Science.gov

Sample records for absorption spectroscopy technique

  1. Characterization and Processing of Organic Nonlinear Optical Materials using Ellipsometric, Waveguiding, and Absorption Spectroscopy Techniques

    NASA Astrophysics Data System (ADS)

    Olbricht, Benjamin C.

    The first focus of this work is to describe methods for characterizing organic electro-optic materials. Teng-Man Ellipsometry and Attenuated Total Internal Reflection are reviewed. Experimental techniques for these instruments are described and the calculation of an electro-optic activity is derived. The two techniques are compared; it has been found that in Situ Teng-Man ellipsometry is useful to determine poling conditions but not for reliably evaluating electro-optic activity. Attenuated Total Internal Reflection is found to provide very reliable and precise measurements of electro-optic activity and linear optical constants. As a reference, many materials systems have been evaluated and their electro-optic activities are recorded herein. Methods for fabricating devices for test by Teng-Man ellipsometry and Attenuated Total Internal Reflection are presented. A process for inducing Pockel's response via contact-geometry electric field poling is also described, along with modifications to the simple slab dielectric device to enhance the efficacy of poling. An additional method for enhancing the efficiency of poling is presented. This technique relies on the photoisomerization of azobenzene dyes under 532nm radiation to reduce the dimensionality accessible to chromophores doped into the azobenzene matrix. This effect is known as "Laser Assisted Poling" and is shown to increase poling efficiency by more than two fold. The second purpose of this work is to present an experimental technique to measure the order parameter = 3cos 2q -12 . This method is known as Variable-Angle Polarization-Referenced Absorption Spectroscopy (VAPRAS). The experimental apparatus used for VAPRAS introduces small alterations to a UV/Vis Spectrophotometer and an order parameter is derived by exclusively using classical models for transmittance. VAPRAS provides an effective refractive index for the electro-optic material film which is used to calculate the order of absorbers in the film

  2. X-ray absorption spectroscopy of Mn doped ZnO thin films prepared by rf sputtering technique

    SciTech Connect

    Yadav, Ashok Kumar; Jha, S. N.; Bhattacharyya, D.; Haque, Sk Maidul; Shukla, Dinesh; Choudhary, Ram Janay

    2015-11-15

    A set of r.f. sputter deposited ZnO thin films prepared with different Mn doping concentrations have been characterised by Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Spectroscopy (XANES) measurements at Zn, Mn and O K edges and at Mn L{sub 2,3} edges apart from long range structural characterisation by Grazing Incident X-ray Diffraction (GIXRD) technique. Magnetic measurements show room temperature ferromagnetism in samples with lower Mn doping which is however, gets destroyed at higher Mn doping concentration. The results of the magnetic measurements have been explained using the local structure information obtained from EXAFS and XANES measurements.

  3. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  4. Screening Technique for Lead and Cadmium in Toys and Other Materials Using Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Brouwer, Henry

    2005-01-01

    A simple procedure to quickly screen different consumer products for the presence of lead, cadmium, and other metals is described. This screening technique avoids expending a lot of preparation time on samples known to contain low levels of hazardous metals where only samples testing positive for the desired elements need to be analyzed…

  5. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  6. An indoor test campaign of the tomography long path differential optical absorption spectroscopy technique.

    PubMed

    Mettendorf, K U; Hartl, A; Pundt, I

    2006-02-01

    In this study we validate the two-dimensional long path DOAS tomography measurement technique by means of an indoor experiment with well-known concentration distributions. The experiment was conducted over an area of 10 m x 15 m using one and two cylindrical polycarbonate containers of diameter 2 m, respectively, filled with NO2. The setup was realized with three of the multibeam instruments recently developed by Pundt and Mettendorf (Appl. Opt., 2005, in press), which allow the simultaneous measurement along at least four light paths each. The configuration consisted of twelve simultaneous light beams, 39 horizontal light paths in total, and 18 different cylinder positions inside the field. It was found that for the discretization and inversion technique shown here reconstructions of the concentration distributions from experimental data agree well with simulated reconstructions. In order to draw conclusions for atmospheric applications, numerical studies including instrumental errors were carried out. It was found that with the presented measurement setup it is possible to measure and reconstruct one or two NO2 plumes of 600 m diameter and average concentrations above 4.2 ppbv each, on a scale of 13.5 km2. Theoretical investigations show that it should be possible to localize and quantify 600 m diameter plumes of SO2 > 1.5 ppbv, H2CO > 6.3 ppbv, HONO > 3.2 ppbv, and ozone > 46.2 ppbv. Larger plumes can be measured with higher precision. PMID:16470260

  7. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  8. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  9. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  10. Cavity Enhanced Ultrafast Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K.; Reber, Melanie Roberts; Chen, Yuning

    2015-06-01

    Ultrafast spectroscopy on gas phase systems is typically restricted to techniques involving photoionization, whereas solution phase experiments utilize the detection of light. At Stony Brook, we are developing new techniques for performing femtosecond time-resolved spectroscopy using frequency combs and high-finesse optical resonators. A large detection sensitivity enhancement over traditional methods enables the extension of all-optical ultrafast spectroscopies, such as broad-band transient absorption spectroscopy (TAS) and 2D spectroscopy, to dilute gas phase samples produced in molecular beams. Here, gas phase data can be directly compared to solution phase data. Initial demonstration experiments are focusing on the photodissociation of iodine in small neutral argon clusters, where cluster size strongly influences the effects solvent-caging and geminate recombination. I will discuss these initial results, our high power home-built Yb:fiber laser systems, and also extensions of the methods to the mid-IR to study the vibrational dynamics of hydrogen bonded clusters.

  11. Tomographic multiaxis-differential optical absorption spectroscopy observations of Sun-illuminated targets: a technique providing well-defined absorption paths in the boundary layer.

    PubMed

    Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas

    2006-08-20

    A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO(2), HCHO, SO(2), H(2)O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg. PMID:16892129

  12. Temperature Independent Differential Absorption Spectroscopy (tidas) and Simplified Atmospheric Air Mass Factor (samf) Techniques For The Measurement of Ozone Vertical Content From Gome Data

    NASA Astrophysics Data System (ADS)

    Zehner, C.; Casadio, S.; di Sarra, A.; Putz, E.

    A simple technique for the fast retrieval of ozone vertical amount from GOME (Global Ozone Monitoring Experiment) spectra is described in detail. The TIDAS (Tempera- ture Independent Differential Absorption Spectroscopy) technique uses GOME's ca- pability of measuring atmospheric spectra over a broad wavelength range with high spectral resolution. The ozone slant columns are retrieved by applying the Beer- Lambert law to two spectral windows where the ozone absorption cross sections show similar temperature dependence. A simple geometric air mass factor is computed for a fixed height spherical atmosphere (SAMF: Simplified Atmospheric air Mass Factor) to retrieve ozone vertical amounts. Vertical ozone values are compared to the GDP (GOME Data Processor), and to ground based ozone measurements.

  13. Phase Fluctuation Absorption Spectroscopy of Small Particles

    NASA Astrophysics Data System (ADS)

    Fluckiger, David Ulrich

    The purpose of this dissertation is to establish a viable mass measurement technique for in situ aerosol. Adaptation of the photothermal effect in a Mach-Zehnder interferometer provided high mass sensitivity in an instrument employing Phase Fluctuation Laser Optical Heterodyne (PFLOH) absorption spectroscopy. The theory of aerosol absorption of electromagnetic energy and subsequent thermalization in continuum, Rayleigh regime region is presented. From this theory the general behavior of PFLOH detection of aerosol is described and shown to give a signal proportional to the absorption species mass. Furthermore the signal is shown to be linear in excitation energy and modulation frequency, and scalable. The instrument is calibrated and shown to behave as predicted. PFLOH detection is then used in determining the mass size distribution of the aerosol component of the ozone-isoprene and ozone -(alpha)-pinene products as a function of isoprene and (alpha) -pinene concentration.

  14. Absorption Spectroscopy in Homogeneous and Micellar Solutions.

    ERIC Educational Resources Information Center

    Shah, S. Sadiq; Henscheid, Leonard G.

    1983-01-01

    Describes an experiment which has helped physical chemistry students learn principles of absorption spectroscopy, the effect of solvent polarity on absorption spectra, and some micellar chemistry. Background information and experimental procedures are provided. (JN)

  15. Graphene intracavity spaser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Nechepurenko, I. A.; Dorofeenko, A. V.

    2016-09-01

    We propose an intracavity plasmon absorption spectroscopy method based on graphene active plasmonics. It is shown that the plasmonic cavity contribution to the sensitivity is proportional to the quality factor Q of the graphene plasmonic cavity and reaches two orders of magnitude. The addition of gain medium into the cavity increases the sensitivity of method. Maximum sensitivity is reached in the vicinity of the plasmon generation threshold. The gain contribution to the sensitivity is proportional to Q1/2. The giant amplification of sensitivity in the graphene plasmon generator is associated with a huge path length, limited only by the decoherence processes. An analytical estimation of the sensitivity to loss caused by analyzed particles (molecules, nanoparticles, etc.) normalized by the single pass plasmon scheme is derived. Usage of graphene nanoflakes as plasmonic cavity allows a high spatial resolution to be reached, in addition to high sensitivity.

  16. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy

    SciTech Connect

    Cai, Weiwei; Kaminski, Clemens F.

    2014-04-14

    We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.

  17. Methane overtone absorption by intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Obrien, James J.

    1990-01-01

    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres.

  18. Defects in silicon after B+ implantation: A study using a positron-beam technique, Rutherford backscattering, secondary neutral mass spectroscopy, and infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Eichler, S.; Gebauer, J.; Börner, F.; Polity, A.; Krause-Rehberg, R.; Wendler, E.; Weber, B.; Wesch, W.; Börner, H.

    1997-07-01

    The distribution of defects in Si (100), (110), and (111) after boron implantation and annealing processes was measured by means of different methods. Boron implantation was carried out at 300 K with three energies (50, 150, and 300 keV or 30, 90, and 180 keV) in multiple mode to obtain a homogeneously damaged layer. Ion fluences ranged from 1014 to 1016 B+ cm-2. The profile of vacancy-type defects was detected by variable-energy positron annihilation spectroscopy (VEPAS). The defect concentration increases proportionally to Φ, where Φ is the ion fluence. It was found that the line-shape parameter S of the positron-electron annihilation peak in the implanted layer increases with Φ. The divacancy (2v) concentration observed by infrared absorption spectroscopy (IRAS) was nearly constant in all samples (about 1.8×1019 cm-3). It can be concluded that divacancies are not the main vacancy-type defect and the increasing S parameter must be attributed to additional defects of larger open volume. A value Sdefect/Sbulk=1.048 was fitted for the dominating defect, where S2v/Sbulk=1.04. Rutherford backscattering (RBS) measurements were carried out to detect the distribution of displaced lattice atoms. The defect-production rate was proportional to Φ again. The concentration profiles of implanted ions were measured with sputtered neutral mass spectrometry (SNMS). In addition, Monte Carlo calculations were done with the TRIM code. The nearly homogenous defect distributions up to a depth of 1 μm found by VEPAS, TRIM, and RBS are in very good accordance. The samples were annealed up to 1150 K. It was found that the annealing behavior of vacancylike defects depends on the implantation dose and on the sample material under investigation. The divacancies are annealed at 470 K as measured by IRAS. An annealing stage of vacancy clusters at 725 K was observed in all samples by VEPAS. In Czochralski material, a decrease of the S parameter below the value of defect-free Si was

  19. Defects in silicon after B{sup +} implantation: A study using a positron-beam technique, Rutherford backscattering, secondary neutral mass spectroscopy, and infrared absorption spectroscopy

    SciTech Connect

    Eichler, S.; Gebauer, J.; Boerner, F.; Polity, A.; Krause-Rehberg, R.; Wendler, E.; Weber, B.; Wesch, W.; Boerner, H.

    1997-07-01

    The distribution of defects in Si (100), (110), and (111) after boron implantation and annealing processes was measured. Boron implantation was carried out at 300 K with three energies (50, 150, and 300 keV or 30, 90, and 180 keV) in multiple mode to obtain a homogeneously damaged layer. Ion fluences ranged from 10{sup 14} to 10{sup 16}B{sup +}cm{sup {minus}2}. The profile of vacancy-type defects was detected by variable-energy positron annihilation spectroscopy (VEPAS). The defect concentration increases proportionally to {radical}({Phi}), where {Phi} is the ion fluence. The line-shape parameter S of the positron-electron annihilation peak in the implanted layer increases with {Phi}. The divacancy (2v) concentration observed by infrared absorption spectroscopy (IRAS) was nearly constant in all samples (about 1.8{times}10{sup 19}cm{sup {minus}3}). It can be concluded that divacancies are not the main vacancy-type defect and the increasing S parameter must be attributed to additional defects of larger open volume. A value S{sub defect}/S{sub bulk}=1.048 was fitted for the dominating defect, where S{sub 2v}/S{sub bulk}=1.04. Rutherford backscattering (RBS) measurements were carried out to detect the distribution of displaced lattice atoms. The defect-production rate was proportional to {radical}({Phi}) again. The concentration profiles of implanted ions were measured with sputtered neutral mass spectrometry (SNMS). In addition, Monte Carlo calculations were done with the TRIM code. The nearly homogenous defect distributions up to a depth of 1 {mu}m found by VEPAS, TRIM, and RBS are in very good accordance. The samples were annealed up to 1150 K. It was found that the annealing behavior of vacancylike defects depends on the implantation dose and on the sample material under investigation. The divacancies are annealed at 470 K as measured by IRAS. An annealing stage of vacancy clusters at 725 K was observed in all samples by VEPAS. (Abstract Truncated)

  20. Gas in scattering media absorption spectroscopy - GASMAS

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  1. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  2. Quantitative analysis of deconvolved X-ray absorption near-edge structure spectra: a tool to push the limits of the X-ray absorption spectroscopy technique.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina; Persson, Ingmar; Mancini, Giordano; Della Longa, Stefano

    2014-09-15

    A deconvolution procedure has been applied to K-edge X-ray absorption near-edge structure (XANES) spectra of lanthanoid-containing solid systems, namely, hexakis(dmpu)praseodymium(III) and -gadolinium(III) iodide. The K-edges of lanthanoids cover the energy range 38 (La)-65 (Lu) keV, and the large widths of the core-hole states lead to broadening of spectral features, reducing the content of structural information that can be extracted from the raw X-ray absorption spectra. Here, we demonstrate that deconvolution procedures allow one to remove most of the instrumental and core-hole lifetime broadening in the K-edge XANES spectra of lanthanoid compounds, highlighting structural features that are lost in the raw data. We show that quantitative analysis of the deconvolved K-edge XANES spectra can be profitably used to gain a complete local structural characterization of lanthanoid-containing systems not only for the nearest neighbor atoms but also for higher-distance coordination shells. PMID:25171598

  3. Spectroscopy in an extremely thin vapor cell: Comparing the cell-length dependence in fluorescence and in absorption techniques

    NASA Astrophysics Data System (ADS)

    Sarkisyan, D.; Varzhapetyan, T.; Sarkisyan, A.; Malakyan, Yu.; Papoyan, A.; Lezama, A.; Bloch, D.; Ducloy, M.

    2004-06-01

    We compare the behavior of absorption and of resonance fluorescence spectra in an extremely thin Rb vapor cell as a function of the ratio of L/λ , with L the cell thickness (L˜150 1800 nm) and λ the wavelength of the Rb D2 line (λ=780 mn) . The Dicke-type coherent narrowing [

    G. Dutier et al., Europhys. Lett. 63, 35 (2003)
    ] is observed only in transmission measurements, in the linear regime, with its typical collapse and revival, which reaches a maximum for L= (2n+1) λ/2 ( n integer). It is shown not to appear in fluorescence, whose behavior-amplitude, and spectral width, is more monotonic with L . Conversely, at high-intensity, the sub-Doppler saturation effects are shown to be the most visible in transmission around L=nλ .

  4. Tomographic laser absorption spectroscopy using Tikhonov regularization.

    PubMed

    Guha, Avishek; Schoegl, Ingmar

    2014-12-01

    The application of tunable diode laser absorption spectroscopy (TDLAS) to flames with nonhomogeneous temperature and concentration fields is an area where only few studies exist. Experimental work explores the performance of tomographic reconstructions of species concentration and temperature profiles from wavelength-modulated TDLAS measurements within the plume of an axisymmetric McKenna burner. Water vapor transitions at 1391.67 and 1442.67 nm are probed using calibration-free wavelength modulation spectroscopy with second harmonic detection (WMS-2f). A single collimated laser beam is swept parallel to the burner surface, where scans yield pairs of line-of-sight (LOS) data at multiple radial locations. Radial profiles of absorption data are reconstructed using Tikhonov regularized Abel inversion, which suppresses the amplification of experimental noise that is typically observed for reconstructions with high spatial resolution. Based on spectral data reconstructions, temperatures and mole fractions are calculated point-by-point. Here, a least-squares approach addresses difficulties due to modulation depths that cannot be universally optimized due to a nonuniform domain. Experimental results show successful reconstructions of temperature and mole fraction profiles based on two-transition, nonoptimally modulated WMS-2f and Tikhonov regularized Abel inversion, and thus validate the technique as a viable diagnostic tool for flame measurements. PMID:25607968

  5. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  6. Light emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS): a novel technique for monitoring atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Thalman, Ryan M.; Volkamer, Rainer M.

    2009-08-01

    The combination of Cavity Enhanced Absorption Spectroscopy (CEAS) with broad-band light sources (e.g. Light- Emitting Diodes, LEDs) lends itself to the application of cavity enhanced DOAS (CE-DOAS) to perform sensitive and selective point measurements of multiple trace gases with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e., does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0). We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420-490nm) to measure nitrogen dioxide (NO2), glyoxal (CHOCHO), iodine monoxide (IO), water (H2O) and oxygen dimers (O4). Aerosol extinction is retrieved at two wavelengths by means of observing water and O4 and measuring pressure, temperature and relative humidity independently. The instrument components are presented, and the approach to measure aerosol extinction is demonstrated by means of a set of experiments where laboratory generated monodisperse aerosols are added to the cavity. The aerosol extinction cross section agrees well with Mie calculations, demonstrating that our setup enables measurements of the above gases in open cavity mode.

  7. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis. PMID:25239063

  8. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  9. Single-particle absorption spectroscopy by photothermal contrast.

    PubMed

    Yorulmaz, Mustafa; Nizzero, Sara; Hoggard, Anneli; Wang, Lin-Yung; Cai, Yi-Yu; Su, Man-Nung; Chang, Wei-Shun; Link, Stephan

    2015-05-13

    Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations. PMID:25849105

  10. Absorption spectroscopy with quantum cascade lasers

    NASA Technical Reports Server (NTRS)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    2001-01-01

    Novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers operating near lambda=8 micrometers were used for detection and quantification of trace gases in ambient air by means of sensitive absorption spectroscopy. N2O, 12CH4, 13CH4, and different isotopic species of H2O were detected. Also, a highly selective detection of ethanol vapor in air with a sensitivity of 125 parts per billion by volume (ppb) was demonstrated.

  11. Cavity-Enhanced Ultrafast Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yuning; Reber, Melanie Roberts; Keleher, Kevin; Allison, Thomas K.

    2014-06-01

    We introduce cavity enhanced ultrafast transient absorption spectroscopy, which employs frequency combs and high-finesse optical cavities. % The schematic of apparatus is shown in Figure 1. Sub-100 fs pulses with a repetition rate of 90 MHz are generated by a home-built Ytterbium fiber laser. The amplified light has a power up to 10 W, which is used to pump an optical parametric oscillator, followed by second-harmonic generation(SHG) that converts the wavelength from near-IR to visible. A pump comb at 530 nm is separately generated by SHG. Both pump and probe combs are coupled into high-finesse cavities. Compared to the conventional transient absorption spectroscopy method, the detection sensitivity can be improved by a factor of (F/π)^2 ˜ 10^5, where F is the finesse of cavity. This ultrasensitive technology enables the direct all-optical dynamics study in molecular beams. We will apply the cavity enhanced ultrafast transient absorption spectroscopy to investigate the dynamics of visible chromophores and then extend the wavelength to mid-IR to study vibrational dynamics of small hydrogen-bonded clusters.

  12. CO2 Absorption Spectroscopy and Climate Change

    NASA Astrophysics Data System (ADS)

    Feldman, Daniel; Mlawer, Eli; Mlynczak, Martin; Gero, Jon; Collins, William; Torn, Margaret

    2014-03-01

    Most of the absorption, and therefore radiative forcing, due to increased atmospheric CO2 occurs in line wings, so utilizing an accurate line shape is necessary for climate science. Recent advances in CO2 absorption spectroscopy have been incorporated into benchmark line-by-line radiative transfer models. These updates include the Energy Corrected Sudden Approximation to represent isolated line profiles, line mixing, and line clusters. The CO2 line profiles are sub-Lorentzian and are explicitly modeled up to 25 cm-1 from each line's center. Consistent continuum absorption is implemented over the remainder of the profile except for modest empirical adjustments based on observations. Thus, line-by-line models calculate the absorption effects of CO2 that agree with theory and measurements. This is validated with long-term spectroscopic measurements from the ARM program's AERI instrument. This spectroscopy trains computationally-efficient correlated-k methods for climate model radiative transfer, but they overpredict instantaneous radiative forcing from doubled CO2 by approximately 7% in part because they have larger errors handling the impact of increased CO2 in the stratosphere than the troposphere. The implications of this can be tested with supercomputers. This work was supported by the Director, Office of Science, Office of Biol. & Env. Res., Clim. & Env. Sci. Div., of the U.S. D.O.E., Contract No. DE-AC02-05CH11231 as part of the Atmos. Sys. Res.

  13. Absorption effects in diffusing wave spectroscopy.

    PubMed

    Sarmiento-Gomez, Erick; Morales-Cruzado, Beatriz; Castillo, Rolando

    2014-07-20

    The effect of absorption in diffusing wave spectroscopy (DWS) was studied using an absorption-dependent diffusive equation for describing the light propagation within a turbid liquid where dielectric microspheres have been embedded. Here, we propose an expression for the time-averaged light intensity autocorrelation function that correctly describes the time fluctuations for the scattered light, in the regime where the diffusion approximation accurately describes the light propagation. This correction was suspected previously, but it was not formally derived from a light diffusive equation. As in the case of no absorption, we obtained that time fluctuations of the scattered light can be related to the mean square displacement of the embedded particles. However, if a correction for absorption is not taken into account, the colloidal dynamics can be misinterpreted. Experimental results show that this new formulation correctly describes the time fluctuations of scattered light. This new procedure extends the applicability of DWS, and it opens the possibility of doing microrheology with this optical method in systems where absorption cannot be avoided. PMID:25090203

  14. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy.

    PubMed

    Bartula, Renata J; Ghandhi, Jaal B; Sanders, Scott T; Mierkiewicz, Edwin J; Roesler, Fred L; Harlander, John M

    2007-12-20

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span approximately 308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of approximately 2x10(-7) m(2) rad(2)) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines. PMID:18091974

  15. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  16. Light-induced changes in subband absorption in a-Si:H using photoluminescence absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, S. Q.; Taylor, P. C.; Nitta, S.

    1991-08-01

    We have used the photoluminescence (PL) generated in a thin-film sample of a-Si:H to probe low absorption levels by measuring the absorption of the PL as it travels down the length of the film in a waveguide mode. This technique, which we have called PL absorption spectroscopy of PLAS, allows the measurement of values of the absorption coefficient α down to about 0.1 cm-1. Because this technique probes the top and bottom surfaces of the a-Si:H sample, it is important to separate surface from bulk absorption mechanisms. An improved sample geometry has been employed to facilitate this separation. One sample consisted of an a-Si1-xNix:H/a-Si:H/ a-Si1-xNx:H/NiCr layered structure where the silicon nitride layers served as the cladding layers for the waveguide. In a second sample the a-Si:H layer was interrupted near the middle for two separate, thin (100 Å) layers of a-Si1-xNx:H in order to check for the importance of the absorption at the silicon/silicon nitride interfaces in these PLAS measurements. Changes in the below-gap absorption on light soaking were examined using irradiation from an Ar+ laser (5145 Å, ˜200 mW/cm2 for 5.5 hours at 300 K). The silicon/silicon nitride interface is responsible for an absorption which has a shoulder near 1.2 eV while the bulk a-Si:H absorption exhibits no such shoulder. The metastable, optically-induced increase in the below gap absorption appears to come entirely from the bulk of the a-Si:H. These low temperature PLAS measurements are compared with those obtained at 300 K by photothermal deflection spectroscopy.

  17. Total absorption spectroscopy of the β decay of 76Ga

    NASA Astrophysics Data System (ADS)

    Dombos, A. C.; Fang, D.-L.; Spyrou, A.; Quinn, S. J.; Simon, A.; Brown, B. A.; Cooper, K.; Gehring, A. E.; Liddick, S. N.; Morrissey, D. J.; Naqvi, F.; Sumithrarachchi, C. S.; Zegers, R. G. T.

    2016-06-01

    The β decay of 76Ga was studied using the technique of total absorption spectroscopy for the first time. The experiment was performed at the National Superconducting Cyclotron Laboratory using the Summing NaI(Tl) detector. The extracted β -decay feeding intensity distribution and Gamow-Teller transition strength distribution are compared to shell-model calculations to help constrain nuclear matrix elements relevant to the neutrinoless double-β decay of 76Ge.

  18. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  19. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  20. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    SciTech Connect

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.; Keller, J.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, which is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.

  1. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  2. Optical fringe reduction technique for FM laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Chou, Nee-Yin; Sachse, Glen W.; Wang, Liang-Guo; Gallagher, Thomas F.

    1989-01-01

    A simple fringe reduction method for FM diode laser spectroscopy is discussed. The fringes can be effectively suppressed by using a modulation frequency that is an integral multiple of the free spectral range of the fringes. The technique is experimentally confirmed by two-tone FM spectroscopy of water vapor absorption lines. A factor of 20 fringe reduction is observed.

  3. Gold analysis by the gamma absorption technique.

    PubMed

    Kurtoglu, Arzu; Tugrul, A Beril

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement. PMID:12485656

  4. Absorption technique for OH measurements and calibration

    SciTech Connect

    Bakalyar, D.M.; James, J.V.; Wang, C.C.

    1982-08-15

    An absorption technique is described which utilizes a stabilized frequency-doubled tunable dye laser and a long-path White cell with high mirror reflectivities both in the red and UV. In laboratory conditions we have been able to obtain routinely a detection sensitivity of 3 parts in 10/sup 6/ over absorption paths <1 m in length and a detection sensitivity of approx.6 parts in 10/sup 5/ over an absorption path of the order of 1 km. The latter number corresponds to 3 x 10/sup 6/ OH molecules/cm/sup 3/, and therefore the technique should be particularly useful for calibration of our fluorescence instrument for OH measurements. However, the presence of atmospheric fluctuations coupled with intensity variation accompanying frequency scanning appears to degrade the detection sensitivity in outdoor ambient conditions, thus making it unlikely that this technique can be employed for direct OH monitoring.

  5. Absorption technique for OH measurements and calibration

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; James, J. V.; Wang, C. C.

    1982-01-01

    An absorption technique is described which utilizes a stabilized frequency-doubled tunable dye laser and a long-path White cell with high mirror reflectivities both in the red and UV. In laboratory conditions it has been possible to routinely obtain a detection sensitivity of 3 parts in 1,000,000 over absorption paths less than 1 m in length and a detection sensitivity of approximately 6 parts in 100,000 over an absorption path of the order of 1 km. The latter number corresponds to 3,000,000 OH molecules/cu cm, and therefore the technique should be particularly useful for calibration the fluorescence instrument for OH measurements. However, the presence of atmospheric fluctuations coupled with intensity variation accompanying frequency scanning appears to degrade the detection sensitivity in outdoor ambient conditions, thus making it unlikely that this technique can be employed for direct OH monitoring.

  6. X-ray absorption spectroscopy of liquid surface

    NASA Astrophysics Data System (ADS)

    Watanabe, Iwao; Tanida, Hajime; Kawauchi, Sigehiro; Harada, Makoto; Nomura, Masaharu

    1997-09-01

    An apparatus has been constructed for x-ray absorption spectroscopy of elements at air/aqueous solution interface. Its surface sensitivity is gained from glancing incidence of synchrotron radiation under total reflection condition. The absorption is detected by total conversion He ion-yield method. This apparatus was operated at the beam line 7C of Photon Factory, where the incident photon beam comes from a sagittal focus double-crystal monochromator via a 70-cm-long bent mirror. The mirror focuses the beam vertically and changes the beam direction downward by 1 mrad to irradiate solution surface. The essential requirement of this technique, ripple-free liquid surface at accurate position, was attained by introducing a trough on a floating boat, continuous surface level monitoring, and an automatic Z-stage control. The x-ray absorption edge jump demonstrated that surface concentration of bromide ion follows the Langmuir type adsorption for tetraalkylammonuim bromide solution. By comparing the jump values for surface-active and -inactive bromide salt solutions, the detecting depth of the present technique was determined to be 8.8 nm. An extended x-ray absorption fine structure analysis of bromide ion segregated to the surface by stearyltrimethylammonium cation indicated that its solvation structure is different from that of bulk.

  7. Experimental study of the light absorption in sea water by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Velásquez, A.; Sira, E.; Silva, S.; Cabrera, H.

    2016-01-01

    Thermal lens spectroscopy is well known as highly sensitive technique enabling measurements of low absorption and concentration determination of various compounds. The optical absorption coefficients of doubly distilled water and samples of water from different places of the open Ocean and different coastal regions have been measured at 532.8 nm wavelength using this technique. The method enables sensitive, rapid and reproducible determination of small variations of the absorption coefficient which are related with small trace contaminations in sea water.

  8. Biochemical applications of surface-enhanced infrared absorption spectroscopy

    PubMed Central

    Heberle, Joachim

    2007-01-01

    An overview is presented on the application of surface-enhanced infrared absorption (SEIRA) spectroscopy to biochemical problems. Use of SEIRA results in high surface sensitivity by enhancing the signal of the adsorbed molecule by approximately two orders of magnitude and has the potential to enable new studies, from fundamental aspects to applied sciences. This report surveys studies of DNA and nucleic acid adsorption to gold surfaces, development of immunoassays, electron transfer between metal electrodes and proteins, and protein–protein interactions. Because signal enhancement in SEIRA uses surface properties of the nano-structured metal, the biomaterial must be tethered to the metal without hampering its functionality. Because many biochemical reactions proceed vectorially, their functionality depends on proper orientation of the biomaterial. Thus, surface-modification techniques are addressed that enable control of the proper orientation of proteins on the metal surface. Figure Surface enhanced infrared absorption spectroscopy (SEIRAS) on the studies of tethered protein monolayer (cytochrome c oxidase and cytochrome c) on gold substrate (left), and its potential induced surface enhanced infrared difference absorption (SEIDA) spectrum PMID:17242890

  9. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    SciTech Connect

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  10. Pathlength determination for gas in scattering media absorption spectroscopy.

    PubMed

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  11. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  12. Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)

    NASA Astrophysics Data System (ADS)

    Weibring, P.; Edner, H.; Svanberg, S.; Cecchi, G.; Pantani, L.; Ferrara, R.; Caltabiano, T.

    1998-10-01

    The total fluxes of sulphur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano were studied using optical remote sensing techniques in three shipborne field experiments (1992, 1994, and 1997). The main purpose of the experiments was to compare active (laser) techniques with passive monitoring. Differential absorption lidar (DIAL) measurements were implemented by placing the Swedish mobile lidar system on board the Italian research vessel Urania, sailing under the volcanic plumes. Simultaneously, the passive differential optical absorption spectroscopy (DOAS) technique was used for assessing the total overhead gas burden. Finally, correlation spectroscopy (COSPEC) was also implemented in one of the campaigns. Differences in integrated gas column assessment are expected and observed, mostly connected to complex scattering conditions influencing the passive measurements. Since such measurements are much employed in routine volcanic monitoring it is of great interest to model and provide corrections to the raw data obtained. Lidar measurements proved to be quite useful for this purpose. By combining the integrated gas concentration over the plume cross section with wind velocity data, SO2 fluxes of the order of 1000, 100, and 10 tonnes/day were measured for Mt. Etna, Stromboli, and Vulcano, respectively.

  13. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  14. Improved Sensitivity for Frequency Modulation Laser Absorption Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Shum, Chi-Man

    1990-01-01

    We have developed and implemented a two-tone harmonic frequency modulation technique to reduce the residue amplitude modulation (RAM) background in frequency modulation (FM) laser absorption spectroscopy. This RAM noise, generated during electro-optically phase modulating the laser carrier, is several orders of magnitude larger than the shot-noise detection limit. When our two-tone method was used, the RAM signal was reduced by a factor of 4. We have also provided a thorough signal-to-noise analysis which leads to a detection limit consistent with out experimental results. A vital element in the work of FM spectroscopy is the electro-optic phase modulator. We have designed and fabricated two phase modulators, both employing a lithium tantalate single crystal. The first device is a broad -band design called the traveling wave phase modulator. With microstrip transmission line construction techniques, the impedance of the device is matched to 50 Omega within a bandwidth of more than 500 MHz. The second modulator was a novel design built to provide enhanced modulation index at a resonant frequency tunable over a frequency range of approximately 350 MHz. This resonant modulator can provide the same modulation efficiency as that from the traveling wave device with as much as 50% less modulation power. Both modulators have useful applications in FM spectroscopy depending on the experimental conditions.

  15. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Tittel, F. K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J.

    2014-12-01

    This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

  16. Qualitative and Quantitative Content Determination of Macro-Minor Elements in Bryonia Alba L. Roots using Flame Atomic Absorption Spectroscopy Technique

    PubMed Central

    Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana

    2016-01-01

    Purpose: To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Methods: Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. Results: The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. Conclusion: The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases. PMID:27478794

  17. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  18. [Retrieval of monocyclic aromatic hydrocarbons with differential optical absorption spectroscopy].

    PubMed

    Xie, Pin-Hua; Fu, Qiang; Liu, Jian-Guo; Liu, Wen-Qing; Qin, Min; Li, Ang; Liu, Shi-Sheng; Wei, Qing-Nong

    2006-09-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, e. g. SO2, NO2, O3 etc. However, unlike the absorption spectra of SO2 and NO2, the analysis of aromatic compounds is difficult and strongly suffers from the cross interference of other absorbers (Herzberg bands of oxygen, ozone and sulfur dioxide), especially with relatively low concentrations of aromatic compounds in the atmosphere. In the present paper, the DOAS evaluation of aromatic compounds was performed by nonlinear least square fit with two interpolated oxygen optical density spectra at different path lengths and reference spectra of ozone at different temperature and SO2 cross section to correct the interference from absorbers of O2, O3 and SO2. The measurement of toluene, benzene, (m, p, o) xylene and phenol with a DOAS system showed that DOAS method is suitable for monocyclic aromatic compounds monitoring in the atmosphere. PMID:17112022

  19. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan; Santos Sousa, Joao; Stancu, Gabi Daniel; Hubertus van Helden, Jean-Pierre

    2015-10-01

    Absorption spectroscopy (AS) represents a reliable method for the characterization of cold atmospheric pressure plasma jets. The method’s simplicity stands out in comparison to competing diagnostic techniques. AS is an in situ, non-invasive technique giving absolute densities, free of calibration procedures, which other diagnostics, such as laser-induced fluorescence or optical emission spectroscopy, have to rely on. Ground state densities can be determined without the knowledge of the influence of collisional quenching. Therefore, absolute densities determined by absorption spectroscopy can be taken as calibration for other methods. In this paper, fundamentals of absorption spectroscopy are presented as an entrance to the topic. In the second part of the manuscript, a review of AS performed on cold atmospheric pressure plasma jets, as they are used e.g. in the field of plasma medicine, is presented. The focus is set on special techniques overcoming not only the drawback of spectrally overlapping absorbing species, but also the line-of-sight densities that AS usually provides or the necessity of sufficiently long absorption lengths. Where references are not available for measurements on cold atmospheric pressure plasma jets, other plasma sources including low-pressure plasmas are taken as an example to give suggestions for possible approaches. The final part is a table summarizing examples of absorption spectroscopic measurements on cold atmospheric pressure plasma jets. With this, the paper provides a ‘best practice’ guideline and gives a compendium of works by groups performing absorption spectroscopy on cold atmospheric pressure plasma jets.

  20. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  1. Optical re-injection in cavity-enhanced absorption spectroscopy.

    PubMed

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  2. Optical re-injection in cavity-enhanced absorption spectroscopy

    SciTech Connect

    Leen, J. Brian O’Keefe, Anthony

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  3. Photoelectron and X-ray Absorption Spectroscopy Of Pu

    SciTech Connect

    Tobin, J; Chung, B; Schulze, R; Farr, J; Shuh, D

    2003-11-12

    We have performed Photoelectron Spectroscopy and X-Ray Absorption Spectroscopy upon highly radioactive samples of Plutonium at the Advanced Light Source in Berkeley, CA, USA. First results from alpha and delta Plutonium are reported as well as plans for future studies of actinide studies.

  4. Application of x-ray absorption spectroscopy to the study of corrosion and inhibition

    SciTech Connect

    Davenport, A.J.; Isaacs, H.S.

    1991-01-01

    X-ray absorption spectroscopy is a powerful technique for determination of valency and coordination. Measurements can be made in air or in situ under electrochemical control. The technique will be described and its application to the analysis of passive oxide films, corrosion products, and inhibitors will be reviewed.

  5. Absorption and fluorescence spectroscopy on a smartphone

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    A self-powered smartphone-based field-portable "dual" spectrometer has been developed for both absorption and fluorescence measurements. The smartphone's existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.

  6. Gas in Scattering Media Absorption Spectroscopy -- Laser Spectroscopy in Unconventional Environments

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2010-02-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The GASMAS technique combines narrow-band diode-laser spectroscopy with optical propagation in diffuse media. Whereas solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures. These are typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. Molecular oxygen and water vapor have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen gas, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the human sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen, while breathing normally through the mouth. A clinical study comprising 40 patients has been concluded.

  7. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  8. Infrared Absorption Spectroscopy Measurement of SOx using Tunable Infrared Laser

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo

    The absorption characteristics of sulfur dioxide (SO2) and sulfur trioxide (SO3) in the infrared region were measured using a quantum cascade laser and an absorption cell of length 1 m heated to 150°C. The laser was scanned over the wavelength range 6.9-7.4 μm, which included the absorption bands of SO2 and SO3. Measurement results showed that the absorption bands of SO2 and SO3 partially overlapped, with peaks at 7.28 μm and 7.35 μm for SO2 and 7.14 μm and 7.25 μm for SO3. These results showed the possbility of using infrared laser absorption spectroscopy for measurement of sulfur oxides (SOx) in flue gas. For SO3 measurement, infrared absorption spectroscopy was shown to be more suitable than ultraviolet absorption spectroscopy. The absorption characteristics of open air in the same wavelength region showed that the interference due to water vapor must be efficiently removed to perform SOx measurement in flue gas.

  9. [Study of retrieving formaldehyde with differential optical absorption spectroscopy].

    PubMed

    Li, Yu-Jin; Xie, Pin-Hua; Qin, Min; Qu, Xiao-Ying; Hu, Lin

    2009-01-01

    The present paper introduces the method of retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS). The authors measured ambient HCHO in Beijing region with the help of differential optical absorption spectroscopy instrument made by ourself, and discussed numerous factors in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), especially, the choice of HCHO wave band, how to avoid absorption of ambient SO2, NO2 and O3, and the influence of the Xenon lamp spectrum structure on the absorption of ambient HCHO. The authors achieved the HCHO concentration by simultaneously retrieving the concentrations of HCHO, SO2, NO2 and O3 with non-linear least square fitting method, avoiding the effect of choosing narrow wave of HCHO and the residual of SO2, NO2, O3 and the Xenon lamp spectrum structure in retrieving process to attain the concentration of HCHO, Finally the authors analyzed the origin of error in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), and the total error is within 13.7% in this method. PMID:19385238

  10. Atomic absorption spectroscopy with high temperature flames.

    PubMed

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed. PMID:20068790

  11. X-ray absorption spectroscopy of bacterial sulfur globules

    SciTech Connect

    George, Graham N.

    2002-08-01

    Sulfur K-edge X-ray absorption spectroscopy is a powerful in situ probe of sulfur biochemistry in intact cells and tissues. Under favorable circumstances the technique can provide quantitative information on the chemical identify of the sulfur species that are present in a sample. Prange et al. have recently reported an X-ray absorption spectroscopic study of bacterial sulfur storage globules. Unfortunately there are substantial problems with the experimental technique employed that, they contend, lead to completely erroneous conclusions. In the more recent of their two papers Prange et al. employed a curve-fitting method similar to that used by us (for more than 10 years). In essence, the method employs simply fitting a linear combination of the spectra of standard compounds to that of the unknown, in this case cultures of bacterial cells. This type of analysis can provide quantitative estimates of the individual sulfur types in the sample, but is critically dependent upon the choice of reference spectra. Prange et al. deduce substantial differences between the chemical forms of sulfur stored in the globules of different organisms; they conclude that the globules of Beggiatoa alba and Thiomargarita namibiensis contain cyclo-octasulfur (S{sub 8}), while those of other organisms contain polythionates (Acidithiobacillus ferrooxidans) and polymeric sulfur (e.g. Allochromatium vinosum). This is in contradiction with an earlier study, in which they found that sulfur in all globule species examined resembled that expected for various sized spherical particles of S{sub 8}. The discrepancy is due to an experimental artefact in the work of Prange et al. arising from their choice of transmittance detection, which is also discussed.

  12. Molecular shock response of explosives: electronic absorption spectroscopy

    SciTech Connect

    Mcgrne, Shawn D; Moore, David S; Whitley, Von H; Bolme, Cindy A; Eakins, Daniel E

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  13. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  14. Laser photothermal spectroscopy of light-induced absorption

    SciTech Connect

    Skvortsov, L A

    2013-01-31

    Basic methods of laser photothermal spectroscopy, which are used to study photoinduced absorption in various media, are briefly considered. Comparative analysis of these methods is performed and the latest results obtained in this field are discussed. Different schemes and examples of their practical implementation are considered. (review)

  15. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  16. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  17. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry.

    PubMed

    Kunze, K; Zybin, A; Koch, J; Franzke, J; Miclea, M; Niemax, K

    2004-12-01

    Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur. PMID:15561625

  18. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS

    NASA Astrophysics Data System (ADS)

    Lins, B.; Zinn, P.; Engelbrecht, R.; Schmauss, B.

    2010-08-01

    A simulative investigation of noise effects in wavelength modulation spectroscopy (WMS) and direct absorption diode laser absorption spectroscopy is presented. Special attention is paid to the impact of quantization noise of the analog-to-digital conversion (ADC) of the photodetector signal in the two detection schemes with the goal of estimating the necessary ADC resolution for each technique. With laser relative intensity noise (RIN), photodetector shot noise and thermal amplifier noise included, the strategies used for noise reduction in direct and wavelength modulation spectroscopy are compared by simulating two respective systems. Results show that because of the combined effects of dithering by RIN and signal averaging, the resolutions required for the direct absorption setup are only slightly higher than for the WMS setup. Only for small contributions of RIN an increase in resolution will significantly improve signal quality in the direct scheme.

  19. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    PubMed

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    experiments with controlled the temperature were performed to validate the sensing strategy. Here the Wavelength Modulation Spectroscopy (WMS) strategy was usually used to measure lower gas concentration for high noise immunity to the non-absorption transmission losses. The great agreement 2f signal with the calibrated concentration is within the uncertainty at different temperatures by using simple digital signal processing such as multiple averages, wavelet analysis and so on. The denoise processing has a great advantage in application and implementation over other noise suppression techniques. The result provided a good basis for trace ammonia escape detection based on tunable diode laser absorption spectroscopy. PMID:26601382

  20. Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods.

    PubMed

    D'Andrea, Cosimo; Obraztsova, Ekaterina A; Farina, Andrea; Taroni, Paola; Lanzani, Guglielmo; Pifferi, Antonio

    2012-11-10

    In this paper a novel method, based on time-resolved diffuse optical spectroscopy, is proposed to measure the absorption of small amounts of nanostructured powder materials independent of scattering. Experimental validation, in the visible and near-infrared spectral range, has been carried out on India Inkparticles. The effectiveness of the technique to measure scattering-free absorption is demonstrated on carbon nanotubes. The comparison between the absorption spectra acquired by the proposed method and conventional measurements performed with a commercial spectrophotometer is discussed. PMID:23142900

  1. Raman Spectroscopy and Related Techniques in Biomedicine

    PubMed Central

    Downes, Andrew; Elfick, Alistair

    2010-01-01

    In this review we describe label-free optical spectroscopy techniques which are able to non-invasively measure the (bio)chemistry in biological systems. Raman spectroscopy uses visible or near-infrared light to measure a spectrum of vibrational bonds in seconds. Coherent anti-Stokes Raman (CARS) microscopy and stimulated Raman loss (SRL) microscopy are orders of magnitude more efficient than Raman spectroscopy, and are able to acquire high quality chemically-specific images in seconds. We discuss the benefits and limitations of all techniques, with particular emphasis on applications in biomedicine—both in vivo (using fiber endoscopes) and in vitro (in optical microscopes). PMID:21151763

  2. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  3. X-Ray Absorption Spectroscopy Imaging of Biological Tissues

    NASA Astrophysics Data System (ADS)

    Pickering, Ingrid J.; George, Graham N.

    2007-02-01

    X-ray absorption spectroscopy (XAS) is proving invaluable in determining the average chemical form of metals or metalloids in intact biological tissues. As most tissues have spatial structure, there is great additional interest in visualizing the spatial location of the metal(loid) as well as its chemical forms. XAS imaging gives the opportunity of producing maps of specific chemical types of elements in vivo in dilute biological systems. X-ray fluorescence microprobe techniques are routinely used to study samples with spatial heterogeneity. Microprobe produces elemental maps, with chemical sensitivity obtained by recording micro-XAS spectra at selected point locations on the map. Unfortunately, using these procedures spatial detail may be lost as the number of point spectra recorded generally is limited. A powerful extension of microprobe is XAS imaging or chemically specific imaging. Here, the incident energy is tuned to features in the near-edge which are characteristic of the expected chemical forms of the element. With a few simple assumptions, these XAS images can then be converted to quantitative images of specific chemical form, yielding considerable clarity in the distributions.

  4. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  5. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    NASA Astrophysics Data System (ADS)

    Drescher, L.; Galbraith, M. C. E.; Reitsma, G.; Dura, J.; Zhavoronkov, N.; Patchkovskii, S.; Vrakking, M. J. J.; Mikosch, J.

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  6. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation.

    PubMed

    Drescher, L; Galbraith, M C E; Reitsma, G; Dura, J; Zhavoronkov, N; Patchkovskii, S; Vrakking, M J J; Mikosch, J

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ(*) excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings. PMID:27394091

  7. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piletic, Ivan R.; Matthews, Thomas E.; Warren, Warren S.

    2009-11-01

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain ˜46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  8. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  9. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  10. Characterizing caged molecules through flash photolysis and transient absorption spectroscopy.

    PubMed

    Kao, Joseph P Y; Muralidharan, Sukumaran

    2013-01-01

    Caged molecules are photosensitive molecules with latent biological activity. Upon exposure to light, they are rapidly transformed into bioactive molecules such as neurotransmitters or second messengers. They are thus valuable tools for using light to manipulate biology with exceptional spatial and temporal resolution. Since the temporal performance of the caged molecule depends critically on the rate at which bioactive molecules are generated by light, it is important to characterize the kinetics of the photorelease process. This is accomplished by initiating the photoreaction with a very brief but intense pulse of light (i.e., flash photolysis) and monitoring the course of the ensuing reactions through various means, the most common of which is absorption spectroscopy. Practical guidelines for performing flash photolysis and transient absorption spectroscopy are described in this chapter. PMID:23494372

  11. Reduced-background gas-phase absorption spectroscopy.

    PubMed

    Sweetser, J N; Trebino, R

    1998-08-15

    We propose and demonstrate a new method for single-shot multiplex absorption spectroscopy that permits enhanced sensitivity in the simultaneous measurement of multiple spectral lines in rapidly changing gas-phase media, such as turbulent flames. It uses an ultrashort laser pulse that propagates through the absorbing medium, for which the relevant absorption information resides in the free-induction decay that is trailing behind the transmitted pulse. Time gating out most of the transmitted pulse, but not the free-induction decay, enhances the relative fraction of light that contains absorption information when the spectrum is measured. This procedure reduces the background associated with the input light, thus enhancing detection sensitivity. PMID:18087501

  12. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.

    2011-11-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  13. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.

    2012-01-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  14. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    SciTech Connect

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  15. Third order nonlinear optical susceptibility of fluorescein-containing polymers determined by electro-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gomez-Sosa, Gustavo; Beristain, Miriam F.; Ortega, Alejandra; Martínez-Viramontes, Jaquelin; Ogawa, Takeshi; Fernández-Hernández, Roberto C.; Tamayo-Rivera, Lis; Reyes-Esqueda, Jorge-Alejandro; Isoshima, Takashi; Hara, Masahiko

    2012-03-01

    Novel polymers containing xanthene groups with high dye concentrations were prepared, and their third order nonlinear optical properties were studied by electroabsorption spectroscopy technique. The polymers were amorphous with refractive indices above 1.6 in the non-resonant region. The UV-Visible absorption spectra indicate the fluoresceins molecules in the polymers are H-aggregated. They showed third order nonlinear susceptibility, χ(3) (-ω:ω, 0, 0), of 2.5-3.5 × 10-12 esu.

  16. Study on the elemental mercury absorption cross section based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Haiming; Yao, Penghui

    2015-08-01

    With the method of ultraviolet absorption spectrum, the exact absorption cross-section with the light source of the low-pressure mercury lamp was determined, during which the optimum wavelength for mercury concentrations inversion was 253.69 nm, the highest detection limit was 0.177 μg/cm3, and the lowest detection limit was 0.034 μg/cm3. Furthermore, based on the differential optical absorption spectroscopy(DOAS), the relationship between the integral parameters (IP) and the concentration as well as the signal-noise ration (SNR) under the conditions of gas flow was determined and the lowest detection limit was figured out to be 0.03524 μg/cm3, providing a method of DOAS to de-noise through the comparison between the mercury concentration values produced by DOAS and that produced by the wavelet de-noising method (db5). It turned out that the differential optical absorption spectroscopy had a strong anti-interference ability, while the wavelet de-noising method was not suitable for measuring the trace concentration change.

  17. Minute Concentration Measurements of Simple Hydrocarbon Species Using Supercontinuum Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Traina, Nicholas; Halloran, Michael; Lee, Tonghun

    2016-06-01

    Minute concentration measurements of simple hydrocarbon gases are demonstrated using near-infrared supercontinuum laser absorption spectroscopy. Absorption-based gas sensors, particularly when combined with optical fiber components, can significantly enhance diagnostic capabilities to unprecedented levels. However, these diagnostic techniques are subject to limitations under certain gas sensing applications where interference and harsh conditions dominate. Supercontinuum laser absorption spectroscopy is a novel laser-based diagnostic technique that can exceed the above-mentioned limitations and provide accurate and quantitative concentration measurement of simple hydrocarbon species while maintaining compatibility with telecommunications-grade optical fiber components. Supercontinuum radiation generated using a highly nonlinear photonic crystal fiber is used to probe rovibrational absorption bands of four hydrocarbon species using full-spectral absorption diagnostics. Absorption spectra of methane (CH4), acetylene (C2H2), and ethylene (C2H4) were measured in the near-infrared spectrum at various pressures and concentrations to determine the accuracy and feasibility of the diagnostic strategy. Absorption spectra of propane (C3H8) were subsequently probed between 1650 nm and 1700 nm, to demonstrate the applicability of the strategy. Measurements agreed very well with simulated spectra generated using the HITRAN database as well as with previous experimental results. Absorption spectra of CH4, C2H2, and C2H4 were then analyzed to determine their respective measurement accuracy and detection limit. Concentration measurements integrated from experimental results were in very good agreement with independent concentration measurements. Calculated detection limits of CH4, C2H2, and C2H4 at room temperature and atmospheric pressure are 0.1%, 0.09%, and 0.17%, respectively. PMID:27091905

  18. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  19. Operando X-ray absorption and infrared fuel cell spectroscopy

    SciTech Connect

    Lewis, Emily A.; Kendrick, Ian; Jia, Qingying; Grice, Corey; Segre, Carlo U.; Smotkin, Eugene S.

    2011-11-17

    A polymer electrolyte fuel cell enables operando X-ray absorption and infrared spectroscopy of the membrane electrode assembly catalytic layer with flowing fuel and air streams at controlled temperature. Time-dependent X-ray absorption near edge structure spectra of the Pt and Ni edge of Pt based catalysts of an air-breathing cathode show that catalyst restructuring, after a potential step, has time constants from minutes to hours. The infrared Stark tuning plots of CO adsorbed on Pt at 100, 200, 300 and 400 mV vs. hydrogen reference electrode were obtained. The Stark tuning plots of CO adsorbed at 400 mV exhibit a precipitous drop in frequency coincident with the adsorption potential. The turn-down potential decreases relative to the adsorption potential and is approximately constant after 300 mV. These Stark tuning characteristics are attributed to potential dependent adsorption site selection by CO and competitive adsorption processes.

  20. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  1. An isotope technique for measuring lactose absorption

    PubMed Central

    Salmon, P. R.; Read, A. E.; McCarthy, C. F.

    1969-01-01

    Expired radiocarbon dioxide has been collected by a simple autotitration method following the ingestion of lactose-1-14C. With this method, which is suitable for clinical use, 12 subjects with alactasia have been readily separated from 24 normals, both groups being defined by strict criteria. This test, which may be used to measure the absorption of other sugars, is especially suitable for population surveys and may be used to investigate the distribution of disaccharidase deficiency. A further advantage is that false low readings resulting from rapid plasma clearance of absorbed sugar do not occur with this method although they may do so in up to one in three lactose tolerance tests, thereby overestimating the prevalence of alactasia. PMID:5810982

  2. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy.

    PubMed

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-01

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics. PMID:26208268

  3. Spatially resolved concentration measurements based on backscatter absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Sanders, Scott T.; Robinson, Michael A.

    2016-06-01

    We demonstrate the feasibility of spatially resolved measurements of gas properties using direct absorption spectroscopy in conjunction with backscattered signals. We report a 1-D distribution of H2O mole fraction with a spatial resolution of 5 mm. The peak and average discrepancy between the measured and expected mole fraction are 21.1 and 8.0 %, respectively. The demonstration experiment is related to a diesel aftertreatment system; a selective catalytic reduction brick made of cordierite is used. The brick causes volume scattering interference; advanced baseline fitting based on a genetic algorithm is used to reduce the effects of this interference by a factor of 2.3.

  4. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-01

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  5. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  6. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  7. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  8. UV-Vis Reflection-Absorption Spectroscopy at air-liquid interfaces.

    PubMed

    Rubia-Payá, Carlos; de Miguel, Gustavo; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-11-01

    UV-Visible Reflection-Absorption Spectroscopy (UVRAS) technique is reviewed with a general perspective on fundamental and applications. UVRAS is formally identical to IR Reflection-Absorption Spectroscopy (IRRAS), and therefore, the methodology developed for this IR technique can be applied in the UV-visible region. UVRAS can be applied to air-solid, air-liquid or liquid-liquid interfaces. This review focuses on the use of UVRAS for studying Langmuir monolayers. We introduce the theoretical framework for a successful understanding of the UVRAS data, and we illustrate the usage of this data treatment to a previous study from our group comprising an amphiphilic porphyrin. For ultrathin films with a thickness of few nm, UVRAS produces positive or negative bands when p-polarized radiation is used, depending on the incidence angle and the orientation of dipole absorption. UVRAS technique provides highly valuable information on tilt of chromophores at the air-liquid interface, and moreover allows the determination of optical parameters. We propose UVRAS as a powerful technique to investigate the in situ optical properties of Langmuir monolayers. PMID:26385430

  9. In vivo gallbladder absorption: a new dual-isotope technique

    SciTech Connect

    Conter, R.L.; Porter-Fink, V.; Denbesten, L.; Roslyn, J.J.

    1986-10-01

    Available methods for measuring in vivo gallbladder absorption preclude the use of animals in which hepatic bile enters the gallbladder via accessory or aberrant channels. However, accessory bile ducts are present in many of the animal models currently used in gallstone research. The aim of this study, therefore, was to evaluate a new dual-isotope technique that corrects for accessory bile flow and to compare data on electrolyte and water absorption with those derived from the standard, single-isotope technique. Prairie dogs underwent gallbladder exclusion by cystic duct ligation and common bile duct cannulation. Carbon 14-polyethylene glycol-labeled lactated Ringer's solution was instilled into the gallbladder while tritiated cholic acid was administered intravenously to label the bile acid pool. There is no correlation between water or electrolyte absorption and time, nor between water and electrolyte absorption, when these parameters are calculated by the standard, single-isotope technique. In contrast, use of the dual-isotope technique quantifies accessory bile duct flow and yields a linear increase in water and electrolyte absorption, both of which are time dependent. These data suggest that the dual-isotope technique provides a means to accurately measure in vivo gallbladder absorption in animals with or without accessory bile ducts.

  10. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  11. Tone-burst technique measures high-intensity sound absorption

    NASA Technical Reports Server (NTRS)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  12. High reflector absorptance measurements by the surface thermal lensing technique

    SciTech Connect

    Chow, R.; Taylor, J.R.; Wu, Z.L.; Krupka, R.; Yang, T.

    1996-11-01

    Surface thermal lensing is an alternate configuration of a photothermal deflection system that was used to measure low levels of optical absorption. The thermal lensing configuration facilitated the alignment of the pump and probe laser beams by using a larger diameter probe beam. This technique was applied to high performance optical coatings, specifically high reflectors at 511 nm, zero degrees angle of incidence. The absorptance of these coatings was previously measured using a high power copper vapor laser system. A high power copper laser beam is focused onto a -2 mm diameter spot. A thermal camera senses the temperature rise with respect to the rest of the coating. The temperature change, power density and beam diameter were used with an empirical formula that yields optical absorption. The surface thermal lensing technique was able to resolve absorption levels lower than that achieved with the copper laser method.

  13. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    PubMed

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants. PMID:21284148

  14. Sub millimeter absorption spectroscopy of oxygen containing fluorocarbon etching plasmas

    NASA Astrophysics Data System (ADS)

    Benck, Eric; Siegrist, Karen

    2004-09-01

    The role of oxygen in fluorocarbon etching plasmas is investigated using sub millimeter wavelength absorption spectroscopy. The plasmas were created in a specially modified capacitively coupled Gaseous Electronics Conference (GEC) Reference Reactor with a commercial electrostatic chuck. Photoresist and SiO2 blanket coated wafers were etched in C_4F_8/O_2/Ar, C_5F_8/O_2/Ar, and C_4F_6/O_2/Ar discharges. The absolute density of various radicals (CF, CF_2, CHF_3, COF_2, CO, etc.) were measured as a function of the percentage of oxygen in the feed gas mixture using a sub millimeter source based on a 48x frequency multiplication chain. These results are also compared with C_xF_y/O_2/Xe mixtures.

  15. La Saturated Absorption Spectroscopy for Applications in Quantum Information

    NASA Astrophysics Data System (ADS)

    Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  16. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  17. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  18. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy.

    PubMed

    Serrano, A; Rodríguez de la Fuente, O; Collado, V; Rubio-Zuazo, J; Monton, C; Castro, G R; García, M A

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10(-3) to 10(-5), depending on the particular experiment. PMID:22938268

  19. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  20. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals

    SciTech Connect

    Curl, Robert F; Glass, Graham

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  1. Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers.

    PubMed

    Belkin, Mikhail A; Loncar, Marko; Lee, Benjamon G; Pflugl, Christian; Audet, Ross; Diehl, Laurent; Capasso, Federico; Bour, David; Corzine, Scott; Hofler, Gloria

    2007-09-01

    We demonstrate microfluidic laser intra-cavity absorption spectroscopy with mid-infrared lambda approximately 9mum quantum cascade lasers. A deepetched narrow ridge waveguide laser is placed in a microfluidic chamber. The evanescent tails of the laser mode penetrate into a liquid on both sides of the ridge. The absorption lines of the liquid modify the laser waveguide loss, resulting in significant changes in the laser emission spectrum and the threshold current. A volume of liquid as small as ~10pL may, in principle, be sufficient for sensing using the proposed technique. This method, similar to the related gas-phase technique, shows promise as a sensitive means of detecting chemicals in small volumes of solutions. PMID:19547483

  2. Temperature and pressure measurement based on tunable diode laser absorption spectroscopy with gas absorption linewidth detection

    NASA Astrophysics Data System (ADS)

    Meng, Yunxia; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Wang, Tao; Wang, Ranran

    2014-11-01

    A gas temperature and pressure measurement method based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) detecting linewidth of gas absorption line was proposed in this paper. Combined with Lambert-Beer Law and ideal gas law, the relationship between temperature, pressure and gas linewidth with Lorentzian line shape was investigated in theory. Taking carbon monoxide (CO) at 1567.32 nm for example, the linewidths of gas absorption line in different temperatures and pressures were obtained by simulation. The relationship between the linewidth of second harmonic and temperature, pressure with the coefficient 0.025 pm/K and 0.0645 pm/kPa respectively. According to the relationship of simulation results and detected linewidth, the undefined temperature and pressure of CO gas were measured. The gas temperature and pressure measurement based on linewidth detection, avoiding the influence of laser intensity, is an effective temperature and pressure measurement method. This method also has the ability to detect temperature and pressure of other gases with Lorentzian line shape.

  3. Non-destructive plant health sensing using absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Bledsoe, Jim; Manukian, Ara; Pearce, Michael; Weiss, Lee

    1988-01-01

    The sensor group of the 1988 EGM 4001 class, working on NASA's Controlled Ecological Life Support Systems (CELSS) project, investigated many different plant health indicators and the technologies used to test them. The project selected by the group was to measure chlorophyll levels using absorption spectroscopy. The spectrometer measures the amount of chlorophyll in a leaf by measuring the intensity of light of a specific wavelength that is passed through a leaf. The three wavelengths of light being used corresponded to the near-IR absorption peaks of chlorophyll a, chlorophyll b, and chlorophyll-free structures. Experimentation showed that the sensor is indeed measuring levels of chlorophyll a and b and their changes before the human eye can see any changes. The detector clamp causes little damage to the leaf and will give fairly accurate readings on similar locations on a leaf, freeing the clamp from having to remain on the same spot of a leaf for all measurements. External light affects the readings only slightly so that measurements may be taken in light or dark environments. Future designs and experimentation will concentrate on reducing the size of the sensor and adapting it to a wider range of plants.

  4. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy

    PubMed Central

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D.; Camden, Jon P.; Crozier, Kenneth B.

    2013-01-01

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures (“metasurfaces”) can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent. PMID:24091825

  5. Study of exploding Al wire plasmas using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Pikuz, Sergey A.; Shelkovenko, Tatiana A.; Hoyt, Cad L.; Cahill, Adam D.; Hammer, David A.

    2012-10-01

    X-ray absorption spectroscopy is a powerful diagnostic technique useful for determining the charge state, temperature and density of plasmas under a wide range of conditions and situations. Our particular interest was the study of the core-corona system generated in electrically exploded wires and wire array Z-pinches. Two wide-bandwidth spectrographs with flat and concave cylindrically bent KAP crystals, and high-resolution spectrographs with spherically bent quartz crystals have been used on the XP and COBRA pulsers at Cornell University. The hybrid X-pinch was used as the continuum x-ray source in the photon energy range of interest for absorption spectroscopy with exploding Al wire experiments. This source is capable of producing broadband continuum x-ray pulses with micron source size and 100 ps duration. Absorption spectra of single exploded Al wires and 2 - 4 wire arrays were recorded with high spatial resolution. The parameters of the dense wire core plasmas and the ablating plasma streams were estimated under different experimental conditions. New spectral features in absorption spectra were observed.

  6. High-dispersion absorption-line spectroscopy of AE Aqr

    NASA Astrophysics Data System (ADS)

    Echevarría, J.; Smith, Robert Connon; Costero, R.; Zharikov, S.; Michel, R.

    2008-07-01

    High-dispersion time-resolved spectroscopy of the unique magnetic cataclysmic variable AE Aqr is presented. A radial velocity analysis of the absorption lines yields K2 = 168.7 +/- 1kms-1. Substantial deviations of the radial velocity curve from a sinusoid are interpreted in terms of intensity variations over the secondary star's surface. A complex rotational velocity curve as a function of orbital phase is detected which has a modulation frequency of twice the orbital frequency, leading to an estimate of the binary inclination angle that is close to 70°. The minimum and maximum rotational velocities are used to indirectly derive a mass ratio of q = 0.6 and a radial velocity semi-amplitude of the white dwarf of K1 = 101 +/- 3kms-1. We present an atmospheric temperature indicator, based on the absorption-line ratio of FeI and CrI lines, whose variation indicates that the secondary star varies from K0 to K4 as a function of orbital phase. The ephemeris of the system has been revised, using more than 1000 radial velocity measurements, published over nearly five decades. From the derived radial velocity semi-amplitudes and the estimated inclination angle, we calculate that the masses of the stars are M1 = 0.63 +/- 0.05Msolar M2 = 0.37 +/- 0.04Msolar, and their separation is a = 2.33 +/- 0.02Rsolar. Our analysis indicates the presence of a late-type star whose radius is larger, by a factor of nearly 2, than the radius of a normal main-sequence star of the same mass. Finally, we discuss the possibility that the measured variations in the rotational velocity, temperature and spectral type of the secondary star as functions of orbital phase may, like the radial velocity variations, be attributable to regions of enhanced absorption on the star's surface.

  7. Spectroscopy techniques for human disease diagnosis

    NASA Astrophysics Data System (ADS)

    Navas-Moreno, Maria

    2011-12-01

    Modern medicine would benefit from the pursuit of new, more specific and easier to implement diagnosis tools. In recent years, Raman scattering, surface-enhanced Raman scattering and fluorescence spectroscopy have proven to be successful diagnostic techniques for a wide range of diseases including atherosclerosis, kidney stones, bone diseases, diabetes, and a wide collection of neoplasms. Optical spectroscopy has several advantages over more traditional diagnostic methods (i.e., histopathology, quantitative PCR, etc.) such as faster data analysis, nonspecific sample preparation, nonspecific labels/reagents/antibodies usage requirements, and immediate on-site implementation. In the present work, label-free in vitro fluorescence and surface enhanced Raman scattering (SERS) spectroscopy have been used to differentiate between blood cells of patients affected with myeloproliferative neoplasms (MPN) and those of healthy subjects. The SERS technique has also been applied to hemoglobin variants as well as to serum obtained from patients affected with chronic heart failure who positively or negatively responded to the seasonal influenza vaccine. We found that spectral ratios of the background fluorescence intensity that accompanies the SERS spectra of granulocytes serve as excellent markers for the presence of MPNs. In addition, we also found expression dysregulation of two hypoxia induced factor regulated genes, which correlates with our results obtained by SERS spectroscopy assay in MPN patients and supports the presence of the Warburg effect in MPNs. We hypothesize that SERS measures metabolic change in granulocytes through two possible mechanisms: (i) Changes in dielectric properties of the environment surrounding the silver-cell interface; and (ii) changes in flavin adenine dinucleotide concentrations, which in turn changes the relative contribution of the autofluorescence to the emission spectrum. These hypotheses are supported by SERS measurement of 2-deoxy

  8. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods which have been proposed for the detection of trace concentrations of gaseous contaminants include Raman backscattering (LIDAR) and passive radiometry (LOPAIR). Remote sensing techniques using laser spectrometry are presented and in particular a simple long-path laser absorption method (LOLA), which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels is discussed. A number of species were selected for study which are representative of those most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Computer programs were developed which will permit a real-time analysis of the monitored atmosphere. Estimates of the dynamic range of this monitoring technique for various system configurations, and comparison with other methods of analysis, are given.

  9. REMOTE MONITORING OF GASEOUS POLLUTANTS BY DIFFERENTIAL ABSORPTION LASER TECHNIQUES

    EPA Science Inventory

    A single-ended laser radar (LIDAR) system was designed, built, and successfully operated to measure range-resolved concentrations of NO2, SO2, and O3 in the atmosphere using a Differential Absorption of Scattered Energy (DASE) LIDAR technique. The system used a flash-lamp pumped ...

  10. Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy.

    PubMed

    Yi, Hongming; Wu, Tao; Wang, Guishi; Zhao, Weixiong; Fertein, Eric; Coeur, Cécile; Gao, Xiaoming; Zhang, Weijun; Chen, Weidong

    2016-05-16

    We overview our recent progress in the developments and applications of light emitting diode-based incoherent broadband cavity enhanced absorption spectroscopy (LED-IBBCEAS) techniques for real-time optical sensing chemically reactive atmospheric species (HONO, NO3, NO2) in intensive campaigns and in atmospheric simulation chamber. New application of optical monitoring of NO3 concentration-time profile for study of the NO3-initiated oxidation process of isoprene in a smog chamber is reported. PMID:27409951

  11. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    SciTech Connect

    Fara, M.; Novak, F.

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  12. Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview

    PubMed Central

    Welzel, Stefan; Hempel, Frank; Hübner, Marko; Lang, Norbert; Davies, Paul B.; Röpcke, Jürgen

    2010-01-01

    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry. PMID:22163581

  13. [Application of spectroscopy technique to obtain plant growth information].

    PubMed

    Jiang, Huan-yu; Ying, Yi-bin; Xie, Li-juan

    2008-06-01

    Detection of plant growth information can predict growth and health status of plant and realize intelligentized management, detection techniques of plant growth information include electrical properties, optical reflectance and machine vision, with the development of spectroscopy technique, near infrared spectroscopy technique, multispectral technique and hyperspectral technique are widely used in plant growth information measurement. Spectroscopy technique is extremely fast, high efficient, cheap to implement and no sample preparation, has been a rapid and non-destructive modern measuring technique. In this paper, the application of spectroscopy technique to measurement of plant growth information was briefly introduced. Some considerable aspects existing in the application were also discussed and it is pointed out that because of real time information obtain and intelligentized management of plant, automation analysis equipment should be developed to improve the speed of plant growth information measurement and cooperating with several other techniques, such as machine vision, thermal imaging technique and spectroscopy technique, is the research trend. PMID:18800709

  14. Cavity Enhanced Absorption Spectroscopy with a red LED source for NOx trace analysis

    NASA Astrophysics Data System (ADS)

    Ventrillard Courtillot, I.; Sciamma O'Brien, E.; Méjean, G.; Romanini, D.

    2009-04-01

    This study presents a high sensitivity absorption system using a red LED source emitting at 625 nm and a small CCD spectrometer as detector [1]. This system is based on IBB-CEAS (Incoherent Broad Band Cavity Enhanced Absorption Spectroscopy). The expected application is the measurement of NO2 and NO3 in urban concentration (ppbv and ppmv levels). The IBB-CEAS was firstly developed with arc lamps and then with LED. Systems based on this technique are easy to use, highly sensitive, compact and robust. They also are inexpensive. Existent techniques to measure NO2 and NO3 are generally slow or not sensitive enough and need frequently calibrations (chemical luminescent) or are characterized by a low spatial resolution (Long Path Differential Optical Absorption Spectroscopy). Previous works based on diodes lasers emitting around 410 nm and coupled with High Finess Cavity proved a highest sensibility than ppbv and a time measurement of 0.1 s [2]. This sensibility is necessary for measurements in unpolluted environment but a more expensive and more complex system is needed. NO2 is chosen for testing as it is stable and available in calibrated diluted samples. An excellent agreement in the range from 610 nm to 630 nm was gotten between an absorption spectrum obtained by IBB-CEAS and a spectrum calculated using a reference NO2 absorption cross section by Voigt et al [3] (after convolution with a 2.05-nm FWHM Gaussian simulating our spectrometer response function). The reflectivity of the mirrors was determined with a commercial spectrophotometer and was used to deduce the absorption spectrum of NO2 from the transmission spectrum of the cavity. We obtained by estimating the sensitivity of our setup from the noise in a baseline measurement of absorption, (standard deviation = 2E-10 cm-1). This corresponds (under atmospheric conditions) to a sensitivity about 0.5 ppbv. NO3 cross-section absorption is 600 times higher than the NO2 (at 623 nm), so a detection limit of 1 pptv is

  15. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  16. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  17. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.

    PubMed

    Lambrecht, Armin; Pfeifer, Marcel; Konz, Werner; Herbst, Johannes; Axtmann, Felix

    2014-05-01

    Laser spectroscopy is a powerful tool for analyzing small molecules, i.e. in the gas phase. In the mid-infrared spectral region quantum cascade lasers (QCLs) have been established as the most frequently used laser radiation source. Spectroscopy of larger molecules in the gas phase, of complex mixtures, and analysis in the liquid phase requires a broader tuning range and is thus still the domain of Fourier transform infrared (FTIR) spectroscopy. However, the development of tunable external cavity (EC) QCLs is starting to change this situation. The main advantage of QCLs is their high spectral emission power that is enhanced by a factor of 10(4) compared with thermal light sources. Obviously, transmission measurements with EC-QCLs in strongly absorbing samples are feasible, which can hardly be measured by FTIR due to detector noise limitations. We show that the high power of EC-QCLs facilitates spectroscopy beyond simple absorption measurements. Starting from QCL experiments with liquid samples, we show results of fiber evanescent field analysis (FEFA) to detect pesticides in drinking water. FEFA is a special case of attenuated total reflection spectroscopy. Furthermore, powerful CW EC-QCLs enable fast vibrational circular dichroism (VCD) spectroscopy of chiral molecules in the liquid phase - a technique which is very time consuming with standard FTIR equipment. We present results obtained for the chiral compound 1,1'-bi-2-naphthol (BINOL). Finally, powerful CW EC-QCLs enable the application of laser photothermal emission spectroscopy (LPTES). We demonstrate this for a narrowband and broadband absorber in the gas phase. All three techniques have great potential for MIR process analytical applications. PMID:24367797

  18. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally

  19. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa

    PubMed Central

    Aquilanti, Giuliana; Trapananti, Angela; Karandikar, Amol; Kantor, Innokenty; Marini, Carlo; Mathon, Olivier; Pascarelli, Sakura; Boehler, Reinhard

    2015-01-01

    Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa. PMID:26371317

  20. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  1. High-performance dispersive Raman and absorption spectroscopy as tools for drug identification

    NASA Astrophysics Data System (ADS)

    Pawluczyk, Olga; Andrey, Sam; Nogas, Paul; Roy, Andrew; Pawluczyk, Romuald

    2009-02-01

    Due to increasing availability of pharmaceuticals from many sources, a need is growing to quickly and efficiently analyze substances in terms of the consistency and accuracy of their chemical composition. Differences in chemical composition occur at very low concentrations, so that highly sensitive analytical methods become crucial. Recent progress in dispersive spectroscopy with the use of 2-dimensional detector arrays, permits for signal integration along a long (up to 12 mm long) entrance slit of a spectrometer, thereby increasing signal to noise ratio and improving the ability to detect small concentration changes. This is achieved with a non-scanning, non-destructive system. Two different methods using P&P Optica high performance spectrometers were used. High performance optical dispersion Raman and high performance optical absorption spectroscopy were employed to differentiate various acetaminophen-containing drugs, such as Tylenol and other generic brands, which differ in their ingredients. A 785 nm excitation wavelength was used in Raman measurements and strong Raman signals were observed in the spectral range 300-1800 cm-1. Measurements with the absorption spectrometer were performed in the wavelength range 620-1020 nm. Both Raman and absorption techniques used transmission light spectrometers with volume phase holographic gratings and provided sufficient spectral differences, often structural, allowing for drug differentiation.

  2. X-Ray Absorption Spectroscopy of Dinuclear Metallohydrolases

    PubMed Central

    Tierney, David L.; Schenk, Gerhard

    2014-01-01

    In this mini-review, we briefly discuss the physical origin of x-ray absorption spectroscopy (XAS) before illustrating its application using dinuclear metallohydrolases as exemplary systems. The systems we have selected for illustrative purposes present a challenging problem for XAS, one that is ideal to demonstrate the potential of this methodology for structure/function studies of metalloenzymes in general. When the metal ion is redox active, XAS provides a sensitive measure of oxidation-state-dependent differences. When the metal ion is zinc, XAS is the only spectroscopic method that will provide easily accessible structural information in solution. In the case of heterodimetallic sites, XAS has the unique ability to interrogate each metal site independently in the same sample. One of the strongest advantages of XAS is its ability to examine metal ion site structures with crystallographic precision, without the need for a crystal. This is key for studying flexible metal ion sites, such as those described in the selected examples, because it allows one to monitor structural changes that occur during substrate turnover. PMID:25229134

  3. X-ray Absorption Spectroscopy of the Rare Earth orthophosphates

    SciTech Connect

    Shuh, D.K.; Terminello, L.J.; Boatner, L.A.; Abraham, M.M.

    1993-06-01

    X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d{sup 10}4f{sup n} {yields} 3d-{sup 9}4f{sup n+1} transitions and these transitions exhibit a wealth of spectroscopic features. The XAS measurements of single crystal REPO{sub 4} (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) at the 3d edge were performed in the total yield mode at beam line 8-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble the XAS of the corresponding RE metal. This is not unexpected and emphasizes the major contribution of the trivalent state to the electronic transitions at the RE 3d edges. These spectra unequivocally identify the transitions originating from well-characterized RE cores and correlate well with previous theoretical investigations.

  4. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  5. Concurrent multiaxis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide.

    PubMed

    Leigh, Roland J; Corlett, Gary K; Friess, Udo; Monks, Paul S

    2006-10-01

    The development of a new concurrent multiaxis (CMAX) sky viewing spectrometer to monitor rapidly changing urban concentrations of nitrogen dioxide is detailed. The CMAX differential optical absorption spectroscopy (DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sunlight. Trace-gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of NO2 in an urban environment is demonstrated. Three example data sets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62 degrees N, 1.12 degrees W). The data demonstrate the current capabilities and future potential of the CMAX DOAS method in terms of the ability to measure real-time spatially disaggregated urban NO2. PMID:16983440

  6. [Application of infrared spectroscopy technique to discrimination of alcoholic beverages].

    PubMed

    Niu, Xiao-Ying; Ying, Yi-Bin; Yu, Hai-Yan; Xie, Li-Juan; Fu, Xia-Ping

    2008-04-01

    Infrared spectroscopy technique is a rapid for the discrimination of food samples, and is widely used to detect and discriminate various beverages. This paper presents the advantages and disadvantages of techniques that have been used to discriminate alcoholic beverages, and the discriminating procedure with infrared spectroscopy technique. Applications of infrared spectroscopy technique to wine, whiskey, Japanese sake and Chinese rice wine etc. is presented too. Finally, problems in applications are analyzed, and the application of infrared spectroscopy technique to the discrimination of our traditional alcoholic beverages is prospected. PMID:18619303

  7. Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Fikri, Mustapha; Schulz, Christof; Hellmig, Ortwin; Baev, Valery M.

    2016-06-01

    In this paper, we demonstrate the first application of intracavity absorption spectroscopy (ICAS) for monitoring species concentration, total pressure, and temperature in shock-tube experiments. ICAS with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of absorption spectra of shock-heated C2H2. The measurements are performed in a spectral range between 6512 and 6542 cm-1, including many absorption lines of C2H2, with a time resolution of 100 µs and an effective absorption path length of 15 m. Up to 18-times increase of the total pressure and a temperature rise of up to 1200 K have been monitored. Due to the ability of simultaneously recording many absorption lines in a broad spectral range, the presented technique can also be applied to multi-component analysis of transient single-shot processes in reactive gas mixtures in shock tubes, pulse detonation engines, or explosions.

  8. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    PubMed

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-01

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor. PMID:26938713

  9. Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers.

    PubMed

    Karagiannopoulos, Solon; Cheadle, Edward; Wright, Paul; Tsekenis, Stylianos; McCann, Hugh

    2012-12-01

    A novel opto-electronic scheme for line-of-sight Near-IR gas absorption measurement based on direct absorption spectroscopy (DAS) is reported. A diode-laser-based, multiwavelength system is designed for future application in nonintrusive, high temporal resolution tomographic imaging of H2O in internal combustion engines. DAS is implemented with semiconductor optical amplifiers (SOAs) to enable wavelength multiplexing and to induce external intensity modulation for phase-sensitive detection. Two overtone water transitions in the Near-IR have been selected for ratiometric temperature compensation to enable concentration measurements, and an additional wavelength is used to account for nonabsorbing attenuation. A wavelength scanning approach was used to evaluate the new modulation technique, and showed excellent absorption line recovery. Fixed-wavelength, time-division-multiplexing operation with SOAs has also been demonstrated. To the best of our knowledge this is the first time SOAs have been used for modulation and switching in a spectroscopic application. With appropriate diode laser selection this scheme can be also used for other chemical species absorption measurements. PMID:23207374

  10. Optical-feedback cavity-enhanced absorption spectroscopy in a linear cavity: model and experiments

    NASA Astrophysics Data System (ADS)

    Manfred, Katherine M.; Ciaffoni, Luca; Ritchie, Grant A. D.

    2015-08-01

    Optical-feedback cavity-enhanced absorption spectroscopy is a highly sensitive trace gas sensing technique that relies on feedback from a resonant intracavity field to successively lock the laser to the cavity as the wavelength is scanned across a molecular absorption with a comb of resonant frequencies. V-shaped optical cavities have been favoured in the past in order to avoid additional feedback fields from non-resonant reflections that potentially suppress the locking to the resonant cavity frequency. A model of the laser-cavity coupling demonstrates, however, that the laser can stably lock to a resonant linear cavity, within certain constraints on the relative intensity of the two feedback sources. By mode mismatching the field into the linear cavity, we have shown that it is theoretically and practically possible to spatially filter out the unwanted non-resonant component in order for the resonant field to dominate the feedback competition at the laser. A 5.3 cw quantum cascade laser scanning across a absorption feature demonstrated stable locking to achieve a minimum detectable absorption coefficient of for 1-s averaging. Detailed investigations of feedback effects on the laser output verified the validity of our theoretical models.

  11. Nocturnal Measurements of HONO by Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wojtal, P.; McLaren, R.

    2011-12-01

    Differential optical absorption spectroscopy (DOAS) was used to quantify the concentration of HONO, NO2 and SO2 in the nocturnal urban atmosphere at York University over a period of one year. These measurements form a comprehensive HONO data set, including a large range of temperatures, relative humidity, surface conditions (snow, water, dry, etc.) and NO2 concentrations. Laboratory studies and observations within the nocturnal boundary layer reported in the literature suggest heterogeneous conversion of NO2 on surface adsorbed water as the major nighttime source of HONO. HONO formation and photolysis is believed to represent a major source term in the hydroxyl radical budget in polluted continental regions. Currently, most air quality models tend to significantly underpredict HONO, caused by the lack of understanding of HONO formation processes and the parameters that affect its concentration. Recently, we reported nocturnal pseudo steady states (PSS) of HONO in an aqueous marine environment and a conceptual model for HONO formation on aqueous surfaces was proposed. The data set collected at York University is being analyzed with a view towards further understanding the nighttime HONO formation mechanism and testing several hypotheses: 1) A HONO PSS can exist during certain times at night in an urban area in which the HONO concentration is independent of NO2, given the surface contains sufficient water coverage and is saturated with nitrogen containing precursors; 2) The concentration of HONO is positively correlated with temperature during periods where a PSS exists; 3) Different conversion efficiencies of NO2 to HONO exist on dry, wet and snow surfaces; 4) HONO formation has a NO2 order dependence between 0 and 2nd order, dependant on NO2 concentration, relative humidity, etc. The data set will be presented along with statistical analysis that sheds new light on the source of HONO in urban areas at night.

  12. Sandwich concept: enhancement for direct absorption measurements by laser-induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Bublitz, S.; Paa, W.

    2012-11-01

    The new sandwich concept for absolute photo-thermal absorption measurements using the laser induced deflection (LID) technique is introduced and tested in comparison to the standard LID concept. The sandwich concept's idea is the decoupling of the optical materials for the pump and probe beams by placing a sample of investigation in between two optical (sandwich) plates. The pump beam is guided through the sample whereas the probe beams are deflected within the sandwich plates by the thermal lens that is generated by heat transfer from the irradiated sample. Electrical simulation and laser experiments reveal that using appropriate optical materials for the sandwich plates, the absorption detection limit for photo-thermally insensitive materials can be lowered by up to two orders of magnitude. Another advantage of the sandwich concept, the shrinking of the currently required minimum sample size, was used to investigate the laser induced absorption change in a Nd:YVO4 crystal at 1030nm. It was found that the absorption in Nd:YVO4 lowers due to the laser irradiation but partially recovers during irradiation breaks. Furthermore, absorption spectroscopy has been performed at two LBO crystals in the wavelength range 410...600nm to study the absorption structure around the SHG wavelengths of common high power lasers based on Neodymium doped laser crystals.

  13. Open-path tunable diode laser absorption spectroscopy for acquisition of fugitive emission flux data.

    PubMed

    Thoma, Eben D; Shores, Richard C; Thompson, Edgar L; Harris, D Bruce; Thorneloe, Susan A; Varma, Ravi M; Hashmonay, Ram A; Modrak, Mark T; Natschke, David F; Gamble, Heather A

    2005-05-01

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. Environmental Protection Agency (EPA) has developed a ground-based optical remote-sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transform infrared spectroscopy (OP-FTIR) has been the primary technique for acquisition of pollutant concentration data used in this emission measurement method. For a number of environmentally important compounds, such as ammonia and methane, open-path tunable diode laser absorption spectroscopy (OP-TDLAS) is shown to be a viable alternative to Fourier transform spectroscopy for pollutant concentration measurements. Near-IR diode laser spectroscopy systems offer significant operational and cost advantages over Fourier transform instruments enabling more efficient implementation of the measurement strategy. This article reviews the EPA's fugitive emission measurement method and describes its multipath tunable diode laser instrument. Validation testing of the system is discussed. OP-TDLAS versus OP-FTIR correlation testing results for ammonia (R2 = 0.980) and methane (R2 = 0.991) are reported. Two example applications of tunable diode laser-based fugitive emission measurements are presented. PMID:15991674

  14. Diode laser absorption spectroscopy for studies of gas exchange in fruits

    NASA Astrophysics Data System (ADS)

    Persson, L.; Gao, H.; Sjöholm, M.; Svanberg, S.

    2006-07-01

    Gas exchange in fruits, in particular oxygen transport in apples, was studied non-intrusively using wavelength modulation diode laser absorption spectroscopy at about 761 nm, applied to the strongly scattering intact fruit structure. The applicability of the technique was demonstrated by studies of the influence of the skin to regulate the internal oxygen balance and of cling film in modifying it by observing the response of the signal from the internal oxygen gas to a transient change in the ambient gas concentration. Applications within controlled atmosphere fruit storage and modified atmosphere packaging are discussed. The results suggest that the technique could be applied to studies of a large number of problems concerning gas exchange in foods and in food packaging.

  15. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  16. [Techniques of on-line monitoring volatile organic compounds in ambient air with optical spectroscopy].

    PubMed

    Du, Zhen-Hui; Zhai, Ya-Qiong; Li, Jin-Yi; Hu, Bo

    2009-12-01

    Volatile organic compounds (VOCs) are harmful gaseous pollutants in the ambient air. The techniques of on-line monitoring VOCs are very significant for environment protection. Until now, there is no single technology that can meet all the needs of monitoring various VOCs. The characteristics and present situation of several optical methods, which can be applied to on-line monitoring VOCs, including non dispersive infrared (NDIR), Fourier transform infrared (FTIR) spectroscopy, differential optical absorption spectroscopy (DOAS), and laser spectroscopy were reviewed. Comparison was completed between the national standard methods and spectroscopic method for measuring VOCs. The main analysis was focused on the status and trends of tuning diode laser absorption spectroscopy (TDLAS) technology. PMID:20210131

  17. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  18. Cavity Enhanced absorption spectroscopy with an Optical Comb: Detection of atmospheric radicals in the near UV.

    NASA Astrophysics Data System (ADS)

    Méjean, G.; Kassi, S.; Romanini, D.

    2009-04-01

    The atmospheric chemistry community suffers a lack of fast, reliable and space resolved measurement for a wide set of very reactive molecules (e.g. radicals such as OH, NO3, BrO, IO, etc.). Due to their high reactivity, these molecules largely control the lifetime and concentration of numerous key atmospheric species. The concentrations of radicals are extremely low (ppbv or less) and highly variable in time and space. Measuring their concentration is often extremely laborious, expensive and requires heavy equipment (chemical sampling and treatment followed by mass spectrometry and/or chromatography). We recently introduced an optical spectroscopy technique based on a femtosecond laser oscillator, "Mode-Locked Cavity-Enhanced Absorption Spectroscopy", that we propose to develop into an instrument for in situ measurement of local concentration of traces of reactive molecules [1-3]. We have already demonstrated the possibility of measuring part in 1E12 by volume concentrations of radicals of high atmospheric interest, such as IO or BrO [4], as needed for monitoring these species in the environment. We apply cavity-enhanced absorption spectroscopy in the near UV range using a frequency-doubled Ti:Sa modelocked femtosecond laser. Efficient broadband injection of a high finesse cavity is obtained by matching this optical frequency-comb source to the comb of cavity transmission resonances. A grating spectrograph and a detector array disperse and detect the spectrum transmitted by the cavity carrying the absorption features of intracavity molecules. IO traces were obtained by mixing together controlled flows of gaseous iodine and ozone inside a high finesse cavity (F~6000). A Chameleon Ultra II ML-Laser (gracefully lent during 1 month by Coherent Inc.) was frequency doubled to address an absorption band of IO at 436 nm. A locking scheme allowed the cavity transmission to be smooth and stable. The transmitted light was dispersed using a high resolution (0.07nm) grating

  19. Aerosol particle absorption spectroscopy by photothermal modulation of Mie scattered light

    SciTech Connect

    Campillo, A.J.; Dodge, C.J.; Lin, H.B.

    1981-09-15

    Absorption spectroscopy of suspended submicron-sized aqueous ammonium-sulfate aerosol droplets has been performed by employing a CO/sub 2/ laser to photothermally modulate visible Mie scattered light. (AIP)

  20. Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source.

    PubMed

    Sych, Yaroslav; Engelbrecht, Rainer; Schmauss, Bernhard; Kozlov, Dimitrii; Seeger, Thomas; Leipertz, Alfred

    2010-10-25

    A Q-switched laser based system for broadband absorption spectroscopy in the range of 1390-1740 nm (7200-5750 cm(-1)) has been developed and tested. In the spectrometer the 1064 nm light of a 25 kHz repetition-rate micro-chip Nd:YAG laser is directed into a photonic crystal fiber to produce a short (about 2 ns) pulse of radiation in a wide spectral range. This radiation is passed through a 25 km long dispersive single-mode fiber in order to spread the respective wavelengths over a time interval of about 140 ns at the fiber output. This fast swept-wavelength light source allows to record gas absorption spectra by temporally-resolved detection of the transmitted light power. The realized spectral resolution is about 2 cm(-1). Examples of spectra recorded in a cell with CO(2):CH(4):N(2) gas mixtures are presented. An algorithm employed for the evaluation of molar concentrations of different species from the spectra with non-overlapping absorption bands of mixture components is described. The uncertainties of the concentration values retrieved at different acquisition times due to the required averaging are evaluated. As an example, spectra with a signal-to-noise ratio large enough to provide species concentrations with a relative error of 5% can be obtained in real time at a millisecond time scale. Potentials and limitations of this technique are discussed. PMID:21164614

  1. Diagnosis of a two wire X-pinch by X-ray absorption spectroscopy utilizing a doubly curved ellipsoidal crystal

    NASA Astrophysics Data System (ADS)

    Cahill, A. D.; Hoyt, C. L.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.

    2014-12-01

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emitted by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here initial absorption spectra obtained from an aluminum x-pinch plasma.

  2. Diagnosis of a two wire X-pinch by X-ray absorption spectroscopy utilizing a doubly curved ellipsoidal crystal

    SciTech Connect

    Cahill, A. D. Hoyt, C. L. Shelkovenko, T. A. Pikuz, S. A. Hammer, D. A.

    2014-12-15

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emitted by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here initial absorption spectra obtained from an aluminum x-pinch plasma.

  3. Absorption spectroscopy in hollow-glass waveguides using infrared laser diodes

    SciTech Connect

    Blake, Thomas A.; Kelly, James F.; Stewart, Timothy L.; Hartman, John S.; Sharpe, Steven W.; Sams, Robert L.

    2002-07-10

    Hollow-glass waveguides may be a viable technology that, in some cases, may supplant heavier multi-pass cells such as White or Herriott cells for performing trace detection using tunable diode laser absorption spectroscopy. We report here a series of experiments for testing the suitability of waveguides for infrared spectroscopy. The loss characteristics of 1 mm bore diameter waveguides have been measured for straight and coiled lengths. Using direct absorption spectroscopy we have found that the absorption pathlength is approximately equal to the physical length of the waveguide. Broadband FM diode laser spectroscopy produces a comparable signal-to-noise ratio with less than a second of signal averaging. Finally, we have also performed near-infrared spectroscopy of nitrous oxide flowing through a waveguide using a telecommunications diode laser.

  4. Evaluation wavelength range mapping, a tool to optimize the evaluation window in differential absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-04-01

    Optical remote sensing via Differential Optical Absorption Spectroscopy (DOAS) has become a standard technique to assess various trace gases in the atmosphere. Measurement instruments are usually classified into active instruments applying an artificial light source and passive instruments using natural light sources, e.g., scattered or direct sunlight. Platforms range from ground based to satellites and trace gases are studied in all kinds of different environments. Naturally, the evaluation of gathered spectra needs to be tuned to each specific case and trace gas of interest due to the wide range of measurement conditions, atmospheric compositions and instruments used. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should be as large as possible and include the largest differential absorption features of the trace gas of interest in order to maximize sensitivity. However, the differential optical densities of other absorbers should be minimized in order to prevent interferences between different absorption cross sections. Furthermore, instrumental specific features and wavelength dependent radiative transfer effects may have malicious effects and lead to erroneous values. Usually a compromise needs to be found depending on the conditions at hand. Evaluation wavelength range mapping is an easily applied tool to visualize wavelength depending evaluation features of DOAS and to find the optimal retrieval wavelength range. As an example, synthetic spectra are studied which simulate passive DOAS measurements of stratospheric bromine monoxide (BrO) by Zenith-DOAS and Multi-Axis DOAS (MAX-DOAS) measurements of BrO in volcanic plumes. The influence of the I0-effect and the Ring-effect on the respective retrievals are demonstrated. However, due to the general nature of the tool it is applicable to any DOAS measurement and the technique also allows to study any other wavelength dependent influences on retrieved trace gas columns.

  5. Direct and quantitative photothermal absorption spectroscopy of individual particulates

    SciTech Connect

    Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang; Zheng, Ruiting; Shen, Sheng

    2013-12-23

    Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

  6. Miniaturized King furnace permits absorption spectroscopy of small samples

    NASA Technical Reports Server (NTRS)

    Ercoli, B.; Tompkins, F. S.

    1968-01-01

    Miniature King-type furnace, consisting of an inductively heated, small diameter tantalum tube supported in a radiation shield eliminates the disadvantages of the conventional furnace in obtaining absorption spectra of metal vapors.

  7. Emerging techniques for soil analysis via mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Linker, R.; Shaviv, A.

    2009-04-01

    Transmittance and diffuse reflectance (DRIFT) spectroscopy in the mid-IR range are well-established methods for soil analysis. Over the last five years, additional mid-IR techniques have been investigated, and in particular: 1. Attenuated total reflectance (ATR) Attenuated total reflectance is commonly used for analysis of liquids and powders for which simple transmittance measurements are not possible. The method relies on a crystal with a high refractive index, which is in contact with the sample and serves as a waveguide for the IR radiation. The radiation beam is directed in such a way that it hits the crystal/sample interface several times, each time penetrating a few microns into the sample. Since the penetration depth is limited to a few microns, very good contact between the sample and the crystal must be ensured, which can be achieved by working with samples close to water saturation. However, the strong absorbance of water in the mid-infrared range as well as the absorbance of some soil constituents (e.g., calcium carbonate) interfere with some of the absorbance bands of interest. This has led to the development of several post-processing methods for analysis of the spectra. The FTIR-ATR technique has been successfully applied to soil classification as well as to determination of nitrate concentration [1, 6-8, 10]. Furthermore, Shaviv et al. [12] demonstrated the possibility of using fiber optics as an ATR devise for direct determination of nitrate concentration in soil extracts. Recently, Du et al. [5] showed that it is possible to differentiate between 14N and 15N in such spectra, which opens very promising opportunities for developing FTIR-ATR based methods for investigating nitrogen transformation in soils by tracing changes in N-isotopic species. 2. Photo-acoustic spectroscopy Photoacoustic spectroscopy (PAS) is based on absorption-induced heating of the sample, which produces pressure fluctuations in a surrounding gas. These fluctuations are

  8. Absorption Spectra and Absorption Coefficients for Methane in the 750-940 nm region obtained by Intracavity Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.; Cao, H.

    2000-10-01

    Methane spectral features are prominent in the reflected sunlight spectra from the outer planets and some of their major satellites and can provide useful information on the atmospheres of those bodies. Methane bands occurring in the visible to near-IR region are particularly important because for many of these planetary bodies, methane bands occurring in the IR are saturated. Spectral observations of these bodies also are being made at increasingly higher resolution. In order to interpret the planetary spectra, laboratory data for methane obtained at appropriate sample conditions and spectral resolution are required. Since the visible to near-IR spectrum of methane is intrinsically weak, sensitive techniques are required to perform the laboratory measurements. We have employed the intracavity laser spectroscopy (ILS) technique to record methane spectrum in the visible to near-IR region. New results for room temperature methane in the 10,635 - 13,300 cm-1 region and for liquid nitrogen temperature (77 K) methane in the 10,860 - 11,605 cm-1 region will be presented. Spectra throughout the more strongly absorbing sections will be shown. These spectra are acquired at a resolution of 400,000 - 500,000 and are calibrated using iodine reference spectra acquired from an extra-cavity cell at nearly the same time as when the methane data are recorded. From the spectra, absorption coefficients are determined and these are presented as averages over 1 Å and 1 cm-1 intervals. In order to obtain the results, spectra are deconvolved for the instrument function using a Fourier transform technique. The validity of the approach is verified from studies of isolated oxygen lines in the A band occurring around 760 nm. Good agreement is observed between the intensity values determined from the FT deconvolution and integration method and those derived by fitting the observed line profiles to Voigt line-shapes convoluted with the instrument function. The methane results are compared

  9. The use of CNDO in spectroscopy. XV. Two photon absorption

    NASA Astrophysics Data System (ADS)

    Marchese, Francis T.; Seliskar, C. J.; Jaffé, H. H.

    1980-04-01

    Two-photon absorptivities have been calculated within the CNDO/S-CI molecular orbital framework of Del Bene and Jaffé utilizing the second order time dependent perturbation equations of Göppert-Mayer and polarization methods of McClain. Good agreement is found between this theory and experiment for transition energies, symmetries, and two-photon absorptivities for the following molecules: biphenyl, terphenyl, 2,2'-difluorobiphenyl, 2,2'-bipyridyl, phenanthrene, and the isoelectronic series: fluorene, carbazole, dibenzofuran.

  10. New analytical technique for carbon dioxide absorption solvents

    SciTech Connect

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive index models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.

  11. Spectroscopy and nonlinear optical absorption of bis(diphenylamino) diphenyl polyenes

    NASA Astrophysics Data System (ADS)

    Natarajan, Lalgudi V.; Kirkpatrick, Sean M.; Sutherland, Richard L.; Fleitz, Paul A.; Cooper, Thomas M.; Sowards, Laura A.; Spangler, Charles W.; Reeves, Benjamin

    1999-10-01

    The spectroscopy and nonlinear absorption of bis(diphenylamino) diphenyl polyenes have been studied in octane and dichloromethane solvents. The amines exhibit high fluorescence quantum yield and two photon excited emission. Two photon absorption cross section, (sigma) 2, was measured by Z-scan experiments. Strong two photon absorption is indicated by high values for (sigma) 2. Solvent has strong influence in the measurement of (sigma) 2 values.

  12. Studies of Element-Specific Local Structures in Compound Materials Using X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Soo, Yun-Liang

    1995-01-01

    The x-ray absorption spectroscopy techniques have been used to study a variety of semiconductor and superconductor materials. In such experiments, synchrotron radiation harnessed by a delicate beamline electronic and control system are used to obtain data with analyzable quality in a reasonable time scale. The element-selectivity is achieved by selecting an energy-scan range close to a characteristic "absorption edge" of the selected element. Peak structures below the absorption edge (pre-edge structures) reflect the local unoccupied states of the selected atomic species. The position of absorption edge (part of the near-edge x-ray absorption fine structure, NEXAFS) provides some qualitative information of the effective valency of the selected element. And, most importantly, the modulation in the spectrum some 40 eV above the absorption edge (extended x-ray absorption fine structure, EXAFS) gives quantitative information of the local structure around the selected atomic species. The selected atomic species such as magnetic Mn ions in III-V diluted magnetic semiconductors (DMS) rm In_{1-x}Mn_{x}As, Mn as the luminescent centers in nanocrystals of ZnS, O in the CuO_2 planes which host the carriers in high-T_{rm c} superconductors, and F as the electron reservoir in the n-type high-T_{rm c} superconductors rm Nd_2CuO _{4-x}F_{x} all play an important role in the novel mechanism of these new materials. Along with other detailed information, our EXAFS results have revealed (i) III-V DMS can indeed be prepared by substitutional doping of magnetic impurities under proper processing conditions. (ii) Mn ions substitute for the Zn sites in the nanocrystals of ZnS with significant size-dependent local structural changes. (iii) Only ~6% of O in the CuO_2 planes in rm Nd_2CuO_{4 -x}F_{x} are substituted by F. The rest of F atoms substitute for O atoms in the NdO layers and serve as electron reservoirs. The NEXAFS results have shown that the effective valency of Mn in Zn

  13. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  14. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy

    SciTech Connect

    Salt, D.E.; Prince, R.C.; Baker, A.J.M.; Raskin, I.; Pickering, I.J.

    1999-03-01

    Using the noninvasive technique of X-ray absorption spectroscopy (XAS), the authors have been able to determine the ligand environment of Zn in different tissues of the Zn-hyperaccumulator Thlaspi caerulescens. The majority of intracellular Zn in roots of T. caerulescens was found to be coordinated with histidine. In the xylem sap Zn was found to be transported mainly as the free hydrated Zn{sup 2+} cation with a smaller proportion coordinated with organic acids. In the shoots, Zn coordination occurred mainly via organic acids, with a smaller proportion present as the hydrated cation and coordinated with histidine and the cell wall. Their data suggest that histidine plays an important role in Zn homeostasis in the roots, whereas organic acids are involved in xylem transport and Zn storage in shoots.

  15. Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.

  16. X-ray absorption spectroscopy to probe surface composition and surface deprotection in photoresist films.

    SciTech Connect

    Angelopoulos, Marie; Lenhart, Joseph Ludlow; Wu, Wen-li; Sambasivan, Sharadha; Fischer, Daniel A.; Jones, Ronald L.; Soles, Christopher L.; Lin, Eric K.; Goldfarb, Dario L.

    2004-06-01

    Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is utilized to provide insight into surface chemical effects in model photoresist films. First, NEXAFS was used to examine the resist/air interface including surface segregation of a photoacid generator (PAG) and the extent of surface deprotection in the film. The concentration of PAG at the resist-air interface was higher than the bulk concentration, which led to a faster deprotection rate at that interface. Second, a NEXAFS depth profiling technique was utilized to probe for compositional gradients in model resist line edge regions. In the model line edge region, the surface composition profile for the developed line edge was dependent on the post exposure bake time.

  17. X-ray absorption spectroscopy to probe interfacial issues in photolithography.

    SciTech Connect

    Angelopoulos, Marie (IBM, T.J. Watson Research Center, Yorktown Heights, NY); Lenhart, Joseph Ludlow; Wu, Wen-li (National Institute of Standards and Technology, Gaithersburg, MD); Sambasivan, Sharadha (National Institute of Standards and Technology, Gaithersburg, MD); Fischer, Daniel A. (National Institute of Standards and Technology, Gaithersburg, MD); Jones, Ronald L. (National Institute of Standards and Technology, Gaithersburg, MD); Soles, Christopher L. (National Institute of Standards and Technology, Gaithersburg, MD); Lin, Eric K. (National Institute of Standards and Technology, Gaithersburg, MD); Goldfarb, Dario L. (IBM, T.J. Watson Research Center, Yorktown Heights, NY)

    2003-03-01

    We utilize near edge X-ray absorption fine structure spectroscopy (NEXASFS) to provide detailed chemical insight into two interfacial problems facing sub-100 nm patterning. First, chemically amplified photo-resists are sensitive to surface phenomenon, which causes deviations in the pattern profile near the interface. Striking examples include T-topping, closure, footing, and undercutting. NEXAFS was used to examine surface segregation of a photo-acid generator at the resist/air interface and to illustrate that the surface extent of deprotection in a model resist film can be different than the bulk extent of deprotection. Second, line edge roughness becomes increasingly critical with shrinking patterns, and may be intimately related to the line edge deprotection profile. A NEXAFS technique to surface depth profile for compositional gradients is described with the potential to provide chemical information about the resist line edge.

  18. Dual-laser absorption spectroscopy of C2H2 at 1.4 μ m

    NASA Astrophysics Data System (ADS)

    Fasci, E.; Odintsova, T. A.; Castrillo, A.; De Vizia, M. D.; Merlone, A.; Bertiglia, F.; Moretti, L.; Gianfrani, L.

    2016-04-01

    Spectroscopic parameters (line intensity factor, pressure self-broadening, and shifting coefficients) of C2H2 at 1.4 μ m were accurately measured using a dual-laser approach, based upon the technique of optical phase locking. This generated an absolute frequency scale underneath the absorption spectra. A pair of extended-cavity diode lasers was used. One of them, the probe laser, is forced to maintain a precise frequency offset from a reference laser, which is an optical frequency standard based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Laser-gas interaction takes place inside an isothermal multipass cell that is stabilized at the temperature of the triple point of water. The fidelity in the observation of the shape associated to the Pe(14) line of the 2 ν3+ν5 band allowed us to measure the spectroscopic parameters, with a global uncertainty for the line strength of 0.22%.

  19. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun

    2006-09-01

    The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 μm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppm m, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min.

  20. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy.

    PubMed

    Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun

    2006-09-01

    The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 microm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppmm, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min. PMID:16563854

  1. Infrared Reflection-Absorption Spectroscopy: Principles and Applications to Lipid-Protein Interaction in Langmuir Films

    PubMed Central

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R.

    2010-01-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  2. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    SciTech Connect

    Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J.

    2008-06-16

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.

  3. Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.

    SciTech Connect

    Sheps, Leonid; Chandler, David W.

    2013-04-01

    Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transient reaction intermediates in a simple, inexpensive, and robust experimental package.

  4. Infrared reflection-absorption spectroscopy: principles and applications to lipid-protein interaction in Langmuir films.

    PubMed

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R

    2010-04-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins, and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  5. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    PubMed Central

    Mikhaylova, A; Davidson, M; Toastmann, H; Channell, J.E.T; Guyodo, Y; Batich, C; Dobson, J

    2005-01-01

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 μm. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders—a problem which has vexed researchers for 50 years. PMID:16849161

  6. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  7. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  8. A X-Ray Absorption Spectroscopy Study of Manganese Containing Compounds and Photosynthetic Spinach Chloroplasts.

    NASA Astrophysics Data System (ADS)

    Kirby, Jon Allan

    The manganese sites in chloroplasts, long thought to be involved in photosynthetic oxygen evolution have been examined and partially characterized by X-ray Absorption Spectroscopy (XAS) using synchrotron radiation. The local environment about the manganese atoms is estimated from an analysis of the extended X-ray Absorption Fine Structure (EXAFS). Comparisons with and simulations of the manganese EXAFS for several reference compounds leads to a model in which the chloroplast manganese atoms are contained in a binuclear complex similar to di-u-oxo -tetrakis-(2,2'-bipyridine) dimanganese. It is suggested that the partner metal is another manganese. The bridging ligands are most probably oxygen. The remaining manganese ligands are carbon, oxygen, or nitrogen. A roughly linear correlation between the X-ray K edge onset energy and the "coordination charge" of a large number of manganese coordination complexes and compounds has been developed. Entry of the chloroplast manganese edge energy onto this correlation diagram establishes that the active pool of manganese is in an oxidation state greater than +2. If the manganese is in a dimeric form the oxidation states are most probably (II,III). Underlying these results is an extensive data analysis methodology. The method developed involves the use of many different background removal techniques, Fourier transforms and ultimately curve fitting to the modulations in the x-ray absorption cross sections. A large number of model compounds were used to evaluate the analysis method. These analyses are used to show that the two major curve fitting models available are essentially equivalent. Due to its greater versatility, the theoretical model of Teo and Lee is preferred (J. Am. Chem. Soc. (1979), 101, 2815). The results are also used to determine the informational limitations of XAS within the limits of the present understanding of X-ray absorption phenomena by inner shell electrons for atoms with atomic number greater than that

  9. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    SciTech Connect

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  10. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  11. Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selami; Frieß, Udo; Apituley, Arnoud; Henzing, Bas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Adam, Mariana; Putaud, Jean-Philippe; Zieger, Paul; Platt, Ulrich

    2010-05-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities and relative intensities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties such as single scattering albedo, phase function and Angström exponent. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw/Netherlands, Melpitz/Germany, Ispra/Italy and Leipzig/Germany, where simultaneous DOAS, lidar, Sun photometer and Nephelometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical spatial development of the boundary layer is reproduced with a lower resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties will be discussed as well.

  12. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Kim, C.S.; Brown, Gordon E., Jr.; Rytuba, J.J.

    2000-01-01

    Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis

  13. Chapter 1 - The Impacts of X-Ray Absorption Spectroscopy on Understanding Soil Processes and Reaction Mechanisms

    SciTech Connect

    Ginder-Vogel, Matthew; Sparks, Donald L.

    2011-11-17

    During the last two decades, X-ray absorption spectroscopy (XAS) has developed into a mature technique for obtaining the speciation (e.g., oxidation state) and short-range structure of elements present in soils and sediments. XAS encompasses both X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. XAS has a number of advantageous qualities for studying soils and sediments, which include elemental specificity, sensitivity to the local chemical and structural state of an element, and the ability to analyze materials in situ. This information allows accurate determination of oxidation state, type of nearest neighbors, coordination number, bond distance, and orbital symmetries of the X-ray absorbing element. In this review, we examine the application of a wide variety of synchrotron X-ray techniques to fundamental issues in environmental soil chemistry. Additionally, we examine the application of microfocused and time-resolved XAS to determine speciation (e.g., oxidation state and/or local coordination environment) and transformation kinetics of contaminants in heterogeneous environmental systems. During the last three decades, XAS has a played a critical role in furthering our understanding of a myriad of environmental systems and will continue to do so into the foreseeable future.

  14. Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Rodica

    The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally

  15. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.

    PubMed

    Zhong, Jun; Zhang, Hui; Sun, Xuhui; Lee, Shuit-Tong

    2014-12-10

    Carbon and silicon materials are two of the most important materials involved in the history of the science and technology development. In the last two decades, C and Si nanoscale materials, e.g., carbon nanotubes, graphene, and silicon nanowires, and quantum dots, have also emerged as the most interesting nanomaterials in nanoscience and nanotechnology for their myriad promising applications such as for electronics, sensors, biotechnology, etc. In particular, carbon and silicon nanostructures are being utilized in energy-related applications such as catalysis, batteries, solar cells, etc., with significant advances. Understanding of the nature of surface and electronic structures of nanostructures plays a key role in the development and improvement of energy conversion and storage nanosystems. Synchrotron soft X-ray absorption spectroscopy (XAS) and related techniques, such as X-ray emission spectroscopy (XES) and scanning transmission X-ray microscopy (STXM), show unique capability in revealing the surface and electronic structures of C and Si nanomaterials. In this review, XAS is demonstrated as a powerful technique for probing chemical bonding, the electronic structure, and the surface chemistry of carbon and silicon nanomaterials, which can greatly enhance the fundamental understanding and also applicability of these nanomaterials in energy applications. The focus is on the unique advantages of XAS as a complementary tool to conventional microscopy and spectroscopy for effectively providing chemical and structural information about carbon and silicon nanostructures. The employment of XAS for in situ, real-time study of property evolution of C and Si nanostructures to elucidate the mechanisms in energy conversion or storage processes is also discussed. PMID:25204894

  16. X-ray absorption spectroscopy of chicken sulfite oxidase crystals

    SciTech Connect

    George, G.N.; Pickering, I.J.; Kisker, C.

    1999-05-17

    Sulfite oxidase catalyzes the physiologically vital oxidation of sulfite to sulfate. Recently, the crystal structure of chicken sulfite oxidase has been reported at 1.9 {angstrom} resolution. In contrast to the information available from previous X-ray absorption spectroscopic studies, the active site indicated by crystallography was a mono-oxo species. Because of this the possibility that the crystals did in fact contain a reduced molybdenum species was considered in the crystallographic work. The authors report herein an X-ray absorption spectroscopic study of polycrystalline sulfite oxidase prepared in the same manner as the previous single-crystal samples, and compare this with data for frozen solutions of oxidized and reduced enzyme.

  17. Limiting resolution of linear absorption spectroscopy in thin gas cells

    NASA Astrophysics Data System (ADS)

    Izmailov, A. Ch.

    2010-06-01

    The most narrow sub-Doppler frequency resonances in the linear absorption of monochromatic radiation that propagates in the normal direction through a cell containing a layer of rarefied gas medium with a thickness smaller than or on the order of the wavelength of this radiation are theoretically studied. The calculation is performed using as an example a three-dimensional gas cell shaped like a rectangular parallelepiped. It is shown that the width and amplitude of considered sub-Doppler resonances (in the vicinity of centers of rather weak quantum transitions) significantly depend on the transit relaxation of atomic particles, which is determined by their transit times through the irradiated region of the cell both in longitudinal and in transverse directions. The restrictions of the approximation of the planar one-dimensional cell that was previously used in such calculations are determined. Possible applications of linear absorption resonances in ultrathin (nanometer) gas cells as references for optical frequency standards are discussed.

  18. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  19. Raman spectroscopy: an evolving technique for live cell studies.

    PubMed

    Smith, Rachael; Wright, Karen L; Ashton, Lorna

    2016-06-21

    One of the most exciting developments in Raman spectroscopy in the last decade has been its application to cells and tissues for diagnostic and pharmaceutical applications, and in particular its use in the analysis of cellular dynamics. Raman spectroscopy is rapidly advancing as a cell imaging method that overcomes many of the limitations of current techniques and is earning its place as a routine tool in cell biology. In this review we focus on important developments in Raman spectroscopy that have evolved into the exciting technique of live-cell Raman microscopy and highlight some of the most recent and significant applications to cell biology. PMID:27072718

  20. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    SciTech Connect

    Renaudin, P.; Blancard, C.; Cosse, P.; Faussurier, G.; Lecherbourg, L.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-02

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  1. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Renaudin, P.; Lecherbourg, L.; Blancard, C.; Cossé, P.; Faussurier, G.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  2. Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Jones, R. L.

    2012-12-01

    Cavity-enhanced absorption spectroscopy is now widely used as an ultrasensitive technique in observing weak spectroscopic absorptions. Photons inside the cavity are reflected back and forth between the mirrors with reflectivities R close to one and thus (on average) exploit an absorption pathlength L that is 1/(1 - R) longer than a single pass measurement. As suggested by the Beer-Lambert law, this increase in L results in enhanced absorbance A (given by αL with α being the absorption coefficient) which in turn favours the detection of weak absorptions. At the same time, however, only (1 - R) of the incident light can enter the cavity [assuming that mirror transmission T is equal to (1 - R)], so that the reduction in transmitted light intensity Δ I caused by molecular absorption equates to that would be obtained if in fact no cavity were present. The enhancement in A = Δ I/ I, where I is the total transmitted light intensity, achievable from CEAS therefore comes not from an increase in Δ I, but a sharp decrease in I. In this paper, we calculate the magnitudes of these two terms before and after a cavity is introduced, and aim at interpreting the sensitivity improvement offered by cavity-enhanced absorption spectroscopy from this observable-oriented (i.e. Δ I and I) perspective. It is first shown that photon energy stored in the cavity is at best as intense as the input light source, implying that any absorbing sample within the cavity is exposed to the same or even lower light intensity after the cavity is formed. As a consequence, the intensity of the light absorbed or scattered by the sample, which corresponds to the Δ I term aforementioned, is never greater than would be the case in a single pass measurement. It is then shown that while this "numerator" term is not improved, the "denominator" term, I, is reduced considerably; therefore, the increase in contrast ratio Δ I/ I is solely contributed by the attenuation of transmitted background light I and is

  3. Multinozzle supersonic expansion for Fourier transform absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Georges, R.; Durry, G.; Bach, M.; Pétrisse, R.; Jost, R.; Herman, M.

    1995-12-01

    A new supersonic expansion made of several, up to 31 aligned nozzles, on top of a set of powerful Roots blowers has been built. Adequate optics allowed the recording of infrared absorption spectra in a cell with a Fourier transform interferometer, at high spectral resolution. The system was tested with N 2O, between 2000 and 4800 cm -1. The ν1 + 2 ν2 + ν3 combination band, estimated to be some 10000 times weaker than the ν2 fundamental, could be observed among all the other expected bands, thus setting a limit for the sensitivity of the system. The formation of large N 2O clusters was observed.

  4. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  5. Single-dot absorption spectroscopy and theory of silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Sychugov, Ilya; Pevere, Federico; Luo, Jun-Wei; Zunger, Alex; Linnros, Jan

    2016-04-01

    Photoluminescence excitation measurements have been performed on single, unstrained oxide-embedded Si nanocrystals. Having overcome the challenge of detecting weak emission, we observe four broad peaks in the absorption curve above the optically emitting state. Atomistic calculations of the Si nanocrystal energy levels agree well with the experimental results and allow identification of some of the observed transitions. An analysis of their physical nature reveals that they largely retain the indirect band-gap structure of the bulk material with some intermixing of direct band-gap character at higher energies.

  6. A heated chamber burner for atomic absorption spectroscopy.

    PubMed

    Venghiattis, A A

    1968-07-01

    A new heated chamber burner is described. The burner is of the premixed type, and burner heads of the types conventionally used in atomic absorption may be readily adapted to it. This new sampling system has been tested for Ag, Al, Ca, Cu, Fe, Mg, Mn, Ni, Pb, Si, Ti, and Zn in aqueous solutions. An improvement of the order of ten times has been obtained in sensitivity, and in detection limits as well, for the elements determined. Interferences controllable are somewhat more severe than in conventional burners but are controllable. PMID:20068792

  7. [Retrieval of tropospheric NO2 by multi axis differential optical absorption spectroscopy].

    PubMed

    Xu, Jin; Xie, Pin-hua; Si, Fu-qi; Dou, Ke; Li, Ang; Liu, Yu; Liu, Wen-qing

    2010-09-01

    A method of retrieving NO2 in troposphere based on multi axis differential optical absorption spectroscopy (MAX-DOAS) was introduced. The differential slant column density (dSCD) of NO2 was evaluated by differential optical absorption spectroscopy (DOAS), removing the Fraunhofer structure and Ring effect. Combining the results of different observing directions, the tropospheric NO2 differential slant column density (deltaSCD) was evaluated, and the air mass factor (AMF) was calculated with the radiative transfer model SCIATRAN and the tropospheric NO2 vertical column density (VCD) was retrieved. To ensure the accuracy of the results, it was compared with the results of long path differential optical absorption spectroscopy (LP-DOAS), a good accordance was shown with the correlation coefficients of 0.94027 and 0.96924. PMID:21105419

  8. Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E.; Ferrara, R.; Cioni, R.; Raco, B.; Taddeucci, G.

    1994-09-01

    The total flux of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano was determined using the differential absorption lidar technique. The measurements were performed from an oceanographic research ship making traverses under the volcanic plumes with the lidar system sounding vertically. By combining the integrated gas concentration over the plume cross section with wind velocity data, it was possible to determine the total fluxes of SO2 from the three volcanoes, all measured within a 3-day period in September 1992. We found total fluxes of about 25, 180, and 1300 t/d for Vulcano, Stromboli, and Etna, respectively. These data, collected with an active remote-sensing technique, were compared with simultaneous recording with passive differential optical absorption spectroscopy (DOAS) using the sky radiation as the light source. Since the geometry of the light paths crossing the volcanic plume is not well defined in the passive measurements, a correction to the DOAS data is required. The SO2 results are also compared with previously available data from correlation spectroscopy measurements. Lidar measurements on atomic mercury were also made for the plumes from Stromboli and Vulcano, but the system sensitivity and range only allowed estimates of upper limits for the Hg fluxes.

  9. New techniques for diffusing-wave spectroscopy

    NASA Technical Reports Server (NTRS)

    Mason, T. G.; Gang, HU; Krall, A. H.; Weitz, David A.

    1994-01-01

    We present two new types of measurements that can be made with diffusing-wave spectroscopy (DWS), a form of dynamic light scattering that applies in limit of strong multiple scattering. The first application is to measure the frequency-dependent linear viscoelastic moduli of complex fluids using light scattering. This is accomplished by measuring the mean square displacement of probe particles using DWS. Their response to thermal fluctuations is determined by the fluctuation-dissipation relation, and is controlled by the response of the surrounding complex fluid. This response can be described in terms of a memory function, which is directly related to the complex elastic modulus of the system. Thus by measuring the mean square displacement, we are able to determine the frequency dependent modulus. The second application is the measurement of shape fluctuations of scattering particles. This is achieved by generalizing the theory for DWS to incorporate the effects if amplitude fluctuations in the scattering intensity of the particles. We apply this new method to study the thermally induced fluctuations in the shape of spherical emulsion droplets whose geometry is controlled by surface tension.

  10. Absorption spectroscopy in the ultraviolet and visible spectral range of hexavalent chromium aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Spadoni, Lorenzo

    1999-09-01

    In order to demonstrate the possibility of performing direct absorption spectroscopy of Hexavalent Chromium aqueous solutions, absorption measurements were performed at the dual- beam spectrophotometer in the 250 - 850 nm spectral range, with 10 mm and 100 mm path lengths. Low concentration (26 - 520 (mu) g/l) (and high concentration (2.6 - 52 mg/l) solutions were analyzed, showing that it is possible to implement a basic instrumentation for risk condition monitoring and a more advanced instrumentation for quantitative measurements.

  11. Speciation of mercury compounds by differential atomization - atomic absorption spectroscopy

    SciTech Connect

    Robinson, J.W.; Skelly, E.M.

    1982-01-01

    This paper describes the dual stage atomization technique which allows speciation of several mercury-containing compounds in aqueous solution and in biological fluids. The technique holds great promise for further speciation studies. Accurate temperature control, expecially at temperatures less than 200/sup 0/C, is needed to separate the extremely volatile mercury halides and simple organomercurials from each other. Studies with mercury salts and EDTA, L-cysteine and dithioxamide demonstrate that this technique may be used to study the extent of complex formation. Investigations of biological fluids indicate that there is a single predominant form of mercury in sweat and a single predominant form of mercury in urine. The mercury compound in urine is more volatile than that in sweat. Both quantitative and qualitative analyses are possible with this technique.

  12. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu. A.; Romanovskii, Yu. V.

    2015-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review.

  13. Total absorption spectroscopy of N = 51 nucleus 85Se

    NASA Astrophysics Data System (ADS)

    Goetz, K. C.; Grzywacz, R. K.; Rykaczewski, K. P.; Karny, M.; Fialkowska, A.; Wolinska-Cichocka, M.; Rasco, B. C.; Zganjar, E. F.; Johnson, J. W.; Gross, C. J.

    2014-09-01

    An experimental campaign utilizing the Modular Total Absorption Spectrometer (MTAS) was conducted at the HRIBF facility in January of 2012. The campaign studied 22 isotopes, many of which were identified as the highest priority for decay heat analysis during a nuclear fuel cycle, see the report by the OECD-IAEA Nuclear Energy Agency in 2007. The case of 85Se will be discussed. 85Se is a Z = 34, N = 51 nucleus with the valence neutron located in the positive parity sd single particle state. Therefore, its decay properties are determined by interplay between first forbidden decays of the valence neutron and Gamow-Teller decay of a 78Ni core. Analysis of the data obtained during the January 2012 run indicates a significant increase of the beta strength function when compared with previous measurements, see Ref..

  14. Image Recognition Techniques for Gamma Spectroscopy

    SciTech Connect

    Vlachos, D. S.; Tsabaris, C. G.

    2007-12-26

    Photons, after generated from a radioactive source and before they deposit their energy in a photo detector, are subsequent to multiple scattering mechanisms. As a result, the measured energy from the photo detector is different from the energy the photon had when generated. This is known as folding of the photon energy. Moreover, statistical fluctuation inside the detector contribute to energy folding. In this work, a new method is presented for unfolding the gamma ray spectrum. The method uses a 2-dimensional representation of the measured spectrum (image) and then uses image recognition techniques, and especially differential edge detection, to generate the original spectrum.

  15. Quantitative Decoupling of Excited-State Absorption Cross Section and Population via Pump-Probe Spectroscopy with a Strong Probe

    NASA Astrophysics Data System (ADS)

    Barker, Alex J.; Hodgkiss, Justin M.

    2015-08-01

    Photoinduced absorption signals measured by transient absorption spectroscopy are typically proportional to the product of absorption cross section (σ ) and excited-state density (N ). We show that this approximation does not hold at high probe-pulse intensities, and introduce the use of probe-intensity-dependent spectroscopy to decouple the two parameters. The singlet excited-state (S1→S2) absorption cross section of the conjugated polymer F8BT is measured to be 1.6 ×10-16 cm2±40 % at 800 nm and 3.7×10 -16 cm2±30 % at 900 nm, with no variation over the time window surveyed. The robustness of these parameters is established by observing that only N scales with excitation fluence and time delay, and conversely only σ is dependent on probe wavelength. The technique may be useful for quantifying salient parameters in many systems, such as branching yields in systems exhibiting singlet fission or triplet production, or cross sections required for photophysical models.

  16. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    SciTech Connect

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J.

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  17. Examination of the local structure in composite and lowdimensional semiconductor by X-ray Absorption Spectroscopy

    SciTech Connect

    Lawniczak-Jablonska, K.; Demchenko, I.N.; Piskorska, E.; Wolska,A.; Talik, E.; Zakharov, D.N.; Liliental-Weber, Z.

    2006-09-25

    X-ray absorption methods have been successfully used to obtain quantitative information about local atomic composition of two different materials. X-ray Absorption Near Edge Structure analysis and X-Ray Photoelectron Spectroscopy allowed us to determine seven chemical compounds and their concentrations in c-BN composite. Use of Extended X-ray Absorption Fine Structure in combination with Transmission Electron Microscopy enabled us to determine the composition and size of buried Ge quantum dots. It was found that the quantum dots consisted out of pure Ge core covered by 1-2 monolayers of a layer rich in Si.

  18. Understanding charge carrier relaxation processes in terbium arsenide nanoparticles using transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vanderhoef, Laura R.

    Erbium arsenide nanoparticles epitaxially grown within III-V semiconductors have been shown to improve the performance of devices for applications ranging from thermoelectrics to THz pulse generation. The small size of rare-earth nanoparticles suggests that interesting electronic properties might emerge as a result of both spatial confinement and surface states. However, ErAs nanoparticles do not exhibit any signs of quantum confinement or an emergent bandgap, and these experimental observations are understood from theory. The incorporation of other rare-earth monopnictide nanoparticles into III-V hosts is a likely path to engineering carrier excitation, relaxation and transport dynamics for optoelectronic device applications. However, the electronic structure of these other rare-earth monopnictide nanoparticles remains poorly understood. The objective of this research is to explore the electronic structure and optical properties of III-V materials containing novel rare-earth monopnictides. We use ultrafast pump-probe spectroscopy to investigate the electronic structure of TbAs nanoparticles in III-V hosts. We start with TbAs:GaAs, which was expected to be similar to ErAs:GaAs. We study the dynamics of carrier relaxation into the TbAs states using optical pump terahertz probe transient absorption spectroscopy. By analyzing how the carrier relaxation rates depend on pump fluence and sample temperature, we conclude that the TbAs states are saturable. Saturable traps suggest the existence of a bandgap for TbAs nanoparticles, in sharp contrast with previous results for ErAs. We then apply the same experimental technique to two samples of TbAs nanoparticles in InGaAs with different concentrations of TbAs. We observe similar relaxation dynamics associated with trap saturation, though the ability to resolve these processes is contingent upon a high enough TbAs concentration in the sample. We have also constructed an optical pump optical probe transient absorption

  19. Difference Between Far-Infrared Photoconductivity Spectroscopy and Absorption Spectroscopy: Theoretical Evidence of the Electron Reservoir Mechanism

    NASA Astrophysics Data System (ADS)

    Toyoda, Tadashi; Fujita, Maho; Uchida, Tomohisa; Hiraiwa, Nobuyoshi; Fukuda, Taturo; Koizumi, Hideki; Zhang, Chao

    2013-08-01

    The intriguing difference between far-infrared photoconductivity spectroscopy and absorption spectroscopy in the measurement of the magnetoplasmon frequency in GaAs quantum wells reported by Holland et al. [Phys. Rev. Lett. 93, 186804 (2004)] remains unexplained to date. This Letter provides a consistent mechanism to solve this puzzle. The mechanism is based on the electron reservoir model for the integer quantum Hall effect in graphene [Phys. Lett. A 376, 616 (2012)]. We predict sharp kinks to appear in the magnetic induction dependence of the magnetoplasmon frequency at very low temperatures such as 14 mK in the same GaAs quantum well sample used by Holland et al..

  20. Infrared Absorption Spectroscopy of Acetylene in the Lecture

    ERIC Educational Resources Information Center

    Briggs, Thomas E.; Sanders, Scott T.

    2006-01-01

    Lecture-based experimental methods that include topics ranging from basic signal processing to the proper use of thermocouples to advanced optical techniques such as laser-induced fluorescence are described. The data obtained from this demonstration could be provided to the students in digital form to obtain useful engineering results such as an…

  1. Quartz crystal microbalance and infrared reflection absorption spectroscopy characterization of bisphenol A absorption in the poly(acrylate) thin films.

    PubMed

    Li, Guifeng; Morita, Shigeaki; Ye, Shen; Tanaka, Masaru; Osawa, Masatoshi

    2004-02-01

    The absorption process of bisphenol A (BPA) in a number of poly(acrylate) thin films, such as poly(2-methoxyethyl acrylate) (PMEA), poly(ethyl acrylate) (PEA), poly(n-butyl methacrylate) (PBMA), and poly(methyl methacrylate) (PMMA), has been investigated by quartz crystal microbalance (QCM) and infrared reflection absorption spectroscopy (IRRAS) measurements. Both QCM and IRRAS measurements show that the BPA molecules absorb in PMEA, PEA, and PBMA thin films but not in PMMA thin film. The differences in the BPA absorption behavior are mainly attributed to the difference in the glass transition temperature (T(g)) between these polymers. This absorption behavior also depends on the BPA concentration and polymer film thickness. Furthermore, IRRAS characterization demonstrates that the hydrogen bonding is formed between the hydroxyl group in BPA and the carbonyl group in the poly(acrylate) thin films. BPA molecule absorbed in these polymer thin films can be removed by ethanol rinse treatment. By optimizing experimental conditions for the QCM electrode modified by PMEA thin film, detection limitation of approximately 1 ppb for BPA can be realized by the in situ QCM measurement. This method is expected to be a sensitive in situ detection way for trace BPA in the environmental study. PMID:14750877

  2. Laboratory atomic transition data for precise optical quasar absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Murphy, Michael T.; Berengut, Julian C.

    2014-02-01

    Quasar spectra reveal a rich array of important astrophysical information about galaxies which intersect the quasar line of sight. They also enable tests of the variability of fundamental constants over cosmological time- and distance-scales. Key to these endeavours are the laboratory frequencies, isotopic and hyperfine structures of various metal-ion transitions. Here, we review and synthesize the existing information about these quantities for 43 transitions which are important for measuring possible changes in the fine-structure constant, α, using optical quasar spectra, i.e. those of Na, Mg, Al, Si, Ca, Cr, Mn, Fe, Ni and Zn. We also summarize the information currently missing that precludes more transitions being used. We present an up-to-date set of coefficients, q, which define the sensitivity of these transitions to variations in α. New calculations of isotopic structures and q-coefficients are performed for Si II and Ti II, including Si II λ1808 and Ti IIλλ1910.6/1910.9 for the first time. Finally, simulated absorption-line spectra are used to illustrate the systematic errors expected if the isotopic/hyperfine structures are omitted from profile fitting analyses. To ensure transparency, repeatability and currency of the data and calculations, we supply a comprehensive data base as Supporting Information. This will be updated as new measurements and calculations are performed.

  3. Observation of phycoerythrin-containing cyanobacteria and other phytoplankton groups from space using Differential Optical Absorption Spectroscopy on SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Bracher, Astrid; Dinter, Tilman; Burrows, John P.; Vountas, Marco; Röttgers, Rüdiger; Peeken, Ilka

    In order to understand the marine phytoplankton's role in the global marine ecosystem and biogeochemical cycles it is necessary to derive global information on the distribution of major functional phytoplankton types (PFT) in the world oceans. In our study we use instead of the common ocean color sensors such as CZCS, SeaWiFS, MODIS, MERIS, with rather low spectral resolution, the Differential Optical Absorption Spectroscopy (DOAS) to study the retrieval of phytoplankton distribution and absorption with the satellite sensor Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). SCIAMACHY measures back scattered solar radiation in the UV-Vis-NIR spectral region with a high spectral resolution (0.2 to 1.5 nm). We used in-situ measured phytoplankton absorption spectra from two different RV Polarstern expeditions where different phytoplankton groups were representing or dominating the phytoplankton composition in order to identify these characteristic absorption spectra in SCIAMACHY data in the range of 430 to 500 nm and also to identify absorption from cyanobacterial photosynthetic pigment phycoerythrin. Our results show clearly these absorptions in the SCIAMACHY data. The conversion of these differential absorptions by including the information of the light penetration depth (according to Vountas et al., Ocean Science, 2007) globally distributed pigment concentrations for these characteristic phytoplankton groups for two monthly periods (Feb-March 2004, Oct-Nov 2005 and Oct-Nov 2007) are derived. The satellite retrieved information on cyanobacteria (Synechococcus sp. and Prochlorococcus sp.) and diatoms distribution matches well with the concentration measured from collocated water samples with HPLC technique and also to global model analysis with the NASA Ocean Biogeochemical Model (NOBM from http://reason.gsfc.nasa.gov/OPS/Giovanni/) according to Gregg and Casey 2006 and Gregg 2006. Results are of great importance for global modelling of

  4. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    DOE R&D Accomplishments Database

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  5. Subpicosecond IR transient absorption spectroscopy: measurement of internal conversion rates in DABCO vapor

    NASA Astrophysics Data System (ADS)

    Glownia, J. H.; Misewich, J.; Sorokin, P. P.

    1987-09-01

    An apparatus combining subpicosecond 248.5 nm pump pulses with a time-resolved subpicosecond broadband infrared absorption spectroscopy probe has been utilized to measure an internal conversion rate in 1,4-diazabicyclo[2.2.2]octane vapor. A subpicosecond (⪅ 500 fs) internal conversion rate has been determined.

  6. LISA: the Italian CRG beamline for x-ray Absorption Spectroscopy at ESRF

    NASA Astrophysics Data System (ADS)

    d'Acapito, F.; Trapananti, A.; Puri, A.

    2016-05-01

    LISA is the acronym of Linea Italiana per la Spettroscopia di Assorbimento di raggi X (Italian beamline for X-ray Absorption Spectroscopy) and is the upgrade of the former GILDA beamline installed on the BM08 bending magnet port of European Synchrotron Radiation Facility (ESRF). Within this contribution a full description of the project is provided.

  7. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  8. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  9. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  10. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring. PMID:27410280

  11. Testing interaction models by using x-ray absorption spectroscopy: solid Pb

    NASA Astrophysics Data System (ADS)

    Di Cicco, Andrea; Minicucci, Marco; Principi, Emiliano; Witkowska, Agnieszka; Rybicki, Jaroslaw; Laskowski, Robert

    2002-04-01

    Structural models obtained using classical molecular dynamics (MD) simulations and realistic interatomic potentials for solid metals are tested using experimental results obtained by x-ray absorption spectroscopy (XAS). Accurate L-edge extended x-ray absorption fine-structure (EXAFS) measurements of Pb grains dispersed in BN and graphite matrices have been collected for temperatures up to the melting point. The thermal expansion of the grains was measured by energy-dispersive x-ray diffraction techniques and found to be coincident with that of pure Pb up to the limit of the present measurements. L3-edge EXAFS measurements of solid Pb at various temperatures have been analysed using advanced data-analysis techniques (GNXAS) based on exact spherical-wave multiple-scattering simulation of the absorption cross-section. Realistic structural models for solid Pb were obtained from MD simulations using an empirical pair potential (Dzugutov, Larsson and Ebbsjo (DLE)), a tight-binding (TB) square-root functional, and an embedded-atom (EA) model potential parametrized by us. The short-range pair distribution function g(r) reconstructed by means of EXAFS is compared with those obtained by MD simulations. The empirical DLE potential, originally designed for the liquid state, is too soft, showing too-large values for the average distance R, variance σ2, and skewness β. The TB and EA potentials are both compatible with XAS data as regards the average distance and skewness of the first neighbours. The distance variance, associated with the thermal vibration amplitudes, is underestimated for the TB potential, while the EA model is found to be in agreement with XAS data. The present results are also compared with those from a previous EXAFS study on solid lead, where the cumulant expansion and a simple one-dimensional anharmonic oscillator model were used. The need for realistic interaction models and appropriate simulation schemes for reliable XAS data analysis is emphasized

  12. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    SciTech Connect

    Tilikin, I. N. Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-15

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  13. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    NASA Astrophysics Data System (ADS)

    Tilikin, I. N.; Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-01

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  14. VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

    SciTech Connect

    FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.; LAKE,PATRICK WAYNE; NASH,THOMAS J.; NOACK,DONALD D.; MARON,Y.

    2000-03-20

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  15. Double conical crystal x-ray spectrometer for high resolution ultrafast x-ray absorption near-edge spectroscopy of Al K edge

    NASA Astrophysics Data System (ADS)

    Levy, A.; Dorchies, F.; Fourment, C.; Harmand, M.; Hulin, S.; Santos, J. J.; Descamps, D.; Petit, S.; Bouillaud, R.

    2010-06-01

    An x-ray spectrometer devoted to dynamical studies of transient systems using the x-ray absorption fine spectroscopy technique is presented in this article. Using an ultrafast laser-induced x-ray source, this optical device based on a set of two potassium acid phthalate conical crystals allows the extraction of x-ray absorption near-edge spectroscopy structures following the Al absorption K edge. The proposed experimental protocol leads to a measurement of the absorption spectra free from any crystal reflectivity defaults and shot-to-shot x-ray spectral fluctuation. According to the detailed analysis of the experimental results, a spectral resolution of 0.7 eV rms and relative fluctuation lower than 1% rms are achieved, demonstrated to be limited by the statistics of photon counting on the x-ray detector.

  16. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    SciTech Connect

    Fischer, D.A. ); Mitchell, G.E.; Dekoven, B.M. ); Yeh, A.T.; Gland, J.L. ); Moodenbaugh, A.R. )

    1993-01-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  17. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    SciTech Connect

    Fischer, D.A.; Mitchell, G.E.; Dekoven, B.M.; Yeh, A.T.; Gland, J.L.; Moodenbaugh, A.R.

    1993-06-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  18. [Study on determination of plume velocity by passive differential optical absorption spectroscopy].

    PubMed

    Li, Ang; Xie, Pin-hua; Liu, Wen-qing; Liu, Jian-guo; Dou, Ke; Lin, Yi-hui

    2008-10-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure various trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range. Passive DOAS using the zenith scattered sunlight as the light source can obtain the continuous column density distribution of air pollutants (such as SO2 and NO2) by scanning the plume emitted from sources on a mobile platform, then with the plume velocity information the total emission value can be ultimately estimated. In practice it is hard to calculate the total emission because there is no efficient way to accurately get the plume velocity which is the most important parameter. Usually the wind speed near ground is used as the actual plume speed, which constitutes the greatest source of uncertainty in the passive DOAS measurements for the total emission calculation. A passive DOAS method for the determination of plume velocity of pollution source was studied in the present paper. Two passive DOAS systems were placed under the plume along the plume transmission direction to observed the scattered sunlight at one fixed sepasation angle, and then the plume velocity was derived from the time delay resulting from the plume moving a certain distance, and also the plume height needed in the plume velocity calculation was measured by the same two passive DOAS systems. Measurement of the plume emitted from a certain power plant was carried out by the two passive DOAS systems and the plume velocities of 3.6 and 5.4 m x s(-1) at two separate moments were derived. The comparison with the wind speed measured at the same time by the single theodolite wind observation method indicates that this optical remote sensing method based on passive DOAS can be used to determine the plume velocity by monitoring the total emission from sources. PMID:19123375

  19. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  20. [Influence of silver/silicon dioxide on infrared absorption spectroscopy of sodium nitrate].

    PubMed

    Yang, Shi-Ling; Yue, Li; Jia, Zhi-Jun

    2014-09-01

    Quickly detecting of ocean nutrient was one important task in marine pollution monitoring. We discovered the application of surface-enhanced infrared absorption spectroscopy in the detection of ocean nutrient through researching the evaporation of sodium nitrate solution. The silicon dioxide (SiO2) with highly dispersion was prepared by Stober method, The silver/silica (Ag/SiO2) composite materials were prepared by mixing ammonia solution and silicon dioxide aqueous solution. Three kinds of composite materials with different surface morphology were fabricated through optimizing the experimental parameter and changing the experimental process. The surface morphology, crystal orientation and surface plasmon resonance were investigated by means of the scanning electronic microscope (SEM), X-ray diffraction (XRD), UV-Visible absorption spectrum and infrared ab- sorption spectroscopy. The SEM images showed that the sample A was purified SiO2, sample B and sample C were mixture of silver nanoparticle and silicon dioxide, while sample D was completed nanoshell structure. The absorption spectroscopy showed that there was surface plasmon resonance in the UV-visible region, while there was possibility of surface plasmon resonance in the Infrared absorption region. The effect of Ag/SiO2 composite material on the infrared absorption spectra of sodium nitrite solution was investigated through systematically analyzing the infrared absorption spectroscopy of sodium nitrate solution during its evaporation, i. e. the peak integration area of nitrate and the peak integration area of water molecule. The experimental results show that the integration area of nitrate was enhanced greatly during the evaporation process while the integration area of water molecule decreased continuously. The integration area of nitrate comes from the anti-symmetric stretch vibration and the enhancement of the vibration is attributed to the interface effect of Ag/SiO2 which is consistent with Jensen T

  1. Time-resolved air monitoring using Fourier absorption spectroscopy

    SciTech Connect

    Biermann, H.W.

    1995-12-31

    Two categories where spectroscopic techniques excel are the capabilities to perform air analyses in situ and to obtain data at very high time resolutions. Because of these features, the Department of Pesticide Regulation augmented its extensive air monitoring capabilities with a Fourier transform infrared (FTIR) spectrometer using open-path optical systems for time resolved ambient air monitoring. A description of the instrumentation and the data analysis procedures will be presented based on two data sets obtained with this FTIR system. In one case, a 100 m folded optical path was used to measure methyl bromide concentrations after fumigation in a warehouse with a time resolution of 15 min and a detection limit of 0.2 ppm. And trying to assess the capability of this FTIR spectrometer to determine flux, water vapor concentrations were measured with a four-meter path length at a time resolution of 0.6 seconds.

  2. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    ERIC Educational Resources Information Center

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  3. The temperature measurement research for high-speed flow based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao

    2013-09-01

    Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.

  4. X-ray absorption spectroscopy of lithium sulfur battery reaction intermediates

    NASA Astrophysics Data System (ADS)

    Wujcik, Kevin; Pascal, Tod; Prendergast, David; Balsara, Nitash

    2015-03-01

    Lithium sulfur batteries have a theoretical energy density nearly five times greater than current lithium ion battery standards, but questions still remain regarding the reaction pathways through which soluble lithium polysulfide (Li2Sx, ``x'' ranging from 2 to 8) reaction intermediates are formed. Complicating spectroelectrochemical approaches to elucidate redox pathways is the challenge of obtaining spectral standards for individual Li2Sx species. Lithium polysulfides cannot be isolated as individual component and exist only in solution as a distribution of different Li2Sx molecules formed via disproportionation reactions (e.g. 2Li2S4 goes to Li2S3 + Li2S5). X-ray absorption spectroscopy (XAS) at the sulfur K-edge has recently been employed as a technique to study Li-S chemistry. We have recently obtained XAS standards for individual Li2Sx species via first principles DFT simulations and the excited electron and core hole approach. Here, experimental sulfur K-edge XAS of Li2Sx species dissolved in poly(ethylene oxide) are compared to spectra obtained from analogous theoretical calculations. The impact that polysulfide solution concentration and the presence of other lithium salts (e.g. LiNO3) have on X-ray spectra of Li2Sx species is explored via experiment and theory.

  5. Summertime measurements of benzene and toluene in Athens using a differential optical absorption spectroscopy system.

    PubMed

    Petrakis, Michael; Psiloglou, Basil; Kassomenos, Pavlos A; Cartalis, Costas

    2003-09-01

    In this paper, measurements of benzene, toluene, p,m-xylene, ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) made using the differential optical absorption spectroscopy (DOAS) technique during a 4-month period of summer 2000 (June-September) in Athens, Greece, are presented. An assessment of benzene mean value concentrations during this 4-month period exceeded 10 microg/m3, which is 2 times greater than the average yearly limit proposed by European authorities. Toluene measurements present mean values of approximately 33 microg/m3. Benzene and especially toluene measurements are highly correlated with NO2 and anticorrelated with O3. High values of benzene, NO2, and toluene are also correlated with winds from the southeast section, an area of industrial activity where emissions of volatile organic compounds (VOCs) have been recorded in previous studies. O3 is correlated with winds from the south-southwest section affected by the sea breeze circulation. Diurnal variations of O3, NO2, and SO2 concentrations are compatible with measurements from the stations of the Ministry of Environment's network. Outliers are combined with weak winds from the south-southwest. As far as p,m-xylene measurements are concerned, there is a poor correlation between gas chromatography (GC) and DOAS Opsis measurements, also observed in previous relevant campaigns and eventually a criticism in the use of the DOAS Opsis model for the measurement of p,m-xylene. PMID:13678363

  6. The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL.

    PubMed

    de Oliveira, Nelson; Joyeux, Denis; Roudjane, Mourad; Gil, Jean François; Pilette, Bertrand; Archer, Lucy; Ito, Kenji; Nahon, Laurent

    2016-07-01

    A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV-VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm(-1) on a large spectral window, ΔE/E = 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility. PMID:27359137

  7. Absorption line metrology by optical feedback frequency-stabilized cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Burkart, Johannes; Kassi, Samir

    2015-04-01

    Optical feedback frequency-stabilized cavity ring-down spectroscopy (OFFS-CRDS) is a near-shot-noise-limited technique combining a sensitivity of with a highly linear frequency axis and sub-kHz resolution. Here, we give an in-depth review of the key elements of the experimental setup encompassing a highly stable V-shaped reference cavity, an integrated Mach-Zehnder modulator and a tightly locked ring-down cavity with a finesse of 450,000. Carrying out a detailed analysis of the spectrometer performance and its limitations, we revisit the photo-electron shot-noise limit in CRDS and discuss the impact of optical fringes. We demonstrate different active schemes for fringe cancelation by varying the phase of parasitic reflections. The proof-of-principle experiments reported here include a broadband high-resolution spectrum of carbon dioxide at 1.6 µm and an isolated line-shape measurement with a signal-to-noise ratio of 80,000. Beyond laboratory-based absorption line metrology for fundamental research, OFFS-CRDS holds a considerable potential for field laser measurements of trace gas concentrations and isotopic ratios by virtue of its small sample volume and footprint, the robust cavity-locking scheme and supreme precision.

  8. The Chemistry os Spent Nuclear Fuel From X-Ray Absorption Spectroscopy

    SciTech Connect

    F.A. Fortner; A.J. Kropf; J.C. Cunnane

    2006-09-21

    Present and future nuclear fuel cycles will require an understanding of the complex chemistry of trace fission products and transuranium actinides in spent nuclear fuel (SNF). Because of the unique analytical challenges presented by SNF to the materials scientist, many of its fundamental physical and chemical properties remain poorly understood, especially on the microscopic scale. Such an understanding of the chemical states of radionuclides in SNF would benefit development of technologies for fuel monitoring, fuel performance improvement and modeling, fuel reprocessing, and spent fuel storage and disposal. We have recently demonstrated the use of synchrotron x-ray absorption spectroscopy (XAS) to examine crystal chemical properties of actinides and fission products in extracted specimens of SNF. Information obtained includes oxidation state, chemical bond coordination, and quantitative elemental concentration and distribution. We have also used XAS in a scanning mode to obtain x-ray spectral micrographs with resolution approaching 1 micron. A brief overview of the technique will be presented, along with findings on uranium, plutonium, neptunium, technetium, and molybdenum in commercial PWR SNF specimens.

  9. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    DOE PAGESBeta

    Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; Feng, Bingmei; Liu, Yi-Sheng; Marcus, Matthew A.; Feng, Jun; Cairns, Elton J.; Guo, Jinghua; Zhu, Junfa

    2016-01-11

    The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br₋) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface duringmore » the charge/discharge processes make the capacity decay. Lastly, a modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.« less

  10. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    PubMed

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure. PMID:26652294

  11. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    PubMed

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments. PMID:21343997

  12. [Studies on the data processing method in chlorine measurement by differential optical absorption spectroscopy technology].

    PubMed

    Ye, Cong-Lei; Xie, Pin-Hua; Qin, Min; Li, Ang; Ling, Liu-Yi; Hu, Ren-Zhi; Yang, Jing-Wen

    2012-07-01

    In this paper, based on Differential Optical Absorption Spectroscopy (DOAS) technique, experimental measurements of chlorine was carried out in the laboratory with a small self-built experimental system. In dealing with the standard cross-section of chlorine, we presented two different methods: triangle filtering and polynomial fitting. Experiments showed that the concentration of chlorine could be accurately retrieved by the latter one. Simulation results showed that the error of retrieval result by fifth-order polynomial fitting was smaller than by other orders and an actual retrieval example shows that the fitting spectrums were nearly coincident with the measured spectrums with a residual delta(peak to peak) below 5 per hundred; The results measured in different sample pools displayed a high linearity of 0.9961 by this method. The main sources of errors during the entire experiment were simply analyzed. According to the experimental result above, it is feasible to detect chlorine using DOAS technology by polynomial fitting. PMID:23016314

  13. Absolute radical densities in etching plasmas determined by broad-band UV absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Cunge, Gilles; Neuilly, François; Sadeghi, Nader

    1998-08-01

    Broad-band UV absorption spectroscopy was used to determine radical densities in reactive gas plasmas generated in a 13.56 MHz capacitively coupled parallel plate reactor. Five radical species were detected: 0963-0252/7/3/021/img1, CF, AlF, 0963-0252/7/3/021/img2 and 0963-0252/7/3/021/img3. Absolute (line-integrated) 0963-0252/7/3/021/img1 densities were determined in 0963-0252/7/3/021/img5 and 0963-0252/7/3/021/img6 plasmas, as were the 0963-0252/7/3/021/img1 vibrational and rotational temperatures in the latter case. In 0963-0252/7/3/021/img5 plasmas the CF radical was also detected, along with the etch products AlF (from the Al powered electrode) and 0963-0252/7/3/021/img2 (when an Si substrate was present). The fraction that 0963-0252/7/3/021/img2 comprises of the total etch products was estimated. Finally, the 0963-0252/7/3/021/img3 dimer was detected in an 0963-0252/7/3/021/img12 plasma in the presence of an Si substrate. This simple technique allows absolute concentrations of many key reactive species to be determined in reactive plasmas, without the need to analyse the complex rotational spectra of these polyatomic molecules.

  14. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  15. Sub-Doppler direct infrared laser absorption spectroscopy in fast ion beams: The fluorine hyperfine structure of HF +

    NASA Astrophysics Data System (ADS)

    Coe, J. V.; Owrutsky, J. C.; Keim, E. R.; Agman, N. V.; Hovde, D. C.; Saykally, R. J.

    1989-04-01

    We report the development of a new general technique for measuring vibration-rotation spectra of molecular ions with sub-Doppler resolution and with accurate determination of the mass and number density of the carriers of all spectral features. With this method, called direct laser absorption spectroscopy in fast ion beams (DLASFIB), we have carried out the first observation of direct absorption of photons by ions in a fast ion beam. Hyperfine-resolved vibration-rotation transitions of HF+ have been measured, and along with optical combination differences and laser magnetic resonance data, have been analyzed to yield the fluorine hyperfine parameters a, b, c and d for both v=0 and v=1 in the X 2Π state. Comparisons with many-body perturbation theory results are presented.

  16. An investigation of catalytic active phase-support interactions by IR, NMR and x-ray absorption spectroscopies

    SciTech Connect

    Haller, G.L.

    1992-09-01

    Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support on which the active phase is dispersed can affect the percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Our objective is to characterize the physical chemistry of the active phase-oxide support interaction by spectroscopic methods and to correlate this structure with catalytic function. Two catalytic systems and their associated techniques (x-ray absorption and NMR) are discussed in this progress report. Firstly, the interaction of Pt-Ni supported on silica and L-zeolite are characterized and compared by x-ray absorption spectroscopy (EXAFS). Secondly, we present both experimental and calculational developments of NMR for the investigation of amorphous silica-alumina catalysts and/or supports.

  17. Photocarrier dynamics in anatase TiO{sub 2} investigated by pump-probe absorption spectroscopy

    SciTech Connect

    Matsuzaki, H. E-mail: okamotoh@k.u-tokyo.ac.jp; Matsui, Y.; Uchida, R.; Yada, H.; Terashige, T.; Li, B.-S.; Sawa, A.; Kawasaki, M.; Tokura, Y.; Okamoto, H. E-mail: okamotoh@k.u-tokyo.ac.jp

    2014-02-07

    The dynamics of photogenerated electrons and holes in undoped anatase TiO{sub 2} were studied by femtosecond absorption spectroscopy from the visible to mid-infrared region (0.1–2.0 eV). The transient absorption spectra exhibited clear metallic responses, which were well reproduced by a simple Drude model. No mid-gap absorptions originating from photocarrier localization were observed. The reduced optical mass of the photocarriers obtained from the Drude-model analysis is comparable to theoretically expected one. These results demonstrate that both photogenerated holes and electrons act as mobile carriers in anatase TiO{sub 2}. We also discuss scattering and recombination dynamics of photogenerated electrons and holes on the basis of the time dependence of absorption changes.

  18. VUV Absorption Spectroscopy of a Penning Surface - Negative Hydrogen Ion Source

    NASA Astrophysics Data System (ADS)

    Pitcher, Eric John

    The demand for energetic, high-current H ^- beams is ever-growing. Because H ^- is efficiently neutralized at high energies, these beams are ideally suited to applications where energetic neutral beams of particles are required to propagate across magnetic fields. Prime examples are neutral-beam heating of magnetic fusion plasmas and directed-energy weapons for ballistic missile defense. Such applications place demanding requirements on sources of H^ - ions, particularly with respect to the parameters of beam current, brightness, quiescence, reliability, and duty-factor. A class of sources that holds great promise for meeting these stringent requirements is the surface-plasma source (SPS), and in particular, the Penning type of SPS. It has long been conjectured that atomic hydrogen plays an important role in both H^- formation and transport in these sources. Understanding the interdependence of atomic hydrogen properties and those of H^ -, and how this relationship might be exploited to improve source performance is the motivation for this research. An overview of SPS's is presented. Previous measurements on the discharge are reviewed. Absorption spectroscopy, the diagnostic technique used to gather all of the data presented here, is discussed. Techniques that may potentially be used to measure the properties of H^ - in the discharge are discussed. The two absorption spectrometers used in this experiment are described. Measurements of ground-state atomic hydrogen density and temperature in a Penning SPS are presented. These measurements are the first of this kind for this type of discharge. An upper limit on the H^- density in the extraction region of the source is measured by the application of a novel diagnostic technique: the hydrogen atom density following H^- photodetachment by a Nd:YAG beam is measured and compared to the equilibrium atomic density. A simple model is derived that describes the dependence of the atomic temperature on the externally

  19. Diagnosing the plasma nonuniformity in an iron opacity experiment by spatially resolved Al 1s-2p absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiaoding, Zhang; Jiyan, Zhang; Yang, Zhao; Gang, Xiong; Bin, Zhao; Guohong, Yang; Jian, Zheng; Jiamin, Yang

    2012-12-01

    Generating a well-characterized hot-dense sample is of great importance to high quality opacity measurements. In this paper, we report on an experimental investigation of the plasma nonuniformity in a radiatively heated iron opacity sample by spatially resolved Al 1s-2p absorption spectroscopy. The iron sample was tamped by plastic at both sides and was heated by thermal x-ray radiation generated in a gold Hohlraum, and an Al layer attached to it was used as a tracer for temperature diagnosis. Spatially resolved 1s-2p transition absorption spectra of the Al tracer were measured by the technique of point-projection-spectroscopy, and temperatures in the sample were obtained by comparing the measured spectra with detailed-term-accounting model calculations, with the density of the sample deduced using a combination of side-on radiography and radiative hydrodynamic simulation. The results showed the existence of axial temperature nonuniformity in the sample, and these temperature variations have been used to explain the shift of iron 2p-3d transition absorption feature along the axial direction of the Hohlraum used to heat the sample successfully.

  20. Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy.

    PubMed

    Spearrin, R M; Goldenstein, C S; Jeffries, J B; Hanson, R K

    2014-03-20

    A tunable quantum cascade laser sensor, based on wavelength modulation absorption spectroscopy near 4.8 μm, was developed to measure CO concentration in harsh, high-pressure combustion gases. The sensor employs a normalized second harmonic detection technique (WMS-2f/1f) at a modulation frequency of 50 kHz. Wavelength selection at 2059.91  cm⁻¹ targets the P(20) transition within the fundamental vibrational band of CO, chosen for absorption strength and relative isolation from infrared water and carbon dioxide absorption. The CO spectral model is defined by the Voigt line-shape function, and key line-strength and line-broadening spectroscopic parameters were taken from the literature or measured. Sensitivity analysis identified the CO-N₂ collisional broadening coefficient as most critical for uncertainty mitigation in hydrocarbon/air combustion exhaust measurements, and this parameter was experimentally derived over a range of combustion temperatures (1100-2600 K) produced in a shock tube. Accuracy of the wavelength-modulation-spectroscopy-based sensor, using the refined spectral model, was validated at pressures greater than 40 atm in nonreactive shock-heated gas mixtures. The laser was then free-space coupled to an indium-fluoride single-mode fiber for remote light delivery. The fiber-coupled sensor was demonstrated on an ethylene/air pulse detonation combustor, providing time-resolved (~20  kHz), in situ measurements of CO concentration in a harsh flow field. PMID:24663473

  1. Diagnosing the plasma nonuniformity in an iron opacity experiment by spatially resolved Al 1s-2p absorption spectroscopy

    SciTech Connect

    Zhang Xiaoding; Zhang Jiyan; Zhao Yang; Xiong Gang; Yang Guohong; Yang Jiamin; Zhao Bin; Zheng Jian

    2012-12-15

    Generating a well-characterized hot-dense sample is of great importance to high quality opacity measurements. In this paper, we report on an experimental investigation of the plasma nonuniformity in a radiatively heated iron opacity sample by spatially resolved Al 1s-2p absorption spectroscopy. The iron sample was tamped by plastic at both sides and was heated by thermal x-ray radiation generated in a gold Hohlraum, and an Al layer attached to it was used as a tracer for temperature diagnosis. Spatially resolved 1s-2p transition absorption spectra of the Al tracer were measured by the technique of point-projection-spectroscopy, and temperatures in the sample were obtained by comparing the measured spectra with detailed-term-accounting model calculations, with the density of the sample deduced using a combination of side-on radiography and radiative hydrodynamic simulation. The results showed the existence of axial temperature nonuniformity in the sample, and these temperature variations have been used to explain the shift of iron 2p-3d transition absorption feature along the axial direction of the Hohlraum used to heat the sample successfully.

  2. Quantification of rapid environmental redox processes with quick-scanning x-ray absorption spectroscopy (Q-XAS).

    PubMed

    Ginder-Vogel, Matthew; Landrot, Gautier; Fischel, Jason S; Sparks, Donald L

    2009-09-22

    Quantification of the initial rates of environmental reactions at the mineral/water interface is a fundamental prerequisite to determining reaction mechanisms and contaminant transport modeling and predicting environmental risk. Until recently, experimental techniques with adequate time resolution and elemental sensitivity to measure initial rates of the wide variety of environmental reactions were quite limited. Techniques such as electron paramagnetic resonance and Fourier transform infrared spectroscopies suffer from limited elemental specificity and poor sensitivity to inorganic elements, respectively. Ex situ analysis of batch and stirred-flow systems provides high elemental sensitivity; however, their time resolution is inadequate to characterize rapid environmental reactions. Here we apply quick-scanning x-ray absorption spectroscopy (Q-XAS), at sub-second time-scales, to measure the initial oxidation rate of As(III) to As(V) by hydrous manganese(IV) oxide. Using Q-XAS, As(III) and As(V) concentrations were determined every 0.98 s in batch reactions. The initial apparent As(III) depletion rate constants (t < 30 s) measured with Q-XAS are nearly twice as large as rate constants measured with traditional analytical techniques. Our results demonstrate the importance of developing analytical techniques capable of analyzing environmental reactions on the same time scale as they occur. Given the high sensitivity, elemental specificity, and time resolution of Q-XAS, it has many potential applications. They could include measuring not only redox reactions but also dissolution/precipitation reactions, such as the formation and/or reductive dissolution of Fe(III) (hydr)oxides, solid-phase transformations (i.e., formation of layered-double hydroxide minerals), or almost any other reaction occurring in aqueous media that can be measured using x-ray absorption spectroscopy. PMID:19805269

  3. Compact supercontinuum sources based on tellurite suspended core fibers for absorption spectroscopy beyond 2 μm

    NASA Astrophysics Data System (ADS)

    Strutynski, Clément; Picot-Clémente, Jérémy; Désévédavy, Frédéric; Jules, Jean-Charles; Gadret, Grégory; Kibler, Bertrand; Smektala, Frédéric

    2016-07-01

    We present the experimental development of two compact supercontinuum laser sources based on tellurite suspended core fibers with and without tapering post-processing. The pumping scheme makes use of commercially-available nJ-level femtosecond and picosecond fiber lasers at 1.56 and 2.06 μm respectively. The resulting spectral broadening that occurs in a few tens-of-centimeters of tellurite fiber allows coverage of the convenient molecular fingerprint region between 2 and 3 μm. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements in the mid-infrared by means of the supercontinuum absorption spectroscopy technique. Experimental results are in fairly good agreement with both numerical simulations of supercontinuum generation and spectroscopic predictions of the HITRAN database.

  4. NO_2 Trace Measurements by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ventrillard-Courtillot, I.; Desbois, Th.; Foldes, T.; Romanini, D.

    2009-06-01

    In order to reach the sub-ppb NO_2 detection level required for environmental applications in remote areas, we develop a spectrometer based on a technique introduced a few years ago, named Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) [1]. It allows very sensitive and selective measurements, together with the realization of compact and robust set-ups as was subsequently demonstrated during measurements campaigns in harsh environments [2]. OF-CEAS benefits from the optical feedback to efficiently inject a cw-laser in a V-shaped high finesse cavity (typically 10 000). Cavity-enhanced absorption spectra are acquired on a small spectral region (˜1 cm^{-1}) that enables selective and quantitative measurements at a fast acquisition rate with a detection limit of several 10^{-10} cm^{-1} as reported in this work. Spectra are obtained with high spectral definition (150 MHz highly precisely spaced data points) and are self calibrated by cavity rind-down measurements regularly performed (typically every second). NO_2 measurements are performed with a commercial extended cavity diode laser around 411 nm, spectral region where intense electronic transitions occur. We will describe the set-up developed for in-situ measurements allowing real time concentration measurements at typically 5 Hz; and then report on the measurements performed with calibrated NO_2 reference samples to evaluate the linearity of the apparatus. The minimum detectable absorption loss is estimated by considering the standard deviation of the residual of one spectrum. We achieved 2x10^{-10} cm^{-1} for a single spectrum recorded in less than 100 ms at 100 mbar. It leads to a potential detection limit of 3x10^8 molecules/cm^3, corresponding to about 150 pptv at this pressure. [1] J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B, 80, 1027 (2005). [2] D. Romanini, M. Chenevrier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B, 83, 659

  5. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250–450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl‑ negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  6. Studies of the residual absorption of HTSC at submillimeter wavelengths by means of photothermal interference spectroscopy

    SciTech Connect

    Barowski, H.S.; Arnold, A.; Eder, R.

    1996-12-31

    The determination of the residual, low temperature absorption of high temperature superconductors is of interest for applications of this new materials at submillimeter wavelengths and of basic interest. The photothermal interference spectroscopy allows to measure the residual, low temperature absorption of a HTSC. For the determination of the residual absorption of a superconductor a far-infrared beam is periodically modulated and focused on the sample. Absorption leads to a periodic change of the temperature of the sample surface and, due to heat diffusion, also in the gas volume adjacent to the sample. This temperature change in the gas is detected via the refractive index change using a two beam interferometer. The authors studied the residual losses of YBaCuO thin films on various substrates and of BiSrCaCuO (2212) single crystals at submillimeter wavelengths. They find that the frequency dependence of the absorptivity, which shows a frequency squared behavior at microwave frequencies, is less than quadratic at THz-frequencies. The YBaCuO thin films show a plateau between 0.6 THz and 4 THz with an absolute value of the absorptivity of about 10{sup {minus}2}. A BiSrCaCuO single crystal shows a plateau between 1 THz and 4 THz with an absorptivity in the order of 10{sup {minus}3}.

  7. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  8. Infrared-laser spectroscopy using a long-pathlength absorption cell

    SciTech Connect

    Kim, K.C.; Briesmeister, R.A.

    1983-01-01

    The absorption measurements in an ordinary cell may require typically a few torr pressure of sample gas. At these pressures the absorption lines are usually pressure-broadened and, therefore, closely spaced transitions are poorly resolved even at diode-laser resolution. This situation is greatly improved in Doppler-limited spectroscopy at extremely low sample pressures. Two very long-pathlength absorption cells were developed to be used in conjunction with diode lasers. They were designed to operate at controlled temperatures with the optical pathlength variable up to approx. 1.5 km. Not only very low sample pressures are used for studies with such cells but also the spectroscopic sensitivity is enhanced over conventional methods by a factor of 10/sup 3/ to 10/sup 4/, improving the analytical capability of measuring particle densities to the order of 1 x 10'' molecules/cm/sup 3/. This paper presents some analytical aspects of the diode laser spectroscopy using the long-pathlength absorption cells in the areas of absorption line widths, pressure broadening coefficients, isotope composition measurements and trace impurity analysis.

  9. Photodissociation of thioglycolic acid studied by femtosecond time-resolved transient absorption spectroscopy

    SciTech Connect

    Attar, Andrew R.; Blumling, Daniel E.; Knappenberger, Kenneth L. Jr.

    2011-01-14

    Steady-state and time-resolved spectroscopies were employed to study the photodissociation of both the neutral (HS-CH{sub 2}-COOH) and doubly deprotonated ({sup -}S-CH{sub 2}-COO{sup -}) forms of thioglycolic acid (TGA), a common surface-passivating ligand used in the aqueous synthesis and organization of semiconducting nanostructures. Room temperature UV-Vis absorption spectroscopy indicated strong absorption by the S{sub 1} and S{sub 2} excited states at 250 nm and 185 nm, respectively. The spectrum also contained a weaker absorption band that extended to approximately 550 nm, which was assigned to the {pi}{sub CO}{sup *}(leftarrow)n{sub O} transition. Femtosecond time-resolved transient absorption spectroscopy was performed on TGA using 400 nm excitation and a white-light continuum probe to provide the temporally and spectrally resolved data. Both forms of TGA underwent a photoinduced dissociation from the excited state to form an {alpha}-thiol-substituted acyl radical ({alpha}-TAR, S-CH{sub 2}-CO). For the acidic form of TGA, radical formation occurred with an apparent time constant of 60 {+-} 5 fs; subsequent unimolecular decay took 400 {+-} 60 fs. Similar kinetics were observed for the deprotonated form of TGA (70 {+-} 10 fs radical formation; 420 {+-} 40 fs decay). The production of the {alpha}-TAR was corroborated by the observation of its characteristic optical absorption. Time-resolved data indicated that the photoinduced dissociation of TGA via cleavage of the C-OH bond occurred rapidly ({<=}100 fs). The prevalence of TGA in aqueous semiconducting nanoparticles makes its absorption in the visible spectral region and subsequent dissociation key to understanding the behavior of nanoscale systems.

  10. Evaluation of iron-containing carbon nanotubes by near edge X-ray absorption technique

    NASA Astrophysics Data System (ADS)

    Osorio, A. G.; Bergmann, C. P.

    2015-10-01

    The synthesis of carbon nanotubes (CNTs) via Chemical Vapor Deposition method with ferrocene results in CNTs filled with Fe-containing nanoparticles. The present work proposes a novel route to characterize the Fe phases in CNTs inherent to the synthesis process. CNTs were synthesized and, afterwards, the CNTs were heat treated at 1000 °C for 20 min in an inert atmosphere during a thermogravimetric experiment. X-Ray Absorption Spectroscopy (XAS) experiments were performed on the CNTs before and after the heat treatment and, also, during the heat treatment, e.g., in situ tests were performed while several Near-Edge X-Ray Absorption (XANES) spectra were collected during the heating of the samples. The XAS technique was successfully applied to evaluate the phases encapsulated by CNTs. Phase transformations of the Fe-based nanoparticles were also observed from iron carbide to metallic iron when the in situ experiments were performed. Results also indicated that the applied synthesis method guarantees that Fe phases are not oxidize. In addition, the results show that heat treatment under inert atmosphere can control which phase remains encapsulated by the CNTs.

  11. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  12. Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward.

    PubMed

    Cotte, Marine; Susini, Jean; Dik, Joris; Janssens, Koen

    2010-06-15

    A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the object's history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered

  13. Redox State of Iron in Lunar Glasses using X-ray Absorption Spectroscopy and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; McCanta, M. C.; Lanzirotti, A.; Sutton, S. R.; Carey, C. J.; Mahadevan, S.; Rutherford, M. J.

    2014-12-01

    The oxidation state of igneous materials on a planet is a critically-important variable in understanding magma evolution on bodies in our solar system. However, direct and indirect methods for quantifying redox states are challenging, especially across the broad spectrum of silicate glass compositions found on airless bodies. On the Moon, early Mössbauer studies of bulk samples suggested the presence of significant Fe3+ (>10%) in lunar glasses (green, orange, brown); lunar analog glasses synthesized at fO2 <10-11 have similar Fe3+. All these Mössbauer spectra are challenging to interpret due to the presence of multiple coordination environments in the glasses. X-ray absorption spectroscopy (XAS) allows pico- and nano-scale interrogation of primitive planetary materials using the pre-edge, main edge, and EXAFS regions of absorption edge spectra. Current uses of XAS require availability of standards with compositions similar to those of unknowns and complex procedures for curve-fitting of pre-edge features that produce results with poorly constrained accuracy. A new approach to accurate and quantitative redox measurements with XAS is to couple use of spectra from synthetic glass standards covering a broad compositional range with multivariate analysis (MVA) techniques. Mössbauer and XAS spectra from a suite of 33 synthetic glass standards covering a wide range of compositions and fO2(Dyar et al., this meeting) were used to develop a MVA model that utilizes valuable predictive information not only in the major spectral peaks/features, but in all channels of the XAS region. Algorithms for multivariate analysis t were used to "learn" the characteristics of a data set as a function of varying spectral characteristics. These models were applied to the study of lunar glasses, which provide a challenging test case for these newly-developed techniques due to their very low fO2. Application of the new XAS calibration model to Apollo 15 green (15426, 15427 and 15425

  14. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    SciTech Connect

    Skelly, E.M.

    1982-01-01

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine, blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.

  15. Sensor for headspace pressure and H2O concentration measurements in closed vials by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cai, Tingdong; Wang, Guishi; Cao, Zhensong; Zhang, Weijun; Gao, Xiaoming

    2014-07-01

    The concentration of H2O and the pressure in the headspace of vials are simultaneously measured by a tunable diode laser sensor based on absorption spectroscopy techniques. The 7168.437 cm-1 spectral line of H2O is chosen as the sensing transition for its strong absorption strength and being reasonably far away from its neighboring molecular transitions. In order to prevent interference absorption by ambient water vapor in the room air, a difference between the measured signal and the referenced signal is used to calculate the pressure and H2O concentration in the headspace of vials, eliminating the need for inert gas purges and calibration with known gas. The validation of the sensor is conducted in a static vial, yielding an accuracy of 1.23% for pressure and 3.81% for H2O concentration. The sensitivity of the sensor is estimated to be about 2.5 Torr for pressure and 400 ppm for H2O concentration over a 3 cm absorption path length respectively. Accurate measurements for commercial freeze-dried products demonstrate the in-line applications of the sensor for the pharmaceutical industry.

  16. Line-Parameter Measurements and Stringent Tests of Line-Shape Models Based on Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bielska, Katarzyna; Fleisher, Adam J.; Hodges, Joseph T.; Lin, Hong; Long, David A.; Reed, Zachary D.; Sironneau, Vincent; Truong, Gar-Wing; Wójtewicz, Szymon

    2014-06-01

    Laser methods that are based on cavity-enhanced absorption spectroscopy (CEAS) are well-suited for measuring molecular line parameters under conditions of low optical density, and as such they are complementary to broadband Fourier-transform spectroscopy (FTS) techniques. Attributes of CEAS include relatively low detection limits, accurate and precise detuning axes and high fidelity measurements of line shape. In many cases these performance criteria are superior to those obtained using direct laser absorption spectroscopy and FTS-based systems. In this presentation we will survey several examples of frequency-stabilized cavity ring-down spectroscopy (FS-CRDS)1 measurements obtained with laser spectrometers developed at the National Institute of Standards and Technology (NIST) in Gaithersburg Maryland. These experiments, which are motivated by atmospheric monitoring and remote-sensing applications that require high-precision and accuracy, involve nearinfrared transitions of carbon dioxide, water, oxygen and methane. We discuss spectra with signal-to-noise ratios exceeding 106, frequency axes with absolute uncertainties in the 10 kHz to 100 kHz range and linked to a Cs clock, line parameters with relative uncertainties at the 0.2 % level and isotopic ratios measured with a precision of 0.03 %. We also present FS-CRDS measurements of CO2 line intensities which are measured at atmospheric concentration levels and linked to gravimetric standards for CO2 in air, and we quantify pressure-dependent deviations between various theoretical line profiles and measured line shapes. Finally we also present recent efforts to increase data throughput and spectral coverage in CEAS experiments. We describe three new high-bandwidth CEAS techniques including frequency-agile, rapid scanning spectroscopy (FARS)2, which enables continuous-wave measurements of cavity mode linewidth and acquisition of ringdown decays with no dead time during laser frequency tuning, heterodyne

  17. Charge Carrier Dynamics of Quantum Confined Semiconductor Nanoparticles Analyzed via Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thibert, Arthur Joseph, III

    Semiconductor nanoparticles are tiny crystalline structures (typically range from 1 - 100 nm) whose shape in many cases can be dictated through tailored chemical synthesis with atomic scale precision. The small size of these nanoparticles often results in quantum confinement (spatial confinement of wave functions), which imparts the ability to manipulate band-gap energies thus allowing them to be optimally engineered for different applications (i.e., photovoltaics, photocatalysis, imaging). However, charge carriers excited within these nanoparticles are often involved in many different processes: trapping, trap migration, Auger recombination, non-radiative relaxation, radiative relaxation, oxidation / reduction, or multiple exciton generation. Broadband ultrafast transient absorption laser spectroscopy is used to spectrally resolve the fate of excited charge carriers in both wavelength and time, providing insight as to what synthetic developments or operating conditions will be necessary to optimize their efficiency for certain applications. This thesis outlines the effort of resolving the dynamics of excited charge carriers for several Cd and Si based nanoparticle systems using this experimental technique. The thesis is organized into five chapters and two appendices as indicated below. Chapter 1 provides a brief introduction to the photophysics of semiconductor nanoparticles. It begins by defining what nanoparticles, semiconductors, charge carriers, and quantum confinement are. From there it details how the study of charge carrier dynamics within nanoparticles can lead to increased efficiency in applications such as photocatalysis. Finally, the experimental methodology associated with ultrafast transient absorption spectroscopy is introduced and its power in mapping charge carrier dynamics is established. Chapter 2 (JPCC, 19647, 2011) introduces the first of the studied samples: water-solubilized 2D CdSe nanoribbons (NRs), which were synthesized in the Osterloh

  18. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    SciTech Connect

    Schwanke, C.; Lange, K. M.; Golnak, R.; Xiao, J.

    2014-10-15

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl{sub 2} aqueous solution by X-ray absorption and emission spectroscopy is presented.

  19. Simulation of selective pulse techniques for localized NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Garwood, Michael; Schleich, Thomas; Robin Bendall, M.

    The results of a computer simulation investigation delineating the limits of resolution, sensitivity, and accuracy of the depth- resolved suface-coil spectroscopy (DRESS), volume-selective excitation (VSE), and image-selected in vivo spectroscopy (ISIS) methods for achieving spatially localized NMR spectroscopy are presented. A computer program, which numerically solves the Bloch equations for variable input parameters, is used to simulate the spatial localization afforded by each technique. Because the numerical solution of the Bloch equations describes the behavior of the bulk magnetization with great precision, the simulations provide an objective and realistic means of evaluating the performance of the individual localization schemes and reveal nuances and limitations not discussed in the original experimental papers. The results of this computer simulation study should encourage the optimization of localization methodology for use in specific applications.

  20. Undistorted X-ray Absorption Spectroscopy Using s-Core-Orbital Emissions.

    PubMed

    Golnak, Ronny; Xiao, Jie; Atak, Kaan; Unger, Isaak; Seidel, Robert; Winter, Bernd; Aziz, Emad F

    2016-05-12

    Detection of secondary emissions, fluorescence yield (FY), or electron yield (EY), originating from the relaxation processes upon X-ray resonant absorption has been widely adopted for X-ray absorption spectroscopy (XAS) measurements when the primary absorption process cannot be probed directly in transmission mode. Various spectral distortion effects inherent in the relaxation processes and in the subsequent transportation of emitted particles (electron or photon) through the sample, however, undermine the proportionality of the emission signals to the X-ray absorption coefficient. In the present study, multiple radiative (FY) and nonradiative (EY) decay channels have been experimentally investigated on a model system, FeCl3 aqueous solution, at the excitation energy of the Fe L-edge. The systematic comparisons between the experimental spectra taken from various decay channels, as well as the comparison with the theoretically simulated Fe L-edge XA spectrum that involves only the absorption process, indicate that the detection of the Fe 3s → 2p partial fluorescence yield (PFY) gives rise to the true Fe L-edge XA spectrum. The two key characteristics generalized from this particular decay channel-zero orbital angular momentum (i.e., s orbital) and core-level emission-set a guideline for obtaining undistorted X-ray absorption spectra in the future. PMID:27101344

  1. Near-infrared spectrum of ZrF by intracavity laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Harms, Jack C.; O'Brien, Leah C.; Ni, Ann; Mahkdoom, Bilal; O'Brien, James J.

    2015-04-01

    The (1, 1) band of the CΩ = 3/2 - X2Δ3/2 transition of ZrF has been recorded at high resolution using intracavity laser absorption spectroscopy. The ZrF molecules were produced using a Zr-lined copper hollow cathode sputter source with a trace amount of SF6 as a fluoride source. Molecular constants from the analysis are presented and compared with previous work.

  2. Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy.

    PubMed

    Kliner, D A; Koplow, J P; Goldberg, L

    1997-09-15

    Tunable, narrow-bandwidth (<200-MHz), ~215-nm radiation was produced by frequency quadrupling the ~860-nm output of a high-power, pulsed GaAlAs tapered amplifier seeded by an external-cavity diode laser. Pulsing the amplifier increased the 860 nm?215 nm conversion efficiency by 2 orders of magnitude with respect to cw operation. Detection of nitric oxide and sulfur dioxide by high-resolution absorption spectroscopy was demonstrated. PMID:18188256

  3. Quantitation of vitamin B 12 by first-derivative absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Karşilayan, Huriye

    1996-08-01

    Quantitation of vitamin B 12 by first-derivative absorption spectroscopy is described. Peak-to-peak (355 nm to 370 nm) amplitudes were measured from the first derivative spectra. The method permits rapid determination of vitamin B 12, and increases the detection limit while decreasing interference by impurities. The effects of the majority of other absorbing macromolecules which may also be present in biological samples are eliminated or very considerably minimized by this method.

  4. Capturing Transient Electronic and Molecular Structures in Liquids by Picosecond X-Ray Absorption Spectroscopy

    SciTech Connect

    Gawelda, W.; Pham, V. T.; El Nahhas, A.; Kaiser, M.; Zaushitsyn, Y.; Bressler, C.; Chergui, M.; Johnson, S. L.; Grolimund, D.; Abela, R.; Hauser, A.

    2007-02-02

    We describe an advanced setup for time-resolved x-ray absorption fine structure (XAFS) Spectroscopy with picosecond temporal resolution. It combines an intense femtosecond laser source synchronized to the x-ray pulses delivered into the microXAS beamline of the Swiss Light Source (SLS). The setup is applied to measure the short-lived high-spin geometric structure of photoexcited aqueous Fe(bpy)3 at room temperature.

  5. In situ x-ray-absorption spectroscopy study of hydrogen absorption by nickel-magnesium thin films

    NASA Astrophysics Data System (ADS)

    Farangis, B.; Nachimuthu, P.; Richardson, T. J.; Slack, J. L.; Perera, R. C.; Gullikson, E. M.; Lindle, D. W.; Rubin, M.

    2003-02-01

    Structural and electronic properties of co-sputtered Ni-Mg thin films with varying Ni to Mg ratio were studied by in situ x-ray absorption spectroscopy in the Ni L-edge and Mg K-edge regions. Codeposition of the metals led to increased disorder and decreased coordination around Ni and Mg compared to pure metal films. Exposure of the metallic films to hydrogen resulted in formation of hydrides and increased disorder. The presence of hydrogen as a near neighbor around Mg caused a drastic reduction in the intensities of multiple scattering resonances at higher energies. The optical switching behavior and changes in the x-ray spectra varied with Ni to Mg atomic ratio. Pure Mg films with Pd overlayers were converted to MgH2: The H atoms occupy regular sites as in bulk MgH2. Although optical switching was slow in the absence of Ni, the amount of H2 absorption was large. Incorporation of Ni in Mg films led to an increase in the speed of optical switching but decreased maximum transparency. Significant shifts in the Ni L3 and L2 peaks are consistent with strong interaction with hydrogen in the mixed films.

  6. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    SciTech Connect

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  7. Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents.

    PubMed

    Brown, David M; Shi, Kebin; Liu, Zhiwen; Philbrick, C R

    2008-06-01

    A supercontinuum source has been proposed as a new tool for measurement of minor species concentrations on long paths through the atmosphere. The present work describes results from recent experiments that demonstrate the potential for Differential Absorption Spectroscopy (DAS) and Spectral Pattern Recognition Differential Absorption Lidar (SPR-DIAL) measurements utilizing a supercontinuum source. As an initial example of this measurement approach, the results include the quantification of water vapor concentration through indoor and outdoor path absorption measurements using a collimated supercontinuum source. Experimental spectra are compared with equivalent simulations from MODTRAN??? versions 4 and 5 to examine the water vapor band between 1300 and 1500 nm to demonstrate the feasibility of the approach. PMID:18545560

  8. Absorption spectroscopy setup for determination of whole human blood and blood-derived materials spectral characteristics

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; Milewska, D.; Mitura, K.; Karpienko, K.

    2015-09-01

    A dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood samples, separated components: plasma, saline, washed erythrocytes in saline and human whole blood with biomarkers - biocompatible nanodiamonds (ND). Blood samples had been derived from a number of healthy donors. The results prove a correct setup arrangement, with adequate preprocessing of the data. The results of blood-ND mixtures measurements show no toxic effect on blood cells, which proves the NDs as a potential biocompatible biomarkers.

  9. Deep ultraviolet Raman spectroscopy: A resonance-absorption trade-off illustrated by diluted liquid benzene

    NASA Astrophysics Data System (ADS)

    Chadwick, C. T.; Willitsford, A. H.; Philbrick, C. R.; Hallen, H. D.

    2015-12-01

    The magnitude of resonance Raman intensity, in terms of the real signal level measured on-resonance compared to the signal level measured off-resonance for the same sample, is investigated using a tunable laser source. Resonance Raman enhancements, occurring as the excitation energy is tuned through ultraviolet absorption lines, are used to examine the 1332 cm-1 vibrational mode of diamond and the 992 cm-1 ring-breathing mode of benzene. Competition between the wavelength dependent optical absorption and the magnitude of the resonance enhancement is studied using measured signal levels as a function of wavelength. Two system applications are identified where the resonance Raman significantly increases the real signal levels despite the presence of strong absorption: characterization of trace species in laser remote sensing and spectroscopy of the few molecules in the tiny working volumes of near-field optical microscopy.

  10. Rate and composition control by atomic absorption spectroscopy for the coevaporation of high T sub c superconducting films

    SciTech Connect

    Lu, C. ); Missert, N.; Mooij, J.E.; Rosenthal, P.; Matijasevic, V.; Beasley, M.R.; Hammond, R.H. )

    1989-02-01

    Atomic absorption spectroscopy has been used to control the deposition rates during coevaporation processes with multiple electron-beam sources. This technique is material specific and thus allows the deposition rate of each component to be controlled independently. Because only a light beam is needed to interact with the vapor stream, the sampling region can be selected to be very close to the substrate for precise control of the film composition. With its high sensitivity and no limitations on operation pressure, this technique offers some unique advantages for the preparation of high Tc superconducting films by coevaporation in a high oxygen partial pressure environment. The performance of a multi-source deposition controller and the resultant film properties are presented.

  11. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  12. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  13. a New Broadband Cavity Enhanced Frequency Comb Spectroscopy Technique Using GHz Vernier Filtering.

    NASA Astrophysics Data System (ADS)

    Morville, Jérôme; Rutkowski, Lucile; Dobrev, Georgi; Crozet, Patrick

    2015-06-01

    We present a new approach to Cavity Enhanced - Direct Frequency Comb Spectroscopy where the full emission bandwidth of a Titanium:Sapphire laser is exploited at GHz resolution. The technique is based on a low-resolution Vernier filtering obtained with an appreciable -actively stabilized- mismatch between the cavity Free Spectral Range and the laser repetition rate, using a diffraction grating and a split-photodiode. This particular approach provides an immunity to frequency-amplitude noise conversion, reaching an absorption baseline noise in the 10-9 cm-1 range with a cavity finesse of only 3000. Spectra covering 1800 cm-1 (˜ 55 THz) are acquired in recording times of about 1 second, providing an absorption figure of merit of a few 10-11 cm-1/√{Hz}. Initially tested with ambient air, we report progress in using the Vernier frequency comb method with a discharge source of small radicals. Rutkowski et al, Opt. Lett., 39(23)2014

  14. Diagnostics of a see-through hollow cathode discharge by emission, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Taylor, Nicholas

    Atomic line filters have been suggested to be attractive in areas of Doppler velocimetry, resonance fluorescence detection, and resonance ionization detection. They are based on the resonant absorption of photons by an atomic vapor, and allow all other radiation to pass. This allows the detection of very low levels of light superimposed on a large optical background. Several elements have been studied for use as atomic line filters, such as the alkali metals, alkaline earths, and thallium. As previously recognized, thallium is especially attractive since the 535.046 nm metastable transition overlaps with the second harmonic output of an Nd:La2Be2O 5 (BEL) laser (1070 nm). This makes thallium ideal for certain applications as an atomic line filter. Recently a see-through hollow cathode lamp, or galvatron (Hamamatsu), was made commercially available. The galvatron geometry is unique compared to traditional hollow cathode lamps since the cathode and cell are oriented in a T-shape, with the cathode bored completely through to allow the propagation of a light source through the cathode. This allows multi-step excitation of the atomic vapor, not easily accomplished with a traditional hollow cathode lamp. The advantages that a galvatron offers over conventional atomic reservoirs make it an attractive candidate for the application as an atomic line filter; however, little spectroscopic data have been found in the literature. For this reason, Doppler temperatures, number densities, quantum efficiencies, and lifetimes have been determined in order to characterize this atomic reservoir as a potential atomic line filter. These parameters are determined by use of various spectroscopic techniques which include emission, absorption, time-resolved fluorescence, and time-resolved laser-induced saturated fluorescence spectroscopy. From these measurements, it has been demonstrated that a galvatron is an attractive atomic reservoir for applications as an atomic line filter. The

  15. Polarized X-Ray Absorption Spectroscopy Studies of Copper in High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Mini, Susan M.

    One can take advantage of the linearly polarized nature of the x-rays from a synchrotron to study the electronic and structural properties of single crystals or magnetically aligned powders. Since the advent of layered copper oxide compounds as high temperature superconductors (1) the structures of La_{rm 2-x}Sr _{rm x}CuO _4, Nd_{rm 2-x }Ce_{rm x}CuO _4 and YBa_2Cu _3O_{rm 7-y} have been of extreme interest. In this study, the powder samples of these compounds were magnetically aligned such that the electric vector was either perpendicular or parallel to the crystallographic c axis. The results of polarized XANES (X-ray Absorption Near Edge Spectroscopy) measurements at the copper K-edge (8979 eV) of all three structures will be presented. The EXAFS (Extended X-ray Absorption Fine Structure) of magnetically aligned YBa_2Cu _3O_{6.9} were used to characterize the local structure as well as study the structural changes of the Cu1-O4 and Cu2-O4 bonds in as a function of temperature (20 to 300 K). In this manner, the Cu1-O4 and Cu2-O4 bonds, which are thought to play a role in the superconductivity of the sample, are distinguishable. The complementary technique of XANES is used to study the electronic structure of the superconducting copper oxides as well as alkali cuprates M^{ rm I}CuO_2 (M = Na, K, Rb and Cs) and rare earth copper oxides RE _2CuO_4 (RE = Pr, Nd, Sm, Eu and Gd). A method (2) for determining the effective charge is described and applied to the copper oxides. ftn 1. J. G. Bednorz and K. A. Muller; Z Phys. B64, 189 (1986). 2. E. E. Alp, G L. Goodman, L. Soderholm, S.M. Mini, M. Ramanathan, G. K. Shenoy and A. S. Bommannavar, J.Phys. Condens, Matter 1, 6463 (1989).

  16. X-ray absorption spectroscopy of aqueous aluminum-organic complexes.

    PubMed

    Hay, Michael B; Myneni, Satish C B

    2010-05-27

    Aqueous-phase X-ray absorption near-edge structure (XANES) spectra were collected on dissolved Al complexes with organic ligands, including desferrioxamine B, EDTA, acetohydroxamate, malate, oxalate, and salicylate. Spectral interpretations were made using the density functional theory-based modeling package StoBe. The goals of this work were to study the geometric and electronic structural characteristics of these complexes relative to Al(H(2)O)(6)(3+) and to examine the utility of the aqueous Al XANES technique as a tool for probing Al speciation and structure. In the case of EDTA, aqueous Fourier-transform infrared spectroscopy was also used to corroborate the structures of the Al(EDTA)(-) and AlOH(EDTA)(2-) complexes. Synthetic XANES spectra calculated with StoBe reproduced the observed spectral differences between Al(H(2)O)(6)(3+), Al(dfoB)(+), and Al(EDTA)(-). The narrower XANES feature observed for Al(dfoB)(+) relative to Al(H(2)O)(6)(3+) can be attributed to a weaker splitting of the Al 3p-O 2p interactions in the former, while Al(EDTA)(-) exhibits split Al 3p-ligand interactions that likely result from the mixed O/N coordination. In complexes with mixed aqua/organic-oxygen ligation (Al-acetohydroxamate, Al-malate, Al-oxalate, and Al-salicylate), spectra exhibit linear, systematic changes in peak width as a function of H(2)O to organic ligand ratio in the Al coordination sphere. These results highlight the sensitivity of the aqueous Al K-edge XANES spectrum to coordination environment and demonstrate its utility as an experimental probe for future studies of Al speciation in complex solutions. PMID:20443586

  17. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  18. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    SciTech Connect

    Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons; Boye, Pit; Schroer, Christian G.; Glatzel, Pieter; Borca, Camelia N.; Beckmann, Felix

    2009-09-25

    Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the different selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with quantitative data

  19. Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin

    SciTech Connect

    Pollard, W.T.; Peteanu, L.A.; Mathies, R.A.

    1992-07-23

    A time-dependent theory for femtosecond dynamic absorption spectroscopy is used to describe the creation and observation of molecular ground-state vibrational coherence through the resonance impulsive stimulated Raman mechanism. Model calculations show that the oscillatory absorption signal that arises from this ground-state coherence is maximized for a limited range of pulse lengths and that there is a complex relationship between the probe wavelength and the strength of the spectral oscillations. The generalized time-dependent linear susceptibility of the nonstationary system created by the impulsive pump pulse is defined and used to discuss the strong dependence of the measured signals on the properties of the probe pulse. Finally, calculations are presented to analyze the high-frequency oscillations ({approximately}20-fs period) recently observed in the transient absorption spectra of light-adapted bacteriorhodopsin (BR{sub 568}) following excitation with a 12-fs optical pulse. At the probe wavelengths used in this experiment, the contribution of stimulated emission is negligible at long times because of the extremely rapid excited-state isomerization; as a result, the spectral oscillations observed after this time are due to the impulsive excitation of coherent vibrations in the ground state. The transient response observed for BR{sub 568} is calculated using a 29-mode harmonic potential surface derived from a prior resonance Raman intensity analysis. Both the oscillatory signals and their dependence on the probe wavelength are satisfactorily reproduced. 68 refs., 11 figs.

  20. Absorption spectroscopy of three-dimensional bacteriorhodopsin crystals at cryogenic temperatures: effects of altered hydration.

    PubMed

    Portuondo-Campa, E; Schenkl, S; Dolder, M; Chergui, M; Landau, E M; Haacke, S

    2006-04-01

    A comparative study of absorption spectroscopy at 100 K has been performed on three-dimensional crystals of bacteriorhodopsin extracted from a lipidic cubic phase and on native purple membrane. A modified microspectrophotometer has been designed which yields absorption data with a high signal-to-noise ratio and remarkable reproducibility. Excellent agreement of the absorption spectra of the three-dimensional crystals and the purple membrane is observed provided that a rigorous crystal-handling procedure is followed. This result supports the equivalence of the protein structure in both the cubic phase crystals and the native purple membrane. On the other hand, it is shown that dramatic deviations of the crystal spectrum can be induced by minor changes in the extraction method. Exposure to air at room temperature can lead within a short time to an irreversible dehydration manifested by a distinct species with an absorption maximum at 500 nm. Exposure of the crystals to a buffer with lower ionic strength than the crystallization solution produces a different spectral form with an absorption maximum at 477 nm, which was assigned to a distorted protein conformation induced by osmotic stress. The extreme sensitivity of these crystals to experimental conditions is relevant for X-ray structural studies, in particular as different experimental treatments are implemented to trap the intermediates of the protein's photocycle. PMID:16552137

  1. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy

    SciTech Connect

    Hager, J. D. Lanier, N. E.; Kline, J. L.; Flippo, K. A.; Bruns, H. C.; Schneider, M.; Saculla, M.; McCarville, T.

    2014-11-15

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO{sub 2} foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured.

  2. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy.

    PubMed

    Hager, J D; Lanier, N E; Kline, J L; Flippo, K A; Bruns, H C; Schneider, M; Saculla, M; McCarville, T

    2014-11-01

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO2 foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured. PMID:25430177

  3. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline

    SciTech Connect

    Llorens, Isabelle; Lahera, Eric; Delnet, William; Proux, Olivier; Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay; Bardou, Nathalie; Ulrich, Olivier; and others

    2012-06-15

    Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

  4. Differential optical absorption techniques for diagnostics of coal gasification. Technical progress report, April-June 1983

    SciTech Connect

    Not Available

    1983-08-01

    The application of differential optical absorption (DOA) techniques for the in-situ determination of the chemical composition of coal gasification process streams is investigated. Absorption spectra of relevant molecular species and the temperature and pressure effects on DOA-determined spectral characteristics of these species will be determined and cataloged. A system will be configured, assembled, and tested. 10 references, 1 figure.

  5. Transit Spectroscopy: new data analysis techniques and interpretation

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Waldmann, Ingo P.; Morello, Giuseppe; Tessenyi, Marcell; Varley, Ryan; Barton, Emma; Yurchenko, Sergey; Tennyson, Jonathan; Hollis, Morgan

    2014-11-01

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. A key observable for planets is the chemical composition and state of their atmosphere. To date, two methods can be used to sound exoplanetary atmospheres: transit and eclipse spectroscopy, and direct imaging spectroscopy. Although the field of exoplanet spectroscopy has been very successful in past years, there are a few serious hurdles that need to be overcome to progress in this area: in particular instrument systematics are often difficult to disentangle from the signal, data are sparse and often not recorded simultaneously causing degeneracy of interpretation. We will present here new data analysis techniques and interpretation developed by the “ExoLights” team at UCL to address the above-mentioned issues. Said techniques include statistical tools, non-parametric, machine-learning algorithms, optimized radiative transfer models and spectroscopic line-lists. These new tools have been successfully applied to existing data recorded with space and ground instruments, shedding new light on our knowledge and understanding of these alien worlds.

  6. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Goldenstein, C. S.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.

    2014-07-01

    A mid-infrared laser absorption sensor was developed for gas temperature and carbon oxide (CO, CO2) concentrations in high-enthalpy, hydrocarbon combustion flows. This diagnostic enables non-intrusive, in situ measurements in harsh environments produced by hypersonic propulsion ground test facilities. The sensing system utilizes tunable quantum cascade lasers capable of probing the fundamental mid-infrared absorption bands of CO and CO2 in the 4-5 µm wavelength domain. A scanned-wavelength direct absorption technique was employed with two lasers, one dedicated to each species, free-space fiber-coupled using a bifurcated hollow-core fiber for remote light delivery on a single line of sight. Scanned-wavelength modulation spectroscopy with second-harmonic detection was utilized to extend the dynamic range of the CO measurement. The diagnostic was field-tested on a direct-connect scramjet combustor for ethylene-air combustion. Simultaneous, laser-based measurements of carbon monoxide and carbon dioxide provide a basis for evaluating combustion completion or efficiency with temporal and spatial resolution in practical hydrocarbon-fueled engines.

  7. Surface Arsenic Speciation of a Drinking-Water Treatment Residual Using X-Ray Absorption Spectroscopy

    SciTech Connect

    Makris, K.C.; Sarkar, D.; Parsons, J.G.; Datta, R.; Gardea-Torresdey, J.L.

    2009-06-03

    Drinking-water treatment residuals (WTRs) present a low-cost geosorbent for As-contaminated waters and soils. Previous work has demonstrated the high affinity of WTRs for As, but data pertaining to the stability of sorbed As is missing. Sorption/desorption and X-ray absorption spectroscopy (XAS), both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) studies, were combined to determine the stability of As sorbed by an Fe-based WTR. Arsenic(V) and As(III) sorption kinetics were biphasic in nature, sorbing <90% of the initial added As (15,000 mg kg{sup -1}) after 48 h of reaction. Subsequent desorption experiments with a high P load (7500 mg kg{sup -1}) showed negligible As desorption for both As species, approximately <3.5% of sorbed As; the small amount of desorbed As was attributed to the abundance of sorption sites. XANES data showed that sorption kinetics for either As(III) or As(V) initially added to solution had no effect on the sorbed As oxidation state. EXAFS spectroscopy suggested that As added either as As(III) or as As(V) formed inner-sphere mononuclear, bidentate complexes, suggesting the stability of the sorbed As, which was further corroborated by the minimum As desorption from the Fe-WTR.

  8. Electronic relaxation dynamics of PCDA-PDA studied by transient absorption spectroscopy.

    PubMed

    Joung, Joonyoung F; Baek, Junwoo; Kim, Youngseo; Lee, Songyi; Kim, Myung Hwa; Yoon, Juyoung; Park, Sungnam

    2016-08-17

    Photo-curable polymers originating from 10,12-pentacosadiynoic acid (PCDA-PDA) are commonly used polydiacetylenes (PDAs). PCDA-PDA exhibits thermochromic properties undergoing a unique colorimetric transition from blue to red as the temperature is increased from low to high. In this work, we have carefully studied the temperature-dependent optical properties of PCDA-PDA by using UV-visible absorption, FTIR, Raman, and transient absorption (TA) spectroscopy in combination with quantum chemical calculations. Temperature-dependent UV-visible absorption spectra indicate that PCDA-PDA exhibits reversible thermochromic properties up to 60 °C and its thermochromic properties become irreversible above 60 °C. Such distinct thermochromic properties are also manifested in TA signals so that the electronically excited PCDA-PDA relaxes to the ground state via an intermediate state at 20 °C (blue form) but it relaxes directly back to the ground state at 80 °C (red form). The electronic relaxation dynamics of PCDA-PDA are comprehensively analyzed based on different kinetic models by using the global fitting analysis method. The intermediate state in the blue form of PCDA-PDA is clearly found to be responsible for fluorescence quenching. FTIR and Raman spectroscopy and quantum chemical calculations confirm that the H-bonds between the carboxylic acid groups in PCDA-PDA are broken at high temperatures leading to an irreversible structural change of PCDA-PDA. PMID:27492212

  9. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (ΔE/E ∼ 5 × 10{sup −3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ∼3 × 10{sup −3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  10. Absorption measurement of thin films by using photothermal techniques: The influence of thermal properties

    SciTech Connect

    Wu, Z.L.; Kuo, P.K.; Thomas, R.L.; Fan, Z.X.

    1995-12-31

    Photothermal techniques are widely used for measuring optical absorption of thin film coatings. In these applications the calibration of photothermal signal is typically based on the assumption that the thermal properties of the thin film make very little contribution. In this paper we take mirage technique as an example and present a detailed analysis of the influence of thin film thermal properties on absorption measurements. The results show that the traditional calibration method is not valid on surprisingly many situations.

  11. The BioCAT undulator beamline 18ID: A facility for biological non-crystalline diffraction and x-ray absorption spectroscopy at the APS

    SciTech Connect

    Fischetti, R.; Stepanov, S.; Rosenbaum, G.; Barrea, R.; Black, E.; Gore, D.; Heurich, R.; Kondrashkina, E.; Kropf, A.J.; Wang, S.; Zhang, K.; Irving, T.C.; Bunker, G.B.

    2008-07-02

    The 18ID undulator beamline of the Biophysics Collaborative Access Team at the Advanced Photon Source, Argonne, IL, USA, is a high-performance instrument designed for, and dedicated to, the study of partially ordered and disordered biological materials using the techniques of small-angle X-ray scattering, fiber diffraction, and X-ray absorption spectroscopy. The beamline and associated instrumentation are described in detail and examples of the representative experimental results are presented.

  12. Sub-gap and band edge optical absorption in a-Si:H by photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, W. B.; Amer, N. M.

    1981-07-01

    Using photothermal deflection spectroscopy, the optical absorption of various a-Si:H films was investigated in the range of 2.1 to 0.6 eV. An absorption shoulder which depends on deposition conditions and on doping was found and was attributed to dangling bonds. The exponential edge broadens with increasing spin density.

  13. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE PAGESBeta

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; et al

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  14. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    SciTech Connect

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th.; Heimann, P. A.; Dorchies, F.

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  15. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    PubMed Central

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-01-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes. PMID:24740172

  16. Determination of Phase Ratio in Polymorphic Materials by X-Ray Absorption Spectroscopy: The Case of Anatase and Rutile Phase Mixture in TiO2

    SciTech Connect

    Smith, M. F.; Klysubun, W.; Kityakarn, S.; Worayingyong, A.; Zhang, S. B.; Wei, S. H.; Onkaw, D.; Songsiriritthigul, P.; Rujirawat, S.; Limpijumnong, S.

    2009-01-01

    We demonstrate that x-ray absorption spectroscopy (XAS) can be used as an unconventional characterization technique to determine the proportions of different crystal phases in polymorphic samples. As an example, we show that ratios of anatase and rutile phases contained in the TiO{sub 2} samples obtained by XAS are in agreement with conventional x-ray diffraction (XRD) measurements to within a few percent. We suggest that XAS measurement is a useful and reliable technique that can be applied to study the phase composition of highly disordered or nanoparticle polymorphic materials, where traditional XRD technique might be difficult.

  17. Techniques in molecular spectroscopy: from broad bandwidth to high resolution

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.

    This thesis presents a range of different experiments all seeking to extended the capabilities of molecular spectroscopy and enable new applications. The new technique of cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) provides a unique combination of broad bandwidth, high resolution, and high sensitivity that can be useful for a wide range of applications. Previous demonstrations of CE-DFCS were confined to the visible or near-infrared and operated over a limited bandwidth: for many applications it is desirable to increase the spectral coverage and to extend to the mid-infrared where strong, fundamental vibrational modes of molecules occur. There are several key requirements for CE-DFCS: a frequency comb source that provides broad bandwidth and high resolution, an optical cavity for high sensitivity, and a detection system capable of multiplex detection of the comb spectrum transmitted through the cavity. We first discuss comb sources with emphasis on the coherence properties of spectral broadening in nonlinear fiber and the development of a high-power frequency comb source in the mid-infrared based on an optical-parametric oscillator (OPO). To take advantage of this new mid-infrared comb source for spectroscopy, we also discuss the development of a rapid-scan Fourier-transform spectrometer (FTS). We then discuss the first demonstration of CE-DFCS with spectrally broadened light from a highly nonlinear fiber with the application to measurements of impurities in semiconductor manufacturing gases. We also cover our efforts towards extending CE-DFCS to the mid-infrared using the mid-infrared OPO and FTS to measure ppb levels of various gases important for breath analysis and atmospheric chemistry and highlight some future applications of this system. In addition to the study of neutral molecules, broad-bandwidth and high-resolution spectra of molecular ions are useful for astrochemistry where many of the observed molecules are ionic, for studying

  18. An x-ray absorption spectroscopy study of Mo oxidation in Pb at elevated temperatures

    SciTech Connect

    Liu, Shanshan; Olive, Daniel; Terry, Jeff; Segre, Carlo U.

    2009-06-30

    The corrosion of fuel cladding and structural materials by lead and lead-bismuth eutectic in the liquid state at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. In this work, lead corrosion studies of molybdenum were performed to investigate the interaction layer as a function of temperature by X-ray absorption spectroscopy. In situ X-ray absorption measurements on a Mo substrate with a 3-6 {micro}m layer of Pb deposited by thermal evaporation were performed at temperatures up to 900 C and at a 15{sup o} angle to the incident X-rays. The changes in the local atomic structure of the corrosion layer are visible in the difference extended X-ray absorption fine structure and the linear combination fitting of the X-ray absorption near-edge structure to as-deposited molybdenum sample and molybdenum oxide (MoO{sub 2} and MoO{sub 3}) standards. The data are consistent with the appearance of MoO{sub 3} in an intermediate temperature range (650-800 C) and the more stable MoO{sub 2} phase dominating at high and low temperatures.

  19. Integral Field Spectroscopy of AGN Absorption Outflows: Mrk 509 and IRAS F04250-5718

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Arav, Nahum; Rupke, David S. N.

    2015-11-01

    Ultraviolet (UV) absorption lines provide abundant spectroscopic information enabling the probe of the physical conditions in active galactic nucleus (AGN) outflows, but the outflow radii (and the energetics consequently) can only be determined indirectly. We present the first direct test of these determinations using integral field unit (IFU) spectroscopy. We have conducted Gemini IFU mapping of the ionized gas nebulae surrounding two AGNs, whose outflow radii have been constrained by UV absorption line analyses. In Mrk 509, we find a quasi-spherical outflow with a radius of 1.2 kpc and a velocity of ˜290 km s-1, while IRAS F04250-5718 is driving a biconical outflow extending out to 2.9 kpc, with a velocity of ˜580 km s-1 and an opening angle of ˜70°. The derived mass flow rate ˜5 and >1 M⊙ yr-1, respectively, and the kinetic luminosity ≳1 × 1041 erg s-1 for both. Adopting the outflow radii and geometric parameters measured from IFU, absorption line analyses would yield mass flow rates and kinetic luminosities in agreement with the above results within a factor of ˜2. We conclude that the spatial locations, kinematics, and energetics revealed by this IFU emission-line study are consistent with pre-existing UV absorption line analyses, providing a long-awaited direct confirmation of the latter as an effective approach for characterizing outflow properties.

  20. Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications.

    PubMed

    Werblinski, Thomas; Engel, Sascha R; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2013-06-01

    The first supercontinuum (SC) absorption spectroscopy measurements showing the feasibility of quantitative temperature evaluation are presented to the best of the authors' knowledge. Temperature and multi-species measurements were carried out at a detection rate of ~2 MHz in a high-temperature flow cell within a temperature range from 450 K to 750 K at 0.22 MPa, representing conditions during the suction and compression stroke in an internal combustion (IC) engine. The broadband SC pulses were temporally dispersed into fast wavelength sweeps, covering the overtone absorption bands 2ν(1), 2ν(3), ν(1) + ν(3) of H2O and 3ν(3) of CO2 in the near-infrared region from 1330 nm to 1500 nm. The temperature information is inferred from the peak ratio of a temperature sensitive (1362.42 nm) and insensitive (1418.91 nm) absorption feature in the ν(1) + ν(3) overtone bands of water. The experimental results are in very good agreement with theoretical intensity ratios calculated from absorption spectra based on HiTran data. PMID:23736618

  1. [Concentration retrieving method of SO2 using differential optical absorption spectroscopy based on statistics].

    PubMed

    Liu, Bin; Sun, Chang-Ku; Zhang, Chi; Zhao, Yu-Mei; Liu, Jun-Ping

    2011-01-01

    A concentration retrieving method using statistics is presented, which is applied in differential optical absorption spectroscopy (DOAS) for measuring the concentration of SO2. The method uses the standard deviation of the differential absorption to represents the gas concentration. Principle component analysis (PCA) method is used to process the differential absorption spectrum. In the method, the basis data for the concentration retrieval of SO2 is the combination of the PCA processing result, the correlation coefficient, and the standard deviation of the differential absorption. The method is applied to a continuous emission monitoring system (CEMS) with optical path length of 0.3 m. Its measuring range for SO2 concentration is 0-5 800 mg x m(-3). The nonlinear calibration and the temperature compensation for the system were executed. The full scale error of the retrieving concentration is less than 0.7% FS. And the measuring result is -4.54 mg x m(-3) when the concentration of SO2 is zero. PMID:21428087

  2. Photochromic cycle of 2'-hydroxyacetophenone azine studied by absorption and emission spectroscopy in different solvents

    NASA Astrophysics Data System (ADS)

    Filipczak, Katarzyna; Karolczak, Jerzy; Lipkowski, Pawel; Filarowski, Aleksander; Ziółek, Marcin

    2013-09-01

    This paper reports on the investigations of the synthesized di-(o-hydroxyaryl ketoimine) compound by the steady state absorption and emission techniques as well as picosecond time resolved emission and femtosecond transient absorption methods in different solvents. The results of the experimental observation have been supported by the theoretical DFT and TD-DFT calculations. The theoretical data have revealed the completed influence of the environmental polarity on particular conformers of studied compound. Dependencies between the activation rate constant and polarizability function as well as Kamlet-Abbond-Taft hydrogen-bonding parameter have been obtained in different solvent. The mechanism of photodynamic changes of di-(o-hydroxyaryl ketoimine) is presented.

  3. Bandedge absorption of GaAsN films measured by the photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Beaudoin, M.; Chan, I. C. W.; Beaton, D.; Elouneg-Jamroz, M.; Tiedje, T.; Whitwick, M.; Young, E. C.; Young, J. F.; Zangenberg, N.

    2009-03-01

    The optical absorption of GaAsN films grown by molecular beam epitaxy on GaAs substrates is measured using the mirage effect photothermal deflection spectroscopy (PDS). The PDS spectra were fitted with a modified Fernelius model, which takes into account multiple reflections within the GaAsN layer and GaAs substrate. This allowed the extraction of bandedge parameters for a series of GaAsN films with N content varying from 0.24% to 1.4% N. All films show a clear Urbach absorption edge with a composition-dependent bandgap consistent with literature and Urbach slope parameters roughly 3 times larger than GaAs values.

  4. Species profiles in solid propellant flames using absorption and emission spectroscopy

    SciTech Connect

    Vanderhoff, J.A. )

    1991-03-01

    A windowed strand burner with a propellant feed mechanism has been used to characterize the steady-state burning of two composite propellants, M-30 and HMXI, at moderate pressure. Both emission and absorption spectroscopy have yielded profile data on three important combustion species: OH, NH, and CN. Relative appearances of these three species are inferred from emission intensity profiles, and absolute concentration profiles are calculated from the absorption data. This is the first absolute determination of these combustion intermediates in a propellant flame. The concentration measurements for OH indicate that the propellant flame temperatures are about 200 and 100 K below adiabatic for M-30 and HMXI, respectively. A maximum value of 43 ppm NH is found for the M-30 propellant flame. Fluctuations in the flame front of HMXI compromised the determination of maximum concentrations for NH and CN.

  5. Ground-based imaging differential optical absorption spectroscopy of atmospheric gases.

    PubMed

    Lohberger, Falko; Hönninger, Gerd; Platt, Ulrich

    2004-08-20

    We describe a compact remote-sensing instrument that permits spatially resolved mapping of atmospheric trace gases by passive differential optical absorption spectroscopy (DOAS) and present our first applications of imaging of the nitrogen dioxide contents of the exhaust plumes of two industrial emitters. DOAS permits the identification and quantification of various gases, e.g., NO2, SO2, and CH2O, from their specific narrowband (differential) absorption structures with high selectivity and sensitivity. With scattered sunlight as the light source, DOAS is used with an imaging spectrometer that is simultaneously acquiring spectral information on the incident light in one spatial dimension (column). The second spatial dimension is scanned by a moving mirror. PMID:15352396

  6. [Measurement and retrieval of indicators for fast VOCs atmospheric photochemistry with differential optical absorption spectroscopy].

    PubMed

    Peng, Fu-Min; Xie, Pin-Hua; Shao, Shi-Yong; Li, Yu-Jin; Lin, Yi-Hui; Li, Su-Wen; Qin, Min; Liu, Wen-Qing

    2008-03-01

    Featuring excellent response characteristics and detection sensitivity and with much lower operational cost, differential optical absorption spectroscopy (DOAS) can be a powerful tool to trace concentration variation of trace indicators -O3, Ox (O3 + NO2) and HCHO for fast VOCs atmospheric photochemistry. But it's difficult to measure those gases accurately because of trace concentration. Here using a self-made DOAS system, the accurate measurement of those indicators was achieved through improving the ratio of signal to noise ratio and correcting the background scattering light; the retrieving method of those indicators was developed through eliminating the temperature effect of absorption cross section, accurately removing the intrinsic structure and lamp structure of spectrum. The preference of different spectral windows that could be used for the concentration retrieval of those indicators was analyzed and compared including interfering factors, results retrieved and the accuracy. PMID:18536400

  7. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  8. Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-01-01

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with <1E-3 absorbance noise for a 10 second measurement time.

  9. Mid-infrared multi-mode absorption spectroscopy, MUMAS, using difference frequency generation

    NASA Astrophysics Data System (ADS)

    Northern, Henry; O'Hagan, Seamus; Hamilton, Michelle L.; Ewart, Paul

    2015-03-01

    Multi-mode absorption spectroscopy of ammonia and methane at 3.3 μm has been demonstrated using a source of multi-mode mid-infrared radiation based on difference frequency generation. Multi-mode radiation at 1.56 μm from a diode-pumped Er:Yb:glass laser was mixed with a single-mode Nd:YAG laser at 1.06 μm in a periodically poled lithium niobate crystal to produce multi-mode radiation in the region of 3.3 μm. Detection, by direct multi-mode absorption, of NH3 and CH4 is reported for each species individually and also simultaneously in mixtures allowing measurements of partial pressures of each species.

  10. Demonstration of temperature imaging by H₂O absorption spectroscopy using compressed sensing tomography.

    PubMed

    An, Xinliang; Brittelle, Mack S; Lauzier, Pascal T; Gord, James R; Roy, Sukesh; Chen, Guang-Hong; Sanders, Scott T

    2015-11-01

    This paper introduces temperature imaging by total-variation-based compressed sensing (CS) tomography of H2O vapor absorption spectroscopy. A controlled laboratory setup is used to generate a constant two-dimensional temperature distribution in air (a roughly Gaussian temperature profile with a central temperature of 677 K). A wavelength-tunable laser beam is directed through the known distribution; the beam is translated and rotated using motorized stages to acquire complete absorption spectra in the 1330-1365 nm range at each of 64 beam locations and 60 view angles. Temperature reconstructions are compared to independent thermocouple measurements. Although the distribution studied is approximately axisymmetric, axisymmetry is not assumed and simulations show similar performance for arbitrary temperature distributions. We study the measurement error as a function of number of beams and view angles used in reconstruction to gauge the potential for application of CS in practical test articles where optical access is limited. PMID:26560573

  11. Measurement of erosion rate by absorption spectroscopy in a Hall thruster

    SciTech Connect

    Yamamoto, Naoji; Yokota, Shigeru; Matsui, Makoto; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2005-08-15

    The erosion rate of a Hall thruster was estimated with the objective of building a real-time erosion rate monitoring system using a 1 kW class anode layer type Hall thruster. This system aids the understanding of the tradeoff between lifetime and performance. To estimate the flux of the sputtered wall material, the number density of the sputtered iron was measured by laser absorption spectroscopy using an absorption line from ground atomic iron at 371.9935 nm. An ultravioletAl{sub x}In{sub y}Ga{sub (1-x-y)}N diode laser was used as the probe. The estimated number density of iron was 1.1x10{sup 16} m{sup -3}, which is reasonable when compared with that measured by duration erosion tests. The relation between estimated erosion rate and magnetic flux density also agreed with that measured by duration erosion tests.

  12. Ablation-initiated Isotope-selective Atomic Absorption Spectroscopy of Lanthanide Elements

    SciTech Connect

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Maruyama, Y.; Wakaida, I.; Watanabe, K.

    2009-03-17

    For remote isotope analysis of low-decontaminated trans-uranium (TRU) fuel, absorption spectroscopy has been applied to a laser-ablated plume of lanthanide elements. To improve isotopic selectivity and detection sensitivity of the ablated species, various experimental conditions were optimized. Isotope-selective absorption spectra were measured by observing the slow component of the plume produced under low-pressure rare-gas ambient. The measured minimum line width of about 0.9 GHz was close to the Doppler width of the Gd atomic transition at room temperature. The relaxation rate of high-lying metastable state was found to be higher than that of the ground state, which suggests that higher analytical sensitivity can be obtained using low-lying state transition. Under helium gas environment, Doppler splitting was caused from particle motion. This effect was considered for optimization for isotope selection and analysis. Some analytical performances of this method were determined under optimum conditions and were discussed.

  13. Picosecond time-resolved X-ray absorption spectroscopy of ultrafast aluminum plasmas.

    PubMed

    Audebert, P; Renaudin, P; Bastiani-Ceccotti, S; Geindre, J-P; Chenais-Popovics, C; Tzortzakis, S; Nagels-Silvert, V; Shepherd, R; Matsushima, I; Gary, S; Girard, F; Peyrusse, O; Gauthier, J-C

    2005-01-21

    We have used point-projection K-shell absorption spectroscopy to infer the ionization and recombination dynamics of transient aluminum plasmas. Two femtosecond beams of the 100 TW laser at the LULI facility were used to produce an aluminum plasma on a thin aluminum foil (83 or 50 nm), and a picosecond x-ray backlighter source. The short-pulse backlighter probed the aluminum plasma at different times by adjusting the delay between the two femtosecond driving beams. Absorption x-ray spectra at early times are characteristic of a dense and rather homogeneous plasma. Collisional-radiative atomic physics coupled with hydrodynamic simulations reproduce fairly well the measured average ionization as a function of time. PMID:15698184

  14. Electronic structure investigation of highly compressed aluminum with K edge absorption spectroscopy.

    PubMed

    Benuzzi-Mounaix, A; Dorchies, F; Recoules, V; Festa, F; Peyrusse, O; Levy, A; Ravasio, A; Hall, T; Koenig, M; Amadou, N; Brambrink, E; Mazevet, S

    2011-10-14

    The electronic structure evolution of highly compressed aluminum has been investigated using time resolved K edge x-ray absorption spectroscopy. A long laser pulse (500 ps, I(L)≈8×10(13) W/cm(2)) was used to create a uniform shock. A second ps pulse (I(L)≈10(17)  W/cm(2)) generated an ultrashort broadband x-ray source near the Al K edge. The main target was designed to probe aluminum at reshocked conditions up to now unexplored (3 times the solid density and temperatures around 8 eV). The hydrodynamical conditions were obtained using rear side visible diagnostics. Data were compared to ab initio and dense plasma calculations, indicating potential improvements in either description. This comparison shows that x-ray-absorption near-edge structure measurements provide a unique capability to probe matter at these extreme conditions and severally constrains theoretical approaches currently used. PMID:22107398

  15. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  16. Absorption spectroscopy of wire-array plasma at the non-radiative stage

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Durmaz, T.; Anderson, A.; Astanovitskiy, A.; Chalyy, O.; Altemara, S. D.; Papp, D.; McKee, E.; Chittenden, J. P.; Niasse, N.; Shevelko, A. P.

    2010-11-01

    Absorption spectroscopy was applied to 1 MA wire-array Z-pinches. The 50 TW Leopard laser was coupled with the Zebra generator for x-ray backlighting of wire arrays. Wire-array plasmas were investigated at the ablation and implosion stages. Broadband x-ray radiation from a laser produced Sm plasma was used to backlight Al star wire arrays in the range of 7-9 å. Two time-integrated x-ray conical spectrometers recorded reference and main spectra. The backlighting radiation was separated from the powerful Z-pinch x-ray burst by collimators. A comparison of the backlighting radiation spectra that passed through the plasma with reference spectra indicates absorption lines in the range of 8.2-8.4 å. A plasma density profile was simulated with a 3D resistive MHD code. Simulations with atomic kinetics models derived an electron temperature of Al wire-array plasma.

  17. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  18. Measurement of exhaled nitric oxide in beef cattle using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Roller, C. B.; Holland, B. P.; McMillen, G.; Step, D. L.; Krehbiel, C. R.; Namjou, K.; McCann, P. J.

    2007-03-01

    Measurement of nitric oxide (NO) in the expired breath of crossbred calves received at a research facility was performed using tunable diode laser absorption spectroscopy. Exhaled NO (eNO) concentrations were measured using NO absorption lines at 1912.07 cm-1 and employing background subtraction. The lower detection limit and measurement precision were determined to be ˜330 parts in 1012 per unit volume. A custom breath collection system was designed to collect lower airway breath of spontaneously breathing calves while in a restraint chute. Breath was collected and analyzed from calves upon arrival and periodically during a 42 day receiving period. There was a statistically significant relationship between eNO, severity of bovine respiratory disease (BRD) in terms of number of times treated, and average daily weight gain over the first 15 days postarrival. In addition, breathing patterns and exhaled CO2 showed a statistically significant relationship with BRD morbidity.

  19. [Measurement of OH radicals in flame with high resolution differential optical absorption spectroscopy].

    PubMed

    Liu, Yu; Liu, Wen-Qing; Kan, Rui-Feng; Si, Fu-Qi; Xu, Zhen-Yu; Hu, Ren-Zhi; Xie, Pin-Hua

    2011-10-01

    The present paper describes a new developed high resolution differential optical absorption spectroscopy instrument used for the measurement of OH radicals in flame. The instrument consists of a Xenon lamp for light source; a double pass high resolution echelle spectrometer with a resolution of 3.3 pm; a multiple-reflection cell of 20 meter base length, in which the light reflects in the cell for 176 times, so the whole path length of light can achieve 3 520 meters. The OH radicals'6 absorption lines around 308 nm were simultaneously observed in the experiment. By using high resolution DOAS technology, the OH radicals in candles, kerosene lamp, and alcohol burner flames were monitored, and their concentrations were also inverted. PMID:22250529

  20. Intracavity laser absorption spectroscopy of D 2O between 11 400 and 11 900 cm -1

    NASA Astrophysics Data System (ADS)

    Naumenko, O. V.; Mazzotti, F.; Leshchishina, O. M.; Tennyson, J.; Campargue, A.

    2007-03-01

    The weak absorption spectrum of dideuterated water, D 2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) between 11 400 and 11 900 cm -1. This spectrum is dominated by the 3 ν1 + ν2 + ν3 and the ν1 + ν2 + 3 ν3 centered at 11 500.25 and 11 816.64 cm -1, respectively. A total of 530 energy levels belonging to eight vibrational states were determined. The rovibrational assignment process of the 840 lines attributed to D 2O was mostly based on the results of new variational calculations consisting in a refinement of the potential energy surface of Shirin et al. [J. Chem. Phys., 120 (2004) 206] on the basis of recent experimental observations, and a dipole moment surface from Schwenke and Partridge [J. Chem. Phys. 113 (2000) 6592]. The overall agreement between these calculations and the observed spectrum is very good both for the line positions and the line intensities.

  1. Application of terahertz absorption spectroscopy to evaluation of aging variation of medicine.

    PubMed

    Kawase, Masaya; Saito, Tadashi; Ogawa, Masafumi; Uejima, Hideki; Hatsuda, Yasutoshi; Kawanishi, Sonoyo; Hirotani, Yoshihiko; Myotoku, Michiaki; Ikeda, Kenji; Konishi, Hiroki; Iga, Ikumi; Yamakawa, Junji; Nishizawa, Seizi; Yamamoto, Kohji; Tani, Masahiko

    2011-01-01

    The absorption spectra of three kinds of medicines both before and after the expiration date: Amlodin OD(®) (5 mg), Basen OD(®) (0.2 mg) and Gaster D(®) (10 mg) have been measured by terahertz time domain spectroscopy (THz-TDS). All the medicines show some differences in the THz absorption spectra between medicines before and after the expiration dates. X-Ray powder diffraction (XRD) studies of all medicines suggest that the polymorph of the main effective compound is not changed before and after the expiration date. Therefore, the differences in the THz spectra between medicines before and after the expiration dates arise from aging variation of diluting agents and/or from modifications of intermolecular interaction between the effective compounds and diluting agents. PMID:21321447

  2. Rate-equation model for quantitative concentration measurements in flames with picosecond pump-probe absorption spectroscopy.

    PubMed

    Fiechtner, G J; King, G B; Laurendeau, N M

    1995-02-20

    Measurement of radical concentrations is important in understanding the chemical kinetics involved in combustion. Application of optical techniques allows for the nonintrusive determination of specific radical concentrations. One of the most challenging problems for investigators is to obtain flame data that are independent of the collisional environment. We seek to obviate this difficulty by the use of picosecond pump-probe absorption spectroscopy. A picosecond pump-probe absorption model is developed by rate-equation analysis. Implications are discussed for a laser-pulse width that is much smaller than the excited-state lifetime of the absorbing atom or molecule. The possibility of quantitative, quenching-independent concentration measurements is discussed, and detection limits for atomic sodium and the hydroxyl radical are estimated. For a three-level absorber-emitter, the model leads to a novel pump-probe strategy, called dual-beam asynchronous optical sampling, that can be used to obtain both the electronic quenching-rate coefficient and the doublet mixing-rate coefficient during a single measurement. We discuss the successful demonstration of the technique in a companion paper [Appl. Opt. 34, XXX (1995)]. PMID:21037640

  3. Fluorescence and UV/VIS absorption spectroscopy studies on polymer blend films for photovoltaics

    NASA Astrophysics Data System (ADS)

    van Stam, Jan; Lindqvist, Camilla; Hansson, Rickard; Ericsson, Leif; Moons, Ellen

    2015-08-01

    The quinoxaline-based polymer TQ1 (poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5- diyl]) is a promising candidate as electron donor in organic solar cells. In combination with the electron acceptor [6,6]- phenyl-C71- butyric acid methyl ester (PC70BM), TQ1 has resulted in solar cells with power conversion efficiencies of 7 %. We have studied TQ1 films, with and without PC70BM, spin-casted from different solvents, by fluorescence spectroscopy and UV/VIS absorption spectroscopy. We used chloroform (CF), chlorobenzene (CB), and odichlorobenzene (o-DCB) as solvents for the coating solutions and 1-chloronaphthalene (CN) as solvent additive. CN addition has been shown to enhance photo-conversion efficiency of these solar cells. Phase-separation causes lateral domain formation in the films and the domain size depends on the solvent . These morphological differences coincide with changes in the spectroscopic patterns of the films. From a spectroscopic point of view, TQ1 acts as fluorescent probe and PC70BM as quencher. The degree of fluorescence quenching is coupled to the morphology through the distance between TQ1 and PC70BM. Furthermore, if using a bad solvent for PC70BM, morphological regions rich in the fullerene yield emission characteristic for aggregated PC70BM. Clear differences were found, comparing the TQ1:PC70BM blend films casted from different solvents and at different ratios between the donor and acceptor. The morphology also influences the UV/VIS absorption spectra, yielding further information on the composition. The results show that fluorescence and UV/VIS absorption spectroscopy can be used to detect aggregation in blended films and that these methods extend the morphological information beyond the scale accessible with microscopy.

  4. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  5. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  6. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGESBeta

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  7. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  8. Examination of Arsenic Speciation in Sulfidic Solutions Using X-ray Absorption Spectroscopy

    EPA Science Inventory

    The chemical speciation of arsenic in sulfidic waters is complicated by the existence of thioarsenic species. The purpose of this research was to use advanced spectroscopy techniques along with speciation modeling and chromatography to elucidate the chemical speciation of As in ...

  9. Absorption spectroscopy of oxygen, carbon dioxide and water species for applications in combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Mei, Anhua

    Laser absorption spectroscopy has been a useful tool applied in combustion diagnostics because of its capability to measure the species' concentration, particularly to measure concentration, temperature, and pressure simultaneously. These measurements provide the necessary information for dynamic combustion control. Due to its advantages such as fast response, non-intrusive nature and applicability under harsh environment like high temperature and high pressure, absorption laser spectroscopy makes it possible to monitor combustion system on-line and in situ. Since its development for more than thirty years, laser spectroscopy has matured, and the novel and advanced laser sensors have pushed it to be applied fast. On the other hand, industry still needs cheaper and more operable spectroscopy, which becomes an important consideration in the development and application of modern laser spectroscopy. This study presents an instrumental structure including the algorithm of the spectrum computation and the hardware configuration. The algorithm applied the central maximum value of the spectrum to simplify the computation. The whole calculation was done extensively using Beer-Lambert theory and HITRAN database which makes it efficient and applicable. This research conducted the simulations of high temperature species, such as CO2, H2O to carry out the algorithm, which were compared with published data. Also, this research designed and performed the experiments of measuring oxygen and its mixture with Helium by using a 760 nm diode laser and a 655 nm Helium/Neon laser sensor with fixed wavelength structures. The results of this research also conclude the following: (1) extensive literature survey, field research and laboratory work; (2) studying the significant theories and experimental methods of the laser spectroscopy; (3) developing efficient and simplified algorithm for spectrum calculation; (4) simulating high temperature species H2O and CO2; (5) designing and building

  10. Femtosecond Transient Absorption Spectroscopy on the Light-Adaptation of Living Plants

    NASA Astrophysics Data System (ADS)

    Müller, M. G.; Jahns, P.; Holzwarth, A. R.

    2013-03-01

    The photoprotection reaction of the photosynthetic system under excessive sun light has been resolved for the first time by femtosecond absorption spectroscopy from the visible to near-infrared in intact leaves of Arabidopsis thaliana. The light-adaptation process was measured and a prominent non-photochemical quenching (npq) behavior located in photosystem II was observed. Among the various npq quenching mechanisms which have been discussed so far the most likely is the formation of chlorophyll-chlorophyll charge-transfer states which create a powerful energy dissipation pathway for the quenching.

  11. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-01

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed. PMID:26382674

  12. Tunable Diode Laser Absorption Spectroscopy of Metastable Atoms in Dusty Plasmas

    SciTech Connect

    Hoang Tung Do; Hippler, Rainer

    2008-09-07

    Spatial density profile of neon metastable produced in dusty plasma was investigated by means of tunable diode laser absorption spectroscopy. The line averaged measured density drops about 30% with the presence of dust particles. The observations provide evidence for a significant interaction between atoms and powder particles which are important for energy transfer from plasma to particles. The power per unit area absorbed by dust particles due to the collision of metastable atoms with dust particle surface is about some tens of mW/m{sup 2}.

  13. Diffuse-light absorption spectroscopy for beer classification and prediction of alcoholic content

    NASA Astrophysics Data System (ADS)

    Ciaccheri, L.; Samano Baca, E. E.; Russo, M. T.; Ottevaere, H.; Thienpont, H.; Mignani, A. G.

    2012-04-01

    A miscellaneous of 86 beers was characterized by non-destructive, fast and reagent-free optical measurements. Diffuselight absorption spectroscopy performed in the visible and near-infrared bands was used to gather a turbidity-free spectroscopic information. Also, conventional turbidity and refractive index measurements were added for completing the optical characterization. The near-infrared spectra provided a straightforward turbidity-free assessment of the alcoholic strength. Then, the entire optical data set was processed by means of multivariate analysis looking for a beer clustering according to the own character and identity. Good results were achieved, indicating that optical methods can be successfully used for beer authentication.

  14. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  15. Transient absorption spectroscopy detection of sensitized delayed fluorescence in chiral benzophenone/naphthalene systems

    NASA Astrophysics Data System (ADS)

    Bonancía, Paula; Jiménez, M. Consuelo; Miranda, Miguel A.

    2011-10-01

    Transient absorption spectroscopy has proven to be a powerful tool to investigate the formation and decay of excited singlet states upon triplet-triplet annihilation, following T-T energy transfer from a selectively excited sensitizer. Thus, upon selective excitation of benzophenone (BZP) by laser flash photolysis (LFP) at λ = 355 nm in the presence of naphthalene (NPT), a negative band centered at 340 nm has been detected, with growth and decay in the microsecond timescale. It has been assigned to the P-type NPT delayed-fluorescence. In the case of chiral BZP/NPT systems, stereodifferentiation has been observed in the kinetics of the involved photophysical processes.

  16. Determination of the melting temperature of palladium nanoparticles by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vlasenko, V. G.; Podsukhina, S. S.; Kozinkin, A. V.; Zubavichus, Ya. V.

    2016-02-01

    The anharmonicity parameters of the interatomic potential in ~4-nm palladium nanoparticles deposited on poly(tetra)fluoroethylene microgranules 0.2-0.5 μm in average size were studied by X-ray absorption spectroscopy from an analysis of temperature-dependent EXAFS Pd K edges. The parameters of the interatomic potential obtained were used to calculate melting temperature T melt = 1591 K and Debye temperature ΘD = 257 K of palladium nanoparticles; these temperatures are significantly lower than those in metallic palladium: 277 K and 1825 K, respectively.

  17. Detection of nitric oxide in exhaled air using cavity enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Medrzycki, R.; Wojtas, J.; Rutecka, B.; Bielecki, Z.

    2013-07-01

    The article describes an application one of the most sensitive optoelectronic method - Cavity Enhanced Absorption Spectroscopy in investigation of nitric oxide in exhaled breath. Measurement of nitric oxide concentration in exhaled breath is a quantitative, non-invasive, simple, and safe method of respiratory inflammation and asthma diagnosis. For detection of nitric oxide by developed optoelectronic sensor the vibronic molecular transitions were used. The wavelength ranges of these transitions are situated in the infrared spectral region. A setup consists of the optoelectronic nitric oxide sensor integrated with sampling and sample conditioning unit. The constructed detection system provides to measure nitric oxide in a sample of 0-97% relative humidity.

  18. [Real-time forecasting model for monitoring pollutant with differential optical absorption spectroscopy].

    PubMed

    Li, Su-Wen; Liu, Wen-Qing; Xie, Pin-Hua; Wang, Feng-Sui; Yang, Yi-Jun

    2009-11-01

    For real-time and on-line monitoring DOAS (differential optical absorption spectroscopy) system, a model based on an improved Elman network for monitoring pollutant concentrations was proposed. In order to reduce the systematical complexity, the forecasting factors have been obtained based on the step-wise regression method. The forecasting factors were current concentrations, temperature and relative humidity, and wind speed and wind direction. The dynamic back propagation (BP) algorithm was used for creating training set. The experiment results show that the predicted value follows the real well. So the modified Elman network can meet the demand of DOAS system's real time forecasting. PMID:20101985

  19. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  20. X-Ray Absorption Spectroscopy of Cuprous-Thiolate Clusters in Saccharomyces Cerevisiae Metallothionein

    SciTech Connect

    Zhang, L.; Pickering, I.J.; Winge, D.R.; George, G.N.

    2009-05-28

    Copper (Cu) metallothioneins are cuprous-thiolate proteins that contain multimetallic clusters, and are thought to have dual functions of Cu storage and Cu detoxification. We have used a combination of X-ray absorption spectroscopy (XAS) and density-functional theory (DFT) to investigate the nature of Cu binding to Saccharomyces cerevisiae metallothionein. We found that the XAS of metallothionein prepared, containing a full complement of Cu, was quantitatively consistent with the crystal structure, and that reconstitution of the apo-metallothionein with stoichiometric Cu results in the formation of a tetracopper cluster, indicating cooperative binding of the Cu ions by the metallothionein.

  1. Two attosecond pulse transient absorption spectroscopy and extraction of the instantaneous AC Stark shift in helium

    NASA Astrophysics Data System (ADS)

    Bækhøj, Jens E.; Bojer Madsen, Lars

    2016-07-01

    In two attosecond pulse absorption spectroscopy (TAPAS) the use of two attosecond XUV pulses allows the extraction of atomic and molecular quantum mechanical dipole phases from spectroscopic measurements. TAPAS relies on interference between processes that individually only include a single XUV photon, and therefore does not rely on high intensity attosecond pulses. To show the usefulness and limitations of the TAPAS method we investigate its capability of capturing the instantaneous AC Stark shift induced by a midinfrared 3200 nm pulse in the | 1{{s}}2{{p}}> state of helium.

  2. Direct MD Simulations of Terahertz Absorption and 2D Spectroscopy Applied to Explosive Crystals.

    PubMed

    Katz, G; Zybin, S; Goddard, W A; Zeiri, Y; Kosloff, R

    2014-03-01

    A direct molecular dynamics simulation of the THz spectrum of a molecular crystal is presented. A time-dependent electric field is added to a molecular dynamics simulation of a crystal slab. The absorption spectrum is composed from the energy dissipated calculated from a series of applied pulses characterized by a carrier frequency. The spectrum of crystalline cyclotrimethylenetrinitramine (RDX) and triacetone triperoxide (TATP) were simulated with the ReaxFF force field. The proposed direct method avoids the linear response and harmonic approximations. A multidimensional extension of the spectroscopy is suggested and simulated based on the nonlinear response to a single polarized pulse of radiation in the perpendicular polarization direction. PMID:26274066

  3. The Chemical Forms of Mercury in Human Hair: A Study using X-ray Absorption Spectroscopy

    PubMed Central

    George, Graham N.; Singh, Satya P.; Myers, Gary J.; Watson, Gene E.; Pickering, Ingrid J.

    2013-01-01

    Human hair is frequently used as a bio-indicator of mercury exposure. We have used X-ray absorption spectroscopy to examine the chemical forms of mercury in human hair samples taken from individuals with high fish consumption and concomitant exposure to methylmercury. The mercury is found to be predominantly methylmercury cysteine or closely related species, comprising approximately 80% of the total mercury with the remainder an inorganic thiolate-coordinated mercuric species. No appreciable role was found for selenium in coordinating mercury in hair. PMID:20225071

  4. Thermal Expansion Behaviour of Silver Examined by Extended X-Ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Dubiel, M.; Chasse, A.; Haug, J.; Schneider, R.; Kruth, H.

    2007-02-02

    EXAFS (extended X-ray absorption fine structure) investigations are reported concerning the thermal expansion behaviour of silver in an extended range of temperature from 10 K to about 950 K measured in transmission mode. Both the ratio method and an EXAFS fitting procedure were applied to reveal the temperature dependence of EXAFS parameters. Models based on quantum and classical thermodynamic perturbation theory have been used to interpret experimental data and compared to XRD (X-ray diffraction) results of bulk silver material. The description of thermodynamic data of thermal expansion of silver in the complete range of temperature by EXAFS Spectroscopy was successful by first calculations using third order quantum perturbation theory.

  5. Hot Carrier Dynamics in the X Valley in Si and Ge Measured by Pump-IR-Probe Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wang, W. B.; Cavicchia, M. A.; Alfano, R. R.

    1996-01-01

    Si is the semiconductor of choice for nanoelectronic roadmap into the next century for computer and other nanodevices. With growing interest in Si, Ge, and Si(sub m)Ge(sub n) strained superlattices, knowledge of the carrier relaxation processes in these materials and structures has become increasingly important. The limited time resolution for earlier studies of carrier dynamics in Ge and Si, performed using Nd:glass lasers, was not sufficient to observe the fast cooling processes. In this paper, we present a direct measurement of hot carrier dynamics in the satellite X valley in Si and Ge by time-resolved infrared(IR) absorption spectroscopy, and show the potential of our technique to identify whether the X valley is the lowest conduction valley in semiconductor materials and structures.

  6. Absolute I(asterisk) quantum yields for the ICN A state by diode laser gain-vs-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.

  7. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts.

    PubMed

    Frenkel, Anatoly I

    2012-12-21

    Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to study short range order in heterometallic alloys for almost four decades. In this critical review, experimental, theoretical and data analytical approaches are revisited to examine their power, and limitations, in studies of bimetallic nanocatalysts. This article covers the basics of EXAFS experiments, data analysis, and modelling of nanoscale clusters. It demonstrates that, in the best case scenario, quantitative information about the nanocatalyst's size, shape, details of core-shell architecture, as well as static and dynamic disorder in metal-metal bond lengths can be obtained. The article also emphasizes the main challenge accompanying such insights: the need to account for the statistical nature of the EXAFS technique, and discusses corrective strategies. PMID:22833100

  8. An in situ and operando X-ray absorption spectroscopy setup for measuring sub-monolayer model and powder catalysts.

    PubMed

    Weiher, Norbert; Bus, Eveline; Gorzolnik, Blazej; Möller, Martin; Prins, Roel; van Bokhoven, Jeroen Anton

    2005-09-01

    A new spectroscopic cell has been designed for studying model catalysts using in situ or operando X-ray absorption spectroscopy. The setup allows gas treatment and can be used between 100 and 870 K. Pressures from 10(-3) Pa up to 300 kPa can be applied. Measurements on model systems in this particular pressure range are a valuable extension of the commonly used UHV characterization techniques. Using this setup, we were able to analyze the Au L3 EXAFS of a silica wafer covered with sub-monolayer concentrations of gold (0.05 ML). By modifying the sample holder, powder catalysts can also be analyzed under plug-flow conditions. As an example, the reduction of a Au/SiO2 powder catalyst prepared from HAuCl4 was followed. PMID:16120994

  9. 3D-printed photo-spectroelectrochemical devices for in situ and in operando X-ray absorption spectroscopy investigation.

    PubMed

    Achilli, Elisabetta; Minguzzi, Alessandro; Visibile, Alberto; Locatelli, Cristina; Vertova, Alberto; Naldoni, Alberto; Rondinini, Sandra; Auricchio, Ferdinando; Marconi, Stefania; Fracchia, Martina; Ghigna, Paolo

    2016-03-01

    Three-dimensional printed multi-purpose electrochemical devices for X-ray absorption spectroscopy are presented in this paper. The aim of this work is to show how three-dimensional printing can be a strategy for the creation of electrochemical cells for in situ and in operando experiments by means of synchrotron radiation. As a case study, the description of two cells which have been employed in experiments on photoanodes for photoelectrochemical water splitting are presented. The main advantages of these electrochemical devices are associated with their compactness and with the precision of the three-dimensional printing systems which allows details to be obtained that would otherwise be difficult. Thanks to these systems it was possible to combine synchrotron-based methods with complementary techniques in order to study the mechanism of the photoelectrocatalytic process. PMID:26917152

  10. Temporally resolved characterization of shock-heated foam target with Al absorption spectroscopy for fast electron transport study

    SciTech Connect

    Yabuuchi, T.; Sawada, H.; Wei, M. S.; Beg, F. N.; Regan, S. P.; Anderson, K.; Betti, R.; Hund, J.; Paguio, R. R.; Saito, K. M.; Stephens, R. B.; Key, M. H.; Mackinnon, A. J.; McLean, H. S.; Patel, P. K.; Wilks, S. C.

    2012-09-15

    The CH foam plasma produced by a laser-driven shock wave has been characterized by a temporally resolved Al 1s-2p absorption spectroscopy technique. A 200 mg/cm{sup 3} foam target with Al dopant was developed for this experiment, which used an OMEGA EP [D. D. Meyerhofer et al., J. Phys.: Conf. Ser. 244, 032010 (2010)] long pulse beam with an energy of 1.2 kJ and 3.5 ns pulselength. The plasma temperatures were inferred with the accuracy of 5 eV from the fits to the measurements using an atomic physics code. The results show that the inferred temperature is sustained at 40-45 eV between 6 and 7 ns and decreases to 25 eV at 8 ns. 2-D radiation hydrodynamic simulations show a good agreement with the measurements. Application of the shock-heated foam plasma platform toward fast electron transport experiments is discussed.

  11. Speciation and Characterization of Arsenic in Gold Ores and Cyanidation Tailings Using X-ray Absorption Spectroscopy

    SciTech Connect

    Paktunc, Dogan; Foster, Andrea; Heald, Steve M.; Laflamme, Gilles

    2004-03-25

    The knowledge of mineralogy and molecular structure of arsenic is needed to better understand the stability of As in wastes resulting from processing of gold ores. In this study, optical microscopy, scanning electron microscopy, electron microprobe, X-ray diffraction and X-ray absorption spectroscopy (XAFS) techniques were employed to determine the mineralogical composition and local coordination environment of arsenic in gold ores and process tailings from a bench-scale testwork designed to mimic a common plant practice. Arsenic -bearing minerals identified in the ores and tailings include Fe oxyhydroxides, scorodite, ferric arsenates, arseniosiderite, Ca-Fe arsenates, pharmacosiderite, jarosite and arsenopyrite. Iron oxyhydroxides contain variable levels of As from trace to about 22 wt % and Ca to approximately 9 %.

  12. Anisotropy of Chemical Bonds in Collagen Molecules Studied by X-ray Absorption Near-Edge Structure (XANES) Spectroscopy

    PubMed Central

    Lam, Raymond S.K.; Metzler, Rebecca A.; Gilbert, Pupa U.P.A.; Beniash, Elia

    2012-01-01

    Collagen type I fibrils are the major building blocks of connective tissues. Collagen fibrils are anisotropic supra-molecular structures, and their orientation can be revealed by polarized light microscopy and vibrational microspectroscopy. We hypothesized that the anisotropy of chemical bonds in the collagen molecules, and hence their orientation, might also be detected by X-ray photoemission electron spectromicroscopy (X-PEEM) and X-ray absorption near-edge structure (XANES) spectroscopy, which use linearly polarized synchrotron light. To test this hypothesis, we analyzed sections of rat-tail tendon, composed of parallel arrays of collagen fibrils. The results clearly indicate that XANES-PEEM is sensitive to collagen fibril orientation and, more specifically, to the orientations of carbonyl and amide bonds in collagen molecules. These data suggest that XANES-PEEM is a promising technique for characterizing the chemical composition and structural organization at the nanoscale of collagen-based connective tissues, including tendons, cartilage, and bone. PMID:22148847

  13. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing.

    PubMed

    Li, Jingsong; Yu, Benli; Fischer, Horst

    2015-04-01

    This paper presents a novel methodology-based discrete wavelet transform (DWT) and the choice of the optimal wavelet pairs to adaptively process tunable diode laser absorption spectroscopy (TDLAS) spectra for quantitative analysis, such as molecular spectroscopy and trace gas detection. The proposed methodology aims to construct an optimal calibration model for a TDLAS spectrum, regardless of its background structural characteristics, thus facilitating the application of TDLAS as a powerful tool for analytical chemistry. The performance of the proposed method is verified using analysis of both synthetic and observed signals, characterized with different noise levels and baseline drift. In terms of fitting precision and signal-to-noise ratio, both have been improved significantly using the proposed method. PMID:25741689

  14. Solvation and Deprotonation Dynamics in Reverse Micelles via Broadband Femtoseond Transient Absorption (BFTA) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cole, Richard

    2009-10-01

    Broadband femtosecond transient absorption (BFTA) spectroscopy is a useful tool in characterizing femtosecond and picosecond physical and chemical dynamics such as solvation, electron transfer, and deprotonation dynamics. This presentation will focus on our most recent results, which utilize BFTA spectroscopy in the ultraviolet-visible (UV-vis) spectral range to probe deprotonation and solvation dynamics in the nanoscopic confinement of reverse micelles. In these studies, pyranine, a `photo-acid', probes both solvation and deprotonation dynamics in reverse micelles formed from cationic (cetyl trimethylammonium bromide, CTAB), anionic (sodium dioctyl sulfosuccinate, AOT), and neutral (polyoxyethylene nonylphenylether, Igepal) surfactants. Dynamic behavior will be discussed in terms of the degree of nanoscopic confinement (micellar size) and the impact of varying interfacial environments.

  15. Sulfur and nitrogen speciation in humic substances by x-ray absorption near-edge structure spectroscopy

    SciTech Connect

    Vairavamurthy, M.A.; Wang, Shenghe; Maletic, D.

    1996-12-31

    Understanding the chemical composition and structure of complex macromolecules in the geosphere, such as humic substances and kerogen, poses a challenging analytical problem. Widely used chromatographic techniques, such as the pyrolysis GC-MS, cause severe changes in structure during preparation and analysis of the sample, and thus, may not give accurate information. An important non-destructive technique that is becoming popular in speciation studies of environmental and geochemical samples is x-ray absorption fine structure spectroscopy. We used the x-ray absorption near-edge structure (XANFS) spectroscopy for examining the speciation of sulfur and nitrogen in humic substances of different origins, including soil and marine sediments. XANES provides information on the characteristics of the functional groups containing these atoms because of its sensitivity to the electronic structure, oxidation state, and the geometry of the neighboring atoms. Organic sulfides, di- and poly-sulfides, sulfonates and organic sulfates are the major forms of sulfur detected in all the humics we examined. The oxidized sulfonate-sulfur dominates the composition of sulfur species in soil humics accounting for more than 60% of the total sulfur. In marine humics, although sulfonates are abundant in near-surface sediments, reduced sulfur species, particularly di-and poly-sulfides, also constitute an important fraction. The nitrogen XANES indicates the dominance of amino and amide groups among nitrogen functionalities, although porphyrinic and pyridinic groups also are present. The significance of these results for the transformations of nitrogen and sulfur in soil and sedimentary systems will be presented.

  16. Intestinal radiocalcium absorption in the goat: measurement by a double-isotope technique.

    PubMed

    Hove, K

    1984-01-01

    Intestinal radiocalcium absorption was measured in goats by a double-isotope technique involving injection of 45CaCl2 intravenously and 47CaCl2 into the abomasum. Cumulative absorption of radiocalcium was calculated by deconvolution analysis form curves of plasma radioactivity. Repeated measurements at 2 d intervals gave highly reproducible results (r 0.94, P less than 0.001). No systematic difference between two consecutive measurements was observed. A good agreement between absorption of radiocalcium from simultaneously administered 47CaCl2 and 45Ca-labelled hay (r 0.93, P less than 0.001) seems to justify the use of inorganic 47Ca as a tracer for Ca in ruminant diets. Two- to three-fold increases in radiocalcium absorption 48 h after oral treatment with 1,25-dihydroxycholecalciferol or leaves of Solanum malacoxylon showed the usefulness of the method in situations of rapidly changing Ca absorption. Endogenous adaptations in intestinal radiocalcium absorption from 20 to 43% were observed in lactating goats when Ca intakes decreased from 12 to 4 g/d. It is concluded that the double-isotope technique is a suitable method for studies of Ca absorption in ruminants when tracer is introduced into the abomasum. The test is completed in 3-4 h and may therefore be used in situations where the absorption of Ca undergoes rapid changes. PMID:6546295

  17. A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu.

    PubMed

    Ewels, Philip; Sikora, Thierry; Serin, Virginie; Ewels, Chris P; Lajaunie, Luc

    2016-06-01

    The electron energy-loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) database has been completely rewritten, with an improved design, user interface, and a number of new tools. The database is accessible at https://eelsdb.eu/ and can now be used without registration. The submission process has been streamlined to encourage spectrum submissions and the new design gives greater emphasis on contributors' original work by highlighting their papers. With numerous new filters and a powerful search function, it is now simple to explore the database of several hundred EELS and XAS spectra. Interactive plots allow spectra to be overlaid, facilitating online comparison. An application-programming interface has been created, allowing external tools and software to easily access the information held within the database. In addition to the database itself, users can post and manage job adverts and read the latest news and events regarding the EELS and XAS communities. In accordance with the ongoing drive toward open access data increasingly demanded by funding bodies, the database will facilitate open access data sharing of EELS and XAS spectra. PMID:26899024

  18. Spectromicroscopy of Polymers: Comparison of Radiation Damage with Electron and Photon Core Excitation Spectroscopy Techniques

    NASA Astrophysics Data System (ADS)

    Ade, H.; Smith, A. P.; Rightor, E. G.; Hitchcock, A. P.; Urquhart, S.; Leapman, R.

    1997-03-01

    Core excitation microspectroscopy has become a powerful tool for the characterization of polymeric materials due to its sensitivity to chemical functionality. However, the excitations utilized in electron energy loss spectroscopy performed in a scanning transmission electron microscope (TEM-EELS) and near edge x-ray absorption fine structure (NEXAFS) spectroscopy can introduce radiation damage and chemically modify the sample. In order to understand the radiation damage associated with TEM-EELS and NEXAFS spectroscopy we have studied the radiation damage of the common polymer poly(ethylene terephthalate) (PET) as exhibited by changes in the acquired C K-edge excitation spectra. By fitting gaussian functions to the spectral intensity changes as a function of dose, we have determined the critical radiation dose of PET for both NEXAFS spectroscopy and TEM-EELS under typical operating conditions. This critical radiation dose for TEM-EELS is found to be 1.7 ± 0.2 x 10^8 grey (1.7 ± 0.2 x 10^4 Mrad) compared to a critical radiation dose for NEXAFS spectroscopy of 1.4 ± 0.7 x 10^9 grey (1.4 ± 0.7 x 10^5 Mrad). By considering the G factors of the two techniques and the critical radiation dose, a rule of thumb was derived that indicates that with typical present operating conditions, NEXAFS spectroscopy can analyze areas 500 times smaller than TEM-EELS given the same amount of radiation damage. Work supported by: NSF Young Investigator Award (DMR-9458060) and Dow Chemical

  19. Extending differential optical absorption spectroscopy for limb measurements in the UV

    NASA Astrophysics Data System (ADS)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2009-11-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). Therefore they are strictly valid for weak absorptions and narrow wavelength intervals (strictly only for monochromatic radiation). For medium and strong absorption (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is not linear anymore. As well, for large wavelength intervals the wavelength dependent differences in the travelled light-paths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, by taking into account these dependencies, the applicability of the DOAS method can be extended also to cases with medium to strong absorptions and for broader wavelength intervals. Common approaches for this correction are the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a-priori knowledge for the air mass factor or the weighting function calculation by radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis. Thus the variability of the SCD in the fit window is determined by the retrieval itself. This new approach gives a description of the SCD that is as close to reality as desired (depending on the order of the Taylor expansion), and is independent from any assumptions or a-priori knowledge of the considered absorbers. In case studies for

  20. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  1. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  2. X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications.

    PubMed

    Schmitz-Antoniak, Carolin

    2015-06-01

    X-ray absorption spectroscopy facilitated by state-of-the-art synchrotron radiation technology is presented as a powerful tool to study nanoscale systems, in particular revealing their static element-specific magnetic and electronic properties on a microscopic level. A survey is given on the properties of nanoparticles, nanocomposites and thin films covering a broad range of possible applications. It ranges from the ageing effects of iron oxide nanoparticles in dispersion for biomedical applications to the characterisation on a microscopic level of nanoscale systems for data storage devices. In this respect, new concepts for electrically addressable magnetic data storage devices are highlighted by characterising the coupling in a BaTiO(3)/CoFe(2)O(4) nanocomposite as prototypical model system. But classical magnetically addressable devices are also discussed on the basis of tailoring the magnetic properties of self-assembled ensembles of FePt nanoparticles for data storage and the high-moment material Fe/Cr/Gd for write heads. For the latter cases, the importance is emphasised of combining experimental approaches in x-ray absorption spectroscopy with density functional theory to gain a more fundamental understanding. PMID:26029938

  3. Aligned silver nanorod arrays as substrates for surface-enhanced infrared absorption spectroscopy.

    PubMed

    Leverette, C L; Jacobs, S A; Shanmukh, S; Chaney, S B; Dluhy, R A; Zhao, Y-P

    2006-08-01

    Preferentially aligned silver nanorod arrays prepared by oblique angle vapor deposition were evaluated as substrates for surface-enhanced infrared absorption (SEIRA) spectroscopy. These nanorod arrays have an irregular surface lattice and are composed of tilted, cylindrically shaped nanorods that have an average length of 868 nm +/- 95 nm and an average diameter of 99 nm +/- 29 nm. The overall enhancement factor for chemisorbed organic films of para-nitrobenzoic acid (PNBA) deposited onto the Ag nanorod arrays analyzed by external reflection SEIRA was calculated to be 31 +/- 9 compared to infrared reflection-absorption spectroscopy (IRRAS) obtained from a 500 nm Ag film substrate. This enhancement is attributed to the unique optical properties of the nanorod arrays as well as the increased surface area provided by the nanorod substrate. SEIRA reflection-absorbance intensity was observed with both p- and s-polarized incident radiation with angles of incidence ranging from 25 degrees to 80 degrees . The largest intensity was achieved with p-polarization and incident angles larger than 75 degrees . Polarization-dependent ultraviolet/visible/near-infrared (UV/Vis/NIR) spectra of the nanorod arrays demonstrate that the red-shifted surface plasmon peaks of the elongated nanorods may be partially responsible for the observed SEIRA response. The SEIRA detection limit for the Ag nanorod arrays was estimated to be 0.08 ng/cm(2). Surface-enhanced Raman scattering (SERS) and SEIRA analysis of chemisorbed PNBA utilizing the same nanorod substrate is demonstrated. PMID:16925927

  4. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip

    PubMed Central

    Ryckeboer, E.; Bockstaele, R.; Vanslembrouck, M.; Baets, R.

    2014-01-01

    In this work, we demonstrate in vitro detection of glucose by means of a lab-on-chip absorption spectroscopy approach. This optical method allows label-free and specific detection of glucose. We show glucose detection in aqueous glucose solutions in the clinically relevant concentration range with a silicon-based optofluidic chip. The sample interface is a spiral-shaped rib waveguide integrated on a silicon-on-insulator (SOI) photonic chip. This SOI chip is combined with micro-fluidics in poly(dimethylsiloxane) (PDMS). We apply aqueous glucose solutions with different concentrations and monitor continuously how the transmission spectrum changes due to glucose. Based on these measurements, we derived a linear regression model, to relate the measured glucose spectra with concentration with an error-of-fitting of only 1.14 mM. This paper explains the challenges involved and discusses the optimal configuration for on-chip evanescent absorption spectroscopy. In addition, the prospects for using this sensor for glucose detection in complex physiological media (e.g. serum) is briefly discussed. PMID:24877021

  5. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas.

    PubMed

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90(∘) off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions. PMID:27131664

  6. Evolution of Silver Nanoparticles in the Rat Lung Investigated by X-ray Absorption Spectroscopy

    PubMed Central

    2015-01-01

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. We found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period. PMID:25517690

  7. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90∘ off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  8. X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications

    NASA Astrophysics Data System (ADS)

    Schmitz-Antoniak, Carolin

    2015-06-01

    X-ray absorption spectroscopy facilitated by state-of-the-art synchrotron radiation technology is presented as a powerful tool to study nanoscale systems, in particular revealing their static element-specific magnetic and electronic properties on a microscopic level. A survey is given on the properties of nanoparticles, nanocomposites and thin films covering a broad range of possible applications. It ranges from the ageing effects of iron oxide nanoparticles in dispersion for biomedical applications to the characterisation on a microscopic level of nanoscale systems for data storage devices. In this respect, new concepts for electrically addressable magnetic data storage devices are highlighted by characterising the coupling in a BaTiO3/CoFe2O4 nanocomposite as prototypical model system. But classical magnetically addressable devices are also discussed on the basis of tailoring the magnetic properties of self-assembled ensembles of FePt nanoparticles for data storage and the high-moment material Fe/Cr/Gd for write heads. For the latter cases, the importance is emphasised of combining experimental approaches in x-ray absorption spectroscopy with density functional theory to gain a more fundamental understanding.

  9. X-ray absorption spectroscopy of cuprous-thiolate clusters in proteins and model systems

    SciTech Connect

    Pickering, I.J.; George, G.N. ); Dameron, C.T.; Kurz, B.; Winge, D.R. ); Dance, I.G. )

    1993-10-20

    Cuprous-thiolate multimetallic clusters exist in a range of different biological molecules for which no structural information exists from X-ray crystallography. Spectroscopic tools such as X-ray absorption spectroscopy have provided the major structural insights into this family of biological molecules. Recent nuclear magnetic resonance data on silver-substituted metallothionein, thought to be analogous with the copper proteins, have suggested the presence of digonal coordination. In order to test this in the copper case, we have examined a series of structurally characterized cuprous-thiolate model compounds, containing different proportions of digonal and trigonal copper sites, using copper K-edge X-ray absorption spectroscopy. The edge spectra, which have been previously used as a probe for the average copper coordination environment in proteins, show little variation between the models, indicating that these are not useful as a probe of coordination environment in the case of cuprous-thiolate clusters (as opposed to isolated metal sites). We show that systematic trends in the average Cu-S bond length from EXAFS curve-fitting analysis can be used to obtain an estimate of the fraction of digonal and trigonal copper sites. This correlation is applied to a series of different proteins containing cuprous-thiolate clusters which are found to contain significant fractions of digonal copper. 41 refs., 7 figs., 3 tabs.

  10. Quantitative Evaluation of the Carbon Hybridization State by Near Edge X-ray Absorption Fine Structure Spectroscopy.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Carpick, Robert W

    2016-03-01

    The characterization of the local bonding configuration of carbon in carbon-based materials is of paramount importance since the properties of such materials strongly depend on the distribution of carbon hybridization states, the local ordering, and the degree of hydrogenation. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectroscopy is one of the most powerful techniques for gaining insights into the bonding configuration of near-surface carbon atoms. The common methodology for quantitatively evaluating the carbon hybridization state using C 1s NEXAFS measurements, which is based on the analysis of the sample of interest and of a highly ordered pyrolytic graphite (HOPG) reference sample, was reviewed and critically assessed, noting that inconsistencies are found in the literature in applying this method. A theoretical rationale for the specific experimental conditions to be used for the acquisition of HOPG reference spectra is presented together with the potential sources of uncertainty and errors in the correctly computed fraction of sp(2)-bonded carbon. This provides a specific method for analyzing the distribution of carbon hybridization state using NEXAFS spectroscopy. As an illustrative example, a hydrogenated amorphous carbon film was analyzed using this method and showed good agreement with X-ray photoelectron spectroscopy (which is surface sensitive). Furthermore, the results were consistent with analysis from Raman spectroscopy (which is not surface sensitive), indicating the absence of a structurally different near-surface region in this particular thin film material. The present work can assist surface scientists in the analysis of NEXAFS spectra for the accurate characterization of the structure of carbon-based materials. PMID:26814796

  11. Excitonic emission and absorption resonances in V0.25W0.75Se2 single crystals grown by direct vapour transport technique

    NASA Astrophysics Data System (ADS)

    Solanki, G. K.; Pataniya, Pratik; Sumesh, C. K.; Patel, K. D.; Pathak, V. M.

    2016-05-01

    A systematic study on emission and absorption spectra of vanadium mixed tungsten diselenide single crystals grown by direct vapour transport (DVT) technique is reported. The grown crystals were characterized by energy dispersive analysis of X-ray (EDAX), which gives the confirmation about the stoichiometry. The structural characterizations were accomplished by X-ray diffraction (XRD), surface morphology and transmission electron microscopy (TEM). These characterizations were indicating the growth of V0.25W0.75Se2 single crystal from vapour phase. The optical response of this material has been observed by combination of UV-vis-NIR spectroscopy and photo luminescence (PL) spectroscopy. A detailed study of excitonic emission and absorption resonances was carried out on grown crystals. The energy band gap was calculated for indirect allowed transition with absorbed and emitted phonon. Additionally, absorption tail for grown crystal is found to obey the Urbach's rule.

  12. X-ray absorption spectroscopy study of prototype chemical systems: Theory vs. experiment

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig Philip

    Understanding the details of the intensities and spectral shapes of x-ray absorption spectra is a long-standing problem in chemistry and physics. Here, I present detailed studies of x-ray absorption for prototypical liquids, solids and gases with the goal of enhancing our general understanding of core-level spectroscopy via comparisons of modern theory and experiment. In Chapter 2, I investigate the importance of quantum motions in the x-ray absorption spectra of simple gases. It is found that rare fluctuations in atomic positions can be a cause of features in the spectra of gaseous molecules. In Chapter 3, I explore a novel quantization scheme for the excited and ground state potential surfaces for an isolated nitrogen molecule. This allows for the explicit calculation of the "correct" transition energies and peak widths (i.e. without any adjustable parameters). In Chapter 4, the importance of nuclear motion in molecular solids is investigated for glycine. We find that the inclusion of these motions permits the spectrum to be accurately calculated without any additional adjustable parameters. In Chapter 5, I provide a detailed study of the hydroxide ion solvated in water. There has been recent controversy as to how hydroxide is solvated, with two principal models invoked. I show that some of the computational evidence favoring one model of solvation over the other has been either previously obtained with inadequate precision or via a method that is systematically biased. In Chapter 6, the measured and computed x-ray absorption spectra of pyrrole in both the gas phase and when solvated by water are compared. We are able to accurately predict the spectra in both cases. In Chapter 7, the measured x-ray absorption of a series of highly charged cationic salts (YBr3, CrCl3, SnCl4 , LaCl3 and InCl3) solvated in water are presented and explained. In Chapter 8, the measured x-ray absorption spectrum at the nitrogen K-edge of aqueous triglycine is presented, including

  13. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  14. Saturation dynamics and working limits of saturated absorption cavity ringdown spectroscopy.

    PubMed

    Sadiek, Ibrahim; Friedrichs, Gernot

    2016-08-17

    Cavity ringdown spectroscopy (CRDS) in the linear absorption regime is a well-established method for sensitive trace gas detection, but only a few studies have addressed quantitative measurements in the presence of a saturated sample. In fact, saturation is usually avoided in order to escape from the required complex modeling of the saturation process that depends on the characteristics of the absorbing species, its interaction with the surrounding gas as well as on the temporal and spectral characteristics of the cavity excitation. Conversely, the novel saturated-absorption cavity ringdown spectroscopy approach (SCAR/Sat-CRDS) takes advantage of sample saturation in order to allow one to extract both the gas absorption and the empty cavity loss rates from a single ringdown event. Using a new continuous-wave infrared CRD spectrometer equipped with a tunable narrow-bandwidth high-power OPO laser system and a 18 bit digitizer, the transient dynamics of absorption saturation and the working limits of the Sat-CRDS approach in terms of its ability to extract reliable trace gas concentrations have been experimentally studied in this work. Using a strong methane transition as a test case, the excitation power P0 and saturation power PS have been systematically varied to explore a wide range of saturation regimes. At pressures 5 μbar < p < 2 mbar, the saturation intensity revealed a nearly linear pressure dependence showing that non-collisional processes contribute to the overall relaxation. A ratio of P0/PS ≈ 15 turned out to be optimal with working limits of 5 < P0/PS < 300. Moreover, the ratio of the absorption and empty cavity loss rates, γg/γc, has been varied to test the dynamic range of the method. At γg > γc, a pronounced coupling between the two parameters has been observed. Finally, a standard error analysis was performed revealing that the Sat-CRDS approach holds its advantages over conventional CRDS implementations in particular when the attainable

  15. Broadband fitting approach for the application of supercontinuum broadband laser absorption spectroscopy to combustion environments

    NASA Astrophysics Data System (ADS)

    Göran Blume, Niels; Ebert, Volker; Dreizler, Andreas; Wagner, Steven

    2016-01-01

    In this work, a novel broadband fitting approach for quantitative in-flame measurements using supercontinuum broadband laser absorption spectroscopy (SCLAS) is presented. The application and verification of this approach in an atmospheric, laminar, non-premixed CH4/air flame (Wolfhard-Parker burner, WHP) is discussed. The developed fitting scheme allows for an automatic recognition and fitting of a B-spline curve reference intensity for SCLAS broadband measurements while automatically removing the influence of absorption peaks. This approach improves the fitting residual locally (in between absorption lines) and globally by 23% and 13% respectively, while improving the in-flame SNR by a factor of 2. Additionally, the approach inherently improves the time-wavelength-correlation based on recorded in-flame measurements itself in combination with a theoretical spectrum of the analyte. These improvements have allowed for the recording of complete spatially resolved methane concentration profiles in the WHP burner. Comparison of the measured absolute mole fraction profile for methane with previously measured reference data shows excellent agreement in position, shape and absolute values. These improvements are a prerequisite for the application of SCLAS in high-pressure combustion systems.

  16. Measurements of Iodine Monoxide Levels During the CAST Campaign Using Broadband Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harris, N. R. P.; Popoola, O. A.; McLeod, M.; Ouyang, B.; Jones, R. L.

    2014-12-01

    Iodine monoxide (IO) has been regarded as an important radical involved in the ozone destruction in the remote marine boundary layer. Here we presented the first in situ aircraft measurements of IO using broadband cavity enhanced absorption spectroscopy with 1s -sensitivity of ~1.5 ppt Hz-1/2 on the surface level during the Coordinated Airborne Studies in the Tropics (CAST) campaign between January - February 2014. IO was retrieved from analysis of absorption spectrum recorded between 415 nm - 452.5 nm. Instrument baseline corresponding to the "zero" signal of IO was obtained by injection of ~20 ppb of nitric oxide (NO) into the sample air at chosen frequency and period. No clear absorption feature was observable from the spectra by eye with up to 100 seconds averaging, pointing to very low mixing ratios (<~0.5 ppt) of IO over the sampled area. A small positive bias (~0.3 ppt) of IO (against the baseline signal during NO titration) was obtained in the statistical histogram of retrieved IO from average of each straight and level run, but little altitude dependence was noted. In summary, our observation appears to support the existence of IO in the remote marine boundary above the Pacific Ocean at sub ppt levels, but the limited sensitivity precludes us from quantifying spatial gradients more accurately.

  17. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  18. Microplasmas as vacuum ultraviolet source for Cl-atom density measurements by resonance absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Virginie; Bauville, Gérard; Sadeghi, Nader; Puech, Vincent

    2011-11-01

    A micro-hollow cathode discharge was used to generate radiation on the chlorine atom resonance lines. Such radiation could be used to measure, by resonance absorption spectroscopy, the density of chlorine atoms in either ground state (3p5 2P3/2) or in the fine structure metastable state (3p5 2P1/2), which is located at 882.35 cm-1. Among the nine analysed lines in the 132-142 nm spectral region, only those at 137.953 and 139.653 nm, which are strong enough and are not affected by the self-absorption, can be used for the resonance absorption diagnostic of the ground state and the metastable state, respectively. The best operating conditions of the lamp source are 0.5% of Cl2 in argon at 150 mbar and 4 mA discharge current. The measured 800 ± 30 K gas temperature of the microplasma, indicates that under these specific conditions, these two lines are dominantly Doppler broadened. So their profile is Gaussian shaped with full widths at half maximum of (4.7 ± 0.1) × 10-4 nm.

  19. ODS steel raw material local structure analysis using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cintins, A.; Anspoks, A.; Purans, J.; Kuzmin, A.; Timoshenko, J.; Vladimirov, P.; Gräning, T.; Hoffmann, J.

    2015-03-01

    Oxide dispersion strengthened (ODS) steels are promising materials for fusion power reactors, concentrated solar power plants, jet engines, chemical reactors as well as for hydrogen production from thermolysis of water. In this study we used X-ray absorption spectroscopy at the Fe and Cr K-edges as a tool to get insight into the local structure of ferritic and austenitic ODS steels around Fe and Cr atoms and its transformation during mechanical alloying process. Using the analysis of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) we found that for austenitic samples a transformation of ferritic steel to austenitic steel is detectable after 10 hours of milling and proceeds till 40 hours of milling; only small amount of a-phase remains after 80 hours of milling. We found that the Cr K-edge EXAFS can be used to observe distortions inside the material and to get an impression on the formation of chromium clusters. In-situ EXAFS experiments offer a reliable method to investigate the ferritic to austenitic transformation.

  20. Initial Results of Optical Vortex Laser Absorption Spectroscopy in the HYPER-I Device

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Asai, Shoma; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Ozawa, Naoya; Tanaka, Masayoshi; Morisaki, Tomohiro

    2015-11-01

    Optical vortex beams have a potential to make a new Doppler measurement, because not only parallel but perpendicular movement of atoms against the beam axis causes the Doppler shift of their resonant absorption frequency. As the first step of a proof-of-principle experiment, we have performed the optical vortex laser absorption spectroscopy for metastable argon neutrals in an ECR plasma produced in the HYPER-I device at the National Institute for Fusion Science, Japan. An external cavity diode laser (TOPTICA, DL100) of which center wavelength was 696.735 nm in vacuum was used for the light source. The Hermite-Gaussian (HG) beam was converted into the Laguerre-Gaussian (LG) beam (optical vortex) by a computer-generated hologram displayed on the spatial light modulator (Hamamatsu, LCOS-SLM X10468-07). In order to make fast neutral flow across the LG beam, a high speed solenoid valve system was installed on the HYPER-I device. Initial results including the comparison of absorption spectra for HG and LG beams will be presented. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.

  1. Direct single-mode fibre-coupled miniature White cell for laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kühnreich, Benjamin; Höh, Matthias; Wagner, Steven; Ebert, Volker

    2016-02-01

    We present the design, setup, and characterization of a new lens-free fibre-coupled miniature White cell for extractive gas analysis using direct tunable diode laser absorption spectroscopy (dTDLAS). The construction of this cell is based on a modified White cell design and allows for an easy variation of the absorption length in the range from 29 cm to 146 cm. The design avoids parasitic absorption paths outside the cell by using direct, lensless fibre coupling and allows small physical cell dimensions and cell volumes. To characterize the cell performance, different H2O and CH4 concentration levels were measured using dTDLAS. Detection limits of 2.5 ppm ṡ m for CH4 (at 1.65 μm) and 1.3 ppm ṡ m for H2O (at 1.37 μm) were achieved. In addition, the gas exchange time and its flow-rate dependence were determined for both species and found to be less than 15 s for CH4 and up to a factor of thirteen longer for H2O.

  2. Supercontinuum high-speed cavity-enhanced absorption spectroscopy for sensitive multispecies detection.

    PubMed

    Werblinski, Thomas; Lämmlein, Bastian; Huber, Franz J T; Zigan, Lars; Will, Stefan

    2016-05-15

    Cavity-enhanced absorption spectroscopy is promising for many applications requiring a very high concentration sensitivity but often accompanied by low temporal resolution. In this Letter, we demonstrate a broadband cavity-enhanced absorption spectrometer capable of detection rates of up to 50 kHz, based on a spatially coherent supercontinuum (SC) light source and an in-house-built, high-speed near-infrared spectrograph. The SC spectrometer allows for the simultaneous quantitative detection of CO2, C2H2, and H2O within a spectral range from 1420 to 1570 nm. Using cavity mirrors with a specified reflectivity of R=98.0±0.3% a minimal spectrally averaged absorption coefficient of αmin=1·10-5  cm-1 can be detected at a repetition rate of 50 kHz. PMID:27176993

  3. X-ray absorption spectroscopy measurements of thin foil heating by Z-pinch radiation.

    PubMed

    MacFarlane, J J; Bailey, J E; Chandler, G A; Deeney, C; Douglas, M R; Jobe, D; Lake, P; Nash, T J; Nielsen, D S; Spielman, R B; Wang, P; Woodruff, P

    2002-10-01

    Absorption spectroscopy measurements of the time-dependent heating of thin foils exposed to intense z-pinch radiation sources are presented. These measurements and their analysis provide valuable benchmarks for, and insights into, the radiative heating of matter by x-ray sources. Z-pinch radiation sources with peak powers of up to 160 TW radiatively heated thin plastic-tamped aluminum foils to temperatures approximately 60 eV. The foils were located in open slots at the boundary of z-pinch hohlraums surrounding the pinch. Time-resolved Kalpha satellite absorption spectroscopy was used to measure the evolution of the Al ionization distribution, using a geometry in which the pinch served as the backlighter. The time-dependent pinch radius and x-ray power were monitored using framing camera, x-ray diode array, and bolometer measurements. A three-dimensional view factor code, within which one-dimensional (1D) radiation-hydrodynamics calculations were performed for each surface element in the view factor grid, was used to compute the incident and reemitted radiation flux distribution throughout the hohlraum and across the foil surface. Simulated absorption spectra were then generated by postprocessing radiation-hydrodynamics results for the foil heating using a 1D collisional-radiative code. Our simulated results were found to be in good general agreement with experimental x-ray spectra, indicating that the spectral measurements are consistent with independent measurements of the pinch power. We also discuss the sensitivity of our results to the spectrum of the radiation field incident on the foil, and the role of nonlocal thermodynamic equilibrium atomic kinetics in affecting the spectra. PMID:12443339

  4. Time-resolved nonlinear polarization spectroscopy for measuring transient absorption and refraction in isotropic materials

    NASA Astrophysics Data System (ADS)

    Taranenko, Victor B.; Bazhenov, Vladimir Y.; Kulikovskaya, Olga A.

    1995-11-01

    A novel time-resolved nonlinear spectroscopic technique is described, which is based on stroboscopic registration of optical polarization transformation taking place at a vector incoherent two-wave mixing interaction in a modified Mach-Zehnder interferometer. It allows an accurate measuring of the dynamics of excitation and relaxation for real and imaginary parts of complex nonlinearity tensor components. The technique is demonstrated for measuring the light-induced change of transient absorption (delta) (alpha) e(t), (delta) (alpha) o(t) and refraction (delta) ne(t), (delta) no(t) for bacteriorhodopsin- based film pumped by linearly polarized laser pulses.

  5. Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Matsuba, Ayumi; Misono, Masatoshi

    2014-06-01

    Optical frequency combs are powerful tools for precise frequency measurements in various wavelength regions. The combs have been applied not only to metrology, but also to molecular spectroscopy. Recently, we studied high resolution spectroscopy of iodine molecule assisted by an optical frequency comb. In the study, the comb was used for frequency calibration of a scanning dye laser. In this study, we developed a frequency calibration scheme with a comb and an acousto-optic modulator to realize more precise frequency measurement in a wide frequency range. And the frequency calibration scheme was applied to Doppler-free two-photon absorption (DFTPA) spectroscopy of naphthalene. Naphthalene is one of the prototypical aromatic molecules, and its detailed structure and dynamics in excited states have been reported. We measured DFTPA spectra of A^1B1u(v4=1) ← X^1A_g(v=0) transition around 298 nm. A part of obtained spectra is shown in the figure. The spectral lines are rotationally resolved and the resolution is about 100 kHz. The horizontal axis was calibrated by the developed frequency calibration system employing the comb. The uncertainties of the calibrated frequencies were determined by the fluctuations of the comb modes which were stabilized to a GPS-disciplined clock. A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013).

  6. Detection of High Explosives Using Reflection Absorption Infrared Spectroscopy with Fiber Coupled Grazing Angle Probe/FTIR

    NASA Astrophysics Data System (ADS)

    Primera-Pedrozo, Oliva M.; Soto-Feliciano, Yadira M.; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.

    2009-06-01

    Fiber Optic Coupled Reflection/Absorption Infrared Spectroscopy (RAIRS) has been investigated as a potential technique for developing methodologies of detection and quantification of explosive residues on metallic surfaces. TNT, DNT, HMX, PETN, and Tetryl were detected at loading concentrations less than 400 ng/cm2. Data were analyzed using Chemometrics statistical analysis routines. In particular, partial least squares multivariate analysis (PLS) was used for quantification studies. Peak areas were also used for data analysis to compare with linear multivariate analysis. The measurements resulted in intense absorption bands in the fingerprint region of the infrared spectrum that were used to quantify the target threat chemicals and to calculate the limit of detection for each compound. Micro-RAIRS vibrational imaging was also used for characterization of the distribution and form of layers of explosives deposited on stainless steel sheets. The degree of homogeneity depended strongly on the method of deposition. The images were generated by calculating the area under vibrational signals of 15 μm × 15 μm grids with a separation of 15 μm. Histograms of the maps were generated and the homogeneity was evaluated by using standard deviations, mean kurtosis, skewness, and moments of distributions obtained. Methanol solutions of High Explosives (HE) resulted in the optimum distributions on the stainless steel surfaces tested and therefore, Methanol selected as the preferred solvent for the Fiber Optics Coupled-RAIRS experiments.

  7. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Namjou, K.; Roller, C. B.; Reich, T. E.; Jeffers, J. D.; McMillen, G. L.; McCann, P. J.; Camp, M. A.

    2006-11-01

    A liquid-nitrogen free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system equipped with a folded-optical-path astigmatic Herriott cell was used to measure levels of exhaled nitric oxide (eNO) and exhaled carbon dioxide (eCO2) in breath. Quantification of absolute eNO concentrations was performed using NO/CO2 absorption ratios measured by the TDLAS system coupled with absolute eCO2 concentrations measured with a non-dispersive infrared sensor. This technique eliminated the need for routine calibrations using standard cylinder gases. The TDLAS system was used to measure eNO in children and adults (n=799, ages 5 to 64) over a period of more than one year as part of a field study. Volunteers for the study self-reported data including age, height, weight, and health status. The resulting data were used to assess system performance and to generate eNO and eCO2 distributions, which were found to be log-normal and Gaussian, respectively. There were statistically significant differences in mean eNO levels for males and females as well as for healthy and steroid naïve asthmatic volunteers not taking corticosteroid therapies. Ambient NO levels affected measured eNO concentrations only slightly, but this effect was not statistically significant.

  8. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    PubMed Central

    Hong, Xinguo; Newville, Matthew; Prakapenka, Vitali B.; Rivers, Mark L.; Sutton, Stephen R.

    2009-01-01

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within ±3° relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO2 recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO2 glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO2 glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures. PMID:19655966

  9. Pump-Flow-Probe X-Ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems

    PubMed Central

    Smolentsev, Grigory; Guda, Alexander; Zhang, XIaoyi; Haldrup, Kristoffer; Andreiadis, Eugen; Chavarot-Kerlidou, Murielle; Canton, Sophie E.; Nachtegaal, Maarten; Artero, Vincent; Sundstrom, Villy

    2014-01-01

    A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-mM concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods, with Co K-edge probing were applied to the investigation of a cobaloxime-based photo-catalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well as the effect of sample degradation for these two setups are discussed. PMID:24443663

  10. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    SciTech Connect

    Hong, X.; Newville, M.; Prakapenka, V.B.; Rivers, M.L.; Sutton, S.R.

    2009-07-31

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within {+-}3{sup o} relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO{sub 2} recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO{sub 2} glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO{sub 2} glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.

  11. X-Ray Absorption Spectroscopy as a Probe of Microbial Sulfur Biochemistry: the Nature of Bacterial Sulfur Globules Revisited ▿

    PubMed Central

    George, Graham N.; Gnida, Manuel; Bazylinski, Dennis A.; Prince, Roger C.; Pickering, Ingrid J.

    2008-01-01

    The chemical nature of the sulfur in bacterial sulfur globules has been the subject of controversy for a number of years. Sulfur K-edge X-ray absorption spectroscopy (XAS) is a powerful technique for probing the chemical forms of sulfur in situ, but two groups have used it with very different conclusions. The root of the controversy lies with the different detection strategies used by the two groups, which result in very different spectra. This paper seeks to resolve the controversy. We experimentally demonstrate that the use of transmittance detection for sulfur K-edge XAS measurements is highly prone to spectroscopic distortions and that much of the published work on sulfur bacteria is very likely based on distorted data. We also demonstrate that all three detection methods used for X-ray absorption experiments yield essentially identical spectra when the measurements are carried out under conditions where no experimental distortions are expected. Finally, we turn to the original question—the chemical nature of bacterial sulfur. We examine isolated sulfur globules of Allochromatium vinosum and intact cells of a strain of magnetotactic coccus and show that XAS indicates the presence of a chemical form of sulfur resembling S8. PMID:18676668

  12. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  13. Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    2000-01-01

    A variable duty cycle quasi-cw frequency scanning technique was applied to reduce thermal effects resulting from the high heat dissipation of type I quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero-air background-subtraction technique to enhance detection sensitivity to a parts-in-10(9) (ppb) concentration level for spectroscopic trace-gas detection of CH4, N2O, H2O, and C2H5OH in ambient air at 7.9 micrometers. A new technique for analysis of dense high resolution absorption spectra was applied to detection of ethanol in ambient air, yielding a 125-ppb detection limit.

  14. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  15. Quantitative treatment of coarsely binned low-resolution recordings in molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Spietz, Peter; Martín, Juan Carlos Gómez; Burrows, John P.

    2006-06-01

    Optical multichannel detectors like photodiode arrays or CCD cameras combined with grating spectrometers are commonly used as detection systems in quantitative absorption spectroscopy. As a trade-off to broad spectral coverage, banded spectral features are sometimes recorded with insufficient spectral resolution and/or insufficiently fine detector binning. This renders the true physical spectrum of recorded intensities changed by instrumental and spectrum specific artefacts thus impeding comparability between results from different set-ups. In this work, it is demonstrated that in the case of a "well-behaved" - i.e. free of ro-vibronic structure - absorption band like the iodine monoxide IO(4 ← 0) transition, these effects can easily change the apparent peak absorption by up to 50%. Also deviations from the strict linearity (Beer-Lambert's law) between absorber concentration and apparent, i.e. pixelwise optical density occur. This can be critical in studies of chemical kinetics. It is shown that the observed non-linearity can cause errors of up to 50% in the determination of a second order rate coefficient for the IO self reaction. To overcome the problem, a consistent and rigorous integral approach for the treatment of intensity recordings is developed. Linearity between optical density and absorber concentration thereby is re-established. The method is validated using artificial test data as well as experimental data of the IO(4 ← 0) absorption transition, obtained in the context of I 2/O 3 photochemistry studies. The agreement is accurate to within ±2% (test data) and ±3% (experimental data) supporting the validity of the approach. Possible consequences for other spectroscopic work are indicated.

  16. Quantitative treatment of coarsely binned low-resolution recordings in molecular absorption spectroscopy.

    PubMed

    Spietz, Peter; Martín, Juan Carlos Gómez; Burrows, John P

    2006-06-01

    Optical multichannel detectors like photodiode arrays or CCD cameras combined with grating spectrometers are commonly used as detection systems in quantitative absorption spectroscopy. As a trade-off to broad spectral coverage, banded spectral features are sometimes recorded with insufficient spectral resolution and/or insufficiently fine detector binning. This renders the true physical spectrum of recorded intensities changed by instrumental and spectrum specific artefacts thus impeding comparability between results from different set-ups. In this work, it is demonstrated that in the case of a "well-behaved"--i.e. free of ro-vibronic structure--absorption band like the iodine monoxide IO(4<--0) transition, these effects can easily change the apparent peak absorption by up to 50%. Also deviations from the strict linearity (Beer-Lambert's law) between absorber concentration and apparent, i.e. pixelwise optical density occur. This can be critical in studies of chemical kinetics. It is shown that the observed non-linearity can cause errors of up to 50% in the determination of a second order rate coefficient for the IO self reaction. To overcome the problem, a consistent and rigorous integral approach for the treatment of intensity recordings is developed. Linearity between optical density and absorber concentration thereby is re-established. The method is validated using artificial test data as well as experimental data of the IO(4<--0) absorption transition, obtained in the context of I2/O3 photochemistry studies. The agreement is accurate to within +/-2% (test data) and +/-3% (experimental data) supporting the validity of the approach. Possible consequences for other spectroscopic work are indicated. PMID:16387540

  17. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO{sub 2}

    SciTech Connect

    Patridge, Christopher J.; Swider-Lyons, Karen E.; Twigg, Mark E.; Ramaker, David E.

    2013-07-15

    The local structure of nanoscale (∼10–40 nm) LiCoO{sub 2} is monitored during electrochemical cycling utilizing in-situ X-ray absorption spectroscopy (XAS). The high surface area of the LiCoO{sub 2} nanoparticles not only enhances capacity fade, but also provides a large signal from the particle surface relative to the bulk. Changes in the nanoscale LiCoO{sub 2} metal-oxide bond lengths, structural disorder, and chemical state are tracked during cycling by adapting the delta mu (Δμ) technique in complement with comprehensive extended X-ray absorption fine structure (EXAFS) modeling. For the first time, we use a Δμ EXAFS method, and by comparison of the difference EXAFS spectra, extrapolate significant coordination changes and reduction of cobalt species with cycling. This combined approach suggests Li–Co site exchange at the surface of the nanoscale LiCoO{sub 2} as a likely factor in the capacity fade and irreversible losses in practical, microscale LiCoO{sub 2}. - Graphical abstract: Electrochemical cycling of Li-ion batteries has strong impact on the structure and integrity of the cathode active material particularly near the surface/electrolyte interface. In developing a new method, we have used in-situ X-ray absorption spectroscopy during electrochemical cycling of nanoscale LiCoO{sub 2} to track changes during charge and discharge and between subsequent cycles. Using difference spectra, several small changes in Co-O bond length, Co-O and Co-Co coordination, and site exchange between Co and Li sites can be tracked. These methods show promise as a new technique to better understand processes which lead to capacity fade and loss in Li-ion batteries. - Highlights: • A new method is developed to understand capacity fade in Li-ion battery cathodes. • Structural changes are tracked during Li intercalation/deintercalation of LiCoO{sub 2}. • Surface structural changes are emphasized using nanoscale-LiCoO{sub 2} and difference spectra. • Full multiple

  18. Mercury Speciation by X-ray Absorption Fine Structure Spectroscopy and Sequential Chemical Extractions: A Comparison of Speciation Methods

    USGS Publications Warehouse

    Kim, C.S.; Bloom, N.S.; Rytuba, J.J.; Brown, Gordon E., Jr.

    2003-01-01

    Determining the chemical speciation of mercury in contaminated mining and industrial environments is essential for predicting its solubility, transport behavior, and potential bioavailability as well as for designing effective remediation strategies. In this study, two techniques for determining Hg speciation-X-ray absorption fine structure (XAFS) spectroscopy and sequential chemical extractions (SCE)-are independently applied to a set of samples with Hg concentrations ranging from 132 to 7539 mg/kg to determine if the two techniques provide comparable Hg speciation results. Generally, the proportions of insoluble HgS (cinnabar, metacinnabar) and HgSe identified by XAFS correlate well with the proportion of Hg removed in the aqua regia extraction demonstrated to remove HgS and HgSe. Statistically significant (> 10%) differences are observed however in samples containing more soluble Hg-containing phases (HgCl2, HgO, Hg3S2O 4). Such differences may be related to matrix, particle size, or crystallinity effects, which could affect the apparent solubility of Hg phases present. In more highly concentrated samples, microscopy techniques can help characterize the Hg-bearing species in complex multiphase natural samples.

  19. Ligand-field symmetry effects in Fe(II) polypyridyl compounds probed by transient X-ray absorption spectroscopy

    SciTech Connect

    Cho, Hana; Strader, Matthew L.; Hong, Kiryong; Jamula, Lindsey; Kim, Tae Kyu; Groot, Frank M. F. de; McCusker, James K.; Schoenlein, Robert W.; Huse, Nils

    2012-02-28

    Ultrafast excited-state evolution in polypyridyl FeII complexes are of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved x-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpin the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these x-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the x-ray water window.

  20. Simultaneous Two-Photon Absorption to Gerade Excited Singlet States of Diphenylacetylene and Diphenylbutadiyne Using Optical-Probing Photoacoustic Spectroscopy.

    PubMed

    Isozaki, Tasuku; Oba, Hikari; Ikoma, Tadaaki; Suzuki, Tadashi

    2016-08-11

    Simultaneous two-photon absorption to one-photon forbidden electronically excited states of diphenylacetylene (DPA) and diphenylbutadiyne (DPB) was investigated by means of highly sensitive optical-probing photoacoustic spectroscopy. The incident laser power dependencies on photoacoustic signal intensity indicate that the signals are dominated by the two-photon absorption regime. Two-photon absorption is responsible for transitions to gerade excited states based on the selection rule. The two-photon absorption bands observed in the heat action spectra were assigned with the aid of quantum chemical calculations. The relative magnitude of the two-photon absorption cross sections of DPA and DPB was estimated, and the larger two-photon absorption cross section of DPB was related to the resonance effect with the red-shifted one-photon allowed 1(1)B1u ← 1(1)Ag transition of DPB. PMID:27410388

  1. Measurement of atmospheric oxygen concentration by near-infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoffnagle, J.

    2013-12-01

    Variations in the concentration of molecular oxygen in the atmosphere have been shown to provide important constraints on the global carbon dioxide budget (1). Numerous technologies have been explored to measure oxygen concentration, including detection of paramagnetism, gas chromatography, fuel cells, mass spectroscopy, interferometry, and absorption spectroscopy from the UV to IR. Geophysical applications impose severe demands on the precision of an oxygen concentration sensor. Oxygen variations are conventionally expressed using the delta notation applied to the O2/N2 ratio; a change of approximately 5 per meg in delta corresponds to a 1 ppm change in the atmospheric mole fraction of oxygen. Because of the large resevoir of oxygen in the atmosphere, variations of oxygen concentration are small and measurement precision on the order of several per meg is needed to extract geophysically useful information. We describe an instrument that determines the oxygen content of an atmospheric sample by using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) to measure an absorption line in the 1.2 micron band of the oxygen molecule. The CRDS method provides very high precision measurements of the optical absorption coefficient, better than 0.1 ppb/cm in 1 s measurement time, and large dynamic range. The sample temperature and pressure are stabilized to better than 5 mK and 2 Pa, respectively. The precision of the oxygen concentration measurement was characterized by the Allan variance of repeated measurements of a tank of dry air. For a 5 minute averaging period, the Allan variance of the concentration was 1 ppm. Moreover, the Allan variance continued to decline for longer time scales, reaching 0.4 ppm (corresponding to 2 per meg in delta of O2/N2) after one hour. This work demonstrates the possibility of spectroscopic measurement of molecular oxygen concentration with high precision on the time scale of minutes and good long term stability. 1. R. F. Keeling and S

  2. Evidence for core–shell nanoclusters in oxygen dispersion strengthened steels measured using X-ray absorption spectroscopy

    SciTech Connect

    Liu, S.; Odette, G. R.; Segre, C. U.

    2014-02-01

    Nanostructured ferritic alloys (NFA) dispersion strengthened by an ultra high density of Y–Ti–O enriched nano-features (NF) exhibit superior creep strength and the potential for high resistance to radiation damage. However, the detailed character of the NF, that precipitate from solid solution during hot consolidation of metallic powders mechanically alloyed with Y₂O₃, are not well understood. In order to clarify the nature of the NF, X-ray absorption spectroscopy (XAS) technique, including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were used to characterize the local structure of the Ti and Y atoms in both NFA powders and consolidated alloys. The powders were characterized in the as-received, as-milled and after annealing milled powders at 850, 1000 and 1150 °C. The consolidated alloys included powders hot isostatic pressed (HIPed) at 1150 °C and commercial vendor alloys, MA957 and J12YWT. The NFA XAS data were compared various Ti and Y-oxide standards. The XANES and EXAFS spectra for the annealed and HIPed powders are similar and show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y₂Ti₂O₇ and, especially, TiO. However, the MA957 and J12YWT and annealed–consolidated powder data differ. The commercial vendor alloys results more closely resemble the as-milled powder data and all show that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix.

  3. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    PubMed

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-01

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper. PMID:24049768

  4. [Ammonia gas concentration and velocity measurement using tunable diode laser absorption spectroscopy and optical signal cross-correlation method].

    PubMed

    Zhang, Chun-Xiao; Wang, Fei; Li, Ning; Yan, Jian-Hua; Chi, Yong; Cen, Ke-Fa

    2009-10-01

    Simultaneous online measurement of gas concentration and velocity can be realized by tunable diode laser absorption spectroscopy (TDLAS) technique and optical signal cross-correlation method. The fundamental and relative factors of gas concentration and velocity measurement are described in the present paper. The spectral lines of NH3 used for gas sensing at communication band in near infrared range were selected and analyzed by the calculation based on the HITRAN database. In the verification experiment, NH3 and N2 were mixed by two mass flow meters and sent to flow through the quartz tube 0. 016 m in inner diameter and 1 m in length at normal temperature and pressure. The spectral line located at 6,548.7 cm(-1) was scanned at high frequency by the diode laser of 15 MHz linewidth and 1 cm' tunable range with no mode hoppings. The instantaneous NH3 absorbance was obtained using direct absorption method and the gas concentration was calculated. At the same time, the non-intrusive optical absorption signal cross-correlation method was utilized to obtain two concentration signals from two adjacent detectors mounted along the gas tube. The corresponding transit time of gas passing through the detectors was calculated by cross-correlation algorithm, and the average gas velocity was inferred according to the distance between the two detectors and the transit time. The relative errors were less than 7% for the gas concentration measurement, and less than 10% for the gas velocity measurement. Experimental results were proved to be of high precision and good repeatability in the lab. The feature of fast response and capacity immune to the in situ disturbance would lead to a potential in industry application for the real time measurement and control of gas pollutant emission in the future. PMID:20038016

  5. The determination of absorption cross sections and line profiles in vibrational overtone spectra with the use of intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bettermann, H.; Kleist, E.; Kok, R.

    1993-03-01

    This contribution presents quantitative absorption data concerning the 7 th CH overtone stretching vibrations of n-hexane and of methylcyclopentane. The transitions are adapted to Lorentzian and Gaussian line shapes. The bank shape analyses yield the spectral positions, absorption cross sections and linewidths of the investigated transitions.

  6. Measurement of absolute minority species concentration and temperature in a flame by the photothermal deflection spectroscopy technique.

    PubMed

    Li, Yunjing; Gupta, Rajendra

    2003-04-20

    It is experimentally demonstrated that absolute concentrations of minority species in flames can be measured by the photothermal deflection spectroscopy (PTDS) technique. In addition, the PTDS signal simultaneously yields the flame temperature the measurement point. Absolute concentration profiles of OH have been measured in a flat-flame burner with methane as fuel. The PTDS measurements agree well with those obtained independently by the absorption technique. The flame temperature measurements by PTDS are also in good agreement with those obtained by the Boltzmann distribution among the rotational levels of OH. PMID:12716166

  7. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy

    PubMed Central

    Silatani, Mahsa; Lima, Frederico A.; Penfold, Thomas J.; Rittmann, Jochen; Reinhard, Marco E.; Rittmann-Frank, Hannelore M.; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J.; Chergui, Majed

    2015-01-01

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein’s function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump–probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center. PMID:26438842

  8. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Soejima, Narumasa; Iwasaki, Shiro; Nomoto, Toyokazu; Murai, Takaaki; Kimoto, Yasuji

    2015-11-01

    A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si3N4/SiO2/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  9. Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Medhi, G.; Muravjov, A. V.; Saxena, H.; Fredricksen, C. J.; Brusentsova, T.; Peale, R. E.; Edwards, O.

    2011-06-01

    Intracavity Laser Absorption Spectroscopy (ICLAS) at IR wavelengths offers an opportunity for spectral sensing with sufficient sensitivity to detect vapors of low vapor pressure compounds such as explosives. Reported here are key enabling technologies for this approach, including multi-mode external-cavity quantum cascade lasers and a scanning Fabry-Perot spectrometer to analyze the laser mode spectrum in the presence of a molecular intracavity absorber. Reported also is the design of a compact integrated data acquisition and control system. Applications include military and commercial sensing for threat compounds, chemical gases, biological aerosols, drugs, and banned or invasive plants or animals, bio-medical breath analysis, and terrestrial or planetary atmosphere science.

  10. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  11. Broadband femtosecond transient absorption spectroscopy for a CVD Mo S2 monolayer

    NASA Astrophysics Data System (ADS)

    Aleithan, Shrouq H.; Livshits, Maksim Y.; Khadka, Sudiksha; Rack, Jeffrey J.; Kordesch, Martin E.; Stinaff, Eric

    2016-07-01

    Carrier dynamics in monolayer Mo S2 have been investigated using broadband femtosecond transient absorption spectroscopy (FTAS). A tunable pump pulse was used while a broadband probe pulse revealed ground and excited state carrier dynamics. Interestingly, for pump wavelengths both resonant and nonresonant with the A and B excitons, we observe a broad ground state bleach around 2.9 eV, with decay components similar to A and B. Associating this bleach with the band nesting region between K and Γ in the band structure indicates significant k-space delocalization and overlap among excitonic wave functions identified as A, B, C, and D. Comparison of time dynamics for all features in resonance and nonresonance excitation is consistent with this finding.

  12. Electronic absorption spectroscopy of polycyclic aromatic hydrocarbons (PAHs) radical cations generated in oleum: A superacid medium

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Iglesias-Groth, Susana; Manchado, Arturo

    2010-12-01

    Oleum (fuming sulphuric acid), a well known superacid, was used as medium for the generation of the radical cation of a series of selected PAHs. The resulting radical cation spectra were studied by electronic absorption spectroscopy. Not only common PAHs like naphthalene, anthracene, tetracene, pentacene, perylene, pyrene, benzo[ a]pyrene, phenanthrene and picene were studied but also the less common and very large PAHs relevant also for the astrochemical research, like coronene, hexabenzocoronene, quaterrylene, dicoronylene and a coronene oligomer. A correlation between the first ionization potential ( IP1) of the PAHs studied and the energy to the so-called A-type band of the radical cations observed in oleum has led to the equation IP1 = 1.30 EA + 4.39 (in eV) which permits to estimate the energy of the PAHs radical cation transition ( EA) in the VIS-NIR knowing the relative ionization potential or vice versa.

  13. Gas cell for in situ soft X-ray transmission-absorption spectroscopy of materials

    SciTech Connect

    Drisdell, W. S.; Kortright, J. B.

    2014-07-15

    A simple gas cell design, constructed primarily from commercially available components, enables in situ soft X-ray transmission-absorption spectroscopy of materials in contact with gas at ambient temperature. The cell has a minimum X-ray path length of 1 mm and can hold gas pressures up to ∼300 Torr, and could support higher pressures with simple modifications. The design enables cycling between vacuum and gas environments without interrupting the X-ray beam, and can be fully sealed to allow for measurements of air-sensitive samples. The cell can attach to the downstream port of any appropriate synchrotron beamline, and offers a robust and versatile method for in situ measurements of certain materials. The construction and operation of the cell are discussed, as well as sample preparation and proper spectral analysis, illustrated by examples of spectral measurements. Potential areas for improvement and modification for specialized applications are also mentioned.

  14. Uranium and thorium sorption on minerals studied by x-ray absorption spectroscopy

    SciTech Connect

    Hudson, E.A.; Terminello, L.J.; Viani, B.E.

    1995-12-01

    Several actinide-mineral sorption systems were studied by uranium and thorium L{sub 3}-edge x-ray absorption spectroscopy. A series of layer silicate minerals, including micas, were selected for their systematic variations in surface structure, e.g. degree of permanent negative charge on the basal planes. An expansible layer silicate, vermiculite, was treated to provide several different interlayer spacings, allowing variations in the accessibility of interior cation exchange sites. The finely powdered minerals were exposed to aqueous solutions of uranyl chloride or thorium chloride. Analysis of the EXAFS and XANES spectra indicates the influence of the mineral substrate upon the local structure of the bound actinide species. Trends in the data are interpreted based upon the known variations in mineral structure.

  15. Xe nanocrystals in Si studied by x-ray absorption fine structure spectroscopy

    SciTech Connect

    Faraci, Giuseppe; Pennisi, Agata R.; Zontone, Federico

    2007-07-15

    The structural configuration of Xe clusters, obtained by ion implantation in a Si matrix, has been investigated as a function of the temperature by x-ray absorption fine structure spectroscopy. In contrast with previous results, we demonstrate that an accurate analysis of the data, using high order cumulants, gives evidence of Xe fcc nanocrystals at low temperature, even in the as-implanted Si; expansion of the Xe lattice is always found as a function of the temperature, with no appreciable overpressure. We point out that a dramatic modification of these conclusions can be induced by an incorrect analysis using standard symmetrical pair distribution function G(r); for this reason, all the results were checked by x-ray diffraction measurements.

  16. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals, Final Technical Report

    DOE R&D Accomplishments Database

    Curl, Robert F.; Glass, Graham P.

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  17. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  18. Capturing molecular structural dynamics by 100 ps time-resolved X-ray absorption spectroscopy.

    PubMed

    Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Tomita, Ayana; Chollet, Matthieu; Ichikawa, Hirohiko; Fujii, Hiroshi; Adachi, Shin Ichi; Koshihara, Shin Ya

    2009-01-01

    An experimental set-up for time-resolved X-ray absorption spectroscopy with 100 ps time resolution at beamline NW14A at the Photon Factory Advanced Ring is presented. The X-ray positional active feedback to crystals in a monochromator combined with a figure-of-merit scan of the laser beam position has been utilized as an essential tool to stabilize the spatial overlap of the X-ray and laser beams at the sample position. As a typical example, a time-resolved XAFS measurement of a photo-induced spin crossover reaction of the tris(1,10-phenanthrorine)iron(II) complex in water is presented. PMID:19096182

  19. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    SciTech Connect

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  20. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    SciTech Connect

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%, which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  1. Visualizing interfacial charge transfer in dye sensitized nanoparticles using x-ray transient absorption spectroscopy.

    SciTech Connect

    Zhang, X. Y.; Smolentsev, G.; Guo, J.; Attenkofer, K.; Kurtz, C.; Jennings, G.; Lockard, J. V.; Stickrath, A. B.; Chen, L. X.

    2011-01-01

    A molecular level understanding of the structural reorganization accompanying interfacial electron transfer is important for rational design of solar cells. Here we have applied XTA (X-ray transient absorption) spectroscopy to study transient structures in a heterogeneous interfacial system mimicking the charge separation process in dye-sensitized solar cell (DSSC) with Ru(dcbpy){sub 2}(NCS){sub 2} (RuN3) dye adsorbed to TiO{sub 2} nanoparticle surfaces. The results show that the average Ru-NCS bond length reduces by 0.06 {angstrom}, whereas the average Ru-N(dcbpy) bond length remains nearly unchanged after the electron injection. The differences in bond-order change and steric hindrance between two types of ligands are attributed to their structural response in the charge separation. This study extends the application of XTA into optically opaque hybrid interfacial systems relevant to the solar energy conversion.

  2. Laser absorption spectroscopy diagnostics of helium metastable atoms generated in dielectric barrier discharge cryoplasmas

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Muneoka, Hitoshi; Stauss, Sven; Sakai, Osamu; Terashima, Kazuo

    2015-10-01

    Cryoplasmas, which are plasmas whose gas temperatures are below room temperature (RT), have shown dynamic changes in their physical and chemical characteristics when the gas temperature in the plasmas (Tgp) was decreased from RT. In this study, we measured the temporal behavior of helium metastable (Hem) atoms generated in a parallel-plate dielectric barrier discharge at ambient gas temperatures (Tga) of 300, 100, and 14 K and with a gas density similar to atmospheric conditions by laser absorption spectroscopy. The increments of Tgp to Tga were less than 20 K. We found from the results that the Hem lifetime and maximum density become longer and larger over one order of magnitude for lower Tga. The reasons for the long Hem lifetime at low Tga are decreases in the rate coefficients of three-body Hem quenching reactions and in the amounts of molecular impurities with boiling points higher than that of He.

  3. Localized high spin states in transition-metal dimers: X-ray absorption spectroscopy study

    SciTech Connect

    Lau, J. T.; Hirsch, K.; Langenberg, A.; Probst, J.; Richter, R.; Rittmann, J.; Vogel, M.; Zamudio-Bayer, V.; Moeller, T.; Issendorff, B. von

    2009-06-15

    X-ray absorption spectroscopy provides direct evidence for localized valence electrons in Cr{sub 2}{sup +}, Mn{sub 2}{sup +}, and CrMn{sup +} dimer cations. Bonding in these transition-metal molecules is predominantly mediated by 4s electrons. This behavior is markedly different from other 3d transition-metal dimers with open 3d subshells and can be ascribed to the highly stable 3d{sup 5}({sup 6}S) configuration of the 3d subshell in chromium and manganese atoms and ions. In Cr{sub 2}{sup +}, Mn{sub 2}{sup +}, and CrMn{sup +}, 3d electron localization indicates local high spin states.

  4. [Air pollutants study by differential optical absorption spectroscopy with transmit-receive fibers].

    PubMed

    Wei, Yong-Jie; Geng, Xiao-Juan; Chen, Bo; Liu, Cui-Cui; Chen, Wen-Liang

    2013-10-01

    The differential optical absorption spectroscopy system is presented to monitor air pollutants, such as SO2, NO2, etc. The system employs a reflective telescope to collimate light source and focus absorbed light. A combined transmitting and receiving fiber bundle is set to the focus of a concave mirror. A Xenon lamp works as the light source. The light is coupled into the transmitting fiber, and then collimated by the reflective telescope system. After absorbed by the pollutants, the light is reflected by a pyramid mirror far away the telescope. Then the absorbed light is incident on the concave mirror the second time, and focused on the focal plane again. The receiving fiber induces the light which carries the information of the measured gas into a spectrometer. We can get the concentration of the pollutants by DOAS algorithm. Experimental results show that the proposed method can be adopted to measure some pollutants in air quality monitoring. PMID:24409736

  5. [Studies on the remote measurement of the emission of formaldehyde by mobile differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-Cheng; Xie, Pin-Hua; Li, Ang; Si, Fu-Qi; Dou, Ke; Liu, Yu; Xu, Jin; Wang, Jie

    2011-11-01

    Formaldehyde (HCHO) is the most abundant carbonyl compounds that play an important role in atmospheric chemistry and photochemical reactions. Formaldehyde is an important indicator of atmospheric reactivity and urban atmospheric aerosol precursors. In the present paper, the emission of formaldehyde from chemical area was measured using the mobile differential optical absorption spectroscopy (DOAS). This instrument uses the zenith scattered sunlight as the light source with successful sampling in the area loop. Vertical column density was retrieved by this system, combined with the meteorological wind field and car speed information, the emission of formaldehyde in the area was estimated. The authors carried out the measuring experiment in one chemical plant in Beijing using this technology. The result showed that the average value of the flux of formaldehyde in this area was 605 kg x h(-1) during the measuring period. PMID:22242505

  6. Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials

    SciTech Connect

    Pelliccione, CJ; Timofeeva, EV; Katsoudas, JP; Segre, CU

    2014-12-01

    In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC.

  7. X-ray absorption/emission line spectroscopy of the Galactic hot gaseous halo

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    2016-04-01

    There is an ongoing debate as to whether or not the Milky Way is surrounded by a large-scale, massive corona. Vastly different conclusions as to its extent and mass have been drawn from existing studies based on X-ray absorption and/or emission line spectroscopy. I will discuss my assessment of this issue, focusing on various uncertainties and potential problems in the present data, analyses, results, and interpretations.In particular, I will examine how different assumptions about the temperature distribution of the corona affect the inference of its physical scale. I will also discuss the external perspectives of galactic coronae obtained form observing nearby highly-inclined disk galaxies.

  8. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    SciTech Connect

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-10-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here two-dimensional atomic dysprosium density profiles are measured by means of laser absorption spectroscopy; the order of magnitude of the density is 10{sup 22} m{sup -3}. The radially resolved atomic density measurements show a hollow density profile. In the outer parts of the lamp molecules dominate, while the center is depleted of dysprosium atoms due to ionization. From the axial profiles the segregation parameter is determined. It is shown that the lamp operates on the right-hand side of the Fischer curve [J. Appl. Phys. 47, 2954 (1976)], i.e., a larger convection leads to less segregation.

  9. Structural analysis of sulfur in natural rubber using X-ray absorption near-edge spectroscopy.

    PubMed

    Pattanasiriwisawa, Wanwisa; Siritapetawee, Jaruwan; Patarapaiboolchai, Orasa; Klysubun, Wantana

    2008-09-01

    X-ray absorption near-edge spectroscopy (XANES) has been applied to natural rubber in order to study the local environment of sulfur atoms in sulfur crosslinking structures introduced in the vulcanization process. Different types of chemical accelerators in conventional, semi-efficient and efficient vulcanization systems were investigated. The experimental results show the good sensitivity and reproducibility of XANES to characterize the local geometry and electronic environment of the sulfur K-shell under various conditions of vulcanization and non-vulcanization of natural rubber. Several applications of XANES in this study demonstrate an alternative way of identifying sulfur crosslinks in treated natural rubber based on differences in their spectra and oxidation states. PMID:18728323

  10. Electronic Structure of Transition Metal-Cysteine Complexes From X-Ray Absorption Spectroscopy

    SciTech Connect

    Leung, B.O.; Jalilehvand, F.; Szilagyi, R.K.

    2009-05-19

    The electronic structures of Hg{sup II}, Ni{sup II}, Cr{sup III}, and Mo{sup V} complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.

  11. The irradiation of ammonia ice studied by near edge x-ray absorption spectroscopy

    SciTech Connect

    Parent, Ph.; Bournel, F.; Lasne, J.; Laffon, C.; Carniato, S.; Lacombe, S.; Strazzulla, G.; Gardonio, S.; Lizzit, S.; Kappler, J.-P.; Joly, L.

    2009-10-21

    A vapor-deposited NH{sub 3} ice film irradiated at 20 K with 150 eV photons has been studied with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen K-edge. Irradiation leads to the formation of high amounts (12%) of molecular nitrogen N{sub 2}, whose concentration as a function of the absorbed energy has been quantified to 0.13 molecule/eV. The stability of N{sub 2} in solid NH{sub 3} has been also studied, showing that N{sub 2} continuously desorbs between 20 and 95 K from the irradiated ammonia ice film. Weak concentrations (<1%) of other photoproducts are also detected. Our NEXAFS simulations show that these features own to NH{sub 2}, N{sub 2}H{sub 2}, and N{sub 3}{sup -}.

  12. Diffuse-light absorption spectroscopy by fiber optics for detecting and quantifying the adulteration of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-09-01

    A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.

  13. Charge Carrier Dynamics in Transition Metal Oxides Studied by Femtosecond Transient Extreme Ultraviolet Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Chang-Ming

    With the ability to disentangle electronic transitions that occur on different elements and local electronic structures, time-resolved extreme ultraviolet (XUV) spectroscopy has emerged as a powerful tool for studying ultrafast dynamics in condensed phase systems. In this dissertation, a visible-pump/XUV-probe transient absorption apparatus with femtosecond resolution was constructed to investigate the carrier relaxation dynamics in semiconductors after photo-excitation. This includes timescales for carrier thermalization by carrier-carrier and carrier-phonon scattering. The 30 -- 72 eV photon energy coverage (17 -- 40 nm wavelength) generated by a table-top XUV light source is suitable for probing the 3p-to-3d core level absorptions of various transition metal oxides (TMOs) with specificities to elements and oxidation states. In Chapter 1, a brief introduction to charge carrier dynamics in semiconductor-based materials is given. In addition, fundamentals of core-level spectroscopy and the high harmonic generation (HHG) process are also addressed in this introductory chapter. Specifications of the experimental apparatus that was constructed are summarized in Chapter 2, including the design concepts and characterization of performance. Chapter 3 presents the spectral tunability of the XUV pulses generated from a semi-infinite gas cell (SIGC), as well as the data acquisition procedures. Charge carrier relaxation dynamics in Co3O4 following the charge transfer excitation pathway at 400 nm are documented in Chapter 4. In Chapter 5, various visible pump wavelengths are used to excite Co3O4 and the differences in the carrier dynamics versus excitation wavelength are considered. After selectively photoexciting a Si/TiO2 heterojunction, the resulted electron transfer process is observed and reported in Chapter 6. The concluding remarks of the dissertation are made in Chapter 7, while several ongoing time-resolved experiments are addressed in the Appendix sections.

  14. Broadband absorption and emission millimeter-wave spectroscopy between 220 and 325 GHz

    NASA Astrophysics Data System (ADS)

    Szymkiewicz, Michael; Hülsmann, Axel; Tessmann, Axel; Schlechtweg, Michael; Leuther, Arnulf; Ambacher, Oliver; Koch, Stefan; Riedel, Matthias; Kallfass, Ingmar

    2013-05-01

    A millimeter-wave spectroscope for the detection of triatomic gases has been constructed and characterized for frequencies between 230 and 325 GHz (H-band). The achieved results demonstrate a high sensitivity and low threshold detection. A circular lensed horn antenna transmits millimeter- waves into a gas-filled vacuum tube and excites triatomic gas molecules to a higher energy level, if the rotational resonance frequency of the molecule matches with the excitation frequency. At the other end of the tube a second lensed horn antenna receives the propagated electromagnetic wave and the millimeter-wave power is measured by a heterodyne receiver. By sweeping the radiated transmit frequency, the molecules' specific absorption can be detected. The measured absorption results are superimposed by standing wave effects within the tube. To eliminate the standing wave effects, spectroscopy on the basis of rotational spontaneous millimeter-wave emission was examined. This kind of spectroscopy decouples the transmitted from the received signal, whereby independent excitation and detection of the molecules are realized. The use of additional absorbers at the end of the gas tube decreases the decay time of the radiated wave inside the gas cell. In this paper, the detection of spontaneous emission of triatomic gas molecules with the use of a pulse-controlled transmitter and receiver is shown. Optimizations improved the stability and reproducibility of the measurements, and the detection threshold of nitrous oxide could be decreased to a ratio of 1/400. Furthermore, the implementation of a differential measurement method reduces the measurement time by a factor of 150 and simultaneously decouples of environmental influences.

  15. Investigation of Exploding Wire Plasmas Using High Resolution Point Projection X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick

    2011-10-01

    We have determined the properties of plasma around and between two exploding wires using high-resolution x-ray absorption spectroscopy. Plasma densities and temperatures ranging from 1020 cm-3 and a few eV to 1017 cm-3 and 30 eV have been measured in experiments at Cornell University with two 25 μm aluminum (Al) wires spaced 1 mm apart driven by ~ 100 kA peak current pulses with 50 - 100 ns rise time. The wire plasma was backlit by the 1 . 4 - 1 . 6 keV continuum radiation produced by a Mo wire X-pinch. The spectrometer employed two spherically bent quartz crystals to record the absorption and backlighter spectra simultaneously. The transition between the dense Al wire core and the coronal plasma is seen as a transition from cold K-edge absorption to Mg-, Na- and finally Ne-like absorption at the boundary. In the plasma that accumulates between the wires, ionization states up to Be-Like Al have been seen. The spectrometer geometry and ~ 2 μm X-pinch source size provide 0 . 3 eV spectral resolution and 20 μm spatial resolution, enabling us to see 1 --> 2 satellite transitions as separate lines as well as O-, F- and N-like 1 --> 3 transitions that have not been seen before. A step wedge was used to calibrate the transmission, enabling density to be measured within 50 % and temperature to be measured within 25 % . A genetic algorithm was developed to fit synthetic spectra calculated using the collisional-radiative code SCRAM to the experimental spectra. In order to obtain agreement it was necessary to assume 3 plasma regions with variable thicknesses, thereby allowing the inferred plasma conditions to vary along the absorption path. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the National Nuclear Security Administration under DE-AC04-94AL85000 This research was carried out at Cornell University sponsored by the NNSA Stewardship Science Academic Alliances program under DOE agreement DE-FC03-02NA00057.

  16. Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements

    NASA Astrophysics Data System (ADS)

    Lewicki, Rafal; Kosterev, Anatoliy A.; Toor, Fatima; Yao, Yu; Gmachl, Claire; Tsai, Tracy; Wysocki, Gerard; Wang, Xiaojun; Troccoli, Mariano; Fong, Mary; Tittel, Frank K.

    2010-01-01

    The ν1+ν3 combination band of uranium hexafluoride (UF6) is targeted to perform analytical enrichment measurements using laser absorption spectroscopy. A high performance widely tunable EC-QCL sources emitting radiation at 7.74 μm (1291 cm-1) is employed as an UF6-LAS optical source to measure the unresolved rotational-vibrational spectral structure of several tens of wavenumbers (cm-1). A preliminary spectroscopic measurement based on a direct laser absorption spectroscopy of methane (CH4) as an appropriate UF6 analyte simulant, was demonstrated.

  17. Extending differential optical absorption spectroscopy for limb measurements in the UV

    NASA Astrophysics Data System (ADS)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2010-05-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations. For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis

  18. In Situ X-Ray Absorption Spectroscopy Study of the LiNiO2 Electrode

    NASA Astrophysics Data System (ADS)

    Mansour, A. N.; McBreen, J.; Melendres, C. A.

    1997-03-01

    LiNiO2 is one of the most promising active material for the development of novel 4V rechargeable lithium batteries. Recent x-ray diffraction studies showed that the electrochemical reactivity of this electrode is sensitive to the structure of the starting material as well as the charged products. To further examine this material, we have conducted an x-ray absorption spectroscopy (XAS) study to determine the structure of this electrode as a function of its charge state. Specifically, the x-ray absorption Ni K-edge energy, the pre-edge structure, and local structure parameters such as bond lengths, coordination numbers and disorders were investigated at various states of charge corresponding to Li_(1-x)NiO2 for x values of 0.0, 0.11, 0.23, 0.34, 0.45, 0.82, and 0.99. The charging which proceeds via lithium de-intercalation was conducted using constant current anodization at 0.5 mA in a non aqueous electrolyte consisting of 1M LiPF6 in 1:1:3 propylene ! carbonate, ethylene carbonate and dimethyl carbonate. The XAS results for this electrode will be compared with those of γ-NiOOH and KNiIO_6, the latter being used as a reference for quadrivalent nickel.

  19. Millisecond Kinetics of Nanocrystal Cation Exchange UsingMicrofluidic X-ray Absorption Spectroscopy

    SciTech Connect

    Chan, Emory M.; Marcus, Matthew A.; Fakra, Sirine; Elnaggar,Mariam S.; Mathies, Richard A.; Alivisatos, A. Paul

    2007-05-07

    We describe the use of a flow-focusing microfluidic reactorto measure the kinetics of theCdSe-to-Ag2Se nanocrystal cation exchangereaction using micro-X-ray absorption spectroscopy (mu XAS). The smallmicroreactor dimensions facilitate the millisecond mixing of CdSenanocrystal and Ag+ reactant solutions, and the transposition of thereaction time onto spatial coordinates enables the in situ observation ofthe millisecond reaction with mu XAS. XAS spectra show the progression ofCdSe nanocrystals to Ag2Se over the course of 100 ms without the presenceof long-lived intermediates. These results, along with supporting stoppedflow absorption experiments, suggest that this nanocrystal cationexchange reaction is highly efficient and provide insight into how thereaction progresses in individual particles. This experiment illustratesthe value and potential of in situ microfluidic X-ray synchrotrontechniques for detailed studies of the millisecond structuraltransformations of nanoparticles and other solution-phase reactions inwhich diffusive mixing initiates changes in local bond structures oroxidation states.

  20. Strontium localization in bone tissue studied by X-ray absorption spectroscopy.

    PubMed

    Frankær, Christian Grundahl; Raffalt, Anders Christer; Stahl, Kenny

    2014-02-01

    Strontium has recently been introduced as a pharmacological agent for the treatment and prevention of osteoporosis. We determined the localization of strontium incorporated into bone matrix from dogs treated with Sr malonate by X-ray absorption spectroscopy. A new approach for analyzing the X-ray absorption spectra resulted in a compositional model and allowed the relative distribution of strontium in the different bone components to be estimated. Approximately 35-45% of the strontium present is incorporated into calcium hydroxyapatite (CaHA) by substitution of some of the calcium ions occupying highly ordered sites, and at least 30% is located at less ordered sites where only the first solvation shell is resolved, suggesting that strontium is surrounded by only oxygen atoms similar to Sr(2+) in solution. Strontium was furthermore shown to be absorbed in collagen in which it obtains a higher structural order than when present in serum but less order than when it is incorporated into CaHA. The total amount of strontium in the samples was determined by inductively coupled plasma mass spectrometry, and the amount of Sr was found to increase with increasing dose levels and treatment periods, whereas the relative distribution of strontium among the different components appears to be independent of treatment period and dose level. PMID:24101232

  1. Photo-induced dynamics in heterocyclic aromatic molecules probed by femtosecond XUV transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, Chaitanya D.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-05-01

    We report on the ring-opening and dissociation dynamics of strong-field ionized selenophene (C4 H4 Se), studied by transient XUV absorption spectroscopy at the Se 3d edge. The table-top experiments are facilitated by high-order harmonic generation coupled with a gas phase transient XUV absorption setup that is optimized for the study of organic compounds. Employing element-specific core-to-valence transitions, the ultrafast molecular dynamics are monitored from the perspective of the well-localized Se atoms. Spectral features are assigned based on first principles TDDFT calculations for a large manifold of electronic states. We observe signatures of rapidly (~ 35 fs) decaying highly excited molecular cations, the formation of ring-opened products on a 100 fs time scale and, most notably, the elimination of bare Se+ ions in a very rapid multi-step process. A delayed onset of the Se+ ions provides direct evidence that both selenium-carbon bonds are broken within only ~ 130 fs and that a sequential mechanism, presumably an initial ring-opening followed by a subsequent breaking of the second bond, is required to eliminate the atomic fragments.

  2. Damped Lyman-alpha absorption by disk galaxies with large redshifts. III. Intermediate-resolution spectroscopy

    SciTech Connect

    Turnshek, D.A.; Wolfe, A.M.; Lanzetta, K.M.; Briggs, F.H.; Cohen, R.D.; Multiple Mirror Telescope Observatory, Tucson, AZ; Pittsburgh Univ., PA; California Univ., La Jolla )

    1989-09-01

    New intermediate-resolution spectroscopy for six members of a sample of 68 moderate- to high-redshift QSOs is presented. Evidence is reported which indicates that seven strong absorption features in the QSO spectra are due to damped Ly-alpha absorption. A standard curve-of-growth analysis on five of the damped systems is performed, and relevant properties are tabulated and discussed. Six of the seven damped Ly-alpha systems have H I column densities of 2 x 10 to the 20th/sq cm or larger, while the remaining system has an H I column density of about 10 to the 20th/sq cm. It is suggested that damped Ly-alpha systems arise when a sight line intercepts a high-redshift protogalaxy disk containing a quiescent cloud component characterized by high column density and low effective velocity dispersion. At the same time, the sight line usually intercepts a broader turbulent component, which is identified as the halo, characterized by much lower column density and higher effective velocity dispersion. 42 refs.

  3. Electronic absorption spectroscopy probed side-chain movement in chromic transitions of polydiacetylene vesicles.

    PubMed

    Potisatityuenyong, Anupat; Rojanathanes, Rojrit; Tumcharern, Gamolwan; Sukwattanasinitt, Mongkol

    2008-05-01

    Thermochromism, solvatochromism, and alkalinochromism of a poly-10,12-pentacosadiynoic acid (poly(PCDA)) vesicle solution are studied by electronic absorption spectroscopy. The spectroscopic profiles reveal different sequences of side-chain movement during the chromic transitions. The gradual hypsochromic shift and reversibility of the purple solution at low temperature in the thermochromic transition indicates that the transition starts with reversible conformational alteration of methylene side chains leading to metastable purple vesicles. Further heating to 80 degrees C or higher eventually causes the hydrogen bonds at the carboxylic head groups to break and turns the vesicle solution to red. The irreversibility of the red vesicles indicates that it is the most thermodynamically stable form. In the ethanolochromism and alkalinochromism, the processes are however induced at the vesicle-media interface, directly bringing about the hydrogen bond breaking. The purple solutions observed in the ethanolochromism and alkalinochromism cannot reverse back to the blue one. The absorption spectra clearly demonstrate that they are mixtures of the blue and red vesicles. PMID:18366237

  4. Broadband Transient Absorption and Two-Dimensional Electronic Spectroscopy of Methylene Blue.

    PubMed

    Dean, Jacob C; Rafiq, Shahnawaz; Oblinsky, Daniel G; Cassette, Elsa; Jumper, Chanelle C; Scholes, Gregory D

    2015-08-27

    Broadband transient absorption and two-dimensional electronic spectroscopy (2DES) studies of methylene blue in aqueous solution are reported. By isolating the coherent oscillations of the nonlinear signal amplitude and Fourier transforming with respect to the population time, we analyzed a significant number of coherences in the frequency domain and compared them with predictions of the vibronic spectrum from density function theory (DFT) calculations. We show here that such a comparison enables reliable assignments of vibrational coherences to particular vibrational modes, with their constituent combination bands and overtones also being identified via Franck–Condon analysis aided by DFT. Evaluation of the Fourier transform (FT) spectrum of transient absorption recorded to picosecond population times, in coincidence with 2D oscillation maps that disperse the FT spectrum into the additional excitation axis, is shown to be a complementary approach toward detailed coherence determination. Using the Franck–Condon overlap integrals determined from DFT calculations, we modeled 2D oscillation maps up to two vibrational quanta in the ground and excited state (six-level model), showing agreement with experiment. This semiquantitative analysis is used to interpret the geometry change upon photoexcitation as an expansion of the central sulfur/nitrogen containing ring due to the increased antibonding character in the excited state. PMID:26274093

  5. β-Carotene Revisited by Transient Absorption and Stimulated Raman Spectroscopy.

    PubMed

    Quick, Martin; Kasper, Marc-André; Richter, Celin; Mahrwald, Rainer; Dobryakov, Alexander L; Kovalenko, Sergey A; Ernsting, Nikolaus P

    2015-12-21

    β-Carotene in n-hexane was examined by femtosecond transient absorption and stimulated Raman spectroscopy. Electronic change is separated from vibrational relaxation with the help of band integrals. Overlaid on the decay of S1 excited-state absorption, a picosecond process is found that is absent when the C9 -methyl group is replaced by ethyl or isopropyl. It is attributed to reorganization on the S1 potential energy surface, involving dihedral angles between C6 and C9 . In Raman studies, electronic states S2 or S1 were selected through resonance conditions. We observe a broad vibrational band at 1770 cm(-1) in S2 already. With 200 fs it decays and transforms into the well-known S1 Raman line for an asymmetric C=C stretching mode. Low-frequency activity (<800 cm(-1) ) in S2 and S1 is also seen. A dependence of solvent lines on solute dynamics implies intermolecular coupling between β-carotene and nearby n-hexane molecules. PMID:26433210

  6. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules.

    PubMed

    Bui, Tung S; Dao, Thang D; Dang, Luu H; Vu, Lam D; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V

    2016-01-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes. PMID:27555217

  7. Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy

    SciTech Connect

    Ravel, B.; Attenkofer, K.; Bohon, J.; Muller, E.; Smedley, J.

    2013-10-15

    Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.

  8. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    PubMed Central

    Bui, Tung S.; Dao, Thang D.; Dang, Luu H.; Vu, Lam D.; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V.

    2016-01-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes. PMID:27555217

  9. X-ray absorption spectroscopy as a probe of dissolved polysulfides in lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Pascal, Tod; Prendergast, David

    2015-03-01

    There has been enormous interest lately in lithium sulfur batteries, since they have 5 times the theoretical capacity of lithium ion batteries. Large-scale adoption of this technology has been hampered by numerous shortcomings, chiefly the poor utilization of the active cathode material and rapid capacity fading during cycling. Overcoming these limitations requires methods capable of identifying and quantifying the products of the poorly understood electrochemical reactions. One recent advance has been the use of X-ray absorption spectroscopy (XAS), an element-specific probe of the unoccupied energy levels around an excited atom upon absorption of an X-ray photon, to identify the reaction products and intermediates. In this talk, we'll present first principles molecular dynamics and spectral simulations of dissolved lithium polysulfide species, showing how finite temperature dynamics, molecular geometry, molecular charge state and solvent environment conspire to determine the peak positions and intensity of the XAS. We'll present a spectral analysis of the radical (-1e charge) species, and reveal a unique low energy feature that can be used to identify these species from their more common dianion (-2e charge) counterparts.

  10. Measurement of Gas Temperature in Negative Hydrogen Ion Source by Wavelength-Modulated Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishiyama, S.; Sasaki, K.; Nakano, H.; Goto, M.; Kisaki, M.; Tsumori, K.; NIFS-NBI Team

    2014-10-01

    Measurement of the energy distribution of hydrogen atom is important and essential to understand the production mechanism of its negative ion (H-) in cesium-seeded negative ion sources. In this work, we evaluated the temperature of atomic hydrogen in the large-scale arc-discharge negative hydrogen ion source in NIFS by wavelength-modulated laser absorption spectroscopy. The laser beam was passed through the adjacent region to the grid electrode for extracting negative ions. The frequency of the laser was scanned slowly over the whole range of the Doppler width (100 GHz in 1s). A sinusoidal frequency modulation at 600 Hz with a width of 30 GHz was superposed onto the slow modulation. The transmitted laser was detected using a photodiode, and its second harmonic component of the sinusoidal modulation was amplified using a lock-in amplifier. The obtained spectrum was in good agreement with an expected spectrum of the Doppler-broadened Balmer- α line. The estimated temperature of atomic hydrogen was approximately 3000 K. The absorption increased with the arc-discharge power, while the temperature was roughly independent of the power. This work is supported by the NIFS Collaboration Research Program NIFS13KLER021.

  11. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    SciTech Connect

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C. Rosa, M. I. de la

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  12. Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS) in low pressure flames

    SciTech Connect

    Scherer, J.J.; Rakestraw, D.J.

    1996-12-31

    The authors have employed Infrared Cavity Ringdown Laser Absorption Spectroscopy (IR-CRLAS) as a diagnostic tool for combustion chemistry studies. High resolution rovibrational absorption spectra have been obtained in low pressure laminar flames in the mid-infrared employing a pulsed single mode optical parametric oscillator (OPO) laser system. The high sensitivity and generality of IR-CRLAS for combustion studies is demonstrated in a variety of flames and is shown to be robust even in sooting environments with high temperature gradients. The ability to obtain spatially resolved data is also demonstrated in one dimensional laminar flame studies. These preliminary results indicate the potential of IR-CRLAS as a combustion diagnostic which is capable of obtaining absolute concentrations of reactants, intermediates, and products simultaneously within a narrow spectral region. In this demonstration, two information rich mid-infrared spectral regions (1.6 and 3-4 microns) have been probed at Doppler-limited resolution with an effective laser bandwidth of < 0.007 cm{sup -1}.

  13. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    SciTech Connect

    Andrews, J.C. |

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  14. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum. PMID:26601381

  15. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2012-05-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 levels in the Kowloon Tong and Mongkok district of Hong Kong and we compare the measurement results to mixing ratios reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time (13:30-14:30 LT - local time).

  16. X-ray-absorption-spectroscopy study of manganese-containing compounds and photosynthetic spinach chloroplasts

    SciTech Connect

    Kirby, J.A.

    1981-05-01

    The manganese sites in chloroplasts, long thought to be involved in photosynthetic oxygen evolution have been examined and partially characterized by x-ray Absorption Spectroscopy (XAS) using synchrotron radiation. The local environment about the manganese atoms is estimated from an analysis of the extended X-ray Absorption Fine Structure (EXAFS). Comparisons with and simulations of the manganese EXAFS for several reference compounds leads to a model in which the chloroplast manganese atoms are contained in a binuclear complex similar to di-u-oxo-tetrakis-(2,2'-bipyridine) dimanganese. It is suggested that the partner metal is another manganese. The bridging ligands are most probably oxygen. The remaining manganese ligands are carbon, oxygen, or nitrogen. A roughly linear correlation between the X-ray K edge onset energy and the coordination charge of a large number of manganese coordination complexes and compounds has been developed. Entry of the chloroplast manganese edge energy onto this correlation diagram establishes that the active pool of manganese is in an oxidation state greater than +2.

  17. Commissioning and performance of X-ray absorption spectroscopy beamline at the Siam Photon Laboratory

    NASA Astrophysics Data System (ADS)

    Klysubun, W.; Sombunchoo, P.; Wongprachanukul, N.; Tarawarakarn, P.; Klinkhieo, S.; Chaiprapa, J.; Songsiriritthigul, P.

    2007-11-01

    We report commissioning results and performance of X-ray absorption spectroscopy (XAS) beamline, BL-8, at the Siam Photon Laboratory. BL-8 has been opened for users since the year 2006. It is tunable by a fixed-exit double crystal monochromator equipped with InSb(1 1 1), Si(1 1 1), and Ge(2 2 0) crystals covering photon energy from 1830 to 9000 eV. Thus elemental absorption K-edges of silicon up to copper can be investigated. Other heavier elements may be studied via their L or M edges. The front end is windowless and the beamline is terminated with a Kapton window followed by the XAS station equipped with ionization chambers for transmission-mode measurements. The measured photon flux at sample is approximately 10 8-10 10 photons/s/100 mA for the 1 mm×10 mm beam size. The commissioning XANES spectra of sulfur standards and EXAFS spectra of copper are presented.

  18. [Retrieval of NO2 total vertical columns by direct-sun differential optical absorption spectroscopy].

    PubMed

    Wang, Yang; Xie, Pin-hua; Li, Ang; Xu, Jin; Zeng, Yi; Si, Fu-qi; Wu, Feng-cheng

    2012-04-01

    An appropriate reference spectrum is essential for the direct-sun differential optical absorption spectroscopy (DS-DOAS). It depends on the real reference spectrum to retrieve the total vertical column density (VCD). The spectrum detected at the time with minimum sun zenith angle under the relative clear atmospheric condition in the measurement period was conventionally selected as the reference spectrum. Because there is still untracked NO2 absorption structure in the reference spectrum, the VCD retrieved based on the above spectrum is actually relative VCD, which results in larger error. To solve this problem, a new method was investigated. A convolution of extraterrestrial high-precision solar Fraunhofer spectrum and the instrumental function of the spectrometer was computed and chosen as the reference spectrum. The error induced by NO2 absorption structure in the reference spectrum was removed. Then the fitting error of slant column density (SCD) retrieved by this method was analyzed. The correlation between the absolute SCD and the differential slant column density (dSCD) was calculated. The result shows that the error of SCD retrieved by this new method is below 1.6 x 10(16) molecules x cm(-2) on March 7, 2011, while the error generated by the normal method is about 4.25 x 10(16) molecules x cm(-2). The new method decreased more than 62% error. In addition, the results throughout the day were compared to the troposphere VCD from MAX-DOAS and they are in good agreement. It indicates that the new method could effectively reduce the VCD error of the common way. PMID:22715747

  19. Measurement of tropospheric OH by laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Kraft, Michael; Perner, D.

    1994-01-01

    OH-radicals are measured by laser long-path absorption spectroscopy. A tunable Nd:YAG/dye laser system provides broadbanded light at 308 nm. The beam is expanded to 0.3 m and pointed to an array of retroreflectors placed at a distance of 2800 m. The returning beam is separated from the outgoing beam and focused into a spectrometer of 0.3 pm resolution. A 1024 element diode array is used as a detector. The signal is digitized by a 14 bit analog to digital converter. The ultimate aim is a detection limit of 10(exp 5) molecules cm(exp -3) of OH. However the measurements in 1991 allowed only the recognition of OH absorptions corresponding to 3 x 10(exp 6) OH cm(exp -3) with a signal to noise ratio of two. Improvements of the instrument are under way. The advantages of the DOAS method are: the accuracy of detection is guaranteed because loss of OH radicals within the device is avoided, the rate of OH production by the device is negligible, and absorptions of other trace gases could be corrected for; and the calibration procedure for the device is fast and easy. The disadvantages of the system are: time resolution is about minutes because about ten spectra had to be added to keep the noise level down, the OH concentration is averaged along the whole light path, weight (500 kg) and size (4x4 m) of the device; and approximately 10 l/min of coolant and supply of 8 kW electrical power are necessary.

  20. Remote sensing of carbon monoxide by open-path FTIR spectroscopy: comparison of different analysis techniques

    NASA Astrophysics Data System (ADS)

    Briz, Susana; Diez, Sarai; de Castro, Antonio J.; Lopez, Fernando; Schafer, Klaus

    2004-11-01

    Fourier Transform Infrared (FTIR) spectroscopy is a well-established technique for monitoring air pollutants by extractive methods. Remote sensing by Open-Path FTIR technique incorporates the advantages of a non-intrusive technique. EPA and VDI have recommended some guidelines for the application of this promising technique. However, it is necessary to do more research to assess the quality of these systems on the basis of European standards. The analysis of FTIR spectra are usually carried out by using methods based on classical least squares (CLS) procedures. In this work a line-by-line method (SFIT) is additionally used. SFIT is a non-linear least-squares fitting program that was designed to analyse solar absorption spectra. For this work, SFIT has been adapted and applied to Open-Path FTIR spectra. The objective of this work is to study the capability of both methods to analyse open-path measurements of carbon monoxide. From a previous work it was inferred that the selection of the analysis spectral window is a relevant parameter of SFIT analysis. Therefore, the first step has been to analyse synthetic spectra of known concentration to select the best spectral region and other parameters of analysis. Afterwards, the SFIT software has been applied to Open-Path experimental spectra. Results of the SFIT method have been compared with the results of the two methods of EVAL analysis. EVAL is a commercial software (provided with the instrument) that is based on a CLS procedure and on the absorption peak intensity. The result has been validated by comparison to a standard extractive method.

  1. Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Chou, Nee-Yin; Sachse, Glen W.

    1987-01-01

    A generalized theory for optical heterodyne spectroscopy with phase modulated laser radiation is used which allows the calculation of signal line shapes for frequency modulation spectroscopy of Lorentzian gas absorption lines. In particular, synthetic spectral line shapes for both single-tone and two-tone modulation of lead-salt diode lasers are presented in which the contributions from both amplitude and frequency modulations are included.

  2. The Role of Polycyclic Aromatic Hydrocarbons in Dense Cloud Absorption Features: The Last Major Unanswered Question in Interstellar Ice Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiar, Jean

    identified in a small handful of dense cloud sources (solely high-mass YSOs), there have been no comprehensive comparisons of experimental or computational spectra to the observed "unidentified" dense cloud absorption features, centered at 6.0 and 6.8 micron, which fall in the range of fundamental PAH vibrational modes. From the Spitzer IRS archive, we have selected 42 lines of sight through dense clouds and 34 lines of sight through colder less turbulent dense cores in order to best characterize PAHs in the most quiescent regions of the dense ISM. Since the 6.0 and 6.8 micron features in these sources show profiles which are different than those observed for YSOs, we have also selected 35 low-mass YSO spectra in order to assess the role the physical and/or chemical characteristics of the PAHs play in the observed features. For all our targets, ground-based 2 to 5 micron spectroscopy has been acquired by us or is available in the literature to aid in the analysis. We have at our disposal the NASA Ames Astrochemistry PAH database and proven techniques for determining continua to extract the dust and ice absorption features. The Ames PAH database is the largest of its kind and includes the spectra of theoretically calculated and experimentally measured IR absorption spectra of both neutral and ionized PAHs and nitrogen-substituted PAHs in inert gas matrices and water-ice. Our team includes the expertise of astronomers with over 2 decades of combined experience in observations of dust and ice in dense clouds and the properties of PAH emission in star-forming regions with the expertise of experimental and computational chemists whose specialty is the study of PAHs. Our proposed research will place tight constraints on the PAH concentrations and forms that could be present in interstellar ices which will, in turn, guide future astrochemistry model development and fuel new observations with future NASA facilities such as SOFIA and JWST.

  3. Bidirectional antimonide laser diodes: application to the development of an infrared probe based on absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vicet, A.; Cousin, B.; Jahjah, M.; El Kaim, Y.; Rouillard, Y.; Jaillard, B.

    2011-07-01

    We present a study of a sensor probe based on tunable diode laser absorption spectroscopy, using antimonide-based diode lasers emitting at 2.3 and 2.6 μm. The lasers were fabricated by molecular beam epitaxy in the IES laboratory. The active regions are based on InGaAsSb/AlGaAsSb quantum wells grown on a GaSb(N) substrate. The diode lasers operate at room temperature in a continuous wave (CW) regime and exhibit 5 mW of emitted power. A linear optical setup using the two emitting facets of the diode lasers was developed. By using a second derivative detection by wavelength modulation spectroscopy, we obtained a CH4 detection limit of 9 ppm m. The sensor is designed to be used in soil and to measure CH4, CO2 and H2O, which are important constituents of the soil atmosphere generated by anaerobic digestion, microbial respiration or water transfer.

  4. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Douglass, K. O.; Olson, D. A.

    2016-06-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5% with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12% for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5% on average. The pressures measured using WMS have an average difference of 0.6% from the absolute pressure measured with a capacitance diaphragm sensor.

  5. Characterising legacy spent nuclear fuel pond materials using microfocus X-ray absorption spectroscopy.

    PubMed

    Bower, W R; Morris, K; Mosselmans, J F W; Thompson, O R; Banford, A W; Law, K; Pattrick, R A D

    2016-11-01

    Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly (137)Cs and (90)Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (μXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO2 particles in the paint layers, suggesting an association between TiO2 and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. μXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK's nuclear decommissioning efforts. PMID:27262277

  6. Determination of aromatic compounds in water by solid phase microextraction and ultraviolet absorption spectroscopy. 1. Methodology

    SciTech Connect

    Wittkamp, B.L.; Hawthorne, S.B.; Tilotta, D.C.

    1997-03-15

    A simple method is described for determining aromatic compounds (i.e., benzene, toluene, ethylbenzene, etc.) in water that combines solid phase microextraction (SPME) and ultraviolet (UV) absorption spectroscopy. The extraction medium consists of a small `chip` of poly(dimethylsiloxane) (total volume of nearly 80 {mu}L) that is immersed in a water sample contaminated with an aromatic compound. Equilibrium is first allowed to establish between the analyte in the water and the extraction medium, and the concentration of the aromatic compound is then determined directly in the sorbent chip by UV spectroscopy. Calibration information on this new method was obtained for 11 aromatic compounds commonly found in unleaded gasoline (e.g., benzene, toluene, naphthalene, etc). It was found that equilibrium is established in the range of 30-50 min, with the exception of 1-methylnaphthalene and naphthalene, which equilibrated within 100 min. Detection limits for the aromatic compounds at their equilibration times range from 0.40 to 12 ppb except for benzene (97 ppb). Relative standard deviations of the SPME-UV measurements are 3-12%. 17 refs., 3 figs., 5 tabs.

  7. Near-Edge X-Ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T.M.; Fabbri, J.D.; Lee, J.R.I.; Schreiner, P.R.; Fokin, A.A.; Tkachenko, B.A.; Fokina, N.A.; Dahl, J.E.P.; Carlson, R.M.K.; Vance, A.L.; Yang, W.; Terminello, L.J.; Buuren, T.van; Melosh, N.A.

    2009-05-26

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 and 0.16 {+-} 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.

  8. Electronic transitions and fermi edge singularity in polar heterostructures studied by absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Cavalcoli, D.; Minj, A.; Fraboni, B.; Cavallini, A.; Gamarra, P.; Poisson, M. A.

    2012-12-01

    Optically induced electronic transitions in nitride based polar heterostructures have been investigated by absorption and emission spectroscopy. Surface photovoltage (SPV), photocurrent (PC), and photo luminescence spectroscopy have been applied to high quality InAlN/AlN/GaN structures to study the optical properties of two dimensional electron gas. Energy levels within the two dimensional electron gas (2DEG) well at the interface between the GaN and AlN have been directly observed by SPV and PC. Moreover, a strong enhancement of the photoluminescence intensity due to holes recombining with electrons at the Fermi Energy, known as fermi energy singularity, has been observed. These analyses have been carried out on InAlN/AlN/GaN heterojunctions with the InAlN barrier layer having different In content, a parameter which affects the energy levels within the 2DEG well as well as the optical signal intensity. The measured energy values are in a very good agreement with the ones obtained by Schrödinger-Poisson simulations.

  9. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  10. Microwave resonance lamp absorption technique for measuring temperature and OH number density in combustion environments

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.

    1988-01-01

    A simple technique for simultaneous determination of temperature and OH number density is described, along with characteristic results obtained from measurements using a premixed, hydrogen air flat flame burner. The instrumentation is based upon absorption of resonant radiation from a flowing microwave discharge lamp, and is rugged, relatively inexpensive, and very simple to operate.

  11. Atomic structure of Mn-rich nanocolumns probed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rovezzi, M.; Devillers, T.; Arras, E.; d'Acapito, F.; Barski, A.; Jamet, M.; Pochet, P.

    2008-06-01

    In this letter, we have used the extended x-ray-absorption fine-structure (EXAFS) technique to investigate the structure of Mn-rich self-organized nanocolumns grown by low temperature molecular beam epitaxy. The EXAFS analysis has shown that Mn-rich nanocolumns exhibit a complex local structure that cannot be described by a simple substitutional model. Additional interatomic distances had to be considered in the EXAFS model which are in excellent agreement with the structure of a Ge-3Mn building block tetrahedron of Ge3Mn5.

  12. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Castellanos-Gomez, Andres; Quereda, Jorge; van der Meulen, Herko P.; Agraït, Nicolás; Rubio-Bollinger, Gabino

    2016-03-01

    The possibility of spatially resolving the optical properties of atomically thin materials is especially appealing as they can be modulated at the micro- and nanoscale by reducing their thickness, changing the doping level or applying a mechanical deformation. Therefore, optical spectroscopy techniques with high spatial resolution are necessary to get a deeper insight into the properties of two-dimensional (2D) materials. Here we study the optical absorption of single- and few-layer molybdenum disulfide (MoS2) in the spectral range from 1.24 eV to 3.22 eV (385 nm to 1000 nm) by developing a hyperspectral imaging technique that allows one to probe the optical properties with diffraction limited spatial resolution. We find hyperspectral imaging very suited to study indirect bandgap semiconductors, unlike photoluminescence which only provides high luminescence yield for direct gap semiconductors. Moreover, this work opens the door to study the spatial variation of the optical properties of other 2D systems, including non-semiconducting materials where scanning photoluminescence cannot be employed.

  13. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS₂ by hyperspectral imaging.

    PubMed

    Castellanos-Gomez, Andres; Quereda, Jorge; van der Meulen, Herko P; Agraït, Nicolás; Rubio-Bollinger, Gabino

    2016-03-18

    The possibility of spatially resolving the optical properties of atomically thin materials is especially appealing as they can be modulated at the micro- and nanoscale by reducing their thickness, changing the doping level or applying a mechanical deformation. Therefore, optical spectroscopy techniques with high spatial resolution are necessary to get a deeper insight into the properties of two-dimensional (2D) materials. Here we study the optical absorption of single- and few-layer molybdenum disulfide (MoS2) in the spectral range from 1.24 eV to 3.22 eV (385 nm to 1000 nm) by developing a hyperspectral imaging technique that allows one to probe the optical properties with diffraction limited spatial resolution. We find hyperspectral imaging very suited to study indirect bandgap semiconductors, unlike photoluminescence which only provides high luminescence yield for direct gap semiconductors. Moreover, this work opens the door to study the spatial variation of the optical properties of other 2D systems, including non-semiconducting materials where scanning photoluminescence cannot be employed. PMID:26876671

  14. Towards elucidating the energy of the first excited singlet state of xanthophyll cycle pigments by X-ray absorption spectroscopy.

    PubMed

    Gruszecki, W I; Stiel, H; Niedzwiedzki, D; Beck, M; Milanowska, J; Lokstein, H; Leupold, D

    2005-06-01

    The first excited singlet state (S(1)) of carotenoids (also termed 2A(g)(-)) plays a key role in photosynthetic excitation energy transfer due to its close proximity to the S(1) (Q(y)) level of chlorophylls. The determination of carotenoid 2A(g)(-) energies by optical techniques is difficult; transitions from the ground state (S(0), 1A(g)(-)) to the 2A(g)(-) state are forbidden ("optically dark") due to parity (g <-- //--> g) as well as pseudo-parity selection rules (- <-- //--> -). Of particular interest are S(1) energies of the so-called xanthophyll-cycle pigments (violaxanthin, antheraxanthin and zeaxanthin) due to their involvement in photoprotection in plants. Previous determinations of S(1) energies of violaxanthin and zeaxanthin by different spectroscopic techniques vary considerably. Here we present an alternative approach towards elucidation of the optically dark states of xanthophylls by near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The indication of at least one pi* energy level (about 0.5 eV below the lowest 1B(u)(+) vibronic sublevel) has been found for zeaxanthin. Present limitations and future improvements of NEXAFS to study optically dark states of carotenoids are discussed. NEXAFS combined with simultaneous optical pumping will further aid the investigation of these otherwise hardly accessible states. PMID:15949988

  15. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  16. Studies of solvent effects on reaction dynamics using ultrafast transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Harris, Don Ahmasi

    Ultrafast transient absorption spectroscopy was used to investigate the solvent dependent reaction dynamics of two prototypical chemical systems: (1) The ring-opening reaction of 1,3-cyclohexadiene, the isolated chromophore in Provitamin D, and (2) The photolysis of various Vitamin B12 cofactors. We investigated the influence of solvent polarity on the ground state conformational relaxation of 1,3,5-cis hexatriene subsequent to the ring opening of 1,3-cyclohexadiene in methanol and 1-propanol solvents. Comparisons to the conformational relaxation in alkane solvents studied earlier demonstrated a surprising influence of solvent polarity on single bond isomerization. Temperature dependent transient absorption measurements were performed on 1,3,5-cis hexatriene in cyclohexane and 1-propanol to determine the effect of solvent polarity on the activation energy barrier for ground state single bond isomerization. These measurements conclude that the polar solvent lowers the energy barrier for single bond isomerization allowing conformational relaxation to proceed faster in alcohol solvents compared to alkane solvents. With no perceived polar transition state for single bond isomerization, this result disagrees with the conventional view of solvation and differentiates the single bond isomerization dynamics of polyenes from alkanes. Transient absorption spectroscopy was also utilized to study the solvent effects in the photolysis of various B12 cofactors in different environments. We investigated the solvent dependent photolysis of adenosylcobalamin, methylcobalamin, and cyanocobalamin in water and ethylene glycol as a function of solvent temperature. In comparing the radical cage escape of adenosylcobalamin and cyanocobalamin, we determined a larger than expected hydrodynamic radii for the diffusing radicals in water compared to ethylene glycol, thus making necessary a revised perspective of solvent interaction with the diffusing radical. In addition, we investigated the

  17. Spectroscopy of 1S0- 3P1 transition of magnesium atom in an external absorption cell

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Baraulya, V. I.; Bonert, A. E.; Goncharov, A. N.; Seydaliev, M. R.

    2001-09-01

    The results of saturated absorption spectroscopy of the intercombination 1S0- 3P1 transition of magnesium atoms at 457 nm in an external absorption cell are presented. A laser system based on a Ti:Sa laser with frequency doubling in a LBO nonlinear crystal was used in these experiments. Saturated absorption resonances of magnesium in an external cell at the 1S0- 3P1 transition have been obtained for the first time. Pressure broadening of resonances equal to 12.5±1.5 kHz/mTorr has been measured.

  18. Spectra extraction for wavelength-modulation spectroscopy of intra-cavity absorption gas sensor

    NASA Astrophysics Data System (ADS)

    Han, Wennian; Wang, Yan; Liu, Kun; Jia, Dagong; Liu, Tiegen

    2010-11-01

    Low-frequency wavelength modulation is introduced to increase sensitivity of intra-cavity absorption gas sensor (ICAGS) system. ICAGS system including erbium-doped fiber amplifier (EDFA), pump laser, tunable fiber Fabry-Perot (F-P) optical filter and gas cell is set up. Using virtual instrument technique, modulation function is generated by LabVIEW software and outputted through the AO ports of data acquisition card to tune the driving voltage of optical filter. The AI ports collect the laser power signals in a synchronous mode. Harmonic spectra can be computed by adopting the method of the Discrete Fourier Transform (DFT). According to the characteristics of different order harmonic, even harmonics and odd harmonics are analyzed respectively. Here, second harmonic is used to determine the spectral intensity, and third harmonic is mainly used to locate the position of spectral lines. With optimum 10 Hz frequency modulation, acetylene absorption experiments were carried out. The pump current of EDFA is 60 mA and the acetylene concentration in the gas cell is 1%. After spectra extraction, in the 1526 nm to 1537 nm wavelength range, 17 absorption lines of acetylene were achieved. The results indicated that the error of wavelength position is less than 0.1 nm and the minimum detection limit of acetylene is about 120x10-6. It is possible to realize the recognition of measured gas type and multi-component gas detection for ICAGS system.

  19. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane--Breath Biomarkers of Serious Diseases.

    PubMed

    Wojtas, Jacek

    2015-01-01

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases. PMID:26091398

  20. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane—Breath Biomarkers of Serious Diseases

    PubMed Central

    Wojtas, Jacek

    2015-01-01

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases. PMID:26091398