurrent multi-axis differential optical absorption spectroscopy system has been developed and applied to the measurement of nitrogen dioxide in an urban environment. Using five fixed telescopes, slant columns of nitrogen dioxide, ozone, water vapour, and the oxygen dimer, O4, are simultaneously retrieved in five vertically separated viewing directions. The application of this remote sensing technique in the urban environment is explored. Through, the application of several simplifying assumptions a tropospheric concentration of NO2 is derived and compared with an urban background in-situ chemiluminescence detector. The remote sensing and in-situ techniques show good agreement. Owing to the high time resolution of the measurements, the ability to image and quantify plumes within the urban environment is demonstrated. The CMAX-DOAS measurements provide a useful measure of overall NO2 concentrations on a city-wide scale.

  20. Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system.

    PubMed

    Erxleben, Holger; Ruzicka, Jaromir

    2005-08-15

    Sodium borohydride-based hydride generation was automated by using programmable flow within the lab-on-valve module. Mercury vapor, generated in the reaction mixture, was extracted in a gas/liquid separator. The gas-expansion separator was miniaturized and compared with the performance of a novel gas separator that exploits the combination of Venturi effect and reduced pressure. Cold vapor atomic spectroscopy was used as a model system, with detection of mercury by absorption at 254 nm and limit of detection of 9 microg of Hg/L, using 300 microL of sample and 100 microL of borohydride. This work introduces, for the first time, sequential injection technique for hydride generation, highlights advantages of using programmable flow, and outlines means for miniaturization of assays based on spectroscopy of volatile species.

  1. Determining Concentrations and Temperatures in Semiconductor Manufacturing Plasmas via Submillimeter Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2016-06-01

    Plasmas used in the manufacturing processes of semiconductors are similar in pressure and temperature to plasmas used in studying the spectroscopy of astrophysical species. Likewise, the developed technology in submillimeter absorption spectroscopy can be used for the study of industrial plasmas and for monitoring manufacturing processes. An advantage of submillimeter absorption spectroscopy is that it can be used to determine absolute concentrations and temperatures of plasma species without the need for intrusive probes. A continuous wave, 500 - 750 GHz absorption spectrometer was developed for the purpose of being used as a remote sensor of gas and plasma species. An important part of this work was the optical design to match the geometry of existing plasma reactors in the manufacturing industry. A software fitting routine was developed to simultaneously fit for the background and absorption signal, solving for concentration, rotational temperature, and translational temperature. Examples of measurements made on inductively coupled plasmas will be demonstrated. We would like to thank the Texas Analog Center of Excellence/Semiconductor Research Corporation (TxACE/SRC) and Applied Materials for their support of this work.

  2. NO_2 Trace Measurements by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ventrillard-Courtillot, I.; Desbois, Th.; Foldes, T.; Romanini, D.

    2009-06-01

    In order to reach the sub-ppb NO_2 detection level required for environmental applications in remote areas, we develop a spectrometer based on a technique introduced a few years ago, named Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) [1]. It allows very sensitive and selective measurements, together with the realization of compact and robust set-ups as was subsequently demonstrated during measurements campaigns in harsh environments [2]. OF-CEAS benefits from the optical feedback to efficiently inject a cw-laser in a V-shaped high finesse cavity (typically 10 000). Cavity-enhanced absorption spectra are acquired on a small spectral region (˜1 cm^{-1}) that enables selective and quantitative measurements at a fast acquisition rate with a detection limit of several 10^{-10} cm^{-1} as reported in this work. Spectra are obtained with high spectral definition (150 MHz highly precisely spaced data points) and are self calibrated by cavity rind-down measurements regularly performed (typically every second). NO_2 measurements are performed with a commercial extended cavity diode laser around 411 nm, spectral region where intense electronic transitions occur. We will describe the set-up developed for in-situ measurements allowing real time concentration measurements at typically 5 Hz; and then report on the measurements performed with calibrated NO_2 reference samples to evaluate the linearity of the apparatus. The minimum detectable absorption loss is estimated by considering the standard deviation of the residual of one spectrum. We achieved 2x10^{-10} cm^{-1} for a single spectrum recorded in less than 100 ms at 100 mbar. It leads to a potential detection limit of 3x10^8 molecules/cm^3, corresponding to about 150 pptv at this pressure. [1] J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B, 80, 1027 (2005). [2] D. Romanini, M. Chenevrier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B, 83, 659

  3. Investigation of surface structure with X-ray absorption and electron emission spectroscopies

    NASA Astrophysics Data System (ADS)

    Pauli, Mark Daniel

    The use of electron spectromicroscopy for the study of the chemical composition and electronic properties of surfaces, overlayers, and interfaces has become widely accepted. Improvements to the optics of instruments such as the X-ray photo electron emission microscope have pushed spectroscopic microscopies into the realm of very high spatial resolution, at and below 1 micrometer [1]. Coupled with the high spectral resolution available from third generation synchrotron sources, this spatial resolution allows the measurement of micro-X-ray absorption near-edge spectra in addition to the more typical electron emission spectra and diffraction patterns. Complementary to the experimental developments is the development of improved theoretical methods for computational modeling of X-ray absorption and emission spectroscopies. In the field of tribochemistry, zinc dialkyl dithiophosphate (ZDDP) has long been a topic of much study. ZDDP is widely used as an anti-wear additive in engine oils and there is interest in determining the decomposition products of ZDDP that provide this protection against friction. An analysis of X-ray absorption near-edge spectra of thermal films from ZDDP samples is presented, including a comparison of the Zinc L-edge spectra with model calculations [2]. It was found essential to carry out self-consistent calculations of the electronic structure for the modeling. For the techniques of electron diffraction, a new method for a full multiple-scattering calculation of diffraction patterns from crystals with two-dimensional periodicity parallel to the surface is presented [3]. The calculation makes use of Helmholtz's reciprocity principle to compute the path-reversed process of the back propagation of a photoelectron from the position of a distant detector to that of the emitting atom. Early application is demonstrated with simulations of 64 eV M2,3VV and 914 eV L 2,3VV Auger electron diffraction from a Cu(001) surface. The functionality of the path

  4. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  5. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  6. Feasibility study of mid-infrared absorption spectroscopy using electrospray ionization

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Bohn, Paul; Howard, Scott

    2016-09-01

    Precise detection of trace amount of molecules, such as the disease biomarkers present in biofluids or explosive residues, requires high sensitivity detection. electrospray ionization-mass spectrometry (ESI-MS) is a common and effective technique for sensitive trace molecular detection in small-volume liquid samples. In ESI-MS, nano-liter volume samples are ionized and aerosolized by ESI, and fed into MS for mass analysis. ESI-MS has proven to be a reliable ionization technique for coupling liquid phase separations like liquid chromatography (LC) and capillary zone electrophoresis (CE) with the highly specific resolving power of MS. While CE and ESI can be performed on a microfluidic chip having a footprint of a few cm2, MS is typically at least 100 times bigger in size than a micro-chip. A reduced size, weight, and power profile would enable semi-portable applications in forensics, environmental monitoring, defense, and biological/pharmaceutical applications. To achieve this goal, we present an initial study evaluating the use of mid-infrared absorption spectroscopy (MIRAS) in place of MS to create a ESI-MIRAS system. To establish feasibility, we perform ESI-MIRAS on phospholipid samples, which have been previously demonstrated to be separable by CE. Phospholipids are biomarkers of degenerative neurological, kidney, and bone diseases and can be found in biofluids such as blood, urine and cerebrospinal fluid. To establish sensitivity limits, calibration samples of 100 μM concentration are electrospray deposited on to a grounded Si wafer for different times (1 minutes to 4 minutes with a 1 minute step). The minimum detectable concentration-time product, where a FTIR globar is used as the MIR source, is found 200 μM·s.

  7. Influence of temperature and turbidity on water COD detection by UV absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Kun-peng; Bi, Wei-hong; Zhang, Qi-hang; Fu, Xing-hu; Wu, Guo-qing

    2016-11-01

    Ultraviolet (UV) absorption spectroscopy is used to detect the concentration of water chemical oxygen demand (COD). The UV absorption spectra of COD solutions are analyzed qualitatively and quantitatively. The partial least square (PLS) algorithm is used to model COD solution and the modeling results are compared. The influence of environmental temperature and turbidity is analyzed. These results show that the influence of temperature on the predicted value can be ignored. However, the change of turbidity can affect the detection results of UV spectra, and the COD detection error can be effectively compensated by establishing the single-element regression model.

  8. Thin-film absorption coefficients by attenuated-total-reflection spectroscopy.

    PubMed

    Holm, R T; Palik, E D

    1978-02-01

    The application of attenuated-total-reflection spectroscopy to the measurement of the absorption coefficient of thin films is presented. For low absorption the sensitivity of ATR is discussed in terms of the concept of an effective thickness. Both the case in which the refractive index of the film is higher and the case in which it is lower than that of the ATR trapezoid are considered. Experimental ATR data for antireflection-coating materials for laser windows is analyzed and compared with calorimetric data.

  9. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  10. Interactions of hypericin with a model mutagen - Acridine orange analyzed by light absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pietrzak, Monika; Szabelski, Mariusz; Kasparek, Adam; Wieczorek, Zbigniew

    2017-02-01

    The present study was designed to estimate the ability of hypericin to interact with a model mutagen - acridine orange. The hetero-association of hypericin and acridine orange was investigated with absorption and fluorescence spectroscopy methods in aqueous solution of DMSO. The data indicate that hypericin forms complexes with acridine orange and that the association constants are relatively high and depend on DMSO concentration. The absorption spectra of the hypericin - acridine orange complexes were examined as well. Owing to its ability to interact with flat aromatic compounds, hypericin may potentially be used as an interceptor molecule.

  11. Evaluation of iron-containing carbon nanotubes by near edge X-ray absorption technique

    NASA Astrophysics Data System (ADS)

    Osorio, A. G.; Bergmann, C. P.

    2015-10-01

    The synthesis of carbon nanotubes (CNTs) via Chemical Vapor Deposition method with ferrocene results in CNTs filled with Fe-containing nanoparticles. The present work proposes a novel route to characterize the Fe phases in CNTs inherent to the synthesis process. CNTs were synthesized and, afterwards, the CNTs were heat treated at 1000 °C for 20 min in an inert atmosphere during a thermogravimetric experiment. X-Ray Absorption Spectroscopy (XAS) experiments were performed on the CNTs before and after the heat treatment and, also, during the heat treatment, e.g., in situ tests were performed while several Near-Edge X-Ray Absorption (XANES) spectra were collected during the heating of the samples. The XAS technique was successfully applied to evaluate the phases encapsulated by CNTs. Phase transformations of the Fe-based nanoparticles were also observed from iron carbide to metallic iron when the in situ experiments were performed. Results also indicated that the applied synthesis method guarantees that Fe phases are not oxidize. In addition, the results show that heat treatment under inert atmosphere can control which phase remains encapsulated by the CNTs.

  12. Line-Parameter Measurements and Stringent Tests of Line-Shape Models Based on Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bielska, Katarzyna; Fleisher, Adam J.; Hodges, Joseph T.; Lin, Hong; Long, David A.; Reed, Zachary D.; Sironneau, Vincent; Truong, Gar-Wing; Wójtewicz, Szymon

    2014-06-01

    Laser methods that are based on cavity-enhanced absorption spectroscopy (CEAS) are well-suited for measuring molecular line parameters under conditions of low optical density, and as such they are complementary to broadband Fourier-transform spectroscopy (FTS) techniques. Attributes of CEAS include relatively low detection limits, accurate and precise detuning axes and high fidelity measurements of line shape. In many cases these performance criteria are superior to those obtained using direct laser absorption spectroscopy and FTS-based systems. In this presentation we will survey several examples of frequency-stabilized cavity ring-down spectroscopy (FS-CRDS)1 measurements obtained with laser spectrometers developed at the National Institute of Standards and Technology (NIST) in Gaithersburg Maryland. These experiments, which are motivated by atmospheric monitoring and remote-sensing applications that require high-precision and accuracy, involve nearinfrared transitions of carbon dioxide, water, oxygen and methane. We discuss spectra with signal-to-noise ratios exceeding 106, frequency axes with absolute uncertainties in the 10 kHz to 100 kHz range and linked to a Cs clock, line parameters with relative uncertainties at the 0.2 % level and isotopic ratios measured with a precision of 0.03 %. We also present FS-CRDS measurements of CO2 line intensities which are measured at atmospheric concentration levels and linked to gravimetric standards for CO2 in air, and we quantify pressure-dependent deviations between various theoretical line profiles and measured line shapes. Finally we also present recent efforts to increase data throughput and spectral coverage in CEAS experiments. We describe three new high-bandwidth CEAS techniques including frequency-agile, rapid scanning spectroscopy (FARS)2, which enables continuous-wave measurements of cavity mode linewidth and acquisition of ringdown decays with no dead time during laser frequency tuning, heterodyne

  13. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    SciTech Connect

    Skelly, E.M.

    1982-01-01

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine, blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.

  14. Redox State of Iron in Lunar Glasses using X-ray Absorption Spectroscopy and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; McCanta, M. C.; Lanzirotti, A.; Sutton, S. R.; Carey, C. J.; Mahadevan, S.; Rutherford, M. J.

    2014-12-01

    The oxidation state of igneous materials on a planet is a critically-important variable in understanding magma evolution on bodies in our solar system. However, direct and indirect methods for quantifying redox states are challenging, especially across the broad spectrum of silicate glass compositions found on airless bodies. On the Moon, early Mössbauer studies of bulk samples suggested the presence of significant Fe3+ (>10%) in lunar glasses (green, orange, brown); lunar analog glasses synthesized at fO2 <10-11 have similar Fe3+. All these Mössbauer spectra are challenging to interpret due to the presence of multiple coordination environments in the glasses. X-ray absorption spectroscopy (XAS) allows pico- and nano-scale interrogation of primitive planetary materials using the pre-edge, main edge, and EXAFS regions of absorption edge spectra. Current uses of XAS require availability of standards with compositions similar to those of unknowns and complex procedures for curve-fitting of pre-edge features that produce results with poorly constrained accuracy. A new approach to accurate and quantitative redox measurements with XAS is to couple use of spectra from synthetic glass standards covering a broad compositional range with multivariate analysis (MVA) techniques. Mössbauer and XAS spectra from a suite of 33 synthetic glass standards covering a wide range of compositions and fO2(Dyar et al., this meeting) were used to develop a MVA model that utilizes valuable predictive information not only in the major spectral peaks/features, but in all channels of the XAS region. Algorithms for multivariate analysis t were used to "learn" the characteristics of a data set as a function of varying spectral characteristics. These models were applied to the study of lunar glasses, which provide a challenging test case for these newly-developed techniques due to their very low fO2. Application of the new XAS calibration model to Apollo 15 green (15426, 15427 and 15425

  15. Molecular scale shock response: electronic absorption spectroscopy of laser shocked explosives

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn; Whitley, Von; Moore, David; Bolme, Cindy; Eakins, Daniel

    2009-06-01

    Single shot spectroscopies are being employed to answer questions fundamental to shock initiation of explosives. The goals are to: 1) determine the extent to which electronic excitations are, or are not, involved in shock induced reactions, 2) test the multiphonon up-pumping hypothesis in explosives, and 3) provide data on the initial evolution of temperature and chemistry following the shock loading of explosives on scales amenable to comparison to molecular dynamics simulations. The data presented in this talk are focused on answering the first question. Recent experimental results measuring the time history of ultraviolet/visible absorption spectroscopy of laser shocked explosive thin films and single crystals will be discussed.

  16. Charge Carrier Dynamics of Quantum Confined Semiconductor Nanoparticles Analyzed via Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thibert, Arthur Joseph, III

    Semiconductor nanoparticles are tiny crystalline structures (typically range from 1 - 100 nm) whose shape in many cases can be dictated through tailored chemical synthesis with atomic scale precision. The small size of these nanoparticles often results in quantum confinement (spatial confinement of wave functions), which imparts the ability to manipulate band-gap energies thus allowing them to be optimally engineered for different applications (i.e., photovoltaics, photocatalysis, imaging). However, charge carriers excited within these nanoparticles are often involved in many different processes: trapping, trap migration, Auger recombination, non-radiative relaxation, radiative relaxation, oxidation / reduction, or multiple exciton generation. Broadband ultrafast transient absorption laser spectroscopy is used to spectrally resolve the fate of excited charge carriers in both wavelength and time, providing insight as to what synthetic developments or operating conditions will be necessary to optimize their efficiency for certain applications. This thesis outlines the effort of resolving the dynamics of excited charge carriers for several Cd and Si based nanoparticle systems using this experimental technique. The thesis is organized into five chapters and two appendices as indicated below. Chapter 1 provides a brief introduction to the photophysics of semiconductor nanoparticles. It begins by defining what nanoparticles, semiconductors, charge carriers, and quantum confinement are. From there it details how the study of charge carrier dynamics within nanoparticles can lead to increased efficiency in applications such as photocatalysis. Finally, the experimental methodology associated with ultrafast transient absorption spectroscopy is introduced and its power in mapping charge carrier dynamics is established. Chapter 2 (JPCC, 19647, 2011) introduces the first of the studied samples: water-solubilized 2D CdSe nanoribbons (NRs), which were synthesized in the Osterloh

  17. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers.

    PubMed

    Lu, Feng; Belkin, Mikhail A

    2011-10-10

    We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.

  18. Submillimeter Absorption Spectroscopy in Semiconductor Manufacturing Plasmas and Comparison to Theoretical Models

    NASA Astrophysics Data System (ADS)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2015-06-01

    Plasmas used in the semiconductor manufacturing industry are of a similar nature to the environments often created for submillimeter spectroscopic study of astrophysical species. At the low operating pressures of these plasmas, submillimeter absorption spectroscopy is a method capable of measuring the abundances and temperatures of molecules, radicals, and ions without disturbing any of the properties of the plasma. These measurements provide details and insight into the interactions and reactions occurring within the plasma and their implications for semiconductor manufacturing processes. A continuous wave, 500 to 750 GHz, absorption spectrometer was designed and used to make measurements of species in semiconductor processing plasmas. Comparisons with expectations from theoretical plasma models provide a basis for validating and improving these models, which is a complex and difficult science itself. Furthermore, these comparisons are an evaluation for the use of submillimeter spectroscopy as a diagnostic tool in manufacturing processes.

  19. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    SciTech Connect

    Schwanke, C.; Lange, K. M.; Golnak, R.; Xiao, J.

    2014-10-15

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl{sub 2} aqueous solution by X-ray absorption and emission spectroscopy is presented.

  20. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy.

    PubMed

    Schwanke, C; Golnak, R; Xiao, J; Lange, K M

    2014-10-01

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl2 aqueous solution by X-ray absorption and emission spectroscopy is presented.

  1. Determination of copper, zinc and iron in broncho-alveolar lavages by atomic absorption spectroscopy.

    PubMed

    Harlyk, C; Mccourt, J; Bordin, G; Rodriguez, A R; van der Eeckhout, A

    1997-11-01

    Concentrations of Zn, Cu and Fe were measured in 157 broncho-alveolar lavages (BAL), before and after centrifugation, collected at the Leuven University Hospital (Belgium). Zn was measured by flame-atomic absorption spectroscopy, using direct calibration, while Cu and Fe were determined by electrothermal atomic absorption spectroscopy, using the method of standard additions. For Fe only 56 samples were measured. Most of the studied elements are present in the liquid phase (supernatant). About 90% of Cu concentrations lie between 0 and 15 micrograms/kg, while 90% of Zn concentrations are lower than 230 micrograms/kg, with 30% between 30 and 70 micrograms/kg, and 50% between 100 and 200 micrograms/kg. There seems to be a reverse relationship between Cu and Zn levels with high Cu going along with low Zn and vice versa.

  2. Undistorted X-ray Absorption Spectroscopy Using s-Core-Orbital Emissions.

    PubMed

    Golnak, Ronny; Xiao, Jie; Atak, Kaan; Unger, Isaak; Seidel, Robert; Winter, Bernd; Aziz, Emad F

    2016-05-12

    Detection of secondary emissions, fluorescence yield (FY), or electron yield (EY), originating from the relaxation processes upon X-ray resonant absorption has been widely adopted for X-ray absorption spectroscopy (XAS) measurements when the primary absorption process cannot be probed directly in transmission mode. Various spectral distortion effects inherent in the relaxation processes and in the subsequent transportation of emitted particles (electron or photon) through the sample, however, undermine the proportionality of the emission signals to the X-ray absorption coefficient. In the present study, multiple radiative (FY) and nonradiative (EY) decay channels have been experimentally investigated on a model system, FeCl3 aqueous solution, at the excitation energy of the Fe L-edge. The systematic comparisons between the experimental spectra taken from various decay channels, as well as the comparison with the theoretically simulated Fe L-edge XA spectrum that involves only the absorption process, indicate that the detection of the Fe 3s → 2p partial fluorescence yield (PFY) gives rise to the true Fe L-edge XA spectrum. The two key characteristics generalized from this particular decay channel-zero orbital angular momentum (i.e., s orbital) and core-level emission-set a guideline for obtaining undistorted X-ray absorption spectra in the future.

  3. The speciation of soluble sulphur compounds in bacterial culture fluids by X-ray absorption near edge structure spectroscopy.

    PubMed

    Franz, Bettina; Lichtenberg, Henning; Hormes, Josef; Dahl, Christiane; Prange, Alexander

    2009-11-01

    Over the last decade X-ray absorption near edge structure (XANES) spectroscopy has been used in an increasing number of microbiological studies. In addition to other applications it has served as a valuable tool for the investigation of the sulphur globules deposited intra- or extracellularly by certain photo- and chemotrophic sulphur-oxidizing (Sox) bacteria. For XANES measurements, these deposits can easily be concentrated by filtration or sedimentation through centrifugation. However, during oxidative metabolism of reduced sulphur compounds, such as sulphide or thiosulphate, sulphur deposits are not the only intermediates formed. Soluble intermediates such as sulphite may also be produced and released into the medium. In this study, we explored the potential of XANES spectroscopy for the detection and speciation of sulphur compounds in culture supernatants of the phototrophic purple sulphur bacterium Allochromatium vinosum. More specifically, we investigated A. vinosum DeltasoxY, a strain with an in frame deletion of the soxY gene. This gene encodes an essential component of the thiosulphate-oxidizing Sox enzyme complex. Improved sample preparation techniques developed for the DeltasoxY strain allowed for the first time not only the qualitative but also the quantitative analysis of bacterial culture supernatants by XANES spectroscopy. The results thus obtained verified and supplemented conventional HPLC analysis of soluble sulphur compounds. Sulphite and also oxidized organic sulphur compounds were shown by XANES spectroscopy to be present, some of which were not seen when standard HPLC protocols were used.

  4. Progress in Applying Tunable Diode Laser Absorption Spectroscopy to Scramjet Isolators and Combustors

    DTIC Science & Technology

    2010-05-01

    AFRL-RZ-WP-TP-2010-2146 PROGRESS IN APPLYING TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY TO SCRAMJET ISOLATORS AND COMBUSTORS Michael S... COMBUSTORS 5a. CONTRACT NUMBER IN HOUSE 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Michael S. Brown, Skip Williams...paths -- scramjet engines in particular. In this report we summarize our progress in applying TDLAS to scramjet isolators and combustors . 15

  5. Conformational study of the chromophore of C-phycocyanin by resonance raman and electronic absorption spectroscopy.

    NASA Astrophysics Data System (ADS)

    Margulies, L.; Toporowicz, M.

    1988-05-01

    The conformation of the chromophore of C-phycocyanin (PC) was investigated by using electronic absorption and resonance Raman spectroscopy, and theoretical calculations. Using an A-dihydrobilindione as model compound, the syn, syn, syn conformation was established for the isolated chromophore in solution. For the native PC, the best results were obtained by considering the syn, syn, anti conformation, although the possibility of having a syn, anti, anti conformation could not be excluded.

  6. Capturing Transient Electronic and Molecular Structures in Liquids by Picosecond X-Ray Absorption Spectroscopy

    SciTech Connect

    Gawelda, W.; Pham, V. T.; El Nahhas, A.; Kaiser, M.; Zaushitsyn, Y.; Bressler, C.; Chergui, M.; Johnson, S. L.; Grolimund, D.; Abela, R.; Hauser, A.

    2007-02-02

    We describe an advanced setup for time-resolved x-ray absorption fine structure (XAFS) Spectroscopy with picosecond temporal resolution. It combines an intense femtosecond laser source synchronized to the x-ray pulses delivered into the microXAS beamline of the Swiss Light Source (SLS). The setup is applied to measure the short-lived high-spin geometric structure of photoexcited aqueous Fe(bpy)3 at room temperature.

  7. Intracavity Laser Absorption Spectroscopy of Platinum Nitride in the Near Infrared

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; Womack, Kaitlin A.; O'Brien, James J.; Whittemore, Sean

    2013-06-01

    The (2,0) band of the A^{2}Σ^{-} - X^{2}Π_{1/2} electronic transition of PtN has been recorded using intracavity laser absorption spectroscopy. Transitions from ^{194}PtN, ^{195}PtN, and ^{196}PtN isotopologues are observed, as well as the nuclear hyperfine splitting due to ^{195}Pt with I=1/2. The results of the analysis will be presented and compared with ab initio calculations.

  8. Application of microemulsions in determination of chromium naphthenate in gasoline by flame atomic absorption spectroscopy.

    PubMed

    Du, B; Wei, Q; Wang, S; Yu, W

    1997-10-01

    A new method using microemulsified samples is presented. It is for the determination of chromium naphthenate in gasoline by flame absorption spectroscopy. The method has the advantage of simplicity, speed and the use of aqueous standards for calibration instead of organic standards. Coexistent elements do not disturb the determination. Results obtained by this method were better than those obtained by other methods for the same samples.

  9. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  10. Proton magnetic resonance spectroscopy: technique for the neuroradiologist.

    PubMed

    Cecil, Kim M

    2013-08-01

    Magnetic resonance spectroscopy (MRS) provides information on neuronal and axonal viability, energetics of cellular structures, and status of cellular membranes. Proton MRS appeals to clinicians and scientists because its application in the clinical setting can increase the specificity of MR imaging. The objective of this article is to provide descriptive concepts of the technique and its application in vivo for a variety of patient populations. When appropriately incorporating MRS into the neuroradiologic evaluation, this technique produces relevant information to radiologists and clinicians for their understanding of adult and pediatric neurologically based disease processes.

  11. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    SciTech Connect

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  12. a New Broadband Cavity Enhanced Frequency Comb Spectroscopy Technique Using GHz Vernier Filtering.

    NASA Astrophysics Data System (ADS)

    Morville, Jérôme; Rutkowski, Lucile; Dobrev, Georgi; Crozet, Patrick

    2015-06-01

    We present a new approach to Cavity Enhanced - Direct Frequency Comb Spectroscopy where the full emission bandwidth of a Titanium:Sapphire laser is exploited at GHz resolution. The technique is based on a low-resolution Vernier filtering obtained with an appreciable -actively stabilized- mismatch between the cavity Free Spectral Range and the laser repetition rate, using a diffraction grating and a split-photodiode. This particular approach provides an immunity to frequency-amplitude noise conversion, reaching an absorption baseline noise in the 10-9 cm-1 range with a cavity finesse of only 3000. Spectra covering 1800 cm-1 (˜ 55 THz) are acquired in recording times of about 1 second, providing an absorption figure of merit of a few 10-11 cm-1/√{Hz}. Initially tested with ambient air, we report progress in using the Vernier frequency comb method with a discharge source of small radicals. Rutkowski et al, Opt. Lett., 39(23)2014

  13. Supercontinuum high-speed cavity-enhanced absorption spectroscopy for sensitive multispecies detection.

    PubMed

    Werblinski, Thomas; Lämmlein, Bastian; Huber, Franz J T; Zigan, Lars; Will, Stefan

    2016-05-15

    Cavity-enhanced absorption spectroscopy is promising for many applications requiring a very high concentration sensitivity but often accompanied by low temporal resolution. In this Letter, we demonstrate a broadband cavity-enhanced absorption spectrometer capable of detection rates of up to 50 kHz, based on a spatially coherent supercontinuum (SC) light source and an in-house-built, high-speed near-infrared spectrograph. The SC spectrometer allows for the simultaneous quantitative detection of CO2, C2H2, and H2O within a spectral range from 1420 to 1570 nm. Using cavity mirrors with a specified reflectivity of R=98.0±0.3% a minimal spectrally averaged absorption coefficient of αmin=1·10-5  cm-1 can be detected at a repetition rate of 50 kHz.

  14. Gas trace detection with cavity enhanced absorption spectroscopy: a review of its process in the field

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Luo, Zhifu; Tan, Zhongqi; Long, Xingwu

    2016-11-01

    Cavity-enhanced absorption spectroscopy (CEAS) is a technology in which the intracavity absorption is deduced from the intensity of light transmitted by the high finesse optical cavity. Then the samples' parameters, such as their species, concentration and absorption cross section, would be detection. It was first proposed and demonstrated by Engeln R. [1] and O'Keefe[2] in 1998. This technology has extraordinary detection sensitivity, high resolution and good practicability, so it is used in many fields , such as clinical medicine, gas detection and basic physics research. In this paper, we focus on the use of gas trace detection, including the advance of CEAS over the past twenty years, the newest research progresses, and the prediction of this technology's development direction in the future.

  15. Photodissociation Structural Dynamics of TrirutheniumDodecacarbonyl Investigated by X-ray Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harpham, Michael R.; Stickrath, Andrew, B.; Zhang, Xiaoyi,; Huang, Jier; Mara, Michael W.; Chen, Lin X.; Liu, Di-Jia

    2013-10-01

    The molecular and electronic structures of the transient intermediates generated from the photolysis of trirutheniumdodecacarbonyl, Ru3(CO)12, by ultrafast UV (351 nm) laser excitation were investigated using X-ray transient absorption (XTA) spectroscopy. The electronic configuration change and nuclear rearrangement after the dissociation of carbonyls were observed at ruthenium K-edge X-ray absorption near edge structure and X-ray absorption fine structure spectra. Analysis of XTA data, acquired after 100, 200, and 400 ps and 300 ns time delay following the photoexcitation, identified the presence of three intermediate species with Ru3(CO)10 being the most dominating one. The results set an example of applying XTA in capturing both transient electronic and nuclear configurations in metal clusters simulating catalysts in chemical reactions.

  16. Absorption spectroscopy setup for determination of whole human blood and blood-derived materials spectral characteristics

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; Milewska, D.; Mitura, K.; Karpienko, K.

    2015-09-01

    A dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood samples, separated components: plasma, saline, washed erythrocytes in saline and human whole blood with biomarkers - biocompatible nanodiamonds (ND). Blood samples had been derived from a number of healthy donors. The results prove a correct setup arrangement, with adequate preprocessing of the data. The results of blood-ND mixtures measurements show no toxic effect on blood cells, which proves the NDs as a potential biocompatible biomarkers.

  17. Electronic structure of warm dense copper studied by ultrafast x-ray absorption spectroscopy.

    PubMed

    Cho, B I; Engelhorn, K; Correa, A A; Ogitsu, T; Weber, C P; Lee, H J; Feng, J; Ni, P A; Ping, Y; Nelson, A J; Prendergast, D; Lee, R W; Falcone, R W; Heimann, P A

    2011-04-22

    We use time-resolved x-ray absorption spectroscopy to investigate the unoccupied electronic density of states of warm dense copper that is produced isochorically through the absorption of an ultrafast optical pulse. The temperature of the superheated electron-hole plasma, which ranges from 4000 to 10 000 K, was determined by comparing the measured x-ray absorption spectrum with a simulation. The electronic structure of warm dense copper is adequately described with the high temperature electronic density of state calculated by the density functional theory. The dynamics of the electron temperature is consistent with a two-temperature model, while a temperature-dependent electron-phonon coupling parameter is necessary.

  18. Deep ultraviolet Raman spectroscopy: A resonance-absorption trade-off illustrated by diluted liquid benzene

    NASA Astrophysics Data System (ADS)

    Chadwick, C. T.; Willitsford, A. H.; Philbrick, C. R.; Hallen, H. D.

    2015-12-01

    The magnitude of resonance Raman intensity, in terms of the real signal level measured on-resonance compared to the signal level measured off-resonance for the same sample, is investigated using a tunable laser source. Resonance Raman enhancements, occurring as the excitation energy is tuned through ultraviolet absorption lines, are used to examine the 1332 cm-1 vibrational mode of diamond and the 992 cm-1 ring-breathing mode of benzene. Competition between the wavelength dependent optical absorption and the magnitude of the resonance enhancement is studied using measured signal levels as a function of wavelength. Two system applications are identified where the resonance Raman significantly increases the real signal levels despite the presence of strong absorption: characterization of trace species in laser remote sensing and spectroscopy of the few molecules in the tiny working volumes of near-field optical microscopy.

  19. A sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode.

    PubMed

    Schreck, Simon; Gavrila, Gianina; Weniger, Christian; Wernet, Philippe

    2011-10-01

    A novel sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode based on sample cells with x-ray transparent silicon nitride membranes is introduced. The sample holder allows for a reliable preparation of ultrathin liquid films with an adjustable thickness in the nm-μm range. This enables measurements of high quality x-ray absorption spectra of liquids in transmission mode, as will be shown for the example of liquid H(2)O, aqueous solutions of 3d-transition metal ions and alcohol-water mixtures. The fine structure of the x-ray absorption spectra is not affected by the sample thickness. No effects of the silicon nitride membranes were observed in the spectra. It is shown how an inhomogeneous thickness of the sample affects the spectra and how this can be avoided.

  20. Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy.

    PubMed

    Sun, Kai; Wang, Shengkai; Sur, Ritobrata; Chao, Xing; Jeffries, Jay B; Hanson, Ronald K

    2014-04-21

    We report the first application of cavity-enhanced absorption spectroscopy (CEAS) using a coherent light source for sensitive and rapid gaseous species time-history measurements in a shock tube. Off-axis alignment and fast scanning of the laser wavelength were used to minimize coupling noise in a low-finesse cavity. An absorption gain factor of 83 with a measurement time resolution of 20 µs was demonstrated for C2H2 detection using a near-infrared transition near 1537 nm, corresponding to a noise-equivalent detection limit of 20 ppm at 296 K and 76 ppm at 906 K at 50 kHz. This substantial gain in signal, relative to conventional single-pass absorption, will enable ultra-sensitive species detection in shock tube kinetics studies, particularly useful for measurements of minor species and for studies of dilute reactive systems.

  1. Tunable single-longitudinal-mode operation of an injection-locked TEA CO2 laser. [ozone absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Megie, G.; Menzies, R. T.

    1979-01-01

    The tunable single-longitudinal-mode operation of a TEA CO2 laser by an injection technique using a CW waveguide laser as the master oscillator is reported. With the experimental arrangement described, in which the waveguide laser frequency is tuned to correspond to one of the oscillating longitudinal modes of the TEA laser, single-longitudinal-mode operation was achieved with no apparent reduction in the TEA output energy, on various CO2 lines with frequency offsets from the line center as large as 300 MHz. The capability of this technique for high-resolution spectroscopy or atmospheric lidar studies is demonstrated by the recording of the absorption spectrum of a strong ozone line.

  2. Spectroscopy of CuN in the Near Infrared by Intracavity Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; Womack, Kaitlin A.; O'Brien, James J.

    2012-06-01

    Transitions with red-degraded bandheads have been identified at 13005, 12963, 12957, and 12948 cm-1. One P and one R branch are identified in each transition. We have tentatively assigned these transitions as absorption from the X 3Σ- ground state of CuN. Rotational analyses of these bands are in progress, and results will be presented. A strong perturbation is observed in one of the excited states. The electronic structure of CuN will be discussed and compared with predicted electronic states from theoretical calculations. The gas phase CuN molecules were produced using a copper hollow cathode in a plasma discharge.

  3. Picosecond and femtosecond X-ray absorption spectroscopy of molecular systems.

    PubMed

    Chergui, Majed

    2010-03-01

    The need to visualize molecular structure in the course of a chemical reaction, a phase transformation or a biological function has been a dream of scientists for decades. The development of time-resolved X-ray and electron-based methods is making this true. X-ray absorption spectroscopy is ideal for the study of structural dynamics in liquids, because it can be implemented in amorphous media. Furthermore, it is chemically selective. Using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in laser pump/X-ray probe experiments allows the retrieval of the local geometric structure of the system under study, but also the underlying photoinduced electronic structure changes that drive the structural dynamics. Recent developments in picosecond and femtosecond X-ray absorption spectroscopy applied to molecular systems in solution are reviewed: examples on ultrafast photoinduced processes such as intramolecular electron transfer, low-to-high spin change, and bond formation are presented.

  4. Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Peng, Wen Yu; Strand, Christopher; Mitchell Spearrin, R.; Jeffries, Jay B.; Hanson, Ronald K.; Bekal, Anish; Halder, Purbasha; Poonacha, Samhitha P.; Vartak, Sameer; Sridharan, Arun K.

    2017-01-01

    A mid-infrared quantum cascade laser absorption sensor was developed for in-situ detection of NO2 in high-temperature gas environments. A cluster of spin-split transitions near 1599.9 cm-1 from the ν3 absorption band of NO2 was selected due to the strength of these transitions and the low spectral interference from water vapor within this region. Temperature- and species-dependent collisional broadening parameters of ten neighboring NO2 transitions with Ar, O2, N2, CO2 and H2O were measured and reported. The spectral model was validated through comparisons with direct absorption spectroscopy measurements of NO2 seeded in various bath gases. The performance of the scanned wavelength modulation spectroscopy (WMS)-based sensor was demonstrated in a combustion exhaust stream seeded with varying flow rates of NO2, achieving reliable detection of 1.45 and 1.6 ppm NO2 by mole at 600 K and 800 K, respectively, with a measurement uncertainty of ±11%. 2σ noise levels of 360 ppb and 760 ppb were observed at 600 K and 800 K, respectively, in an absorption path length of 1.79 m.

  5. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.

    PubMed

    Stiegler, Johannes M; Abate, Yohannes; Cvitkovic, Antonija; Romanyuk, Yaroslav E; Huber, Andreas J; Leone, Stephen R; Hillenbrand, Rainer

    2011-08-23

    Infrared absorption spectroscopy is a powerful and widely used tool for analyzing the chemical composition and structure of materials. Because of the diffraction limit, however, it cannot be applied for studying individual nanostructures. Here we demonstrate that the phase contrast in substrate-enhanced scattering-type scanning near-field optical microscopy (s-SNOM) provides a map of the infrared absorption spectrum of individual nanoparticles with nanometer-scale spatial resolution. We succeeded in the chemical identification of silicon nitride nanoislands with heights well below 10 nm, by infrared near-field fingerprint spectroscopy of the Si-N stretching bond. Employing a novel theoretical model, we show that the near-field phase spectra of small particles correlate well with their far-field absorption spectra. On the other hand, the spectral near-field contrast does not scale with the volume of the particles. We find a nearly linear scaling law, which we can attribute to the near-field coupling between the near-field probe and the substrate. Our results provide fundamental insights into the spectral near-field contrast of nanoparticles and clearly demonstrate the capability of s-SNOM for nanoscale chemical mapping based on local infrared absorption.

  6. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  7. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  8. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes.

    PubMed

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2015-06-07

    We apply high-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) to study iron carbonyl complexes. Mono-, bi-, and tri-nuclear carbonyl complexes and pure carbonyl complexes as well as carbonyl complexes containing hydrocarbon ligands are considered. The HERFD-XANES spectra reveal multiple pre-edge peaks with individual signatures for each complex, which could not be detected previously with conventional XANES spectroscopy. These peaks are assigned and analysed with the help of TD-DFT calculations. We demonstrate that the pre-edge peaks can be used to distinguish the different types of iron-iron interactions in carbonyl complexes. This opens up new possibilities for applying HERFD-XANES spectroscopy to probe the electronic structure of iron catalysts.

  9. The use of (micro)-X-ray absorption spectroscopy in cement research.

    PubMed

    Scheidegger, A M; Vespa, M; Grolimund, D; Wieland, E; Harfouche, M; Bonhoure, I; Dähn, R

    2006-01-01

    Long-term predictions on the mobility and the fate of radionuclides and contaminants in cementitious waste repositories require a molecular-level understanding of the geochemical immobilization processes involved. In this study, the use of X-ray absorption spectroscopy (XAS) for chemical speciation of trace elements in cementitious materials will be outlined presenting two examples relevant for nuclear waste management. The first example addresses the use of XAS on powdered cementitious materials to determine the local coordination environment of Sn(IV) bound to calcium silicate hydrates (C-S-H). Sn K-edge XAS data of Sn(IV) doped C-S-H can be rationalized by corner sharing binding of Sn octahedra to Si tetrahedra of the C-S-H structure. XAS was further applied to determine the binding mechanism of Sn(IV) in the complex cement matrix. The second example illustrates the potential of emerging synchrotron-based X-ray micro-probe techniques for elucidating the spatial distribution and the speciation of contaminants in highly heterogeneous cementitious materials at the micro-scale. Micro X-ray fluorescence (XRF) and micro-XAS investigations were carried out on Co(II) doped hardened cement paste. These preliminary investigations reveal a highly heterogeneous spatial Co distribution. The presence of a Co(II)-hydroxide-like phase Co(OH)2 and/or Co-Al layered double hydroxide (Co-Al LDH) or Co-phyllosilicate was observed. Surprisingly, some of the initial Co(II) was partially oxidized and incorporated into a Co(III)O(OH)-like phase or a Co-phyllomanganate.

  10. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  11. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    SciTech Connect

    Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons; Boye, Pit; Schroer, Christian G.; Glatzel, Pieter; Borca, Camelia N.; Beckmann, Felix

    2009-09-25

    Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the different selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with quantitative data

  12. Transit Spectroscopy: new data analysis techniques and interpretation

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Waldmann, Ingo P.; Morello, Giuseppe; Tessenyi, Marcell; Varley, Ryan; Barton, Emma; Yurchenko, Sergey; Tennyson, Jonathan; Hollis, Morgan

    2014-11-01

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. A key observable for planets is the chemical composition and state of their atmosphere. To date, two methods can be used to sound exoplanetary atmospheres: transit and eclipse spectroscopy, and direct imaging spectroscopy. Although the field of exoplanet spectroscopy has been very successful in past years, there are a few serious hurdles that need to be overcome to progress in this area: in particular instrument systematics are often difficult to disentangle from the signal, data are sparse and often not recorded simultaneously causing degeneracy of interpretation. We will present here new data analysis techniques and interpretation developed by the “ExoLights” team at UCL to address the above-mentioned issues. Said techniques include statistical tools, non-parametric, machine-learning algorithms, optimized radiative transfer models and spectroscopic line-lists. These new tools have been successfully applied to existing data recorded with space and ground instruments, shedding new light on our knowledge and understanding of these alien worlds.

  13. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline

    SciTech Connect

    Llorens, Isabelle; Lahera, Eric; Delnet, William; Proux, Olivier; Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay; Bardou, Nathalie; Ulrich, Olivier; and others

    2012-06-15

    Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

  14. Cavity enhanced ultra-thin aluminum plasmonic resonator for surface enhanced infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Jiang, Xiao; Nong, Jinpeng; Chen, Na; Lan, Guilian; Tang, Linlong

    2016-11-01

    Owing to the advantages of natural abundance, low cost, and amenability to manufacturing processes, aluminum has recently been recognized as a highly promising plasmonic material that attracts extensive research interest. Here, we propose a cavity-enhanced ultra-thin plasmonic resonator for surface enhanced infrared absorption spectroscopy. The considered resonator consists of a patterned ultra-thin aluminum grating strips, a dielectric spacer layer and a reflective layer. In such structure, the resonance absorption is enhanced by the cavity formed between the patterned aluminum strips and the reflective layer. It is demonstrated that the spectral features of the resonator can be tuned by adjusting the structural parameters. Furthermore, in order to achieve a deep and broad spectral line shape, the spacer layer thickness should be properly designed to realize the simultaneous resonances for the electric and the magnetic excitations. The enhanced infrared absorption characteristics can be used for infrared sensing of the environment. When the resonator is covered with a molecular layer, the resonator can be used as a surface enhanced infrared absorption substrate to enhance the absorption signal of the molecules. A high enhanced factor of 1.15×105 can be achieved when the resonance wavelength of resonator is adjusted to match the desired vibrational mode of the molecules. Such a cavity-enhanced plasmonic resonator, which is easy for practical fabrication, is expected to have potential applications for infrared sensing with high-performance.

  15. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy

    SciTech Connect

    Hager, J. D. Lanier, N. E.; Kline, J. L.; Flippo, K. A.; Bruns, H. C.; Schneider, M.; Saculla, M.; McCarville, T.

    2014-11-15

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO{sub 2} foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured.

  16. Measurement of initial absorption of fused silica at 193nm using laser induced deflection technique (LID)

    NASA Astrophysics Data System (ADS)

    Schönfeld, Dörte; Klett, Ursula; Mühlig, Christian; Thomas, Stephan

    2008-01-01

    The ongoing development in microlithography towards further miniaturization of structures creates a strong demand for lens material with nearly ideal optical properties. Beside the highly demanding requirements on homogeneity and stress induced birefringence (SIB), low absorption is a key factor. Even a small absorption is associated with a temperature increase and results in thermally induced local variations of refractive index and SIB. This could affect the achievable resolution of the lithographic process. The total absorption of the material is composed of initial absorption and of absorption induced during irradiation. Thus, the optimization of both improves the lifetime of the material. In principal, it is possible to measure transmission and scattering with a suitable spectrometer assembly and calculate absorption from them. However, owing to the influence of sample surfaces and errors of measurement, these methods usually do not provide satisfactory results for highly light-transmissive fused silica. Therefore, it is most desirable to find a technique that is capable of directly measuring absorption coefficients in the range of (1...10)•10 -4 cm -1 (base 10) directly. We report our first results for fused silica achieved with the LID technique. Besides a fused silica grade designed for 193 nm applications, grades with higher absorption at 193 nm were measured to test the LID technique. A special focus was set on the possibility of measuring initial absorption without the influence of degradation effects.

  17. Real-time monitoring of reactive species in downstream etch reactor by VUV broad-band absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Soriano, R.; Vallier, L.; Cunge, G.; Sadeghi, N.

    2016-09-01

    Plasma etching of nanometric size, high aspect-ratio structures is more challenging at each new technological node. Remote plasmas are beginning to find use when damages on nanostructures by ion bombardment become critical or when etching with high selectivity on different materials present on the wafer is necessary (i . e . tungsten oxide etching with fluorine and hydrogen containing plasmas in remote reactor from AMAT). Furthermore, it is expected that downstream plasma will replace many wet chemical etching processes to alleviate the issue of pattern collapses caused by capillary forces when nanometer size high aspect ratio structures are immersed in liquids. In these downstream plasmas, radicals are the main active species and a control of their density is of prime importance. Most of gases used and radicals produced in etching plasmas (HBr, BrCl, Br2, NF3, CH2F2,...) have strong absorption bands in the vacuum UV spectral region and we have shown that very low concentration of these species can be detected by VUV absorption. We have recently improved the technique by using a VUV CCD camera, instead of the PMT, which render possible the Broad-Band absorption spectroscopy in the 120-200 nm range, with a deuterium lamp, or a laser produced xenon arc lamp as light source. The multi-spectral detection ability of the CCD reduces the acquisition time to less than 1 second and can permit the real time control of the process control.

  18. Assessment of optical path length in tissue using neodymium and water absorptions for application to near-infrared spectroscopy.

    PubMed

    Nighswander-Rempel, Stephen P; Kupriyanov, Valery V; Shaw, R Anthony

    2005-01-01

    Quantitative analysis of blood oxygen saturation using near-IR spectroscopy is made difficult by uncertainties in both the absolute value and the wavelength dependence of the optical path length. We introduce a novel means of assessing the wavelength dependence of path length, exploiting the relative intensities of several absorptions exhibited by an exogenous contrast agent (neodymium). Combined with a previously described method that exploits endogenous water absorptions, the described technique estimates the absolute path length at several wavelengths throughout the visible/near-IR range of interest. Isolated rat hearts (n = 11) are perfused separately with Krebs-Henseleit buffer (KHB) and a KHB solution to which neodymium had been added, and visible/near-IR spectra are acquired using an optical probe made up of emission and collection fibers in concentric rings of diameters 1 and 3 mm, respectively. Relative optical path lengths at 520, 580, 679, 740, 800, 870, and 975 nm are 0.41+/-0.13, 0.49+/-0.21, 0.90+/-0.09, 0.94+/-0.01, 1.00, 0.84+/-0.01, and 0.78+/-0.08, respectively. The absolute path length at 975 nm is estimated to be 3.8+/-0.6 mm, based on the intensity of the water absorptions and the known tissue water concentration. These results are strictly valid only for the experimental geometry applied here.

  19. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  20. Time resolved metal line profile by near-ultraviolet tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vitelaru, C.; de Poucques, L.; Minea, T. M.; Popa, G.

    2011-03-01

    Pulsed systems are extensively used to produce active species such as atoms, radicals, excited states, etc. The tunable diode laser absorption spectroscopy (TD-LAS) is successfully used to quantify the density of absorbing species, but especially for stationary or slow changing systems. The time resolved-direct absorption profile (TR-DAP) measurement method by TD-LAS, with time resolution of μs is proposed here as an extension of the regular use of diode laser absorption spectroscopy. The spectral narrowness of laser diodes, especially in the blue range (˜0.01 pm), combined with the nanosecond fast trigger of the magnetron pulsed plasma and long trace recording on the oscilloscope (period of second scale) permit the detection of the sputtered titanium metal evolution in the afterglow (˜ms). TR-DAP method can follow the time-dependence of the temperature (Doppler profile) and the density (deduced from the absorbance) of any medium and heavy species in a pulsed system.

  1. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  2. Surface arsenic speciation of a drinking-water treatment residual using X-ray absorption spectroscopy.

    PubMed

    Makris, Konstantinos C; Sarkar, Dibyendu; Parsons, Jason G; Datta, Rupali; Gardea-Torresdey, Jorge L

    2007-07-15

    Drinking-water treatment residuals (WTRs) present a low-cost geosorbent for As-contaminated waters and soils. Previous work has demonstrated the high affinity of WTRs for As, but data pertaining to the stability of sorbed As is missing. Sorption/desorption and X-ray absorption spectroscopy (XAS), both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) studies, were combined to determine the stability of As sorbed by an Fe-based WTR. Arsenic(V) and As(III) sorption kinetics were biphasic in nature, sorbing >90% of the initial added As (15,000 mg kg(-1)) after 48 h of reaction. Subsequent desorption experiments with a high P load (7500 mg kg(-1)) showed negligible As desorption for both As species, approximately <3.5% of sorbed As; the small amount of desorbed As was attributed to the abundance of sorption sites. XANES data showed that sorption kinetics for either As(III) or As(V) initially added to solution had no effect on the sorbed As oxidation state. EXAFS spectroscopy suggested that As added either as As(III) or as As(V) formed inner-sphere mononuclear, bidentate complexes, suggesting the stability of the sorbed As, which was further corroborated by the minimum As desorption from the Fe-WTR.

  3. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics.

    PubMed

    Neville, Simon P; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S

    2016-10-14

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L(2) method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  4. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2014-03-04

    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.

  5. Absorption measurement of thin films by using photothermal techniques: The influence of thermal properties

    SciTech Connect

    Wu, Z.L.; Kuo, P.K.; Thomas, R.L.; Fan, Z.X.

    1995-12-31

    Photothermal techniques are widely used for measuring optical absorption of thin film coatings. In these applications the calibration of photothermal signal is typically based on the assumption that the thermal properties of the thin film make very little contribution. In this paper we take mirage technique as an example and present a detailed analysis of the influence of thin film thermal properties on absorption measurements. The results show that the traditional calibration method is not valid on surprisingly many situations.

  6. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    SciTech Connect

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th.; Heimann, P. A.; Dorchies, F.

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  7. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE PAGES

    Gaudin, J.; Fourment, C.; Cho, B. I.; ...

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  8. Sensitive and absolute absorption measurements in optical materials and coatings by laser-induced deflection technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon

    2012-12-01

    The laser-induced deflection (LID) technique, a photo-thermal deflection setup with transversal pump-probe-beam arrangement, is applied for sensitive and absolute absorption measurements of optical materials and coatings. Different LID concepts for bulk and transparent coating absorption measurements, respectively, are explained, focusing on providing accurate absorption data with only one measurement and one sample. Furthermore, a new sandwich concept is introduced that allows transferring the LID technique to very small sample geometries and to significantly increase the sensitivity for materials with weak photo-thermal responses. For each of the different concepts, a representative application example is given. Particular emphasis is placed on the importance of the calibration procedure for providing absolute absorption data. The validity of an electrical calibration procedure for the LID setup is proven using specially engineered surface absorbing samples. The electrical calibration procedure is then applied to evaluate two other approaches that use either doped samples or highly absorptive reference samples.

  9. Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications.

    PubMed

    Werblinski, Thomas; Engel, Sascha R; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2013-06-03

    The first supercontinuum (SC) absorption spectroscopy measurements showing the feasibility of quantitative temperature evaluation are presented to the best of the authors' knowledge. Temperature and multi-species measurements were carried out at a detection rate of ~2 MHz in a high-temperature flow cell within a temperature range from 450 K to 750 K at 0.22 MPa, representing conditions during the suction and compression stroke in an internal combustion (IC) engine. The broadband SC pulses were temporally dispersed into fast wavelength sweeps, covering the overtone absorption bands 2ν(1), 2ν(3), ν(1) + ν(3) of H2O and 3ν(3) of CO2 in the near-infrared region from 1330 nm to 1500 nm. The temperature information is inferred from the peak ratio of a temperature sensitive (1362.42 nm) and insensitive (1418.91 nm) absorption feature in the ν(1) + ν(3) overtone bands of water. The experimental results are in very good agreement with theoretical intensity ratios calculated from absorption spectra based on HiTran data.

  10. Determining crystal phase purity in c-BP through X-ray absorption spectroscopy.

    PubMed

    Huber, S P; Medvedev, V V; Gullikson, E; Padavala, B; Edgar, J H; van de Kruijs, R W E; Bijkerk, F; Prendergast, D

    2017-02-02

    We employ X-ray absorption near-edge spectroscopy at the boron K-edge and the phosphorus L2,3-edge to study the structural properties of cubic boron phosphide (c-BP) samples. The X-ray absorption spectra are modeled from first-principles within the density functional theory framework using the excited electron core-hole (XCH) approach. A simple structural model of a perfect c-BP crystal accurately reproduces the P L2,3-edge, however it fails to describe the broad and gradual onset of the B K-edge. Simulations of the spectroscopic signatures in boron 1s excitations of intrinsic point defects and the hexagonal BP crystal phase show that these additions to the structural model cannot reproduce the broad pre-edge of the experimental spectrum. Calculated formation enthalpies show that, during the growth of c-BP, it is possible that amorphous boron phases can be grown in conjunction with the desired boron phosphide crystalline phase. In combination with experimental and theoretically obtained X-ray absorption spectra of an amorphous boron structure, which have a similar broad absorption onset in the B K-edge spectrum as the cubic boron phosphide samples, we provide evidence for the presence of amorphous boron clusters in the synthesized c-BP samples.

  11. [Concentration retrieving method of SO2 using differential optical absorption spectroscopy based on statistics].

    PubMed

    Liu, Bin; Sun, Chang-Ku; Zhang, Chi; Zhao, Yu-Mei; Liu, Jun-Ping

    2011-01-01

    A concentration retrieving method using statistics is presented, which is applied in differential optical absorption spectroscopy (DOAS) for measuring the concentration of SO2. The method uses the standard deviation of the differential absorption to represents the gas concentration. Principle component analysis (PCA) method is used to process the differential absorption spectrum. In the method, the basis data for the concentration retrieval of SO2 is the combination of the PCA processing result, the correlation coefficient, and the standard deviation of the differential absorption. The method is applied to a continuous emission monitoring system (CEMS) with optical path length of 0.3 m. Its measuring range for SO2 concentration is 0-5 800 mg x m(-3). The nonlinear calibration and the temperature compensation for the system were executed. The full scale error of the retrieving concentration is less than 0.7% FS. And the measuring result is -4.54 mg x m(-3) when the concentration of SO2 is zero.

  12. An x-ray absorption spectroscopy study of Mo oxidation in Pb at elevated temperatures

    SciTech Connect

    Liu, Shanshan; Olive, Daniel; Terry, Jeff; Segre, Carlo U.

    2009-06-30

    The corrosion of fuel cladding and structural materials by lead and lead-bismuth eutectic in the liquid state at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. In this work, lead corrosion studies of molybdenum were performed to investigate the interaction layer as a function of temperature by X-ray absorption spectroscopy. In situ X-ray absorption measurements on a Mo substrate with a 3-6 {micro}m layer of Pb deposited by thermal evaporation were performed at temperatures up to 900 C and at a 15{sup o} angle to the incident X-rays. The changes in the local atomic structure of the corrosion layer are visible in the difference extended X-ray absorption fine structure and the linear combination fitting of the X-ray absorption near-edge structure to as-deposited molybdenum sample and molybdenum oxide (MoO{sub 2} and MoO{sub 3}) standards. The data are consistent with the appearance of MoO{sub 3} in an intermediate temperature range (650-800 C) and the more stable MoO{sub 2} phase dominating at high and low temperatures.

  13. The nature of arsenic in uranium mill tailings by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cutler, J. N.; Chen, N.; Jiang, D. T.; Demopoulos, G. P.; Jia, Y.; Rowson, J. W.

    2003-05-01

    In order to understand the evolving world of environmental issues, the ability to characterize and predict the stability and bioavailability of heavy métal contaminants in mine waste is becoming increasingly more important. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopies were used to characterize a series of synthetic and natural samples associated with mine tailings processing. XANES was shown to be excellent as a tool to rapidly differentiate oxidation states of arsenic within the samples. The EXAFS spectra provided information on the mineralogy of the precipitated raffinate and tailings and showed that these samples are composed of a mixture of amorphous ferric arsenates, adsorbed arsenates and a mixture of other poorly ordered arsenates.

  14. Ablation-initiated Isotope-selective Atomic Absorption Spectroscopy of Lanthanide Elements

    SciTech Connect

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Maruyama, Y.; Wakaida, I.; Watanabe, K.

    2009-03-17

    For remote isotope analysis of low-decontaminated trans-uranium (TRU) fuel, absorption spectroscopy has been applied to a laser-ablated plume of lanthanide elements. To improve isotopic selectivity and detection sensitivity of the ablated species, various experimental conditions were optimized. Isotope-selective absorption spectra were measured by observing the slow component of the plume produced under low-pressure rare-gas ambient. The measured minimum line width of about 0.9 GHz was close to the Doppler width of the Gd atomic transition at room temperature. The relaxation rate of high-lying metastable state was found to be higher than that of the ground state, which suggests that higher analytical sensitivity can be obtained using low-lying state transition. Under helium gas environment, Doppler splitting was caused from particle motion. This effect was considered for optimization for isotope selection and analysis. Some analytical performances of this method were determined under optimum conditions and were discussed.

  15. Differential Optical Absorption Spectroscopy (DOAS) using Targets: SO2 and NO2 Measurements in Montevideo City

    NASA Astrophysics Data System (ADS)

    Louban, Ilia; Píriz, Gustavo; Platt, Ulrich; Frins, Erna

    2008-04-01

    SO2 and NO2 were remotely measured in a main street of Montevideo city using Multiaxis-Differential Optical Absorption Spectroscopy (MAX-DOAS) combined with on-field selected targets. Target-based measurements are the basis of a new experimental procedure called Topographic Target Light scattering-DOAS (TOTAL-DOAS) that provides a well define absorption path to measure the near surface distribution of trace gases in the boundary layer. It combines the measurement principles of the long-path DOAS and zenith-scattered sunlight DOAS, within the near UV and VIS spectral range. We give a general description of the procedure and present first results of the 2006 campaign at Montevideo.

  16. Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-01-01

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with <1E-3 absorbance noise for a 10 second measurement time.

  17. Quantifying the effect of finite spectral bandwidth on extinction coefficient of species in laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.

    2016-11-01

    The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.

  18. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Parker, Ron; Carr, Zak; MacLean, Mathew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  19. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  20. Absorption spectroscopy of wire-array plasma at the non-radiative stage

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Durmaz, T.; Anderson, A.; Astanovitskiy, A.; Chalyy, O.; Altemara, S. D.; Papp, D.; McKee, E.; Chittenden, J. P.; Niasse, N.; Shevelko, A. P.

    2010-11-01

    Absorption spectroscopy was applied to 1 MA wire-array Z-pinches. The 50 TW Leopard laser was coupled with the Zebra generator for x-ray backlighting of wire arrays. Wire-array plasmas were investigated at the ablation and implosion stages. Broadband x-ray radiation from a laser produced Sm plasma was used to backlight Al star wire arrays in the range of 7-9 å. Two time-integrated x-ray conical spectrometers recorded reference and main spectra. The backlighting radiation was separated from the powerful Z-pinch x-ray burst by collimators. A comparison of the backlighting radiation spectra that passed through the plasma with reference spectra indicates absorption lines in the range of 8.2-8.4 å. A plasma density profile was simulated with a 3D resistive MHD code. Simulations with atomic kinetics models derived an electron temperature of Al wire-array plasma.

  1. Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source

    NASA Astrophysics Data System (ADS)

    Pertot, Yoann; Schmidt, Cédric; Matthews, Mary; Chauvet, Adrien; Huppert, Martin; Svoboda, Vit; von Conta, Aaron; Tehlar, Andres; Baykusheva, Denitsa; Wolf, Jean-Pierre; Wörner, Hans Jakob

    2017-01-01

    Time-resolved x-ray absorption spectroscopy (TR-XAS) has so far practically been limited to large-scale facilities, to subpicosecond temporal resolution, and to the condensed phase. We report the realization of TR-XAS with a temporal resolution in the low femtosecond range by developing a tabletop high-harmonic source reaching up to 350 electron volts, thus partially covering the spectral region of 280 to 530 electron volts, where water is transmissive. We used this source to follow previously unexamined light-induced chemical reactions in the lowest electronic states of isolated CF4+ and SF6+ molecules in the gas phase. By probing element-specific core-to-valence transitions at the carbon K-edge or the sulfur L-edges, we characterized their reaction paths and observed the effect of symmetry breaking through the splitting of absorption bands and Rydberg-valence mixing induced by the geometry changes.

  2. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  3. Examination of Arsenic Speciation in Sulfidic Solutions Using X-ray Absorption Spectroscopy

    EPA Science Inventory

    The chemical speciation of arsenic in sulfidic waters is complicated by the existence of thioarsenic species. The purpose of this research was to use advanced spectroscopy techniques along with speciation modeling and chromatography to elucidate the chemical speciation of As in ...

  4. In situ UV-visible reflection absorption wavelength modulation spectroscopy of species irreversibly adsorbed on electrode surfaces

    SciTech Connect

    Kim, Sunghyun; Scherson, D.A. )

    1992-12-15

    A method is herein described for the in situ detection of species adsorbed on electrode surfaces which employs a vibrating grating to modulate the wavelength of the incident light. This technique denoted as reflection absorption wavelength modulation spectroscopy (RAWMS) has made it possible to obtain at a fixed electrode potential normalized, differential UV-visible spectra of a single, irreversibly adsorbed monolayer of cobalt tetrasulfonated phthalocyanine (Co[sup II]TsPc) on the basal plane of highly oriented pyrolytic graphite (HOPG(bp)) and of methylene blue (MB) on graphite. The (wavelength) integrated difference RAWMS spectra for these adsorbed species were remarkably similar to those observed for the same compounds in aqueous solutions when present in the monomeric form. Complementary wavelength modulation experiments involving a conventional transmission geometry have shown that the instrument involved in the in situ RAWMS measurements is capable of resolving absorbance changes on the order of 0.002 units. 20 refs.

  5. Absolute I(asterisk) quantum yields for the ICN A state by diode laser gain-vs-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.

  6. Electronic structure of nickel porphyrin NiP: Study by X-ray photoelectron and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Svirskiy, G. I.; Sergeeva, N. N.; Krasnikov, S. A.; Vinogradov, N. A.; Sergeeva, Yu. N.; Cafolla, A. A.; Preobrajenski, A. B.; Vinogradov, A. S.

    2017-02-01

    Energy distributions and properties of the occupied and empty electronic states for a planar complex of nickel porphyrin NiP are studied by X-ray photoemission and absorption spectroscopy techniques. As a result of the analysis of the experimental spectra of valence photoemission, the nature and energy positions of the highest occupied electronic states were determined: the highest occupied state is formed mostly by atomic states of the porphine ligand; the following two states are associated with 3 d states of the nickel atom. It was found that the lowest empty state is specific and is described by the σ-type b 1 g MO formed by empty Ni3{d_{{x^2} - {y^2}}}-states and occupied 2 p-states of lone electron pairs of nitrogen atoms. This specific nature of the lowest empty state is a consequence of the donor-acceptor chemical bond in NiP.

  7. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts.

    PubMed

    Frenkel, Anatoly I

    2012-12-21

    Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to study short range order in heterometallic alloys for almost four decades. In this critical review, experimental, theoretical and data analytical approaches are revisited to examine their power, and limitations, in studies of bimetallic nanocatalysts. This article covers the basics of EXAFS experiments, data analysis, and modelling of nanoscale clusters. It demonstrates that, in the best case scenario, quantitative information about the nanocatalyst's size, shape, details of core-shell architecture, as well as static and dynamic disorder in metal-metal bond lengths can be obtained. The article also emphasizes the main challenge accompanying such insights: the need to account for the statistical nature of the EXAFS technique, and discusses corrective strategies.

  8. Determination of trace elements in foods by HCl-HNO3 leaching and flame atomic absorption spectroscopy.

    PubMed

    Puchyr, R F; Shapiro, R

    1986-01-01

    Aluminum, iron, tin, zinc, calcium, magnesium, nickel, copper, chromium, cadmium, and potassium in foods can be extracted by HCl-HNO3 leaching and determined quantitatively using flame atomic absorption spectroscopy (AAS), with recoveries ranging from 90 to 110%. Thirty to 40 samples of almost any type of food sample can be analyzed routinely for 2 elements in 4-5 h. In contrast, one or 2 days are required when a wet-ash or dry-ash technique is used. Extraction consists of weighing 2-10 g samples into 125 mL Erlenmeyer flasks, adding 20 mL concentrated HCl-HNO3 (9 + 1), then heating in a 82- 93 degrees C water bath for 30 min. After cooling, samples are diluted to volume in 50 mL Nessler tubes and then filtered through No. 541 or 540 Whatman paper. The filtrate is analyzed directly by AAS.

  9. Sulfur K-edge X-ray absorption spectroscopy as an experimental probe for S-nitroso proteins

    SciTech Connect

    Szilagyi, Robert K. . E-mail: Szilagyi@Montana.EDU; Schwab, David E.

    2005-04-29

    X-ray absorption spectroscopy at the sulfur K-edge (2.4-2.6 keV) provides a sensitive and specific technique to identify S-nitroso compounds, which have significance in nitric oxide-based cell signaling. Unique spectral features clearly distinguish the S-nitroso-form of a cysteine residue from the sulfhydryl-form or from a methionine thioether. Comparison of the sulfur K-edge spectra of thiolate, thiol, thioether, and S-nitroso thiolate compounds indicates high sensitivity of energy positions and intensities of XAS pre-edge features as determined by the electronic environment of the sulfur absorber. A new experimental setup is being developed for reaching the in vivo concentration range of S-nitroso thiol levels in biological samples.

  10. Absolute infrared vibrational band intensities of molecular ions determined by direct laser absorption spectroscopy in fast ion beams

    SciTech Connect

    Keim, E.R.; Polak, M.L.; Owrutsky, J.C.; Coe, J.V.; Saykally, R.J. )

    1990-09-01

    The technique of direct laser absorption spectroscopy in fast ion beams has been employed for the determination of absolute integrated band intensities ({ital S}{sup 0}{sub {ital v}}) for the {nu}{sub 3} fundamental bands of H{sub 3}O{sup +} and NH{sup +}{sub 4}. In addition, the absolute band intensities for the {nu}{sub 1} fundamental bands of HN{sup +}{sub 2} and HCO{sup +} have been remeasured. The values obtained in units of cm{sup {minus}2} atm{sup {minus}1} at STP are 1880(290) and 580(90) for the {nu}{sub 1} fundamentals of HN{sup +}{sub 2} and HCO{sup +}, respectively; and 4000(800) and 1220(190) for the {nu}{sub 3} fundamentals of H{sub 3}O{sup +} and NH{sup +}{sub 4}, respectively. Comparisons with {ital ab} {ital initio} results are presented.

  11. Temporally resolved characterization of shock-heated foam target with Al absorption spectroscopy for fast electron transport study

    NASA Astrophysics Data System (ADS)

    Yabuuchi, T.; Sawada, H.; Regan, S. P.; Anderson, K.; Wei, M. S.; Betti, R.; Hund, J.; Key, M. H.; Mackinnon, A. J.; McLean, H. S.; Paguio, R. R.; Patel, P. K.; Saito, K. M.; Stephens, R. B.; Wilks, S. C.; Beg, F. N.

    2012-09-01

    The CH foam plasma produced by a laser-driven shock wave has been characterized by a temporally resolved Al 1s-2p absorption spectroscopy technique. A 200 mg/cm3 foam target with Al dopant was developed for this experiment, which used an OMEGA EP [D. D. Meyerhofer et al., J. Phys.: Conf. Ser. 244, 032010 (2010)] long pulse beam with an energy of 1.2 kJ and 3.5 ns pulselength. The plasma temperatures were inferred with the accuracy of 5 eV from the fits to the measurements using an atomic physics code. The results show that the inferred temperature is sustained at 40-45 eV between 6 and 7 ns and decreases to 25 eV at 8 ns. 2-D radiation hydrodynamic simulations show a good agreement with the measurements. Application of the shock-heated foam plasma platform toward fast electron transport experiments is discussed.

  12. Hot Carrier Dynamics in the X Valley in Si and Ge Measured by Pump-IR-Probe Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wang, W. B.; Cavicchia, M. A.; Alfano, R. R.

    1996-01-01

    Si is the semiconductor of choice for nanoelectronic roadmap into the next century for computer and other nanodevices. With growing interest in Si, Ge, and Si(sub m)Ge(sub n) strained superlattices, knowledge of the carrier relaxation processes in these materials and structures has become increasingly important. The limited time resolution for earlier studies of carrier dynamics in Ge and Si, performed using Nd:glass lasers, was not sufficient to observe the fast cooling processes. In this paper, we present a direct measurement of hot carrier dynamics in the satellite X valley in Si and Ge by time-resolved infrared(IR) absorption spectroscopy, and show the potential of our technique to identify whether the X valley is the lowest conduction valley in semiconductor materials and structures.

  13. Operando characterization of batteries using x-ray absorption spectroscopy: advances at the beamline XAFS at synchrotron Elettra

    NASA Astrophysics Data System (ADS)

    Aquilanti, Giuliana; Giorgetti, Marco; Dominko, Robert; Stievano, Lorenzo; Arčon, Iztok; Novello, Nicola; Olivi, Luca

    2017-02-01

    X-ray absorption spectroscopy is a synchrotron radiation based technique that is able to provide information on both local structure and electronic properties in a chemically selective manner. It can be used to characterize the dynamic processes that govern the electrochemical energy storage in batteries, and to shed light on the redox chemistry and changes in structure during galvanostatic cycling to design cathode materials with improved properties. Operando XAS studies have been performed at beamline XAFS at Elettra on different systems. For Li-ion batteries, a multiedge approach revealed the role of the different cathode components during the charge and discharge of the battery. In addition, Li-S batteries for automotive applications were studied. Operando sulfur K-edge XANES and EXAFS analysis was used to characterize the redox chemistry of sulfur, and to relate the electrochemical mechanism to its local structure.

  14. Anisotropy of chemical bonds in collagen molecules studied by X-ray absorption near-edge structure (XANES) spectroscopy.

    PubMed

    Lam, Raymond S K; Metzler, Rebecca A; Gilbert, Pupa U P A; Beniash, Elia

    2012-03-16

    Collagen type I fibrils are the major building blocks of connective tissues. Collagen fibrils are anisotropic supramolecular structures, and their orientation can be revealed by polarized light microscopy and vibrational microspectroscopy. We hypothesized that the anisotropy of chemical bonds in the collagen molecules, and hence their orientation, might also be detected by X-ray photoemission electron spectromicroscopy (X-PEEM) and X-ray absorption near-edge structure (XANES) spectroscopy, which use linearly polarized synchrotron light. To test this hypothesis, we analyzed sections of rat-tail tendon, composed of parallel arrays of collagen fibrils. The results clearly indicate that XANES-PEEM is sensitive to collagen fibril orientation and, more specifically, to the orientations of carbonyl and amide bonds in collagen molecules. These data suggest that XANES-PEEM is a promising technique for characterizing the chemical composition and structural organization at the nanoscale of collagen-based connective tissues, including tendons, cartilage, and bone.

  15. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  16. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  18. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  19. Tunable Diode Laser Absorption Spectroscopy of Metastable Atoms in Dusty Plasmas

    SciTech Connect

    Hoang Tung Do; Hippler, Rainer

    2008-09-07

    Spatial density profile of neon metastable produced in dusty plasma was investigated by means of tunable diode laser absorption spectroscopy. The line averaged measured density drops about 30% with the presence of dust particles. The observations provide evidence for a significant interaction between atoms and powder particles which are important for energy transfer from plasma to particles. The power per unit area absorbed by dust particles due to the collision of metastable atoms with dust particle surface is about some tens of mW/m{sup 2}.

  20. Determination of the melting temperature of palladium nanoparticles by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vlasenko, V. G.; Podsukhina, S. S.; Kozinkin, A. V.; Zubavichus, Ya. V.

    2016-02-01

    The anharmonicity parameters of the interatomic potential in ~4-nm palladium nanoparticles deposited on poly(tetra)fluoroethylene microgranules 0.2-0.5 μm in average size were studied by X-ray absorption spectroscopy from an analysis of temperature-dependent EXAFS Pd K edges. The parameters of the interatomic potential obtained were used to calculate melting temperature T melt = 1591 K and Debye temperature ΘD = 257 K of palladium nanoparticles; these temperatures are significantly lower than those in metallic palladium: 277 K and 1825 K, respectively.

  1. Infrared reflection absorption spectroscopy investigation of carbon nanotube growth on cobalt catalyst surfaces

    NASA Astrophysics Data System (ADS)

    Kimura, Yasuo; Numasawa, Takeru; Nihei, Mizuhisa; Niwano, Michio

    2007-02-01

    To clarify the effect the oxygen has on the carbon nanotube (CNT) growth mechanisms, the authors use infrared absorption spectroscopy for the monitoring of CNT growth on cobalt catalyst surfaces. CNT grew when methanol was used as a reaction gas, while they did not grow when methane was used. The authors observed spectral changes due to the formation of cobalt oxides and methoxides on the cobalt catalyst surfaces only during the growth of CNT. The results indicate that partial oxidation of the cobalt catalyst surface increases the adsorption probability of the reaction gas and ultimately induces growth of CNT.

  2. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  3. X-Ray Absorption Spectroscopy of Cuprous-Thiolate Clusters in Saccharomyces Cerevisiae Metallothionein

    SciTech Connect

    Zhang, L.; Pickering, I.J.; Winge, D.R.; George, G.N.

    2009-05-28

    Copper (Cu) metallothioneins are cuprous-thiolate proteins that contain multimetallic clusters, and are thought to have dual functions of Cu storage and Cu detoxification. We have used a combination of X-ray absorption spectroscopy (XAS) and density-functional theory (DFT) to investigate the nature of Cu binding to Saccharomyces cerevisiae metallothionein. We found that the XAS of metallothionein prepared, containing a full complement of Cu, was quantitatively consistent with the crystal structure, and that reconstitution of the apo-metallothionein with stoichiometric Cu results in the formation of a tetracopper cluster, indicating cooperative binding of the Cu ions by the metallothionein.

  4. Intracavity Laser Absorption Spectroscopy of Zirconium Fluoride in the Near Infrared

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; Harms, Jack C.; O'Brien, James J.

    2013-06-01

    A new band of ZrF has been recorded in the near-infrared with rotational resolution using intracavity laser absorption spectroscopy. A red-degraded bandhead is observed at 12527wn, and 2 R-branches and 2 P-branches have been identified. The results of the analysis will be presented. The gas phase ZrF molecules were produced using a zirconium-lined hollow cathode in an argon-based electric discharge with a small amount of SF_{6}.

  5. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-04

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

  6. Diffuse-light absorption spectroscopy for beer classification and prediction of alcoholic content

    NASA Astrophysics Data System (ADS)

    Ciaccheri, L.; Samano Baca, E. E.; Russo, M. T.; Ottevaere, H.; Thienpont, H.; Mignani, A. G.

    2012-04-01

    A miscellaneous of 86 beers was characterized by non-destructive, fast and reagent-free optical measurements. Diffuselight absorption spectroscopy performed in the visible and near-infrared bands was used to gather a turbidity-free spectroscopic information. Also, conventional turbidity and refractive index measurements were added for completing the optical characterization. The near-infrared spectra provided a straightforward turbidity-free assessment of the alcoholic strength. Then, the entire optical data set was processed by means of multivariate analysis looking for a beer clustering according to the own character and identity. Good results were achieved, indicating that optical methods can be successfully used for beer authentication.

  7. [Measurement of trace elements in blood serum by atomic absorption spectroscopy with electrothermal atomization].

    PubMed

    Rogul'skiĭ, Iu V; Danil'chenko, S N; Lushpa, A P; Sukhodub, L F

    1997-09-01

    Describes a method for measuring trace elements Cr, Mn, Co, Fe, Cu, Zn, and Mo in the blood serum using non-flame atomization (KAC 120.1 complex). Optimal conditions for preparing the samples were defined, temperature regimens for analysis of each element selected, and original software permitting automated assays created. The method permits analysis making use of the minimal samples: 0.1 ml per 10 parallel measurements, which is 100 times less than needed for atomic absorption spectroscopy with flame atomization of liquid samples. Metrological characteristics of the method are assessed.

  8. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy.

    PubMed

    Lai, Wei-Cheng; Chakravarty, Swapnajit; Zou, Yi; Chen, Ray T

    2013-10-01

    We experimentally demonstrate simultaneous selective detection of xylene and trichloroethylene (TCE) using multiplexed photonic crystal waveguides (PCWs) by near-infrared optical absorption spectroscopy on a chip. Based on the slow light effect of photonic crystal structure, the sensitivity of our device is enhanced to 1 ppb (v/v) for xylene and 10 ppb (v/v) for TCE in water. Multiplexing is enabled by multimode interference power splitters and Y-combiners that integrate multiple PCWs on a silicon chip in a silicon-on-insulator platform.

  9. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  10. Solvation and Deprotonation Dynamics in Reverse Micelles via Broadband Femtoseond Transient Absorption (BFTA) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cole, Richard

    2009-10-01

    Broadband femtosecond transient absorption (BFTA) spectroscopy is a useful tool in characterizing femtosecond and picosecond physical and chemical dynamics such as solvation, electron transfer, and deprotonation dynamics. This presentation will focus on our most recent results, which utilize BFTA spectroscopy in the ultraviolet-visible (UV-vis) spectral range to probe deprotonation and solvation dynamics in the nanoscopic confinement of reverse micelles. In these studies, pyranine, a `photo-acid', probes both solvation and deprotonation dynamics in reverse micelles formed from cationic (cetyl trimethylammonium bromide, CTAB), anionic (sodium dioctyl sulfosuccinate, AOT), and neutral (polyoxyethylene nonylphenylether, Igepal) surfactants. Dynamic behavior will be discussed in terms of the degree of nanoscopic confinement (micellar size) and the impact of varying interfacial environments.

  11. A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu.

    PubMed

    Ewels, Philip; Sikora, Thierry; Serin, Virginie; Ewels, Chris P; Lajaunie, Luc

    2016-06-01

    The electron energy-loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) database has been completely rewritten, with an improved design, user interface, and a number of new tools. The database is accessible at https://eelsdb.eu/ and can now be used without registration. The submission process has been streamlined to encourage spectrum submissions and the new design gives greater emphasis on contributors' original work by highlighting their papers. With numerous new filters and a powerful search function, it is now simple to explore the database of several hundred EELS and XAS spectra. Interactive plots allow spectra to be overlaid, facilitating online comparison. An application-programming interface has been created, allowing external tools and software to easily access the information held within the database. In addition to the database itself, users can post and manage job adverts and read the latest news and events regarding the EELS and XAS communities. In accordance with the ongoing drive toward open access data increasingly demanded by funding bodies, the database will facilitate open access data sharing of EELS and XAS spectra.

  12. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  13. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    SciTech Connect

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.; Pinkerton, Kent E.; Guo, T.

    2014-12-16

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.

  14. Peroxy radical detection for airborne atmospheric measurements using absorption spectroscopy of NO2

    NASA Astrophysics Data System (ADS)

    Horstjann, M.; Andrés Hernández, M. D.; Nenakhov, V.; Chrobry, A.; Burrows, J. P.

    2014-05-01

    Development of an airborne instrument for the determination of peroxy radicals (PeRCEAS - peroxy radical chemical enhancement and absorption spectroscopy) is reported. Ambient peroxy radicals (HO2 and RO2, R being an organic chain) are converted to NO2 in a reactor using a chain reaction involving NO and CO. Provided that the amplification factor, called effective chain length (eCL), is known, the concentration of NO2 can be used as a proxy for the peroxy radical concentration in the sampled air. The eCL depends on radical surface losses and must thus be determined experimentally for each individual setup. NO2 is detected by continuous-wave cavity ring-down spectroscopy (cw-CRDS) using an extended cavity diode laser (ECDL) at 408.9 nm. Optical feedback from a V-shaped resonator maximizes transmission and allows for a simple detector setup. CRDS directly yields absorption coefficients, thus providing NO2 concentrations without additional calibration. The optimum 1σ detection limit is 0.3 ppbv at an averaging time of 40 s and an inlet pressure of 300 hPa. Effective chain lengths were determined for HO2 and CH3O2 at different inlet pressures. The 1σ detection limit at an inlet pressure of 300 hPa for HO2 is 3 pptv for an averaging time of 120 s.

  15. Adsorption of mercury on lignin: combined surface complexation modeling and X-ray absorption spectroscopy studies.

    PubMed

    Lv, Jitao; Luo, Lei; Zhang, Jing; Christie, Peter; Zhang, Shuzhen

    2012-03-01

    Adsorption of mercury (Hg) on lignin was studied at a range of pH values using a combination of batch adsorption experiments, a surface complexation model (SCM) and synchrotron X-ray absorption spectroscopy (XAS). Surface complexation modeling indicates that three types of acid sites on lignin surfaces, namely aliphatic carboxylic-, aromatic carboxylic- and phenolic-type surface groups, contributed to Hg(II) adsorption. The bond distance and coordination number of Hg(II) adsorption samples at pH 3.0, 4.0 and 5.5 were obtained from extended X-ray absorption fine structure (EXAFS) spectroscopy analysis. The results of SCM and XAS combined reveal that the predominant adsorption species of Hg(II) on lignin changes from HgCl(2)(0) to monodentate complex -C-O-HgCl and then bidentate complex -C-O-Hg-O-C- with increasing pH value from 2.0 to 6.0. The good agreement between SCM and XAS results provides new insight into understanding the mechanisms of Hg(II) adsorption on lignin.

  16. Evolution of Silver Nanoparticles in the Rat Lung Investigated by X-ray Absorption Spectroscopy

    PubMed Central

    2015-01-01

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. We found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period. PMID:25517690

  17. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    PubMed

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  18. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    PubMed Central

    Zhao, Gang; Tan, Wei; Jia, Mengyuan; Hou, Jiajuan; Ma, Weiguang; Dong, Lei; Zhang, Lei; Feng, Xiaoxia; Wu, Xuechun; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-01

    A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. PMID:27657082

  19. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  20. Excitonic emission and absorption resonances in V0.25W0.75Se2 single crystals grown by direct vapour transport technique

    NASA Astrophysics Data System (ADS)

    Solanki, G. K.; Pataniya, Pratik; Sumesh, C. K.; Patel, K. D.; Pathak, V. M.

    2016-05-01

    A systematic study on emission and absorption spectra of vanadium mixed tungsten diselenide single crystals grown by direct vapour transport (DVT) technique is reported. The grown crystals were characterized by energy dispersive analysis of X-ray (EDAX), which gives the confirmation about the stoichiometry. The structural characterizations were accomplished by X-ray diffraction (XRD), surface morphology and transmission electron microscopy (TEM). These characterizations were indicating the growth of V0.25W0.75Se2 single crystal from vapour phase. The optical response of this material has been observed by combination of UV-vis-NIR spectroscopy and photo luminescence (PL) spectroscopy. A detailed study of excitonic emission and absorption resonances was carried out on grown crystals. The energy band gap was calculated for indirect allowed transition with absorbed and emitted phonon. Additionally, absorption tail for grown crystal is found to obey the Urbach's rule.

  1. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  2. Impact of atmospheric state uncertainties on retrieved XCO2 columns from laser differential absorption spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Zaccheo, T. Scott; Pernini, Timothy; Snell, Hilary E.; Browell, Edward V.

    2014-01-01

    This work assesses the impact of uncertainties in atmospheric state knowledge on retrievals of carbon dioxide column amounts (XCO2) from laser differential absorption spectroscopy (LAS) measurements. LAS estimates of XCO2 columns are normally derived not only from differential absorption observations but also from measured or prior knowledge of atmospheric state that includes temperature, moisture, and pressure along the viewing path. In the case of global space-based monitoring systems, it is often difficult if not impossible to provide collocated in situ measurements of atmospheric state for all observations, so retrievals often rely on collocated remote-sensed data or values derived from numerical weather prediction (NWP) models to describe the atmospheric state. A radiative transfer-based simulation framework, combined with representative global upper-air observations and matched NWP profiles, was used to assess the impact of model differences on estimates of column CO2 and O2 concentrations. These analyses focus on characterizing these errors for LAS measurements of CO2 in the 1.57-μm region and of O2 in the 1.27-μm region. The results provide a set of signal-to-noise metrics that characterize the errors in retrieved values associated with uncertainties in atmospheric state and provide a method for selecting optimal differential absorption line pairs to minimize the impact of these noise terms.

  3. Initial Results of Optical Vortex Laser Absorption Spectroscopy in the HYPER-I Device

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Asai, Shoma; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Ozawa, Naoya; Tanaka, Masayoshi; Morisaki, Tomohiro

    2015-11-01

    Optical vortex beams have a potential to make a new Doppler measurement, because not only parallel but perpendicular movement of atoms against the beam axis causes the Doppler shift of their resonant absorption frequency. As the first step of a proof-of-principle experiment, we have performed the optical vortex laser absorption spectroscopy for metastable argon neutrals in an ECR plasma produced in the HYPER-I device at the National Institute for Fusion Science, Japan. An external cavity diode laser (TOPTICA, DL100) of which center wavelength was 696.735 nm in vacuum was used for the light source. The Hermite-Gaussian (HG) beam was converted into the Laguerre-Gaussian (LG) beam (optical vortex) by a computer-generated hologram displayed on the spatial light modulator (Hamamatsu, LCOS-SLM X10468-07). In order to make fast neutral flow across the LG beam, a high speed solenoid valve system was installed on the HYPER-I device. Initial results including the comparison of absorption spectra for HG and LG beams will be presented. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.

  4. Investigating the speciation of copper in secondary fly ash by X-ray absorption spectroscopy.

    PubMed

    Tian, Shulei; Yu, Meijuan; Wang, Wei; Wang, Qi; Wu, Ziyu

    2009-12-15

    Although some researchers have reported that chlorides may play an important part in the evaporation of copper during heat treatment of municipal solid waste incinerators (MSWI) fly ash (1, 2) , details on the copper speciation in volatile matters (secondary fly ash, SFA) are still lacking. In this work, we used in situ X-ray absorption spectroscopy (XAS) experiments involving three types of SFA, which was collected from a high-temperature tubular electric furnace by thermal treatment of municipal solid waste incinerator (MSWI) fly ash at 1000, 1150, and 1250 degrees C. The results obtained by a linear combination fit (LCF) of X-ray absorption near edge structure (XANES) spectra revealed that in MSWI fly ash copper mainly exists as CuO and CuSO(4).5H(2)O while chloride almost dominated all the content of the SFA conformation, which was more than 80%. Extended X-ray absorption fine structure (EXAFS) data analysis indicated the presence of both Cu-O and Cu-Cl bonds in the first coordination shell of Cu ions in all SFA, while only Cu-O bonds occur in the MSWI fly ash. Consequently, in the MSWI fly ash during heat treatment copper evaporated as chloride, and the latter plays an important role in the formation of copper chloride.

  5. Study of acyl group migration by femtosecond transient absorption spectroscopy and computational chemistry.

    PubMed

    Pritchina, Elena A; Gritsan, Nina P; Burdzinski, Gotard T; Platz, Matthew S

    2007-10-25

    The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.

  6. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  7. ODS steel raw material local structure analysis using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cintins, A.; Anspoks, A.; Purans, J.; Kuzmin, A.; Timoshenko, J.; Vladimirov, P.; Gräning, T.; Hoffmann, J.

    2015-03-01

    Oxide dispersion strengthened (ODS) steels are promising materials for fusion power reactors, concentrated solar power plants, jet engines, chemical reactors as well as for hydrogen production from thermolysis of water. In this study we used X-ray absorption spectroscopy at the Fe and Cr K-edges as a tool to get insight into the local structure of ferritic and austenitic ODS steels around Fe and Cr atoms and its transformation during mechanical alloying process. Using the analysis of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) we found that for austenitic samples a transformation of ferritic steel to austenitic steel is detectable after 10 hours of milling and proceeds till 40 hours of milling; only small amount of a-phase remains after 80 hours of milling. We found that the Cr K-edge EXAFS can be used to observe distortions inside the material and to get an impression on the formation of chromium clusters. In-situ EXAFS experiments offer a reliable method to investigate the ferritic to austenitic transformation.

  8. Advanced Techniques in Musculoskeletal Oncology: Perfusion, Diffusion, and Spectroscopy.

    PubMed

    Teixeira, Pedro A Gondim; Beaumont, Marine; Gabriela, Hossu; Bailiang, Chen; Verhaeghe, Jean-luc; Sirveaux, François; Blum, Alain

    2015-12-01

    The imaging characterization of musculoskeletal tumors can be challenging, and a significant number of lesions remain indeterminate when conventional imaging protocols are used. In recent years, clinical availability of functional imaging methods has increased. Functional imaging has the potential to improve tumor detection, characterization, and follow-up. The most frequently used functional methods are perfusion imaging, diffusion-weighted imaging (DWI), and MR proton spectroscopy (MRS). Each of these techniques has specific protocol requirements and diagnostic pitfalls that need to be acknowledged to avoid misdiagnoses. Additionally, the application of functional methods in the MSK system has various technical issues that need to be addressed to ensure data quality and comparability. In this article, the application of contrast-enhanced perfusion imaging, DWI, and MRS for the evaluation of bone and soft tissue tumors is discussed, with emphasis on acquisition protocols, technical difficulties, and current clinical indications.

  9. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    PubMed Central

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-01-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements. PMID:28186190

  10. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study.

    PubMed

    Chuang, Cheng-Hao; Ray, Sekhar C; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-10

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp(2)-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  11. Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Matsuba, Ayumi; Misono, Masatoshi

    2014-06-01

    Optical frequency combs are powerful tools for precise frequency measurements in various wavelength regions. The combs have been applied not only to metrology, but also to molecular spectroscopy. Recently, we studied high resolution spectroscopy of iodine molecule assisted by an optical frequency comb. In the study, the comb was used for frequency calibration of a scanning dye laser. In this study, we developed a frequency calibration scheme with a comb and an acousto-optic modulator to realize more precise frequency measurement in a wide frequency range. And the frequency calibration scheme was applied to Doppler-free two-photon absorption (DFTPA) spectroscopy of naphthalene. Naphthalene is one of the prototypical aromatic molecules, and its detailed structure and dynamics in excited states have been reported. We measured DFTPA spectra of A^1B1u(v4=1) ← X^1A_g(v=0) transition around 298 nm. A part of obtained spectra is shown in the figure. The spectral lines are rotationally resolved and the resolution is about 100 kHz. The horizontal axis was calibrated by the developed frequency calibration system employing the comb. The uncertainties of the calibrated frequencies were determined by the fluctuations of the comb modes which were stabilized to a GPS-disciplined clock. A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013).

  12. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  13. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    SciTech Connect

    Hong, X.; Newville, M.; Prakapenka, V.B.; Rivers, M.L.; Sutton, S.R.

    2009-07-31

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within {+-}3{sup o} relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO{sub 2} recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO{sub 2} glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO{sub 2} glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.

  14. Time-resolved spectroscopic fluorescence imaging, transient absorption and vibrational spectroscopy of intact and photo-inhibited photosynthetic tissue.

    PubMed

    Lukins, Philip B; Rehman, Shakil; Stevens, Gregory B; George, Doaa

    2005-01-01

    Fluorescence, absorption and vibrational spectroscopic techniques were used to study spinach at the photosystem II (PS II), chloroplast and cellular levels and to determine the effects and mechanisms of ultraviolet-B (UV-B) photoinhibition of these structures. Two-photon fluorescence spectroscopic imaging of intact chloroplasts shows significant spatial variations in the component fluorescence spectra in the range 640-740 nm, indicating that the type and distribution of chlorophylls vary markedly with position in the chloroplast. The chlorophyll distributions and excitonic behaviour in chloroplasts and whole plant tissue were studied using picosecond time-gated fluorescence imaging, which also showed UV-induced kinetic changes that clearly indicate that UV-B induces both structural and excitonic uncoupling of chlorophylls within the light-harvesting complexes. Transient absorption measurements and low-frequency infrared and Raman spectroscopy show that the predominant sites of UV-B damage in PS II are at the oxygen-evolving centre (OEC) itself, as well as at specific locations near the OEC-binding sites.

  15. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO2

    NASA Astrophysics Data System (ADS)

    Patridge, Christopher J.; Love, Corey T.; Swider-Lyons, Karen E.; Twigg, Mark E.; Ramaker, David E.

    2013-07-01

    The local structure of nanoscale (∼10-40 nm) LiCoO2 is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO2 nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO2 metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (Δμ) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a Δμ EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li-Co site exchange at the surface of the nanoscale LiCoO2 as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO2.

  16. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Namjou, K.; Roller, C. B.; Reich, T. E.; Jeffers, J. D.; McMillen, G. L.; McCann, P. J.; Camp, M. A.

    2006-11-01

    A liquid-nitrogen free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system equipped with a folded-optical-path astigmatic Herriott cell was used to measure levels of exhaled nitric oxide (eNO) and exhaled carbon dioxide (eCO2) in breath. Quantification of absolute eNO concentrations was performed using NO/CO2 absorption ratios measured by the TDLAS system coupled with absolute eCO2 concentrations measured with a non-dispersive infrared sensor. This technique eliminated the need for routine calibrations using standard cylinder gases. The TDLAS system was used to measure eNO in children and adults (n=799, ages 5 to 64) over a period of more than one year as part of a field study. Volunteers for the study self-reported data including age, height, weight, and health status. The resulting data were used to assess system performance and to generate eNO and eCO2 distributions, which were found to be log-normal and Gaussian, respectively. There were statistically significant differences in mean eNO levels for males and females as well as for healthy and steroid naïve asthmatic volunteers not taking corticosteroid therapies. Ambient NO levels affected measured eNO concentrations only slightly, but this effect was not statistically significant.

  17. Pump-Flow-Probe X-Ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems

    PubMed Central

    Smolentsev, Grigory; Guda, Alexander; Zhang, XIaoyi; Haldrup, Kristoffer; Andreiadis, Eugen; Chavarot-Kerlidou, Murielle; Canton, Sophie E.; Nachtegaal, Maarten; Artero, Vincent; Sundstrom, Villy

    2014-01-01

    A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-mM concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods, with Co K-edge probing were applied to the investigation of a cobaloxime-based photo-catalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well as the effect of sample degradation for these two setups are discussed. PMID:24443663

  18. Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shuang; Su, Tie; Li, Zhong-Shan; Bai, Han-Chen; Yan, Bo; Yang, Fu-Rong

    2016-10-01

    An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence (LIF) methods is developed to quantitatively measure the concentrations of hydroxyl in CH4/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338), the Science and Technology on Scramjet Key Laboratory Funding, China (Grant No. STSKFKT 2013004), and the China Scholarship Council.

  19. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation.

    PubMed

    Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D

    2014-12-15

    The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890  cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3)  Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.

  20. Mercury Speciation by X-ray Absorption Fine Structure Spectroscopy and Sequential Chemical Extractions: A Comparison of Speciation Methods

    USGS Publications Warehouse

    Kim, C.S.; Bloom, N.S.; Rytuba, J.J.; Brown, Gordon E.

    2003-01-01

    Determining the chemical speciation of mercury in contaminated mining and industrial environments is essential for predicting its solubility, transport behavior, and potential bioavailability as well as for designing effective remediation strategies. In this study, two techniques for determining Hg speciation-X-ray absorption fine structure (XAFS) spectroscopy and sequential chemical extractions (SCE)-are independently applied to a set of samples with Hg concentrations ranging from 132 to 7539 mg/kg to determine if the two techniques provide comparable Hg speciation results. Generally, the proportions of insoluble HgS (cinnabar, metacinnabar) and HgSe identified by XAFS correlate well with the proportion of Hg removed in the aqua regia extraction demonstrated to remove HgS and HgSe. Statistically significant (> 10%) differences are observed however in samples containing more soluble Hg-containing phases (HgCl2, HgO, Hg3S2O 4). Such differences may be related to matrix, particle size, or crystallinity effects, which could affect the apparent solubility of Hg phases present. In more highly concentrated samples, microscopy techniques can help characterize the Hg-bearing species in complex multiphase natural samples.

  1. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO{sub 2}

    SciTech Connect

    Patridge, Christopher J.; Swider-Lyons, Karen E.; Twigg, Mark E.; Ramaker, David E.

    2013-07-15

    The local structure of nanoscale (∼10–40 nm) LiCoO{sub 2} is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO{sub 2} nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO{sub 2} metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (Δμ) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a Δμ EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li–Co site exchange at the surface of the nanoscale LiCoO{sub 2} as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO{sub 2}. - Graphical abstract: Electrochemical cycling of Li-ion batteries has strong impact on the structure and integrity of the cathode active material particularly near the surface/electrolyte interface. In developing a new method, we have used in-situ X-ray absorption spectroscopy during electrochemical cycling of nanoscale LiCoO{sub 2} to track changes during charge and discharge and between subsequent cycles. Using difference spectra, several small changes in Co-O bond length, Co-O and Co-Co coordination, and site exchange between Co and Li sites can be tracked. These methods show promise as a new technique to better understand processes which lead to capacity fade and loss in Li-ion batteries. - Highlights: • A new method is developed to understand capacity fade in Li-ion battery cathodes. • Structural changes are tracked during Li intercalation/deintercalation of LiCoO{sub 2}. • Surface structural changes are emphasized using nanoscale-LiCoO{sub 2} and difference spectra. • Full multiple

  2. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1997-01-01

    A pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode is described. The goal is to produce a {approximately}10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced fluorescence or absorption spectroscopy. A {approximately}10 ns full width at half-maximum (FWHM), 1.06 {mu}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately}1 {mu}s FWHM dye laser beam tuned to 5890 {Angstrom} is used for absorption measurement of the NaI resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated charge-coupled-device camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately}0.1 {Angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5{endash}2 eV. Laser-induced fluorescence from {approximately}1{times}10{sup 12} cm{sup {minus}3} NaI 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately}{plus_minus}0.06 {Angstrom} wavelength shift measurements in a mock-up of an ion diode experiment. {copyright} {ital 1997 American Institute of Physics.}

  3. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  4. INTEGRAL FIELD SPECTROSCOPY OF AGN ABSORPTION OUTFLOWS: MRK 509 AND IRAS F04250–5718

    SciTech Connect

    Liu, Guilin; Arav, Nahum; Rupke, David S. N.

    2015-11-15

    Ultraviolet (UV) absorption lines provide abundant spectroscopic information enabling the probe of the physical conditions in active galactic nucleus (AGN) outflows, but the outflow radii (and the energetics consequently) can only be determined indirectly. We present the first direct test of these determinations using integral field unit (IFU) spectroscopy. We have conducted Gemini IFU mapping of the ionized gas nebulae surrounding two AGNs, whose outflow radii have been constrained by UV absorption line analyses. In Mrk 509, we find a quasi-spherical outflow with a radius of 1.2 kpc and a velocity of ∼290 km s{sup −1}, while IRAS F04250–5718 is driving a biconical outflow extending out to 2.9 kpc, with a velocity of ∼580 km s{sup −1} and an opening angle of ∼70°. The derived mass flow rate ∼5 and >1 M{sub ⊙} yr{sup −1}, respectively, and the kinetic luminosity ≳1 × 10{sup 41} erg s{sup −1} for both. Adopting the outflow radii and geometric parameters measured from IFU, absorption line analyses would yield mass flow rates and kinetic luminosities in agreement with the above results within a factor of ∼2. We conclude that the spatial locations, kinematics, and energetics revealed by this IFU emission-line study are consistent with pre-existing UV absorption line analyses, providing a long-awaited direct confirmation of the latter as an effective approach for characterizing outflow properties.

  5. Ligand-field symmetry effects in Fe(II) polypyridyl compounds probed by transient X-ray absorption spectroscopy

    SciTech Connect

    Cho, Hana; Strader, Matthew L.; Hong, Kiryong; Jamula, Lindsey; Kim, Tae Kyu; Groot, Frank M. F. de; McCusker, James K.; Schoenlein, Robert W.; Huse, Nils

    2012-02-28

    Ultrafast excited-state evolution in polypyridyl FeII complexes are of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved x-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpin the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these x-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the x-ray water window.

  6. [Research on the blood components detecting by multi-optical path length spectroscopy technique].

    PubMed

    Li, Gang; Zhao, Zhe; Liu, Rui; Wang, Hui-quan; Wu, Hong-jie; Lin, Ling

    2010-09-01

    To discuss the feasibility of using the serum's multi-optical path length spectroscopy information for measuring the concentration of the human blood components, the automatic micro-displacement measuring device was designed, which can obtain the near-infrared multi-optical path length from 0 to 4.0 mm (interval is 0.2 mm) spectra of 200 serum samples with multioptical path length spectrum of serum participated in building the quantitative analysis model of four components of the human blood: glucose (GLU), total cholesterol (TC), total protein (TP) and albumin (ALB), by mean of the significant non-linear spectral characteristic of blood. Partial least square (PLS) was used to set up the calibration models of the multi-optical path length near-infrared absorption spectrum of 160 experimental samples against the biochemical analysis results of them. The blood components of another 40 samples were predicted according to the model. The prediction effect of four blood components was favorable, and the correlation coefficient (r) of predictive value and biochemical analysis value were 0.9320, 0.9712, 0.9462 and 0.9483, respectively. All of the results proved the feasibility of the multi-optical path length spectroscopy technique for blood components analysis. And this technique established the foundation of detecting the components of blood and other liquid conveniently and rapidly.

  7. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    NASA Astrophysics Data System (ADS)

    Rozanov, V. V.; Rozanov, A. V.

    2010-06-01

    The Differential Optical Absorption Spectroscopy (DOAS) technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering. Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS), the modified (MDOAS), and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption. The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as well as of the relationship between

  8. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    NASA Astrophysics Data System (ADS)

    Rozanov, V. V.; Rozanov, A. V.

    2010-02-01

    The Differential Optical Absorption Spectroscopy (DOAS) technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering. Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS), the modified (MDOAS), and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption. The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as well as of the relationship between

  9. Evidence for core-shell nanoclusters in oxygen dispersion strengthened steels measured using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, S.; Odette, G. R.; Segre, C. U.

    2014-02-01

    Nanostructured ferritic alloys (NFA) dispersion strengthened by an ultra high density of Y-Ti-O enriched nano-features (NF) exhibit superior creep strength and the potential for high resistance to radiation damage. However, the detailed character of the NF, that precipitate from solid solution during hot consolidation of metallic powders mechanically alloyed with Y2O3, are not well understood. In order to clarify the nature of the NF, X-ray absorption spectroscopy (XAS) technique, including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were used to characterize the local structure of the Ti and Y atoms in both NFA powders and consolidated alloys. The powders were characterized in the as-received, as-milled and after annealing milled powders at 850, 1000 and 1150 °C. The consolidated alloys included powders hot isostatic pressed (HIPed) at 1150 °C and commercial vendor alloys, MA957 and J12YWT. The NFA XAS data were compared various Ti and Y-oxide standards. The XANES and EXAFS spectra for the annealed and HIPed powders are similar and show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y2Ti2O7 and, especially, TiO. However, the MA957 and J12YWT and annealed-consolidated powder data differ. The commercial vendor alloys results more closely resemble the as-milled powder data and all show that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix.

  10. Dielectric relaxation and ultrafast transient absorption spectroscopy of [C6mim]+[Tf2N]−/acetonitrile mixtures.

    PubMed

    Lohse, Peter W; Bartels, Nils; Stoppa, Alexander; Buchner, Richard; Lenzer, Thomas; Oum, Kawon

    2012-03-14

    Mixtures of the ionic liquid (IL) [C(6)mim](+)[Tf(2)N](-) and acetonitrile have been investigated by a combination of dielectric relaxation spectroscopy (DRS) and ultrafast transient absorption techniques using the molecular probe 12'-apo-β-carotenoic-12'-acid (12'CA). Steady-state absorption spectra of the 12'CA molecule have also been recorded. The position of the probe's S(0)→ S(2) absorption maximum correlates linearly with the polarizability of the mixture, suggesting that the bulk composition is a good approximation to the local composition. The lifetime τ(1) of the S(1)/ICT state of 12'CA varies rather smoothly with composition between the value for pure acetonitrile (42 ps) and neat [C(6)mim](+)[Tf(2)N](-) (94 ps). At low IL contents there appears to be an influence of discrete ion pairs. Employing static dielectric constants from the DRS experiments, one finds that the lifetime of the probe in the IL mixtures is shorter than that in pure organic solvents with the same polarity parameter. This suggests an increased stabilization of the S(1)/ICT state in IL-containing mixtures, most likely due to IL-specific Coulombic interactions between the cation and the negative end of the probe's dipole. An ultrafast solvation component is observed which is ca. 0.5 ps in pure acetonitrile, and approaches the value for the pure IL (2.0 ps) already around x(IL) = 0.3. This is interpreted in terms of an efficient perturbation of the cooperative solvation response of acetonitrile by the presence of small amounts of IL and possibly also the viscosity increase when adding IL. This view is also supported by the increase of the average longitudinal relaxation time of acetonitrile upon addition of small IL amounts extracted from the DRS experiments.

  11. Evidence for core–shell nanoclusters in oxygen dispersion strengthened steels measured using X-ray absorption spectroscopy

    SciTech Connect

    Liu, S.; Odette, G. R.; Segre, C. U.

    2014-02-01

    Nanostructured ferritic alloys (NFA) dispersion strengthened by an ultra high density of Y–Ti–O enriched nano-features (NF) exhibit superior creep strength and the potential for high resistance to radiation damage. However, the detailed character of the NF, that precipitate from solid solution during hot consolidation of metallic powders mechanically alloyed with Y₂O₃, are not well understood. In order to clarify the nature of the NF, X-ray absorption spectroscopy (XAS) technique, including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were used to characterize the local structure of the Ti and Y atoms in both NFA powders and consolidated alloys. The powders were characterized in the as-received, as-milled and after annealing milled powders at 850, 1000 and 1150 °C. The consolidated alloys included powders hot isostatic pressed (HIPed) at 1150 °C and commercial vendor alloys, MA957 and J12YWT. The NFA XAS data were compared various Ti and Y-oxide standards. The XANES and EXAFS spectra for the annealed and HIPed powders are similar and show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y₂Ti₂O₇ and, especially, TiO. However, the MA957 and J12YWT and annealed–consolidated powder data differ. The commercial vendor alloys results more closely resemble the as-milled powder data and all show that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix.

  12. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy studies of CaSO 4:Dy thermoluminescent phosphors

    NASA Astrophysics Data System (ADS)

    Bakshi, A. K.; Jha, S. N.; Olivi, L.; Phase, D. M.; Kher, R. K.; Bhattacharyya, D.

    2007-11-01

    Extended X-ray absorption fine structure (EXAFS) measurements have been carried out on CaSO4:Dy phosphor samples at the Dy L3 edge with synchrotron radiation. Measurements were carried out on a set of samples which were subjected to post-preparation annealing at different temperatures and for different cycles. The EXAFS data have been analysed to find the Dy-S and Dy-O bond lengths in the neighbourhood of the Dy atoms in a CaSO4 matrix. The observations from EXAFS measurements were verified with XANES and XPS techniques. On the basis of these measurements, efforts were made to explain the loss of thermoluminescence sensitivity of CaSO4:Dy phosphors after repeated cycles of annealing at 400 °C in air for 1 h.

  13. (n,m)-Specific Absorption Cross Sections of Single-Walled Carbon Nanotubes Measured by Variance Spectroscopy.

    PubMed

    Sanchez, Stephen R; Bachilo, Sergei M; Kadria-Vili, Yara; Lin, Ching-Wei; Weisman, R Bruce

    2016-11-09

    A new method based on variance spectroscopy has enabled the determination of absolute absorption cross sections for the first electronic transition of 12 (n,m) structural species of semiconducting single-walled carbon nanotubes (SWCNTs). Spectrally resolved measurements of fluorescence variance in dilute bulk samples provided particle number concentrations of specific SWCNT species. These values were converted to carbon concentrations and correlated with resonant components in the absorbance spectrum to deduce (n,m)-specific absorption cross sections (absorptivities) for nanotubes ranging in diameter from 0.69 to 1.03 nm. The measured cross sections per atom tend to vary inversely with nanotube diameter and are slightly greater for structures of mod 1 type than for mod 2. Directly measured and extrapolated values are now available to support quantitative analysis of SWCNT samples through absorption spectroscopy.

  14. Some Signal Processing Techniques for Use in Broadband Time Domain Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cooke, S. A.

    2016-06-01

    At the present time, in the typical broadband, time domain microwave spectroscopy experiment each free induction decay (FID) collected is on the order of 10^6 data points in length with a sampling rate on the order of 10-12 seconds per point. Traditionally, the FID is processed using a fast Fourier transform algorithm (FFT) with the resulting power spectrum used in ensuing spectral analyses. For use with the FFT algorithm we have implemented some pre- and post-processing techniques to improve the signal quality. These techniques include the use of Lissajous plots to ensure phase stability in signal addition, novel windowing functions, and also automated broadband phase corrections which allow the absorption spectrum to be used as a more highly resolved version of the traditional power spectrum (see figure). We have also implemented alternatives to the FFT algorithm for time domain signal processing including Hankel singular valued decomposition, a maximum entropy method, and wavelet transformations. Although these techniques are unlikely to be used in place of a fast Fourier transform we will demonstrate how each of these techniques may be used to augment the traditional FFT algorithm in regards to spectral analysis.

  15. Application of atomic absorption spectroscopy for detection of multimetal traces in low-voltage electrical marks.

    PubMed

    Jakubeniene, Marija; Zakaras, Algirdas; Minkuviene, Zita Nijole; Benoshys, Alvydas

    2006-08-10

    Application of atomic absorption spectroscopy to detect multimetal traces in injured skin is a promising tool for investigation of fatalities caused by electrocution. The present paper is aimed at testing the reliability of this method for metal traces detection in electric current marks and is focused on study of peculiarities of metal penetration into the skin exposed to a current impact. Bare aluminum wire, tin-lead coated copper multistrand wire, and zinc-plated steel rope were used to make electrical marks on pig skin. It is demonstrated that amount of copper, zinc, lead, and iron may serve as statistically reliable indicators for the type of wire, which caused the electrical mark, in spite of the background content of these metals in the skin without injury. Different penetration rates for different metals contained in the wire inflicting an electrical mark were observed.

  16. Visualizing interfacial charge transfer in dye sensitized nanoparticles using x-ray transient absorption spectroscopy.

    SciTech Connect

    Zhang, X. Y.; Smolentsev, G.; Guo, J.; Attenkofer, K.; Kurtz, C.; Jennings, G.; Lockard, J. V.; Stickrath, A. B.; Chen, L. X.

    2011-01-01

    A molecular level understanding of the structural reorganization accompanying interfacial electron transfer is important for rational design of solar cells. Here we have applied XTA (X-ray transient absorption) spectroscopy to study transient structures in a heterogeneous interfacial system mimicking the charge separation process in dye-sensitized solar cell (DSSC) with Ru(dcbpy){sub 2}(NCS){sub 2} (RuN3) dye adsorbed to TiO{sub 2} nanoparticle surfaces. The results show that the average Ru-NCS bond length reduces by 0.06 {angstrom}, whereas the average Ru-N(dcbpy) bond length remains nearly unchanged after the electron injection. The differences in bond-order change and steric hindrance between two types of ligands are attributed to their structural response in the charge separation. This study extends the application of XTA into optically opaque hybrid interfacial systems relevant to the solar energy conversion.

  17. Electronic topological transition in zinc under pressure: An x-ray absorption spectroscopy study

    SciTech Connect

    Aquilanti, G.; Trapananti, A.; Pascarelli, S.; Minicucci, M.; Principi, E.; Liscio, F.; Twarog, A.

    2007-10-01

    Zinc metal has been studied at high pressure using x-ray absorption spectroscopy. In order to investigate the role of the different degrees of hydrostaticity on the occurrence of structural anomalies following the electronic topological transition, two pressure transmitting media have been used. Results show that the electronic topological transition, if it exists, does not induce an anomaly in the local environment of compressed Zn as a function of hydrostatic pressure and any anomaly must be related to a loss of hydrostaticity of the pressure transmitting medium. The near-edge structures of the spectra, sensitive to variations in the electronic density of states above the Fermi level, do not show any evidence of electronic transition whatever pressure transmitting medium is used.

  18. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy

    PubMed Central

    Silatani, Mahsa; Lima, Frederico A.; Penfold, Thomas J.; Rittmann, Jochen; Reinhard, Marco E.; Rittmann-Frank, Hannelore M.; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J.; Chergui, Majed

    2015-01-01

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein’s function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump–probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center. PMID:26438842

  19. Studies of Y-Ba-Cu-O single crystals by x-ray absorption spectroscopy

    SciTech Connect

    Krol, A.; Ming, Z.H.; Kao, Y.H.; Nuecker, N.; Roth, G.; Fink, J.; Smith, G.C.; Erband, A.; Mueller-Vogt, G.; Karpinski, J.; Kaldis, E.; Schoenmann, K.

    1992-02-01

    The symmetry and density of unoccupied states of YBa{sub 2}Cu{sub 3}O{sub 7} YBa{sub 2}Cu{sub 4}O{sub 8} have been investigated by orientation dependent x-ray absorption spectroscopy on the O 1s edge using a bulk-sensitive fluorescence-yield-detection method. It has been found that the O 2p holes are distributed equally between the CuO{sub 2} planes and CuO chains and that the partial density of unoccupied O 2p states in the CuO{sub 2} planes are identical in both systems investigated. The upper Hubbard band has been observed in the planes but not in the chains in both systems. 18 refs.

  20. Fast transient absorption spectroscopy of the early events in photoexcited chiral benzophenone naphthalene dyads

    NASA Astrophysics Data System (ADS)

    Perez-Ruiz, Raul; Groeneveld, Michiel; van Stokkum, Ivo H. M.; Tormos, Rosa; Williams, René M.; Miranda, Miguel A.

    2006-09-01

    Photoinduced intra-molecular energy transfer in two ketoprofen(KP)-naproxol(NPX) diastereomers proceeds via two pathways. Very fast singlet-triplet energy transfer ( k = 1.2 × 10 11 s -1) from KP to NPX occurs for a small percentage (6%) and the major pathway is triplet-triplet energy transfer ( k ˜ 3 × 10 9 s -1). This was shown with femtosecond transient absorption spectroscopy and global and target analysis. Whereas the NPX triplet decay is strongly stereospecific (ratio of 1.6), the NPX triplet state formation for both dyads is very similar (ratio of 1 for the fast process and 1.2 for the slower process).

  1. The irradiation of ammonia ice studied by near edge x-ray absorption spectroscopy

    SciTech Connect

    Parent, Ph.; Bournel, F.; Lasne, J.; Laffon, C.; Carniato, S.; Lacombe, S.; Strazzulla, G.; Gardonio, S.; Lizzit, S.; Kappler, J.-P.; Joly, L.

    2009-10-21

    A vapor-deposited NH{sub 3} ice film irradiated at 20 K with 150 eV photons has been studied with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen K-edge. Irradiation leads to the formation of high amounts (12%) of molecular nitrogen N{sub 2}, whose concentration as a function of the absorbed energy has been quantified to 0.13 molecule/eV. The stability of N{sub 2} in solid NH{sub 3} has been also studied, showing that N{sub 2} continuously desorbs between 20 and 95 K from the irradiated ammonia ice film. Weak concentrations (<1%) of other photoproducts are also detected. Our NEXAFS simulations show that these features own to NH{sub 2}, N{sub 2}H{sub 2}, and N{sub 3}{sup -}.

  2. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy.

    PubMed

    Silatani, Mahsa; Lima, Frederico A; Penfold, Thomas J; Rittmann, Jochen; Reinhard, Marco E; Rittmann-Frank, Hannelore M; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J; Chergui, Majed

    2015-10-20

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein's function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼ 200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump-probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center.

  3. Biomimetic environment to study E. coli complex I through surface-enhanced IR absorption spectroscopy.

    PubMed

    Kriegel, Sébastien; Uchida, Taro; Osawa, Masatoshi; Friedrich, Thorsten; Hellwig, Petra

    2014-10-14

    In this study complex I was immobilized in a biomimetic environment on a gold layer deposited on an ATR-crystal in order to functionally probe the enzyme against substrates and inhibitors via surface-enhanced IR absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV). To achieve this immobilization, two methods based on the generation of a high affinity self-assembled monolayer (SAM) were probed. The first made use of the affinity of Ni-NTA toward a hexahistidine tag that was genetically engineered onto complex I and the second exploited the affinity of the enzyme toward its natural substrate NADH. Experiments were also performed with complex I reconstituted in lipids. Both approaches have been found to be successful, and electrochemically induced IR difference spectra of complex I were obtained.

  4. Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Medhi, G.; Muravjov, A. V.; Saxena, H.; Fredricksen, C. J.; Brusentsova, T.; Peale, R. E.; Edwards, O.

    2011-06-01

    Intracavity Laser Absorption Spectroscopy (ICLAS) at IR wavelengths offers an opportunity for spectral sensing with sufficient sensitivity to detect vapors of low vapor pressure compounds such as explosives. Reported here are key enabling technologies for this approach, including multi-mode external-cavity quantum cascade lasers and a scanning Fabry-Perot spectrometer to analyze the laser mode spectrum in the presence of a molecular intracavity absorber. Reported also is the design of a compact integrated data acquisition and control system. Applications include military and commercial sensing for threat compounds, chemical gases, biological aerosols, drugs, and banned or invasive plants or animals, bio-medical breath analysis, and terrestrial or planetary atmosphere science.

  5. IN SITU STUDIES OF CORROSION USING X-RAY ABSORPTION NEAR SPECTROSCOPY (XANES)

    SciTech Connect

    ISAACS, H.S.; SCHMUKI, P.; VIRTANEN, S.

    2001-03-25

    Applications of x-ray absorption near-edge spectroscopy (XANES) and the design of cells for in situ corrosion studies are reviewed. Passive films studies require very thin metal or alloy layers be used having a thickness of the order of the films formed because of penetration of the x-ray beam into the metal substrate. The depth of penetration in water also limits the thickness of solutions that can be used because of water reduces the x-ray intensity. Solution thickness must also be limited in studies of conversion layer formation studies because the masking of the Cr in solution. Illustrative examples are taken from the anodic behavior of Al-Cr alloys, the growth of passive films on Fe and stainless steels, and the formation of chromate conversion layers on Al.

  6. Structural analysis of sulfur in natural rubber using X-ray absorption near-edge spectroscopy.

    PubMed

    Pattanasiriwisawa, Wanwisa; Siritapetawee, Jaruwan; Patarapaiboolchai, Orasa; Klysubun, Wantana

    2008-09-01

    X-ray absorption near-edge spectroscopy (XANES) has been applied to natural rubber in order to study the local environment of sulfur atoms in sulfur crosslinking structures introduced in the vulcanization process. Different types of chemical accelerators in conventional, semi-efficient and efficient vulcanization systems were investigated. The experimental results show the good sensitivity and reproducibility of XANES to characterize the local geometry and electronic environment of the sulfur K-shell under various conditions of vulcanization and non-vulcanization of natural rubber. Several applications of XANES in this study demonstrate an alternative way of identifying sulfur crosslinks in treated natural rubber based on differences in their spectra and oxidation states.

  7. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    PubMed Central

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-01-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms. PMID:27658854

  8. Detection of the transient PNO molecule by infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bell, I. S.; Hamilton, P. A.; Davies, P. B.

    The PNO molecule has been observed in the gas phase for the first time. Some 200 vibrationrotation transitions were detected in the 1760cm-1 region using infrared diode laser absorption spectroscopy in a long path cell. Most of the lines can be assigned to the (001)←(000) stretching fundamental and (011)←(010) hot band transitions. The fundamental band exhibits a perturbation at high rotational levels which leads to a unique assignment of the rotational numbering. The effective rotational constants determined are in good agreement with ab initio predictions and the band origin, 1756.64586(24)cm-1, is very close to the matrix value. A tentative rotational assignment of the hot band transitions has been made which gives a band origin of 1748.388cm-1.

  9. [Genetic programming used for the measurement of CO concentration based on nondispersive infrared absorption spectroscopy].

    PubMed

    Chen, Jin; Duan, Fa-jie; Tong, Ying; Gao, Qiang

    2011-07-01

    Nondispersive infrared absorption spectroscopy(NDIR) is an important method to measure CO concentration in the air. In the present study, an open-path measurement system and continuous measuring device was developed, and genetic programming was used to establish the calibration model of subjects' light intensity sampling values. Continuous measurements were carried out in 10 different concentration of CO, and 40 sampled data were acquired and analyzed. For validation set, the correlation coefficient was 0.9997. The biggest relative error of validation was 4.00%, and the average relative error was 1.11%. Results show that genetic programming can be a good method for the modeling of gas concentration measurements equipped with NDIR systems.

  10. [Studies on the remote measurement of the emission of formaldehyde by mobile differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-Cheng; Xie, Pin-Hua; Li, Ang; Si, Fu-Qi; Dou, Ke; Liu, Yu; Xu, Jin; Wang, Jie

    2011-11-01

    Formaldehyde (HCHO) is the most abundant carbonyl compounds that play an important role in atmospheric chemistry and photochemical reactions. Formaldehyde is an important indicator of atmospheric reactivity and urban atmospheric aerosol precursors. In the present paper, the emission of formaldehyde from chemical area was measured using the mobile differential optical absorption spectroscopy (DOAS). This instrument uses the zenith scattered sunlight as the light source with successful sampling in the area loop. Vertical column density was retrieved by this system, combined with the meteorological wind field and car speed information, the emission of formaldehyde in the area was estimated. The authors carried out the measuring experiment in one chemical plant in Beijing using this technology. The result showed that the average value of the flux of formaldehyde in this area was 605 kg x h(-1) during the measuring period.

  11. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  12. Broadband femtosecond transient absorption spectroscopy for a CVD Mo S2 monolayer

    NASA Astrophysics Data System (ADS)

    Aleithan, Shrouq H.; Livshits, Maksim Y.; Khadka, Sudiksha; Rack, Jeffrey J.; Kordesch, Martin E.; Stinaff, Eric

    2016-07-01

    Carrier dynamics in monolayer Mo S2 have been investigated using broadband femtosecond transient absorption spectroscopy (FTAS). A tunable pump pulse was used while a broadband probe pulse revealed ground and excited state carrier dynamics. Interestingly, for pump wavelengths both resonant and nonresonant with the A and B excitons, we observe a broad ground state bleach around 2.9 eV, with decay components similar to A and B. Associating this bleach with the band nesting region between K and Γ in the band structure indicates significant k-space delocalization and overlap among excitonic wave functions identified as A, B, C, and D. Comparison of time dynamics for all features in resonance and nonresonance excitation is consistent with this finding.

  13. Uranium and thorium sorption on minerals studied by x-ray absorption spectroscopy

    SciTech Connect

    Hudson, E.A.; Terminello, L.J.; Viani, B.E.

    1995-12-01

    Several actinide-mineral sorption systems were studied by uranium and thorium L{sub 3}-edge x-ray absorption spectroscopy. A series of layer silicate minerals, including micas, were selected for their systematic variations in surface structure, e.g. degree of permanent negative charge on the basal planes. An expansible layer silicate, vermiculite, was treated to provide several different interlayer spacings, allowing variations in the accessibility of interior cation exchange sites. The finely powdered minerals were exposed to aqueous solutions of uranyl chloride or thorium chloride. Analysis of the EXAFS and XANES spectra indicates the influence of the mineral substrate upon the local structure of the bound actinide species. Trends in the data are interpreted based upon the known variations in mineral structure.

  14. Accurate frequency of the 119 micron methanol laser from tunable far-infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Inguscio, M.; Zink, L. R.; Evenson, K. M.; Jennings, D. A.

    1990-01-01

    High-accuracy absorption spectroscopy of CH3OH in the far infrared is discussed. In addition to 22 transitions in the ground state, the frequency of the (n, tau, J, K), (0, 1, 16, 8) to (0, 2, 15, 7) transition in the nu5 excited vibrational level, which is responsible for the laser emission at 119 microns, was measured. The measured frequency is 2,522,782.57(10) MHz at zero pressure, with a pressure shift of 6.1(32) kHz/Pa (0.805/420/ MHz/torr). An accurate remeasurement of the laser emission frequency has also been performed, and the results are in good agreement.

  15. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-09-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms.

  16. [Determination of trace selenium in edible fungi with graphite furnace atomic absorption spectroscopy].

    PubMed

    Tie, Mei; Zhang, Wei; Li, Jing; Jing, Kui; Zang, Shu-liang; Li, Hua-wei

    2006-01-01

    In the present article, samples were digested by a quartz high-pressure digestion pot, reducing the loss of selenium in digestion. The content of selenium in edible fungi was determined by using graphite furnace atomic absorption spectroscopy, and the results showed that when the content of selenium in edible fungi was determined by using 1% Ni(NO3)2 as a matrix modifier, ashing temperature of 500 degreed C, and atomization temperature of 2 500 degrees C, and rectifying background by deuterium light, the recovery was in the range of 92.1%-115.5%, the relative standard deviation of the method was 1.28%, and the limit of detection was 15.8 microg x L(-1). The method was suitable for the determination of trace selenium in edible fungi with the advantages of being simple, rapid, sensitive, stable and accurate etc., and the results were satisfactory.

  17. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Yingge; Chambers, Scott A.

    2014-10-01

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  18. Determination of tellurium in geochemical materials by flameless atomic-absorption spectroscopy.

    PubMed

    Sighinolfi, G P; Santos, A M; Martinelli, G

    1979-02-01

    A method is described for the determination of tellurium at nanogram levels in rocks and in other complex materials by the use of flameless atomic-absorption spectroscopy. A very selective organic extraction procedure is applied to avoid matrix interference effects during extraction of Te and the atomization stage in the graphite furnace. Prior separation of iron and other interfering elements is achieved by a combined cupferron-ethyl acetate extraction. Tellerium is extracted from 6M hydrochloric acid with MIBK and stripped into aqueous medium. Pipetting of the aqueous extract into the graphite furnace gives fairly good instrumental reproducibility (2-3% error). Detection limits of about 10 ppM Te for a 0.5-g sample have been achieved with the medium-performance apparatus used. Results for Te in some geochemical reference materials are reported. Indications are given for the determination of Sb and Mo in the same solutions.

  19. Determination of palladium by graphite furnace atomic absorption spectroscopy without matrix matching.

    PubMed

    Jia, X; Wang, T; Wu, J

    2001-05-30

    A graphite furnace atomic absorption spectroscopy method for the analysis of the palladium (Pd) content in bulk pharmaceutical drug substances and their intermediates prepared in aqueous solutions is extended to samples prepared in acetonitrile (ACN) and ACN-water mixtures as well to samples prepared in dimethyl sulfoxide (DMSO) and DMSO-water mixtures. The Pd content in samples solubilized in these solvents can be accurately determined with calibration established with standards prepared in aqueous solutions without matrix matching or using the method of standard additions. The validity of this method is demonstrated by spike recovery studies and by the agreement with results for the same samples prepared in these solvents, in concentrated nitric acid, and prepared by a microwave digestion system.

  20. Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials

    SciTech Connect

    Pelliccione, CJ; Timofeeva, EV; Katsoudas, JP; Segre, CU

    2014-12-01

    In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC.

  1. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy

    SciTech Connect

    Aramaki, Mitsutoshi; Ogiwara, Kohei; Etoh, Shuzo; Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2009-05-15

    A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is {+-}2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

  2. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals, Final Technical Report

    DOE R&D Accomplishments Database

    Curl, Robert F.; Glass, Graham P.

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  3. Study on synchronous detection method of methane and ethane with laser absorption spectroscopy technology

    NASA Astrophysics Data System (ADS)

    He, Ying; Zhang, Yu-jun; You, Kun; Gao, Yan-wei; Chen, Chen; Liu, Jian-guo; Liu, Wen-qing

    2016-10-01

    The main ingredient of mash gas is alkenes, and methane is the most parts of mash gas and ethane is a small portion of it. Fast, accurate, real-time measurement of methane and ethane concentration is an important task for preventing coal mining disaster. In this research, a monitoring system with tunable diode laser absorption spectroscopy (TDLAS) technology has been set up for simultaneous measurement of methane and ethane, and a DFB laser at wavelength of 1.653μm was used as the laser source. The absorption spectroscopy information of methane and ethane, especially the characteristic of the spectrum peak positions and relative intensity were determined by available spectral structures from previous study and available database. Then, the concentration inversion algorithm method based on the spectral resolution and feature extraction was designed for methane and ethane synchronous detection. At last, the continuously experimental results obtained by different concentration of methane and ethane sample gases with the multiple reflection cell and the standard distribution system. In this experiment, the standard distribution system made with the standard gas and two high precision mass flow meters of D07 Sevenstar series whose flow velocity is 1l/min and 5l/min respectively. When the multiple reflection cell work stably, the biggest detection error of methane concentration inversion was 3.7%, and the biggest detection error of ethane was 4.8%. So it is verified that this concentration inversion algorithm works stably and reliably. Thus, this technology could realize the real-time, fast and continuous measurement requirement of mash gas and it will provide the effective technical support to coal mining production in safety for our country.

  4. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    DOE PAGES

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.; ...

    2014-12-16

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less

  5. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy.

    PubMed

    Lin, Ming-Fu; Neumark, Daniel M; Gessner, Oliver; Leone, Stephen R

    2014-02-14

    Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH2=CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C2H3Br, the formation of C2H3Br(+) ions in their ground (X̃) and first excited (Ã) states, the production of C2H3Br(++) ions, and the appearance of neutral Br ((2)P3/2) atoms by dissociative ionization. The formation of free Br ((2)P3/2) atoms occurs on a timescale of 330 ± 150 fs. The ionic à state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the à state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C2H3Br(+) (Ã) ions undergoes intramolecular vibrational energy redistribution followed by the C-Br bond dissociation. The C2H3Br(+) (X̃) products and the majority of the C2H3Br(++) ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy.

  6. [Dithiobis-succinimidyl propionate on gold island films: surface-enhanced infrared absorption spectroscopy study].

    PubMed

    Guo, Hao; Ding, Li; Zhang, Tian-Jie; Mao, Yan-Li

    2013-05-01

    Dithiobis-succinimidyl propionate (DTSP), an important homobifunctional crosslinker, has been widely used for the covalent immobilization of proteins onto solid supports by amine coupling. In the present study, adsorption of DTSP on vacuum-deposited gold island films was analyzed by means of surface-enhanced infrared absorption spectroscopy (SEIRAS). For the sake of a reliable assignment of the vibrational spectra, IR intensity of the adsorption model of TSP on one gold surface was calculated using density functional theory (DFT) at the Beck' s three-parameter Lee-Yang-Parr (B3LYP) level with the LANL2DZ basis set. SEIRAS and multiple-angle-of-incidence polarization infrared reflection-absorption spectroscopy indicated that TSP is arranged orderly in a tilted fashion with a dihedral angle of 65 degrees between the plane of succinimidyl ring and the gold surface. The binding kinetics revealed that that the time constant of self-assembly of the TSP layer is 220 sec. Furthermore, the coupling process of amino-nitrilotriacetic acid (ANTA) with surface-bound TSP monolayer was monitored in situ by SEIRAS. Three negative bands observed at 1 807, 1 776, and 1 728 cm(-1) respectively provided direct evidence for the reaction of the succinimidyl ester. The appearance of one intense band at 1 566 cm(-1) gave a clear support for the presence of the cross-link between ANTA and TSP. We hope that the results in current investigation will contribute to the better understanding of properties of DTSP and related reactions at the molecular level.

  7. Transient Absorption Spectroscopy of C1 and C2 Criegee Intermediates: UV Spectrum and Reaction Kinetics

    NASA Astrophysics Data System (ADS)

    Smith, M. C.; Chao, W.; Ting, A.; Chang, C. H.; Lin, L. C.; Takahashi, K.; Boering, K. A.; Lin, J. J. M.

    2015-12-01

    Atmospheric production and removal rates of Criegee intermediates produced in alkene ozonolysis must be understood to constrain the importance of these species in VOC oxidation and other processes. To estimate these rates, reliable detection methods and laboratory measurements of the UV absorption spectra and reaction kinetics of Criegee intermediates are needed. Here, transient absorption spectroscopy was used to directly measure the UV spectrum of the C2 Criegee intermediate CH3CHOO in a flow reactor at 295 K. The UV spectrum was scaled to the absolute absorption cross section at 308 nm determined by laser depletion measurements in a molecular beam, resulting in a peak UV cross section of (1.27±0.11) × 10-17 cm2 molecule-1 at 328 nm. This spectrum represents the absorption of the syn and anti conformers of CH3CHOO under near-atmospheric conditions, both of which contribute to CH3CHOO atmospheric removal due to UV photolysis. Transient UV absorption was also used to measure the kinetics of the reaction of the C1 Criegee intermediate CH2OO with water vapor at temperatures from 283 to 324 K. The observed CH2OO decay is quadratic with respect to the H2O concentration, indicating that reaction with water dimer is the primary process affecting CH2OO loss. The rate coefficient for the reaction of CH2OO with water dimer exhibits a strong negative temperature dependence with an Arrhenius activation energy of -8.1±0.6 kcal mol-1. The temperature dependence increases the effective loss rate for CH2OO (relative to 298 K) by a factor of ˜2.5 at 278 K and 70% relative humidity, and decreases the loss rate by a factor of ˜2 at 313 K and 30% humidity, which demonstrates that variations in reaction rate due to temperature differences should be included in estimates of Criegee intermediate removal via reactions with water dimer in the atmosphere.

  8. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    NASA Astrophysics Data System (ADS)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Drzymała, Jan; Abramski, Krzysztof M.

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards.

  9. Extending differential optical absorption spectroscopy for limb measurements in the UV

    NASA Astrophysics Data System (ADS)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2010-05-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations. For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis

  10. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2012-05-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 levels in the Kowloon Tong and Mongkok district of Hong Kong and we compare the measurement results to mixing ratios reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time (13:30-14:30 LT - local time).

  11. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    SciTech Connect

    Andrews, J.C. |

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  12. Photo-induced dynamics in heterocyclic aromatic molecules probed by femtosecond XUV transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, Chaitanya D.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-05-01

    We report on the ring-opening and dissociation dynamics of strong-field ionized selenophene (C4 H4 Se), studied by transient XUV absorption spectroscopy at the Se 3d edge. The table-top experiments are facilitated by high-order harmonic generation coupled with a gas phase transient XUV absorption setup that is optimized for the study of organic compounds. Employing element-specific core-to-valence transitions, the ultrafast molecular dynamics are monitored from the perspective of the well-localized Se atoms. Spectral features are assigned based on first principles TDDFT calculations for a large manifold of electronic states. We observe signatures of rapidly (~ 35 fs) decaying highly excited molecular cations, the formation of ring-opened products on a 100 fs time scale and, most notably, the elimination of bare Se+ ions in a very rapid multi-step process. A delayed onset of the Se+ ions provides direct evidence that both selenium-carbon bonds are broken within only ~ 130 fs and that a sequential mechanism, presumably an initial ring-opening followed by a subsequent breaking of the second bond, is required to eliminate the atomic fragments.

  13. Molybdenum speciation in uranium mine tailings using X-ray absorption spectroscopy.

    PubMed

    Essilfie-Dughan, Joseph; Pickering, Ingrid J; Hendry, M Jim; George, Graham N; Kotzer, Tom

    2011-01-15

    Uranium (U) mill tailings in northern Saskatchewan, Canada, contain elevated concentrations of molybdenum (Mo). The potential for long-term (>10,000 years) mobilization of Mo from the tailings management facilities to regional groundwater systems is an environmental concern. To assist in characterizing long-term stability, X-ray absorption spectroscopy was used to define the chemical (redox and molecular) speciation of Mo in tailings samples from the Deilmann Tailings Management Facility (DTMF) at the Key Lake operations of Cameco Corporation. Comparison of Mo K near-edge X-ray absorption spectra of tailings samples and reference compounds of known oxidation states indicates Mo exists mainly as molybdate (+6 oxidation state). Principal component analysis of tailings samples spectra followed by linear combination fitting using spectra of reference compounds indicates that various proportions of NiMoO(4) and CaMoO(4) complexes, as well as molybdate adsorbed onto ferrihydrite, are the Mo species present in the U mine tailings. Tailings samples with low Fe/Mo (<708) and high Ni/Mo (>113) molar ratios are dominated by NiMoO(4), whereas those with high Fe/Mo (>708) and low Ni/Mo (<113) molar ratios are dominated by molybdate adsorbed onto ferrihydrite. This suggests that the speciation of Mo in the tailings is dependent in part on the chemistry of the original ore.

  14. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  15. X-ray absorption spectroscopy as a probe of dissolved polysulfides in lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Pascal, Tod; Prendergast, David

    2015-03-01

    There has been enormous interest lately in lithium sulfur batteries, since they have 5 times the theoretical capacity of lithium ion batteries. Large-scale adoption of this technology has been hampered by numerous shortcomings, chiefly the poor utilization of the active cathode material and rapid capacity fading during cycling. Overcoming these limitations requires methods capable of identifying and quantifying the products of the poorly understood electrochemical reactions. One recent advance has been the use of X-ray absorption spectroscopy (XAS), an element-specific probe of the unoccupied energy levels around an excited atom upon absorption of an X-ray photon, to identify the reaction products and intermediates. In this talk, we'll present first principles molecular dynamics and spectral simulations of dissolved lithium polysulfide species, showing how finite temperature dynamics, molecular geometry, molecular charge state and solvent environment conspire to determine the peak positions and intensity of the XAS. We'll present a spectral analysis of the radical (-1e charge) species, and reveal a unique low energy feature that can be used to identify these species from their more common dianion (-2e charge) counterparts.

  16. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  17. Strontium localization in bone tissue studied by X-ray absorption spectroscopy.

    PubMed

    Frankær, Christian Grundahl; Raffalt, Anders Christer; Stahl, Kenny

    2014-02-01

    Strontium has recently been introduced as a pharmacological agent for the treatment and prevention of osteoporosis. We determined the localization of strontium incorporated into bone matrix from dogs treated with Sr malonate by X-ray absorption spectroscopy. A new approach for analyzing the X-ray absorption spectra resulted in a compositional model and allowed the relative distribution of strontium in the different bone components to be estimated. Approximately 35-45% of the strontium present is incorporated into calcium hydroxyapatite (CaHA) by substitution of some of the calcium ions occupying highly ordered sites, and at least 30% is located at less ordered sites where only the first solvation shell is resolved, suggesting that strontium is surrounded by only oxygen atoms similar to Sr(2+) in solution. Strontium was furthermore shown to be absorbed in collagen in which it obtains a higher structural order than when present in serum but less order than when it is incorporated into CaHA. The total amount of strontium in the samples was determined by inductively coupled plasma mass spectrometry, and the amount of Sr was found to increase with increasing dose levels and treatment periods, whereas the relative distribution of strontium among the different components appears to be independent of treatment period and dose level.

  18. Millisecond Kinetics of Nanocrystal Cation Exchange UsingMicrofluidic X-ray Absorption Spectroscopy

    SciTech Connect

    Chan, Emory M.; Marcus, Matthew A.; Fakra, Sirine; Elnaggar,Mariam S.; Mathies, Richard A.; Alivisatos, A. Paul

    2007-05-07

    We describe the use of a flow-focusing microfluidic reactorto measure the kinetics of theCdSe-to-Ag2Se nanocrystal cation exchangereaction using micro-X-ray absorption spectroscopy (mu XAS). The smallmicroreactor dimensions facilitate the millisecond mixing of CdSenanocrystal and Ag+ reactant solutions, and the transposition of thereaction time onto spatial coordinates enables the in situ observation ofthe millisecond reaction with mu XAS. XAS spectra show the progression ofCdSe nanocrystals to Ag2Se over the course of 100 ms without the presenceof long-lived intermediates. These results, along with supporting stoppedflow absorption experiments, suggest that this nanocrystal cationexchange reaction is highly efficient and provide insight into how thereaction progresses in individual particles. This experiment illustratesthe value and potential of in situ microfluidic X-ray synchrotrontechniques for detailed studies of the millisecond structuraltransformations of nanoparticles and other solution-phase reactions inwhich diffusive mixing initiates changes in local bond structures oroxidation states.

  19. Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ravel, B.; Attenkofer, K.; Bohon, J.; Muller, E.; Smedley, J.

    2013-10-01

    Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.

  20. Application of quantum cascade laser absorption spectroscopy to studies of fluorocarbon molecules

    NASA Astrophysics Data System (ADS)

    Welzel, S.; Stepanov, S.; Meichsner, J.; Röpcke, J.

    2009-03-01

    The recent advent of quantum cascade lasers (QCLs) enables room-temperature mid-infrared spectrometer operation which is particularly favourable for industrial process monitoring and control, i.e. the detection of transient and stable molecular species. Conversely, fluorocarbon containing radio-frequency discharges are of special interest for plasma etching and deposition as well as for fundamental studies on gas phase and plasma surface reactions. The application of QCL absorption spectroscopy to such low pressure plasmas is typically hampered by non-linear effects connected with the pulsed mode of the lasers. Nevertheless, adequate calibration can eliminate such effects, especially in the case of complex spectra where single line parameters are not available. In order to facilitate measurements in fluorocarbon plasmas, studies on complex spectra of CF4 and C3F8 at 7.86 μm (1269 - 1275 cm-1) under low pressure conditions have been performed. The intra-pulse mode, i.e. pulses of up to 300 ns, was applied yielding highly resolved spectral scans of ~ 1 cm-1 coverage. Effective absorption cross sections were determined and their temperature dependence was studied in the relevant range up to 400 K and found to be non-negligible.

  1. Quantitation of a novel metalloporphyrin drug in plasma by atomic absorption spectroscopy.

    PubMed

    Hoffman, K L; Feng, M R; Rossi, D T

    1999-03-01

    A bioanalytical method to quantify cobalt mesoporphyrin (CoMP), a novel therapeutic agent, in plasma has been developed and validated. The approach involves atomic absorption spectroscopy to determine total cobalt in a sample and a back-calculation of the amount of compound present. Endogenous plasma cobalt concentrations were small ( <0.2 ng/ml(-1) Co in rat plasma) in comparison to the quantitation limit (4.5 ng/ml(-1) Co). The inter-day imprecision of the method was 10.0% relative standard deviation (RSD) and the inter-day bias was +/- 8.0% relative error (RE) over a standard curve range of 4.5- 45.0 ng/ml(-1) Co. Because it quantifies total cobalt, the method cannot differentiate between parent drug and metabolites, but negligible metabolism allows reliable estimates of the actual parent drug concentration. A correlation study between the atomic absorption method and 14C-radiometry demonstrated excellent agreement (r = 0.9868, slope = 1.041 +/- 0.028, intercept = 223.7 +/- 190.0) and further substantiated the accuracy of the methods. Methodology was successfully applied to a pharmacokinetic study of CoMP in rat, with pharmacokinetic parameter estimation. The elimination half-lives, after intra-muscular and subcutaneous administration, were 7.7 and 8.8 days, respectively.

  2. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules.

    PubMed

    Bui, Tung S; Dao, Thang D; Dang, Luu H; Vu, Lam D; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V

    2016-08-24

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes.

  3. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    PubMed Central

    Bui, Tung S.; Dao, Thang D.; Dang, Luu H.; Vu, Lam D.; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V.

    2016-01-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes. PMID:27555217

  4. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    NASA Astrophysics Data System (ADS)

    Bui, Tung S.; Dao, Thang D.; Dang, Luu H.; Vu, Lam D.; Ohi, Akihiko; Nabatame, Toshihide; Lee, Youngpak; Nagao, Tadaaki; Hoang, Chung V.

    2016-08-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3‧-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes.

  5. The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics

    NASA Astrophysics Data System (ADS)

    Hendricks, A. G.; Vandsburger, U.; Saunders, W. R.; Baumann, W. T.

    2006-01-01

    Tunable diode laser absorption spectroscopy was used to measure temperature fluctuations in acoustically forced laminar and turbulent flames. The absorption of two high-temperature water lines, at 7444.37 cm-1 (v1+v3 bands) and 7185.59 cm-1 (2v1, v1+v3 bands), yielded an instantaneous temperature measurement of the product stream. The instantaneous temperature of the gases was used as an indicator of the energy transferred to the product stream from the combustion process. The frequency response of product gas temperature to velocity perturbations was compared to the frequency response of OH* chemiluminescence, an indicator of the chemical heat release rate. Past measurements of flame dynamics used chemiluminescence as the sole indicator of heat release rate, in effect assuming that the energy input rate from the flame into the acoustic field is dynamically equivalent to the chemical reaction rate. Through the use of TDLAS, the unsteady enthalpy of the gases was measured, which includes the effects of thermal diffusion and heat transfer. The measurements show that the frequency response function of gas temperature differs significantly from the chemiluminescence frequency response.

  6. β-Carotene Revisited by Transient Absorption and Stimulated Raman Spectroscopy.

    PubMed

    Quick, Martin; Kasper, Marc-André; Richter, Celin; Mahrwald, Rainer; Dobryakov, Alexander L; Kovalenko, Sergey A; Ernsting, Nikolaus P

    2015-12-21

    β-Carotene in n-hexane was examined by femtosecond transient absorption and stimulated Raman spectroscopy. Electronic change is separated from vibrational relaxation with the help of band integrals. Overlaid on the decay of S1 excited-state absorption, a picosecond process is found that is absent when the C9 -methyl group is replaced by ethyl or isopropyl. It is attributed to reorganization on the S1 potential energy surface, involving dihedral angles between C6 and C9 . In Raman studies, electronic states S2 or S1 were selected through resonance conditions. We observe a broad vibrational band at 1770 cm(-1) in S2 already. With 200 fs it decays and transforms into the well-known S1 Raman line for an asymmetric C=C stretching mode. Low-frequency activity (<800 cm(-1) ) in S2 and S1 is also seen. A dependence of solvent lines on solute dynamics implies intermolecular coupling between β-carotene and nearby n-hexane molecules.

  7. Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy.

    PubMed

    Nations, Marcel; Wang, Shengkai; Goldenstein, Christopher S; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-10-10

    We report the use of cavity-enhanced absorption spectroscopy (CEAS) using two distributed feedback diode lasers near 777.2 and 844.6 nm for sensitive, time-resolved, in situ measurements of excited-state populations of atomic oxygen in a shock tube. Here, a 1% O2/Ar mixture was shock-heated to 5400-8000 K behind reflected shock waves. The combined use of a low-finesse cavity, fast wavelength scanning of the lasers, and an off-axis alignment enabled measurements with 10 μs time response and low cavity noise. The CEAS absorption gain factors of 104 and 142 for the P35←S520 (777.2 nm) and P0,1,23←S310 (844.6 nm) atomic oxygen transitions, respectively, significantly improved the detection sensitivity over conventional single-pass measurements. This work demonstrates the potential of using CEAS to improve shock-tube studies of nonequilibrium electronic-excitation processes at high temperatures.

  8. High-resolution absorption spectroscopy of the OH 2Π3/2 ground state line

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, H.; Güsten, R.; Heyminck, S.; Jacobs, K.; Menten, K. M.; Neufeld, D. A.; Requena-Torres, M. A.; Stutzki, J.

    2012-06-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Π3/2, J = 5/2 ← 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 1014 cm-2, which corresponds to a fractional abundance of 10-7 to 10-8, which is comparable to that of H2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of 18OH.

  9. The Role of Polycyclic Aromatic Hydrocarbons in Dense Cloud Absorption Features: The Last Major Unanswered Question in Interstellar Ice Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiar, Jean

    identified in a small handful of dense cloud sources (solely high-mass YSOs), there have been no comprehensive comparisons of experimental or computational spectra to the observed "unidentified" dense cloud absorption features, centered at 6.0 and 6.8 micron, which fall in the range of fundamental PAH vibrational modes. From the Spitzer IRS archive, we have selected 42 lines of sight through dense clouds and 34 lines of sight through colder less turbulent dense cores in order to best characterize PAHs in the most quiescent regions of the dense ISM. Since the 6.0 and 6.8 micron features in these sources show profiles which are different than those observed for YSOs, we have also selected 35 low-mass YSO spectra in order to assess the role the physical and/or chemical characteristics of the PAHs play in the observed features. For all our targets, ground-based 2 to 5 micron spectroscopy has been acquired by us or is available in the literature to aid in the analysis. We have at our disposal the NASA Ames Astrochemistry PAH database and proven techniques for determining continua to extract the dust and ice absorption features. The Ames PAH database is the largest of its kind and includes the spectra of theoretically calculated and experimentally measured IR absorption spectra of both neutral and ionized PAHs and nitrogen-substituted PAHs in inert gas matrices and water-ice. Our team includes the expertise of astronomers with over 2 decades of combined experience in observations of dust and ice in dense clouds and the properties of PAH emission in star-forming regions with the expertise of experimental and computational chemists whose specialty is the study of PAHs. Our proposed research will place tight constraints on the PAH concentrations and forms that could be present in interstellar ices which will, in turn, guide future astrochemistry model development and fuel new observations with future NASA facilities such as SOFIA and JWST.

  10. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  11. High Explosives Mixtures Detection Using Fiber Optics Coupled: Grazing Angle Probe/Fourier Transform Reflection Absorption Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Primera-Pedrozo, Oliva M.; Soto-Feliciano, Yadira M.; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.

    2008-12-01

    Fourier Transform Infrared Spectroscopy operating in Reflection-Absorption mode has been demonstrated as a potential spectroscopic technique to develop new methodologies for detection of chemicals deposited on metallic surfaces. Mid-IR transmitting optical fiber bundle coupled to an external Grazing Angle Probe and an MCT detector together with a bench Michelson interferometer have been used to develop a highly sensitive and selective methodology for detecting traces of organic compounds on metal surfaces. The methodology is remote sensed, in situ and can detect surface loading concentrations of nanograms/cm2 of most target compounds. It is an environmentally friendly, solvent free technique that does not require sample preparation. In this work, the ever-important task of high explosives detection, present as traces of neat crystalline forms and in lab-made mixtures, equivalent to the important explosive formulation Pentolite, has been addressed. The sample set consisted of TNT, PETN (both pure samples) and the formulation based on them: Pentolite, present in various loading concentrations. The spectral data collected was subjected to a number of statistical pre-treatments, including first derivative and normalization transformations to make the data more suitable for the analysis. Principal Components Analysis combined with Linear Discriminant Analysis allowed the classification and discrimination of the target analytes contained in the sample set. Loading concentrations as 220 ng/cm2 were detected for each explosive in neat form and the in the simulated mixture of Pentolite.

  12. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  13. Electronic transitions and fermi edge singularity in polar heterostructures studied by absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Cavalcoli, D.; Minj, A.; Fraboni, B.; Cavallini, A.; Gamarra, P.; Poisson, M. A.

    2012-12-01

    Optically induced electronic transitions in nitride based polar heterostructures have been investigated by absorption and emission spectroscopy. Surface photovoltage (SPV), photocurrent (PC), and photo luminescence spectroscopy have been applied to high quality InAlN/AlN/GaN structures to study the optical properties of two dimensional electron gas. Energy levels within the two dimensional electron gas (2DEG) well at the interface between the GaN and AlN have been directly observed by SPV and PC. Moreover, a strong enhancement of the photoluminescence intensity due to holes recombining with electrons at the Fermi Energy, known as fermi energy singularity, has been observed. These analyses have been carried out on InAlN/AlN/GaN heterojunctions with the InAlN barrier layer having different In content, a parameter which affects the energy levels within the 2DEG well as well as the optical signal intensity. The measured energy values are in a very good agreement with the ones obtained by Schrödinger-Poisson simulations.

  14. Characterising legacy spent nuclear fuel pond materials using microfocus X-ray absorption spectroscopy.

    PubMed

    Bower, W R; Morris, K; Mosselmans, J F W; Thompson, O R; Banford, A W; Law, K; Pattrick, R A D

    2016-11-05

    Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly (137)Cs and (90)Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (μXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO2 particles in the paint layers, suggesting an association between TiO2 and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. μXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK's nuclear decommissioning efforts.

  15. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy

    PubMed Central

    Douglass, K O; Olson, D A

    2016-01-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5 % with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12 % for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5 % on average. The pressures measured using WMS have an average difference of 0.6 % from the absolute pressure measured with a capacitance diaphragm sensor. PMID:27881884

  16. Resonant photoemission and X-ray absorption spectroscopies of lithiated magnetite thin film

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takashi; Kawamura, Kinya; Namiki, Wataru; Furuichi, Shoto; Takayanagi, Makoto; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Terabe, Kazuya; Higuchi, Tohru

    2017-04-01

    Resonant photoemission spectroscopy (RPES) and X-ray absorption spectroscopy (XAS) were used to investigate the effect of lithiation on the electronic structure of Fe3O4 thin film relevant to the operation mechanism of nanoionic devices to enable magnetic property tuning. Comparison of the Fe 2p XAS spectrum for lithiated Fe3O4 (Li-Fe3O4) with that for pristine Fe3O4 clearly demonstrated that the number of Fe2+ ions at octahedral B sites is increased by lithiation. The valence band RPES spectra of Li-Fe3O4 further showed that lithiation increases the density of states near the Fermi level originating Fe2+ ions at octahedral B sites. These findings agree well with the observed decrease in the saturation magnetization in the magnetization-magnetic field (M-H) loop of Li-Fe3O4 thin film, indicating that minority spins (down spins) increase (i.e., total spins decrease) due to lithiation. The variation in the number of Fe2+ ions at B sites is suggested to be an underlying operating mechanism of a nanoionics-based magnetic property tuning device.

  17. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy.

    PubMed

    Douglass, K O; Olson, D A

    2016-06-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5 % with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12 % for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5 % on average. The pressures measured using WMS have an average difference of 0.6 % from the absolute pressure measured with a capacitance diaphragm sensor.

  18. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-03

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  19. Optical absorption and emission spectroscopy studies of ammonia-containing plasmas

    NASA Astrophysics Data System (ADS)

    Kang, S. J.; Donnelly, V. M.

    2007-05-01

    The chemistry of NH3/Ar/He plasmas was investigated, using a combination of ultraviolet (UV) optical absorption spectroscopy (OAS) and optical emission spectroscopy (OES). Absolute NH3 number densities in 1 Torr plasmas were measured by OAS as a function of inductively coupled plasma power and substrate heater temperature (Th). OES and actinometry were used to determine semi-quantitative H-atom density. A 'self-actinometry' method was introduced to measure the absolute number density of N2 that formed following the dissociation of NH3 and secondary reactions. In this approach, small amounts of N2 are added to the NH3-containing plasma, leading to an increase in the N2(C 3 Πu → B 3 Πg) emission intensity. This provides an accurate calibration factor for converting relative N2 emission intensities into absolute number densities. The number densities of NH3 were found to decrease with increasing power and Th, reaching >90% dissociation at 400 W and 900 K. N2 densities increased with power and Th. The majority of dissociated NH3 was converted to N2 (i.e. the total nitrogen content was conserved in the sum of these two species). The major hydrogen-containing species appeared to be H2; however, a substantial amount of H-atoms (comparable to H2) was present at the highest powers.

  20. Atomic structure of Mn-rich nanocolumns probed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rovezzi, M.; Devillers, T.; Arras, E.; d'Acapito, F.; Barski, A.; Jamet, M.; Pochet, P.

    2008-06-01

    In this letter, we have used the extended x-ray-absorption fine-structure (EXAFS) technique to investigate the structure of Mn-rich self-organized nanocolumns grown by low temperature molecular beam epitaxy. The EXAFS analysis has shown that Mn-rich nanocolumns exhibit a complex local structure that cannot be described by a simple substitutional model. Additional interatomic distances had to be considered in the EXAFS model which are in excellent agreement with the structure of a Ge-3Mn building block tetrahedron of Ge3Mn5.