Science.gov

Sample records for absorption spectroscopy uv-vis

  1. UV-VIS absorption spectroscopy: Lambert-Beer reloaded.

    PubMed

    Mäntele, Werner; Deniz, Erhan

    2017-02-15

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  2. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    NASA Astrophysics Data System (ADS)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  3. A quality control technique based on UV-VIS absorption spectroscopy for tequila distillery factories

    NASA Astrophysics Data System (ADS)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Maldonado, J. L.; Pichardo Molina, J.; Meneses Nava, M. A.; Landgrave, Enrique; Cervantes, M. J.

    2006-02-01

    A low cost technique based on the UV-VIS absorption spectroscopy is presented for the quality control of the spirit drink known as tequila. It is shown that such spectra offer enough information to discriminate a given spirit drink from a group of bottled commercial tequilas. The technique was applied to white tequilas. Contrary to the reference analytic methods, such as chromatography, for this technique neither special personal training nor sophisticated instrumentations is required. By using hand-held instrumentation this technique can be applied in situ during the production process.

  4. Combined characterization of bovine polyhemoglobin microcapsules by UV-Vis absorption spectroscopy and cyclic voltammetry.

    PubMed

    Knirsch, Marcos Camargo; Dell'Anno, Filippo; Salerno, Marco; Larosa, Claudio; Polakiewicz, Bronislaw; Eggenhöffner, Roberto; Converti, Attilio

    2017-03-01

    Polyhemoglobin produced from pure bovine hemoglobin by reaction with PEG bis(N-succynimidil succinate) as a cross-linking agent was encapsulated in gelatin and dehydrated by freeze-drying. Free carboxyhemoglobin and polyhemoglobin microcapsules were characterized by UV-Vis spectroscopy in the absorption range 450-650 nm and cyclic voltammetry in the voltage range from -0.8 to 0.6 mV to evaluate the ability to break the bond with carbon monoxide and to study the carrier's affinity for oxygen, respectively. SEM used to observe the shape of cross-linked gelatin-polyhemoglobin microparticles showed a regular distribution of globular shapes, with mean size of ~750 nm, which was ascribed to gelatin. Atomic absorption spectroscopy was also performed to detect iron presence in microparticles. Cyclic voltammetry using an Ag-AgCl electrode highlighted characteristic peaks at around -0.6 mV that were attributed to reversible oxygen bonding with iron in oxy-polyhemoglobin structure. These results suggest this technique as a powerful, direct and alternative method to evaluate the extent of hemoglobin oxygenation.

  5. A study of structural differences between TBM patients' and non-TBM persons' CSF using UV-Vis absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Fangcheng; Wang, Xin; Xu, Huajia; Wang, Kai

    2016-01-01

    Tuberculous meningitis (TBM) is a very common infectious disease in the central nervous system. The delay of diagnosing and treating TBM will lead to high disability and mortality of TBM. Hence, it is very important to promptly diagnose TBM early. In this work, we proposed a new method for diagnosing TBM with CSF samples by using UV-Vis absorption spectroscopy. CSF samples from TBM patients and non-TBM persons were compared, and the sensitivity, specificity, accuracy, positive predictive value reached 83.6%, 69.8%, 77.2%, 76.1% respectively. Our work indicated investigation of CSF using UV-Vis absorption spectroscopy might become a potentially useful method for TBM diagnosis.

  6. UV-vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila.

    PubMed

    Barbosa-García, O; Ramos-Ortíz, G; Maldonado, J L; Pichardo-Molina, J L; Meneses-Nava, M A; Landgrave, J E A; Cervantes-Martínez, J

    2007-01-01

    Based on the UV-vis absorption spectra of commercially bottled tequilas, and with the aid of multivariate analysis, it is proved that different brands of white tequila can be identified from such spectra, and that 100% agave and mixed tequilas can be discriminated as well. Our study was done with 60 tequilas, 58 of them purchased at liquor stores in various Mexican cities, and two directly acquired from a distillery. All the tequilas were of the "white" type, that is, no aged spirits were considered. For the purposes of discrimination and quality control of tequilas, the spectroscopic method that we present here offers an attractive alternative to the traditional methods, like gas chromatography, which is expensive and time-consuming.

  7. UV-vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila

    NASA Astrophysics Data System (ADS)

    Barbosa-García, O.; Ramos-Ortíz, G.; Maldonado, J. L.; Pichardo-Molina, J. L.; Meneses-Nava, M. A.; Landgrave, J. E. A.; Cervantes-Martínez, J.

    2007-01-01

    Based on the UV-vis absorption spectra of commercially bottled tequilas, and with the aid of multivariate analysis, it is proved that different brands of white tequila can be identified from such spectra, and that 100% agave and mixed tequilas can be discriminated as well. Our study was done with 60 tequilas, 58 of them purchased at liquor stores in various Mexican cities, and two directly acquired from a distillery. All the tequilas were of the "white" type, that is, no aged spirits were considered. For the purposes of discrimination and quality control of tequilas, the spectroscopic method that we present here offers an attractive alternative to the traditional methods, like gas chromatography, which is expensive and time-consuming.

  8. Using resonance light scattering and UV/vis absorption spectroscopy to study the interaction between gliclazide and bovine serum albumin.

    PubMed

    Zhang, Qiu-Ju; Liu, Bao-Sheng; Li, Gai-Xia; Han, Rong

    2016-08-01

    At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka ), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode 'point to surface' existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Probing the behaviors of gold nanorods in metastatic breast cancer cells based on UV-vis-NIR absorption spectroscopy.

    PubMed

    Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan

    2012-01-01

    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy.

  10. Reactions of cytotoxic metallodrugs with lysozyme in pure DMSO explored through UV-Vis absorption spectroscopy and ESI MS.

    PubMed

    Marzo, Tiziano; Savić, Aleksandar; Massai, Lara; Michelucci, Elena; Sabo, Tibor J; Grguric-Šipka, Sanja; Messori, Luigi

    2015-04-01

    The reactions of four representative metallodrugs with the model protein HEWL were investigated within a non-aqueous environment-i.e. in pure DMSO- through UV-Vis absorption spectroscopy and ESI MS analysis. Notably, formation of a variety of metallodrug-protein adducts was clearly documented. This is the first example for this kind of protein metalation reactions carried out within a pure organic solvent. It is shown that the applied solution conditions greatly affect the nature of the formed adducts, this being well accounted for by the fact that the overall protein conformation is greatly perturbed within pure DMSO; in addition, the activation profiles of the studied metallodrugs are also highly dependent on the nature of the solvent. The implications of these results are discussed.

  11. UV-Vis Reflection-Absorption Spectroscopy at air-liquid interfaces.

    PubMed

    Rubia-Payá, Carlos; de Miguel, Gustavo; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-11-01

    UV-Visible Reflection-Absorption Spectroscopy (UVRAS) technique is reviewed with a general perspective on fundamental and applications. UVRAS is formally identical to IR Reflection-Absorption Spectroscopy (IRRAS), and therefore, the methodology developed for this IR technique can be applied in the UV-visible region. UVRAS can be applied to air-solid, air-liquid or liquid-liquid interfaces. This review focuses on the use of UVRAS for studying Langmuir monolayers. We introduce the theoretical framework for a successful understanding of the UVRAS data, and we illustrate the usage of this data treatment to a previous study from our group comprising an amphiphilic porphyrin. For ultrathin films with a thickness of few nm, UVRAS produces positive or negative bands when p-polarized radiation is used, depending on the incidence angle and the orientation of dipole absorption. UVRAS technique provides highly valuable information on tilt of chromophores at the air-liquid interface, and moreover allows the determination of optical parameters. We propose UVRAS as a powerful technique to investigate the in situ optical properties of Langmuir monolayers.

  12. Blood characterization using UV/vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Mattley, Yvette D.; Mitrani-Gold, F.; Orton, S.; Bacon, Christina P.; Leparc, German F.; Bayona, M.; Potter, Robert L.; Garcia-Rubio, Luis H.

    1995-05-01

    The current methods used for typing blood involve an agglutination reaction which results from the association of specific antibodies with antigens present on the erythrocyte cell surface. While this method is effective, it requires involved laboratory procedures to detect the cell surface antigens. As an alternative technique, uv/vis spectroscopy has been investigated as a novel way to characterize and differentiate the blood types. Typing with this technique is based on spectral differences which appear throughout portions of both the ultraviolet and visible range. The origin of these spectral differences is unknown and presently under investigation. They may be due to intrinsic absorption differences at the molecular level, and/or they may be due to scattering differences brought about by either subtle variation in cell surface characteristics, cell shape or state of aggregation. As the background optical density in these samples is identified and accounted for, the spectral differences become more defined. This work and the continuation of this project will be included in a general database encompassing a wide range of blood samples. In addition, long term goals involve the investigation of diseased blood with the potential of providing a more rapid diagnosis for blood borne pathogens.

  13. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    PubMed

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  14. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  15. Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV-vis absorption spectroscopy and flow cytometry.

    PubMed

    Liu, Renming; Tang, Weiyue; Kang, Yipu; Si, Minzhen

    2009-08-15

    We report here the use of Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-vis) absorption spectroscopy, and flow cytometry (FCM) to analysis the best dose of X-ray for human laryngeal squamous cell carcinoma cell lines (Hep-2). Our analysis indicates specific FTIR and UV-vis spectral differences between X-irradiated and normal Hep-2 cells. In addition, striking spectral differences are seen in FTIR spectra in the ratios at 2925/2958 and 1654/1542 cm(-1). These two ratios of the X-irradiated cells for 8 Gy dose group with value of 1.07+/-0.025 and 1.184+/-0.013, respectively, were more notable (mean+/-S.D., n=5, P<0.05) compared with that of the cells for the controls. UV-vis absorption spectra analysis shows X-ray irradiation disturbed the metabolism of phenylalanine and tyrosine intracellular, maybe, which was caused by cell cycle arrest. Spectroscopy analysis suggests 8 Gy is a better dose of X-ray for lowering the canceration degree of Hep-2 cells. Moreover, FCM analysis shows the apoptosis of X-irradiated cells depended on the radiation dose to some extent, but it was not linear. The total apoptosis ratio with value of (20.793+/-1.133)% (P<0.01, n=5) for the 12 Gy dose group was the maximum, however, the maximum apoptosis ratio per Gray (total apoptosis ratio/radiation dose) was the cells of the 2 Gy dose group with value of (4.887+/-0.211)% (P<0.05, n=5). Our data suggest that Hep-2 cells are given 2 Gy radiation of X-ray once a time, 8 Gy per week (accumulatively), the effect for lowering the canceration degree and restraining the proliferation of Hep-2 cells will be better.

  16. [Study of pH measuring based on i-motif DNA conformation switch and UV-Vis absorption spectroscopy of gold nanoparticles].

    PubMed

    Zhong, Jian-hai; Guo, Liang-qia; Wu, Jin-mei; Chen, Jin-feng; Chen, Zhang-jie

    2012-04-01

    A fast, sensitive, colorimetric method for the detection of pH based on the differentiate effect of gold nanoparticles to the configuration of DNA was developed in this study. The UV-Vis absorption spectroscopy of the i-motif DNA-Au NPs system has been investigated, and the effect of the concentration of salt and i-motif DNA, reaction time and DNA sequence on the pH response of the system have been also optimized. Under the optimum conditions, the UV-Vis absorption spectroscopy of the Au NPs is changed regularly with pH in the range of 5.3 - 7.0, the absorbance at 520 nm is increased gradually while at 700 nm decreased. Correspondingly, the color of the Au NPs is varied from violet to red. The pH sensor is no need to modification, low cost, fast and can be carried out by naked eyes. It is promising to use in monitoring some life process which associated with pH variation.

  17. UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts.

    PubMed

    Schoonheydt, Robert A

    2010-12-01

    This critical review article discusses the characterization of heterogeneous catalysts by UV-VIS-NIR spectroscopy and microscopy with special emphasis on transition metal ion containing catalysts. A review is given of the transitions, that can be observed in the UV-VIS-NIR region and the peculiarities of catalytic solids that have to be taken into account. This is followed by a short discussion of the techniques that have been developed over the years: diffuse reflectance spectroscopy, UV-VIS microscopy, in situ or operando spectroscopy, the combination of UV-VIS spectroscopy with other spectroscopic techniques, with chemometrics and with quantum chemistry. In the third part of this paper four successes of UV-VIS-NIR spectroscopy and microscopy are discussed; (1) coordination of transition metal ions to surface oxygens; (2) quantitative determination of the oxidation states of transition metal ions; (3) characterization of active sites and (4) study of the distribution of transition metal ions and carbocations in catalytic bodies, particles and crystals (104 references).

  18. Characterization of the nonlinear optical properties of the new 2-amino-4,6-difenilnicotinonitrilo by UV-Vis spectroscopy absorption and Z-Scan

    NASA Astrophysics Data System (ADS)

    Cueto, C.; Pérez, A.; Racedo, F.

    2017-01-01

    The study of the nonlinear optical properties of new organic molecules in solution was performed. Z-Scan technique was used to investigate the nonlinear optical properties of 2-amino-4,6-diphenylnicotinenitrile depending on the solution concentration and the laser power; This compound was diluted in ethyl acetate at fixed concentration of 0.024M. Through this technique, nonlinear parameters such as the nonlinear refractive index (η2), the nonlinear absorption coefficient (β) and the third-order electric susceptibility (χ3) were determined. For these measurements, a laser Nd: YAG emitting at 532nm, a lens 10 cm focus, an iris of 1mm and a cell with a thickness of 1mm were used. The study was performed with laser powers of 55mW, 100mW, 145mW and 195mW; All measurements were made by transmission in closed and open configurations. Finally the sample was characterized by absorption spectroscopy UV-Vis. This study allows us to relate the molecular design with the optical properties.

  19. The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy.

    PubMed

    Yang, Bing; Ren, Lingling; Li, Luming; Tao, Xingfu; Shi, Yunhua; Zheng, Yudong

    2013-11-07

    Current and future applications of single-wall carbon nanotubes (SWCNTs) depend on the dispersion of the SWCNTs in aqueous solution and their quantitation. The concentration of SWCNTs is an important indicator to evaluate the dispersibility of the surfactant-dispersed SWCNTs suspension. Due to the complexity of the SWCNTs suspension, it is necessary to determine both the total concentration of the dispersed SWCNTs and the concentration of individually dispersed SWCNTs in aqueous suspensions, and these were evaluated through the absorbance and the resonance ratios of UV-Vis-NIR absorption spectra, respectively. However, there is no specific and reliable position assigned for either calculation of the absorbance or the resonance ratio of the UV-Vis-NIR absorption spectrum. In this paper, different ranges of wavelengths for these two parameters were studied. From this, we concluded that the wavelength range between 300 nm and 600 nm should be the most suitable for evaluation of the total concentration of dispersed SWCNTs in the suspension; also, wavelengths below 800 nm should be most suitable for evaluation of the concentration of individually dispersed SWCNTs in the suspension. Moreover, these wavelength ranges are verified by accurate dilution experiments.

  20. Characterization and dating of blue ballpoint pen inks using principal component analysis of UV-Vis absorption spectra, IR spectroscopy, and HPTLC.

    PubMed

    Senior, Samir; Hamed, Ezzat; Masoud, Mamdouh; Shehata, Eman

    2012-07-01

    The ink of pens and ink extracted from lines on white photocopier paper of 10 blue ballpoint pens were subjected to ultraviolet-visible (UV-Vis) spectroscopy, infrared (IR), and high-performance thin-layer liquid chromatography (HPTLC). The R(f) values and color tones of the bands separated by thin-layer chromatography (TLC) analysis used to classify the writing inks into three groups. The principal component analysis (PCA) investigates the pen responsible for a piece of writing, and how time affects spectroscopy of written ink. PCA can differentiate between pen ink and ink line indicates the influence of solvent extraction process on the results. The PCA loadings are useful in individualization of a questioned ink from a database. The PCA of ink lines extracted at different times can be used to estimate the time at which a questioned document was written. The results proved that the UV-Vis spectra are effective tool to separate blue ballpoint pen ink in most cases rather than IR and HPTLC.

  1. Quantification of omeprazole degradation by enteric coating polymers: an UV-VIS spectroscopy study.

    PubMed

    Riedel, A; Leopold, C S

    2005-02-01

    The aim of this study was to investigate the degradation of the acid-labile proton-pump-inhibitor omeprazole in organic polymer solutions and aqueous dispersions of enteric coating polymers by UV spectroscopy. Furthermore, data were compared with those obtained in a previous HPLC study. For comparative purposes the cationic Eudragit RS 100 and the monomeric acid acetic acid were included in this study. The discolorations of degraded omeprazole solutions were analysed by VIS spectroscopy. UV-VIS spectra were recorded after preparation of the solutions and after 180 min of storage. The change of absorption was calculated as the difference of the absorption values at 305 nm. Degradation of omeprazole depends on the amount of acidic groups in the polymer structure. This decomposition manifests itself in a shifting of the absorption maximum to lower wavelengths and a decrease of absorption intensity. UV-VIS spectroscopy was used to determine the extent of degradation induced by enteric polymers. A good correlation of these results with previous HPLC data was found when excluding UV absorbing polymers. Nevertheless, values obtained by UV-VIS spectroscopy were always lower than those obtained by HPLC. For evaluation of the discoloration of degraded omeprazole solutions, VIS spectroscopy is a simple and fast method.

  2. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  3. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    PubMed

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags(1). Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  4. Fluorescence and UV-vis Spectroscopy of Synovial Fluids

    NASA Astrophysics Data System (ADS)

    Pinti, Marie J.; Stojilovic, Nenad; Kovacik, Mark W.

    2009-10-01

    Total joint arthroplasty involves replacing the worn cartilaginous surfaces of the joint with man-made materials that are designed to be biocompatible and to withstand mechanical stresses. Commonly these bearing materials consist of metallic alloys (TiAlV or CoCrMo) and UHMWPE. Following joint arthroplasty, the normal generation of micro-metallic wear debris particles that dislodge from the prosthesis has been shown to cause inflammatory aseptic osteolysis (bone loss) that ultimately results in the failure of the implant. Here we report our results on the novel use of Fluorescence and UV-vis spectroscopy to investigate the metallic content of synovial fluid specimens taken from postoperative total knee arthroplasties. Preliminary finding showed presence of alumina and chromium is some specimens. The ability to detect and monitor the wear rate of these implants could have far reaching implications in the prevention of metallic wear-debris induced osteolysis and impending implant failure.

  5. The UV/Vis absorption spectrum of matrix-isolated dichlorine peroxide, ClOOCl.

    PubMed

    von Hobe, Marc; Stroh, Fred; Beckers, Helmut; Benter, Thorsten; Willner, Helge

    2009-03-14

    UV/Vis absorption spectra of ClOOCl isolated in neon matrices were measured in the wavelength range 220-400 nm. The purity of the trapped samples was checked by infrared and UV/Vis matrix spectroscopy as well as low-temperature Raman spectroscopy. At wavelengths below 290 nm, the results agree with the UV spectrum recently published by Pope et al. [J. Phys. Chem. A, 2007, 111, 4322-4332]. However, the observed absorption in the long wavelength tail of the spectrum-relevant for polar stratospheric ozone loss-is substantially higher than reported by Pope et al. Our results suggest the existence of a ClOOCl electronic state manifold leading to an absorption band similar to those of the near UV spectrum of Cl(2). The differences to previous studies can be accounted for quantitatively by contributions to the reported absorption spectra caused by impurities. The observed band in the long wavelength tail is supported by several high-level ab initio calculations. However, questions arise concerning absolute values of the ClOOCl cross sections, an issue that needs to be revisited in future studies. With calculated photolysis rates based on our spectrum scaled to previous cross sections at the peak absorption, the known polar catalytic ozone-destruction cycles to a large extent account for the observed ozone depletion in the spring polar stratosphere.

  6. Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.

    PubMed

    Patel, Manu U M; Dominko, Robert

    2014-08-01

    Application of UV/Vis spectroscopy for the qualitative and quantitative determination of differences in the mechanism of lithium-sulfur battery behavior is presented. With the help of catholytes prepared from chemically synthesized stoichiometric mixtures of lithium and sulfur, calibration curves for two different types of electrolyte can be constructed. First-order derivatives of UV/Vis spectra show five typical derivative peak positions in both electrolytes. In operando measurements show a smooth change in the UV/Vis spectra in the wavelength region between λ=650 and 400 nm. Derivatives are in agreement with derivative peak positions observed with catholytes. Recalculation of normalized reflections of UV/Vis spectra obtained in operando mode enable the formation of polysulfides and their concentrations to be followed. In such a way, it is possible to distinguish differences in the mechanism of polysulfide shuttling between two electrolytes and to correlate differences in capacity fading.

  7. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    SciTech Connect

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-02-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10{sup –17} cm{sup 2} molecule{sup –1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  8. Protonation effects on the UV/Vis absorption spectra of imatinib: a theoretical and experimental study.

    PubMed

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-14

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  9. The application of BTEM to UV-vis and UV-vis CD spectroscopies: the reaction of Rh4(CO)12 with chiral and achiral ligands.

    PubMed

    Cheng, Shuying; Gao, Feng; Krummel, Karl I; Garland, Marc

    2008-02-15

    Two different organometallic ligand substitution reactions were investigated: (1) an achiral reactive system consisting of Rh(4)(CO)(12)+PPh(3)right harpoon over left harpoonRh(4)(CO)(11)PPh(3)+CO in n-hexane under argon; and (2) a chiral reactive system consisting of Rh(4)(CO)(12)+(S)-BINAPright harpoon over left harpoonRh(4)(CO)(10)BINAP+2CO in cyclohexane under argon. These two reactions were run at ultra high dilution. In both multi-component reactive systems the concentrations of all the solutes were less than 40ppm and many solute concentrations were just 1-10ppm. In situ spectroscopic measurements were carried out using UV-vis (Ultraviolet-visible) spectroscopy and UV-vis CD spectroscopy on the reactive organometallic systems (1) and (2), respectively. The BTEM algorithm was applied to these spectroscopic data sets. The reconstructed UV-vis pure component spectra of Rh(4)(CO)(12), Rh(4)(CO)(11)PPh(3) and Rh(4)(CO)(10)BINAP as well as the reconstructed UV-vis CD pure component spectra of Rh(4)(CO)(10)BINAP were successfully obtained from BTEM analyses. All these reconstructed pure component spectra are in good agreement with the experimental reference spectra. The concentration profiles of the present species were obtained by performing a least square fit with mass balance constraints for the reactions (1) and (2). The present results indicate that UV-vis and UV-vis-CD spectroscopies can be successfully combined with an appropriate chemometric technique in order to monitor reactive organometallic systems having UV and Vis chromophores.

  10. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  11. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    PubMed

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  12. Optical absorption of sodium copper chlorophyllin thin films in UV-vis-NIR region.

    PubMed

    Farag, A A M

    2006-11-01

    The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.

  13. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    ERIC Educational Resources Information Center

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  14. Quantitative classification of cryptosporidium oocysts and giardia cysts in water using UV/vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Bacon, Christina P.; Rose, J. B.; Patten, K.; Garcia-Rubio, Luis H.

    1995-05-01

    Cryptosporidium and Giardia are enteric protozoa which cause waterborne diseases. To date, the detection of these organisms in water has relied upon microscopic immunofluorescent assay technology which uses antibodies directed against the cyst and oocyst forms of the protozoa. In this paper, the uv/vis extinction spectra of aqueous dispersions of Cryptosporidium and Giardia have been studied to investigate the potential use of light scattering-spectral deconvolution techniques as a rapid method for the identification and quantification of protozoa in water. Examination of purified samples of Cryptosporidium and Giardia suggests that spectral features apparent in the short wavelength region of the uv/vis spectra contain information that may be species specific for each protozoa. The spectral characteristics, as well as the particle size analysis, determined from the same spectra, allow for the quantitative classification, identification, and possibly, the assessment of the viability of the protozoa. To further increase the sensitivity of this technique, specific antibodies direction against these organisms, labelled with FITC and rhodamine are being used. It is demonstrated that uv/vis spectroscopy provides an alternative method for the characterization of Giardia and Cryptosporidium. The simplicity and reproducibility of uv/vis spectroscopy measurements makes this technique ideally suited for the development of on-line instrumentation for the rapid detection of microorganisms in water supplies.

  15. Oxidation of municipal wastewater by free radicals mechanism. A UV/Vis spectroscopy study.

    PubMed

    Giannakopoulos, E; Isari, E; Bourikas, K; Karapanagioti, H K; Psarras, G; Oron, G; Kalavrouziotis, I K

    2016-08-01

    This study investigates the oxidation of municipal wastewater (WW) by complexation with natural polyphenols having radical scavenging activity, such as (3,4,5 tri-hydroxy-benzoic acid) gallic acid (GA) in alkaline pH (>7), under ambient O2 and temperature. Physicochemical and structural characteristics of GA-WW complex-forming are evaluated by UV/Vis spectroscopy. The comparative analysis among UV/Vis spectra of GA monomer, GA-GA polymer, WW compounds, and GA-WW complex reveals significant differences within 350-450 and 500-900 nm. According to attenuated total reflectance (ATR) spectroscopy and thermogravimetric analysis (TGA), these spectra differences correspond to distinct complexes formed. This study suggests a novel role of natural polyphenols on the degradation and humification of wastes.

  16. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools.

    PubMed

    Martelo-Vidal, M J; Vázquez, M

    2014-09-01

    Spectral analysis is a quick and non-destructive method to analyse wine. In this work, trans-resveratrol, oenin, malvin, catechin, epicatechin, quercetin and syringic acid were determined in commercial red wines from DO Rías Baixas and DO Ribeira Sacra (Spain) by UV-VIS-NIR spectroscopy. Calibration models were developed using principal component regression (PCR) or partial least squares (PLS) regression. HPLC was used as reference method. The results showed that reliable PLS models were obtained to quantify all polyphenols for Rías Baixas wines. For Ribeira Sacra, feasible models were obtained to determine quercetin, epicatechin, oenin and syringic acid. PCR calibration models showed worst reliable of prediction than PLS models. For red wines from mencía grapes, feasible models were obtained for catechin and oenin, regardless the geographical origin. The results obtained demonstrate that UV-VIS-NIR spectroscopy can be used to determine individual polyphenolic compounds in red wines.

  17. Measurement of Heme Ruffling Changes in MhuD Using UV-vis Spectroscopy.

    PubMed

    Graves, Amanda B; Graves, Max T; Liptak, Matthew D

    2016-04-28

    For decades it has been known that an out-of-plane ruffling distortion of heme perturbs its UV-vis absorption (Abs) spectrum, but whether increased ruffling induces a red or blue shift of the Soret band has remained a topic of debate. This debate has been resolved by the spectroscopic and computational characterization of Mycobacterium tuberculosis MhuD presented here, an enzyme that converts heme, oxygen, and reducing equivalents to nonheme iron and mycobilin. W66F and W66A MhuD have been characterized using (1)H nuclear magnetic resonance, Abs, and magnetic circular dichroism spectroscopies, and the data have been used to develop an experimentally validated theoretical model of ruffled, ferric heme. The PBE density functional theory (DFT) model that has been developed accurately reproduces the observed spectral changes from wild type enzyme, and the underlying quantum mechanical origins of these ruffling-induced changes were revealed by analyzing the PBE DFT description of the electronic structure. Small amounts of heme ruffling have no influence on the energy of the Q-band and blue-shift the Soret band due to symmetry-allowed mixing of the Fe 3dxy and porphyrin a2u orbitals. Larger amounts of ruffling red-shift both the Q and Soret bands due to disruption of π-bonding within the porphyrin ring.

  18. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    PubMed

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  19. Classification of the botanical origin for Malaysian honey using UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Almaleeh, Abd Alazeez; Adom, Abdul Hamid; Fathinul-Syahir, A. S.

    2017-03-01

    The aim of this study is to perform the classification of three brands of Malaysian honeys according to their botanical origin using UV-Vis Spectroscopy. The ability to classify honey according to their botanical origin is important to ensure the quality of the product. A total of nine samples from three commercial brands of honey produces were measured by a Lambda 35 UV-Vis Spectrometer. The wavelength range recorded was from 200 nm to 400 nm and used for model calibration. The (PCs) were extracted from principal components analysis (PCA), the first three (PCs) which accounted 98.03% of disparity of the spectra were combined separately with support vector machine (SVM) for the development of (PC-SVM) model, and achieved 100% discrimination accuracy. The results can be utilized in the development of device for the classification of honey accurately and rapid as well as safe guarantee to ordinary consumers.

  20. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding.

    PubMed

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-11-14

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.

  1. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    NASA Astrophysics Data System (ADS)

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-11-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.

  2. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes.

    PubMed

    Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso

    2015-06-01

    Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

  3. UV/VIS liquid-core optical fiber long lightpath absorption system for spectrophotometer

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wu, Guanyan; Xu, Zheng; Liao, Yuanmin; He, Qushe; Wang, Jufang; Feng, Mingzhao

    1998-08-01

    A new type of UV/VIS liquid-core optical fiber long lightpath absorption system, which was designed as an accessory and spectrum range was extended to UV with minimum wavelength 220 micrometer to compatible with conventional UV/VIS spectrophotometer, was described with high assembling precision RSD 1.4% and absorption 1 to approximately 700 cm for choice. The coupling between source light radiation and liquid-core optical fiber was tested and optimum condition was obtained. The samples introduction was presented and UV transmission spectra of optical fiber was detected. The system was applied to detect elements Cd(II), Pd(II), F-1, Cr(VI), Cu(II), Fe(II), Ti(IV), Pt(II) and medicines Carbamazipine and Vitamin E by using of 105 cm long LCOF, and sensitivities were 42 to approximately 158 times as much as those by 1 cm conventional cell in length, detection limits (3(sigma) ) 0.14 to approximately 17 ng/ml, relative errors less than 11.2%, and recoveries 94 to approximately 102%.

  4. Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy.

    PubMed

    Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi

    2013-10-01

    The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction.

  5. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase.

    PubMed

    Viglino, Emilie; Shaffer, Christopher J; Tureček, František

    2016-06-20

    We report the first application of UV/Vis photodissociation action spectroscopy for the structure elucidation of tyrosine peptide cation radicals produced by oxidative intramolecular electron transfer in gas-phase metal complexes. Oxidation of Tyr-Ala-Ala-Ala-Arg (YAAAR) produces Tyr-O radicals by combined electron and proton transfer involving the phenol and carboxyl groups. Oxidation of Ala-Ala-Ala-Tyr-Arg (AAAYR) produces a mixture of cation radicals involving electron abstraction from the Tyr phenol ring and N-terminal amino group in combination with hydrogen-atom transfer from the Cα positions of the peptide backbone.

  6. The UV-vis absorption spectrum of the flavonol quercetin in methanolic solution: A theoretical investigation.

    PubMed

    Andrade-Filho, T; Ribeiro, T C S; Del Nero, J

    2009-07-01

    The UV-vis absorption spectrum of the solvated quercetin molecule in methanol was investigated theoretically by means of an elegant type of QM/MM scheme better known as sequential Monte Carlo/quantum mechanics (S-MC/QM) methodology. A set of 125 uncorrelated Monte Carlo molecular liquid structures were properly selected through the autocorrelation function of the energy in order to be used in the quantum mechanical calculations. These molecular liquid structures were obtained by means of the radial and minimum distance distribution functions. A detailed account of the pattern of hydrogen bond structures obtained in this study is also available. The computed results obtained here were directly compared with the available experimental data in order to validate our theoretical model and through this comparison a very good conformity between theoretical and available experimental results was found.

  7. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy

    PubMed Central

    Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz

    2016-01-01

    The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin–Ciocalteu method (R2 of 0.97 in calibration and R2 of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R2 of 0.93 in calibration and R2 of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R2 of 0.99 in calibration and R2 of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R2 of 0.96 in calibration and R2 of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content—the most important parameters to be measured in this type of liqueurs.  PMID:27735832

  8. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy.

    PubMed

    Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz

    2016-10-09

    The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin-Ciocalteu method (R² of 0.97 in calibration and R² of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R² of 0.93 in calibration and R² of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R² of 0.99 in calibration and R² of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R² of 0.96 in calibration and R² of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content-the most important parameters to be measured in this type of liqueurs.

  9. SANS and UV-vis spectroscopy studies of resultant structure from lysozyme adsorption on silica nanoparticles.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2011-08-16

    The interaction of lysozyme protein (M.W. 14.7 kD) with two sizes of silica nanoparticles (16 and 25 nm) has been examined in aqueous solution using UV-vis spectroscopy and small-angle neutron scattering (SANS). The measurements were performed on fixed concentration (1 wt %) of nanoparticles and varying concentration of protein in the range 0 to 2 wt %. The adsorption isotherm as obtained using UV-vis spectroscopy suggests strong interaction of the two components and shows an exponential behavior. The saturation values of adsorption are found to be around 90 and 270 protein molecules per particle for 16 and 25 nm sized nanoparticles, respectively. The adsorption of protein on nanoparticles leads to the aggregation of particles and these structures have been studied by SANS. The aggregates are characterized by fractal structure coexisting with unaggregated particles at low protein concentrations and free proteins at higher protein concentrations. Further, contrast variation SANS measurements have been carried out to differentiate the adsorbed and free protein in these systems.

  10. The use of UV-VIS-NIR reflectance spectroscopy to identify iron minerals

    NASA Astrophysics Data System (ADS)

    Szalai , Z.; Kiss, K.; Jakab, G.; Sipos, P.; Belucz, B.; Németh, T.

    2013-11-01

    Iron minerals - which behave as indicators in earthly and Martian environments - can be identified by UV-VIS-NIR reflectance spectroscopy. The aim of this study was to compare the spectra of various soils and sediments all of which contain iron minerals but developed under different environmental conditions. To identify the mineral of the sediments we used the first and second derivatives of the Kubelka-Munk transformed spectra. According to their iron mineral composition, the analysed samples can be divided into three distinct groups. Goethite refers to the hydromorphic conditions, hematite suffers from the long and intense weathering in leaching environment. In the case of steppe climatic conditions the weathering is so weak that the appearance of pedogenic iron minerals is improbable in these soils.

  11. Thermal edible oil evaluation by UV-Vis spectroscopy and chemometrics.

    PubMed

    Gonçalves, Rhayanna P; Março, Paulo H; Valderrama, Patrícia

    2014-11-15

    Edible oils such as colza, corn, sunflower, soybean and olive were analysed by UV-Vis spectroscopy and Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS). When vegetable oils were heated at high temperatures (frying), oxidation products were formed which were harmful to human health in addition to degrading the antioxidants present, and this study aimed to evaluate tocopherol (one antioxidant present in oils) and the behaviour of oxidation products in edible oils. The MCR-ALS results showed that the degradation started at 110°C and 85°C, respectively, for sunflower and colza oils, while tocopherol concentration decreased and oxidation products increased starting at 70°C in olive oil. In soybean and corn oils, tocopherol concentration started to decrease and oxidation products increased at 50°C. The results suggested that sunflower, colza and olive oils offered more resistance to increasing temperatures, while soybean and corn oils were less resistant.

  12. The Fe-Cu Metastable Nano-scale Compound for Enhanced Absorption in the UV-Vis and NIR Ranges

    NASA Astrophysics Data System (ADS)

    Alami, Abdul Hai; Abed, Jehad; Almheiri, Meera; Alketbi, Afra

    2015-12-01

    This paper investigates the synthesis, microstructural characterization, electrical and optical, and thermal testing of Fe-Cu metastable alloy system for selective solar absorption applications. The system is produced by mechanical alloying using high-energy ball milling while monitoring its crystallographic morphology via X-ray diffraction from the initial as-is mixture up to the one produced after 8 hours milling time. The resulting homogeneous, metastable microstructure is examined by scanning electron microscopy and energy dispersive X-ray spectroscopy to verify the sought result of efficient inter-diffusion of elements. Optical spectroscopy results exhibit up to 81 pct enhanced absorption in the UV-Vis-NIR wavelength range with increased milling time from the as-is compound to the one obtained after 8 hours, while the trends of absorptivity curves had clear correlations with microstructural evolution. The impedance measurement of the resulting compound shows an increase in the resistance up to 120 Ω, compared with zero for the as-is starting mixture, which is a useful observation for many applications.

  13. Molecular dynamics simulation and TDDFT study of the structures and UV-vis absorption spectra of MCT-β-CD and its inclusion complexes.

    PubMed

    Lu, Huijuan; Wang, Yujiao; Xie, Xiaomei; Chen, Feifei; Li, Wei

    2015-01-01

    In this research, the inclusion ratios and inclusion constants of MCT-β-CD/PERM and MCT-β-CD/CYPERM inclusion complexes were measured by UV-vis and fluorescence spectroscopy. The inclusion ratios are both 1:1, and the inclusion constants are 60 and 342.5 for MCT-β-CD/PERM and MCT-β-CD/CYPERM, respectively. The stabilities of inclusion complexes were investigated by MD simulation. MD shows that VDW energy plays a vital role in the stability of inclusion complex, and the destruction of inclusion complex is due to the increasing temperature. The UV-vis absorption spectra of MCT-β-CD and its inclusion complexes were studied by time-dependent density functional theory (TDDFT) method employing BLYP-D3, B3LYP-D3 and M06-2X-D3 functionals. BLYP-D3 well reproduces the UV-vis absorption spectrum and reveals that the absorption bands of MCT-β-CD mainly arise from n→π(∗) and n→σ(∗) transition, and those of inclusion complexes mainly arise from intramolecular charge transfer (ICT). ICT results in the shift of main absorption bands of MCT-β-CD.

  14. [Measurement of Water COD Based on UV-Vis Spectroscopy Technology].

    PubMed

    Wang, Xiao-ming; Zhang, Hai-liang; Luo, Wei; Liu, Xue-mei

    2016-01-01

    Ultraviolet/visible (UV/Vis) spectroscopy technology was used to measure water COD. A total of 135 water samples were collected from Zhejiang province. Raw spectra with 3 different pretreatment methods (Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV) and 1st Derivatives were compared to determine the optimal pretreatment method for analysis. Spectral variable selection is an important strategy in spectrum modeling analysis, because it tends to parsimonious data representation and can lead to multivariate models with better performance. In order to simply calibration models, the preprocessed spectra were then used to select sensitive wavelengths by competitive adaptive reweighted sampling (CARS), Random frog and Successive Genetic Algorithm (GA) methods. Different numbers of sensitive wavelengths were selected by different variable selection methods with SNV preprocessing method. Partial least squares (PLS) was used to build models with the full spectra, and Extreme Learning Machine (ELM) was applied to build models with the selected wavelength variables. The overall results showed that ELM model performed better than PLS model, and the ELM model with the selected wavelengths based on CARS obtained the best results with the determination coefficient (R2), RMSEP and RPD were 0.82, 14.48 and 2.34 for prediction set. The results indicated that it was feasible to use UV/Vis with characteristic wavelengths which were obtained by CARS variable selection method, combined with ELM calibration could apply for the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  15. UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478.

    PubMed

    Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A

    2016-07-05

    The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360nm consisted of two partially overlapping bands at approximately 340nm and 330nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327nm to 336nm, while the lower energy absorption band demonstrated a change in peak position from 340nm to 346nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409nm to 495nm with the corresponding Stokes shift in the range of 64nm to 155nm (4536cm(-1) to 9210cm(-1)). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo.

  16. Structural investigation of high-valent manganese-salen complexes by UV/Vis, Raman, XANES, and EXAFS spectroscopy.

    PubMed

    Feth, Martin P; Bolm, Carsten; Hildebrand, Jens P; Köhler, Manuela; Beckmann, Oliver; Bauer, Matthias; Ramamonjisoa, Rivo; Bertagnolli, Helmut

    2003-03-17

    XANES and EXAFS spectroscopic studies at the Mn-K- and Br-K-edge of reaction products of (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride ([(salen)Mn(III)Cl], 1) and (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) bromide ([(salen)Mn(III)Br], 2) with 4-phenylpyridine N-oxide (4-PPNO) and 3-chloroperoxybenzoic acid (MCPBA) are reported. The reaction of the Mn(III) complexes with two equivalents of 4-PPNO leads to a hexacoordinated compound, in which the manganese atom is octahedrally coordinated by four oxygen/nitrogen atoms of the salen ligand at an average distance of approximately 1.90 A and two additional, axially bonded oxygen atoms of the 4-PPNO at 2.25 A. The oxidation state of this complex was determined as approximately +IV by a comparative study of Mn(III) and Mn(V) reference compounds. The green intermediate obtained in reactions of MCPBA and solutions of 1 or 2 in acetonitrile was investigated with XANES, EXAFS, UV/Vis, and Raman spectroscopy, and an increase of the coordination number of the manganese atoms from 4 to 5 and the complete abstraction of the halide was observed. A formal oxidation state of IV was deduced from the relative position of the pre-edge 1s-->3d feature of the X-ray absorption spectrum of the complex. The broad UV/Vis band of this complex in acetonitrile with lambda(max)=648 nm was consistent with a radical cation structure, in which a MCPBA molecule was bound to the Mn(IV) central atom. An oxomanganese(V) or a dimeric manganese(IV) species was not detected.

  17. Study of electron transition energies between anions and cations in spinel ferrites using differential UV-vis absorption spectra

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Wu, L. Q.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Ge, X. S.; Ding, L. L.

    2016-07-01

    It is very important to determine electron transition energies (Etr) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV-vis absorption spectra using the curve (αhν)2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV-vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (Etr) between the anions and cations, Fe2+ and Fe3+ at the (A) and [B] sites and Ni2+ at the [B] sites for the (A)[B]2O4 spinel ferrite samples CoxNi0.7-xFe2.3O4 (0.0≤x≤0.3), CrxNi0.7Fe2.3-xO4 (0.0≤x≤0.3) and Fe3O4. We suggest that the differential UV-vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  18. Analysis of organophosphate-Zn metalloporphyrin interactions via UV-vis spectroscopy and molecular modeling.

    PubMed

    Rompoti, A; Dalal, N; Athanasopoulos, D; Rutan, S; Helburn, R

    2015-01-25

    UV-vis absorption spectra of zinc tetraphenylporphine (ZnTPP) on interaction with six organophosphorus (OP) compounds in cyclohexane were compared using ab initio methods and the molecular and solvation ligand descriptors π(*), Vx, and σ. OPs with polarizable hydrocarbon substituents in the homologous series tri-ethyl, -pentyl, -octyl, and -phenyl phosphates and the toxicologically relevant methyl paraoxon (1a-e) each gave a red shift in the Soret band (λsor) of ZnTPP in the range of 8-10 nm. Sensitivity as ΔAsor-b/Δug OP for the spectral band of the ligand bound ZnTPP (λsor-b) decreased with increasing extent of alkyl and aromatic substitution. Calculated and combined energies for OP and ZnTPP examined as a function of distance (Å) between ligand and porphyrin center suggest increased steric crowding with increasing Vx, and aromatic content of the OP. Spectrally fitted K1:1 and ΔAsor-b/ug OP each vary exponentially with Vx/σ. Lack of a red shift in λsor-b where ZnTPP was titrated with the toxic diethyl chlorophosphate (1g) is consistent with a model in which the magnitude of ΔEsor is proportional to the donor capacity of the phosphoryl-O ligand.

  19. Quantitative characterization of the colloidal stability of metallic nanoparticles using UV-vis absorbance spectroscopy.

    PubMed

    Ray, Tyler R; Lettiere, Bethany; de Rutte, Joseph; Pennathur, Sumita

    2015-03-31

    Plasmonic nanoparticles are used in a wide variety of applications over a broad array of fields including medicine, energy, and environmental chemistry. The continued successful development of this material class requires the accurate characterization of nanoparticle stability for a variety of solution-based conditions. Although many characterization methods exists, there is an absence of a unified, quantitative means for assessing the colloidal stability of plasmonic nanoparticles. We present the particle instability parameter (PIP) as a robust, quantitative, and generalizable characterization technique based on UV-vis absorbance spectroscopy to characterize colloidal instability. We validate PIP performance with both traditional and alternative characterization methods by measuring gold nanorod instability in response to different salt (NaCl) concentrations. We further measure gold nanorod stability as a function of solution pH, salt, and buffer (type and concentration), nanoparticle concentration, and concentration of free surfactant. Finally, these results are contextualized within the literature on gold nanorod stability to establish a standardized methodology for colloidal instability assessment.

  20. Impurity profiling of carbocisteine by HPLC-CAD, qNMR and UV/vis spectroscopy.

    PubMed

    Wahl, Oliver; Holzgrabe, Ulrike

    2014-07-01

    For the impurity profiling of the mucolytic and anti-inflammatory drug carbocisteine a high performance liquid chromatographic (HPLC) method using corona charged aerosol detection (CAD) was developed and fully validated following the ICH guideline Q2(R1). The response was linear (R²>0.995) over a small concentration range (0.05-0.25 or 0.10-0.60% respectively) and a detection limit of at least 0.03% was registered. The separation was achieved on a mixed mode column combining hydrophobic C18 and strong cation exchange retention mechanisms using a mass spectrometer compatible volatile mobile phase consisting of trifluoroacetic acid 10 mM and acetonitrile 12% (V/V). Impurities, not assessable by HPLC-CAD such as the volatile chloroacetic acid and the unstable cysteine, were determined by quantitative NMR (qNMR) with maleic acid as internal standard and UV/vis spectroscopy after reaction with Ellman's reagent, respectively. Six batches of three different manufacturers were tested by means of those methods. The purity varied from below 99.0 to higher than 99.8 per cent. The major impurities of all batches were the starting material cystine and N,S-dicarboxymethylcysteine being a synthesis by-product.

  1. Studies of structure of calcium-iron phosphate glasses by infrared, Raman and UV-Vis spectroscopies

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Liang, X. F.; Yu, H. J.; Yang, D. Q.; Yang, S. Y.

    2016-06-01

    Glasses in the ternary CaO-Fe2O3-P2O5 system were prepared and studied by means of density, differential scanning calorimetry, infrared, Raman and UV-Vis spectroscopies. The results showed that density and molar volume in the glass system decreased with increasing substitution of CaO for Fe2O3. The variation of glass transition temperature and thermal stability was strictly related to the nature of bonding in the vitreous network. Spectroscopic analysis showed that substitution of CaO for Fe2O3 induced an evolution of structural units from pyrophosphate to metaphosphate species indicating the polymerization of phosphate chains and the decrease of non-bridging oxygen concentrations. With increasing substitution of CaO for Fe2O3 The P-O-Ca linkage and (P-O- Ca2+ -O-P) chains participated in the glass network by replacing P-O-Fe bonds. The absorption band of the P-O-Ca stretching mode in the glasses with high CaO content (≥32 mol%) was assigned at around 1084 cm-1. The absorption edge would fall in the region between 332 and 420 nm which are the absorption bands of Fe3+ ions.

  2. Green biochemistry approach for synthesis of silver and gold nanoparticles using Ficus racemosa latex and their pH-dependent binding study with different amino acids using UV/Vis absorption spectroscopy.

    PubMed

    Tetgure, Sandesh R; Borse, Amulrao U; Sankapal, Babasaheb R; Garole, Vaman J; Garole, Dipak J

    2015-04-01

    Simple and eco-friendly biosynthesis approach was developed to synthesize silver nanoparticles (SNPs) and gold nanoparticles (GNPs) using Ficus racemosa latex as reducing agent. The presence of sunlight is utilized with latex and achieved the nanoparticles whose average size was in the range of 50-120 nm for SNPs and 20-50 nm for GNPs. The synthesized nanoparticles were characterized by UV/Visible absorption spectroscopy, X-ray diffraction, and field emission-scanning electron microscopy techniques toget understand the obtained nanoparticles. The pH-dependent binding studies of SNPs and GNPs with four amino acids, namely L-lysine, L-arginine, L-glutamine and glycin have been reported.

  3. The color of complexes and UV-vis spectroscopy as an analytical tool of Alfred Werner's group at the University of Zurich.

    PubMed

    Fox, Thomas; Berke, Heinz

    2014-01-01

    Two PhD theses (Alexander Gordienko, 1912; Johannes Angerstein, 1914) and a dissertation in partial fulfillment of a PhD thesis (H. S. French, Zurich, 1914) are reviewed that deal with hitherto unpublished UV-vis spectroscopy work of coordination compounds in the group of Alfred Werner. The method of measurement of UV-vis spectra at Alfred Werner's time is described in detail. Examples of spectra of complexes are given, which were partly interpreted in terms of structure (cis ↔ trans configuration, counting number of bands for structural relationships, and shift of general spectral features by consecutive replacement of ligands). A more complete interpretation of spectra was hampered at Alfred Werner's time by the lack of a light absorption theory and a correct theory of electron excitation, and the lack of a ligand field theory for coordination compounds. The experimentally difficult data acquisitions and the difficult spectral interpretations might have been reasons why this method did not experience a breakthrough in Alfred Werner's group to play a more prominent role as an important analytical method. Nevertheless the application of UV-vis spectroscopy on coordination compounds was unique and novel, and witnesses Alfred Werner's great aptitude and keenness to always try and go beyond conventional practice.

  4. Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengwei; Jiang, Jia Qian

    2012-07-01

    A simple and economic solid-phase extraction coupled with UV/Vis spectrophotometric method is described for the analysis of ibuprofen and ciprofloxacin. Following solid-phase extraction from model wastewater samples containing standard ibuprofen or ciprofloxacin, elutes were analyzed by a UV/Vis spectrophotometer at 225 nm for ibuprofen and 280 nm for ciprofloxacin. The assay was linear for both compounds with good coefficients of correlation. This method shows good recoveries for both compounds with 101.0 ± 9.8% for ibuprofen and 99.4 ± 11.8% ciprofloxacin.

  5. Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rathod, P. B.; Waghuley, S. A.

    2016-09-01

    Graphene and TiO2 were synthesized using electrochemical exfoliation and co-precipitation methods, respectively. An ex situ approach was adopted for the graphene/TiO2 composites. The conformation of graphene in the TiO2 samples was examined through X-ray diffraction. Optical properties of the as-synthesised composites such as optical absorption, extinction coefficient, refractive index, real dielectric constant, imaginary dielectric constant, dissipation factor, and optical conductivity were measured using UV-Vis spectroscopy. The varying concentration of graphene in TiO2 affects the optical properties which appear different for 10 wt.% as compared to 5 wt.% graphene/ TiO2 composite. The composites exhibit an absorption peak at 300 nm with a decrease in band gap for 10 wt.% as compared to 5 wt.% graphene/TiO2 composite. The maximum optical conductivity for the graphene/TiO2 composite of 10 wt.% was found to be 1.86·10-2 Ω-1·m-1 at 300 nm.

  6. Reaction pathways of proton transfer in hydrogen-bonded phenol-carboxylate complexes explored by combined UV-vis and NMR spectroscopy.

    PubMed

    Koeppe, Benjamin; Tolstoy, Peter M; Limbach, Hans-Heinrich

    2011-05-25

    Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.

  7. Improved analysis of Monascus pigments based on their pH-sensitive UV-Vis absorption and reactivity properties.

    PubMed

    Shi, Kan; Chen, Gong; Pistolozzi, Marco; Xia, Fenggeng; Wu, Zhenqiang

    2016-09-01

    Monascus pigments, a mixture of azaphilones mainly composed of red, orange and yellow pigments, are usually prepared in aqueous ethanol and analysed by ultraviolet-visible (UV-Vis) spectroscopy. The pH of aqueous ethanol used during sample preparation and analysis has never been considered a key parameter to control; however, this study shows that the UV-Vis spectra and colour characteristics of the six major pigments are strongly influenced by the pH of the solvent employed. In addition, the increase of solvent pH results in a remarkable increase of the amination reaction of orange pigments with amino compounds, and at higher pH (≥ 6.0) a significant amount of orange pigment derivatives rapidly form. The consequent impact of these pH-sensitive properties on pigment analysis is further discussed. Based on the presented results, we propose that the sample preparation and analysis of Monascus pigments should be uniformly performed at low pH (≤ 2.5) to avoid variations of UV-Vis spectra and the creation of artefacts due to the occurrence of amination reactions, and ensure an accurate analysis that truly reflects pigment characteristics in the samples.

  8. Instrumental Analysis in the High School Classroom: UV-Vis Spectroscopy

    ERIC Educational Resources Information Center

    Erhardt, Walt

    2007-01-01

    Note is presented on the standard lab from a second year chemistry course. The lab "Determining which of the Seven FD&C Food-Approved Dyes are Used in Making Green Skittles", familiarizes students with the operation of the CHEM2000 UV-Vis spectrophorometer.

  9. Non-contact assessment of COD and turbidity concentrations in water using diffuse reflectance UV-Vis spectroscopy.

    PubMed

    Agustsson, Jon; Akermann, Oliver; Barry, D Andrew; Rossi, Luca

    2014-08-01

    Water contamination is an important environmental concern underlining the need for reliable real-time information on contaminant concentrations in natural waters. Here, a new non-contact UV-Vis spectroscopic approach for monitoring contaminants in water, and especially wastewater, is proposed. Diffuse reflectance UV-Vis spectroscopy was applied to measure simultaneously the chemical oxygen demand (COD) and turbidity (TUR) concentrations in water. The measurements were carried out in the wavelength range from 200-1100 nm. The measured spectra were analysed using partial-least-squares (PLS) regression. The correlation coefficient between the measured and the reference concentrations of COD and TUR in the water samples were R(2) = 0.85 and 0.96, respectively. These results highlight the potential of non-contact UV-Vis spectroscopy for the assessment of water contamination. A system built on the concept would be able to monitor wastewater pollution continuously, without the need for laborious sample collection and subsequent laboratory analysis. Furthermore, since no parts of the system are in contact with the wastewater stream the need for maintenance is minimised.

  10. [Application of the differential absorption UV-VIS spectrum to assay some of humic compounds in therapeutic peats].

    PubMed

    Drobnik, Michał; Latour, Teresa

    2009-01-01

    Delineated were differential 4th degree absorption spectrum UV-VIS range for standardized humid acids produced by "Fluka". These acids were separated through selective extraction (acid, alcoholic, alkaline). Determined was wavelength for which distinct, well separated, symmetrical peaks characteristic for particular compounds were found. The similar procedure were applied to separate the same sort of acids extracted from 4 Polish peat deposits. Certified are the presence of hymatomelanoic acid, fulvic acid, humic acid in examined peat of low type. These acids occurred in different quantity and proportions.

  11. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques.

    PubMed

    Fedenko, Volodymyr S; Shemet, Sergiy A; Landi, Marco

    2017-02-10

    Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L(*)a(*)b(*) and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool

  12. Freeze concentration effects on ice (photo) chemical kinetics investigated by UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Newberg, J. T.; Arble, C.; Zhang, J.

    2013-12-01

    We will describe the setup of a fiber coupled UV-Vis spectrometer to investigate the chemistry and photochemistry of aqueous solutions before and after freezing. The photochemical degradation of pyranine at the isosbestic point was investigated. Direct photochemical degradation was minor compared to indirect degradation through hydroxyl radical (OH) attack at room temperature. At -10 C indirect OH degradation was increased relative to room temperature studies, and has been attributed to the freeze concentration effect. The reaction of bromate with bromide in the presence of acid to form molecular bromine was investigated. Upon freezing the formation rate of bromine significantly increases, which we attribute to the freeze concentration effect.

  13. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    PubMed

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  14. Comparative theoretical study of the UV/Vis absorption spectra of styrylpyridine compounds using TD-DFT calculations.

    PubMed

    Castro, Maria Eugenia; Percino, M Judith; Chapela, Victor M; Soriano-Moro, Guillermo; Ceron, Margarita; Melendez, Francisco J

    2013-05-01

    This study examined absorption properties of 2-styrylpyridine, trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)]pyridine, and trans-4-(m-cyanostyryl)pyridine compounds based on theoretical UV/Vis spectra, with comparisons between time-dependent density functional theory (TD-DFT) using B3LYP, PBE0, and LC-ωPBE functionals. Basis sets 6-31G(d), 6-31G(d,p), 6-31+G(d,p), and 6-311+G(d,p) were tested to compare molecular orbital energy values, gap energies, and maxima absorption wavelengths. UV/Vis spectra were calculated from fully optimized geometry in B3LYP/6-311+G(d,p) in gas phase and using the IEFPCM model. B3LYP/6-311+G(d,p) provided the most stable form, a planar structure with parameters close to 2-styrylpyridine X-ray data. Isomeric structures were evaluated by full geometry optimization using the same theory level. Similar energetic values were found: ~4.5 kJ mol(-1) for 2-styrylpyridine and ~1 kJ mol(-1) for derivative compound isomers. The 2-styrylpyridine isomeric structure differed at the pyridine group N-atom position; structures considered for the other compounds had the cyano group attached to the phenyl ring m-position equivalent. The energy difference was almost negligible between m-cyano-substituted molecules, but high energy barriers existed for cyano-substituted phenyl ring torsion. TD-DFT appeared to be robust and accurate approach. The B3LYP functional with the 6-31G(d) basis set produced the most reliable λmax values, with mean errors of 0.5 and 12 nm respect to experimental values, in gas and solution, respectively. The present data describes effects on the λmax changes in the UV/Vis absorption spectra of the electron acceptor cyano substituent on the phenyl ring, the electron donor methyl substituent, and the N-atom position on the electron acceptor pyridine ring, causing slight changes respect to the 2-styrylpyridine title compound.

  15. Interactions of the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV-Vis spectroscopy.

    PubMed

    Zhang, Ying; Wang, Xuejing; Wang, Lei; Yu, Miao; Han, Xiaojun

    2014-02-01

    The baicalin and baicalein are the major flavonoids found in Radix Scutellariae, an essential herb in traditional Chinese medicine for thousands of years. The interactions of the baicalin and baicalein with lipid bilayer membranes were studied using cyclic voltammetry and UV-Vis spectroscopy. The thickness d of supported bilayer lipid membranes was calculated as d=4.59(±0.36) nm using AC impedance spectroscopy. The baicalein interacted with egg PC bilayer membranes in a dose-dependent manner. The responses of K3Fe(CN)6 on lipid bilayer membrane modified Pt electrode linearly increased in a concentration range of baicalein from 6.25μM to 25μM with a detection limit of 0.1μM and current-concentration sensitivity of 0.11(±0.01) μA/μM, and then reached a plateau from 25μM to 50μM. However the baicalin showed much weaker interactions with egg PC bilayer membranes. UV-Vis spectroscopy also confirmed that the baicalein could interact with egg PC membranes noticeably, but the interaction of baicalin with membranes was hard to be detected. The results provide useful information on understanding the mechanism of action of Radix Scutellariae in vivo.

  16. Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV-vis Absorption Spectra of Some Phenolic Compounds.

    PubMed

    Marković, Svetlana; Tošović, Jelena

    2015-09-03

    The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.

  17. Uv/vis Absorption Experiments on Mass Selected Cations by Counter-Ion Introduction Into AN Inert Neon Matrix

    NASA Astrophysics Data System (ADS)

    Roehr, N. P.; Szczepanski, J.; Polfer, N. C.

    2012-06-01

    Obtaining UV/Vis absorption spectra of cations is a challenging endeavor due to the low densities that can be achieved in the gas phase. In matrix isolation, ions of interest are accumulated in a cold inert matrix of a rare gas (e.g. Argon, Neon) until sufficient concentrations are attained for direct spectroscopic characterization. Nonetheless, in order to ensure neutralization of the matrix, experimentalists often rely on non-ideal, energetic processes, such as electron emission from metal surfaces upon cation bombardment. A better method for matrix neutralization would involve co-depositing a molecular counter-ion. In this talk, a two-ion source instrument is presented, where cations and anions are deposited into a cold inert matrix. Mass-selected cation beams are generated in an electron ionization source and filtered in a quadrupole mass filter (5-10 nA mass-selected naphthalene radical cations recorded). Anion beams are generated in a chemical ionization source (20 nA SF6- recorded). Both ion beams are introduced into an octopole ion guide via a quadrupole deflector. Cations and anions can be deposited simultaneously or separately; in the latter case, alternating layers of each species can be formed. Target cations of interest include open-shell naphthalene and tetracene, for which UV/Vis absorption spectra are recorded after deposition. The counter-ion of choice is SF6-, due to the high electronegativity of SF6. J. P. Maier, et al., J. Chem. Phys. 90, 600(1989). Godbout, et al., J. Phys. Chem. 100 2892-2899(1996). P. Brechignac, et al., J. Chem. Phys. 22 7337-7347(1999). M. Vala, et al., Chem. Phys. Lett. 245 539-548(1995).

  18. Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV-Vis spectroscopy.

    PubMed

    Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K

    2016-01-01

    The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.

  19. A comparison of antioxidative capacities of fruit juices, drinks and nectars, as determined by EPR and UV-vis spectroscopies.

    PubMed

    Bartoszek, Mariola; Polak, Justyna

    2016-01-15

    The differences in the Trolox Equivalent Antioxidant Capacity (TEAC) values at the same incubation time obtained by two different techniques: electron paramagnetic resonance (EPR) spectroscopy and ultraviolet visible (UV-vis) spectroscopy, which use the same antioxidant-free radical reaction mechanism, were determined for fruit juices, nectars and drinks. For this study, the stable free radical 1,1-Diphenyl-2-picryl-hydrazyl (DPPH(•)) was used. The antioxidant capacity was presented in Trolox Equivalents, e.g., μM trolox per 100 ml of sample. All of the studied fruit juices, drinks and nectars showed antioxidative properties. Dependencies between TEAC values and the percent fruit content and sample color were observed for the studied beverages. It was found that EPR spectroscopy is the more adequate method for determining TEAC values for these kinds of samples.

  20. Perylene bisimide dimer aggregates: fundamental insights into self-assembly by NMR and UV/Vis spectroscopy.

    PubMed

    Shao, Changzhun; Grüne, Matthias; Stolte, Matthias; Würthner, Frank

    2012-10-22

    A novel perylene bisimide (PBI) dye bearing one solubilizing dialkoxybenzyl and one bulky 2,5-di-tert-butylphenyl substituent was synthesized and its aggregation behavior was analyzed by NMR and UV/Vis spectroscopy in various chloroform/methylcyclohexane (MCH) solvent mixtures. In the presence of no less than 10 vol % chloroform, exclusive self-assembly of this PBI dye into π-stacked dimers was unambiguously confirmed by means of both concentration-dependent (1) H NMR and UV/Vis spectroscopic experiments. Based on ROESY NMR, a well-defined π-stacked dimer structure was determined and further corroborated by molecular modeling studies. By varying the solvent composition of chloroform and MCH, the solvent effects on the Gibbs free energy of PBI dimerization were elucidated and showed a pronounced nonlinearity between lower and higher MCH contents. This observation could be related to a further growth process of dimers into larger aggregates that occurs in the absence of chloroform, which is required to solvate the aromatic π surfaces. With the help of a single-crystal structure analysis for a related PBI dye, a structural model could be derived for the extended aggregates that are still composed of defined π-π-stacked PBI dimer entities.

  1. The translucency of dental composites investigated by UV-VIS spectroscopy

    SciTech Connect

    Dumitrescu, L. Silaghi; Pastrav, O.; Prejmerean, C.; Prodan, D.; Boboia, S.; Codruta, S.; Moldovan, M.

    2013-11-13

    Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in the 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, Restacril{sup RO} and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, Restacril{sup RO} and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample.

  2. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    PubMed

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of

  3. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    ERIC Educational Resources Information Center

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  4. TDDFT prediction of UV-vis absorption and emission spectra of tocopherols in different media.

    PubMed

    Bakhouche, Kahina; Dhaouadi, Zoubeida; Lahmar, Souad; Hammoutène, Dalila

    2015-06-01

    We use the TDDFT/PBE0/6-31+G* method to determine the electronic absorption and emission energies, in different media, of the four forms of tocopherol, which differ by the number and the position of methyl groups on the chromanol. Geometries of the ground state S0 and the first singlet excited state S1 were optimized in the gas phase, and various solvents. The solvent effect is evaluated using an implicit solvation model (IEF-PCM). Our results are compared to the experimental ones obtained for the vitamin E content in several vegetable oils. For all forms of tocopherols, the HOMO-LUMO first vertical excitation is a π-π* transition. Gas phase and non-polar solvents (benzene and toluene) give higher absorption wavelengths than polar solvents (acetone, ethanol, methanol, DMSO, and water); this can be interpreted by a coplanarity between the O-H group and the chroman, allowing a better electronic resonance of the oxygen lone pairs and the aromatic ring, and therefore giving an important absorption wavelength, whereas the polar solvents give high emission wavelengths comparatively to gas phase and non-polar solvents. Fluorescence spectra permit the determination, the separation, and the identification of the four forms of tocopherols by a large difference in emission wavelength values. Graphical Abstract Scheme from process methodological to obtain the absorption and emission spectra for tocopherols.

  5. Structural study of polymer hydrogel contact lenses by means of positron annihilation lifetime spectroscopy and UV-vis-NIR methods.

    PubMed

    Filipecki, J; Kocela, A; Korzekwa, P; Miedzinski, R; Filipecka, K; Golis, E; Korzekwa, W

    2013-08-01

    A study has been conducted in order to determine presence of free volume gaps in the structure of structure of polymer hydrogel contact lenses made in phosphoryl choline technology and of the degree of defect of its structure. The study was made by means of positron annihilation lifetime spectroscopy. As a result of the conducted measurements, curves were obtained, which described numbers of counts of the acts of annihilation in the time function. The conducted studies revealed existence of three components τ(1), τ(2) and τ(3). The τ(3) component is attributed to the pick-off annihilation of o-Ps orthopositronium trapping by free volume gaps and provides information about geometrical parameters of the volumes. At the same time, the UV-vis-NIR spectrometry examination was conducted on the same samples in the spectral range 200-1,000 nm.

  6. SAXS Combined with UV-vis Spectroscopy and QELS: Accurate Characterization of Silver Sols Synthesized in Polymer Matrices.

    PubMed

    Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii

    2016-12-01

    The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.

  7. Substituent and solvent effects on the UV-vis absorption spectrum of the photoactive yellow protein chromophore.

    PubMed

    García-Prieto, F Fernández; Aguilar, M A; Galván, I Fdez; Muñoz-Losa, A; Olivares del Valle, F J; Sánchez, M L; Martín, M E

    2015-05-28

    Solvent effects on the UV-vis absorption spectra and molecular properties of four models of the photoactive yellow protein (PYP) chromophore have been studied with ASEP/MD, a sequential quantum mechanics/molecular mechanics method. The anionic trans-p-coumaric acid (pCA(-)), thioacid (pCTA(-)), methyl ester (pCMe(-)), and methyl thioester (pCTMe(-)) derivatives have been studied in gas phase and in water solution. We analyze the modifications introduced by the substitution of sulfur by oxygen atoms and hydrogen by methyl in the coumaryl tail. We have found some differences in the absorption spectra of oxy and thio derivatives that could shed light on the different photoisomerization paths followed by these compounds. In solution, the spectrum substantially changes with respect to that obtained in the gas phase. The n → π1* state is destabilized by a polar solvent like water, and it becomes the third excited state in solution displaying an important blue shift. Now, the π → π1* and π → π2* states mix, and we find contributions from both transitions in S1 and S2. The presence of the sulfur atom modulates the solvent effect and the first two excited states become practically degenerate for pCA(-) and pCMe(-) but moderately well-separated for pCTA(-) and pCTMe(-).

  8. [Determination of enthalpy change of coordinating color reaction by UV-Vis absorption spectrum method].

    PubMed

    Yang, D; An, L; Chen, L

    2001-08-01

    In this paper, a simple experimental method for the determination of enthalpy change of coordinating color reaction has been proposed and a relation formula between absorption and temperature has been deduced. Using coordinating color reaction of cobalt(II) thiocyanate in Tween-80 medium, the linear relation of this formula has been validated: r = 0.9957 and delta H = -44.7 kJ.mol-1, which is accordant with the result obtained from Van't Hoff equation.

  9. Assessing pearl quality using reflectance UV-Vis spectroscopy: does the same donor produce consistent pearl quality?

    PubMed

    Mamangkey, Noldy Gustaf F; Agatonovic, Snezana; Southgate, Paul C

    2010-09-20

    Two groups of commercial quality ("acceptable") pearls produced using two donors, and a group of "acceptable" pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV-Vis

  10. Teaching UV-Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer

    ERIC Educational Resources Information Center

    Grasse, Elise K.; Torcasio, Morgan H.; Smith, Adam W.

    2016-01-01

    Visible absorbance spectroscopy is a widely used tool in chemical, biochemical, and medical laboratories. The theory and methods of absorbance spectroscopy are typically introduced in upper division undergraduate chemistry courses, but could be introduced earlier with the right curriculum and instrumentation. A major challenge in teaching…

  11. Electronic states of Myricetin. UV-Vis polarization spectroscopy and quantum chemical calculations.

    PubMed

    Vojta, Danijela; Karlsen, Eva Marie; Spanget-Larsen, Jens

    2017-02-15

    Myricetin (3,3',4',5,5',7'-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40,000-20,000cm(-1) were characterized with respect to their wavenumbers, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31+G(d,p).

  12. Electronic states of Myricetin. UV-Vis polarization spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Vojta, Danijela; Karlsen, Eva Marie; Spanget-Larsen, Jens

    2017-02-01

    Myricetin (3,3‧,4‧,5,5‧,7‧-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40,000-20,000 cm- 1 were characterized with respect to their wavenumbers, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31 + G(d,p).

  13. UV-Vis Spectroscopy as a Tool for Safeguards; Instrumentation installation and fundamental data collection

    SciTech Connect

    Smith, Nicholas A.; Krebs, John F.; Hebden, Andrew S.

    2015-09-20

    Two spectrophotometric process monitors, one optimized for high concentration (approximately 10 g/L) and one for trace levels (approximately 10 ppm),were developed at Argonne and installed at the SRS H-Canyon facility for field testing. These systems were built of Commercial-Off-The-Shelf components utilizing a custom, facility-specific hardware interface. The systems directly provide a qualitative measurement of process chemistry (i.e. valence state). With appropriate calibrations the systems could provide quantitative data. Laboratory tests were performed to determine the spectrophotometric molar absorptivity coefficients for relevant actinide and transition metals of interest.

  14. Redox characterization of semiconductors based on electrochemical measurements combined with UV-Vis diffuse reflectance spectroscopy.

    PubMed

    Świętek, Elżbieta; Pilarczyk, Kacper; Derdzińska, Justyna; Szaciłowski, Konrad; Macyk, Wojciech

    2013-09-14

    Several techniques can be applied to characterize redox properties of wide bandgap semiconductors, however some of them are of limited use. In this paper we propose a new modification of the old spectroelectrochemical method developed two decades ago. A procedure based on measurements of the reflectance changes as a function of potential applied to the electrode coated with the studied material appears to be a very convenient tool for characterizing redox properties of semiconductors, forming either transparent or opaque films at a platinum electrode. A discussion on the measured redox parameters of semiconductor films concludes with a definition of a new term, the absorption onset potential of the material.

  15. Analysis of bacterial growth by UV/Vis spectroscopy and laser reflectometry

    NASA Astrophysics Data System (ADS)

    Peña-Gomar, Mary Carmen; Viramontes-Gamboa, Gonzalo; Peña-Gomar, Grethel; Ortiz Gutiérrez, Mauricio; Hernández Ramírez, Mariano

    2012-10-01

    This work presents a preliminary study on an experimental analysis of the lactobacillus bacterial growth in liquid medium with and without the presence of silver nanoparticles. The study aims to quantify the bactericidal effect of nanoparticles. Quantification of bacterial growth at different times was analyzed by spectroscopy UV/visible and laser reflectometry near the critical angle. From these two techniques the best results were obtained by spectroscopy, showing that as the concentration of silver nanoparticles increases, it inhibits the growth of bacteria, it only grows 63% of the population. Regarding Laser Reflectometry, the variation of reflectance near the critical angle is measured in real time. The observed results at short times are reasonable, since they indicate a gradual growth of the bacteria and the stabilization stage of the population. But at long time, the observed results show abrupt changes caused by temperature effects. The bacteria were isolated from samples taken from commercial yougurth, and cultured in MRS broth at pH 6.5, and controlled with citric acid and constant temperature of 32 °C. Separately, silver nanoparticles were synthesized at 3 °C from aqueous solutions of 1.0 mM silver nitrate and chemically reduced with sodium borohydride to 2.0 mM, with magnetic stirring.

  16. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    PubMed

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).

  17. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Sharma, Vishal

    2017-03-01

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).

  18. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy.

    PubMed

    Ghosh, S B; Bhattacharya, K; Nayak, S; Mukherjee, P; Salaskar, D; Kale, S P

    2015-09-05

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  19. Multi-spectroscopic analysis of cholesterol gallstone using TOF-SIMS, FTIR and UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaswal, Brij Bir S.; Kumar, Vinay; Swart, H. C.; Sharma, Jitendra; Rai, Pradeep K.; Singh, Vivek K.

    2015-10-01

    For the first time, spatial distribution of major and trace elements has been studied in cholesterol gallstones using time-of-flight secondary mass ion mass spectrometry (TOF-SIMS). The TOF-SIMS has been used to study the elemental constituents of the center and surface parts of the gallstone sample. We have classified the gallstone sample using Fourier transform spectroscopy. The detected elements in cholesterol gallstone sample were carbon (C), hydrogen (H), calcium (Ca), sodium (Na), potassium (K), strontium (Sr), copper (Cu), iron (Fe), chromium (Cr), mercury (Hg) and lead (Pb). The detected molecules in the cholesterol gallstone were CH3 +, CO3 +, CaCO3 + and C3H+. Our results revealed that the contents of these elements in cholesterol gallstone were higher in the center part than that in the surface part. In the present paper, we have also presented the UV-Vis spectroscopic studies of the center and surface parts of the gallstone sample which indicated the presence of a higher content of cholesterol in the surface part and bilirubin in the center part.

  20. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, S. B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S. P.

    2015-09-01

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  1. Thermal stability and UV-Vis-NIR spectroscopy of a new erbium-doped fluorotellurite glass

    NASA Astrophysics Data System (ADS)

    Sayed Yousef, El; Damak, Kamel; Maalej, Ramzi; Rüssel, C.

    2012-03-01

    A new transparent bulk glass from the system 76TeO2 . 10ZnO . 9.0PbO . 1.0PbF2 . 3.0Na2O doped with Er3+ (TZPPN doped with Er3+) has been prepared using the conventional melt-quenching method. Results of differential thermal analysis (DTA) measurements indicate good thermal stability of this glass. The refractive indices at different wavelengths, the optical energy gap, the Sellmeier gap energy and the dispersion energy have been estimated. The Judd-Ofelt parameters, Ω t (t = 2, 4, 6) of Er3+ were evaluated from optical absorption spectra. Electric dipole, magnetic dipole type transition probabilities, spectroscopic quality factors, branching ratio and radiative lifetimes of several excited states of Er3+ have been predicted using intensity Judd-Ofelt parameters. The spectroscopic properties indicate that TZPPN glass doped with Er3+ is a promising candidate for laser applications and may be suitable for upconversion fibre optical devices.

  2. UV-vis spectroscopy and dynamic light scattering study of gold nanorods aggregation.

    PubMed

    Kanjanawarut, Roejarek; Yuan, Bo; XiaoDi, Su

    2013-08-01

    Gold nanorods (AuNRs) were used as spectroscopic sensing elements to detect specific DNA sequences with a single-base mismatch sensitivity. The assay was based on the observation that the stabilizing repulsive forces between CTA(+)-coated AuNRs can be removed by citrate ions, which causes aggregation among AuNRs; whereas nucleic acids of different structures[ i.e., peptide nucleic acid (PNA), single-stranded DNA (ssDNA), PNA-DNA complex, and double-stranded DNA (dsDNA)] can retard the aggregation. Moreover, the dsDNA PNA-DNA duplexes provide larger retardation than that by unhybridized ssDNA and PNA probe. This assay can differentiate single-base mismatched targets with base substitution at different locations (center and end) with AuNRs of a larger aspect ratio. Besides ultraviolet-visable spectroscopy measurement of particle assembly-induced plasmonic coupling that in turn provides a spectroscopic detection of the specific DNA, dynamic light scattering and transmission electron microscope (TEM) were used to measure smaller degree of aggregation that can reveal sodium citrate- and dsDNA-AuNRs interactions in fine detail.

  3. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.

    PubMed

    Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu

    2016-12-01

    The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species.

  4. Use of UV-vis-NIR spectroscopy to monitor label-free interaction between molecular recognition elements and erythropoietin on a gold-coated polycarbonate platform.

    PubMed

    Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Chen, Yeng; Tang, Thean-Hock

    2014-08-01

    Label-free-based detection is pivotal for real-time monitoring of biomolecular interactions and to eliminate the need for labeling with tags that can occupy important binding sites of biomolecules. One simplest form of label-free-based detection is ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, which measure changes in reflectivity as a means to monitor immobilization and interaction of biomolecules with their corresponding partners. In biosensor development, the platform used for the biomolecular interaction should be suitable for different molecular recognition elements. In this study, gold (Au)-coated polycarbonate was used as a platform and as a proof-of-concept, erythropoietin (EPO), a doping substance widely abused by the athletes was used as the target. The interaction of EPO with its corresponding molecular recognition elements (anti-EPO monoclonal antibody and anti-EPO DNA aptamer) is monitored by UV-vis-NIR spectroscopy. Prior to this, to show that UV-vis-NIR spectroscopy is a suitable method for measuring biomolecular interaction, the interaction between biotin and streptavidin was demonstrated via this strategy and reflectivity of this interaction decreased by 25%. Subsequent to this, interaction of the EPO with anti-EPO monoclonal antibody and anti-EPO DNA aptamer resulted in the decrease of reflectivity by 5% and 10%, respectively. The results indicated that Au-coated polycarbonate could be an ideal biosensor platform for monitoring biomolecular interactions using UV-vis-NIR spectroscopy. A smaller version of the Au-coated polycarbonate substrates can be derived from the recent set-up, to be applied towards detecting EPO abuse among atheletes.

  5. Investigation of the azo-hydrazone tautomeric equilibrium in an azo dye involving the naphthalene moiety by UV-vis spectroscopy and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Ünal, Arslan; Eren, Bilge; Eren, Erdal

    2013-10-01

    Photophysical properties of the azo-hydrazone tautomerism of Eriochrome Blue Black B (1-(1-hydroxy-2-naphthylazo)-2-naphthol-4-sulphonic acid) in DMF, MeCN and water were investigated using UV-visible spectroscopy and quantum chemical calculations. The optimized molecular structure parameters, relative energies, mole fractions, electronic absorption spectra and HOMO-LUMO energies for possible stable tautomeric forms of EBB were theoretically calculated by using hybrid density functional theory, (B3LYP) methods with 6-31G(d) basis set level and polarizable continuum model (PCM) for solvation effect. The effects of varying pH-, dye concentration-, solvent-, temperature-, and time-dependences on the UV-vis spectra of Eriochrome Blue Black B were also investigated experimentally. The calculations showed that the dye exhibited acid-base, azo-hydrazone and aggregate equilibria in DMF solution, while the most probably preferred form in MeCN solution was azo form. Thermodynamic parameters of dimerization reaction in DMF solution proved that entropy was the driving force of this reaction.

  6. dd excitations in CPO-27-Ni metal-organic framework: comparison between resonant inelastic X-ray scattering and UV-vis spectroscopy.

    PubMed

    Gallo, Erik; Lamberti, Carlo; Glatzel, Pieter

    2013-05-20

    We identify the dd excitations in the metal-organic framework CPO-27-Ni by coupling resonant inelastic X-ray scattering (RIXS) and UV-vis spectroscopy, and we show that the element selectivity of RIXS is crucial to observing the full dd multiplet structure, which is not visible in UV-vis. The combination of calculations using crystal-field multiplet theory and density functional theory can reproduce the RIXS spectral features, crucially improving interpretation of the experimental data. We obtain the crystal-field splitting and magnitude of the electron-electron interactions and correct previously reported values. RIXS instruments at synchrotron radiation sources are accessible to all researchers, and the technique can be applied to a broad range of systems.

  7. Classification and individualization of black ballpoint pen inks using principal component analysis of UV-vis absorption spectra.

    PubMed

    Adam, Craig D; Sherratt, Sarah L; Zholobenko, Vladimir L

    2008-01-15

    The technique of principal component analysis has been applied to the UV-vis spectra of inks obtained from a wide range of black ballpoint pens available in the UK market. Both the pen ink and material extracted from the ink line on paper have been examined. Here, principal component analysis characterised each spectrum within a group through the numerical loadings attached to the first few principal components. Analysis of the spectra from multiple measurements on the same brand of pen showed excellent reproducibility and clear discrimination between inks that was supported by statistical analysis. Indeed it was possible to discriminate between the pen ink and the ink line from all brands examined in this way, suggesting that the solvent extraction process may have an influence on these results. For the complete set of 25 pens, interpretation of the loadings for the first few principal components showed that both the pen inks and the extracted ink lines may be classified in an objective manner and in agreement with the results of parallel thin layer chromatography studies. Within each class almost all inks could be individualised. Further work has shown that principal component analysis may be used to identify a particular ink from a database of reference UV-vis spectra and a strategy for developing this approach is suggested.

  8. DFT/TDDFT investigation on the chemical reactivities, aromatic properties, and UV-Vis absorption spectra of 1-butoxy-4-methoxybenzenepillar[5]arene constitutional isomers.

    PubMed

    Zhang, Jian; Ren, Shuqing

    2016-09-01

    We investigate the chemical reactivities, aromatic properties, and UV-Vis absorption spectra of four constitutional isomers of 1-butoxy-4-methoxybenzenepillar[5]arene with the DFT and TDDFT methods. These characteristics in the gas and solvent phases are discussed on the basis of electronic energy, the highest occupied molecular orbital energy, electrophilicity, global hardness, chemical potential, and nucleus-independent chemical shift. The out-of-plane component of the NICS values reveals that there is a great contrast between aromatic rings of the isomer and benzene. The most intense wavelengths of BMpillar[5]arenes are all made up of delocalized-delocalized π → π* transition.

  9. Nitryl chloride (ClNO2): UV/vis absorption spectrum between 210 and 296 K and O(3P) quantum yield at 193 and 248 nm.

    PubMed

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K; Talukdar, Ranajit K; Roberts, James M; Burkholder, James B

    2012-06-21

    Recent studies have shown that the UV/vis photolysis of nitryl chloride (ClNO2) can be a major source of reactive chlorine in the troposphere. The present work reports measurements of the ClNO2 absorption spectrum and its temperature dependence between 210 and 296 K over the wavelength range 200–475 nm using diode array spectroscopy. The room temperature spectrum obtained in this work was found to be in good agreement with the results from Ganske et al. (J. Geophys. Res. 1992, 97, 7651) over the wavelength range common to both studies (200–370 nm) but differs systematically from the currently recommended spectrum for use in atmospheric models. The present results lead to a decrease in the calculated atmospheric ClNO2 photolysis rate by 30%. Including the temperature dependence of the ClNO2 spectrum decreases the calculated atmospheric photolysis rate at lower temperatures (higher altitudes) even further. A parametrization of the wavelength and temperature dependence of the ClNO2 spectrum is presented. O(3P) quantum yields, Φ(ClNO2)(O), in the photolysis of ClNO2 at 193 and 248 nm were measured at 296 K using pulsed laser photolysis combined with atomic resonance fluorescence detection of O(3P) atoms. Φ(ClNO2)(O)(λ) was found to be 0.67 ± 0.12 and 0.15 ± 0.03 (2σ error limits, including estimated systematic errors) at 193 and 248 nm, respectively, indicating that multiple dissociation channels are active in the photolysis of ClNO2 at these wavelengths. The Φ(ClNO2)(O)(λ) values obtained in this work are discussed in light of previous ClNO2 photodissociation studies and the differences are discussed.

  10. Combination of UV-vis spectroscopy and chemometrics to understand protein-nanomaterial conjugate: a case study on human serum albumin and gold nanoparticles.

    PubMed

    Wang, Yong; Ni, Yongnian

    2014-02-01

    Study of the interactions between proteins and nanomaterials is of great importance for understanding of protein nanoconjugate. In this work, we choose human serum albumin (HSA) and citrate-capped gold nanoparticles (AuNPs) as a model of protein and nanomaterial, and combine UV-vis spectroscopy with multivariate curve resolution by an alternating least squares (MCR-ALS) algorithm to present a new and efficient method for comparatively comprehensive study of evolution of protein nanoconjugate. UV-vis spectroscopy coupled with MCR-ALS allows qualitative and quantitative extraction of the distribution diagrams, spectra and kinetic profiles of absorbing pure species (AuNPs and AuNPs-HSA conjugate are herein identified) and undetectable species (HSA) from spectral data. The response profiles recovered are converted into the desired thermodynamic, kinetic and structural parameters describing the protein nanoconjugate evolution. Analysis of these parameters for the system gives evidence that HSA molecules are very likely to be attached to AuNPs surface predominantly as a flat monolayer to form a stable AuNPs-HSA conjugate with a core-shell structure, and the binding process takes place mainly through electrostatic and hydrogen-bond interactions between the positively amino acid residues of HSA and the negatively carboxyl group of citrate on AuNPs surface. The results obtained are verified by transmission electron microscopy, zeta potential, circular dichroism spectroscopy and Fourier transform infrared spectroscopy, showing the potential of UV-vis spectroscopy for study of evolution of protein nanoconjugate. In parallel, concentration evolutions of pure species resolved by MCR-ALS are used to construct a sensitive spectroscopic biosensor for HSA with a linear range from 1.8 nM to 28.1 nM and a detection limit of 0.8 nM.

  11. Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System

    PubMed Central

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  12. Thermodynamic modeling of poorly complexing metals in concentrated electrolyte solutions: an X-ray absorption and UV-Vis spectroscopic study of Ni(II) in the NiCl2-MgCl2-H2O system.

    PubMed

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg(-1) NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg(-1) NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system.

  13. Analysis of pure tar substances (polycyclic aromatic hydrocarbons) in the gas stream using ultraviolet visible (UV-Vis) spectroscopy and multivariate curve resolution (MCR).

    PubMed

    Weide, Tobias; Guschin, Viktor; Becker, Wolfgang; Koelle, Sabine; Maier, Simon; Seidelt, Stephan

    2015-01-01

    The analysis of tar, mostly characterized as polycyclic aromatic hydrocarbons (PAHs), describes a topic that has been researched for years. An online analysis of tar in the gas stream in particular is needed to characterize the tar conversion or formation in the biomass gasification process. The online analysis in the gas is carried out with ultraviolet-visible (UV-Vis) spectroscopy (190-720 nm). This online analysis is performed with a measuring cell developed by the Fraunhofer Institute for Chemical Technology (ICT). To this day, online tar measurements using UV-Vis spectroscopy have not been carried out in detail. Therefore, PAHs are analyzed as follows. The measurements are split into different steps. The first step to prove the online method is to vaporize single tar substances. These experiments show that a qualitative analysis of PAHs in the gas stream with the used measurement setup is possible. Furthermore, it is shown that the method provides very exact results, so that a differentiation of various PAHs is possible. The next step is to vaporize a PAH mixture. This step consists of vaporizing five pure substances almost simultaneously. The interpretation of the resulting data is made using a chemometric interpretation method, the multivariate curve resolution (MCR). The verification of the calculated results is the main aim of this experiment. It has been shown that the tar mixture can be analyzed qualitatively and quantitatively (in arbitrary units) in detail using the MCR. Finally it is the main goal of this paper to show the first steps in the applicability of the UV-Vis spectroscopy and the measurement setup on online tar analysis in view of characterizing the biomass gasification process. Due to that, the gasification plant (at the laboratory scale), developed and constructed by the Fraunhofer ICT, has been used to vaporize these substances. Using this gasification plant for the experiments enables the usage of the measurement setup also for the

  14. Robust and economical multi-sample, multi-wavelength UV/vis absorption and fluorescence detector for biological and chemical contamination

    NASA Astrophysics Data System (ADS)

    Lu, Peter J.; Hoehl, Melanie M.; Macarthur, James B.; Sims, Peter A.; Ma, Hongshen; Slocum, Alexander H.

    2012-09-01

    We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.

  15. XPS, UV-vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP)

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Pan, Guoshun; Shi, Xiaolei; Xu, Li; Zou, Chunli; Gong, Hua; Luo, Guihai

    2014-10-01

    Chemical mechanical polishing (CMP) removal mechanisms of on-axis Si-face SiC wafer have been investigated through X-ray photoelectron spectroscopy (XPS), UV-visible (UV-vis) spectroscopy and atomic force microscopy (AFM). XPS results indicate that silicon oxide is formed on Si-face surface polished by the slurry including oxidant H2O2, but not that after immersing in H2O2 solution. UV-vis spectroscopy curves prove that •OH hydroxyl radical could be generated only under CMP polishing by the slurry including H2O2 and abrasive, so as to promote oxidation of Si-face to realize the effective removal; meanwhile, alkali KOH during CMP could induce the production of more radicals to improve the removal. On the other side, ultra-smooth polished surface with atomic step structure morphology and extremely low Ra of about 0.06 nm (through AFM) is obtained using the developed slurry with silica nanoparticle abrasive. Through investigating the variations of the atomic step morphology on the surface polished by different slurries, it's reveals that CMP removal mechanism involves a simultaneous process of surface chemical reaction and nanoparticle atomic scale abrasion.

  16. Effect of the solvent on the size of clay nanoparticles in solution as determined using an ultraviolet-visible (UV-Vis) spectroscopy methodology.

    PubMed

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-06-01

    Ultraviolet-visible (UV-Vis) spectroscopy methodology was developed and utilized for the in situ nanoscale measurement of the size of mineral clay agglomerates in various liquid suspensions. The clays studied were organomodified and unmodified montmorillonite clays (I.44p, Cloisite 93a, and PGN). The methodology was compared and validated against dynamic light scattering (DLS) analysis. The method was able to measure clay agglomerates in solvents in situations where DLS analysis was unsuccessful due to the shapes, polydispersity, and high aspect ratios of the clay particles and the complexity of the aggregates, or dispersion medium. The measured clay agglomerates in suspension were found to be in the nanometer range in the more compatible solvents, and their sizes correlated with the Hansen solubility parameter space distance between the clay modifiers and the solvents. Mass detection limits for size determination were in the range from 1 to 9 mg/L. The methodology thus provides simple, rapid, and inexpensive characterization of clays or particles in the nano- or microsize range in low concentrations in various liquid media, including complex mixtures or highly viscous fluids that are difficult to analyze with DLS. In addition, by combining UV-VIS spectroscopy with DLS it was possible to discern flocculation behavior in liquids, which otherwise could result in false size measurements by DLS alone.

  17. Electronic structure and spectroscopic properties of mononuclear manganese(III) Schiff base complexes: a systematic study on [Mn(acen)X] complexes by EPR, UV/vis, and MCD spectroscopy (X = Hal, NCS).

    PubMed

    Westphal, Anne; Klinkebiel, Arne; Berends, Hans-Martin; Broda, Henning; Kurz, Philipp; Tuczek, Felix

    2013-03-04

    The manganese(III) Schiff base complexes [Mn(acen)X] (H2acen: N,N'-ethylenebis(acetylacetone)imine, X: I(-), Br(-), Cl(-), NCS(-)) are considered as model systems for a combined study of the electronic structure using vibrational, UV/vis absorption, parallel-mode electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectroscopy. By variation of the co-ligand X, the influence of the axial ligand field within a given square-pyramidal coordination geometry on the UV/vis, EPR, and MCD spectra of the title compounds is investigated. Between 25000 and 35000 cm(-1), the low-temperature MCD spectra are dominated by two very intense, oppositely signed pseudo-A terms, referred to as "double pseudo-A terms", which change their signs within the [Mn(acen)X] series dependent on the axial ligand X. Based on molecular orbital (MO) and symmetry considerations, these features are assigned to π(n.b.)(s, a) → yz, z(2) ligand-to-metal charge transfer transitions. The individual MCD signs are directly determined from the calculated MOs of the [Mn(acen)X] complexes. The observed sign change is explained by an inversion of symmetry among the π(n.b.)(s, a) donor orbitals which leads to an interchange of the positive and negative pseudo-A terms constituting the "double pseudo-A term".

  18. Development of variable pathlength UV-vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring.

    PubMed

    Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau

    2014-03-01

    To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring.

  19. Biogenic unmodified gold nanoparticles for selective and quantitative detection of cerium using UV-vis spectroscopy and photon correlation spectroscopy (DLS).

    PubMed

    Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K

    2015-06-15

    The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP.

  20. Determination of the overlapping pK(a) values of chrysin using UV-vis spectroscopy and ab initio methods.

    PubMed

    Castro, G T; Ferretti, F H; Blanco, S E

    2005-11-01

    The overlapping pK(a) values of 5,7-dihydroxyflavone (chrysin) in EtOH-water solutions were determined by means of a UV-vis spectroscopic method that uses absorbance diagrams, at constant ionic strength (0.050 M) and temperature (25.0+/-0.1 degrees C). It was observed that the pK(a) values increase when the polarity-polarizability and solvation abilities of the reaction medium decrease. In order to calculate the pK(a1) and pK(a2) of chrysin in pure water, various relationships between the determined pK(a) and properties of solvents (relative permittivity, alpha-parameter of Taft and parameter Acity), are proposed. Moreover, with the aim of explaining the first pK(a1) value obtained, the molecular conformations and solute-solvent interactions of the 7(O(-))chrysinate monoanion were also investigated, using ab initio methods. Several ionization reactions and equilibria in water, which possesses a high hydrogen-bond-donor ability, are proposed. These reactions and equilibria constituted the necessary theoretical basis to calculate the first acidity constant of chrysin. The HF/6-31G(d) and HF/6-31+G(d) methods were used for calculations. Tomasi's method was used to analyze the formation of intermolecular hydrogen bonds between the 7(O(-))chrysinate monoanion and water molecules. It was proposed that in alkaline aqueous solutions the monoanion of chrysin is solvated with one water molecule. The agreement between the experimental and theoretical pK(a1) values provides good support for the acid-base reactions proposed in this paper.

  1. Photochemistry of PAHs in cosmic water ice. The effect of concentration on UV-VIS spectroscopy and ionization efficiency

    NASA Astrophysics Data System (ADS)

    Cuylle, Steven H.; Allamandola, Louis J.; Linnartz, Harold

    2014-02-01

    Context. Observations and models show that polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium. Like other molecules in dense clouds, PAHs accrete onto interstellar dust grains, where they are embedded in an ice matrix dominated by water. In the laboratory, mixed molecular ices (not containing PAHs) have been extensively studied using Fourier transform infrared absorption spectroscopy. Experiments including PAHs in ices have started, however, the concentrations used are typically much higher than the concentrations expected for interstellar ices. Optical spectroscopy offers a sensitive alternative. Aims: We report an experimental study of the effect PAH concentration has on the electronic spectra and the vacuum UV (VUV) driven processes of PAHs in water-rich ices. The goal is to apply the outcome to cosmic ices. Methods: Optical spectroscopic studies allow us to obtain in-situ and quasi real-time electronic solid state spectra of two prototypical PAHs (pyrene and coronene) embedded in water ice under VUV photoprocessing. The study is carried out on PAH:H2O concentrations in the range of 1:30 000 to pure PAH, covering the temperature range from 12 to 125 K. Results: PAH concentration strongly influences the efficiency of PAH cation formation. At low concentrations, ionization efficiencies are over 60% dropping to about 15% at 1:1000. Increasing the PAH concentration reveals spectral broadening in neutral and cation PAH spectra attributed to PAH clustering inside the ice. At the PAH concentrations expected for interstellar ices, some 10 to 20% may be present as cations. The presence of PAHs in neutral and ion form will add distinctive absorption bands to cosmic ice optical spectra and this may serve as a tool to determine PAH concentrations.

  2. The effect of Zn2+ ion on the UV-VIS-NIR and upconversion emission spectroscopy of Er3+ in Yb:Er:LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Dai, Li; Jiao, Shanshan; Xu, Chao; Qian, Zhao; Li, Dayong; Lin, Jiaqi; Xu, Yuheng

    2014-03-01

    A series of Yb:Er:LiNbO3 crystals tridoped with x mol% Zn2+ ions (x = 1, 3, 5 and 8 mol%) was grown by Czochralski technique. The inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to measure the concentration of Er3+ in the crystal. The UV-VIS-NIR absorption spectra of Zn:Yb:Er:LiNbO3 crystals were measured, and Judd-Ofelt (J-O) theory was applied to predict the J-O intensity parameters (Ωt) and spectroscopic quality factor (X). With 980 nm excitation, duration lengthening of 1.54 μm emission and intensity enhancement of green upconversion emission were observed for Zn:Yb:Er:LiNbO3 crystal.

  3. Stratospheric OClO and NO2 measured by groundbased UV/Vis-spectroscopy in Greenland in January and February 1990 and 1991

    NASA Technical Reports Server (NTRS)

    Roth, A.; Perner, D.

    1994-01-01

    Groundbased UV/Vis-spectroscopy of zenith scattered sunlight was performed at Sondre Stromfjord (Greenland) during Jan/Feb 1990 and Jan/Feb 1991. Considerable amounts of OClO were observed during both campaigns. Maximum OClO vertical column densities at 92 deg solar zenith angle (SZA) were 7.4 x 10(exp 13) molec/sq cm in 1990 and 5.7 x 10(exp 13) molec/sq cm in 1991 (chemical enhancement is included in the calculation of the air mass factor (AMF)). A threshold seems to exist for OClO detection: OClO was detected on every day when the potential vorticity at the 475 K level of potential temperature was higher than 35 x 10(exp -6)Km(exp 2)kg(exp -1)s(exp -1). NO2 vertical columns lower than 1 x 10(exp 15) molec/sq cm were frequently observed in both winters.

  4. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    PubMed

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability.

  5. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    PubMed

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  6. Selective Alcohol Oxidation by a Copper TEMPO Catalyst: Mechanistic Insights by Simultaneously Coupled Operando EPR/UV-Vis/ATR-IR Spectroscopy.

    PubMed

    Rabeah, Jabor; Bentrup, Ursula; Stößer, Reinhard; Brückner, Angelika

    2015-09-28

    The first coupled operando EPR/UV-Vis/ATR-IR spectroscopy setup for mechanistic studies of gas-liquid phase reactions is presented and exemplarily applied to the well-known copper/TEMPO-catalyzed (TEMPO=(2,2,6,6-tetramethylpiperidin-1-yl)oxyl) oxidation of benzyl alcohol. In contrast to previous proposals, no direct redox reaction between TEMPO and Cu(I) /Cu(II) has been detected. Instead, the role of TEMPO is postulated to be the stabilization of a (bpy)(NMI)Cu(II) -O2 (⋅-) -TEMPO (bpy=2,2'-bipyridine, NMI=N-methylimidazole) intermediate formed by electron transfer from Cu(I) to molecular O2 .

  7. The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols.

    PubMed

    Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R

    2012-07-07

    A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.

  8. Nondestructive identification of dye mixtures in polyester and cotton fibers using raman spectroscopy and ultraviolet-visible (UV-Vis) microspectrophotometry.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-01-01

    Presented in this paper is an assessment of the applicability of Raman spectroscopy and microspectrophotometry (MSP) in visible and ultraviolet light (UV-Vis) in the examination of textile fibers dyed with mixtures of synthetic dyes. Fragments of single polyester fibers, stained with ternary mixtures of disperse dyes in small mass concentrations, and fragments of single cotton fibers, dyed with binary or ternary mixtures of reactive dyes, were subjected to the study. Three types of excitation sources, 514, 633, and 785 nm, were used during Raman examinations, while the MSP study was conducted in the 200 to 800 nm range. The results indicate that the capabilities for discernment of dye mixtures are similar in the spectroscopic methods that were employed. Both methods have a limited capacity to distinguish slightly dyed polyester fiber; additionally, it was found that Raman spectroscopy enables identification of primarily the major components in dye mixtures. The best results, in terms of the quality of Raman spectra, were obtained using an excitation source from the near infrared. MSP studies led to the conclusion that polyester testing should be carried out in the range above 310 nm, while for cotton fibers there is no limitation or restriction of the applied range. Also, MSP UV-Vis showed limited possibilities for discriminatory analysis of cotton fibers dyed with a mixture of reactive dyes, where the ratio of the concentration of the main dye used in the dyeing process to minor dye was higher than four. The results presented have practical applications in forensic studies, inter alia.

  9. Discrimination of various paper types using diffuse reflectance ultraviolet-visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents.

    PubMed

    Kumar, Raj; Kumar, Vinay; Sharma, Vishal

    2015-06-01

    Diffuse reflectance ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy is applied as a means of differentiating various types of writing, office, and photocopy papers (collected from stationery shops in India) on the basis of reflectance and absorbance spectra that otherwise seem to be almost alike in different illumination conditions. In order to minimize bias, spectra from both sides of paper were obtained. In addition, three spectra from three different locations (from one side) were recorded covering the upper, middle, and bottom portions of the paper sample, and the mean average reflectivity of both the sides was calculated. A significant difference was observed in mean average reflectivity of Side A and Side B of the paper using Student's pair >t-test. Three different approaches were used for discrimination: (1) qualitative features of the whole set of samples, (2) principal component analysis, and (3) a combination of both approaches. On the basis of the first approach, i.e., qualitative features, 96.49% discriminating power (DP) was observed, which shows highly significant results with the UV-Vis-NIR technique. In the second approach the discriminating power is further enhanced by incorporating the principal component analysis (PCA) statistical method, where this method describes each UV-Vis spectrum in a group through numerical loading values connected to the first few principal components. All components described 100% variance of the samples, but only the first three PCs are good enough to explain the variance (PC1 = 51.64%, PC2 = 47.52%, and PC3 = 0.54%) of the samples; i.e., the first three PCs described 99.70% of the data, whereas in the third approach, the four samples, C, G, K, and N, out of a total 19 samples, which were not differentiated using qualitative features (approach no. 1), were therefore subjected to PCA. The first two PCs described 99.37% of the spectral features. The discrimination was achieved by using a loading plot between

  10. Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid.

    PubMed

    Valencia, Sergio; Marín, Juan M; Restrepo, Gloria; Frimmel, Fritz H

    2013-01-01

    This study reports the use of excitation-emission matrix (EEM) fluorescence and UV/Vis spectroscopy to monitor the changes in the composition and reactivity of Aldrich humic acids (Aldrich HA) as a model compound for natural organic matter (NOM) during photocatalytic degradation. Degussa P-25 titanium dioxide (TiO(2)) and a solar UV-light simulator (a batch reactor) were used. The photocatalysis shifted the fluorescence maxima of EEMs of Aldrich HA toward shorter wavelengths, which implied that the photocatalytic degradation of commercial Aldrich HA caused the breakdown of high molecular weight components and the formation of lower molecular weight fractions. In addition, the fluorescence intensity of fulvic- and humic-like Aldrich HA presented a strong correlation with dissolved organic carbon (DOC), specific UV absorbance (SUVA) parameters, trihalomethane formation potential (THMFP), and organically bound halogens absorbable on activated carbon formation potential (AOXFP). Fluorescence spectroscopy was shown to be a powerful tool for monitoring of the photocatalytic degradation of HA.

  11. The manifestation of optical centers in UV-Vis absorption and luminescence spectra of white blood human cells

    NASA Astrophysics Data System (ADS)

    Terent'yeva, Yu G.; Yashchuk, V. M.; Zaika, L. A.; Snitserova, O. M.; Losytsky, M. Yu

    2016-12-01

    A white blood human cells spectral investigation is presented. The aim of this series of experiments was to obtain and analyze the absorption and luminescence (fluorescence and phosphorescence) spectra at room temperature and at 78 K of newly isolated white blood human cells and their organelles. As a result the optical centers and possible biochemical components that form the studied spectra where identified. Also the differences between the spectra of abnormal cells (B-cell chronic lymphocytic leukemia BCLL) and normal ones were studied for the whole cells and individual organelles.

  12. Exploring in vivo violacein biosynthesis by application of multivariate curve resolution on fused UV-VIS absorption, fluorescence, and liquid chromatography-mass spectrometry data.

    PubMed

    Dantas, Clecio; Tauler, Romà; Ferreira, Márcia Miguel Castro

    2013-02-01

    In this work, the application of multivariate curve resolution-alternating least squares (MCR-ALS) is proposed for extracting information from multitechnique fused multivariate data (UV-VIS absorption, fluorescence, and liquid chromatography-mass spectrometry) gathered during the biosynthesis of violacein pigment. Experimental data sets were pretreated and arranged in a row-wise augmented data matrix before their chemometric investigation. Five different chemical components were resolved. Kinetic and spectral information about these components were obtained and their relationship with violacein biosynthesis was established. Three new chemical compounds with molar masses of 453, 465, and 479 u, until now not reported in the literature, were identified and proposed as intermediates in the biosynthesis of other indolocarbazoles. The precursor (tryptophan), one intermediate (deoxyviolacein), and the final product (violacein) of violacein biosynthesis were identified and characterized using the proposed approach. The chemometric procedure based on the MCR-ALS method has proved to be a powerful tool to investigate violacein biosynthesis and its application can be easily extended to the study of other bioprocesses.

  13. Determination of Kamlet-Taft solvent parameters pi* of high pressure and supercritical water by the UV-Vis absorption spectral shift of 4-nitroanisole.

    PubMed

    Minami, Kimitaka; Mizuta, Masamichi; Suzuki, Muneyuki; Aizawa, Takafumi; Arai, Kunio

    2006-05-21

    Kamlet-Taft solvent parameters, pi*, of high pressure and supercritical water were determined from 16-420 degrees C based on solvatochromic measurements of 4-nitroanisole. For the measurements, an optical cell that could be used at high temperatures and pressures was developed with the specification of minimal dead space. The low dead space cell allowed us to measure the absorption spectra of 4-nitroanisole at high temperature conditions before appreciable decomposition occurred. The behavior of pi* in terms of water density (pi* = 1.77rho- 0.71) was found to be linear, except in the near critical region, in which deviations were observed that could be attributed to local density augmentation. Excess density, which was defined as the difference between local density and bulk density, showed a maximum near the critical density of water. The frequencies of UV-Vis spectra of 4-(dimethylamino)benzonitrile and N,N-dimethyl-4-nitroaniline were correlated with pi* based on a linear solvation energy relationship (LSER) theory. Local density augmentation around 4-nitroanisole and that around 4-(dimethylamino)benzonitrile were similar but the augmentation observed around N,N-dimethyl-4-nitroaniline was larger.

  14. UV/Vis/NIR Spectroelectrochemistry

    NASA Astrophysics Data System (ADS)

    Neudeck, Andreas; Marken, Frank; Compton, Richard G.

    Voltammetric techniques used in electrochemistry monitor the flow of current as a function of potential, time, and mass transport. A huge variety of different experiments are possible, giving information about reaction energies, reaction intermediates, and the kinetics of a process [1-4]. However, additional data are often required and are accessible, in particular, via in situ spectroelectrochemical approaches. By coupling a spectroscopic technique such as UV/Vis/NIR spectroscopy [5, 6] to an electrochemical experiment, a wealth of complementary information as a function of the potential, time, and mass transport is available. In a recently published book dedicated to spectroelectrochemical techniques [7] the diversity of methods and new chemical information obtained is apparent. Both spectroscopic information about short-lived unstable intermediates and spectroscopic information disentangling the composition of complex mixtures of reactants can be obtained. Figure II.6.1 shows a schematic diagram for the case of a computer-controlled potentiostat system connected to a conventional electrochemical cell (working electrode WE, reference electrode RE, counter electrode CE) and simultaneously controlling the emitter and detector of a spectrometer. This kind of experimental arrangement allows the electrochemical and the spectroscopic data to be recorded simultaneously and, therefore, in contrast to the analysis of two independent data sets, direct correlation of data as a function of time and potential is possible.

  15. [Kinetic study on the in situ synthesis of nickle phthalocyanine in silica gel glass matrix by UV/Vis absorption spectra].

    PubMed

    Huang, Juan; Zheng, Chan; Feng, Miao; Zhan, Hong-Bing

    2009-01-01

    In decades, metallo-phthalocyanines (MPcs) have undergone a renaissance because of their singular and unconventional physical properties. However, for the successful application of MPcs in practical devices, it is important to disperse MPc molecules into solid state matrix to fabricate MPc doped composite with desired properties. Inorganic glass is an ideal matrix because of its transparency and high environmental stability. One attractive approach to fabricating MPc/inorganic composite is sol-gel technique. In the present paper, silica gel glass matrix was prepared by hydrolysis and poly-condensation of tetraethyloxysilane. 1,2-dicyanobenzene and analytically pure soluble nickle salt were used as the nickle phthalocyanine (NiPc) reactants and chemical synthesis technique was used to prepare NiPc doped sol-gel materials at several temperatures. During the heat treatment, four 1, 2-dicyanobenzene molecules and one nickle ion collide to form a NiPc molecule. In-situ synthesizing process of NiPc in the pores of silica gel glass matrix was traced by UV/Vis absorption spectra. Owing to the remarkable absorption band of NiPc in visible region, quantity of in-situ synthesized NiPc was calculated by the absorbance at certain wavelength of 670 nm, using composites with physically doped NiPc as a reference. The in-situ synthesized kinetics was studied in detail and found to be consistent with Avrami-Erofeev equation The reaction grades were deduced to be 4.5, 4.5, 3.7, 3.2 and 1.9 respectively at temperatures of 180 degrees C, 185 degrees C, 190 degrees C, 195 degrees C and 200 degrees C, respectively.

  16. P3HT:DiPBI bulk heterojunction solar cells: morphology and electronic structure probed by multiscale simulation and UV/vis spectroscopy.

    PubMed

    Winands, Thorsten; Böckmann, Marcus; Schemme, Thomas; Ly, Phong-Minh Timmy; de Jong, Djurre H; Wang, Zhaohui; Denz, Cornelia; Heuer, Andreas; Doltsinis, Nikos L

    2016-02-17

    Coarse grained molecular dynamics simulations are performed for a mixture of poly(3-hexylthiophene) (P3HT) and diperylene bisimide (DiPBI). The effect of different annealing and cooling protocols on the morphology is investigated and the resulting domain structures are analyzed. In particular, π-stacked clusters of DiPBI molecules are observed whose size decreases with increasing temperature. Domain structure and diffusivity data suggest that the DiPBI subsystem undergoes an order → disorder phase transition between 700 and 900 K. Electronic structure calculations based on density functional theory are carried out after backmapping the coarse grained model onto an atomistic force field representation built upon first principles. UV/vis absorption spectra of the P3HT:DiPBI mixture are computed using time-dependent density functional linear response theory and recorded experimentally for a spin-coated thin film. It is demonstrated that the absorption spectrum depends sensitively on the details of the amorphous structure, thus providing valuable insight into the morphology. In particular, the results show that the tempering procedure has a significant influence on the material's electronic properties. This knowledge may help to develop effective processing routines to enhance the performance of bulk heterojunction solar cells.

  17. Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV-vis and NMR spectroscopy.

    PubMed

    Koeppe, Benjamin; Guo, Jing; Tolstoy, Peter M; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-05-22

    Heteroconjugated hydrogen-bonded anions A···H···X(-) of phenols (AH) and carboxylic/inorganic acids (HX) dissolved in CD2Cl2 and CDF3/CDF2Cl have been studied by combined low-temperature UV-vis and (1)H/(13)C NMR spectroscopy (UVNMR). The systems constitute small molecular models of hydrogen-bonded cofactors in proteins such as the photoactive yellow protein (PYP). Thus, the phenols studied include the PYP cofactor 4-hydroxycinnamic acid methyl thioester, and the more acidic 4-nitrophenol and 2-chloro-4-nitrophenol which mimic electronically excited cofactor states. It is shown that the (13)C chemical shifts of the phenolic residues of A···H···X(-), referenced to the corresponding values of A···H···A(-), constitute excellent probes for the average proton positions. These shifts correlate with those of the H-bonded protons, as well as with the H/D isotope effects on the (13)C chemical shifts. A combined analysis of UV-vis and NMR data was employed to elucidate the proton transfer pathways in a qualitative way. Dual absorption bands of the phenolic moiety indicate a double-well situation for the shortest OHO hydrogen bonds studied. Surprisingly, when the solvent polarity is low the carboxylates are protonated whereas the proton shifts toward the phenolic oxygens when the polarity is increased. This finding indicates that because of stronger ion-dipole interactions small anions are stabilized at high solvent polarity and large anions exhibiting delocalized charges at low solvent polarities. It also explains the large acidity difference of phenols and carboxylic acids in water, and the observation that this difference is strongly reduced in the interior of proteins when both partners form mutual hydrogen bonds.

  18. Observing the Influence of X-Rays on Aqueous Copper Solutions by In Situ Combined Video/XAFS/UV-Vis Spectroscopy

    SciTech Connect

    Mesu, J. Gerbrand; Beale, Andrew M.; Groot, Frank M. F. de; Weckhuysen, Bert M.

    2007-02-02

    In situ video monitoring and UV-Vis Spectroscopy have been used in combination with XAFS Spectroscopy to study the effect of synchrotron radiation on a series of copper solutions in a micro-reactor. The samples that were investigated contained initially a mixture of Cu2+ ions and both biologically and non-biologically relevant amine ligands. It was observed that when water was used as the solvent, gas bubbles are formed under the influence of the X-ray beam. At the resultant liquid-gas interface and under certain conditions, colloidal copper nanoparticles were observed to form. This reduction process was influenced primarily by the type of the copper precursor salt (SO{sub 4}{sup 2-}, NO{sub 3}{sup -} and Cl-), although the ligands surrounding the copper cation and the redox potential of the copper complexes (ranging between +594 and -360 mV) were also observed to have some effect. Critically we show how these results illustrate the benefits of combining methods (and in particular the use of video imaging) to monitor chemical processes and for observing the influence of one technique on the measurement process. Furthermore the results give some insight into the parameters that are important in the redox-processes that occur in biological systems.

  19. UV-vis spectroscopy and semiempirical quantum chemical studies on methyl derivatives of annulated analogues of azafluoranthene and azulene dyes

    NASA Astrophysics Data System (ADS)

    Danel, K. S.; Gąsiorski, P.; Matusiewicz, M.; Całus, S.; Uchacz, T.; Kityk, A. V.

    2010-09-01

    Paper reports the measured optical absorption and fluorescence spectra of 4-(2-chlorophenyl)-7-methyl-1,3-diphenyl-1 H-pyrazolo[3,4-b]quinoline (MCPDPPQ), as well as 6-methyl-1,3-diphenyl-3 H-indeno[1,2,3- de]pyrazolo[3,4- b]quinoline (MDPIPQ) and 9-methyl-6-phenyl-6 H-5,6,7-triazadibenzo[ f,h]naphtho[3,2,1- cd]azulene (MPTNA) representing cyclized five- or seven-membered regioisomeric products of MCPDPPQ, respectively. The spectra has been recorded in solvents of different polarity and compared with the results of quantum chemical calculations performed by means of the semiempirical method PM3 in combination with molecular dynamics (MD) simulations. Cyclization of MCPDPPQ into MDPIPQ or MPTNA is accompanied by a significant red shift of the first optical absorption and fluorescence bands. While the solvent polarity rises all the dyes exhibit the blue shift of the first absorption band and the red shift of the fluorescence band. These trends have been reproduced within the semiempirical calculations in combination with the Lippert-Mataga dielectric polarization model and explained by specific orientations of the dipole moments in the ground and excited states. All dyes may be considered as candidates for the luminescent or electroluminescent applications. Depending on solvent polarity they emit light in the green-yellow range of the visible spectra.

  20. Synthesis of a novel camphorquinone derivative having acylphosphine oxide group, characterization by UV-VIS spectroscopy and evaluation of photopolymerization performance.

    PubMed

    Ikemura, Kunio; Ichizawa, Kensuke; Jogetsu, Yoshiyuki; Endo, Takeshi

    2010-03-01

    Camphorquinone (CQ) derivatives having acylphosphine oxide (APO) group are unknown. This study synthesized such a novel 7,7dimethyl-2,3-dioxobicyclo[2.2.1]heptane-1-carbonyldiphenyl phosphine oxide (DOHC-DPPO = CQ-APO). Ultraviolet and visible (UVVIS) spectra of CQ-APO, CQ, and APO were measured. Photopolymerization performances of experimental light-cured resins comprising these photoinitiators were investigated. Newly synthesized CQ-APO showed as a pale yellow crystal (mp 365K). UV-VIS spectrum of CQ-APO showed two maximum absorption wavelengths (lambda(max)) [372 nm (from APO group) and 475 nm (from CQ moiety)] within 350-500 nm. Unfilled resin containing CQ-APO exhibited good photopolymerization time (9.6 sec) and relaxed operation time (50 sec), as well as a pronouncedly lower b value (4.0) in the CIELab color specification system than that containing CQ (84.0). Resin composites containing CQ-APO, exhibited high flexural strength (114.3-133.8 MPa). It was concluded that CQ-APO possessed two lambda(max )peaks within 350-500 nm, and that CQ-APO-containing resins exhibited excellent color tone, good photopolymerization reactivity, relaxed operation time, and high mechanical strength.

  1. Photodegradation of Organic Pollutants on TiO2 P25 Surfaces Investigated by Transmission FTIR Spectroscopy Under In Situ UV-Vis Irradiation

    NASA Astrophysics Data System (ADS)

    Mino, Lorenzo; Negri, Chiara; Zecchina, Adriano; Spoto, Giuseppe

    2016-09-01

    A new transmission FTIR set-up has been developed to investigate photocatalytic reactions under in situ UV-Vis illumination and in controlled atmosphere. This system was employed to study the evolution of the surface species during the photodegradation of phenol and oxalic acid on TiO2 P25. As far as phenol is concerned, dosage from the gas phase on the activated oxide surface resulted in dissociative adsorption for coverages below the monolayer and in physisorption beyond this limit. Experiments under UV irradiation showed no relevant photocatalytic activity in absence of O2, the only spectroscopic consequence being the increase of a monotonic IR absorption, covering nearly the whole MIR range, related to UV-generated free conduction electrons. Only the contemporary addition of O2 and H2O to the TiO2/phenol system allowed us to observe an efficient photodegradation reaction and to highlight the IR manifestations of some of the photodegradation products which are formed. In particular, oxalic acid appeared to be the main intermediate product adsorbed at the oxide surface during phenol photodegradation. For this reason the photoreactivity of pure oxalic acid on TiO2 under UV irradiation was also investigated.

  2. Using UV-Vis spectroscopy for simultaneous geographical and varietal classification of tea infusions simulating a home-made tea cup.

    PubMed

    Diniz, Paulo Henrique Gonçalves Dias; Barbosa, Mayara Ferreira; de Melo Milanez, Karla Danielle Tavares; Pistonesi, Marcelo Fabián; de Araújo, Mário César Ugulino

    2016-02-01

    In this work we proposed a method to verify the differentiating characteristics of simple tea infusions prepared in boiling water alone (simulating a home-made tea cup), which represents the final product as ingested by the consumers. For this purpose we used UV-Vis spectroscopy and variable selection through the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA) for simultaneous classification of the teas according to their variety and geographic origin. For comparison, KNN, CART, SIMCA, PLS-DA and PCA-LDA were also used. SPA-LDA and PCA-LDA provided significantly better results for tea classification of the five studied classes (Argentinean green tea; Brazilian green tea; Argentinean black tea; Brazilian black tea; and Sri Lankan black tea). The proposed methodology provides a simpler, faster and more affordable classification of simple tea infusions, and can be used as an alternative approach to traditional tea quality evaluation as made by skilful tasters, which is evidently partial and cannot assess geographic origins.

  3. [Using ultraviolet-visible ( UV-Vis) absorption spectrum to estimate the dissolved organic matter (DOM) concentration in water, soils and sediments of typical water-level fluctuation zones of the Three Gorges Reservoir areas].

    PubMed

    Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena

    2014-09-01

    Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.

  4. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  5. Optical properties of silicon nanocrystals embedded in Si3N4 matrix measured by spectroscopic ellipsometry and UV-Vis-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Barbé, J.; Despax, B.; Perraud, S.; Makasheva, K.

    2014-04-01

    In this paper, we report a spectroscopic ellipsometry study of the optical properties of silicon nanocrystals (Si-ncs) embedded in silicon nitride matrix. The nanocomposite thin-films were elaborated by radiofrequency plasma enhanced chemical vapor deposition from ammonia and silane precursors, followed by high temperature annealing. Bruggeman effective medium approximation combined with the Tauc-Lorentz dispersion law was found to be an appropriate model in describing the ellipsometric data, and provided a fine determination of the dielectric functions or complex permittivity of Si-ncs embedded in silicon nitride. It is shown that the dielectric functions of Si-ncs undergo a large reduction in amplitude and broadening compared to the dielectric function of the bulk crystalline Si. Consequently to the disappearance of direct transition energy E 1 and E 2, the imaginary part ɛ 2 of the dielectric function of Si-ncs exhibits a single line shape centered between E 1 and E 2. With decreasing Si-ncs size, we observe a red-shift of ɛ 2 which cannot be attributed to bandgap expansion, but is better explained by electron-phonon interactions in the case of a Si3N4 matrix with high Young modulus. According to Tauc-Lorentz dispersion law, the obtained bandgap values of Si-ncs are between 1.58 eV and 1.67 eV for Si-ncs with diameters from 4.6 nm to 3.8 nm, which is in good agreement with measurements from UV-Vis-NIR spectroscopy.

  6. FTIR and UV-vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe(2)O(4) from CoCl(2) and FeCl(3).

    PubMed

    Habibi, Mohammad Hossein; Parhizkar, Hadi Janan

    2014-06-05

    Nano-structure CoFe(2)O(4) has been fabricated by wet chemical route using CoCl2 and FeCl3 as simple precursors. The prepared nano-structure samples was calcined at 600°C and characterized by fourier transform infrared spectra (FTIR), UV-vis diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), and field emission scanning electron microscopy (FESEM). X-ray diffraction patterns confirmed the presence of the spinel phases with average crystallite sizes of 47nm. Field emission scanning electron microscopy investigations showed spherical morphology of nanoparticles with average particle size of 46nm. The FTIR spectra of CoFe(2)O(4) nanoparticles showed absorption bands at about 594cm(-1) and 401cm(-1) due to the stretching vibrations of Co-O and Fe-O respectively. Investigation of the optical properties of the produced nano-structure CoFe(2)O(4) confirmed its semiconducting properties by revealing two optical band gaps at 1.4 and 2.0eV.

  7. H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy.

    PubMed

    Ehrenreich, Philipp; Birkhold, Susanne T; Zimmermann, Eugen; Hu, Hao; Kim, Kwang-Dae; Weickert, Jonas; Pfadler, Thomas; Schmidt-Mende, Lukas

    2016-09-01

    Polymer morphology and aggregation play an essential role for efficient charge carrier transport and charge separation in polymer-based electronic devices. It is a common method to apply the H-aggregate model to UV/Vis or photoluminescence spectra in order to analyze polymer aggregation. In this work we present strategies to obtain reliable and conclusive information on polymer aggregation and morphology based on the application of an H-aggregate analysis on UV/Vis and photoluminescence spectra. We demonstrate, with P3HT as model system, that thickness dependent reflection behavior can lead to misinterpretation of UV/Vis spectra within the H-aggregate model. Values for the exciton bandwidth can deviate by a factor of two for polymer thicknesses below 150 nm. In contrast, photoluminescence spectra are found to be a reliable basis for characterization of polymer aggregation due to their weaker dependence on the wavelength dependent refractive index of the polymer. We demonstrate this by studying the influence of surface characteristics on polymer aggregation for spin-coated thin-films that are commonly used in organic and hybrid solar cells.

  8. H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy

    PubMed Central

    Ehrenreich, Philipp; Birkhold, Susanne T.; Zimmermann, Eugen; Hu, Hao; Kim, Kwang-Dae; Weickert, Jonas; Pfadler, Thomas; Schmidt-Mende, Lukas

    2016-01-01

    Polymer morphology and aggregation play an essential role for efficient charge carrier transport and charge separation in polymer-based electronic devices. It is a common method to apply the H-aggregate model to UV/Vis or photoluminescence spectra in order to analyze polymer aggregation. In this work we present strategies to obtain reliable and conclusive information on polymer aggregation and morphology based on the application of an H-aggregate analysis on UV/Vis and photoluminescence spectra. We demonstrate, with P3HT as model system, that thickness dependent reflection behavior can lead to misinterpretation of UV/Vis spectra within the H-aggregate model. Values for the exciton bandwidth can deviate by a factor of two for polymer thicknesses below 150 nm. In contrast, photoluminescence spectra are found to be a reliable basis for characterization of polymer aggregation due to their weaker dependence on the wavelength dependent refractive index of the polymer. We demonstrate this by studying the influence of surface characteristics on polymer aggregation for spin-coated thin-films that are commonly used in organic and hybrid solar cells. PMID:27582091

  9. Theoretical modeling of UV-Vis absorption and emission spectra in liquid state systems including vibrational and conformational effects: Explicit treatment of the vibronic transitions

    SciTech Connect

    D’Abramo, Marco; Aschi, Massimiliano; Amadei, Andrea

    2014-04-28

    Here, we extend a recently introduced theoretical-computational procedure [M. D’Alessandro, M. Aschi, C. Mazzuca, A. Palleschi, and A. Amadei, J. Chem. Phys. 139, 114102 (2013)] to include quantum vibrational transitions in modelling electronic spectra of atomic molecular systems in condensed phase. The method is based on the combination of Molecular Dynamics simulations and quantum chemical calculations within the Perturbed Matrix Method approach. The main aim of the presented approach is to reproduce as much as possible the spectral line shape which results from a subtle combination of environmental and intrinsic (chromophore) mechanical-dynamical features. As a case study, we were able to model the low energy UV-vis transitions of pyrene in liquid acetonitrile in good agreement with the experimental data.

  10. Determination of brilliant green from fish pond water using carbon nanotube assisted pseudo-stir bar solid/liquid microextraction combined with UV-vis spectroscopy-diode array detection

    NASA Astrophysics Data System (ADS)

    Es'haghi, Zarrin; Khooni, Maliheh Ahmadi-Kalateh; Heidari, Tahereh

    2011-08-01

    This paper describes the development of a new design of hollow fiber solid/liquid phase microextraction (HF-SLPME) for determination of brilliant green (BG) residues in water fish ponds. This method consists of an aqueous donor phase and carbon nanotube reinforced organic solvent (acceptor phase) operated in direct immersion sampling mode. The multi-walled carbon nanotube dispersed in the organic solvent is held in the pores and lumen of a porous polypropylene hollow fiber. It is in contact directly with the aqueous donor phase. In this method the solid/liquid extractor phase is supported using a polypropylene hollow fiber membrane. Both ends of the hollow fiber segment are sealed with magnetic stoppers. This device is placed inside the donor solution and plays the rule of a pseudo-stir bar. It is disposable, so single use of the fiber reduces the risk of carry-over problems. Brilliant green (BG) after extraction from the aqueous samples with mentioned HF-SLPME device was determined by ultraviolet-visible spectroscopy with diode array detection (UV-vis/DAD). The absorption wavelength was set to 625 nm ( λmax). The effect of different variables on the extraction was evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. The calibration curve was linear in the range of 1.00-10,000 μg L -1 of BG in the initial solution with R2 = 0.979. Detection limit, based on three times the standard deviation of the blank, was 0.55 μg L -1. All experiments were carried out at room temperature (25 ± 0.5 °C).

  11. Application of excitation and emission matrix fluorescence (EEM) and UV-vis absorption to monitor the characteristics of Alizarin Red S (ARS) during electro-Fenton degradation process.

    PubMed

    Lai, Bo; Zhou, Yuexi; Wang, Juling; Yang, Zhishan; Chen, Zhiqiang

    2013-11-01

    Oxidative degradation of Alizarin Red S (ARS) in aqueous solutions by using electro-Fenton was studied. At first, effect of operating parameters such as current density, aeration rate and initial pH on the degradation of ARS were studied by using UV-vis spectrum, respectively. Then, under the optimal operating conditions (current density: 10.0mAcm(-2), aeration rate: 1000mLmin(-1), initial pH: 2.8), the identification of degradation products of ARS was carried out by using GC-MS and HPLC, meanwhile its degradation pathway was proposed according to the intermediates. Considering the location, intensity and intensity ratio of fluorescence center peak of the ARS in aqueous solution, a convenient and quick monitoring method by using excitation-emission matrix fluorescence spectrum technology was developed to monitor the degradation degree of ARS through electro-Fenton process. Furthermore, it is suggested that the developed method would be promising for the quick analysis and evaluation of the degradation degree of the pollutants with π-conjugated system.

  12. Use of High-Frequency, In-Stream, Ultraviolet-Visual (UV-vis) Spectroscopy to Characterize Organic Carbon and Nitrogen Species in Watershed Runoff

    NASA Astrophysics Data System (ADS)

    Winters, C. G.; Rowland, R. D.; Inamdar, S. P.

    2014-12-01

    Natural or anthropogenic episodic events such as snowmelt, floods, fire, insect-defoliation, pollutant spills, etc. can result in sudden and unexpected changes in runoff water quality from watersheds. Depending on the magnitude and intensity of the change, such events which are also occasionally referred to as "hot moments", can have significant ecological and environmental consequences. Measuring and recording such rapid and unexpected changes in runoff quality has always been a logistical challenge. However, the advent of in-situ, UV- and fluorescence-based spectrometers that can continuously measure water quality changes at high-frequency (minutes to hours) show considerable promise. We implemented a UV-vis spectrometer (Spectrolyser, S::CAN Inc.) to characterize the stream water quality at every 30 minutes from a small (12 ha) forested watershed located in the Piedmont region of Maryland. The spectrometer recorded the UV-Vis spectrum (200-750 nm), turbidity (NTU), nitrate-N (mgN/L), and total and dissolved organic carbon (TOC and DOC, respectively; mgC/L). To evaluate the accuracy of the sensor values, water sampling was also performed simultaneously using automated ISCO samplers for multiple storms since November 2013. Water samples have been analyzed for suspended solids, particulate and dissolved forms of organic carbon (OC), and nitrate-N. In addition, water samples were also analyzed on laboratory spectrometers to develop a variety of UV and fluorescence metrics that characterize the lability and recalcitrance of DOC. Key questions that we address here are: How reliable and accurate are the spectrometer values for dissolved and particulate species of OC and nitrate-N? How does the magnitude of the storms and the amount of suspended sediment influence the accuracy of sensor readings? Can the sensor UV-vis data provide insights into DOC character/composition similar to those derived from lab-based UV and fluorescence metrics? Addressing these questions is

  13. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    PubMed

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation.

  14. Submersible UV-Vis Spectroscopy for Quantifying Streamwater Organic Carbon Dynamics: Implementation and Challenges before and after Forest Harvest in a Headwater Stream

    PubMed Central

    Jollymore, Ashlee; Johnson, Mark S.; Hawthorne, Iain

    2012-01-01

    Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro∷lyzer model, s∷can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss. PMID:22666002

  15. Submersible UV-Vis spectroscopy for quantifying streamwater organic carbon dynamics: implementation and challenges before and after forest harvest in a headwater stream.

    PubMed

    Jollymore, Ashlee; Johnson, Mark S; Hawthorne, Iain

    2012-01-01

    Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro::lyzer model, s::can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss.

  16. UV-Vis spectroscopy and density functional study of solvent effect on the charge transfer band of the n → σ* complexes of 2-Methylpyridine and 2-Chloropyridine with molecular iodine

    NASA Astrophysics Data System (ADS)

    Gogoi, Pallavi; Mohan, Uttam; Borpuzari, Manash Protim; Boruah, Abhijit; Baruah, Surjya Kumar

    2017-03-01

    UV-Vis spectroscopy has established that Pyridine substitutes form n→σ* charge transfer (CT) complexes with molecular Iodine. This study is a combined approach of purely experimental UV-Vis spectroscopy, Multiple linear regression theory and Computational chemistry to analyze the effect of solvent upon the charge transfer band of 2-Methylpyridine-I2 and 2-Chloropyridine-I2 complexes. Regression analysis verifies the dependence of the CT band upon different solvent parameters. Dielectric constant and refractive index are considered among the bulk solvent parameters and Hansen, Kamlet and Catalan parameters are taken into consideration at the molecular level. Density Functional Theory results explain well the blue shift of the CT bands in polar medium as an outcome of stronger donor acceptor interaction. A logarithmic relation between the bond length of the bridging atoms of the donor and the acceptor with the dielectric constant of the medium is established. Tauc plot and TDDFT study indicates a non-vertical electronic transition in the complexes. Buckingham and Lippert Mataga equations are applied to check the Polarizability effect on the CT band.

  17. New design of experiment combined with UV-Vis spectroscopy for extraction and estimation of polyphenols from Basil seeds, Red seeds, Sesame seeds and Ajwan seeds.

    PubMed

    Mabood, Fazal; Gilani, Syed Abdullah; Hussain, Javid; Alshidani, Sulaiman; Alghawi, Said; Albroumi, Mohammed; Alameri, Saif; Jabeen, Farah; Hussain, Zahid; Al-Harrasi, Ahmed; Al Abri, Zahra K M; Farooq, Saima; Naureen, Zakira; Hamaed, Ahmad; Rasul Jan, M; Shah, Jasmin

    2017-01-26

    New experimental designs for the extraction of polyphenols from different seeds including Basil seed, Red seed, Sesame seeds and Ajwan seeds were investigated. Four variables the concentration and volume of methanol and NaOH solutions as well as the temperature and time of extraction were varied to see their effect on total phenol extraction. The temperature was varied in the range from 25°C to 200°C while the time in the range from 30 to 200minutes. Response surface methodology was used to optimize the extraction parameters. The estimation of polyphenols was measured through phenols reduction UV-Vis spectroscopic method of phosphotungstic-phosphomolybdic acids (Folin-Ciocalteu's reagent). Calibration curve was made by using tannic acid as a polyphenols standard in the concentration range from 0.1 to 10ppm. The regression line obtained shows the value of correlation coefficient i.e. R=0.930 and Root mean square error of cross validation (RMSEC) value of 0.0654. The Basil seeds were found containing the highest amount of total phenols i.e. 785.76mg/100g. While the Sesame seeds having the least amount i.e. 33.08mg/100g. The Ajwan seeds and the Red seeds are containing the medium amounts i.e. 379mg/100g and 220.54mg/100g respectively.

  18. The effect of a computer-based, spectrometer tutorial on chemistry students' learning in a UV/vis spectroscopy laboratory experiment

    NASA Astrophysics Data System (ADS)

    Wood, Nathan Brent

    It is common for fairly sophisticated instruments to be used in undergraduate, general chemistry, laboratory courses. Typically, these instruments are treated as incidental to the experiment: students are given extensive operating instructions, but told little or nothing about how they work, because understanding the instruments themselves is not an objective of the course. The implicit assumption is that chemical principles can be deduced simply from accurate data. However, cognitive load theory (Sweller, 1988, 2005) predicts it would be more difficult for students with limited prior knowledge to make sense of their data if they do not know how measurements made with the instruments are actually derived from their physical sample. Therefore, treating laboratory instruments as incidental may actually make it more difficult for students to learn the chemical concepts that underlie the data they collect. This experimental study was intended to determine whether a multimedia tutorial, designed to help students understand how a UV/vis spectrophotometer works, brings about any changes in performance on a laboratory experiment about food dye solutions. Working in pairs, 750 students were randomly assigned to receive either the tutorial (treatment) or an alternative task (comparison) as an introduction to an experiment that was a regular part of an undergraduate, general chemistry, laboratory course. Students' responses to all laboratory questions were collected and scored. The amount of time students spent on each laboratory task was collected as well. On average, treatment students completed many of the laboratory tasks significantly more quickly than comparison students. Treatment students typically also provided more concise responses to many of the laboratory questions. Unfortunately, no differences were found in scores on laboratory questions. Therefore, while there is evidence the tutorial helped students learn more efficiently, evidence could not be found that

  19. Study on the binding interaction of chromium(VI) with humic acid using UV-vis, fluorescence spectroscopy and molecular modeling

    NASA Astrophysics Data System (ADS)

    Gu, Yun-Lan; Yin, Ming-Xing; Zhang, Hong-Mei; Wang, Yan-Qing; Shi, Jing-hua

    2015-02-01

    In this report, the binding interaction of chromium(VI), as Cr2O72-, with humic acid was studied by using UV-visible absorption, fluorescence spectroscopy, and molecular modeling method. The fluorescence spectral data indicated that the binding interaction existed between Cr2O72- and humic acid and the order of magnitude of binding constants were 103. The rise in temperature caused a decrease in the values of the binding constant of humic acid with Cr2O72-. Thermodynamic analysis presented that multi-intermolecular forces including hydrogen bonding, hydrophobic, and electrostatic forces were involved in the binding process at pH 6.5. The spectral data also indicated that Cr2O72- affected the aromatic ring structures in humic acid. Furthermore, the molecular modeling analysis indicated that a lot of reactive groups and binding cavities in HA played a key role in its binding with Cr2O72-.

  20. ESIPT and photodissociation of 3-hydroxychromone in solution: photoinduced processes studied by static and time-resolved UV/Vis, fluorescence, and IR spectroscopy.

    PubMed

    Chevalier, Katharina; Grün, Anneken; Stamm, Anke; Schmitt, Yvonne; Gerhards, Markus; Diller, Rolf

    2013-11-07

    The spectral properties of fluorescence sensors such as 3-hydroxychromone (3-HC) and its derivatives are sensitive to interaction with the surrounding medium as well as to substitution. 3-HC is a prototype system for other derivatives because it is the basic unit of all flavonoides undergoing ESIPT and is not perturbed by a substituent. In this study, the elementary processes and intermediate states in the photocycle of 3-HC as well as its anion were identified and characterized by the use of static and femtosecond time-resolved spectroscopy in different solvents (methylcyclohexane, acetonitrile, ethanol, and water at different pH). Electronic absorption and fluorescence spectra and lifetimes of the intermediate states were obtained for the normal, tautomer and anionic excited state, while mid-IR vibrational spectra yielded structural information on ground and excited states of 3-HC. A high sensitivity on hydrogen-bonding perturbations was observed, leading to photoinduced anion formation in water, while in organic solvents, different processes are suggested, including slow picosecond ESIPT and contribution of the trans-structure excited state or a different stable solvation state with different direction of OH. The formation of the latter could be favored by the lack of a substituent increasing contact points for specific solute-solvent interactions at the hydroxyl group compared to substituted derivatives. The effect of substituents has to be considered for the design of future fluorescence sensors based on 3-HC.

  1. Filter-based measurements of UV-vis mass absorption cross sections of organic carbon aerosol from residential biomass combustion: Preliminary findings and sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K.

    2016-10-01

    Combustion of solid biomass fuels is a major source of household energy in developing nations. Black (BC) and organic carbon (OC) aerosols are the major PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) pollutants co-emitted during burning of these fuels. While the optical nature of BC is well characterized, very little is known about the properties of light-absorbing OC (LAOC). Here, we report our preliminary findings on the mass-based optical properties of LAOC emitted from the combustion of four commonly used solid biomass fuels - fuel-wood, agricultural residue, dung-cake, and mixed - in traditional Indian cookstoves. As part of a pilot field study conducted in central India, PM2.5 samples were collected on Teflon filters and analyzed for their absorbance spectra in the 300-900 nm wavelengths at 1 nm resolution using a UV-Visible spectrophotometer equipped with an integrating sphere. The mean mass absorption cross-sections (MAC) of the emitted PM2.5 and OC, at 550 nm, were 0.8 and 0.2 m2 g-1, respectively, each with a factor of ~2.3 uncertainty. The mean absorption Ångström exponent (AǺE) values for PM2.5 were 3±1 between 350 and 550 nm, and 1.2±0.1 between 550 and 880 nm. In the 350-550 nm range, OC had an AǺE of 6.3±1.8. The emitted OC mass, which was on average 25 times of the BC mass, contributed over 50% of the aerosol absorbance at wavelengths smaller than 450 nm. The overall OC contribution to visible solar light (300-900 nm) absorption by the emitted particles was 26-45%. Our results highlight the need to comprehensively and accurately address: (i) the climatic impacts of light absorption by OC from cookstove emissions, and (ii) the uncertainties and biases associated with variability in biomass fuel types and combustion conditions, and filter-based measurement artifacts during determination of MAC values.

  2. Trigonal-bipyramidal and square-pyramidal chromium-manganese chalcogenide clusters, [E2CrMn2(CO)n](2-) (E=S, Se, Te; n=9, 10): synthesis, electrochemistry, UV/Vis absorption, and computational studies.

    PubMed

    Shieh, Minghuey; Yu, Chun-Hsien; Chu, Yen-Yi; Guo, Yu-Wen; Huang, Chung-Yi; Hsing, Kai-Jieah; Chen, Pei-Chi; Lee, Chung-Feng

    2013-05-01

    The reactions of E powder (E=S, Se) with a mixture of Cr(CO)6 and Mn2(CO)10 in concentrated solutions of KOH/MeOH produced two new mixed Cr-Mn-carbonyl clusters, [E2CrMn2(CO)9](2-) (E=S, 1; Se, 2). Clusters 1 and 2 were isostructural with one another and each displayed a trigonal-bipyramidal structure, with the CrMn2 triangle axially capped by two μ3-E atoms. The analogous telluride cluster, [Te2CrMn2(CO)9](2-) (3), was obtained from the ring-closure of Te2Mn2 ring complex [Te2Mn2Cr2(CO)18](2-) (4). Upon bubbling with CO, clusters 2 and 3 were readily converted into square-pyramidal clusters, [E2CrMn2(CO)10](2-) (E=Se, 5; Te, 6), accompanied with the cleavage of one Cr-Mn bond. According to SQUID analysis, cluster 6 was paramagnetic, with S=1 at room temperature; however, the Se analogue (5) was spectroscopically proposed to be diamagnetic, as verified by TD-DFT calculations. Cluster 6 could be further carbonylated, with cleavage of the Mn-Mn bond to produce a new arachno-cluster, [Te2CrMn2(CO)11](2-) (7). The formation and structural isomers, as well as electrochemistry and UV/Vis absorption, of these clusters were also elucidated by DFT calculations.

  3. The role of zinc deficiency-induced changes in the phospholipid-protein balance of blood serum in animal depression model by Raman, FTIR and UV-vis spectroscopy.

    PubMed

    Depciuch, J; Sowa-Kućma, M; Nowak, G; Szewczyk, B; Doboszewska, U; Parlinska-Wojtan, M

    2017-02-28

    Depression is a serious mental illness. To study the mechanisms of diseases and search for new, more effective therapies, animal models are used. Unfortunately, none of the available models does reflect all symptoms of depression. Zinc deficiency is proposed as a new animal model of depression. However, it has not been yet validated in a detailed manner. Recently, spectroscopic techniques are increasingly being used both in clinical and preclinical studies. Here we examined the effect of zinc deficiency and amitryptyline treatment on the phospholipid - protein balance in the blood serum of rats using Raman, Fourier Transform Infra Red (FTIR) and UV-vis technique. Male Sprague Dawley rats were fed with a zinc ample diet (ZnA, 50mg Zn/kg) or a zinc deficient diet (ZnD, 3mg Zn/kg) for 4 weeks. Then amitriptyline administration (AMI, 10mg/kg, i.p.) was started. After injecting the drug for 2-weeks, blood samples were collected and analyzed. It was found that zinc deficiency decreases both the level of phospholipids and proteins and also causes structural changes in their structures. In the ZnD group amitriptyline treatment influenced the protein level and structure. UV-vis spectroscopy combined with the second derivative calculated from the FTIR spectra provided information that the proteins in blood serum of rat fed with a low Zn diet regain their intact structure after amitriptyline medication. Simultaneously, the antidepressant therapy did not have any effect on the level of phospholipids in this group of rats. Additionally, our results show, that amitriptyline administration can change the structure of phospholipids in rats subjected to zinc ample diet. This altered structure of phospholipids was identified as shortening of carbon chains. Our findings indicate that the decreased level of zinc may be the cause of depressive disorders, as it leads to changes in the phospholipid-protein balance necessary for the proper functioning of the body. This study also shows

  4. Experimental, computational and chemometrics studies of BSA-vitamin B6 interaction by UV-Vis, FT-IR, fluorescence spectroscopy, molecular dynamics simulation and hard-soft modeling methods.

    PubMed

    Manouchehri, Firouzeh; Izadmanesh, Yahya; Aghaee, Elham; Ghasemi, Jahan B

    2016-10-01

    The interaction of pyridoxine (Vitamin B6) with bovine serum albumin (BSA) is investigated under pseudo-physiological conditions by UV-Vis, fluorescence and FTIR spectroscopy. The intrinsic fluorescence of BSA was quenched by VB6, which was rationalized in terms of the static quenching mechanism. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), dynamic quenching (KSV) and static quenching (KLB) at 310K were obtained. The efficiency of energy transfer and the distance between the donor (BSA) and the acceptor (VB6) were calculated by Foster's non-radiative energy transfer theory and were equal to 41.1% and 2.11nm. The collected UV-Vis and fluorescence spectra were combined into a row-and column-wise augmented matrix and resolved by multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS helped to estimate the stoichiometry of interactions, concentration profiles and pure spectra for three species (BSA, VB6 and VB6-BSA complex) existed in the interaction procedure. Based on the MCR-ALS results, using mass balance equations, a model was developed and binding constant of complex was calculated using non-linear least squares curve fitting. FT-IR spectra showed that the conformation of proteins was altered in presence of VB6. Finally, the combined docking and molecular dynamics (MD) simulations were used to estimate the binding affinity of VB6 to BSA. Five-nanosecond MD simulations were performed on bovine serum albumin (BSA) to study the conformational features of its ligand binding site. From MD results, eleven BSA snapshots were extracted, at every 0.5ns, to explore the binding affinity (GOLD score) of VB6 using a docking procedure. MD simulations indicated that there is a considerable flexibility in the structure of protein that affected ligand recognition. Structural analyses and docking simulations indicated that VB6 binds to site I and GOLD score values depend on the conformations of both BSA and ligand

  5. Redox properties of manganese-containing zirconia solid solution catalysts analyzed by in situ UV-vis spectroscopy and crystal field theory.

    PubMed

    Klokishner, Sophia I; Reu, Oleg; Chan-Thaw, Carine E; Jentoft, Friederike C; Schlögl, Robert

    2011-07-21

    The optical absorption spectra of manganese-promoted sulfated zirconia, a highly active alkane isomerization catalyst, were found to be characterized by oxygen-to-manganese charge-transfer transitions at 300-320 nm and d-d transitions of manganese ions at 580 and 680 nm. The latter were attributed to Mn(4+) and Mn(3+) ions, which are known to be incorporated in the zirconia lattice. The oxygen surroundings of these ions were modeled assuming a substitutional solid solution. The crystal field splittings, vibronic coupling constants, and oscillator strengths of the manganese ions were calculated on the basis of a cluster model that considers the manganese center as a complex with the adjacent ions of the lattice as ligands. The ratio of Mn(3+) to Mn(4+) ions was determined using the spectra and the model, and the relative concentrations of Mn(2+), Mn(3+), and Mn(4+) ions were determined with the help of the average valence known from X-ray absorption data in the literature. The redox behavior of manganese-promoted sulfated zirconia in oxidizing and inert atmosphere was elucidated at temperatures ranging from 323 to 773 K.

  6. Development of a multivariate calibration model for the determination of dry extract content in Brazilian commercial bee propolis extracts through UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Barbeira, Paulo J. S.; Paganotti, Rosilene S. N.; Ássimos, Ariane A.

    2013-10-01

    This study had the objective of determining the content of dry extract of commercial alcoholic extracts of bee propolis through Partial Least Squares (PLS) multivariate calibration and electronic spectroscopy. The PLS model provided a good prediction of dry extract content in commercial alcoholic extracts of bee propolis in the range of 2.7 a 16.8% (m/v), presenting the advantage of being less laborious and faster than the traditional gravimetric methodology. The PLS model was optimized with outlier detection tests according to the ASTM E 1655-05. In this study it was possible to verify that a centrifugation stage is extremely important in order to avoid the presence of waxes, resulting in a more accurate model. Around 50% of the analyzed samples presented content of dry extract lower than the value established by Brazilian legislation, in most cases, the values found were different from the values claimed in the product's label.

  7. In situ FT-IR and UV-vis spectroscopy of the low-temperature NO disproportionation mediated by solid state manganese(II) porphyrinates.

    PubMed

    Martirosyan, Garik G; Azizyan, Arsen S; Kurtikyan, Tigran S; Ford, Peter C

    2006-05-15

    The heterogeneous reaction between NO gas and sublimed layers of manganese(II) porphyrinato complexes Mn(Por) (Por = TPP (tetraphenylporphyrinato dianion), TMP (tetramesitylporphyrinato dianion), or TPP(d20) (perdeuterated tetraphenylporphyrinato dianion)) has been monitored by IR and optical spectroscopy over the temperature range of 77 K to room temperature. These manganese porphyrins promote NO disproportionation to NO2 species and N2O, and the reaction proceeds via several distinct stages. At 90 K, the principal species observed spectrally are the nitric oxide dimer, cis-ONNO, two manganese nitrosyls, the simple NO adduct Mn(Por)(NO), and another intermediate (1) that is apparently critical to the disproportionation mechanism. This key intermediate is formed prior to N2O evolution, and proposals regarding its likely structure are offered. When the system is warmed to 130 K, the disproportionation products, N2O and the O-coordinated nitrito complex Mn(Por)(NO)(ONO) (2), are formed. IR spectral changes show that, upon further warming to 200 K, 2 isomerizes into the N-bonded nitro linkage isomer Mn(Por)(NO)(NO2) (3). After it is warmed to room temperature, the latter species loses NO and converts to the known 5-coordinate nitrito complex Mn(Por)(ONO) (4).

  8. UV-Vis absorption spectroscopy and chemometrics to discriminate between the two basic categories and types of tequila

    NASA Astrophysics Data System (ADS)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Pichardo Molina, J.; Maldonado, J. L.; Meneses Nava, M. A.; Landgrave, J. E. A.

    2007-03-01

    An alternative method to chromatography is reported to discriminate among white and aging tequilas. In a previous work we had reported a similar method to discriminate between 100% blue agave and mixed tequilas. A data base of 145 tequilas was created where well known tequila brands and tequilas in bulk were included. The bottled tequilas were purchased at various Mexican liquor stores to ensure that different batches of each brand were included in the data base. The method that we propose to discriminate tequilas may also be used for quality control in distilleries and, with the help of the data base, to identify counterfeit tequilas.

  9. Roles of manganese oxides in degradation of phenol under UV-Vis irradiation: adsorption, oxidation, and photocatalysis.

    PubMed

    Zhang, Qin; Cheng, Xiaodi; Zheng, Chen; Feng, Xionghan; Qiu, Guohong; Tan, Wenfeng; Liu, Fan

    2011-01-01

    Manganese oxides are known as one type of semiconductors, but their photocatalysis characteristics have not been deeply explored. In this study, photocatalytic degradation of phenol using several synthesized manganese oxides, i.e, acidic birnessite (BIR-H), alkaline birnessite (BIR-OH), cryptomelane (CRY) and todorokite (TOD), were comparatively investigated. To elucidate phenol degradation mechanisms, X-ray diffraction (XRD), ICP-AES (inductively coupled plasma-atomic emission spectroscopy), TEM (transmission electronic microscope), N2 physisorption at 77 K and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to characterize the structural, compositional, morphological, specific surface area and optical absorption properties of the manganese oxides. After 12 hr of UV-Vis irradiation, the total organic carbon (TOC) removal rate reached 62.1%, 43.1%, 25.4%, and 22.5% for cryptomelane, acidic birnessite, todorokite and alkaline birnessite, respectively. Compared to the reactions in the dark condition, UV-Vis exposure improved the TOC removal rates by 55.8%, 31.9%, 23.4% and 17.9%. This suggests a weak ability of manganese oxides to degrade phenol in the dark condition, while UV-Vis light irradiation could significantly enhance phenol degradation. The manganese minerals exhibited photocatalytic activities in the order of: CRY > BIR-H > TOD > BIR-OH. There may be three possible mechanisms for photochemical degradation: (1) direct photolysis of phenol; (2) direct oxidation of phenol by manganese oxides; (3) photocatalytic oxidation of phenol by manganese oxides. Photocatalytic oxidation of phenol appeared to be the dominant mechanism.

  10. [The Raman Spectroscopy (RS): A new tool for the analytical quality control of injectable in health settings. Comparison of RS technique versus HPLC and UV/Vis-FTIR, applied to anthracyclines as anticancer drugs].

    PubMed

    Bourget, P; Amin, A; Moriceau, A; Cassard, B; Vidal, F; Clement, R

    2012-12-01

    The study compares the performances of three analytical methods devoted to Analytical Quality Control (AQC) of therapeutic solutions formed into care environment, we are talking about Therapeutics Objects(TN) (TOs(TN)). We explored the pharmacological model of two widely used anthracyclines i.e. adriamycin and epirubicin. We compared the performance of the HPLC versus two vibrational spectroscopic techniques: a tandem UV/Vis-FTIR on one hand and Raman Spectroscopy (RS) on the other. The three methods give good results for the key criteria of repeatability, of reproducibility and, of accuracy. A Spearman and a Kendall correlation test confirms the noninferiority of the vibrational techniques as an alternative to the reference method (HPLC). The selection of bands for characterization and quantification by RS is the results of a gradual process adjustment, at the intercept of matrix effects. From the perspective of a AQC associated to release of TOs, RS displays various advantages: (a) to decide quickly (~2min), simultaneously and without intrusion or withdrawal on both the nature of a packaging than on a solvant and this, regardless of the compound of interest; it is the founder asset of the method, (b) to explore qualitatively and quantitatively any kinds of TOs, (c) operator safety is guaranteed during production and in the laboratory, (d) the suppression of analytical releases or waste contribute to protects the environment, (e) the suppression.of consumables, (f) a negligible costs of maintenance, (g) a small budget of technicians training. These results already show that the SR technology is potentially a strong contributor to the safety of the medication cycle and fight against the iatrogenic effects of drugs.

  11. Liquid-liquid extraction of metal ions by neutral phosphoramides. Part I. Extraction of uranyl ions from nitrate and sulphate media. Examination of extracted species by UV/VIS and {sup 31}P NMR spectroscopy

    SciTech Connect

    Rodehueser, L.; Rubini, P.R.; Bokolo, K.; Laakel, N.; Delpuech, J.J.

    1992-09-01

    The extraction of uranyl nitrate and uranyl sulphate from aqueous media by the neutral chelating diphosphoramides CH{sub 3}-N[P(O)(NMe{sub 2}){sub 2}]{sub 2} (NIPA) and its less hydrophilic homologs R-N[P(O)(NMe{sub 2}){sub 2}]{sub 2} (R = -C{sub 12}H{sub 25} (ODIPA) or -C{sub 16}H{sub 33} (OHDIPA)), diluted in CH{sub 3}NO{sub 2} or toluene, has been studied. In the presence of HNO{sub 3}, NaNO{sub 3}, NaCl, and Na{sub 2}SO{sub 4} as salting-out agents, extraction is generally excellent. Some of the extracted complex species have been identified by comparing their {sup 31}P NMR and UV/vis spectra with those of pure complexes of known structure. The results are compared with extractions using tri-n-butyl phosphate (TBP) as the complexing agent. 20 refs., 9 figs., 4 tabs.

  12. Molecular Structures of N,N'-Dimethylbenzimidazoline-2-germylene and -stannylene in Solution and in Solid State by Means of Optical (Raman and UV-vis) Spectroscopy and Quantum Chemistry Methods.

    PubMed

    Aysin, R R; Leites, L A; Bukalov, S S; Zabula, A V; West, R

    2016-05-16

    X-ray data obtained for germylene 1 evidence its monomeric structure, unlike that of stannylene 2, which had been shown previously to form a coordination dimer. Raman spectra of solid and liquid 1 are identical, whereas the Raman spectra of solid 2 and its solution 2a differ significantly. The spectrum of 2 is complicated and contains the lines corresponding to N → Sn coordination bonds forming a dimer. The spectrum of 2a is simpler and close to that of monomeric 1, thus pointing to the rupture of the dimer in solution. The UV-vis spectrum of solid 2 exhibits a band corresponding to a transition involving the N → Sn coordination bonds. Quantum theory of atoms in molecules data estimate the energy of this bond as ∼19 kcal/mol. The aromaticity of 1 and 2 with their 10 π-electron systems including divalent Ge or Sn atoms is confirmed by negative nucleus-independent chemical shift values.

  13. Time-dependent density functional theory study of UV/vis spectra of natural styrylpyrones.

    PubMed

    Anouar, El Hassane; Weber, Jean-Frédéric F

    2013-11-01

    Natural styrylpyrones isolated from fungi are known for various biological activities including antioxidant activity by scavenging free radicals. UV/vis spectra play an important role in elucidating chemical structures of these compounds via identification of chromophore units. With the aim of predicting the UV/vis spectra of a series of natural styrylpyrones, we tested TD-DFT, CIS and ZINDO methods in gas and in PCM solvent. The results showed that the individual or combined B3P86 and B3LYP hybrid functionals are suitable to predict the maximum wavelength absorption bands (λmax) for styrylpyrones. The structure property relationship (SPR) study emphasized the role of (i) structural parameters (e.g., hydrogen bond and the length of conjugated double bonds) and (ii) electronic descriptors (e.g., ionization potential, electronic affinity, hardness and electrophilicity) in bathochromic and hypsochromic shifts of maximum wavelength absorption bands (λmax) of styrylpyrone derivatives.

  14. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    SciTech Connect

    Mishra, Ashutosh; Dwivedi, Jagrati Shukla, Kritika

    2015-06-24

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H{sub 2}N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm{sup −1}. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  15. UV/vis and NIR light-responsive spiropyran self-assembled monolayers.

    PubMed

    Ivashenko, Oleksii; van Herpt, Jochem T; Feringa, Ben L; Rudolf, Petra; Browne, Wesley R

    2013-04-02

    Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopies (XPS). The SAMs obtained are composed of the ring-closed form (i.e., spiropyran) only. Irradiation with UV light results in conversion of the monolayer to the merocyanine form (MC), manifested in the appearance of an N(+) contribution in the N 1s region of the XPS spectrum of the SAMs, the characteristic absorption band of the MC form in the visible region at 555 nm, and the C-O stretching band in the SERS spectrum. Recovery of the initial state of the monolayer was observed both thermally and after irradiation with visible light. Several switching cycles were performed and monitored by SERS spectroscopy, demonstrating the stability of the SAMs during repeated switching between SP and MC states. A key finding in the present study is that ring-opening of the surface-immobilized spiropyrans can be induced by irradiation with continuous wave NIR (785 nm) light as well as by irradiation with UV light. We demonstrate that ring-opening by irradiation at 785 nm proceeds by a two-photon absorption pathway both in the SAMs and in the solid state. Hence, spiropyran SAMs on gold can undergo reversible photochemical switching from the SP to the MC form with both UV and NIR and the reverse reaction induced by irradiation with visible light or heating. Furthermore, the observation of NIR-induced switching with a continuous wave source holds important consequences in the study of photochromic switches on surfaces using SERS and emphasizes the importance of the use of multiple complementary techniques in characterizing photoresponsive SAMs.

  16. Broadband UV-Vis vibrational coherence spectrometer based on a hollow fiber compressor

    NASA Astrophysics Data System (ADS)

    Gueye, Moussa; Nillon, Julien; Crégut, Olivier; Léonard, Jérémie

    2016-09-01

    We describe a broadband transient absorption (TA) spectrometer devised to excite and probe, in the blue to UV range, vibrational coherence dynamics in organic molecules in condensed phase. A 800-nm Ti:Sa amplifier and a hollow fiber compressor are used to generate a 6-fs short pulse at 1 kHz. Broadband sum frequency generation with the fundamental pulse is implemented to produce a 400-nm, 8-fs Fourier limited short pulse. A UV-Vis white-light supercontinuum is implemented as a probe with intensity self-referencing to achieve a shot-noise-limited sensitivity. Rapid scanning of the pump-probe delay is shown very efficient in suppressing the noise resulting from low-frequency pump intensity fluctuations. Using either of the 800-nm or 400-nm broadband pulses as the pump for TA spectroscopy of organic molecules in solution, we resolve oscillatory signals down to the 320 nm probing wavelength with a 3200 cm-1 FWHM bandwidth. Their Fourier transformation reveals the corresponding molecular vibrational spectra. Finally, we demonstrate the use of this setup as a vibrational coherence spectrometer for the investigation of the vibrational dynamics accompanying the sub-ps C=C photoisomerization of a retinal-like molecular switch through a conical intersection.

  17. Natural amber, copal resin and colophony investigated by UV-VIS, infrared and Raman spectrum

    NASA Astrophysics Data System (ADS)

    Rao, ZhiFan; Dong, Kun; Yang, XiaoYun; Lin, JinChang; Cui, XiaoYing; Zhou, RongFeng; Deng, Qing

    2013-08-01

    Natural amber, copal resin and colophony are have investigated by UV-VIS, infrared and Raman spectrum. In order to distinguish the natural amber, copal resin and colophony, we have successfully used the nondestructive examination (NDE) technology. The results show that UV-VIS could not distinguish these compositions. The infrared spectra can distinguish them, but the technology may destroy the specimen. The Raman spectra show three characteristic peaks of vibration near position 932 cm-1 and position 1179 cm-1 of copal resin, which confirm the existence of terpenes compounds in it. In the Raman spectra of colophony, the vibration characteristic peak at position 1589 cm-1, caused by the conjugate double bond of internal unsaturated resin acid, is the basis of the characteristic difference between colophony and natural amber. The advantages of the distinguished technology by Raman spectroscopy are convenient and nondestructive examination for natural amber, copal resin and colophony.

  18. Wavelength Anomalies in UV-Vis Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Tellinghuisen, J.

    2012-06-01

    Commercial spectrophotometers are great tools for recording absorption spectra of low-to-moderate resolution and high photometic quality. However, in the case of at least one such instrument, the Shimadzu UV-2101PC (and by assumption, similar Shimadzu models), the wavelength accuracy may not match the photometric accuracy. In fact the wavelength varies with slit width, spectral sampling interval, and even the specified range, with a smoothing algorithm invoked any time the spectrum includes more than 65 sampled wavelengths. This behavior appears not to be documented anywhere, but it has been present for at least 20 years and persists even in the latest software available to run the instrument. The wavelength shifts can be as large as 1 nm, so for applications where wavelength accuracy better than this is important, wavelength calibration must be done with care to ensure that the results are valid for the parameters used to record the target spectra.

  19. Coating of gold nanoparticles for medical application: UV-VIS

    NASA Astrophysics Data System (ADS)

    Martínez Espinosa, Juan Carlos; Ramírez, Nayem Amtanus Chequer; Funes Oliva, Luis Enrique; Córdova Fraga, Teodoro; Bernal Alvarado, Jesús; Reyes Pablo, Aldelmo; Núñez, Anita Rosa Elvira

    2014-11-01

    The use of nanostructured materials has gained strength in recent years in the biomedical area; new applications such as the detection of components in living cells have been used in pharmaceutical area, specifically to study the interaction of various antitumor drugs in living tissues, the detection of genes that are closely related to some type of cancer, as well as the detections of protein biomarkers for diseases also have been studied in various research laboratories around of the world. In this work, we characterize the variation of the absorbance of gold nanoparticles (GNPs) coated with different concentration of Bovine Serum Albumin (BSA) protein. We use GNPS of 60 nm of the trademark-TED PELLA, the BSA protein trademark of Sigma Aldrich and based on that proposed protocol by Chithrani et al., 2009 with purposes to obtain an alternative model to determine the optimal stability of the nanoparticles coated with the protein. The colloidal solutions were prepared with BSA at different concentrations (0.25, 0.5, 0.75 and 1% M/V), and were centrifuged at 15,000 rpm for 90 minutes (centrifuge Model Z383K) and a constant temperature of 25 °C. All the spectra sets were obtained within the range from 400 to 700 nm using an UV-VIS spectrophotometer (Thermo Scientific Model 51118650). The results showed a R2 of 0.99 for an exponential curve correlation between the concentration of BSA, and the absorbance measured. We found at higher concentrations of BSA, there is a decrease in the intensity of the absorption spectra in the plasmon resonance. This preliminary model obtained can be used in the stabilization of gold nanoparticles with different proteins of biomedical interest in future experiments and support for functionalization of GNPs with specific membrane markers.

  20. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    PubMed

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data.

  1. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule

    NASA Astrophysics Data System (ADS)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-01

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311 ++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data.

  2. Charge-Transfer Complexes and Photochemistry of Ozone with Ferrocene and n-Butylferrocene: A UV-vis Matrix-Isolation Study.

    PubMed

    Pinelo, Laura F; Kugel, Roger W; Ault, Bruce S

    2015-10-15

    The reactions of ozone with ferrocene (cp2Fe) and with n-butylferrocene (n-butyl cp2Fe) were studied using matrix isolation, UV-vis spectroscopy, and theoretical calculations. The codeposition of cp2Fe with O3 and of n-butyl cp2Fe with O3 into an argon matrix led to the production of 1:1 charge-transfer complexes with absorptions at 765 and 815 nm, respectively. These absorptions contribute to the green matrix color observed upon initial deposition. The charge-transfer complexes underwent photochemical reactions upon irradiation with red light (λ ≥ 600 nm). Theoretical UV-vis spectra of the charge-transfer complexes and photochemical products were calculated using TD-DFT at the B3LYP/6-311G++(d,2p) level of theory. The calculated UV-vis spectra were in good agreement with the experimental results. MO analysis of these long-wavelength transitions showed them to be n→ π* on the ozone subunit in the complex and indicated that the formation of the charge-transfer complex between ozone and cp2Fe or n-butyl cp2Fe affects how readily the π* orbital on O3 is populated when red light (λ ≥ 600 nm) is absorbed. 1:1 complexes of cp2Fe and n-butyl cp2Fe with O2 were also observed experimentally and calculated theoretically. These results support and enhance previous infrared studies of the mechanism of photooxidation of ferrocene by ozone, a reaction that has considerable significance for the formation of iron oxide thin films for a range of applications.

  3. Development and validation of a FIA/UV-vis method for pK(a) determination of oxime based acetylcholinesterase reactivators.

    PubMed

    Musil, Karel; Florianova, Veronika; Bucek, Pavel; Dohnal, Vlastimil; Kuca, Kamil; Musilek, Kamil

    2016-01-05

    Acetylcholinesterase reactivators (oximes) are compounds used for antidotal treatment in case of organophosphorus poisoning. The dissociation constants (pK(a1)) of ten standard or promising acetylcholinesterase reactivators were determined by ultraviolet absorption spectrometry. Two methods of spectra measurement (UV-vis spectrometry, FIA/UV-vis) were applied and compared. The soft and hard models for calculation of pK(a1) values were performed. The pK(a1) values were recommended in the range 7.00-8.35, where at least 10% of oximate anion is available for organophosphate reactivation. All tested oximes were found to have pK(a1) in this range. The FIA/UV-vis method provided rapid sample throughput, low sample consumption, high sensitivity and precision compared to standard UV-vis method. The hard calculation model was proposed as more accurate for pK(a1) calculation.

  4. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  5. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures

    NASA Astrophysics Data System (ADS)

    Almandoz, M. C.; Sancho, M. I.; Duchowicz, P. R.; Blanco, S. E.

    2014-08-01

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition.

  6. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures.

    PubMed

    Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E

    2014-08-14

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition.

  7. Soliton absorption spectroscopy

    PubMed Central

    Kalashnikov, V. L.; Sorokin, E.

    2010-01-01

    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique. PMID:21151755

  8. Standardized UV-vis spectra as the foundation for a threshold-based, integrated photosafety evaluation.

    PubMed

    Bauer, Daniel; Averett, Lacey A; De Smedt, Ann; Kleinman, Mark H; Muster, Wolfgang; Pettersen, Betty A; Robles, Catherine

    2014-02-01

    Phototoxicity is a relatively common phenomenon and is an adverse effect of some systemic drugs. The fundamental initial step of photochemical reactivity is absorption of a photon; however, little guidance has been provided thus far regarding how ultraviolet-visible (UV-vis) light absorption spectra may be used to inform testing strategies for investigational drugs. Here we report the results of an inter-laboratory study comparing the data from harmonized UV-vis light absorption spectra obtained in methanol with data from the in vitro 3T3 Neutral Red Uptake Phototoxicity Test. Six pharmaceutical companies submitted data according to predefined quality criteria for 76 compounds covering a wide range of chemical classes showing a diverse but "positive"-enhanced distribution of photo irritation factors (22%: PIF<2, 12%: PIF 2-5, 66%: PIF>5). For compounds being formally positive (PIF value above 5) the lowest reported molar extinction coefficient (MEC) was 1700 L mol⁻¹ cm⁻¹ in methanol. However, the majority of these formally positive compounds showed MEC values being significantly higher (up to almost 40,000 L mol⁻¹ cm⁻¹). In conclusion, an MEC value of 1000 L mol⁻¹ cm⁻¹ may represent a reasonable and pragmatic threshold warranting further experimental photosafety evaluation.

  9. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    PubMed

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ(-)), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ(-) from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ(-) agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ(-), and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  10. Band-gap energy of heteropoly compounds containing Keggin polyanion-[PVxMo12-xO40]-(3+x) relates to counter-cations and temperature studied by UV-VIS diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasca, Viorel; Popa, Alexandru

    2013-10-01

    The band gap energy (absorption edge energies) of the pure H3[PMo12O40].13H2O and H4[PVMo11O40].13H2O, respectively, supported on SiO2 and SiC and some of its NH4+ and Cs+ salts were determined by different methods. The influence of the counter-cations and the temperature on band gap energy was studied. In this purpose, the diffuse reflectance spectra of above mentioned compounds were registered at different temperatures, and it were transposed in the curves of the Kubelka-Munk function vs. wavelength. The band gap energies were determined by processing of low field energy of the ligand-metal charge transfer band (O2- → Mo6+ and O2- → V5+) usually observed between 200 and 400 nm on these curves. In this aim, the Tauc's relation was adapted for Kubelka-Munk function use and it was plotted for n = 1/2 (direct transition) and 2 (indirect transition) vs. wave energy (photon energy). The intersection of the curves' tangent drawn to their point of inflection with horizontal axis gives the band gap energy. The other method for calculation of band gap energy was the differential calculus on the Kubelka-Munk function vs. wave energy curve where the x value corresponding to curves' maximum is the found value. The comparison between experimental band gap values and literature data showed their partial fit. The higher temperature produces the band gap energy diminution as a result of a stronger interaction between Keggin Units, which occurs especially by the crystallization water loss. The Keggin Units isolation one from another by voluminous counter-ion or their spreading on a support leads to a weaker interaction between them and as a consequence, the increasing of absorption edge energy. A linear correlation of the crystallites size with band gap energy was observed.

  11. DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials.

    PubMed

    Georgieva, Ivelina; Danchova, Nina; Gutzov, Stoyan; Trendafilova, Natasha

    2012-06-01

    Theoretical and spectroscopic studies of a series of monomeric and dimeric complexes formed through the modification of a zirconium butoxide precursor with acetylacetone and subsequent hydrolysis and/or condensation have been performed by applying DFT/B3LYP/6-31++G(d) and highly accurate RI-ADC(2) methods as well as IR and UV-Vis transmittance and diffuse reflectance spectroscopies. Based on DFT model calculations and simulated and experimental UV-Vis and IR spectra of all the studied structures, the most probable building units of the Zr(IV)-AcAc gel were predicted: the dimeric double hydroxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)(OH)(2br) 9 and the monooxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)O(br)·2H(2)O 12. In both structures, the two AcAc ligands are coordinated to one Zr atom. It was shown that building units 9 and 12 determine the photophysical and vibrational properties of the gel material. The observed UV-Vis and IR spectra of Zr(IV)-AcAc gel were interpreted and a relation between the spectroscopic and structural data was derived. The observed UV-Vis bands at 315 nm and 298/288 nm were assigned to partial ligand-metal transitions and to intra-/inter-AcAc ligand transitions, respectively.

  12. A Raman and UV-Vis study of catecholamines oxidized with Mn(III)

    NASA Astrophysics Data System (ADS)

    Barreto, W. J.; Ponzoni, S.; Sassi, P.

    1998-12-01

    A UV-Vis and Raman spectroscopy study of three aminochromes generated through Mn 3+ oxidation of the dopamine, L-dopa and adrenaline molecules at physiological pH was performed. The UV-Vis spectra of the catecholamines oxidized using Mn 3+ in buffer solution at pH 7.2 show a band at ca. 300 nm, formed by two transitions at 280 nm and 300 nm assigned to an La and Lb transition respectively, and other at ca. 470 nm assigned to an n- π* transition localized in the carbonyl group. This assignment is suggested by the UV-Vis and Raman spectra of ortho-aminoquinone generated by MnO 2 oxidation of a dopamine aqueous acidic solution. The resonance Raman spectra of the three chromes at buffer pH 7.2 show a very similar feature and the most intense bands are observed in the spectral range 1100-1800 cm -1. The band around 1680 cm -1 for the three compounds is assigned to a ν(CO) stretching vibration, 1630 cm -1 to the ν(CC) ring mode, two bands at 1423, 1439 cm -1; 1427, 1438 cm -1 and 1456, 1475 cm -1 are assigned to a ν(CN +) vibration, for aminochrome, dopachrome and adrenochrome, respectively. The excitation profiles for the most intense bands for aminochrome and adrenochrome were obtained. The band assigned to the ν(CN +) present a red shift with respect to the visible band peak, however the band in adrenochrome at 1475 cm -1 shows a profile similar to ν(CO) and ν(CC) modes that reflects the methyl group effect on mixing this mode more effectively with the ν(CC) ring mode.

  13. [Design of a portable UV-Vis spectrophotometer].

    PubMed

    Wan, Feng; Sun, Hong-wei; Fan, Shi-fu

    2006-04-01

    In the present paper, a method for how to design a portable UV-Vis spectrophotometer is introduced. The Hamamatsu multichannel detector S3904-1024Q and a flat field concave grating are employed to design a miniaturized dispersion system. In order to solve the contradiction between the spectral width and energy-utilizing ratio of the light source, a multi-band optical fiber is employed, one side of which is arranged to be rectangle as the entrance slit. The touch screen is employed as the input and output system of the spectrophotometer, and the miniaturized fiber-optic UV-Vis light source is employed as the light source. The research results and testing results of the prototype show that the new spectrophotometer based on the authors' new method is of miniaturization in volume(190 mm x 170 mm x 100 mm), can realize multi-wavelength-detection on-line, and is easily handled (touch screen control), and its performance accords with the Chinese national standard.

  14. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  15. TiO2/WO3 photoactive bilayers in the UV-Vis light region

    NASA Astrophysics Data System (ADS)

    Vasilaki, E.; Vernardou, D.; Kenanakis, G.; Vamvakaki, M.; Katsarakis, N.

    2017-04-01

    In this work, photoactive bilayered films consisting of anatase TiO2 and monoclinic WO3 were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO3 precursor solution, when deposited as an overlying layer on TiO2 by two annealing steps ( 76% methylene blue decolorization in 300 min of irradiation versus 59% in the case of a bare TiO2 film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO2 films with WO3 acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination.

  16. A Study of Photoluminiscence and UV-Vis in Enhanced GaN Nanofibers

    NASA Astrophysics Data System (ADS)

    Robles-Garcia, Joshua; Melendez-Zambrana, Anamaris; Ramos, Idalia

    2014-03-01

    The photoluminiscence (PL) and UV-Vis properties of Gallium Nitride (GaN) nanofibers were investigated for samples fabricated with a precursor solution containing Gallium Nitrate Hydrate, Cellulose Acetate, and Urea in the solvents Dimethylacetamide (DMA) and Acetone. GaN is a wide bandgap (3.4 eV) semiconductor that can be used in a variety of applications including solid-state lighting, high power, and high frequency devices. In previous work, we produced polycrystalline GaN nanofibers with wurtzite structure, using the electrospinning method and a thermal treatment in nitrogen and ammonia at 1000C. In this research we study the addition of urea to the precursor solution to enhance the crystallinity of the fibers at lower sintering temperatures. The molar ratios of urea added to the precursor range from 0 to 1.7 M. After electrospinning the fibers were sintered in Nitrogen at 450C for 3 hours and then, under ammonia gas flow at 900C for 5 hours. X-Ray Diffraction (XRD), UV-Vis spectroscopy, and PL measurements at room temperature were used to study the structural and optical properties of the fibers during the sintering process. This work was sponsored by UPRH PREM (NSF-DMR-0934195).

  17. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    PubMed

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction.

  18. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  19. Photochemistry of 2-naphthoyl azide. An ultrafast time-resolved UV-vis and IR spectroscopic and computational study.

    PubMed

    Kubicki, Jacek; Zhang, Yunlong; Vyas, Shubham; Burdzinski, Gotard; Luk, Hoi Ling; Wang, Jin; Xue, Jiadan; Peng, Huo-Lei; Pritchina, Elena A; Sliwa, Michel; Buntinx, Guy; Gritsan, Nina P; Hadad, Christopher M; Platz, Matthew S

    2011-06-29

    The photochemistry of 2-naphthoyl azide was studied in various solvents by femtosecond time-resolved transient absorption spectroscopy with IR and UV-vis detection. The experimental findings were interpreted with the aid of computational studies. Using polar and nonpolar solvents, the formation and decay of the first singlet excited state (S(1)) was observed by both time-resolved techniques. Three processes are involved in the decay of the S(1) excited state of 2-naphthoyl azide: intersystem crossing, singlet nitrene formation, and isocyanate formation. The lifetime of the S(1) state decreases significantly as the solvent polarity increases. In all solvents studied, isocyanate formation correlates with the decay of the azide S(1) state. Nitrene formation correlates with the decay of the relaxed S(1) state only upon 350 nm excitation (S(0) → S(1) excitation). When S(n) (n ≥ 2) states are populated upon excitation (λ(ex) = 270 nm), most nitrene formation takes place within a few picoseconds through the hot S(1) and higher singlet excited states (S(n)) of 2-naphthoyl azide. The data correlate with the results of electron density difference calculations that predict nitrene formation from the higher-energy singlet excited states, in addition to the S(1) state. For all of these experiments, no recovery of the ground state was observed up to 3 ns after photolysis, which indicates that both internal conversion and fluorescence have very low efficiencies.

  20. Ornaments in radiation treatment of cultural heritage: Color and UV-vis spectral changes in irradiated nacres

    NASA Astrophysics Data System (ADS)

    Marušić, Katarina; Pucić, Irina; Desnica, Vladan

    2016-07-01

    Cultural heritage objects that are radiation treated in order to stop their biodegradation often contain ornamenting materials that cannot be removed. Radiation may produce unwanted changes to such materials. Nacre is a common ornamenting material so this is an attempt to assess the impact of gamma-radiation on its optical properties. Two types of nacre (yellow and white) were obtained from a museum and subjected to different absorbed doses of Co-60 gamma irradiation under the same conditions. The radiation induced changes of nacres color were investigated with fiber optic reflectance spectroscopy (FORS). Colorimetry in CIE Lab space revealed that in both nacres the lightness shifted to darker grey hues at high doses while the color component's (red, green, yellow and blue) behavior depended on the nacre type. Observable changes occurred at doses much above the dose range needed for radiation treatment of cultural heritage objects that are often ornamented with nacre. In UV-vis reflectance spectra of samples irradiated to high doses carbonate radical anion absorption appeared.

  1. Electromembrane extraction-preconcentration followed by microvolume UV-Vis spectrophotometric determination of mercury in water and fish samples.

    PubMed

    Fashi, Armin; Yaftian, Mohammad Reza; Zamani, Abbasali

    2017-04-15

    Electromembrane extraction technique combined with microvolume UV-Vis spectrophotometric detection was proposed for the preconcentration-determination of mercury in water and fish samples. The optimized conditions for preconcentration step were: the applied potential 70V, bis(2-ethylhexyl) phosphate as the extractant in 1-octanol 2% v/v, extraction time 10min, stirring rate 700rpm, acceptor and donor solutions pH 3 and 7, respectively. The linear range was found to be 2.3-950.0μgL(-1) and 40-9500μgkg(-1) in water and fish samples, with corresponding detection limits of 0.7μgL(-1) and 12μgkg(-1), respectively. The method showed satisfactory repeatability and reproducibility (CV<6%). Methodological validation was performed by using cold vapor atomic absorption spectroscopy. The proposed method provided a rapid, sensitive and accurate method which is applicable for routine analysis of total mercury contents in water and fish samples.

  2. A stretchable nanowire UV-Vis-NIR photodetector with high performance.

    PubMed

    Yoo, Jewon; Jeong, Sanghwa; Kim, Sungjee; Je, Jung Ho

    2015-03-11

    A simple direct-writing technique can be used to fabricate a stretchable UV-vis-NIR nanowire photodetector (NWPD) consisting of PbS quantum dot (QD)-poly(3-hexylthiopehene) (P3HT) hybrid NWs. The hybrid NWPD shows superior sensitivity and response speed in the UV-vis to NIR range. The stretchable UV-vis-NIR NWPD shows a nearly identical photoresponse under extreme (up to 100%) and repeated (up to 100 cycles) stretching conditions.

  3. Defects in UV-vis-NIR reflectance spectra as method for forgery detections in writing documents

    NASA Astrophysics Data System (ADS)

    Somma, F.; Aloe, P.; Schirripa Spagnolo, G.

    2010-11-01

    Documents have taken up a very important place in our society. Frauds committed in connection with documents are not at all uncommon, and, in fact, represent a very large domain of the forensic science called "questioned documents". In the field of forensic examination of questioned documents, the legitimacy of an ink entry is often an essential question. A common type of forgery consists in materially altering an existing writing or adding a new writing. These changes can be characterized by means of optical spectroscopy. The aim of this work is to perform the UV-vis-NIR reflectance spectrophotometry to analyze a range of blue and black commercial ballpoint pens, in order to investigate the discriminating abilities of the different inks found on the same document.

  4. Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow.

    PubMed

    Yue, Jun; Falke, Floris H; Schouten, Jaap C; Nijhuis, T Alexander

    2013-12-21

    Combining reaction and detection in multiphase microfluidic flow is becoming increasingly important for accelerating process development in microreactors. We report the coupling of UV/Vis spectroscopy with microreactors for online process analysis under segmented flow conditions. Two integration schemes are presented: one uses a cross-type flow-through cell subsequent to a capillary microreactor for detection in the transmission mode; the other uses embedded waveguides on a microfluidic chip for detection in the evanescent wave field. Model experiments reveal the capabilities of the integrated systems in real-time concentration measurements and segmented flow characterization. The application of such integration for process analysis during gold nanoparticle synthesis is demonstrated, showing its great potential in process monitoring in microreactors operated under segmented flow.

  5. Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong

    2010-10-01

    Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.

  6. LC-MS of Metmyoglobin at pH = 2: Separation and Characterization of Apomyoglobin and Heme by ESI-MS and UV-Vis

    ERIC Educational Resources Information Center

    Stynes, Helen Cleary; Layo, Araceli; Smith, Richard W.

    2004-01-01

    The protein species of apomyoglobin (apoMb) and heme are freed and segregated from the aqueous protein solution of metmyoglobin by liquid chromatography, and are distinguished by UV-Vis absorption or electrospray ionization mass spectrometry (ESI-MS). This is an ingenious and effective approach to characterize apomyoglobin and heme, while students…

  7. Li-S battery analyzed by UV/Vis in operando mode.

    PubMed

    Patel, Manu U M; Demir-Cakan, Rezan; Morcrette, Mathieu; Tarascon, Jean-Marie; Gaberscek, Miran; Dominko, Robert

    2013-07-01

    Battery watch: UV/Vis spectrophotometry is demonstrated as a powerful analytical method for the in situ study of polysulfides. Through the interactions that occur between different chain-length polysulfide molecules and the UV/Vis radiation, quantitative and qualitative determination of the polysulfides formed during Li-S battery operation can be achieved.

  8. [UV-Vis spectrum characteristics of phycocyanin in water from Taihu lake].

    PubMed

    Zhang, Jing; Wei, Yu-Chun; Wang, Guo-Xiang; Cheng, Chun-Mei; Xia, Xiao-Rui

    2014-05-01

    The present paper analyzed the UV-Vis spectrum characteristics of phycocyanin extracted from 75 water samples around Meiliang Bay of Taihu Lake, China in spring, summer and autumn, 2011, taking standard sample of phycocyanin, Micro-cystic aeruginosa and Anabaena cultured indoor as the reference, and discussed the difference and relation of spectrum among water samples, standard sample and single algae samples. According to the number of absorption peak in the wavelength range from 500 to 700 nm, phycocyanin spectrum of water sampling in Taihu Lake can be divided into three patterns: no peak, single peak and two peaks. In the first pattern, the absorbance changed smoothly and no absorption peak was observed around 620 nm. Depending on the absorption difference in the wavelength range from 300 to 450 nm, this pattern can be divided into type I and type II. Type I only had a absorption peak near 260 nm, with the similar spectrum of chromophoric dissolved organic matter (CDOM) in the wavelength range from 250 to 800 nm. Type II had absorption peak respectively near 260 and 330 nm. In single peak pattern and two peaks pattern, significant absorption peak of phycocyanin appeared around 620 nm. Compared to the other patterns, single peak pattern was more similar to that of standard sample and single algae samples, but different in their maximum absorption peaks position and relative absorption intensity in the wavelength range of 250 approximately 300, 300 approximately 450 and 500 approximately 700 nm, because of different algae species and purity after extraction. In the two peaks pattern, another absorption peak appeared at 670nm, with the absorption shoulder from 350 to 450 nm, and shared the absorption characteristics of phycocyanin and chlorophyll complex protein. The research can provide a basic support for the phycocyanin quantitation and blooms monitoring in Taihu Lake.

  9. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  10. Theoretical and spectroscopic (FT-IR, NMR and UV-Vis.) characterizations of 3-p-chlorobenzyl-4-(4-carboxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one molecule

    NASA Astrophysics Data System (ADS)

    Akyıldırım, Onur; Gökce, Halil; Bahçeli, Semiha; Yüksek, Haydar

    2017-01-01

    Fourier transform infrared (FT-IR) spectroscopy in the region 400-4000 cm-1, proton and carbon-13 NMR chemical shifts and UV-Vis. absorption wavelengths of 3-p-chlorobenzyl-4-(4-carboxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one molecule have been experimentally investigated. For monomeric and dimeric forms of the title molecule, the optimized molecular structure analyses, vibrational wavenumbers, 13C and 1H NMR chemical shifts and electronic absorption wavelengths of the title molecule have been performed at DFT/B3LYP method with 6-311G(d,p) basis set. The HOMO and LUMO analyses have been theoretically done by using the mentioned calculation level. The obtained experimental values have been compared with calculated data. The computed vibrational frequencies, NMR chemical shifts and UV-Vis. wavelengths have been found to be in a good agreement with experimental values and spectral results of similar structures in the literature.

  11. UV-VIS backscattering measurements on atmospheric particles mixture using polarization lidar coupled with numerical simulations and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Francis, Mirvatte; Anselmo, Christophe; Rairoux, Patrick

    2015-04-01

    As underlined by the latest IPCC report [1], tropospheric aerosols are nowadays recognized as one of the main uncertainties affecting the Earth's climate and human health. This issue is not straightforward due to the complexity of these nanoparticles, which present a wide range of sizes, shapes and chemical composition, which vary as a function of altitude, especially in the troposphere, where strong temperature variations are encountered under different water vapour content (from 10 to 100 % relative humidity). During this oral presentation, I will first present the scientific context of this research. Then, the UV-VIS polarimeter instrument and the subsequent calibration procedure [2] will be presented, allowing quantitative evaluation of particles backscattering coefficients in the atmosphere. In this way, up to three-component particles external mixtures can be partitioned into their spherical and non-spherical components, by coupling UV-VIS depolarization lidar measurements with numerical simulations of backscattering properties specific to non-spherical particles, such as desert dust or sea-salt particles [3], by applying the T-matrix numerical code [4]. This combined methodology is new, as opposed to the traditional approach using the lidar and T-matrix methodologies separately. In complement, recent laboratory findings [5] and field applications [6] will be presented, enhancing the sensitivity of the UV-VIS polarimeter. References [1] IPCC report, Intergovernmental Panel on Climate Change, IPCC, (2013). [2] G. David, A. Miffre, B. Thomas, and P. Rairoux: "Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols," Appl. Phys. B 108, 197-216 (2012). [3] G. David, B. Thomas, T. Nousiainen, A. Miffre and P. Rairoux: "Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix," Atmos. Chem Phys

  12. Solvation and Deprotonation Dynamics in Reverse Micelles via Broadband Femtoseond Transient Absorption (BFTA) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cole, Richard

    2009-10-01

    Broadband femtosecond transient absorption (BFTA) spectroscopy is a useful tool in characterizing femtosecond and picosecond physical and chemical dynamics such as solvation, electron transfer, and deprotonation dynamics. This presentation will focus on our most recent results, which utilize BFTA spectroscopy in the ultraviolet-visible (UV-vis) spectral range to probe deprotonation and solvation dynamics in the nanoscopic confinement of reverse micelles. In these studies, pyranine, a `photo-acid', probes both solvation and deprotonation dynamics in reverse micelles formed from cationic (cetyl trimethylammonium bromide, CTAB), anionic (sodium dioctyl sulfosuccinate, AOT), and neutral (polyoxyethylene nonylphenylether, Igepal) surfactants. Dynamic behavior will be discussed in terms of the degree of nanoscopic confinement (micellar size) and the impact of varying interfacial environments.

  13. Space weathering of asteroidal surfaces . Influence on the UV-Vis spectra

    NASA Astrophysics Data System (ADS)

    Kanuchova&, Z.; Baratta, G. A.; Garozzo, M.; Strazzulla, G.

    The surfaces of airless bodies in the Solar System are continuously altered by micrometeoroids bombardment and irradiation by solar wind, flares and cosmic particles. Major effects of this process - space weathering - are darkening and "reddening" of the spectra of surface materials. We have studied the changes induced by energetic ion irradiation, in the UV-Vis-NIR (0.2-0.98 mu m) reflectance spectra of targets selected to mimic the surfaces of airless bodies in the inner Solar System. Chosen targets are olivine pellets, pure or covered by a transparent organic polymer (polystyrene). We have also measured the changes induced by ion irradiation in the absorption coefficient of the polymer. We have measured the variations of the absorption coefficient (0.25-0.98 mu m) of polystyrene as a function of ion fluence. The diffuse reflectance spectra of irradiated samples covered by organics exhibit a much more significant variation than those of pure silicates. The spectra of targets made of olivine plus polystyrene can be fitted by using the measured absorption coefficient of polystyrene.

  14. UV-vis spectroscopic studies of CaF2 photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Stoica, Martina; Herrmann, Andreas; Hein, Joachim; Rüssel, Christian

    2016-12-01

    A photo-thermo-refractive glass based on the system Na2O/K2O/CaO/CaF2/Al2O3/ZnO/SiO2 doped with Ag2O, CeO2, SnO2, Sb2O3 and KBr was investigated. This glass undergoes a permanent refractive index change after UV irradiation and subsequent two step heat treatment at temperatures above Tg. This is due to the formation of Ag metal clusters which act as nucleation centers for CaF2 crystallization. Oxidation of Ce3+ by UV light is the initial reaction and acts as photosensitizer in the glass. The UV-vis absorption spectra during this photo-induced crystallization process were measured. The spectral components that form the absorption spectra of cerium were studied in detail by a band separation with Gaussian functions. Deconvolution of the cerium absorption bands shows an envelope of five spectral components for the trivalent cerium due to the 4f-5d transitions and two spectral components for the tetravalent cerium caused by charge transfer transitions. The effect of different dopants and melting conditions on the photo-thermal process were studied to investigate the influence of glass technology on the photoprocess.

  15. Mathematical calculations of iron complex stoichiometry by direct UV-Vis spectrophotometry.

    PubMed

    Filipský, Tomáš; Říha, Michal; Hrdina, Radomír; Vávrová, Kateřina; Mladěnka, Přemysl

    2013-08-01

    The effects of iron-chelating agents on miscellaneous pathologies are currently largely tested. Due to various indications, different properties for chelators are required. A stoichiometry of the complex in relation to pH is one of the crucial factors. Moreover, the published data on the stoichiometry, especially concerning flavonoids, are equivocal. In this study, a new complementary approach was employed for the determination of stoichiometry in 10 iron-chelating agents, including clinically used drugs, by UV-Vis spectrophotometry at relevant pH conditions and compared with the standard Job's method. This study showed that the simple approach based on absorbance at the wavelength of complex absorption maximum was sufficient when the difference between absorption maximum of substance and complex was high. However, in majority of substances this difference was much lower (9-73 nm). The novel complementary approach was able to determine the stoichiometry in all tested cases. The major benefit of this method compared to the standard Job's approach seems to be its capability to reveal a reaction stoichiometry in chelators with moderate affinity to iron. In conclusion, using this complementary method may explain several previous contradictory data and lead to a better understanding of the underlying mechanisms of chelator's action.

  16. Bioacoustic Absorption Spectroscopy

    DTIC Science & Technology

    2016-06-07

    seas in co-operation with fisheries biologists. The first planned experiment will be in the seas off California in co-operation with the Southwest... Fisheries Science Center of NOAA’s National Marine Fisheries Service. These experiments will be designed to investigate the “signatures” of the two major...formulating environmental adaptation strategies for tactical sonars. Fisheries applications: These results suggest that bioacoustic absorptivity can be used to

  17. Identification of intermediates in zeolite-catalyzed reactions by in situ UV/Vis microspectroscopy and a complementary set of molecular simulations.

    PubMed

    Hemelsoet, Karen; Qian, Qingyun; De Meyer, Thierry; De Wispelaere, Kristof; De Sterck, Bart; Weckhuysen, Bert M; Waroquier, Michel; Van Speybroeck, Veronique

    2013-12-02

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-to-olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H-SAPO-34 and H-SSZ-13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol-treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time-dependent density functional theory (TDDFT) calculations. Static gas-phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species.

  18. Interaction between morin and AOT reversed micelles--studies with UV-vis at 25 °C.

    PubMed

    Bhattarai, Ajaya; Wilczura-Wachnik, H

    2014-01-30

    The precise measurements of morin absorbance in presence of surfactant/solvent/water systems at 25 °C by UV-vis technique are reported. The surfactant used in presented study was sodium bis(2-ethylhexyl) sulfosuccinate called Aerosol-OT or AOT. The solvents selected were: ethanol, ethylene glycol, and n-decanol. The concentrations of AOT were varied between 0.001 and 0.4 mol/kg. Morin concentration in quvette during UV-vis registration was not equals in all solvent because of its different solubility and absorption intensity depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=[H2O]/[AOT] and was equal 0, 30 and 40 in ethanol; 0, 10, 20 and 30 in ethylene glycol and 0, 10, 20, 30, and 40 in n-decanol. In presented work a Nernstian distribution of morin between the organic and micellar phases was assumed. The intensity of morin absorbance as a function of AOT concentration was analyzed. Using Non-linear Regression Procedure (NLREG) morin binding constant (K' [mol/kg]), and morin distribution constant (K) between organic phase and AOT micellar phase have been calculated. The experimental results have shown a significant influence of solvent, surfactant and water presence on morin UV-vis spectrum. Calculated data pointed out on different transfer of morin molecules from the organic to micellar phase depending on the solvent. Moreover, results of calculations indicate on competition between morin and water molecules interacting with AOT polar heads. Morin molecules privileged location in AOT reversed micelles strongly depends on the solvent. In case of systems with ethylene glycol as solvent is possible morin molecules location in polar cores of AOT reversed micelles as results of strong interaction between AOT polar heads and morin hydroxyl groups, whereas in case of ethanol and n-decanol morin molecules are located in palisade layer.

  19. Determination of antioxidant capacity of diverse fruits by electron spin resonance (ESR) and UV-vis spectrometries.

    PubMed

    Zang, Shuang; Tian, Sizhu; Jiang, Jia; Han, Dandan; Yu, Xinyu; Wang, Kun; Li, Dan; Lu, Dayong; Yu, Aimin; Zhang, Ziwei

    2017-04-15

    Twenty-one kinds of fruits including strawberry, mulberry, lemon, banana, etc. were measured for antioxidant capacity based on their ability to scavenge 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical. Vitamin C equivalent antioxidant capacity (VCEAC) was used to quantify antioxidant capacity of the studied fruits. The results were expressed as mg of ascorbic acid equivalent per 100g fruit. Each fruit was divided into two parts: harvest part (fresh fruit analyzed immediately), and liquid nitrogen frozen part (fruit frozen and pulverized in liquid nitrogen). Antioxidant capacities of both fresh and frozen fruits were determined, and VCEAC values were proved to have no significant difference. For the frozen fruits, the antioxidant capacities were measured by electron spin resonance spectroscopy (ESR) and UV-vis spectrometry. VCEAC values obtained with UV-vis and ESR range from 11.48 to 345.75mg/100g and 7.01 to 366.26mg/100g. Experimental results indicated that VCEAC values obtained by two methods were highly correlated.

  20. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin pKa values.

    PubMed

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the pK(a) values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The pK(a) values determined with this procedure were as follows: H(4)(MGF)=H(3)(MGF)(-)+H(+), pKa1 (6-H)=6.52+/-0.06; H(3)(MGF)(-)=H(2)(MGF)(2-)+H(+), pKa2 (3-H)=7.97+/-0.06; H(2)(MGF)(2-)=H(MGF)(3-)+H(+), pKa3 (7-H)=9.44+/-0.04; H(MGF)(3-)=(MGF)(4-)+H(+), pKa4 (1-H)=12.10+/-0.01; where it has been considered mangiferin C(19)H(18)O(11) as H(4)(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional (1)H,(13)C, 2D correlated (1)H/(13)C performed by (g)-HSQC and (g)-HMBC methods; are also presented. pK(a) values determination of H(4)(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  1. Combined SAXS/UV-vis/Raman as a diagnostic and structure resolving tool in materials and life sciences applications.

    PubMed

    Haas, Sylvio; Plivelic, Tomás S; Dicko, Cedric

    2014-02-27

    In order to diagnose and fully correlate structural, chemical, and functional features of macromolecules and particles in solution, we propose the integration of spectroscopy and scattering on the same measuring volume and at the same time in a dedicated sample environment with multiple probes. Combined SAXS/UV-vis and SAXS/Raman information are employed to study the radiation damage effect in proteins in solution and the scattering from single wall carbon nanotubes (SWNTs) in SDS dispersion, respectively. In the first case, a clear correlation is observed between the time dependence of the radius of gyration (Rg) of the protein determined by SAXS and the turbidity of the protein solution extracted from simultaneous UV-vis measurements. In the second case, the ratio of bundled/isolated carbon nanotubes is obtained unambiguously through proper modeling of the scattering data and cross-validated with the Raman information. The uses of convex constraint analysis (CCA) and two-dimensional correlation analyses (2DCOS and 2DHCOS) are introduced to fully explore the combination of data sets from different techniques and to extract unique insights from the sample.

  2. Ultrafast UV-vis and IR studies of p-biphenylyl acetyl and carbomethoxy carbenes.

    PubMed

    Wang, Jin; Burdzinski, Gotard; Kubicki, Jacek; Platz, Matthew S

    2008-08-20

    The photochemistry of a p-biphenylyl diazo ester (BpCN2CO2CH3) and diazo ketone (BpCN2COCH3) were studied by ultrafast time-resolved UV-vis and IR spectroscopies. The excited states of these diazo compounds were detected and found to decay with lifetimes of less than 300 fs. The diazo ester produces singlet carbene with greater quantum efficiency than the ketone analogue due to competing Wolff rearrangement (WR) in the excited state of the diazo ketone. Carbene BpCCO2CH3 has a singlet-triplet gap that is close to zero in cyclohexane, but the triplet is the ground state. The two spin states are in rapid equilibrium in this solvent relative to reaction with cyclohexane. There is (for a carbene) a slow rate of singlet to triplet intersystem crossing (isc) in this solvent because the orthogonal singlet must rotate to a higher energy orientation prior to isc. In acetonitrile and in dichloromethane BpCCO2CH3 has a singlet ground state. Ketocarbene BpCCOCH3 has a singlet ground state in cyclohexane, in dichloromethane, and in acetonitrile and decays by WR to form a ketene detected by ultrafast IR spectroscopy in these solvents. Ketocarbenes have more stable singlet states, relative to carbene esters, because of the superior conjugation of the filled hybrid orbital of the carbene with the pi system of the carbonyl group, the same factor that makes methyl ketones more acidic than the analogous esters. The rate of WR of BpCCOCH3 is faster in cyclohexane than in dichloromethane and acetonitrile because of intimate solute-solvent interactions between the empty p orbital of the carbene and nonbonding electron pairs of heteroatoms of the solvent. These interactions stabilize the carbene and retard the rate of WR.

  3. Explaining Space-Weathering Effects on UV-Vis-NIR Spectra with Light-Scattering Methods

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Väisänen, Timo; Martikainen, Julia; Kohout, Tomas; Muinonen, Karri

    2015-11-01

    Space-weathering (SW) introduces changes to the asteroid reflectance spectra. In silicate minerals, SW is known to darken the spectra and reduce the silicate absorption band depths. In olivine, the neutral slope in Vis and NIR wavelengths is becoming positive [1]. In pyroxene, the positive slope over the 1 µm absorption band is decreasing, and the negative slope over the 2 µm band is increasing towards positive values with increasing SW [2].The SW process generates small nanophase iron (npFe0) inclusions in the surface layers of mineral grains. The inclusions are some tens of nm in size. This mechanism has been linked to the Moon and to a certain extent also to the silicate-rich S-complex asteroids.We offer two simple explanations from light-scattering theory to explain the SW effects on the spectral slope. First, the npFe0 will introduce a posititive general slope (reddening) to the spectra. The npFe0 inclusions (~10 nm) are in the Rayleigh domain with the wavelength λ in the UV-Vis-NIR range. Their absorption cross-section follows approximately the 1/λ-relation from the Rayleigh theory. Absorption is more efficient in the UV than in the NIR wavelengths, therefore the spectra are reddening.Second, the effect of npFe0 absorption is more efficient for originally brighter reflectance values. Explanation combines the effective medium theory and the exponential attenuation in the medium. When adding a small amount of highly absorbing npFe0, the effective absorption coefficient k will increase approximately the same Δk for the typical values of silicates. This change will increase more effectively the exponential attenuation if the original k was very small, and thus the reflectance high. Therefore, both positive and negative spectral slopes will approach zero with SW.We conclude that the SW will introduce a general reddening, and neutralize local slopes. This is verified using the SIRIS code [3], which combines geometric optics with small internal diffuse

  4. UV-Vis as quantification tool for solubilized lignin following a single-shot steam process.

    PubMed

    Lee, Roland A; Bédard, Charles; Berberi, Véronique; Beauchet, Romain; Lavoie, Jean-Michel

    2013-09-01

    In this short communication, UV/Vis was used as an analytical tool for the quantification of lignin concentrations in aqueous mediums. A significant correlation was determined between absorbance and concentration of lignin in solution. For this study, lignin was produced from different types of biomasses (willow, aspen, softwood, canary grass and hemp) using steam processes. Quantification was performed at 212, 225, 237, 270, 280 and 287 nm. UV-Vis quantification of lignin was found suitable for different types of biomass making this a timesaving analytical system that could lead to uses as Process Analytical Tool (PAT) in biorefineries utilizing steam processes or comparable approaches.

  5. Space weathering of asteroidal surfaces. Influence on the UV-Vis spectra

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Z.; Baratta, G. A.; Garozzo, M.; Strazzulla, G.

    2010-07-01

    Context. The surfaces of airless bodies in the Solar System are continuously altered by the bombardment of micrometeoroids and irradiation by solar wind, flares, and cosmic particles. Major effects of this process - space weathering - are darkening and “reddening” of the spectra of surface materials, as well as a “degrading” of absorption features. Aims: We studied the changes induced by energetic ion irradiation in the ultraviolet-visual-near-infrared (UV-Vis-NIR) (0.2-0.98 μm) reflectance spectra of targets selected to mimic the surfaces of airless bodies in the inner Solar System. Our chosen targets are olivine pellets, pure or covered by an organic polymer (polystyrene), which is transparent before irradiation. Polystyrene is used as a template for organic matter of low volatility that can be present on asteroidal surfaces. Moreover we measured the changes induced by ion irradiation in the absorption coefficient of the polymer. The purpose was to have a tool to better compare laboratory with observed spectra and distinguish between planetary objects with pure silicate surfaces and those whose surface is covered by organic matter exposed to cosmic ion bombardment. Methods: The samples were irradiated in vacuum, at room temperature, with 200 keV protons or 200-400 keV argon ions. Before, during, and after irradiation diffuse reflectance spectra were acquired. Polystyrene films were also deposited on quartz substrates and irradiated while transmittance spectra were recorded. Results: We measured the variations of the absorption coefficient of polystyrene as a function of ion fluence. We showed that after ion irradiation the diffuse reflectance spectra of the samples covered by organics exhibit a much more significant variation than those of pure silicates. The spectra of targets made of olivine plus polystyrene can be fitted by using the measured absorption coefficient of polystyrene. Conclusions: The results obtained for pure olivine extend to the UV the

  6. Benchmark studies of UV-vis spectra simulation for cinnamates with UV filter profile.

    PubMed

    Garcia, Ricardo D'A; Maltarollo, Vinícius G; Honório, Káthia M; Trossini, Gustavo H G

    2015-06-01

    Skin cancer is a serious public health problem worldwide, being incident over all five continents and affecting an increasing number of people. As sunscreens are considered an important preventive measure, studies to develop better and safer sunscreens are crucial. Cinnamates are UVB filters with good efficiency and cost-benefit, therefore, their study could lead to the development of new UV filters. A benchmark to define the most suitable density functional theory (DFT) functional to predict UV-vis spectra for ethylhexyl methoxycinnamate was performed. Time-dependent DFT (TD-DFT) calculations were then carried out [B3LYP/6-311 + G(d,p) and B3P86/6-311 + G(d,p) in methanol environment] for seven cinammete derivatives implemented in the Gaussian 03 package. All DFT/TD-DFT simulations were performed after a conformational search with the Monte-Carlo method and MMFF94 force field. B3LYP and B3P86 functionals were better at reproducing closely the experimental spectra of ethylhexyl methoxycinnamate. Calculations of seven cinnamates showed a λmax of around 310 nm, corroborating literature reports. It was observed that the energy for the main electronic transition was around 3.95 eV and could be explained by electron delocalization on the aromatic ring and ester group, which is important to UV absorption. The methodology employed proved to be suitable for determination of the UV spectra of cinnamates and could be used as a tool for the development of novel UV filters.

  7. Sequential capillary electrophoresis analysis using optically gated sample injection and UV/vis detection.

    PubMed

    Liu, Xiaoxia; Tian, Miaomiao; Camara, Mohamed Amara; Guo, Liping; Yang, Li

    2015-10-01

    We present sequential CE analysis of amino acids and L-asparaginase-catalyzed enzyme reaction, by combing the on-line derivatization, optically gated (OG) injection and commercial-available UV-Vis detection. Various experimental conditions for sequential OG-UV/vis CE analysis were investigated and optimized by analyzing a standard mixture of amino acids. High reproducibility of the sequential CE analysis was demonstrated with RSD values (n = 20) of 2.23, 2.57, and 0.70% for peak heights, peak areas, and migration times, respectively, and the LOD of 5.0 μM (for asparagine) and 2.0 μM (for aspartic acid) were obtained. With the application of the OG-UV/vis CE analysis, sequential online CE enzyme assay of L-asparaginase-catalyzed enzyme reaction was carried out by automatically and continuously monitoring the substrate consumption and the product formation every 12 s from the beginning to the end of the reaction. The Michaelis constants for the reaction were obtained and were found to be in good agreement with the results of traditional off-line enzyme assays. The study demonstrated the feasibility and reliability of integrating the OG injection with UV/vis detection for sequential online CE analysis, which could be of potential value for online monitoring various chemical reaction and bioprocesses.

  8. Principal component analysis of UV-VIS-NIR transmission spectra of Moldavian matured wine distillates

    NASA Astrophysics Data System (ADS)

    Khodasevich, Mikhail A.; Trofimova, Darya V.; Nezalzova, Elena I.

    2010-09-01

    Principal component analysis of UV-VIS-NIR transmission spectra of matured wine distillates (1-40 years aged) produced by three Moldavian manufacturers allows to characterize with sufficient certainty the eleven chemical parameters of considered alcoholic beverages: contents of acetaldehyde, ethyl acetate, furfural, vanillin, syringic aldehyde and acid, etc.

  9. Principal component analysis of UV-VIS-NIR transmission spectra of Moldavian matured wine distillates

    NASA Astrophysics Data System (ADS)

    Khodasevich, Mikhail A.; Trofimova, Darya V.; Nezalzova, Elena I.

    2011-02-01

    Principal component analysis of UV-VIS-NIR transmission spectra of matured wine distillates (1-40 years aged) produced by three Moldavian manufacturers allows to characterize with sufficient certainty the eleven chemical parameters of considered alcoholic beverages: contents of acetaldehyde, ethyl acetate, furfural, vanillin, syringic aldehyde and acid, etc.

  10. Spec UV-Vis: An Ultraviolet-Visible Spectrophotometer Simulation

    NASA Astrophysics Data System (ADS)

    Papadopoulos, N.; Limniou, Maria; Koklamanis, Giannis; Tsarouxas, Apostolos; Roilidis, Mpampis; Bigger, Stephen W.

    2001-11-01

    The software and its accompanying manual can be used to illustrate the recording of an absorption spectrum and the Beer-Lambert law (5-7) as well as various aspects of acid-base indicators such as the spectrophotometric determination of pKa (8), the isosbestic point (6, 9), and distribution diagrams (10, 11).

    Literature Cited

    1. Shiowatana, J. J. Chem. Educ. 1997, 74, 730.
    2. Altemose, I. R. J. Chem. Educ. 1986, 63, A216, A262.
    3. Piepmeier, E. H. J. Chem. Educ. 1973, 50, 640.
    4. Lott, P. F. J. Chem. Educ. 1968, 45, A89, A169, A182, A273.
    5. Skoog, D. A.; West, D. M.; Holler, F. J. Fundamentals of Analytical Chemistry, 7th ed.; Saunders College Publishing: Fort Worth, TX, 1996, Chapters 22-24.
    6. Christian, G. D. Analytical Chemistry, 5th ed.; Wiley: New York, 1994; Chapter 14.
    7. Kennedy, J. H. Analytical Chemistry--Principles, 2nd ed.; Saunders College Publishing: New York, 1990; Chapters 11,12.
    8. Patterson, G. S. J. Chem. Educ. 1999, 76, 395.
    9. Harris, D. C. Quantitative Chemical Analysis, 5th ed.; Freeman: New York, 1997; Chapters 19, 20.
    10. Butler, J. N. Ionic Equilibrium--A Mathematical Approach; Addison-Wesley: Reading, MA, 1964; Chapter 5.
    11. Sawyer, C. A.; McCarty, P. L.; Parkin, G. F. Chemistry for Environmental Engineering, 4th ed.; McGraw-Hill: Singapore, 1994; Chapter 4.

  11. An UV Vis spectroscopic study on carbenium ions formed on HY FAU zeolite upon the adsorption of various hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kiricsi, I.; Pálinkó, I.; Kollár, T.

    2003-06-01

    It was shown that adsorbed hydrogen-rich carbonaceous residues could be formed on zeolites, but, when the temperature was not too high, they were typical only for unsaturated hydrocarbons. The overlayer then mainly contained alkenyl carbenium ions of various length. They were detected on the zeolite surface by UV-Vis spectroscopy. In the formation of these ions both Brønsted and Lewis acid centres played significant role. The unsaturated carbenium ions provided additional Lewis acid sites participating in hydride ion abstraction. The formation of alkenyl carbenium ions started at temperature as low as 298 K for butadiene. When n-butane, a saturated hydrocarbon, was the model, adsorbed hydrogen-rich carbonaceous residues were not found even at adsorption temperature as high as 473 K.

  12. Ultraviolet-visible absorptive features of water extractable and humic fractions of animal manure and compost

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UV-vis spectroscopy is a useful tool for characterizing water extractable or humic fractions of natural organic matter (WEOM). Whereas the whole UV-visible spectra of these fractions are more or less featureless, the specific UV absorptivity at 254 and 280 nm as well as spectral E2/E3 and E4/E6 rat...

  13. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid.

    PubMed

    Karabacak, M; Kose, E; Sas, E B; Kurt, M; Asiri, A M; Atac, A

    2015-02-05

    The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing.

  14. Absorption Spectroscopy in Homogeneous and Micellar Solutions.

    ERIC Educational Resources Information Center

    Shah, S. Sadiq; Henscheid, Leonard G.

    1983-01-01

    Describes an experiment which has helped physical chemistry students learn principles of absorption spectroscopy, the effect of solvent polarity on absorption spectra, and some micellar chemistry. Background information and experimental procedures are provided. (JN)

  15. Atomic absorption spectroscopy in ion channel screening.

    PubMed

    Stankovich, Larisa; Wicks, David; Despotovski, Sasko; Liang, Dong

    2004-10-01

    This article examines the utility of atomic absorption spectroscopy, in conjunction with cold flux assays, to ion channel screening. The multiplicity of ion channels that can be interrogated using cold flux assays and atomic absorption spectroscopy is summarized. The importance of atomic absorption spectroscopy as a screening tool is further elaborated upon by providing examples of the relevance of ion channels to various physiological processes and targeted diseases.

  16. Study of acyl group migration by femtosecond transient absorption spectroscopy and computational chemistry.

    PubMed

    Pritchina, Elena A; Gritsan, Nina P; Burdzinski, Gotard T; Platz, Matthew S

    2007-10-25

    The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.

  17. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    PubMed

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPRMAX), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS).

  18. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    PubMed

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-05

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  19. An overview of liquid phase microextraction approaches combined with UV-Vis spectrophotometry.

    PubMed

    Dehghani Mohammad Abadi, Malihe; Ashraf, Narges; Chamsaz, Mahmoud; Shemirani, Farzaneh

    2012-09-15

    Ultraviolet and visible spectrophotometer has become a popular analytical instrument in the modern day laboratories. However, the low concentrations of many analytes in samples make it difficult to directly measure them by UV-Vis spectrophotometry. This overview focuses on the combinations of microvolume UV-Vis spectrophotometry with miniaturized approaches to sample preparation, namely, single drop microextraction (SDME), dispersive liquid-liquid microextraction (DLLME), cold induced aggregation microextraction (CIAME), in situ solvent formation microextraction (ISSFME), ultrasound assisted emulsification microextraction (USAEME), solidified floating organic drop microextraction (SFODME), and hollow fiber based liquid phase microextraction (HF-LPME) to improve both the selectivity and sensitivity. Integration of these techniques provides unique advantages which include availability, simplicity of operation, low cost, speed, precision and accuracy; hence making them a powerful tool in chemical analysis.

  20. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-01

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data.

  1. UV-VIS spectroscopic study of one pot synthesized strontium oxide quantum dots

    NASA Astrophysics Data System (ADS)

    Nemade, K. R.; Waghuley, S. A.

    The properties of drastically change when matter makes transition from 1D, 2D, 3D, to 0D. The quantum dots (QDs) of strontium oxide (SrO) were synthesized by one pot chemical precipitation method using hexamethylenetetramine (HMT). The radius of SrO QDs was calculated from hyperbolic band model (HBM). The direct and indirect band gaps of SrO QDs were estimated from UV-VIS analysis. The particle size was found to be 2.48 nm. The quantum confinement effect in SrO QDs is discussed through exciton Bohr radius. The particle size from UV-VIS analysis is in excellent agreement with fluorescence and TEM.

  2. Spectral modeling for the Chelyabinsk meteorite at UV-Vis-NIR wavelengths

    NASA Astrophysics Data System (ADS)

    Martikainen, Julia; Penttilä, Antti; Kohout, Tomas; Suhonen, Heikki; Huotari, Simo; Muinonen, Karri

    2016-10-01

    Asteroids provide us information on the evolution of the Solar System. Meteorites and asteroids can be linked by matching their respective reflectance spectra. However, this is difficult because the spectral features depend strongly on the surface properties. To better interpret the spectra, we need to gain more knowledge of the light-scattering physics involved.We develop a new light-scattering code based on SIRIS-code (Muinonen et al., JQSRT 110, 2009), which simulates light scattering by Gaussian-random-sphere particles that are large compared to the wavelength of the incident light. SIRIS is able to simulate ray optics, diffraction, and geometric ray optics, which utilizes ray optics that accounts for diffuse scattering. The diffuse scatterers can be uniformly distributed inside or cover the surface of the particle. The new code uses inhomogeneous waves to simulate light scattering by absorbing particles.The University of Helsinki integrating-sphere spectrometer has been utilized to measure the reflectance spectra of three lithologies of the Chelyabinsk meteorite (light-colored, dark-colored, and impact-melt) at UV-Vis-NIR wavelengths (0.25-3.2 microns). Microtomography images of the light-colored and the dark-colored lithologies have also been taken. The light-colored lithology has the highest reflectance and shows broad absorption bands of olivine and pyroxene near 1.0 and 2.0 microns. The dark-colored lithology has a flat spectrum with diminished intensity. The impact-melt lithology is somewhere between the light-colored and dark-colored lithologies in terms of its spectrum (Kohout et al., Icarus 228, 2013). The differences in the spectra are caused by different patterns of iron and iron sulfides in the samples that can be seen in the microtomography and scanning electron microscope images. We utilize the new light-scattering code to model the effects of iron and iron sulfides in the spectra of the three lithologies of the Chelyabinsk

  3. Examples of UV-Vis profiles use as tool for evidence of the metallophthalocyanines transformation

    NASA Astrophysics Data System (ADS)

    Kubiak, Ryszard; Dyrda, Gabriela; Ejsmont, Krzysztof

    2017-02-01

    The UV-Vis spectra for a set of MPcs (Mmetal, Pc = phthalocyanine ligand), i.e.: In(III)PcI (1), Hf(IV)PcI2Pht (Pht = phthalonitrile) (2), Sn(II)Pc (3), Sn(IV)PcI2(4), and Ge(IV)PcI2(5) have been examined in two solvents, O-donative acetylacetone, and non-coordinative benzene. The UV-Vis spectra in Hacac solution of 1,2 and 4,5 shows that the axially ligated iodine atoms are replaced by (acac)- anions of the solvent, whereas in 3 the oxygen donors of the solvent causing the auto-oxidation of Sn(II) to Sn(IV) ions and as a result the Sn(II)Pc is transformed into the Sn(IV)Pc(acac)2. The chloride complexes of the 1-5 compounds are formed at Hacac solution after acidification by hydrochloric acid, however each compound solution behaviors specifically. The UV-Vis spectra collected for the studied compounds at benzene solvent both before and after the solution acidization clearly indicate that the respective Q band character (besides 3) remains practically unchanged. The presence of the Cl- ions at the Sn(II)Pc solution in benzene results in the formation of Sn(IV)PcCl2.

  4. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    PubMed

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum.

  5. Use of on-line UV/Vis-spectrometry in the measurement of dissolved ozone and AOC concentrations in drinking water treatment.

    PubMed

    van den Broeke, J; Ross, P S; van der Helm, A W C; Baars, E T; Rietveld, L C

    2008-01-01

    The concentrations of dissolved ozone and assimilable organic carbon (AOC) are important performance parameters in drinking water production. For the measurement of ozone, a spectral algorithm was developed that allows quantification in situ using a UV/Vis spectrometer probe. Furthermore, a strong correlation between the change in the absorption spectrum after individual treatment steps and the formation or removal of AOC in that treatment step was observed. This allowed the development of a spectral algorithm that predicts AOC formation during ozonation and subsequent removal in further treatment steps. This method has been verified at one pilot plant of the Amsterdam drinking water supply.

  6. [Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials].

    PubMed

    Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei

    2015-04-01

    The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity

  7. Raman, IR, UV-vis and EPR characterization of two copper dioxolene complexes derived from L-dopa and dopamine

    NASA Astrophysics Data System (ADS)

    Barreto, Wagner J.; Barreto, Sônia R. G.; Ando, Rômulo A.; Santos, Paulo S.; DiMauro, Eduardo; Jorge, Thiago

    2008-12-01

    The anionic complexes [Cu(L 1-) 3] 1-, L - = dopasemiquinone or L-dopasemiquinone, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the νCC + νCO stretching mode at ca. 1384 cm -1. The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g = 2.0005 and g = 2.0923, and for Cu(II) with g = 2.008 and g = 2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease.

  8. Raman, IR, UV-vis and EPR characterization of two copper dioxolene complexes derived from L-dopa and dopamine.

    PubMed

    Barreto, Wagner J; Barreto, Sônia R G; Ando, Rômulo A; Santos, Paulo S; DiMauro, Eduardo; Jorge, Thiago

    2008-12-15

    The anionic complexes [Cu(L(1-))3](1-), L(-)=dopasemiquinone or L-dopasemiquinone, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the nuCC+nuCO stretching mode at ca. 1384 cm(-1). The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g=2.0005 and g=2.0923, and for Cu(II) with g=2.008 and g=2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease.

  9. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  10. TDDFT study of UV-vis spectra of permethrin, cypermethrin and their beta-cyclodextrin inclusion complexes: a comparison of dispersion correction DFT (DFT-D3) and DFT.

    PubMed

    Chen, Feifei; Wang, Yujiao; Xie, Xiaomei; Chen, Meng; Li, Wei

    2014-07-15

    A comparative study of DFT and DFT-D3 has been carried out on the UV-vis absorption of permethrin, cypermethrin and their β-cyclodextrin inclusion complexes. The TDDFT method with PCM (or COSMO) model was adopted and B3LYP, BLYP and BLYP-D3 functionals were selected. Comparing the simulated spectra with experimental one, we can notice that pure BLYP functional can better reproduce the UV-vis spectra than hybrid B3LYP, but empirical dispersion corrections BLYP-D3 has better performance than BLYP. BLYP-D3 calculations reveal that the main absorption bands of permethrin and cypermethrin arise from the π→π(*) transition, after encapsulated by β-CD to form inclusion complexes, the host-guest intermolecular charge transfer (ICT) makes the main absorption bands to be changed significantly in wavelength and intensity.

  11. [Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].

    PubMed

    Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling

    2011-04-01

    The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.

  12. Monitoring of rain events with a submersible UV/VIS spectrophotometer.

    PubMed

    Maribas, Aurélien; Laurent, Nadège; Battaglia, Philippe; do Carmo Lourenço da Silva, Maria; Pons, Marie-Noële; Loison, Bernard

    2008-01-01

    A submersible UV/VIS spectrophotometer has been implemented on the pre-treatment unit of a large-scale wastewater treatment plant (350,000 person-equivalent) to monitor the rapid changes in total Suspended Solids and total Chemical Oxygen Demand occurring during rain events as well as injections of reject water from the sludge treatment train or wasted activated sludge. Calibration has been proven to be difficult for fast composition-varying streams but the device is able to monitor qualitatively sudden quality changes, in spite of the noise affecting the signal.

  13. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    SciTech Connect

    Alias, Nor Hayati Abdullah, Wan Shafie Wan Isa, Norriza Mohd Isa, Muhammad Jamal Md Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee; Muhammad, Azali

    2014-02-12

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures.

  14. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    NASA Astrophysics Data System (ADS)

    Alias, Nor Hayati; Abdullah, Wan Shafie Wan; Isa, Norriza Mohd; Isa, Muhammad Jamal Md; Muhammad, Azali; Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee

    2014-02-01

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures.

  15. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm

    SciTech Connect

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K.; Burkholder, James B.

    2012-10-28

    Oxalyl chloride, (ClCO){sub 2}, has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO){sub 2} and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV/vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, {Phi}({lambda}), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO){sub 2} has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl){sub 2}+ hv{yields} ClCO*+ Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO*{yields} Cl + CO (3a), {yields} ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M {yields} Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO){sub 2}. {Phi}(193 nm) was found to be 2.07 {+-} 0.37 independent of bath gas pressure (25.8-105.7 Torr, N{sub 2}), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO){sub 2} is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 {+-} 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 {+-} 0.26 independent of bath gas pressure (15-70 Torr, N{sub 2}). {Phi}(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N{sub 2}). The low

  16. Quantum chemical calculations and analysis of FTIR, FT-Raman and UV-Vis spectra of temozolomide molecule

    NASA Astrophysics Data System (ADS)

    Bhat, Sheeraz Ahmad; Ahmad, Shabbir

    2015-11-01

    A combined experimental and theoretical study of the structure, vibrational and electronic spectra of temozolomide molecule, which is largely used in the treatment of brain tumours, is presented. FTIR (4000-400 cm-1) and FT-Raman spectra (4000‒50 cm-1) have been recorded and analysed using anharmonic frequency calculations using VPT2, VSCF and CC-VSCF levels of theory within B3LYP/6-311++G(d,p) framework. Anharmonic methods give accurate frequencies of fundamental modes, overtones as well as Fermi resonances and account for coupling of different modes. The anharmonic frequencies calculated using VPT2 and CC-VSCF methods show better agreement with the experimental data. Harmonic frequencies including solvent effects are also computed using IEF-PCM model. The magnitudes of coupling between pair of modes have been calculated using coupling integral based on 2MR-QFF approximation. Intermolecular interactions are discussed for three possible dimers of temozolomide. UV-Vis spectrum, examined in ethanol solvent, is compared with the calculated spectrum at TD-DFT/6-311++G(d,p) level of theory. The electronic properties, such as excitation energy, frontier molecular orbital energies and the assignments of the absorption bands are also discussed.

  17. X-Ray absorption in homogeneous catalysis research: the iron-catalyzed Michael addition reaction by XAS, RIXS and multi-dimensional spectroscopy.

    PubMed

    Bauer, Matthias; Gastl, Christoph

    2010-06-07

    A survey over X-ray absorption methods in homogeneous catalysis research is given with the example of the iron-catalyzed Michael addition reaction. A thorough investigation of the catalytic cycle was possible by combination of conventional X-ray absorption spectroscopy (XAS), resonant inelastic X-ray scattering (RIXS) and multi-dimensional spectroscopy. The catalytically active compound formed in the first step of the Michael reaction of methyl vinyl ketone with 2-oxocyclopentanecarboxylate (1) could be elucidated in situ by RIXS spectroscopy, and the reduced catalytic activity of FeCl(3) x 6 H(2)O (2) compared to Fe(ClO(4))(3) x 9 H(2)O (3) could be further explained by the formation of a [Fe(III)Cl(4)(-)](3)[Fe(III)(1-H)(2)(H(2)O)(2)(+)][H(+)](2) complex. Chloride was identified as catalyst poison with a combined XAS-UV/vis study, which revealed that Cl(-) binds quantitatively to the available iron centers that are deactivated by formation of [FeCl(4)(-)]. Operando studies in the course of the reaction of methyl vinyl ketone with 1 by combined XAS-Raman spectroscopy allowed the exclusion of changes in the oxidation state and the octahedral geometry at the iron site; a reaction order of two with respect to methyl vinyl ketone and a rate constant of k = 1.413 min(-2) were determined by analysis of the C=C and C=O vibration band. Finally, a dedicated experimental set-up for three-dimensional spectroscopic studies (XAS, UV/vis and Raman) of homogeneous catalytic reactions under laboratory conditions, which emerged from the discussed investigations, is presented.

  18. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  19. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    PubMed

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline.

  20. Characterization and DNA binding studies of unexplored imidazolidines by electronic absorption spectroscopy and cyclic voltammetry.

    PubMed

    Shah, Afzal; Nosheen, Erum; Munir, Shamsa; Badshah, Amin; Qureshi, Rumana; Rehman, Zia-Ur-; Muhammad, Niaz; Hussain, Hidayat

    2013-03-05

    UV-Vis spectroscopic behavior of four imidazolidine derivatives i.e., [5-benzylideneimidazolidine-2,4-dione (NBI), 5-(2-hydroxybenzylidene)imidazolidine-2,4-dione (HBI), 5-(4-methoxybenzylidene)imidazolidine-2,4-dione (MBI) and 5-(3,4-di-methoxybenzylidene)imidazolidine-2,4-dione (DBI)] was studied in a wide pH range. Spectroscopic response of the studied compounds was found sensitive to pH and the attached substituents. Incited by anti-tumor activity, structural miscellany and biological applications of imidazolidines, the DNA binding affinity of some novel derivatives of this class of compounds was examined by cyclic voltammetry (CV) and UV-Vis spectroscopy at pH values of blood (7.4) and lysosomes (4.5). The CV results showed the following order of binding strength: KNBI (6.40×10(6)M(-1))>KHBI (1.77×10(5)M(-1))>KMBI (2.06×10(4)M(-1))>KDBI (1.01×10(4)M(-1)) at pH 7.4. The same order was also obtained from UV-Vis spectroscopy. The greater affinity of NBI justified its preferred candidature as an effective anti-cancer drug. The DNA binding propensity of these compounds was found comparable or greater than most of the clinically used anticancer drugs.

  1. Design and development of multi functional confocal laser scanning microscope with UV / VIS laser source

    NASA Astrophysics Data System (ADS)

    Kanai, Yoshikazu; Kanzaki, Yousuke; Wakaki, Moriaki; Takeyama, Norihide

    2005-08-01

    A high resolution Confocal Laser Scanning Microscope (CLSM) with UV / VIS light sources was developed as the first step of multi-functional microscope. The optical system is designed to optimize for both UV and VIS wavelengths. An UV laser is used to achieve higher resolution, and a VIS is for multi functions. A new objective lens specialized for this application was designed and fabricated. Specification of the lens and the optical system is NA:0.95, EFL:2.5mm, WD:1.5mm, Resolution:160nm and achromatic for two wavelengths of UV 325.0nm / VIS 632.8nm. Several specimens were characterized to check the performance of the system. Some optical materials under study were measured for evaluation, and interesting results could be obtained. Multi-functional measurements are being planed as a next step. This system will help the research of nano-structures, photonic-crystals and biology.

  2. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  3. Low-lying excited states and primary photoproducts of [Os3(CO)10(s-cis-L)] (L=cyclohexa-1,3-diene, buta-1,3-diene)] clusters studied by picosecond time-resolved UV/Vis and IR spectroscopy and by density functional theory.

    PubMed

    Vergeer, Frank W; Matousek, Pavel; Towrie, Michael; Costa, Paulo J; Calhorda, Maria J; Hartl, Frantisek

    2004-07-19

    Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os(3)(CO)(10)(s-cis-L)] (L=cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os(3)(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1 a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient 1 a, a second CO bridge is formed in 20 ps in the photoproduct [Os(3)(CO)(8)(micro-CO)(2)(cyclohexa-1,3-diene)] (1 b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1 b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.

  4. [Controllable synthesis and UV-Vis spectral analysis of silver nanoparticles in AOT microemulsion].

    PubMed

    Zhang, Wan-Zhong; Qiao, Xue-Liang; Luo, Lang-Li; Chen, Jian-Guo

    2009-03-01

    Colloidal silver nanoparticles were synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of a microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another one as reducing agent, cyclohexane as the continuous phase, and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The main factors affecting the formation of silver nanoparticles were systematically studied. Ultraviolet-visible (UV-Vis) spectra were used for analyzing the effects of reaction parameters, including the type of reducing agents, the molar ratio of water to surfactant and the concentration of AgNO3 and AOT and so on, on the formation of silver nanoparticles. Original results for the controllable synthesis of silver nanoparticles were obtained when the synthesis proceeded in AOT-cyclohexane-AgNO3 microemulsion. The UV-Vis spectra of silver sols formed in the microemulsion with various parameters were studied systematically. The results show that the amount and average size of the obtained nanoparticles obviously depend on the above parameters. When the concentration of AgNO3 is lower, smaller silver nanoparticles are easy to form by increasing the concentration of AgNO3 appropriately. The higher W value was found to form larger numbers of silver nanoparticles with larger particle size. Compared to the solubility of NaBH4 in AOT reverse micelles, hydrazine hydrate is well soluble in these micelles, and thus it is favorable to reduce the silver ions solubilized in the water core of AOT-cyclohexane-AgNO3 microemulsion. The increase in the concentration of AOT induces an increase in the number of AOT micelles and a decrease in the molar ratio of water to surfactant. As a result, the solubilization capacity of reactants in the micelles increases and the radii of the micelles decrease. That is to say, with the increase in AOT concentration, the amount of the formed nanoparticles increases and the average size of the

  5. Stabilization of (CdSe)ZnS quantum dots with polypyrrole formed by UV/VIS irradiation initiated polymerization.

    PubMed

    Ramanavicius, A; Karabanovas, V; Ramanaviciene, A; Rotomskis, R

    2009-03-01

    Polypyrrole formation initiated by UV/VIS irradiation and stabilization of (CdSe)ZnS quantum dots is reported. Presented results demonstrate that UV/VIS irradiation is slowly destructing Q-dots that decreases quantum yield and shifts peak of photoluminescence (PL) spectra to short wavelength range. The same Q-dot solution under UV/VIS light irradiation in the presence of pyrrole is more stable, there is no PL band shifts only PL intensity of Q-dot decrease. UV/VIS induced Ppy formation process in the presence/absence of Q-dots dissolved in toluene and phosphate buffer saline (PBS) not containing Q-dots was investigated. The increase in the optical absorbance in the range of 400 nm-600 nm was exploited for the monitoring of polypyrrole formation process. Results obtained proved that in the presence of UV/VIS formed polypyrrole destruction of Q-dots is much slower if compared with bare Q-dots destruction under similar conditions. However, formed polypyrrole showed no positive effect on quantum yield of Q-dot, just the opposite-polypyrrole quenched Q-dot photoluminescence. Results presented and observation by other authors on pyrrole polymerization allow to predict that by UV/VIS induced polymerization formed polypyrrole is assembling polymeric layer on heterogeneous phase between Q-dot and toluene or water (in PBS solution). Established pi-pi conjugated chain of formed polypyrrole quenches photoluminescence of Q-dot because this polymer was formed in close proximity to Q-dot surface.

  6. Optical Spectroscopy and Multiphoton Imaging for the Diagnosis and Characterization of Hyperplasias in the Mouse Mammary Gland

    DTIC Science & Technology

    2005-09-01

    919-684-4488 Email: nimmi@duke.edu Keywords: absorption, diagnosis, diffuse reflectance spectroscopy , hemoglobin concentration, hyperplasia, in vivo...gland in vivo and thus no method for studying carcinogenesis in vivo in this model. Diffuse reflectance spectroscopy is promising for the detection of...for repeated evaluations. Diffuse reflectance spectroscopy in the ultraviolet-visible (UV-VIS) wavelength range is promising for the detection of pre

  7. Observation of phycoerythrin-containing cyanobacteria and other phytoplankton groups from space using Differential Optical Absorption Spectroscopy on SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Bracher, Astrid; Dinter, Tilman; Burrows, John P.; Vountas, Marco; Röttgers, Rüdiger; Peeken, Ilka

    In order to understand the marine phytoplankton's role in the global marine ecosystem and biogeochemical cycles it is necessary to derive global information on the distribution of major functional phytoplankton types (PFT) in the world oceans. In our study we use instead of the common ocean color sensors such as CZCS, SeaWiFS, MODIS, MERIS, with rather low spectral resolution, the Differential Optical Absorption Spectroscopy (DOAS) to study the retrieval of phytoplankton distribution and absorption with the satellite sensor Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). SCIAMACHY measures back scattered solar radiation in the UV-Vis-NIR spectral region with a high spectral resolution (0.2 to 1.5 nm). We used in-situ measured phytoplankton absorption spectra from two different RV Polarstern expeditions where different phytoplankton groups were representing or dominating the phytoplankton composition in order to identify these characteristic absorption spectra in SCIAMACHY data in the range of 430 to 500 nm and also to identify absorption from cyanobacterial photosynthetic pigment phycoerythrin. Our results show clearly these absorptions in the SCIAMACHY data. The conversion of these differential absorptions by including the information of the light penetration depth (according to Vountas et al., Ocean Science, 2007) globally distributed pigment concentrations for these characteristic phytoplankton groups for two monthly periods (Feb-March 2004, Oct-Nov 2005 and Oct-Nov 2007) are derived. The satellite retrieved information on cyanobacteria (Synechococcus sp. and Prochlorococcus sp.) and diatoms distribution matches well with the concentration measured from collocated water samples with HPLC technique and also to global model analysis with the NASA Ocean Biogeochemical Model (NOBM from http://reason.gsfc.nasa.gov/OPS/Giovanni/) according to Gregg and Casey 2006 and Gregg 2006. Results are of great importance for global modelling of

  8. Cavity Enhanced Ultrafast Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K.; Reber, Melanie Roberts; Chen, Yuning

    2015-06-01

    Ultrafast spectroscopy on gas phase systems is typically restricted to techniques involving photoionization, whereas solution phase experiments utilize the detection of light. At Stony Brook, we are developing new techniques for performing femtosecond time-resolved spectroscopy using frequency combs and high-finesse optical resonators. A large detection sensitivity enhancement over traditional methods enables the extension of all-optical ultrafast spectroscopies, such as broad-band transient absorption spectroscopy (TAS) and 2D spectroscopy, to dilute gas phase samples produced in molecular beams. Here, gas phase data can be directly compared to solution phase data. Initial demonstration experiments are focusing on the photodissociation of iodine in small neutral argon clusters, where cluster size strongly influences the effects solvent-caging and geminate recombination. I will discuss these initial results, our high power home-built Yb:fiber laser systems, and also extensions of the methods to the mid-IR to study the vibrational dynamics of hydrogen bonded clusters.

  9. UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor.

    PubMed

    Chen, Yan; Wang, Jing; Liu, Chunmeng; Tang, Jinke; Kuang, Xiaojun; Wu, Mingmei; Su, Qiang

    2013-02-11

    An efficient near-infrared (NIR) phosphor LiSrPO(4):Eu(2+), Pr(3+) is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu(2+) can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr(3+) between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu(2+) with high oscillator strength. Eu(2+)/Pr(3+) may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.

  10. Ultraviolet, Visible, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  11. Cleaning characterization of protein drug products using UV-vis spectroscopy.

    PubMed

    Rathore, Nitin; Qi, Wei; Ji, Wenchang

    2008-01-01

    This study uses on-line absorbance monitoring to evaluate cleanability of protein drug products. Characterization and validation of equipment cleanliness is a key requirement for a biopharmaceutical facility. A manufacturing-scale cleaning cycle has to be developed and validated for its ability to clean all of the equipment parts for a given soil. Cleaning validation in a multiproduct fill-finish facility could benefit from using a worst-case-based approach that involves validating the cleaning process for the most difficult to clean product. Such an approach minimizes the number of required validation runs. Scaled-down cleaning evaluations can provide helpful information for evaluating multiple products and determine the worst case. This study presents a simple and rapid technique for bench-scale characterization of cleanability of protein drug products. On-line A280 (UV absorbance at 280 nm) measurements are performed using a fiber optic probe, and the data are used to establish the dynamics of protein dissolution in cleaning solution. The model not only helps to estimate cleaning time of different formulated proteins (and peptides) but also provides insights into the kinetics of cleaning under different thermal and chemical conditions. Protein product degradation during cleaning is also evaluated through gel electrophoresis. Such information is useful in designing new cleaning cycles. While the study is performed using drug products, the model as well as the findings are also applicable for characterization of final purified bulk soils relevant to bulk drug manufacturing.

  12. Characterization of fractionated asphaltenes by UV-vis and NMR self-diffusion spectroscopy.

    PubMed

    Ostlund, Jenny-Ann; Wattana, Piyarat; Nydén, Magnus; Fogler, H Scott

    2004-03-15

    Asphaltenes have been fractionated by liquid/liquid extraction, yielding four subfractions. The characteristics of fractionated asphaltenes were studied with respect to solubility, aromaticity, heteroatom content, and diffusion behavior. It was observed that asphaltenes from the four subfractions showed variations in their tendency to flocculate and also distinct differences in aromaticity. Furthermore, NMR self-diffusion studies showed that the average diffusion coefficients varied for asphaltenes from the different subfractions. The results suggest a variation in average size and stability between asphaltenes, depending on what subfraction they belong to. The subfraction that consisted of asphaltenes with the largest average size and the highest aromaticity was also found to contain the asphaltenes that had the strongest tendency to flocculate.

  13. Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV-vis measurements.

    PubMed

    Rezwan, Kurosch; Meier, Lorenz P; Rezwan, Mandana; Vörös, Janos; Textor, Marcus; Gauckler, Ludwig J

    2004-11-09

    We investigated the adsorption of bovine serum albumin (BSA) on colloidal Al2O3 particles in an aqueous environment. Changes in the zeta potential of the Al2O3 particles upon the adsorption of BSA were measured using an electro-acoustic technique. The mass of protein adsorbed was determined by using UV-vis spectroscopy. The change of the isoelectric point of the Al2O3 powder-protein suspension was found to be a function of adsorbed protein mass. It was shown that approximately one monolayer of BSA was needed to fully mask the surface and to compromise the charge of Al2O3. From titration experiments it follows that about 30-36% of the negatively charged groups of the protein form bonds with the protonated and charged Al2O3 surface. On the basis of our observations we introduced a new adsorption model for BSA on Al2O3 particles.

  14. Representativeness Errors in Comparing Chemistry Transport Models with Satellite UV/Vis Tropospheric Column Retrievals

    NASA Astrophysics Data System (ADS)

    Boersma, K. F.; Vinken, G. C.; Eskes, H.

    2015-12-01

    UV/Vis satellite retrievals of trace gas columns of nitrogen dioxide (NO2), sulphur dioxide (SO2), and formaldehyde (HCHO) are useful to test and improve models of atmospheric composition, for data assimilation, and to provide top-down constraints on emissions. However, because models and satellite measurements do not represent the exact same geophysical quantities, the process of confronting model fields with satellite measurements is complicated by representativeness errors, which degrade the quality of the comparison beyond contributions from modelling and measurement errors alone. Here we discuss representativeness errors that arise from the act of carrying out a model-satellite comparison: (1) horizontal representativeness errors due to imperfect collocation of the model grid cell and an ensemble of satellite pixels called superobservation, (2) temporal representativeness errors originating mostly from differences in cloud cover between the modelled and observed state, and (3) vertical representativeness errors because of reduced satellite sensitivity towards the surface. To minimize the impact of these representativeness errors, models and satellite measurements should be sampled as consistent as possible, and we provide recipes to do so. A practical confrontation of tropospheric NO2 columns simulated by the TM5 CTM with OMI tropospheric NO2 retrievals suggests that horizontal representativeness errors are <5-10% in most cases and of random nature. These errors should be included along with the individual retrieval errors in the overall superobservation error. Temporal sampling errors from mismatches in cloud cover, and in photolysis rates, are on the order of 10% for NO2 and HCHO, and systematic, but partly avoidable. In the case of air pollution applications where sensitivity down to the ground is required, models should be sampled on the same mostly cloud-free days as the satellite retrievals. The most relevant representativeness error is associated with

  15. FTIR, Raman, and UV-Vis spectroscopic and DFT investigations of the structure of iron-lead-tellurate glasses.

    PubMed

    Rada, Simona; Dehelean, Adriana; Culea, Eugen

    2011-08-01

    In this work, the effects of iron ion intercalations on lead-tellurate glasses were investigated via FTIR, Raman and UV-Vis spectroscopies. This homogeneous glass system has compositions xFe(2)O(3)·(100-x)[4TeO(2)·PbO(2)], where x = 0-60 mol%. The presented observations in these mechanisms show that the lead ions have a pronounced affinity towards [TeO(3)] structural units, resulting in the deformation of the Te-O-Te linkages, and leading to the intercalation of [PbO( n )] (n = 3, 4) and [FeO( n )] (n = 4, 6) entities in the [TeO(4)] chain network. The formation of negatively charged [FeO(4)](1-) structural units implies the attraction of Pb(2+) ions in order to compensate for this electrical charge. Upon increasing the Fe(2)O(3) content to 60 mol%, the network can accommodate an excess of oxygen through the formation of [FeO(6)] structural units and the conversion of [TeO(4)] into [TeO(3)] structural units. For even higher Fe(2)O(3) contents, Raman spectra indicate a greater degree of depolymerization of the vitreous network than FTIR spectra do. The bands due to the Pb-O bond vibrations are very strongly polarized and the [TeO(4)] structural units convert into [TeO(3)] units via an intermediate coordination stage termed "[TeO(3+1)]" structural units. Our UV-Vis spectroscopic data show two mechanisms: (i) the conversion of the Fe(3+) to Fe(2+) at the same time as the oxidation of Pb(2+) to Pb(+4) ions for samples with low Fe(2)O(3) contents; (ii) when the Fe(2)O(3) content is high (x ≥ 50 mol%), the Fe(2+) ions capture positive holes and are transferred to Fe(3+) ions through a photochemical reaction, while the Pb(2+) ions are formed by the reduction of Pb(4+) ions. DFT calculations show that the addition of Fe(2)O(3) to lead-tellurate glasses seems to break the axial Te-O bonds, and the [TeO(4)] structural units are gradually transformed into [TeO(3+1)]- and [TeO(3)]-type polyhedra. Analyzing these data further indicates a gradual

  16. A multifrequency virtual spectrometer for complex bio-organic systems: vibronic and environmental effects on the UV/Vis spectrum of chlorophyll a.

    PubMed

    Barone, Vincenzo; Biczysko, Malgorzata; Borkowska-Panek, Monika; Bloino, Julien

    2014-10-20

    The subtle interplay of several different effects means that the interpretation and analysis of experimental spectra in terms of structural and dynamic characteristics is a challenging task. In this context, theoretical studies can be helpful, and as such, computational spectroscopy is rapidly evolving from a highly specialized research field toward a versatile and widespread tool. However, in the case of electronic spectra (e.g. UV/Vis, circular dichroism, photoelectron, and X-ray spectra), the most commonly used methods still rely on the computation of vertical excitation energies, which are further convoluted to simulate line shapes. Such treatment completely neglects the influence of nuclear motions, despite the well-recognized notion that a proper account of vibronic effects is often mandatory to correctly interpret experimental findings. Development and validation of improved models rooted into density functional theory (DFT) and its time-dependent extension (TD-DFT) is of course instrumental for the optimal balance between reliability and favorable scaling with the number of electrons. However, the implementation of easy-to-use and effective procedures to simulate vibrationally resolved electronic spectra, and their availability to a wide community of users, is at least equally important for reliable simulations of spectral line shapes for compounds of biological and technological interest. Here, such an approach has been applied to the study of the UV/Vis spectra of chlorophyll a. The results show that properly tailored approaches are feasible for state-of-the-art computational spectroscopy studies, and allow, with affordable computational resources, vibrational and environmental effects on the spectral line shapes to be taken into account for large systems.

  17. Triplet absorption spectroscopy and electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  18. Towards a NNORSY Ozone Profile ECV from European Nadir UV/VIS Measurements

    NASA Astrophysics Data System (ADS)

    Felder, Martin; Kaifel, Anton; Huckle, Roger

    2010-12-01

    The Neural Network Ozone Retrieval System (NNORSY) has been adapted and applied to several different satellite instruments, including the backscatter UV/VIS instruments ERS2-GOME, SCIAMACHY and METOP-GOME-2. The retrieved long term ozone field hence spans the years 1995 till now. To provide target data for training the neural networks, the lower parts of the atmosphere are sampled by ozone sondes from the WOUDC and SHADOZ data archives. Higher altitudes are covered by a variety of limb-sounding instruments, including the SAGE and POAM series, HALOE, ACE-FTS and AURA-MLS. In this paper, we show ozone profile time series over the entire time range to demonstrate the "out-of-the-box" consistency and homogeneity of our data across the three different nadir sounders, i.e. without any kind of tuning applied. These features of Essential Climate Variable (ECV) datasets [1] also lie at the heart of the recently announced ESA Climate Change Initiative, to which we hope to contribute in the near future.

  19. Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Scheidat, Tobias; Vielhauer, Claus

    2015-03-01

    In digital crime scene forensics, contactless non-destructive detection and acquisition of latent fingerprints by means of optical devices such as a high-resolution digital camera, confocal microscope, or chromatic white-light sensor is the initial step prior to destructive chemical development. The applicability of an optical sensor to digitalize latent fingerprints primarily depends on reflection properties of a substrate. Metallic painted surfaces, for instance, pose a problem for conventional sensors which make use of visible light. Since metallic paint is a semi-transparent layer on top of the surface, visible light penetrates it and is reflected off of the metallic flakes randomly disposed in the paint. Fingerprint residues do not impede light beams making ridges invisible. Latent fingerprints can be revealed, however, using ultraviolet light which does not penetrate the paint. We apply a UV-VIS spectroscope that is capable of capturing images within the range from 163 to 844 nm using 2048 discrete levels. We empirically show that latent fingerprints left behind on metallic painted surfaces become clearly visible within the range from 205 to 385 nm. Our proposed streakiness score feature determining the proportion of a ridge-valley pattern in an image is applied for automatic assessment of a fingerprint's visibility and distinguishing between fingerprint and empty regions. The experiments are carried out with 100 fingerprint and 100 non-fingerprint samples.

  20. Performance enhanced UV/vis spectroscopic microfluidic sensor for ascorbic acid quantification in human blood.

    PubMed

    Bi, Hongyan; Duarte, Carla M; Brito, Marina; Vilas-Boas, Vânia; Cardoso, Susana; Freitas, Paulo

    2016-11-15

    Quantitative analysis of antioxidants in a fast, simple and accurate manner is of great importance in the view of real-time monitoring the health of individuals. Recently, we have developed a UV/vis spectroscopic microfluidic sensor to specifically quantify ascorbic acid based on the immobilization of ascorbate oxidase, a relatively unstable enzyme. In this work, three different strategies for the immobilization of the unstable enzyme, including alumina sol-gel encapsulation, physisorption to PDMS channels with, and without alumina xerogel modification, were compared to build a microsensor. We found that the loading amount of the enzyme is not the determinative factor for the performance of the microfluidic biosensor but the retained activity of the enzyme and diffusion in the microfluidic channel. Taking into account of the two factors, the protocol of adsorbing enzymes to alumina (Al2O3) xerogel modified PDMS surface was demonstrated to be the best for preparing the microfluidic sensor among the utilized protocols. The microsensor prepared under the optimized protocol was further used to quantify ascorbic acid in human blood, where only dozens of microliters of blood (few drops) was required, demonstrating its potential application in clinical diagnosis. The developed strategy is featured with optimized enzymatic activity, simple process of microfluidic platform, low sample consumption, and straightforward spectrophotometry based detection.

  1. Dispersive liquid-liquid microextraction of thiram followed by microvolume UV-vis spectrophotometric determination

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, Saadat; Pourreza, Nahid; Larki, Arash

    2013-10-01

    A novel and simple method for the sensitive determination of trace amounts of fungicide thiram is developed by combination of dispersive liquid-liquid microextraction (DLLME) and microvolume UV-vis spectrophotometry. The method is based on the conversion of thiram to a yellow product in the presence of ethanolic potassium hydroxide and copper sulfate, and its extraction into CCL4 using DLLME technique. In this method the ethanol existing in ethanolic KOH plays as disperser solvent and a cloudy solution is formed by injection of only CCl4 as extractant solvent into sample solution. Under the optimum conditions, the calibration graph was linear over the range of 25-1000 ng mL-1 of thiram with limit of detection of 11.5 ng mL-1. The relative standard deviation (RSD) for 100 and 500 ng mL-1 of thiram was 2.7 and 1.1% (n = 8), respectively. The proposed method was successfully applied to determination of thiram in water and plant seed samples.

  2. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    PubMed Central

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-01-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics. PMID:27352840

  3. Assimilated total ozone record from 30 year of UV-VIS satellite observations

    NASA Astrophysics Data System (ADS)

    van der A, Ronald; Allaart, Marc; Eskes, Henk

    2010-05-01

    For the period 1978-2008 an ozone record is created by assimilating all available total ozone observations from 11 different UV/VIS satellite instruments (TOMS-Nimbus, TOMS-EP, SBUV-7, -9a, -9d, -11, -16, GOME, SCIAMACHY, OMI and GOME-2). These ozone observations are based on the latest and most accurate versions of the retrieval algorithms for these instruments. Using all available ground measurements from WOUDC in the period 1978-2008, the satellite observations are corrected for biases as function of solar zenith angle, viewing angle, time(trend), and stratospheric temperature. Subsequently the corrected satellite data is assimilated within the chemistry-transport model TM driven by state-of-the-art meteorological analyses. This resulted in a multi-sensor re-analysis (MSR) of global ozone for the period 1978-2008 in time steps of 6 hours. The MSR data set is checked by monitoring observation-minus-forecast differences from the data assimilation and by comparisons with ground-based data sets.

  4. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  5. Structural and spectroscopic (UV-Vis, IR, Raman, and NMR) characteristics of anisaldehydes that are flavoring food additives: A density functional study in comparison with experiments

    NASA Astrophysics Data System (ADS)

    Altun, Ahmet; Swesi, O. A. A.; Alhatab, B. S. S.

    2017-01-01

    The molecular structures, vibrational spectra (IR and Raman), electronic spectra (UV-Vis and DOS), and NMR spectra (13C and 1H) of p-anisaldehyde, m-anisaldehyde, and o-anisaldehyde have been studied by using the B3LYP density functional and the 6-311++G** basis set. While p-anisaldehyde has been found to contain two stable conformers at room temperature, m-anisaldehyde and o-anisaldehyde contain four stable conformers. In agreement with the calculated ground-state energetics and small transition barriers, the comparison of the experimental and calculated spectra of the anisaldehydes indicates equilibrium between all conformers at room temperature. However, the two conformers of o-anisaldehyde, in which the methoxy group lies out of the ring plane, are too rare at the equilibrium. The equilibrium conditions of the conformers of the anisaldehyde isomers have been shown readily accessible through UV-Vis and 13C NMR spectral studies but requiring very detailed vibrational analyses. The effect of the solvent has been found to red-shift the electronic absorption bands and to make the anisaldehydes more reactive and soft. Molecular electrostatic potential maps of the anisaldehydes show that their oxygen atoms are the sites for nucleophilic reactivity. Compared with the most sophisticated NBO method, ESP charges have been found mostly reliable while Mulliken charges fail badly with the present large 6-311++G** basis set. The present calculations reproduce not only the experimental spectral characteristics of the anisaldehydes but also reveal their several structural features.

  6. Binuclear Pt-Tl bonded complex with square pyramidal coordination around Pt: a combined multinuclear NMR, EXAFS, UV-Vis, and DFT/TDDFT study in dimethylsulfoxide solution.

    PubMed

    Purgel, Mihály; Maliarik, Mikhail; Glaser, Julius; Platas-Iglesias, Carlos; Persson, Ingmar; Tóth, Imre

    2011-07-04

    The structure and bonding of a new Pt-Tl bonded complex formed in dimethylsulfoxide (dmso), (CN)(4)Pt-Tl(dmso)(5)(+), have been studied by multinuclear NMR and UV-vis spectroscopies, and EXAFS measurements in combination with density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. This complex is formed following the equilibrium reaction Pt(CN)(4)(2-) + Tl(dmso)(6)(3+) ⇆ (CN)(4)Pt-Tl(dmso)(5)(+) + dmso. The stability constant of the Pt-Tl bonded species, as determined using (13)C NMR spectroscopy, amounts to log K = 2.9 ± 0.2. The (NC)(4)Pt-Tl(dmso)(5)(+) species constitutes the first example of a Pt-Tl bonded cyanide complex in which the sixth coordination position around Pt (in trans with respect to the Tl atom) is not occupied. The spectral parameters confirm the formation of the metal-metal bond, but differ substantially from those measured earlier in aqueous solution for complexes (CN)(5)Pt-Tl(CN)(n)(H(2)O)(x)(n-) (n = 0-3). The (205) Tl NMR chemical shift, δ = 75 ppm, is at extraordinary high field, while spin-spin coupling constant, (1)J(Pt-Tl) = 93 kHz, is the largest measured to date for a Pt-Tl bond in the absence of supporting bridging ligands. The absorption spectrum is dominated by two strong absorption bands in the UV region that are assigned to MMCT (Pt → Tl) and LMCT (dmso → Tl) bands, respectively, on the basis of MO and TDDFT calculations. The solution of the complex has a bright yellow color as a result of a shoulder present on the low energy side of the band at 355 nm. The geometry of the (CN)(4)Pt-Tl core can be elucidated from NMR data, but the particular stoichiometry and structure involving the dmso ligands are established by using Tl and Pt L(III)-edge EXAFS measurements. The Pt-Tl bond distance is 2.67(1) Å, the Tl-O bond distance is 2.282(6) Å, and the Pt-C-N entity is linear with Pt-C and Pt···N distances amounting to 1.969(6) and 3.096(6) Å, respectively. Geometry optimizations on

  7. High-resolution Orbitrap mass spectrometry for the analysis of carotenoids in tomato fruit: validation and comparative evaluation towards UV-VIS and tandem mass spectrometry.

    PubMed

    Van Meulebroek, Lieven; Vanden Bussche, Julie; Steppe, Kathy; Vanhaecke, Lynn

    2014-04-01

    In this study, a generic extraction protocol and full-scan high-resolution Orbitrap-mass spectrometry (MS) detection method were developed, enabling the metabolomic screening for carotenoids in tomato fruit tissue. To this end, the carotenoids lutein, zeaxanthin, α-carotene, β-carotene, and lycopene (representing both xanthofylls and carotenes) were considered. The extraction procedure was optimized by means of a D-optimal design and consisted of a liquid-liquid extraction with methanol/tert-butyl methyl ether (1:1, v/v). The considered compounds were detected by a single-stage Exactive(TM) mass spectrometer, operating at a mass resolution of 100,000 full width at half maximum. The validation study demonstrated excellent performance in terms of linearity (R (2) > 0.99), repeatability (CV ≤ 10.6 %), within-laboratory reproducibility (CV ≤ 12.2 %), and mean corrected recovery (ranging from 85 to 106 %). Additionally, a comparative evaluation towards well-established detection techniques, i.e., tandem mass spectrometry (MS/MS) and ultraviolet-visible spectroscopy (UV-VIS) photodiode array, indicated superior performance of high-resolution Orbitrap-MS with regard to specificity/selectivity and sensitivity (with limits of detection ranging from 1.0 to 3.8 pg μL(-1)). As a result, it may be concluded that high-resolution Orbitrap-MS is a suited alternative for UV-VIS or MS/MS in analyzing carotenoids and may offer significant value in carotenoid research because of the metabolomic screening possibilities.

  8. Methane overtone absorption by intracavity laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Obrien, James J.

    1990-01-01

    Interpretation of planetary methane (CH4) visible-near IR spectra, used to develop models of planetary atmospheres, has been hampered by a lack of suitable laboratory spectroscopic data. The particular CH4 spectral bands are due to intrinsically weak, high overtone-combination transitions too complex for classical spectroscopic analysis. The traditional multipass cell approach to measuring spectra of weakly absorbing species is insufficiently sensitive to yield reliable results for some of the weakest CH4 absorption features and is difficult to apply at the temperatures of the planetary environments. A time modulated form of intracavity laser spectroscopy (ILS), has been shown to provide effective absorption pathlengths of 100 to 200 km with sample cells less than 1 m long. The optical physics governing this technique and the experimental parameters important for obtaining reliable, quantitative results are now well understood. Quantitative data for CH4 absorption obtained by ILS have been reported recently. Illustrative ILS data for CH4 absorption in the 619.7 nm and 681.9 nm bands are presented. New ILS facilities at UM-St. Louis will be used to measure CH4 absorption in the 700 to 1000 nm region under conditions appropriate to the planetary atmospheres.

  9. Online in-tube microextractor coupled with UV-Vis spectrophotometer for bisphenol A detection.

    PubMed

    Poorahong, Sujittra; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2013-01-01

    A simple and high extraction efficiency online in-tube microextractor (ITME) was developed for bisphenol A (BPA) detection in water samples. The ITME was fabricated by a stepwise electrodeposition of polyaniline, polyethylene glycol and polydimethylsiloxane composite (CPANI) inside a silico-steel tube. The obtained ITME coupled with UV-Vis detection at 278 nm was investigated. By this method, the extraction and pre-concentration of BPA in water were carried out in a single step. Under optimum conditions, the system provided a linear dynamic range of 0.1 to 100 μM with a limit of detection of 20 nM (S/N ≥3). A single in-tube microextractor had a good stability of more than 60 consecutive injections for 10.0 μM BPA with a relative standard deviation of less than 4%. Moreover, a good tube-to-tube reproducibility and precision were obtained. The system was applied to detect BPA in water samples from six brands of baby bottles and the results showed good agreement with those obtained from the conventional GC-MS method. Acceptable percentage recoveries from the spiked water samples were obtained, ranging from 83-102% for this new method compared with 73-107% for the GC-MS standard method. This new in-tube CPANI microextractor provided an excellent extraction efficiency and a good reproducibility. In addition, it can also be easily applied for the analysis of other polar organic compounds contaminated in water sample.

  10. Contrasting UV-Vis Spectra of Terrestrial and Algal Derived Dissolved Organic Matter.

    NASA Astrophysics Data System (ADS)

    Adams, Jessica; Tipping, Edward; Scholefield, Paul; Feuchtmayr, Heidrun; Carter, Heather; Keenan, Patrick

    2016-04-01

    Dissolved organic matter (DOM) is an important freshwater component. It controls aquatic ecological and biochemical cycling, and can be problematic in industrial water treatment. Thus, the demand for effective and reliable monitoring is growing. The heterogeneity of the spectroscopic properties of DOM are such that measurements of absorbance at a single wavelength cannot provide accurate predictions of [DOC]. Previous construction of a two-component model, based on the combination of absorbance at two wavelengths and a constant accountable for non-absorbing DOM, resulted in good predictions of [DOC] across approximately 1800 different freshwater systems (R2=0.99). However, there were isolated cases where the model appreciably underestimated [DOC], including shallow lakes and reservoirs in the Yangtze basin, China where waters were deemed to be highly eutrophic. Here, we used a revised series of samples, from small scale algal dominated microcosms, mesocosms and catchment scale field samples to explore the capability of the two component model in situations where algae may be the dominant producer of aquatic DOC. Absorbances were measured using a laboratory based UV-Vis spectrometer and subsamples were also analysed through combustion and infra-red detection. In both the microcosms and mesocosms, the model failed to provide a reliable fit, and [DOC] was considerably underestimated. At the field scale, analysis of 55 samples from a combination of reservoirs, arable ponds, streams and rivers produced mostly reliable predictions of [DOC] (R2=0.96), which can be attributed to the dominant input of terrestrial DOM. Samples of shallow, enclosed meres from the North-West of the UK showed hints of similar behaviour to that of the Chinese lakes, suggesting some influences from algal DOM. Our results therefore provide evidence that algae may produce complex forms of DOM that harbour different spectroscopic properties to terrestrially derived material, in the UV spectral range.

  11. Communication: Electronic UV-Vis transient spectra of the ∙OH reaction products of uracil, thymine, cytosine, and 5,6-dihydrouracil by using the complete active space self-consistent field second-order perturbation (CASPT2//CASSCF) theory.

    PubMed

    Francés-Monerris, Antonio; Merchán, Manuela; Roca-Sanjuán, Daniel

    2013-08-21

    Addition of ∙OH radicals to pyrimidine nucleobases is a common reaction in DNA/RNA damage by reactive oxygen species. Among several experimental techniques, transient absorption spectroscopy has been during the last decades used to characterize such compounds. Discrepancies have however appeared in the assignment of the adduct or adducts responsible for the reported transient absorption UV-Vis spectra. In order to get an accurate assignment of the transient spectra and a unified description of the absorption properties of the ∙OH reaction products of pyrimidines, a systematic complete active space self-consistent field second-order perturbation (CASPT2//CASSCF) theory study has been carried out on the uracil, thymine, and cytosine ∙OH addition adducts, as well as on the 5,6-dihydrouracil hydrogen abstraction products. With the obtained findings, the C5OH contributions to the lowest-energy band can be finally discarded. Instead, a bright (2)(π2) state of the C6OH adducts is determined to be the main responsible in all compounds for the absorption band in the Vis range.

  12. Using UV-vis absorbance spectral parameters to characterize the fouling propensity of humic substances during ultrafiltration.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2015-12-15

    Ultrafiltration (UF) can achieve excellent removal of natural organic matter (NOM), but the main challenge for this process is the limited understanding of membrane fouling. The objective of this study is to explore the potential of UV-vis spectroscopic analysis for the detection of membrane fouling caused by humic acids (HA) at different solution chemistries (i.e., calcium ions (Ca(2+)) and pH). In the presence of Ca(2+), several spectral parameters, including the DSlope(325-375) (the slope of the log-transformed absorbance spectra over 325-375 nm), S(275-295) (the slope of the absorption coefficient over 257-295 nm) and S(R) (the ratio of S(275-295) to S(350-400)) of various HA solutions, were correlated with the molecule aggregation and the membrane fouling potential. Interestingly, increased DSlope(325-375) and decreased S(275-295) and S(R) were observed for the HA-Ca(2+) interaction under alkaline conditions (i.e., pH = 9) relative to those in lower pH environments (i.e., pH = 7 or 6), suggesting that spectral parameters were able to predict HA-Ca(2+) interactions under varying pH conditions. The strong correlations between the spectral parameters and the unified membrane fouling index (UMFI) obtained from UF experiments further corroborated that the spectral parameters were able to predict the membrane fouling potential. Moreover, the spectral parameters were also found to well reveal the fouling extent of the mixture of HA and Suwannee River NOM (SRNOM) or the pure SRNOM added with varying calcium concentrations, implying that the spectroscopic analysis was also available for the indication of practical NOM fouling. In addition, the measurement of S(275-295) and S(R) of the permeate solution suggests an increasing proportion of small-molecule HA in the permeate during the UF process. This study not only expands our knowledge of NOM-Ca(2+) aggregates as well as their role in membrane fouling behavior but also provides an approach for the in situ

  13. Aluminum-induced changes in properties and fouling propensity of DOM solutions revealed by UV-vis absorbance spectral parameters.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2016-04-15

    The integration of pre-coagulation with ultrafiltration (UF) is expected to not only reduce membrane fouling but also improve natural organic matter (NOM) removal. However, it is difficult to determine the proper coagulant dosage for different water qualities. The objective of this study was to probe the potential of UV-vis spectroscopic analysis to reveal the coagulant-induced changes in the fouling potentials of dissolved organic matter (DOM) and to determine the optimal coagulant dosage. The Zeta potentials (ZPs) and average particle size of the four DOM solutions (Aldrich humic acid (AHA), AHA-sodium alginate (SA), AHA-bovine serum albumin (BSA) and AHA-dextran (DEX)) coagulated with aluminum chloride (AlCl3) were measured. Results showed that increasing the aluminum coagulant dosage induced the aggregation of DOM. Meanwhile, the addition of aluminum coagulant resulted in an increase in DSlope(325-375) (the slope of the log-transformed absorbance spectra from 325 to 375 nm) and a decrease in S(275-295) (the slope of the log-transformed absorption coefficient from 275 to 295 nm) and SR (the ratio of Slope(275-295) and Slope(350-400)). The variations of these spectral parameters (i.e., DSlope(325-375), S(275-295) and SR) correlated well with the aluminum-caused changes in ZPs and average particle size. This implies that spectral parameters have the potential to indicate DOM aggregation. In addition, good correlations of spectral parameters and membrane fouling behaviors (i.e., unified membrane fouling index (UMFI)) suggest that the changes in DSlope(325-375), S(275-295) and SR were indicative of the aluminum-caused alterations of fouling potentials of all DOM solutions. Interestingly, the optimal dosage of aluminum (40 μM for AHA, AHA-BSA, and AHA-DEX) was obtained based on the relation between spectral parameters and fouling behaviors. Overall, the spectroscopic analysis, particularly for the utilization of spectral parameters, provided a convenient approach

  14. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  15. Broadband UV-Vis optical property measurement in layered turbid media

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Le, Du; Ramella-Roman, Jessica; Pfefer, Joshua

    2011-03-01

    Quantitative data on the fundamental optical properties (OPs) of biological tissue, including absorption and reduced scattering coefficients are important for elucidating light propagation during optical spectroscopy and facilitating diagnostic device design and optimization, and may enable rapid detection of early neoplasia. However, systems for in situ broadband measurement of mucosal tissue OPs in the ultraviolet-visible range have not been realized. In this study, we evaluated a fiberoptic-based reflectance system, coupled with neural network inverse models (trained with Monte Carlo simulation data), for measuring OPs in highly attenuating, two-layer turbid media. The experimental system incorporated a broadband light source, a fiberoptic probe and a CCD camera. The calibration method involved a set of standard nigrosin-microsphere phantoms as well as a more permanent spectralon phantom for quality assurance testing and recalibration. The system was experimentally evaluated using two-layer hydrogel phantoms with hemoglobin and polystyrene microspheres. The effects of tissue top-layer thickness and fitting approaches based on known absorption and scattering distributions were discussed. With our method, measurements with error less than 28% were obtained in the wavelength range of 350-630 nm.

  16. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis.

    PubMed

    Plazas-Nossa, Leonardo; Hofer, Thomas; Gruber, Günter; Torres, Andres

    2017-02-01

    This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.

  17. Diagnostic spectroscopic and computer-aided evaluation of malignancy from UV/VIS spectra of clear pleural effusions

    NASA Astrophysics Data System (ADS)

    Jevtić, Dubravka R.; Avramov Ivić, Milka L.; Reljin, Irini S.; Reljin, Branimir D.; Plavec, Goran I.; Petrović, Slobodan D.; Mijin, Dušan Ž.

    2014-06-01

    The automated, computer-aided method for differentiation and classification of malignant (M) from benign (B) cases, by analyzing the UV/VIS spectra of pleural effusions is described. It was shown that by two independent objective features, the maximum of Katz fractal dimension (KFDmax) and the area under normalized UV/VIS absorbance curve (Area), highly reliable M-B classification is possible. In the Area-KFDmax space M and B samples are linearly separable permitting thus the use of linear support vector machine as a classification tool. By analyzing 104 samples of UV/VIS spectra of pleural effusions (88 M and 16 B) collected from patients at the Clinic for Lung Diseases and Tuberculosis, Military Medical Academy in Belgrade, the accuracy of 95.45% for M cases and 100% for B cases are obtained by using the proposed method. It was shown that by applying some modifications, which are suggested in the paper, the accuracy of 100% for M cases can be reached.

  18. Remote laser evaporative molecular absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis

    2016-09-01

    We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.

  19. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  20. In situ high-frequency UV-Vis spectrometer probes for investigating runoff processes and end member stability.

    NASA Astrophysics Data System (ADS)

    Schwab, Michael; Weiler, Markus; Pfister, Laurent; Klaus, Julian

    2014-05-01

    In recent years, several limitations as to the application of end member mixing analysis with isotope and geochemical tracers have been revealed: unstable end member solutions, inputs varying in space and time, and unrealistic mixing assumptions. In addition, the necessary high-frequency sampling using conventional methods is time and resources consuming, and hence most sampling rates are not suitable for capturing the response times of the majority of observed headwater catchments. However, high-frequency observations are considered fundamental for gaining new insights into hydrological systems. In our study, we have used two portable, in situ, high-frequency UV-Vis spectrometers (spectro::lyser; scan Messtechnik GmbH) to investigate the variability of several signatures in streamflow and end member stability. The spectro::lyser measures TOC, DOC, nitrate and the light absorption spectrum from 220 to 720 nm with 2.5 nm increment. The Weierbach catchment (0.45 km2) in the Attert basin (297 km2) in Luxemburg is a small headwater research catchment (operated by the CRP Gabriel Lippmann), which is completely forested and underlain by schist bedrock. The catchment is equipped with a dense network of hydrological instruments and for this study, the outlet of the Weierbach catchment was equipped with one spectro::lyser, permanently sensing stream water at a 15 minutes time step over several months. Hydrometric and meteorologic data was compared with the high-frequency spectro::lyser time series of TOC, DOC, nitrate and the light absorption spectrum, to get a first insight into the behaviour of the catchment under different environmental conditions. As a preliminary step for a successful end member mixing analysis, the stability of rainfall, soil water, and groundwater was tested with one spectro::lyser, both temporally and spatially. Thereby, we focused on the investigation of changes and patterns of the light absorption spectrum of the different end members and the

  1. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm.

    PubMed

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K; Burkholder, James B

    2012-10-28

    Oxalyl chloride, (ClCO)(2), has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO)(2) and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV∕vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, Φ(λ), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO)(2) has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl)(2) + hv → ClCO* + Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO* → Cl + CO (3a), → ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M → Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO)(2). Φ(193 nm) was found to be 2.07 ± 0.37 independent of bath gas pressure (25.8-105.7 Torr, N(2)), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO)(2) is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 ± 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 ± 0.26 independent of bath gas pressure (15-70 Torr, N(2)). Φ(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N(2)). The low-pressure limit of the total Cl atom quantum yield, Φ(0)(351 nm), was 2

  2. Preparation and characterization of CdSe colloidal quantum dots by pptical spectroscopy and 2D DOSY NMR

    NASA Astrophysics Data System (ADS)

    Geru, I.; Bordian, O.; Culeac, I.; Turta, C.; Verlan, V.; Barba, A.

    2015-02-01

    We present experimental results on preparation and characterization of colloidal CdSe quantum dots (QD) in organic solvent. CdSe QDs were synthesized following a modified literature method and have been characterized by UV-Vis absorption and photoluminescent (PL) spectroscopy, as well as by 2D Diffusion Ordered Spectroscopy (DOSY) NMR. The average CdSe particles size estimated from the UV-Vis absorption spectra was found to be in the range 2.28 - 2.92 nm, which correlates very well with the results obtained from NMR measurements. The PL spectrum for CdSe nanodots can be characterized by a narrow emission band with the peak maximum shifting from 508 to 566 nm in dependence of the CdSe nanoparticle size. The PL is dominated by a near-band-edge emission, accompanied by a weak broad band in the near IR, related to the surface shallow trap emission.

  3. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  4. Highly sensitive detection using Herriott cell for laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Chongyi; Song, Guangming; Du, Yang; Zhao, Xiaojun; Wang, Wenju; Zhong, Liujun; Hu, Mai

    2016-11-01

    The tunable diode laser absorption spectroscopy combined with the long absorption path technique is a significant method to detect harmful gas. The long optical path could come true by Herriott cell reducing the size of the spectrometers. A 15 cm long Herriott cell with 28.8 m optical absorption path after 96 times reflection was designed that enhanced detection sensitivity of absorption spectroscopy. According to the theory data of calculation, Herriott cell is analyzed and simulated by softwares Matlab and Lighttools.

  5. Molecular structure, UV/vis spectra, and cyclic voltammograms of Mn(II), Co(II), and Zn(II) 5,10,15,20-tetraphenyl-21-oxaporphyrins.

    PubMed

    Stute, Silvio; Götzke, Linda; Meyer, Dirk; Merroun, Mohamed L; Rapta, Peter; Kataeva, Olga; Seichter, Wilhelm; Gloe, Kerstin; Dunsch, Lothar; Gloe, Karsten

    2013-02-04

    The 5,10,15,20-tetraphenyl-21-oxaporphyrin complexes of Mn(II), Co(II), and Zn(II) have been crystallized and studied by X-ray diffraction, NMR and UV/vis spectroscopy, and mass spectrometry as well as cyclic voltammetry. The X-ray structure of the earlier described Cu(II) complex is also reported. All complex structures possess a five-coordinate, approximately square-pyramidal geometry with a slight deviation of the heteroaromatic moieties from planarity. The packing structures are characterized by parallel strands of complex molecules interacting by weak hydrogen bonds. In the case of Zn(II) an octahedral complex has also been isolated using a side-chain hydroxy functionalized oxaporphyrin ligand; the structure was verified by NMR and EXAFS spectroscopy. Cyclic voltammetry studies reveal that the reduction of the complex bound Mn(II), Co(II), and Zn(II) ions is a ligand-centered process whereas the first oxidation step depends on the metal ion present.

  6. Double point contact single molecule absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Howard, John Brooks

    Our primary objective with the presentation of this thesis is to utilize superconducting transport through microscopic objects to both excite and analyze the vibrational degrees of freedom of various molecules of a biological nature. The technique stems from a Josephson junction's ability to generate radiation that falls in the terahertz gap (≈ 10 THz) and consequently can be used to excite vibrational modes of simple and complex molecules. Analysis of the change in IV characteristics coupled with the differential conductance dIdV allows determination of both the absorption spectra and the vibrational modes of biological molecules. Presented here are both the theoretical foundations of superconductivity relevant to our experimental technique and the fabrication process of our samples. Comparisons between our technique and that of other absorption spectroscopy techniques are included as a means of providing a reference upon which to judge the merits of our novel procedure. This technique is meant to improve not only our understanding of the vibrational degrees of freedom of useful biological molecules, but also these molecule's structural, electronic and mechanical properties.

  7. Precision Saturated Absorption Spectroscopy of H3+

    NASA Astrophysics Data System (ADS)

    Guan, Yu-chan; Liao, Yi-Chieh; Chang, Yung-Hsiang; Peng, Jin-Long; Shy, Jow-Tsong

    2016-06-01

    In our previous work on the Lamb dips of the νb{2} fundamental band of H3+, the saturated absorption spectrum was obtained by the third-derivative spectroscopy using frequency modulation [1]. However, the frequency modulation also causes error in absolute frequency determination. To solve this problem, we have built an offset-locking system to lock the OPO pump frequency to an iodine-stabilized Nd:YAG laser. With this modification, we are able to scan the OPO idler frequency precisely and obtain the profile of the Lamb dips. Double modulation (amplitude modulation of the idler power and concentration modulation of the ion) is employed to subtract the interference fringes of the signal and increase the signal-to-noise ratio effectively. To Determine the absolute frequency of the idler wave, the pump wave is offset locked on the R(56) 32-0 a10 hyperfine component of 127I2, and the signal wave is locked on a GPS disciplined fiber optical frequency comb (OFC). All references and lock systems have absolute frequency accuracy better than 10 kHz. Here, we demonstrate its performance by measuring one transition of methane and sixteen transitions of H3+. This instrument could pave the way for the high-resolution spectroscopy of a variety of molecular ions. [1] H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, and J.-T. Shy, Phys. Rev. Lett. 109, 263002 (2012).

  8. Grain Spectroscopy

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  9. Toward panchromatic organic functional molecules: density functional theory study on the nature of the broad UV-Vis-NIR spectra of substituted tetra(azulene)porphyrins.

    PubMed

    Qi, Dongdong; Zhang, Lijuan; Jiang, Jianzhuang

    2012-09-01

    To achieve full solar spectrum absorption of organic dyes for organic solar cells and organic solar antenna collectors, a series of tetra(azulene)porphyrin derivatives including H₂(TAzP), H₂(α-F₄TAzP), H₂(β-F₄TAzP), H₂(γ-F₄TAzP), H₂(δ-F₄TAzP), H₂(ɛ-F₄TAzP), H₂(ζ-F₄TAzP), H₂[α-(NH₂)₄TAzP], H₂[β-(NH₂)₄TAzP], H₂[γ-(NH₂)₄TAzP], H₂[δ-(NH₂)₄TAzP], H₂[ɛ-(NH₂)₄TAzP], and H₂[ζ-(NH₂)₄TAzP] were designed and their electronic absorption spectra were systematically studied on the basis of TDDFT calculations. The nature of the broad and intense electronic absorptions of H₂(TAzP) in the range of 500-1450 nm is clearly revealed. In addition, different types of π→π* electronic transitions associated with different absorption bands are revealed to correspond to different electron density moving direction between peripherally-fused ten electron-π-conjugated azulene units and the central eighteen electron-π-conjugated porphyrin core. Introduction of electron-donating groups onto the periphery of H₂(TAzP) macrocycle is revealed to be able to lead to novel NIR dyes such as H₂[α-(NH₂)₄TAzP] and H₂[ɛ-(NH₂)₄TAzP] with regulated UV-Vis-NIR absorption bands covering the full solar spectrum in the range of 300-2500 nm. In addition, the basic designing rules for panchromatic organic functional molecules based on tetrapyrrole derivatives are proposed together with the suggestions in experiments, including low molecular symmetry and narrow gap between HOMO and LUMO/LUMO+1, which will be helpful toward the design and synthesis of new panchromatic organic functional molecules.

  10. Insights into dissociative electron transfer in esterified shikonin semiquinones by in situ ESR/UV-Vis spectroelectrochemistry.

    PubMed

    Armendáriz-Vidales, G; Frontana, C

    2015-11-21

    In this work, electrogenerated anion and dianion species from shikonin and its ester derivative isovalerylshikonin were characterized by means of ESR/UV-Vis spectroelectrochemistry. Analysis of the spectra supported the proposal that stepwise dissociative electron transfer (DET) takes place during the second reduction process of the esterified compound. Quantum chemical calculations were performed for validating the occurrence of this mechanistic pathway and for obtaining thermodynamic information on the electron transfer process; ΔG(cleavage)(0) was estimated to be -0.45 eV, considering that the two possible products of the overall reaction scheme are both a quinone and carboxylate anions.

  11. Study of the Photodegradation Process of Vitamin E Acetate by Optical Absorption, Fluorescence, and Thermal Lens Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tiburcio-Moreno, J. A.; Marcelín-Jiménez, G.; Leanos-Castaneda, O. L.; Yanez-Limon, J. M.; Alvarado-Gil, J. J.

    2012-11-01

    The stability of vitamin E acetate exposed to ultraviolet (UV) light was studied using three spectroscopic methods. An ethanol solution of vitamin E acetate was treated with either UVC light (254 nm) or UVA light (366 nm) during a period of 10 min followed by a study of UV-Vis optical absorption, then by fluorescence spectroscopy excitation by UV radiation at either 290 nm or 368 nm and, finally the solution was studied by thermal lens spectroscopy. Immediately, the same solution of vitamin E acetate was subjected to the UV irradiation process until completion of six periods of irradiation and measurements. UVC light treatment induced the appearance of a broad absorption band in the range of 310 nm to 440 nm with maximum absorbance at 368 nm, which progressively grew as the time of the exposure to UVC light increases. In contrast, UVA light treatment did not affect the absorption spectra of vitamin E acetate. Fluorescence spectra of the vitamin E acetate (without UV light treatment) showed no fluorescence when excited with 368 nm while exciting with 290 nm, an intense and broad emission band (300 nm to 440 nm) with a maximum at 340 nm appeared. When vitamin E acetate was treated with UVC light, this emission band progressively decreased as the time of the UVC light irradiation grew. No signal from UV-untreated vitamin E acetate could be detected by the thermal lens method. Interestingly, as the time of the UVC light treatment increased, the thermal lens signal progressively grew. Additional experiments performed to monitor the time evolution of the process during continuous UVC treatment of the vitamin E acetate using thermal lens spectroscopy exhibited a progressive increase of the thermal lens signal reaching a plateau at about 8000 s. This study shows that the vitamin E acetate is stable when it is irradiated with UVA light, while the irradiation with UVC light induces the formation of photodegradation products. Interestingly, this photodegradation process using

  12. Synthesis, X-ray, NMR, FT-IR, UV/vis, DFT and TD-DFT studies of N-(4-chlorobutanoyl)-N'-(2-, 3- and 4-methylphenyl)thiourea derivatives.

    PubMed

    Abosadiya, Hamza M; Anouar, El Hassane; Hasbullah, Siti Aishah; Yamin, Bohari M

    2015-06-05

    A new isomers of thiourea derivatives, namely N-(4-chlorobutanoyl)-N'-(2-methylphenyl)-thiourea (1a), N-(4-chlorobutanoyl)-N'-(3-methylphenyl)thiourea (1b) and N-(4-chlorobutanoyl)-N'-(4-methylphenyl)thiourea (1c) have been synthesized by refluxing mixture of equimolar amounts of 4-chlorobutanoylisothiocyanate with 2, 3 or 4-toluidine, respectively. The three isomers were characterized by spectroscopic (UV/vis, FT-IR and NMR) and X-ray crystallography techniques. To investigate the isomerization effect on spectroscopic data, DFT and TD-DFT calculations have been carried out using five hybrid functionals (B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0) to predict UV/vis absorption bands (n→π∗ and π→π∗), (1)H and (13)C NMR chemical shifts, FT-IR vibration modes and X-ray parameters (bonds, bond angles and torsion angles) for 1a, 1b and 1c isomers. The results showed that the isomerization effect is significant on λ(MAX) absorption bands, while for IR and NMR the effect is negligible. In accordance with previous studies, B3LYP, B3P86 and PBE0 gave the most reliable to predict the excitation energies of thiourea derivatives.

  13. Binding of Catalpol to Bovine Serum albumin in vitro Examined by Spectroscopy and Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Chen, L.; Hu, W.; Li, J.; Liu, X.

    2016-11-01

    This paper explores the interaction mechanisms between catalpol and bovine serum albumin (BSA) in vitro using the methods of fluorescence quenching, UV-vis absorption, synchronous fluorescence spectroscopy, and molecular modeling. The fluorescence quenching mechanism of BSA by catalpol was confirmed to be a dynamic process. In addition, the UV-vis absorption spectra of BSA in the absence and presence of catalpol provided further evidence for the quenching. Synchronous fluorescence spectra showed that the addition of catalpol did not obviously affect the microenvironment in BSA. This could be explained by the distance between catalpol and Trp residues in protein, which was deduced from the subsequent molecular docking. The theoretical results were further verified by molecular docking analysis. It showed that not only the hydrophobic force but also hydrogen bonds played a role in the interaction of catalpol with BSA.

  14. Extending differential optical absorption spectroscopy for limb measurements in the UV

    NASA Astrophysics Data System (ADS)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2010-05-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations. For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis

  15. Vibrational spectra, UV-vis spectral analysis and HOMO-LUMO studies of 2,4-dichloro-5-nitropyrimidine and 4-methyl-2-(methylthio)pyrimidine

    NASA Astrophysics Data System (ADS)

    Arivazhagan, M.; Anitha Rexalin, D.

    2013-04-01

    The FT-IR and FT-Raman vibrational spectra of 2,4-dichloro-5-nitropyrimidine (DCNP) and 4-methyl-2-(methylthio)pyrimidine (MTP) have been recorded in the range 4000-400 and 3600-50 cm-1, respectively. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated using density functional B3LYP method with 6-31+G(d,p) and 6-311++G(d,p) basis set combinations. With the help of specific scaling procedures, the observed vibrational wavenumbers in FT-IR and FT-Raman spectra are analyzed and assigned to different normal modes of the molecules. The predicted first hyperpolarizability reveals that the molecules are an attractive object for future studies of non-linear optical properties. And also HOMO-LUMO energy gap explains the eventual charge transfer interaction taking place within the molecules. UV-vis spectral analysis of the title compounds has been researched by theoretical calculations. The frontier orbital energies, absorption wavelengths (λ), oscillator strengths (f) and excitation energies (E) studied using TD-DFT (B3LYP) with 6-311++G(d,p) basis set are calculated in this work.

  16. Experimental (XRD, FT-IR and UV-Vis) and theoretical modeling studies of Schiff base (E)-N'-((5-nitrothiophen-2-yl)methylene)-2-phenoxyaniline.

    PubMed

    Tanak, Hasan; Ağar, Ayşen Alaman; Büyükgüngör, Orhan

    2014-01-24

    The Schiff base compound (E)-N'-((5-nitrothiophen-2-yl)methylene)-2-phenoxyaniline has been synthesized and characterized by IR, UV-Vis, and X-ray diffraction (XRD) methods. The molecular geometry from X-ray experiment in the ground state has been compared using the density functional theory (DFT) with the 6-311++G(d,p) basis set. The calculated results show that the optimized geometry can well reproduce the crystal structure, and the theoretical vibrational frequency values show good agreement with experimental values. By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6-311++G(d,p) basis set by applying the Onsager and the integral equation formalism polarizable continuum model (IEF-PCM). The predicted nonlinear optical properties of the title compound are greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential (MEP), natural bond orbital (NBO) and thermodynamic properties were performed at B3LYP/6-311++G(d,p) level of theory.

  17. Vibrational spectra, UV-vis spectral analysis and HOMO-LUMO studies of 2,4-dichloro-5-nitropyrimidine and 4-methyl-2-(methylthio)pyrimidine.

    PubMed

    Arivazhagan, M; Anitha Rexalin, D

    2013-04-15

    The FT-IR and FT-Raman vibrational spectra of 2,4-dichloro-5-nitropyrimidine (DCNP) and 4-methyl-2-(methylthio)pyrimidine (MTP) have been recorded in the range 4000-400 and 3600-50 cm(-1), respectively. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated using density functional B3LYP method with 6-31+G(d,p) and 6-311++G(d,p) basis set combinations. With the help of specific scaling procedures, the observed vibrational wavenumbers in FT-IR and FT-Raman spectra are analyzed and assigned to different normal modes of the molecules. The predicted first hyperpolarizability reveals that the molecules are an attractive object for future studies of non-linear optical properties. And also HOMO-LUMO energy gap explains the eventual charge transfer interaction taking place within the molecules. UV-vis spectral analysis of the title compounds has been researched by theoretical calculations. The frontier orbital energies, absorption wavelengths (λ), oscillator strengths (f) and excitation energies (E) studied using TD-DFT (B3LYP) with 6-311++G(d,p) basis set are calculated in this work.

  18. Full Solution-Processed Synthesis and Mechanisms of a Recyclable and Bifunctional Au/ZnO Plasmonic Platform for Enhanced UV/Vis Photocatalysis and Optical Properties.

    PubMed

    Hang, Da-Ren; Islam, Sk Emdadul; Chen, Chun-Hu; Sharma, Krishna Hari

    2016-10-10

    The synthesis of noble metal/semiconductor hybrid nanostructures for enhanced catalytic or superior optical properties has attracted a lot of attention in recent years. In this study, a facile and all-solution-processed synthetic route was employed to demonstrate an Au/ZnO platform with plasmonic-enhanced UV/Vis catalytic properties while retaining strengthened luminescent properties. The visible-light response of photocatalysis is supported by localized surface plasmon resonance (LSPR) excitations while the enhanced performance under UV is aided by charge separation and strong absorption. The enhancement in optical properties is mainly due to local field enhancement effect and coupling between exciton and LSPR. Luminescent characteristics are investigated and discussed in detail. Recyclability tests showed that the Au/ZnO substrate is reusable by cleaning and has a long shelf life. Our result suggests that plasmonic enhancement of photocatalytic performance is not necessarily a trade-off for enhanced near-band-edge emission in Au/ZnO. This approach may give rise to a new class of versatile platforms for use in novel multifunctional and integrated devices.

  19. Screening analysis of biodiesel feedstock using UV-vis, NIR and synchronous fluorescence spectrometries and the successive projections algorithm.

    PubMed

    Insausti, Matías; Gomes, Adriano A; Cruz, Fernanda V; Pistonesi, Marcelo F; Araujo, Mario C U; Galvão, Roberto K H; Pereira, Claudete F; Band, Beatriz S F

    2012-08-15

    This paper investigates the use of UV-vis, near infrared (NIR) and synchronous fluorescence (SF) spectrometries coupled with multivariate classification methods to discriminate biodiesel samples with respect to the base oil employed in their production. More specifically, the present work extends previous studies by investigating the discrimination of corn-based biodiesel from two other biodiesel types (sunflower and soybean). Two classification methods are compared, namely full-spectrum SIMCA (soft independent modelling of class analogies) and SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm). Regardless of the spectrometric technique employed, full-spectrum SIMCA did not provide an appropriate discrimination of the three biodiesel types. In contrast, all samples were correctly classified on the basis of a reduced number of wavelengths selected by SPA-LDA. It can be concluded that UV-vis, NIR and SF spectrometries can be successfully employed to discriminate corn-based biodiesel from the two other biodiesel types, but wavelength selection by SPA-LDA is key to the proper separation of the classes.

  20. Model studies of zinc bonding with humic acid in the presence of UV-VIS-NIR radiation.

    PubMed

    Koczorowska, Elzbieta; Slawinski, Janusz

    2003-06-01

    Model experiments were performed to determine the influence of UV-VIS-NIR radiation on zinc bonded with humic acid (HA). The samples of HA or HA-65Zn radioisotope were overlayed on quartz sand in a glass column and subjected to elution that simulated natural conditions. The zinc concentration was chosen to that occurring in the sewage of the Central Sewage Work in Poznań. Zinc was washed with water to simulate the influence of rain. The recovery of injected radiotraces ions in the eluates was found to depend on pH, zinc and HA concentrations and on radiation exposure. The results help to evaluate the migration behavior of zinc in the presence of HA and UV-VIS-NIR radiation. From the first part of the investigation appears that radiation induces a degradation of HA-Zn layer and that the degradation process depends on pH of the environment. A decrease in pH causes an increase in photodegradation and the degree of zinc binding in the humic layer. Simultaneously, the ultra-weak luminescence (UWL) of plants was monitored to estimate the influence of zinc and HA on their development. The results show effects of HA and zinc on UWL and growth of bean and watercress which characterize the rate of plants metabolism and perturbation of their homeostasis. It was observed that high concentrations of zinc ions and HA considerably affect the development process of the plants.

  1. Characteristics of compounds in hops using cyclic voltammetry, UV-VIS, FTIR and GC-MS analysis.

    PubMed

    Masek, Anna; Chrzescijanska, Ewa; Kosmalska, Anna; Zaborski, Marian

    2014-08-01

    The article presents the antioxidant properties of the extracts of hop EI and EII, by the electrochemical methods on a platinum electrode and comparative analysis of the composition of the extracts of hops using UV-VIS, FTIR and GC-MS methods. The hops extract EI, was obtained from the waste of the hops cone. The hops extract EII, was obtained from the hops cone itself. Hops contain a wide range of polyphenolic compounds with antioxidant properties divided in various chemical classes. Flavonoids and other polyphenolic compounds contained in hops show antioxidant capacity because of the presence of hydroxyl groups in various configurations and numbers within their molecules. The electrochemical properties and antioxidant capacity of hop samples were determined to select the most effective antioxidant. Based on the cyclic and pulse voltammograms, it was observed that hop extract EI contains polyphenols that are oxidised at a less positive potential than extract EII, i.e., it shows better antioxidant capacity. From the analysis of the UV-VIS and FTIR spectra and the GC-MS analysis, it was observed that extract EI contains less phenyl compounds than EII. In addition to flavonoids, EII contains hop acids and chlorophyll. The solutions of hop extracts show very good antioxidant capacities; therefore, they can effectively inhibit or slow negative oxidation reactions and scavenge free radicals and reactive oxygen species (ROS).

  2. Deep eutectic solvents for the self-assembly of gold nanoparticles: a SAXS, UV-Vis, and TEM investigation.

    PubMed

    Raghuwanshi, Vikram Singh; Ochmann, Miguel; Hoell, Armin; Polzer, Frank; Rademann, Klaus

    2014-06-03

    In this work, we report the formation and growth mechanisms of gold nanoparticles (AuNPs) in eco-friendly deep eutectic solvents (DES; choline chloride and urea). AuNPs are synthesized on the DES surface via a low-energy sputter deposition method. Detailed small angle X-ray scattering (SAXS), UV-Vis, and cryogenic transmission electron microscopy (cryo-TEM) investigations show the formation of AuNPs of 5 nm diameter. Data analysis reveals that for a prolonged gold-sputtering time there is no change in the size of the particles. Only the concentration of AuNPs increases linearly in time. More surprisingly, the self-assembly of AuNPs into a first and second shell ordered system is observed directly by in situ SAXS for prolonged gold-sputtering times. The self-assembly mechanism is explained by the templating nature of DES combined with the equilibrium between specific physical interaction forces between the AuNPs. A disulfide-based stabilizer, bis((2-mercaptoethyl)trimethylammonium) disulfide dichloride, was applied to suppress the self-assembly. Moreover, the stabilizer even reverses the self-assembled or agglomerated AuNPs back to stable 5 nm individual particles as directly evidenced by UV-Vis. The template behavior of DES is compared to that of nontemplating solvent castor oil. Our results will also pave the way to understand and control the self-assembly of metallic and bimetallic nanoparticles.

  3. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.

    PubMed

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-03-01

    The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA.

  4. UV-vis spectra as an alternative to the Lowry method for quantify hair damage induced by surfactants.

    PubMed

    Pires-Oliveira, Rafael; Joekes, Inés

    2014-11-01

    It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants.

  5. Multivariate chemometric discrimination of cigarette tobacco blends based on the UV-Vis spectrum of their hydrophilic extracts.

    PubMed

    Giokas, Dimosthenis L; Thanasoulias, Nicholaos C; Vlessidis, Athanasios G

    2011-01-15

    The application of UV-Vis spectrophotometry as an alternative or complementary approach to the classification of tobacco products is presented in this work for the first time. Two hundred fifty samples from five different cigarette brands composed of single and mixed tobacco blends were examined for that purpose on the basis of the UV-Vis spectrum of their aqueous extracts. Data transformation based on the normalization of absorbance intensities as a function of sample weight was employed in order to account for differences in the relative intensities of each sample. Principal components analysis (PCA) was used to extract outlier cases and sample classification was then pursued with the aid of discriminant analysis (DA) suggesting that a reduced number of variables (thirteen out of seven hundred initially available) could provide perfect classification (100% correct assignations) of samples containing single tobacco species or different blends and a fair classification of samples with similar composition (80% correct assignations) yielding an overall 95.7% correct classification. To this pursue, classification and regression trees were found to afford perfect classification of all samples using only a few logic rules based on appropriate split conditions at the expense of inserting 15 variables in the model.

  6. Flavonol-carbon nanostructure hybrid systems: a DFT study on the interaction mechanism and UV/Vis features.

    PubMed

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2016-02-14

    Flavonols are a class of natural compounds with potential biological and pharmacological applications. They are also natural pigments responsible for the diversity of colors in plants. Flavonols offer the possibility of tuning their features through chemical functionalization as well as the presence of an aromatic backbone, which could lead to non-covalent interactions with different nanostructures or aromatic molecules. In this work, a protocol based on ONIOM (QM/QM) calculations to investigate the structural features (binding energies, intermolecular interactions) of flavonols interacting with the surface of several carbon nanostructures (such as graphene, fullerene C60 and carbon nanotubes) is developed. The confinement of flavonols inside carbon nanotubes has also been studied. Three flavonols, galangin, quercetin and myricetin, as well as pristine flavone were selected. Special attention has also been paid to the changes in UV/Vis features of flavonols due to the interaction with carbon nanostructures. Our results point out that π-stacking interactions are the driving force for the adsorption onto carbon nanostructures as well as for the confinement inside carbon nanotubes. Likewise, UV/Vis features of flavonols could be fine-tuned through the interaction with suitable carbon nanostructures.

  7. Transient absorption spectroscopy of laser shocked explosives

    SciTech Connect

    Mcgrane, Shawn D; Dang, Nhan C; Whitley, Von H; Bolome, Cindy A; Moore, D S

    2010-01-01

    Transient absorption spectra from 390-890 nm of laser shocked RDX, PETN, sapphire, and polyvinylnitrate (PVN) at sub-nanosecond time scales are reported. RDX shows a nearly linear increase in absorption with time after shock at {approx}23 GPa. PETN is similar, but with smaller total absorption. A broad visible absorption in sapphire begins nearly immediately upon shock loading but does not build over time. PVN exhibits thin film interference in the absorption spectra along with increased absorption with time. The absorptions in RDX and PETN are suggested to originate in chemical reactions happening on picosecond time scales at these shock stresses, although further diagnostics are required to prove this interpretation.

  8. UV-cured polymeric films containing ZnO and silver nanoparticles with UV-vis light-assisted photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Podasca, Viorica E.; Buruiana, Tinca; Buruiana, Emil C.

    2016-07-01

    Hybrid polymer composites incorporating preformed ZnO alone or its mixture with Ag nanoparticles created during UV irradiation of some urethane acrylic monomers including trietoxysilylpropyl carbamoyloxyethyl methacrylate were synthesized and characterized by spectroscopic (1H (13C) NMR, FTIR, UV-vis, fluorescence, X-ray diffraction) and microscopic (AFM, ESEM/EDX, TEM) techniques. The results confirmed that the double bond conversion measured through FTIR spectroscopy varied in the range of 57-90% (after 60 s of irradiation), exhibiting formulation composition dependence. In the crosslinked polymer networks the existence of individual nanoparticles with primarily spherical shape and sizes between 5 and 15 nm for ZnO, and around 3 nm for in situ photogenerated silver nanoparticles was evidenced. Additionally, the photocatalytic effect of the photopolymerized hybrid films was investigated by determining the decomposition rate of the methylene blue (MB) in ethanol (over 90%) under UV (2.7 × 10-2 s-1) and visible irradiation (2.9 × 10-2 min-1). It was found that the composite films containing a higher amount of ZnO-Ag nanoparticles placed in water induced the photodecomposition of MB (∼87% after 100 min of visible irradiation; k = 2.1 × 10-2 min-1). The good efficiency of the NPs from these polymer films make them attractive for applications in photocatalysis of organic dye molecules.

  9. Characterization of phenolics by LC-UV/vis, LC-MS/MS and sugars by GC in Melicoccus bijugatus Jacq. ‘Montgomery’ fruits

    PubMed Central

    Bystrom, Laura M.; Lewis, Betty A.; Brown, Dan L.; Rodriguez, Eloy; Obendorf, Ralph L.

    2008-01-01

    Fruits of the native South American tree Melicoccus bijugatus Jacq. (Sapindaceae) are consumed for both dietary and medicinal purposes, but limited information is available about the phytochemistry and health value of M. bijugatus fruits. Fruit tissues of the Florida Montgomery cultivar were assessed for sugars, using gas chromatography, and for total phenolics, using UV spectroscopy. Reverse phase high performance liquid chromatography (HPLC) fingerprints of crude methanolic pulp, embryo and seed coat extracts were obtained at 280 nm. Phenolics were characterised by both HPLC UV/vis analysis and HPLC electrospray ionization tandem mass spectrometry. Major sugars detected in the pulp and embryo extracts were sucrose, followed by glucose and fructose. The glucose:fructose ratio was 1:1 in the pulp and 0.1:1 in the embryo. Total phenolic concentrations of the fruit tissues were in the order: seed coat > embryo > pulp. Phenolic acids were identified mostly in pulp tissues. Phenolic acids, flavonoids, procyanidins and catechins were identified in embryo tissues, and higher molecular weight procyanidins were identified in seed coat tissues. This study provides new information about the phytochemistry and the potential health value of the Montgomery cultivar M. bijugatus fruit tissues. PMID:21709744

  10. Unified ZnO Q-dot growth mechanism from simultaneous UV-Vis and EXAFS monitoring of sol-gel reactions induced by different alkali base

    NASA Astrophysics Data System (ADS)

    Caetano, Bruno L.; Silva, Marlon N.; Santilli, Celso V.; Briois, Valérie; Pulcinelli, Sandra H.

    2016-11-01

    This article aims to give experimental evidences of the universality of main steps involved in ZnO nanoparticles formation and growth from sol-gel process. In this way, we revisit the effect of the alkali base (LiOH, NaOH, KOH) used to induce the hydrolysis-condensation reaction in order to unfold the ZnO Q-dot formation mechanisms by using simultaneous time resolved monitoring of zinc species and Q-dot size by combining EXAFS and UV-Vis spectroscopy. Irrespective of the alkali base used, nucleation and growth of ZnO Q-dots occur by consumption of zinc oxy-acetate precursor. Higher amounts of ZnO nanocrystal are produced as the strength of the base increases. After achieving the steady state equilibrium regime the Q-dot growth occurs initially by oriented attachment coalescence mechanism followed by the Ostwald ripening coarsening. The dependence of the formation and growth mechanisms on the base strength allows the fine tuning of the Q-dot size and photoluminescence properties.

  11. A new method for the quantification of monosaccharides, uronic acids and oligosaccharides in partially hydrolyzed xylans by HPAEC-UV/VIS.

    PubMed

    Lorenz, Dominic; Erasmy, Nicole; Akil, Youssef; Saake, Bodo

    2016-04-20

    A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well.

  12. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry.

    PubMed

    Zhang, Wenle; Li, Na; Feng, Yuyan; Su, Shujun; Li, Tao; Liang, Bing

    2015-10-15

    UV-Vis spectroscopy coupled with chemometrics was used effectively to study the impact of heating on edible oils (corn oil, sunflower oil, rapeseed oil, peanut oil, soybean oil and sesame oil) and determine their acid value. Analysis of their first derivative spectra showed that the peak at 370 nm was a common indicator of the heated oils. Partial least squares regression (PLS) and principle component regression (PCR) were applied to building individual quantitative models of acid value for each kind of oil, respectively. The PLS models had a better performance than PCR models, with determination coefficients (R(2)) of 0.9904-0.9977 and root mean square errors (RMSE) of 0.0230-0.0794 for the prediction sets of each kind of oil, respectively. An integrate quantitative model built by support vector regression for all the six kinds of oils was also developed and gave a satisfactory prediction with a R(2) of 0.9932 and a RMSE of 0.0656.

  13. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  14. [Digestion-flame atomic absorption spectroscopy].

    PubMed

    Xu, Liang; Hu, Jian-Guo; Liu, Rui-Ping; Wang, Zhi-Min; Narenhua

    2008-01-01

    A microwave digestion-flame atomic absorption spectroscopy (FAAS) method was developed for the determination of metal elements Na, Zn, Cu, Fe, Mn, Ca and Mg in Mongolian patents. The instrument parameters for the determination were optimized, and the appropriate digestion solvent was selected. The recovery of the method was between 95.8% and 104.3%, and the RSD was between 1.6% and 4.2%. The accuracy and precision of the method was tested by comparing the values obtained from the determination of the standard sample, bush twigs and leaves (GSV-1) by this method with the reference values of GSV-1. The determination results were found to be basically consistent with the reference values. The microwave digestion technique was applied to process the samples, and the experimental results showed that compared to the traditional wet method, the present method has the merits of simplicity, saving agents, rapidness, and non-polluting. The method was accurate and reliable, and could be used to determine the contents of seven kinds of metal elements in mongolian patents.

  15. Optical properties of La{sub 2}CuO{sub 4} and La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites in UV-vis-NIR region synthesized by sol-gel process

    SciTech Connect

    Li Yifeng; Huang Jianfeng Cao Liyun; Wu Jianpeng; Fei Jie

    2012-02-15

    La{sub 2}CuO{sub 4} and La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites were prepared via a simple sol-gel process. The as-prepared La{sub 2}CuO{sub 4} and La{sub 2} {sub -x}Ca{sub x}CuO{sub 4} crystallites were characterized by X-ray diffraction, transmission electron microscope and UV-vis-NIR spectra. Results show that the grain size of La{sub 2}CuO{sub 4} crystallites increases with the increase of heat treatment temperature from 600 Degree-Sign C to 800 Degree-Sign C. Optical properties show that La{sub 2}CuO{sub 4} crystallites have broad absorption both in the UV-vis region and in the NIR region. The band gap of the as-prepared crystallites decreases from 1.367 eV to 1.284 eV with the increase of calcination temperature from 600 Degree-Sign C to 800 Degree-Sign C. In the series of La{sub 2-x}Ca{sub x}CuO{sub 4} compounds (x = 0.05, 0.08, 0.10, 0.12, 0.15 and 0.20), all of the samples exhibit an orthogonal crystal structure and the solubility limit of Ca{sup 2+} in La{sub 2}CuO{sub 4} is within the range of x = 0.12-0.15. In the whole UV-vis-NIR region, La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites exhibit a broad absorption and the corresponding band gap first increases and then decreases with increasing of Ca{sup 2+} content. - Highlights: Black-Right-Pointing-Pointer The optical band gap can be tuned by adjusting the grain size and Ca{sup 2+} content. Black-Right-Pointing-Pointer La{sub 2}CuO{sub 4} crystallites exhibit a broad absorption band both in the UV-vis region and in the NIR region. Black-Right-Pointing-Pointer The band gap increases from 1.284 eV to 1.319 eV with the decrease of heat treatment temperature. Black-Right-Pointing-Pointer In the whole UV-vis-NIR region, the La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites displayed a broad absorption. Black-Right-Pointing-Pointer The band gap of La{sub 2-x}Ca{sub x}CuO{sub 4} increases linearly with doping level when 0 {<=} x {<=} 0.12.

  16. Photoacoustic spectroscopy of β-hematin

    NASA Astrophysics Data System (ADS)

    Samson, Edward B.; Goldschmidt, Benjamin S.; Whiteside, Paul J. D.; Sudduth, Amanda S. M.; Custer, John R.; Beerntsen, Brenda; Viator, John A.

    2012-06-01

    Malaria affects over 200 million individuals annually, resulting in 800 000 fatalities. Current tests use blood smears and can only detect the disease when 0.1-1% of blood cells are infected. We are investigating the use of photoacoustic flowmetry to sense as few as one infected cell among 10 million or more normal blood cells, thus diagnosing infection before patients become symptomatic. Photoacoustic flowmetry is similar to conventional flow cytometry, except that rare cells are targeted by nanosecond laser pulses to induce ultrasonic responses. This system has been used to detect single melanoma cells in 10 ml of blood. Our objective is to apply photoacoustic flowmetry to detection of the malaria pigment hemozoin, which is a byproduct of parasite-digested hemoglobin in the blood. However, hemozoin is difficult to purify in quantities greater than a milligram, so a synthetic analog, known as β-hematin was derived from porcine hemin. The specific purpose of this study is to establish the efficacy of using β-hematin, rather than hemozoin, for photoacoustic measurements. We characterized β-hematin using UV-vis spectroscopy, TEM, and FTIR, then tested the effects of laser irradiation on the synthetic product. We finally determined its absorption spectrum using photoacoustic excitation. UV-vis spectroscopy verified that β-hematin was distinctly different from its precursor. TEM analysis confirmed its previously established nanorod shape, and comparison of the FTIR results with published spectroscopy data showed that our product had the distinctive absorbance peaks at 1661 and 1206 cm-1. Also, our research indicated that prolonged irradiation dramatically alters the physical and optical properties of the β-hematin, resulting in increased absorption at shorter wavelengths. Nevertheless, the photoacoustic absorption spectrum mimicked that generated by UV-vis spectroscopy, which confirms the accuracy of the photoacoustic method and strongly suggests that

  17. Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction – a benchmark structure–property study

    SciTech Connect

    Lock, Nina; Jensen, Ellen M. L.; Mi, Jianli; Mamakhel, Aref; Norén, Katarina; Qingbo, Meng; Iversen, Bo B.

    2013-01-01

    Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0–2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water–isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5–7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300–1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).

  18. Copper(II) and nickel(II) complexes of tetradentate Schiff base ligand: UV-Vis and FT-IR spectra and DFT calculation of electronic, vibrational and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Zarei, Seyed Amir; Khaledian, Donya; Akhtari, Keivan; Hassanzadeh, Keyumars

    2015-11-01

    The experimental fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectra of copper(II) and nickel(II) complexes of the deprotonated tetradentate Schiff base ligand N,N‧-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine (H2L) are compared with their corresponding theoretical ones. The applied theoretical method is based on the density functional theory and time-dependent density functional theory at the UPBE0/PBE0 levels using Def2-TZVP basis set. The computational optimised geometric parameters of the complexes are in good agreement with their corresponding experimental data. The FT-IR and UV-Vis spectra of the complexes were reproduced on the basis of their optimised structures. The vibrational assignments of some fundamental modes of the complexes are performed. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies are calculated. The analyses of the calculated electronic absorption spectra of the complexes are carried out to elucidate the electronic transitions assignments and their characters. Second-order nonlinear optical property of the complexes is evaluated by the above-mentioned theoretical method that implies much greater values for the complexes in comparison with the corresponding value of urea.

  19. Syntheses, electronic structures, and EPR/UV-vis-NIR spectroelectrochemistry of nickel(II), copper(II), and zinc(II) complexes with a tetradentate ligand based on S-methylisothiosemicarbazide.

    PubMed

    Arion, Vladimir B; Rapta, Peter; Telser, Joshua; Shova, Sergiu S; Breza, Martin; Luspai, Karol; Kozisek, Jozef

    2011-04-04

    Template condensation of 3,5-di-tert-butyl-2-hydroxybenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione and triethyl orthoformate at elevated temperatures resulted in metal complexes of the type M(II)L, where M = Ni and Cu and H(2)L = a novel tetradentate ligand. These complexes are relevant to the active site of the copper enzymes galactose oxidase and glyoxal oxidase. Demetalation of Ni(II)L with gaseous hydrogen chloride in chloroform afforded the metal-free ligand H(2)L. Then by the reaction of H(2)L with Zn(CH(3)COO)(2)·2H(2)O in a 1:1 molar ratio in 1:2 chloroform/methanol, the complex Zn(II)L(CH(3)OH) was prepared. The three metal complexes and the prepared ligand were characterized by spectroscopic methods (IR, UV-vis, and NMR spectroscopy), X-ray crystallography, and DFT calculations. Electrochemically generated one-electron oxidized metal complexes [NiL](+), [CuL](+), and [ZnL(CH(3)OH)](+) and the metal-free ligand cation radical [H(2)L](+•) were studied by EPR/UV-vis-NIR and DFT calculations. These studies demonstrated the interaction between the metal ion and the phenoxyl radical.

  20. Discrimination of Brazilian propolis according to the seasoning using chemometrics and machine learning based on UV-Vis scanning data.

    PubMed

    Tomazzoli, Maíra Maciel; Pai Neto, Remi Dal; Moresco, Rodolfo; Westphal, Larissa; Zeggio, Amélia Regina Somensi; Specht, Leandro; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-10-21

    Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plant's resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis' chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds (λ = 280-400ηm), suggesting that besides the biological activities of those

  1. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    PubMed

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment.

  2. Vibronic-structure tracking: A shortcut for vibrationally resolved UV/Vis-spectra calculations

    SciTech Connect

    Barton, Dennis; König, Carolin; Neugebauer, Johannes

    2014-10-28

    The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called “independent mode, displaced harmonic oscillator” (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.

  3. UV/vis range photodetectors based on thin film ALD grown ZnO/Si heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Alkis, Sabri; Tekcan, Burak; Nayfeh, Ammar; Kemal Okyay, Ali

    2013-10-01

    We present ultraviolet-visible (UV/vis) range photodetectors (PDs) based on thin film ZnO (n)/Si (p) heterojunction diodes. ZnO films are grown by the atomic layer deposition (ALD) technique at growth temperatures of 80, 150, 200 and 250 ° C. The fabricated ZnO (n)/Si (p) photodetectors (ZnO-Si-PDs) show good electrical rectification characteristics with ON/OFF ratios reaching up to 103. Under UV (350 nm wavelength) and visible (475 nm wavelength) light illumination, the ZnO-Si-PDs give photoresponsivity values of 30-37 mA W-1 and 74-80 mA W-1 at 0.5 V reverse bias, respectively. Photoluminescence (PL) spectra of ALD grown ZnO thin films are used to support the results.

  4. Conformational analysis, UV-VIS, MESP, NLO and NMR studies of 6-methoxy-1,2,3,4-tetrahydronaphthalene.

    PubMed

    Arivazhagan, M; Kavitha, R; Subhasini, V P

    2014-07-15

    The detailed HF and B3LYP/6-311++G(d,p) comparative studies on the complete FT-IR and FT-Raman spectra of 6-methoxy-1,2,3,4-tetrahydronaphthalene [MTHN] have been studied. In view of the special properties and uses, the present investigation has been undertaken to provide a satisfactorily vibrational analysis of 6-methoxy-1,2,3,4-tetrahydronaphthalene. Therefore, a thorough Raman, IR, molecular electrostatic potential (MESP), non-linear optical (NLO) properties, UV-VIS, HOMO-LUMO and NMR spectroscopic investigation are reported complemented by B3LYP theoretical predictions with basis set 6-311++G(d,p) to provide novel insight on vibrational assignments and conformational stability of MTHN. Potential energy surface scans (PES) of the CH3 group are undertaken to shed light on the rather complicated conformational interchanges in the compound under investigation.

  5. Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers.

    PubMed

    Montagner, Cristina; Bacci, Mauro; Bracci, Susanna; Freeman, Rachel; Picollo, Marcello

    2011-09-01

    An accurate characterisation of the organic dyes used in artworks, especially those made of paper, is an important factor in designing safe conservation treatments. In the case of synthetic organic dyes used in modern works of art, for example, one frequently encountered difficulty is that some of these dyes are not still commercially available. Recognizing this problem, the authors of this paper present the results of an analysis of UV-Vis-NIR fibre optic reflectance spectra of 82 samples of dyed paper prepared with 41 dyes. The samples come from a historic book, The Dyeing of Paper in the Pulp, which was published by Interessen-Gemeinschaft (I.G.) Farbenindustrie in 1925. The dyes used in the paper pulp belong to the azo compounds, acridine, anthraquinone, azine, diphenylmethane, indigoid, methine, nitro, quinoline, thiazine, triphenylmethane, sulphur and xanthene classes.

  6. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging.

    PubMed

    Ostergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim

    2014-11-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing.

  7. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    PubMed

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-05

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin.

  8. Molecular structure, spectroscopic properties (FT-IR, Micro-Raman, and UV-vis), and DFT calculations of minaprine

    NASA Astrophysics Data System (ADS)

    Gökce, H.; Bahçeli, S.

    2014-07-01

    Molecular geometry, experimental vibrational wavenumbers, electronic properties, and quantum chemical calculations of minaprine (C17H22N4O · 2HCl), (with synonym, dihydrochloride salt of N-(4-methyl-6-phenyl-3-pyridazinyl)-4-morpholineethamine) which is widely used as a psychotropic drug at medicinal treatment, in the ground state by using density functional theory (DFT/B3LYP) method with 6-31++G(d,p) basis set have been presented for the first time. The comparison of the observed fundamental vibrational frequencies were in a very good agreement with the experimental data. Furthermore, UV-vis TD-DFT calculations, the highest occupied molecular orbitals (HOMO-1, HOMO), lowest unoccupied molecular orbitals (LUMO, LUMO + 1), molecular electrostatic potential (MEP) surface, atomic charges and thermodynamic properties of minaprine molecule have been theoretically calculated and simulated at the mentioned level.

  9. Library of UV-Vis-NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers

    NASA Astrophysics Data System (ADS)

    Montagner, Cristina; Bacci, Mauro; Bracci, Susanna; Freeman, Rachel; Picollo, Marcello

    2011-09-01

    An accurate characterisation of the organic dyes used in artworks, especially those made of paper, is an important factor in designing safe conservation treatments. In the case of synthetic organic dyes used in modern works of art, for example, one frequently encountered difficulty is that some of these dyes are not still commercially available. Recognizing this problem, the authors of this paper present the results of an analysis of UV-Vis-NIR fibre optic reflectance spectra of 82 samples of dyed paper prepared with 41 dyes. The samples come from a historic book, The Dyeing of Paper in the Pulp, which was published by Interessen-Gemeinschaft (I.G.) Farbenindustrie in 1925. The dyes used in the paper pulp belong to the azo compounds, acridine, anthraquinone, azine, diphenylmethane, indigoid, methine, nitro, quinoline, thiazine, triphenylmethane, sulphur and xanthene classes.

  10. Solute-solvent interactions of acid-1,4-dioxane mixtures-By dielectric, FTIR, UV-vis and 13C NMR spectrometric methods.

    PubMed

    Arivazhagan, G; Parthipan, G; Thenappan, T

    2009-11-01

    Results of the dielectric studies carried out on the binary mixture of n-butyric and caprylic acids with 1,4-dioxane over the entire composition range and at temperatures 303K, 308K, 313K and 318K, and FTIR, UV-vis and 13C NMR spectral studies are presented in this paper. The excess permittivity and excess free energy were fitted with the Redlich-Kister polynomial. The variation of Kirkwood correlation factors, excess permittivity and excess free energy of mixing with the concentration and temperature has been investigated in view of understanding the ordering of dipoles of solute and solvent molecules. The FTIR, UV-vis and 13C NMR spectral analysis reveals the formation of complex between solute and solvent molecules. The parallel alignment of electric dipoles of the complex predicted by dielectric studies is well supported by UV-vis spectral analysis. The structure of the complex molecule present in the clusters has been deduced.

  11. The impacts of turbidity for COD measurements using UV-Vis spectrometry and compensation method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wen, Yizhang; Hu, Yingtian; Wang, Xiaoping

    2016-09-01

    Ultraviolet absorption spectroscopy is one of physical methods used for chemical oxygen demand (COD) measurements of water. The absorbances in ultraviolet band have a relationship to COD. However, turbidity in water could scatter emitting light and influence the absorbances. So it is very important to compensate for the impact of turbidity. In this study, the absorption spectra of standard COD solution (potassium acid phthalate), turbidity solution (Formazine) and their mixture are sampled in the wavelength range from 220 to 750 nm. The impacts of turbidity for COD measurement and compensation method are studied based on these data. The absorbance of mixture substract the absorbance of turbidity solution is less than the absorbance of standard COD solution. The result indicates that turbidity particles decrease the light absorption of organic molecules. Furthermore, we discover that the impact of turbidity is greater for the larger absorbance of the standard COD solution. Then attenuation coeffcient (AC()) is introduced and calculated based on exprimental results. In the process of turbidity compensation, the turbidity of solution is estimated using the absorbance of visible wavelength. The absorption spectra of the turbidity in the ultraviolet wavelength are simulated using normalization technique. The satisfactory prediction result of COD is achieved for the mixture after the turbidity compensation. In conclusion, the new turbidity compensation method could eliminate the influence of turbidity for COD measurements based on absorption spectroscopy.

  12. Mixing Across a Simple Mare-Highland Contact in the Grimaldi Basin: New Insights from Clementine UV/VIS Data

    NASA Astrophysics Data System (ADS)

    Li, L.; Mustard, J. F.; He, G.

    1996-03-01

    The investigation of the composition of mare-highland boundaries carried out by Mustard et al. using multispectral images from the Galileo Solid State Imaging (SSI) instrument reveals the existence of three distinct mixing systematics across the mare-highland contacts in the region of southwestern Procellarum. The three basic types are narrow, moderate, and complex mixing gradients, and each implies a different set of fundamental processes that have contributed to the observed gradients. However, the 4 km resolution of the Galileo SSI data is too low to critically evaluate the exact properties of these boundaries, particularly in areas with rapidly changing abundances. The higher spatial resolution of Clementine UV/VIS data ( ~200 m/pixel, 5 filters between 0.415- 1.0 am-micrometers) allows the contact of mare-highland to be addressed in more detail. We have begun a series of studies to characterize and model mixing across mare-highland boundaries using these data, beginning with simple boundaries (sharp geologic contact, simple superposition of mare on highland). In this study, the contact between the Grimaldi mare and the highland on the southern edge is investigated through the spectral mixture analysis of Clementine UV/VIS data. Our preliminary analyses reveals the boundary consists of three mixing zones: moderate, steep, and moderate. The moderate zones on the mare and highland sides of the contact are approximately 30km wide, while the steep zone is ~6-8 km wide. We are currently examining other such simple boundaries to determine if the physical dimensions and properties are consistent across the moon, and thus a chracteristic properties of simple boundaries.

  13. Optical fiber spectroscopy for measuring quality indicators of lubricant oils

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Díaz-Herrera, N.; Mencaglia, A. A.; Ottevaere, H.; Thienpont, H.; Francalanci, S.; Paccagnini, A.; Pavone, F.

    2008-04-01

    A collection of lubricant oils from different types of turbines, which were characterized by different degrees of degradation, were analyzed by means of UV-VIS-NIR absorption spectroscopy, fluorescence spectroscopy and scattering measurements. All these measurements were performed by means of optical fiber-based instrumentation that made use of LEDs or compact lamps for illumination and miniaturized spectrometers for detection. Multivariate data analysis was used to successfully correlate the wide optical spectral signature of lubricant oils to some of the most important parameters for indicating the degree of degradation of the oil, such as TAN, JOAP-index, water content, and phosphorus.

  14. On-line monitoring for control of a pilot-scale sequencing batch reactor using a submersible UV/VIS spectrometer.

    PubMed

    Langergraber, G; Gupta, J K; Pressl, A; Hofstaedter, F; Lettl, W; Weingartner, A; Fleischmann, N

    2004-01-01

    A submersible UV/VIS spectrometer was used to monitor a pilot-scale sequencing batch reactor (SBR). The instrument utilises the whole UV/VIS range between 200 and 750 nm. With just one single instrument nitrate, organic matter and suspended solids can be measured simultaneously. The spectrometer is installed directly in the reactor, measures in real-time, and is equipped with an auto-cleaning system using pressured air. The paper shows the calibration results for measurements in the SBR tank, time series for typical SBR cycles, and proposes possible ways for optimisation of the operation by using these measurements.

  15. NIR absorbing diferrocene-containing meso-cyano-BODIPY with a UV-Vis-NIR spectrum remarkably close to that of magnesium tetracyanotetraferrocenyltetraazaporphyrin.

    PubMed

    Didukh, Natalia O; Zatsikha, Yuriy V; Rohde, Gregory T; Blesener, Tanner S; Yakubovskyi, Viktor P; Kovtun, Yuriy P; Nemykin, Victor N

    2016-10-04

    Diferrocene-containing meso-cyano-BODIPY (4) was prepared by the direct cyanation/oxidation reaction of symmetric BODIPY 1 followed by Knoevenagel condensation with ferrocenealdehyde. Ferrocene-containing BODIPY 4 was characterized by a variety of spectroscopic, electrochemical, and theoretical methods and its UV-Vis-NIR spectrum has a striking similarity with a UV-Vis-NIR spectrum of the previously reported magnesium 2(3),7(8),12(13),17(18)-tetracyano-3(2),8(7),13(12),18(17)-tetraferrocenyl-5,10,15,20-tetraazaporphyrin.

  16. Ultraviolet-visible light (UV-Vis)-reversible but fluorescence-irreversible chemosensor for copper in water and its application in living cells.

    PubMed

    Huo, Fang-Jun; Yin, Cai-Xia; Yang, Yu-Tao; Su, Jing; Chao, Jian-Bin; Liu, Dian-Sheng

    2012-03-06

    An ultraviolet-visible light (UV-Vis)-reversible but fluorescence-irreversible chemosensor was developed for the detection of copper. Coordination between the probe, 2-pyridylaldehyde fluorescein hydrazone (FHP), and Cu(2+) gave a reversible UV-Vis response, Storage of the probe-Cu complex resulted in hydrolytic cleavage of the N═C bond, which released the fluorophore (ring-opened fluorescein hydrazine) and gave irreversible fluorescence. Thus, FHP becomes a multifunctional chemosensor, and its reversibility can be controlled by the reaction time. Cu(2+) in living cells could be detected using FHP and general fluorescence methods.

  17. Following the Formation of Active Co(III) Sites in Cobalt Substituted Aluminophosphates Catalysts by In-Situ Combined UV-VIS/XAFS/XRD Technique

    SciTech Connect

    Sankar, Gopinathan; Fiddy, Steven; Harvey, Ian; Hayama, Shusaku; Bushnell-Wye, Graham; Beale, Andrew M.

    2007-02-02

    Cobalt substituted aluminophosphates, CoAlPO-34 (Chabazite structure) and DAF-8 (Phillipsite structure) were investigated by in situ combined XRD/EXAFS/UV-VIS technique. In-situ combined XRD, Co K-edge EXAFS and UV-Vis measurements carried out during the calcination process reveal that CoAlPO-34 containing 10 wt percent cobalt is stable and the cobalt ions are converted from Co(II) in the as synthesised form to Co(III); DAF-8 containing about 25 percent cobalt is not stable and does not show change in oxidation state.

  18. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  19. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.

    PubMed

    Berera, Rudi; van Grondelle, Rienk; Kennis, John T M

    2009-01-01

    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.

  20. Multimode Surface Functional Group Determination: Combining Steady-State and Time-Resolved Fluorescence with X-ray Photoelectron Spectroscopy and Absorption Measurements for Absolute Quantification.

    PubMed

    Fischer, Tobias; Dietrich, Paul M; Unger, Wolfgang E S; Rurack, Knut

    2016-01-19

    The quantitative determination of surface functional groups is approached in a straightforward laboratory-based method with high reliability. The application of a multimode BODIPY-type fluorescence, photometry, and X-ray photoelectron spectroscopy (XPS) label allows estimation of the labeling ratio, i.e., the ratio of functional groups carrying a label after reaction, from the elemental ratios of nitrogen and fluorine. The amount of label on the surface is quantified with UV/vis spectrophotometry based on the molar absorption coefficient as molecular property. The investigated surfaces with varying density are prepared by codeposition of 3-(aminopropyl)triethoxysilane (APTES) and cyanoethyltriethoxysilane (CETES) from vapor. These surfaces show high functional group densities that result in significant fluorescence quenching of surface-bound labels. Since alternative quantification of the label on the surface is available through XPS and photometry, a novel method to quantitatively account for fluorescence quenching based on fluorescence lifetime (τ) measurements is shown. Due to the complex distribution of τ on high-density surfaces, the stretched exponential (or Kohlrausch) function is required to determine representative mean lifetimes. The approach is extended to a commercial Rhodamine B isothiocyanate (RITC) label, clearly revealing the problems that arise from such charged labels used in conjunction with silane surfaces.

  1. Distributed Read-out Imaging Device array for astronomical observations in UV/VIS

    NASA Astrophysics Data System (ADS)

    Hijmering, Richard A.

    2009-12-01

    STJ (Superconducting Tunneling Junctions) are being developed as spectro-photometers in wavelengths ranging from the NIR to X-rays. 10x12 arrays of STJs have already been successfully used as optical imaging spectrometers with the S-Cam 3, on the William Hershel Telescope on La Palma and on the Optical Ground Station on Tenerife. To overcome the limited field of view which can be achieved with single STJ arrays, DROIDS (Distributed Read Out Imaging Devices) are being developed which produce next to energy and timing also produce positional information with each detector element. These DROIDS consist of a superconducting absorber strip with proximized STJs on either end. The STJs are a Ta/Al/AlOx/Al/Ta 100/30/1/30/100nm sandwich of which the bottom electrode Ta layer is one with the 100nm thick absorber layer. The ratio of the two signals from the STJs provides information on the absorption position and the sum signal is a measure for the energy of the absorbed photon. In this thesis we present different important processes which are involved with the detection of optical photons using DROIDs. This includes the spatial and spectral resolution, confinement of the quasiparticles in the proximized STJs to enhance tunnelling and quasiparticle creation resulting from absorption of a photon in the proximized STJ. We have combined our findings in the development of a 2D theoretical model which describes the diffusion of quasiparticles and imperfect confinement via exchange of quasiparticles between the absorber and STJ. Finally we will present some of the first results obtained with an array of 60 360x33.5 μm2 DROIDs in 3x20 format.

  2. Photoelectron and X-ray Absorption Spectroscopy Of Pu

    SciTech Connect

    Tobin, J; Chung, B; Schulze, R; Farr, J; Shuh, D

    2003-11-12

    We have performed Photoelectron Spectroscopy and X-Ray Absorption Spectroscopy upon highly radioactive samples of Plutonium at the Advanced Light Source in Berkeley, CA, USA. First results from alpha and delta Plutonium are reported as well as plans for future studies of actinide studies.

  3. Spectroscopic (FT-IR and UV-Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline

    NASA Astrophysics Data System (ADS)

    Ceylan, Ümit; Tarı, Gonca Özdemir; Gökce, Halil; Ağar, Erbil

    2016-04-01

    Crystal structure of the title compound, 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline, C13H12N2O2S, has been synthesized and characterized by FT-IR and UV-Vis spectrum. The compound crystallized in the monoclinic space group P 21/c with a = 11.3578 (4) Å, b = 7.4923 (2) Å, c = 14.9676 (6) Å and β = 99.589 (3)° and Z = 4 in the unit cell. The molecular geometry was also calculated using the Gaussian 03 software and structure was optimized using the HF and DFT/B3LYP methods with the 6-311++G(d,p) basis set in ground state. Using the TD-DFT method, the electronic absorption spectra of the title compound was computed in both the gas phase and ethanol solvent. The harmonic vibrational frequencies of the title compound were calculated using the same methods with the 6-311++G(d,p) basis set. The calculated results were compared with the experimental determination results of the compound. It was seen that the optimized structure was in excellent agreement with the X-ray crystal structure. The energetic behaviors of the title compound in solvent media were examined using the HF and DFT/B3LYP methods with the 6-311++G(d,p) basis set applying the polarizable continuum model (PCM). In addition, the molecular orbitals (FMOs) analysis, molecular electrostatic potential (MEP), nonlinear optical and thermodynamic properties of the title compound were performed using the same methods with the 6-311++G(d,p) basis set.

  4. Weakened negative effect of Au/TiO2 photocatalytic activity by CdS quantum dots deposited under UV-vis light illumination at different intensity ratios.

    PubMed

    Song, Kang; Wang, Xiaohong; Xiang, Qun; Xu, Jiaqiang

    2016-10-26

    Herein, we demonstrate experimentally the coexistence of photocatalytic dual opposite roles of Au nanoparticles in a UV-vis light irradiated Au/TiO2 system. We have investigated that the photocatalytic performance curves of Au/TiO2 and CdS/Au/TiO2 for degradation of methylene blue (MB) all present a V-shape with different radiation power ratios. However, through the comparison of photocatalytic activities of Au/TiO2 and CdS/Au/TiO2 by statistics and mathematical simulation, we propose qualitatively that the deposition of CdS used as a photosensitizer could extend the Au/TiO2 light absorption range and weaken the negative effect of Au/TiO2. Compared with Au/TiO2, it is proven indirectly that the photo-excited electrons of CdS/Au/TiO2 transfer from CdS to Au, and then to TiO2. Furthermore, we discuss the photocatalytic dual opposite roles of Au nanoparticles between CdS and TiO2, the positive effect includes localized surface plasmon resonance (LSPR) and Schottky barrier (SB), and the negative effect is that Au nanoparticles can be used as a new charge-carrier recombination center. In addition, we have analyzed that the dual opposite relationship of Au/TiO2 under the irradiation of mixed-light could be regulated by changing the intensity ratio of visible to UV light as well.

  5. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures)

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kose, E.; Kurt, M.; Karabacak, M.

    2015-02-01

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The 1H, 13C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The 1H and 13C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  6. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    PubMed

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule.

  7. Integrated computational strategies for UV/vis spectra of large molecules in solution.

    PubMed

    Barone, Vincenzo; Polimeno, Antonino

    2007-11-01

    In recent years, the margin of interaction between computational chemistry and most branches of experimental chemistry has increased at a fast pace. The experimental characterization of new systems relies on computational methods for the rationalization of structural, energetic, electronic and dynamical features. In particular, novel computational approaches allow accurate estimates of molecular parameters from spectroscopic optical observables, giving rise to synergic interactions between experimentalists and theoretically-oriented chemists. Our main objective in this tutorial review is to delineate the degree of advancement of possible integrated computational approaches to the interpretation of optical spectroscopies, with an accent on large molecules in solvated environments, based on the combination of advanced quantum mechanical treatments and stochastic modelling of relaxation processes.

  8. The spectroscopic (FT-IR, UV-vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Albayrak Kaştaş, Çiğdem; Büyükgüngör, Orhan

    2015-03-01

    A new o-hydroxy Schiff base, (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile was isolated and investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. The vibrational spectral analysis was carried out by using FT-IR spectroscopy in the range of 4000-400 cm-1. Theoretical calculations were performed by density functional theory (DFT) method using 6-31G(d,p) basis set. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The UV-vis spectrum of the compound was recorded in the region 200-800 nm in several solvents and electronic properties such as excitation energies, and wavelengths were calculated by TD-DFT/B3LYP method. The most prominent transitions were corresponds to π → π∗. Hybrid density functional theory (DFT) was used to investigate the enol-imine and keto-amine tautomers of titled compound. The titled compound showed the preference of enol form, as supported by X-ray and spectroscopic analysis results. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms. Additionally, geometry optimizations in solvent media were performed with the same level of theory by the integral equation formalism polarizable continuum (IEF-PCM). Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined.

  9. The spectroscopic (FT-IR, UV-vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile.

    PubMed

    Demircioğlu, Zeynep; Kaştaş, Çiğdem Albayrak; Büyükgüngör, Orhan

    2015-03-15

    A new o-hydroxy Schiff base, (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile was isolated and investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. The vibrational spectral analysis was carried out by using FT-IR spectroscopy in the range of 4000-400cm(-)(1). Theoretical calculations were performed by density functional theory (DFT) method using 6-31G(d,p) basis set. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The UV-vis spectrum of the compound was recorded in the region 200-800 nm in several solvents and electronic properties such as excitation energies, and wavelengths were calculated by TD-DFT/B3LYP method. The most prominent transitions were corresponds to π→π∗. Hybrid density functional theory (DFT) was used to investigate the enol-imine and keto-amine tautomers of titled compound. The titled compound showed the preference of enol form, as supported by X-ray and spectroscopic analysis results. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms. Additionally, geometry optimizations in solvent media were performed with the same level of theory by the integral equation formalism polarizable continuum (IEF-PCM). Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined.

  10. Determination of adamantane derivatives in pharmaceutical formulations by using spectrophotometric UV-Vis method.

    PubMed

    Sobczak, Agnieszka; Muszalska, Izabela; Rohowska, Paulina; Inerowicz, Tomasz; Dotka, Hubert; Jelińska, Anna

    2013-05-01

    A simple and sensitive extractive spectrophotometric method have been developed and validated for determination of amantadine hydrochloride (AM), memantine hydrochloride (MM) and rimantadine hydrochloride (RM) in pure and pharmaceutical formulations. The method is based on the reaction of these active compounds with bromophenol blue (BB) in acetate buffer (0.1 M) pH 3.5 to form an orange-colored products which have absorption maxima at 408 nm. The procedure of complexation was optimized with regard to such factors as concentrations of BB, pH of medium, a kind of extracting solvents and a number of extractions. Under the optimum conditions, linear relationships A408 = f(c) with good correlation coefficients (≥0.996) and low limit of detection were obtained in the ranges of 50.0-220.0 µg·mL(-1), 20.0-150.0 µg·mL(-1) or 10.0-110.0 µg·mL(-1) for AM, MM and RM, respectively, for the spectrophotometric methods. The proposed method could be applied to the determination of AM, MM and RM in dosage forms. The recovery was 95.3-101.9%. The method was linear, precise and accurate.

  11. Application of UV-Vis spectrophotometric process for the assessment of indoloacridines as free radical scavenger.

    PubMed

    Sridharan, Makuteswaran; Prasad, K J Rajendra; Madhumitha, G; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan

    2016-09-01

    A conventional approach has been used to synthesis Indole fused acridine, 4a-e. In this paper to achieve the target molecule, 4 the reaction was performed via two steps. In step 1, there was a reaction between Carbazolone, 1 and benzophenone, 2 to get dihydroindoloacridine, 3. In step 2, compound, 3 was treated with 5% Palladium/Carbon in the presence of diphenyl ether for 5h to give a dark brown product, 4. The column chromatography was used to purify final product, 4. All the synthesized compounds such as 3 and 4 were characterized by melting point, FTIR, (1)H NMR, and Mass spectra. Further to check the purity of the compounds it was subjected to CHN analyzer. The target molecules such as 3 and 4 were screened for antimicrobial studies against bacteria such as Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Klebsiella pneumonia (K. pneumonia), Salmonella typhi (S. typhi); and fungi like Aspergillus niger (A. niger), Aspergillus fumigatus (A. fumigatus). The obtained results clearly proves that the target molecules shown reasonable activity against K. pneumonia and A. niger. Further the compounds were screened for free radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH). The free radical scavenging property was performed using UV-Visible spectroscopy. The results were compared with the standard BHT (Butylated Hydroxy Toluene). Compounds, 4a and 4e were shown higher percentage of inhibition when compare to the standard. The result confirms that further research on indoloacridine will leads effective drug to the market.

  12. Color change of Ruby investigated by Raman and UV-vis

    NASA Astrophysics Data System (ADS)

    Breckling, Sean; Zou, Ying; Ray, Shishir; Buroker, Larry; Sen, Somaditya; Williamsen, Mark; Guptasarma, Prasenjit

    2009-03-01

    The origin of a distinctive red color in Ruby (Al2O3:Cr^3+) continues to be a fundamental unsolved question [1]. We report the synthesis of a series of samples of 2% Cr2O3 by solid state reaction [2] at temperatures varying between 900^o and 1300^oC. We observe a visible change in color at every stage, from light green, to grey, and to pink, indicating progressive incorportation of Cr^3+ ions into the Al2O3 lattice. We report further investigations of x-ray diffraction analysis, Raman and UV-visible spectroscopy, and correlate the observed color changes with the evolution of vibration modes of the cage around CrO6 and band-gap states resulting from Cr incorporation. We also plan to report results from single crystals grown using a floating zone. [1]J.M. Garcia-Lastra, M.T. Barriuso, J.A. Aramburu and M. Moreno, Phys. Rev. B 72(2005)113104 [2]L.W. Finger and R.M. Hazen, J. Appl. Phys. 49(1978)5823

  13. Application of a UV-Vis submersible probe for capturing changes in DOC concentrations across a mire complex during the snowmelt and summer periods

    NASA Astrophysics Data System (ADS)

    Avagyan, Armine; Runkle, Benjamin; Kutzbach, Lars

    2013-04-01

    An accurate quantification of dissolved organic carbon (DOC) is crucial for understanding changes in water resources under the influence of climate, land use and urbanization. However, the conventionally used methods do not allow high frequency in situ analyses in remote or hostile environments (e.g., industrial wastewater or during environmental high-flow events, such as snowmelt or floods). In particular, missing measurements during the snowmelt period in landscapes of the boreal region can lead to significant miscalculations in regional carbon budgets. Therefore, the aim of the study was to test the performance of a portable, submersible UV-Vis spectrophotometer (spectro::lyser, s::can Messtechnik GmbH, Austria) during the snowmelt period in a boreal mire-forest catchment, and to provide a conceptual understanding of the spatial and temporal dynamics of DOC concentrations during and after snowmelt. During 2011, water samples were collected from the near-pristine Ust-Pojeg mire complex in northwestern Russia (61° 56'N, 50° 13'E). Sampling started during the spring snowmelt period and continued until late fall. The mire presented a mosaic of different landscape units. The mire consisted of minerogeous (fen), ombrogenous (bog), and transitional forest-mire (lagg) zones. Water samples were taken from the surface across the mire (22 points at 50-m intervals). DOC concentrations were analyzed directly at the study site using a portable, submersible UV-Vis spectrophotometer, which uses high-resolution absorbance measurements over the wavelength range 200-742.5 nm at 2.5-nm intervals as a proxy for DOC content. Because the DOC composition of fluids varies by site, a local calibration replaced the default settings of the spectro::lyser (Global Calibration) to enhance the accuracy of the measurements. To evaluate the local calibration and correct for drift, the same samples (n = 157) were additionally analyzed using the wet persulfate oxidation method (O

  14. Ten years of OMI observations: scientific highlights and impacts on the new generation of UV/VIS satellite instrumentation

    NASA Astrophysics Data System (ADS)

    Levelt, Pieternel; Veefkind, Pepijn; Bhartia, Pawan; Joiner, Joanna; Tamminen, Johanna; OMI Science Team

    2014-05-01

    On July 15, 2004 Ozone Monitoring Instrument (OMI) was successfully launched from the Vandenberg military air force basis in California, USA, on NASA's EOS-Aura spacecraft. OMI is the first of a new generation of UV/VIS nadir solar backscatter imaging spectrometers, which provides nearly global coverage in one day with an unprecedented spatial resolution of 13 x 24 km2. OMI measures solar irradiance and Earth radiances in the wavelength range of 270 to 500 nm with a spectral resolution of about 0.5 nm. OMI is designed and built by the Netherlands and Finland and is also a third party mission of ESA. The major step that was made in the OMI instrument compared to its predecessors is the use of 2-dimensional detector arrays (CCDs) in a highly innovative small optical design. These innovations enable the combination of a high spatial resolution and a good spectral resolution with daily global coverage. OMI measures a range of trace gases (O3, NO2, SO2, HCHO, BrO, OClO, H2O), clouds and aerosols. Albeit OMI is already 5 years over its design lifetime, the instrument is still fully operational. The successor of OMI is TROPOMI (TROPOspheric Monitoring Instrument) on the Copernicus Sentinel-5 precursor mission, planned for launch in 2015. OMI's unique capabilities rely in measuring tropospheric trace gases with a small footprint and daily global coverage. The unprecedented spatial resolution of the instrument revealed for the first time tropospheric pollution maps on a daily basis with urban scale resolution leading to improved air quality forecasts. The OMI measurements also improve our understanding of air quality and the interaction between air quality and climate change by combining measurements of air pollutants and aerosols. In recent years the data are also used for obtaining high-resolution global emission maps using inverse modelling or related techniques, challenging the bottom-up inventories based emission maps. In addition to scientific research, OMI also

  15. Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV/Vis tropospheric column retrievals

    NASA Astrophysics Data System (ADS)

    Boersma, K. F.; Vinken, G. C. M.; Eskes, H. J.

    2015-09-01

    UV/Vis satellite retrievals of trace gas columns of nitrogen dioxide (NO2), sulphur dioxide (SO2), and formaldehyde (HCHO) are useful to test and improve models of atmospheric composition, for data assimilation, air quality hindcasting and forecasting, and to provide top-down constraints on emissions. However, because models and satellite measurements do not represent the exact same geophysical quantities, the process of confronting model fields with satellite measurements is complicated by representativeness errors, which degrade the quality of the comparison beyond contributions from modelling and measurement errors alone. Here we discuss three types of representativeness errors that arise from the act of carrying out a model-satellite comparison: (1) horizontal representativeness errors due to imperfect collocation of the model grid cell and an ensemble of satellite pixels called superobservation, (2) temporal representativeness errors originating mostly from differences in cloud cover between the modelled and observed state, and (3) vertical representativeness errors because of reduced satellite sensitivity towards the surface accompanied with necessary retrieval assumptions on the state of the atmosphere. To minimize the impact of these representativeness errors, we recommend that models and satellite measurements be sampled as consistently as possible, and our paper provides a number of recipes to do so. A practical confrontation of tropospheric NO2 columns simulated by the TM5 chemistry transport model (CTM) with Ozone Monitoring Instrument (OMI) tropospheric NO2 retrievals suggests that horizontal representativeness errors, while unavoidable, are limited to within 5-10 % in most cases and of random nature. These errors should be included along with the individual retrieval errors in the overall superobservation error. Temporal sampling errors from mismatches in cloud cover, and, consequently, in photolysis rates, are on the order of 10 % for NO2 and HCHO

  16. Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV-Vis tropospheric column retrievals

    NASA Astrophysics Data System (ADS)

    Boersma, K. F.; Vinken, G. C. M.; Eskes, H. J.

    2016-03-01

    Ultraviolet-visible (UV-Vis) satellite retrievals of trace gas columns of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) are useful to test and improve models of atmospheric composition, for data assimilation, air quality hindcasting and forecasting, and to provide top-down constraints on emissions. However, because models and satellite measurements do not represent the exact same geophysical quantities, the process of confronting model fields with satellite measurements is complicated by representativeness errors, which degrade the quality of the comparison beyond contributions from modelling and measurement errors alone. Here we discuss three types of representativeness errors that arise from the act of carrying out a model-satellite comparison: (1) horizontal representativeness errors due to imperfect collocation of the model grid cell and an ensemble of satellite pixels called superobservation, (2) temporal representativeness errors originating mostly from differences in cloud cover between the modelled and observed state, and (3) vertical representativeness errors because of reduced satellite sensitivity towards the surface accompanied with necessary retrieval assumptions on the state of the atmosphere. To minimize the impact of these representativeness errors, we recommend that models and satellite measurements be sampled as consistently as possible, and our paper provides a number of recipes to do so. A practical confrontation of tropospheric NO2 columns simulated by the TM5 chemistry transport model (CTM) with Ozone Monitoring Instrument (OMI) tropospheric NO2 retrievals suggests that horizontal representativeness errors, while unavoidable, are limited to within 5-10 % in most cases and of random nature. These errors should be included along with the individual retrieval errors in the overall superobservation error. Temporal sampling errors from mismatches in cloud cover, and, consequently, in photolysis rates, are of the order of 10

  17. Nearedge Absorption Spectroscopy of Interplanetary Dust Particles

    SciTech Connect

    Brennan, S.; Luening, K.; Pianetta, P.; Bradley, J.; Graham, G.; Westphal, A.; Snead, C.; Dominguez, G.; /SLAC, SSRL

    2006-10-25

    Interplanetary Dust Particles (IDPs) are derived from primitive Solar System bodies like asteroids and comets. Studies of IDPs provide a window onto the origins of the solar system and presolar interstellar environments. We are using Total Reflection X-ray Fluorescence (TXRF) techniques developed for the measurement of the cleanliness of silicon wafer surfaces to analyze these particles with high detection sensitivity. In addition to elemental analysis of the particles, we have collected X-ray Absorption Near-Edge spectra in a grazing incidence geometry at the Fe and Ni absorption edges for particles placed on a silicon wafer substrate. We find that the iron is dominated by Fe{sub 2}O{sub 3}.

  18. Spectral analysis, vibrational assignments, NBO analysis, NMR, UV-Vis, hyperpolarizability analysis of 2-aminofluorene by density functional theory.

    PubMed

    Jone Pradeepa, S; Sundaraganesan, N

    2014-05-05

    In this present investigation, the collective experimental and theoretical study on molecular structure, vibrational analysis and NBO analysis has been reported for 2-aminofluorene. FT-IR spectrum was recorded in the range 4000-400 cm(-1). FT-Raman spectrum was recorded in the range 4000-50 cm(-1). The molecular geometry, vibrational spectra, and natural bond orbital analysis (NBO) were calculated for 2-aminofluorene using Density Functional Theory (DFT) based on B3LYP/6-31G(d,p) model chemistry. (13)C and (1)H NMR chemical shifts of 2-aminofluorene were calculated using GIAO method. The computed vibrational and NMR spectra were compared with the experimental results. The total energy distribution (TED) was derived to deepen the understanding of different modes of vibrations contributed by respective wavenumber. The experimental UV-Vis spectra was recorded in the region of 400-200 nm and correlated with simulated spectra by suitably solvated B3LYP/6-31G(d,p) model. The HOMO-LUMO energies were measured with time dependent DFT approach. The nonlinearity of the title compound was confirmed by hyperpolarizabilty examination. Using theoretical calculation Molecular Electrostatic Potential (MEP) was investigated.

  19. Chlorine Dioxide-Iodide-Methyl Acetoacetate Oscillation Reaction Investigated by UV-Vis and Online FTIR Spectrophotometric Method

    PubMed Central

    Shi, Laishun; Wang, Xiaomei; Li, Na; Liu, Jie; Yan, Chunying

    2012-01-01

    In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction. PMID:22454614

  20. Use of multivariate calibration models based on UV-Vis spectra for seawater quality monitoring in Tianjin Bohai Bay, China.

    PubMed

    Liu, Xianhua; Wang, Lili

    2015-01-01

    A series of ultraviolet-visible (UV-Vis) spectra from seawater samples collected from sites along the coastline of Tianjin Bohai Bay in China were subjected to multivariate partial least squares (PLS) regression analysis. Calibration models were developed for monitoring chemical oxygen demand (COD) and concentrations of total organic carbon (TOC). Three different PLS models were developed using the spectra from raw samples (Model-1), diluted samples (Model-2), and diluted and raw samples combined (Model-3). Experimental results showed that: (i) possible nonlinearities in the signal concentration relationships were well accounted for by the multivariate PLS model; (ii) the predicted values of COD and TOC fit the analytical values well; the high correlation coefficients and small root mean squared error of cross-validation (RMSECV) showed that this method can be used for seawater quality monitoring; and (iii) compared with Model-1 and Model-2, Model-3 had the highest coefficient of determination (R2) and the lowest number of latent variables. This latter finding suggests that only large data sets that include data representing different combinations of conditions (i.e., various seawater matrices) will produce stable site-specific regressions. The results of this study illustrate the effectiveness of the proposed method and its potential for use as a seawater quality monitoring technique.

  1. Assessment of gamma radiolytic degradation in waste lubricating oil by GC/MS and UV/VIS

    NASA Astrophysics Data System (ADS)

    Scapin, Marcos A.; Duarte, Celina L.; Bustillos, José Oscar W. V.; Sato, Ivone M.

    2009-07-01

    The hydrocarbons degradation by gamma irradiation of the waste automotive lubricating oil at different absorbed doses has was investigated. The waste automotive oil in a Brazilian oil recycling company was collected. This sample was fractioned and 50% and 70% (v/v) Milli-Q water were added. Each sample was irradiated with 100, 200 and 500 kGy doses using a gamma source Co-60—GAMMACELL type, with 5×10 3 Ci total activity. Gas chromatography-mass spectrometry (GC/MS) was used to identify degraded organic compounds. The mass spectra were analyzed using the mass spectral library from NIST, installed in the spectrometer. The sample irradiated at 500 kGy dose with 70% (v/v) Milli-Q water addition formed eight degradation products, namely diethanolmethylamine (C 5H 13NO), diethyldiethylene glycol (C 8H 18O 3), 1-octyn-3-ol, 4-ethyl (C 10H 18O) and 1.4-pentanediamine, N1, N1-diethyl (C 9H 22N 2). The color changing of the waste lubricating oil, for different absorbed doses, was determined by UV/VIS spectrophotometer. The related sample showed the lowest absorbance value evidencing the formation of 2-ethoxyethyl ether (C 8H 18O 3) compound.

  2. Measurement of quantity of iron in magnetically labeled cells: comparison among different UV/VIS spectrometric methods.

    PubMed

    Rad, Ali M; Janic, Branislava; Iskander, A S M; Soltanian-Zadeh, Hamid; Arbab, Ali S

    2007-11-01

    Cell labeling with superparamagnetic iron oxides (SPIO) is becoming a routine procedure in cellular magnetic resonance imaging (MRI). Quantifying the intracellular iron in labeled cells is a prerequisite for determining the number of accumulated cells by quantitative MRI studies. To establish the most sensitive and reproducible method for measuring iron concentration in magnetically labeled cells, we investigated and compared four different methods using an ultraviolet-visible (UV/VIS) spectrophotometer. Background spectra were obtained for 5 and 10 M hydrochloric acids, a mixture of 100 mM citric acid plus ascorbic acid and bathophenanthroline sulphonate (BPS), and a mixture of 5 M hydrochloric acid plus 5% ferrocyanide. Spectra of the same solutions containing either 10 or 5 microg/mL iron oxides were also created to determine the peak absorbance wavelengths for the dissolved iron. In addition, different known iron concentrations were used to obtain calibration lines for each method. Based on the calibration factors, iron was measured in samples with a known amount of iron and in labeled cells. Methods based on the use of 10 M hydrochloric acid underestimated iron concentration in all experiments; for this method to give an accurate measurement, iron concentration in sample needs to be at least 3 microg/mL.

  3. Chlorine dioxide-iodide-methyl acetoacetate oscillation reaction investigated by UV-vis and online FTIR spectrophotometric method.

    PubMed

    Shi, Laishun; Wang, Xiaomei; Li, Na; Liu, Jie; Yan, Chunying

    2012-01-01

    In order to study the chemical oscillatory behavior and mechanism of a new chlorine dioxide-iodide ion-methyl acetoacetate reaction system, a series of experiments were done by using UV-Vis and online FTIR spectrophotometric method. The initial concentrations of methyl acetoacetate, chlorine dioxide, potassium iodide, and sulfuric acid and the pH value have great influence on the oscillation observed at wavelength of 289 nm. There is a preoscillatory or induction period, and the amplitude and the number of oscillations are associated with the initial concentration of reactants. The equations for the triiodide ion reaction rate changing with reaction time and the initial concentrations in the oscillation stage were obtained. Oscillation reaction can be accelerated by increasing temperature. The apparent activation energies in terms of the induction period and the oscillation period were 26.02 KJ/mol and 17.65 KJ/mol, respectively. The intermediates were detected by the online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.

  4. Optoacoustic spectroscopy and its application to molecular and particle absorption

    NASA Astrophysics Data System (ADS)

    Trees, Charles C.; Voss, Kenneth J.

    1990-09-01

    Light absorption in the ocean has been the least studied optical property because of the difficulties in making accurate measurements. With the previously used techniques, large differences have been reported for the specific absorption coefficient of phytoplankton (cultures and natural assemblages). It is difficult to determine if the diversity in these values are methodological or a function of actual variations in absorption. With the renewed interest and activity in optoacoustic spectroscopy (OAS), which accurately measures absorption, some of these discrepancies should be resolved. In this method, as molecules and particles absorb light from a modulated source, they thermally expand and contract, thereby generating acoustic waves, at the modulation frequency, which are detected by a hydrophone. Optoacoustic spectroscopy is ideally suited for measuring dissolved organic material and particle absorptions because of its high sensitivity (105m1) and the egligible effect of scattered light. In this paper the instrumental design for an optoacoustic spectrophotometer (OAS), which pecifically measures phytoplankton absorption (420-S5Onm), is described. The spectral absorption of dissolved organic material and a phytoplankton culture is presented. OAS holds promise in being able to measure absorption without use of either filtration or concentration techniques.

  5. Paper Chromatography and UV-Vis Spectroscopy to Characterize Anthocyanins and Investigate Antioxidant Properties in the Organic Teaching Laboratory

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery; Novak, Michael

    2015-01-01

    A variety of fruits and vegetables, including raspberries, blueberries, Concord grapes, blackberries, strawberries, peaches, eggplant, red cabbage, and red onions, contain flavonoid compounds known as anthocyanins that are responsible for the blue-red color and the astringent taste associated with such foods. In addition, anthocyanins exhibit a…

  6. Investigation of the interaction between five alkaloids and human hemoglobin by fluorescence spectroscopy and molecular modeling.

    PubMed

    He, Wu; Dou, Huanjing; Li, Zhigang; Wang, Xiaogai; Wang, Lvjing; Wang, Ruiyong; Chang, Junbiao

    2014-04-05

    This work studied the interaction of human hemoglobin (HHb) with aminophylline, acefylline, caffeine, theophylline and diprophylline systematically by UV-vis absorption spectroscopy and fluorescence spectroscopy in combination with molecular modeling. Five alkaloids caused the fluorescence quenching of HHb by the formation of alkaloids-HHb complex. The binding constants and thermodynamic parameters were obtained. The hydrophobic and electrostatic interactions were the predominant intermolecular forces to stabilize these complexes. Results of thermodynamic analysis and molecular modeling showed that aminophylline was the strongest quencher and diprophylline was the weakest quencher.

  7. In situ soft X-ray absorption spectroscopy of flames

    NASA Astrophysics Data System (ADS)

    Frank, Jonathan H.; Shavorskiy, Andrey; Bluhm, Hendrik; Coriton, Bruno; Huang, Erxiong; Osborn, David L.

    2014-10-01

    The feasibility of in situ soft X-ray absorption spectroscopy for imaging carbonaceous species in hydrocarbon flames is demonstrated using synchrotron radiation. Soft X-rays are absorbed by core level electrons in all carbon atoms regardless of their molecular structure. Core electron spectroscopy affords distinct advantages over valence spectroscopy, which forms the basis of traditional laser diagnostic techniques for combustion. In core level spectroscopy, the transition linewidths are predominantly determined by the instrument response function and the decay time of the core-hole, which is on the order of a femtosecond. As a result, soft X-ray absorption measurements can be performed in flames with negligible Doppler and collisional broadening. Core level spectroscopy has the further advantage of measuring all carbonaceous species regardless of molecular structure in the far-edge region, whereas near-edge features are molecule specific. Interferences from non-carbon flame species are unstructured and can be subtracted. In the present study, absorption measurements in the carbon K-edge region are demonstrated in low-pressure ( P total = 20-30 Torr) methane jet flames. Two-dimensional imaging of the major carbonaceous species, CH4, CO2, and CO, is accomplished by tuning the synchrotron radiation to the respective carbon K-edge, near-edge X-ray absorption fine structure (NEXAFS) transitions and scanning the burner.

  8. FT-IR, UV-vis, 1H and 13C NMR spectra and the equilibrium structure of organic dye molecule disperse red 1 acrylate: a combined experimental and theoretical analysis.

    PubMed

    Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet

    2011-12-01

    This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials.

  9. Molecular shock response of explosives: electronic absorption spectroscopy

    SciTech Connect

    Mcgrne, Shawn D; Moore, David S; Whitley, Von H; Bolme, Cindy A; Eakins, Daniel E

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  10. Molecular Shock Response of Explosives: Electronic Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGrane, S. D.; Moore, D. S.; Whitley, V. H.; Bolme, C. A.; Eakins, D. E.

    2009-12-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference as well as broadband increased absorption. Relation to shock initiation and the need for time dependent absorption (future experiments) is briefly discussed.

  11. Complexation study of brilliant cresyl blue with β-cyclodextrin and its derivatives by UV-vis and fluorospectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Feng; Jiang, Zi-Tao; Guo, Yu-Xian; Li, Rong

    2008-01-01

    The complexation reactions of brilliant cresyl blue (BCB) with β-cyclodextrin (β-CD), mono[2- O-(2-hydroxypropyl)]-β-CD (2-HP-β-CD), mono[2- O-(2-hydroxyethyl)]-β-CD (2-HE-β-CD), and heptakis(2,6-di-methyl) -β-CD (DM-β-CD) were investigated using UV-vis and fluorospectrometry. The complexation between BCB and CDs could inhibit the aggregation of BCB molecules and could cause its absorbance at 634 nm gradually increasing. The fluorescence of BCB was also enhanced with the addition of CDs. The fluorescence enhancement was more notable in neutral and acidic media than in basic media. Hildebrand-Benesi equation was used to calculate the formation constants of β-CDs with BCB based on the fluorescence differences in the CDs solution. The stoichiometry ratio was found to be 1:1. The complexing capacities of β-CD and its three derivatives were compared and the results followed the order: 2-HP-β-CD > 2-HE-β-CD > DM-β-CD > β-CD. The effect of temperature on the formation of BCB-β -CD inclusion complexes has also been examined. The results revealed that the formation constants decreased with the increase of temperature from 1038.9 to 491.6 l/mol. Enthalpy and entropy values were calculated and the values were -25.77 kJ/mol and 35.04 J/kmol, respectively. The thermodynamic measurements suggest that the inclusive process was enthalpic favor. The release of high-energy water molecules and Van der Waals force played an important role in the inclusive process.

  12. Complexation study of brilliant cresyl blue with beta-cyclodextrin and its derivatives by UV-vis and fluorospectrometry.

    PubMed

    Zhang, Qing-Feng; Jiang, Zi-Tao; Guo, Yu-Xian; Li, Rong

    2008-01-01

    The complexation reactions of brilliant cresyl blue (BCB) with beta-cyclodextrin (beta-CD), mono[2-O-(2-hydroxypropyl)]-beta-CD (2-HP-beta-CD), mono[2-O-(2-hydroxyethyl)]-beta-CD (2-HE-beta-CD), and heptakis(2,6-di-methyl) -beta-CD (DM-beta-CD) were investigated using UV-vis and fluorospectrometry. The complexation between BCB and CDs could inhibit the aggregation of BCB molecules and could cause its absorbance at 634nm gradually increasing. The fluorescence of BCB was also enhanced with the addition of CDs. The fluorescence enhancement was more notable in neutral and acidic media than in basic media. Hildebrand-Benesi equation was used to calculate the formation constants of beta-CDs with BCB based on the fluorescence differences in the CDs solution. The stoichiometry ratio was found to be 1:1. The complexing capacities of beta-CD and its three derivatives were compared and the results followed the order: 2-HP-beta-CD>2-HE-beta-CD>DM-beta-CD>beta-CD. The effect of temperature on the formation of BCB-beta-CD inclusion complexes has also been examined. The results revealed that the formation constants decreased with the increase of temperature from 1038.9 to 491.6l/mol. Enthalpy and entropy values were calculated and the values were -25.77kJ/mol and 35.04J/kmol, respectively. The thermodynamic measurements suggest that the inclusive process was enthalpic favor. The release of high-energy water molecules and Van der Waals force played an important role in the inclusive process.

  13. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-05

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  14. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes

    NASA Astrophysics Data System (ADS)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800 nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  15. Biotechnologically obtained nanocomposites: A practical application for photodegradation of Safranin-T under UV-Vis and solar light.

    PubMed

    Pinto da Costa, João; Girão, Ana V; Monteiro, Olinda C; Trindade, Tito; Costa, Maria C

    2015-01-01

    This research was undertaken to determine the potential of biologically obtained ZnS-TiO2 nanocomposites to be used as catalysts in the photodegradation of organic pollutants, namely, Safranin-T. The photocatalysts were prepared by modifying the surface of commercial TiO2 particles with naturally produced ZnS, using sulfide species produced by sulfate-reducing bacteria and metal contaminated wastewaters. Comparative studies using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM), prior and after photodegradation, were carried out in order to monitor possible structural and morphological changes on the particles. Adsorption properties and specific areas were determined by the Brunauer-Emmet-Teller (BET) method. The final solutions were characterized by UV-Vis and chemical oxygen demand (COD) content in order to determine Safranin-T concentration and toxicity. The influence of the catalyst amount, initial pH and dye concentration was also evaluated. Finally, the efficiency of the precipitates as catalysts in sunlight-mediated photodegradation was investigated, performing two scale experiments by using different volumes of dye-contaminated water (150 mL and 10 L). All tested composites showed potential to be used as photocatalysts for the degradation of Safranin-T, although the ZnS-TiO2_0.06 composite (0.06 g of TiO2 per 50 mL of the zinc solution) was the most effective. This substantiates the applicability of these biologically obtained materials as efficient photocatalysts for the degradation of organic pollutants, in laboratorial conditions and under direct sunlight.

  16. The On-Line Uv/Vis Spectra Data Base An Example For Interactive Access To Scientific Information

    NASA Astrophysics Data System (ADS)

    Noelle, A.; Hartmann, G.; Richter, A.

    2003-04-01

    The basic concept of the on-line "UV/Vis Spectra Data Base" is to provide useful information to the scientific community on a proper basis, especially in times where scientific information becomes more and more a commercial product and is therefore often not within the financial means of those people who actually generated the information. Besides the EGS activities in peer reviewed open access e-publishing (e.g. the journal "Atmopheric Chemistry and Physics", ACP) this concept can help the community to reduce the "digital divide" for scientific and technical information. The on-line data base is maintained by a team consisting of the data base providers, the data producer and its users. The long-term scienctific success depends on the close cooperation of this team. Therefore all scientists are encouraged to join this cooperative effort and support the data base either actively or passively. Active support means the provision of missing or newly measured validated spectral data for inclusion in the data base. Although there is a moderate annual maintenance fee for the data base utilization, those scientists who actively support the data base can use the data base free-of-charge. There is also the possibility to support the data base passively by subscription to the data base. Even those scienctists who do not support the data base can benefit from the "Literature Service" which is free-of-charge. This data base concept differs from other commercial activities on this area and matches the philosophy of Copernicus.

  17. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  18. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  19. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  20. [Burner head with high sensitivity in atomic absorption spectroscopy].

    PubMed

    Feng, X; Yang, Y

    1998-12-01

    This paper presents a burner head with gas-sample separate entrance and double access, which is used for atomic absorption spectroscopy. According to comparison and detection, the device can improve sensitivity by a factor of 1 to 5. In the meantime it has properties of high stability and resistance to interference.

  1. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  2. Combined surface plasmon resonance and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia, Miguel Angel; Serrano, Aida; Rodriguez de La Fuente, Oscar; Castro, German R.

    2012-02-01

    We present a system for the excitation and measurement of surface plasmons in metallic films based on the Kretschmann-Raether configuration that can be installed in a synchrotron beamline. The device was mounted an tested in a hard X-ray Absorption beamline, BM25 Spline at ESRF. Whit this device it is possible to carry on experiments combining surface plasmon and X-ray absorption spectroscopies. The surface plasmons can be use to monitor in situ changes induced by the X-rays in the metallic films or the dielectric overlayer. Similarly, the changes in the electronic configuration of the material when surface plasmons are excited can be measured by X-ray absorption spectroscopy. The resolution of the system allows to observe changes in the signals of the order of 10-3 to 10-5 depending on the particular experiment and used configuration. The system is available for experiments at the beamline.

  3. Comparison of carrier transport mechanism under UV/Vis illumination in an AZO photodetector and an AZO/p-Si heterojunction photodiode produced by spray pyrolysis

    SciTech Connect

    Shasti, M.; Mortezaali, A. Dariani, R. S.

    2015-01-14

    In this study, Aluminum doped Zinc Oxide (AZO) layer is deposited on p-type silicon (p-Si) by spray pyrolysis method to fabricate ultraviolet-visible (UV/Vis) photodetector as Al doping process can have positive effect on the photodetector performance. Morphology, crystalline structure, and Al concentration of AZO layer are investigated by SEM, XRD, and EDX. The goal of this study is to analyze the mechanism of carrier transport by means of current-voltage characteristics under UV/Vis illumination in two cases: (a) electrodes connected to the surface of AZO layer and (b) electrodes connected to cross section of heterojunction (AZO/p-Si). Measurements indicate that the AZO/p-Si photodiode exhibits a higher photocurrent and lower photoresponse time under visible illumination with respect to AZO photodetector; while under UV illumination, the above result is inversed. Besides, the internal junction field of AZO/p-Si heterojunction plays an important role on this mechanism.

  4. An Enhanced UV-Vis-NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS Quantum Dots Film Heterostructure.

    PubMed

    Zheng, Zhi; Gan, Lin; Zhang, Jianbing; Zhuge, Fuwei; Zhai, Tianyou

    2017-03-01

    ZnO nanostructure-based photodetectors have a wide applications in many aspects, however, the response range of which are mainly restricted in the UV region dictated by its bandgap. Herein, UV-vis-NIR sensitive ZnO photodetectors consisting of ZnO nanowires (NW) array/PbS quantum dots (QDs) heterostructures are fabricated through modified electrospining method and an exchanging process. Besides wider response region compared to pure ZnO NWs based photodetectors, the heterostructures based photodetectors have faster response and recovery speed in UV range. Moreover, such photodetectors demonstrate good flexibility as well, which maintain almost constant performances under extreme (up to 180°) and repeat (up to 200 cycles) bending conditions in UV-vis-NIR range. Finally, this strategy is further verified on other kinds of 1D nanowires and 0D QDs, and similar enhancement on the performance of corresponding photodetecetors can be acquired, evidencing the universality of this strategy.

  5. Aqueous-Phase Synthesis of Silver Nanodiscs and Nanorods in Methyl Cellulose Matrix: Photophysical Study and Simulation of UV-Vis Extinction Spectra Using DDA Method.

    PubMed

    Sarkar, Priyanka; Bhui, Dipak Kumar; Bar, Harekrishna; Sahoo, Gobinda Prasad; Samanta, Sadhan; Pyne, Santanu; Misra, Ajay

    2010-07-18

    We present a very simple and effective way for the synthesis of tunable coloured silver sols having different morphologies. The procedure is based on the seed-mediated growth approach where methyl cellulose (MC) has been used as soft-template in the growth solution. Nanostructures of varying morphologies as well as colour of the silver sols are controlled by altering the concentration of citrate in the growth solution. Similar to the polymers in the solution, citrate ions also dynamically adsorbed on the growing silver nanoparticles and promote one (1-D) and two-dimensional (2-D) growth of nanoparticles. Silver nanostructures are characterized using UV-vis and HR-TEM spectroscopic study. Simulation of the UV-vis extinction spectra of our synthesized silver nanostructures has been carried out using discrete dipole approximation (DDA) method.

  6. The structural defects and UV-VIS spectral characterization of TiO{sub 2} particles doped in the lattice with Cr{sup 3+} cations

    SciTech Connect

    Liu, Z.L.; Cui, Z.L.; Zhang, Z.K. . E-mail: zhangzk@public.qd.sd.cn

    2005-02-15

    Titania nanoparticles doped with Cr{sup 3+} (2% relative to molar quantity of titania) were prepared and examined by EDS, HRTEM, XRD, and UV-VIS analysis. HRTEM images showed the detailed atomic arrays and vacancy defects of the doped Titania nanocrystals and revealed that the implanted Cr element existed in titania mainly as Cr{sup 3+} ions which located at the lattice positions of Ti{sup 4+} ions. Compared with pure titania, the UV-VIS spectra of the Cr{sup 3+} doped titania show significantly increased absorbance in visible light region. This indicated that the presence of the Cr{sup 3+} ions affected the lattice structure of titania nanocrystals and plays an reformative role in spectral feature of titania.

  7. Assessment of repeatability of composition of perfumed waters by high-performance liquid chromatography combined with numerical data analysis based on cluster analysis (HPLC UV/VIS - CA).

    PubMed

    Ruzik, L; Obarski, N; Papierz, A; Mojski, M

    2015-06-01

    High-performance liquid chromatography (HPLC) with UV/VIS spectrophotometric detection combined with the chemometric method of cluster analysis (CA) was used for the assessment of repeatability of composition of nine types of perfumed waters. In addition, the chromatographic method of separating components of the perfume waters under analysis was subjected to an optimization procedure. The chromatograms thus obtained were used as sources of data for the chemometric method of cluster analysis (CA). The result was a classification of a set comprising 39 perfumed water samples with a similar composition at a specified level of probability (level of agglomeration). A comparison of the classification with the manufacturer's declarations reveals a good degree of consistency and demonstrates similarity between samples in different classes. A combination of the chromatographic method with cluster analysis (HPLC UV/VIS - CA) makes it possible to quickly assess the repeatability of composition of perfumed waters at selected levels of probability.

  8. Ultraviolet-Visible (UV-Vis) and Fluorescence Spectroscopic Investigation of the Interactions of Ionic Liquids and Catalase.

    PubMed

    Dong, Xing; Fan, Yunchang; Yang, Peng; Kong, Jichuan; Li, Dandan; Miao, Juan; Hua, Shaofeng; Hu, Chaobing

    2016-11-01

    The inhibitory effects of nine ionic liquids (ILs) on the catalase activity were investigated using fluorescence, absorption ultraviolet-visible spectroscopy. The interactions of ILs and catalase on the molecular level were studied. The experimental results indicated that ILs could inhibit the catalase activity and their inhibitory abilities depended on their chemical structures. Fluorescence experiments showed that hydrogen bonding played an important role in the interaction process. The inhibitory abilities of ILs on catalase activity could be simply described by their hydrophobicity and hydrogen bonding abilities. Unexpected less inhibitory effects of trifluoromethanesulfonate (TfO(-)) might be ascribed to its larger size, which makes it difficult to go through the substrate channel of catalase to the active site.

  9. Polarization-enhanced absorption spectroscopy for laser stabilization.

    PubMed

    Kunz, Paul D; Heavner, Thomas P; Jefferts, Steven R

    2013-11-20

    We demonstrate a variation of pump-probe spectroscopy that is particularly useful for laser frequency stabilization. The polarization-enhanced absorption spectroscopy (POLEAS) signal provides a significant improvement in signal-to-noise ratio over saturated absorption spectroscopy (SAS) for the important and commonly used atomic cycling transitions. The improvements can directly increase the short-term stability of a laser frequency lock, given sufficient servo loop bandwidth. The long-term stability of the POLEAS method, which is limited by environmental sensitivities, is comparable to that of SAS. The POLEAS signal is automatically Doppler-free, without requiring a separate Doppler subtraction beam, and lends itself to straightforward compact packaging. Finally, by increasing the amplitude of the desired (cycling) peak, while reducing the amplitude of all other peaks in the manifold, the POLEAS method eases the implementation of laser auto-locking schemes.

  10. Local structure and optical absorption characteristic investigation on Fe doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Tian-Xing; Feng, Ya-Juan; Huang, Jun-Heng; He, Jin-Fu; Liu, Qing-Hua; Pan, Zhi-Yun; Wu, Zi-Yu

    2015-02-01

    The local structures and optical absorption characteristics of Fe doped TiO2 nanoparticles synthesized by the sol-gel method were characterized by X-ray diffraction (XRD), X-ray absorption fine structure spectroscopy (XAFS) and ultraviolet-visible absorption spectroscopy (UV-Vis). XRD patterns show that all Fe-doped TiO2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region. Supported by National Basic Research Program of China (2012CB825801), Science Fund for Creative Research Groups of NSFC (11321503), National Natural Science Foundation of China (11321503, 11179004) and Guangdong Natural Science Foundation (S2011040003985)

  11. Antimycobacterial, antimicrobial activity, experimental (FT-IR, FT-Raman, NMR, UV-Vis, DSC) and DFT (transition state, chemical reactivity, NBO, NLO).

    PubMed

    Rawat, Poonam; Singh, R N; Ranjan, Alok; Ahmad, Sartaj; Saxena, Rajat

    2017-02-11

    As part of a study of pyrrole hydrazone, we have investigated quantum chemical calculations, molecular geometry, relative energy, vibrational properties and antimycobacterial/antimicrobial activity of pyrrole-2-carboxaldehyde isonicotinyl hydrazone (PCINH), by applying the density functional theory (DFT) and Hartree Fock (HF). Good reproduction of experimental values is obtained and with small percentage error in majority of the cases in comparison to theoretical result (DFT). The experimental FT-IR and Raman wavenumbers were compared with the respective theoretical values obtained from DFT calculations and found to agree well. In crystal structure studies the hydrated PCINH (syn-syn conformer) shows different conformation than from anhydrous form (syn-anti conformer). The rotational barrier between syn-syn and syn-anti conformers of PCINH is 12.7kcal/mol in the gas phase. In this work, use of FT-IR, FT-Raman, (1)H NMR, (13)C NMR and UV-Vis spectroscopies has been made for full characterization of PCINH. A detailed interpretation of the vibrational spectrum was carried out with the aid of normal coordinate analysis using single scaling factor. Our results support the hydrogen bonding pattern proposed by reported crystalline structure. The calculated nature of electronic transitions within molecule found to be π→π*. The electronic descriptors study indicates that PCINH can be used as robust synthon for synthesis of new heterocyclic compounds. The first static hyperpolarizability (β0) of PCINH is calculated as 33.89×10(-30)esu, (gas phase); 68.79×10(-30) (CHCl3), esu; 76.76×10(-30)esu (CH2Cl2), 85.16×10(-30)esu (DMSO). The solvent induced effects on the first static hyperpolarizability were studied and found to increase as dielectric constants of the solvents increases. Investigated molecule shows better NLO value than Para nitroaniline (PNA). The compound PCINH shows good antifungal and antibacterial activity against Aspergillus niger and gram

  12. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Yongjun

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  13. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  14. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation.

    PubMed

    Drescher, L; Galbraith, M C E; Reitsma, G; Dura, J; Zhavoronkov, N; Patchkovskii, S; Vrakking, M J J; Mikosch, J

    2016-07-07

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ(*) excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  15. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    NASA Astrophysics Data System (ADS)

    Drescher, L.; Galbraith, M. C. E.; Reitsma, G.; Dura, J.; Zhavoronkov, N.; Patchkovskii, S.; Vrakking, M. J. J.; Mikosch, J.

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  16. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piletic, Ivan R.; Matthews, Thomas E.; Warren, Warren S.

    2009-11-01

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain ˜46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  17. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy.

    PubMed

    Piletic, Ivan R; Matthews, Thomas E; Warren, Warren S

    2009-11-14

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750 nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain approximately 46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  18. Using UHPLC and UV-vis Fingerprint Method to Evaluate Substitutes for Swertia mileensis: An Endangered Medicinal Plant

    PubMed Central

    Li, Jie; Zhang, Ji; Jin, Hang; Wang, Yuan-Zhong; Huang, Heng-Yu

    2017-01-01

    Swertia.Swertiamarin is the unique common compounds for four plants, which exist are in leaves of S. davidii with the highest content.The obvious diversity in four plants was displayed from comprehensive point of view though similarity assay and PCA analysis.The UV fingerprint method offsets the defect that the UHPLC fingerprint reflected messages of secoiridoid glycosides only. Abbreviation used: UHPLC: Ultra high performance liquid chromatography, UV-vis: Ultraviolet-vis, HBV: Anti-hepatitis virus, DNA: Deoxyribonucleic acid, PCA: Principal component analysis, D-GaIN: D-Galactosamine, BCG: Bacille Calmette-Guerin, LPS: Lipopolysaccharide PMID:28216877

  19. Effect of the interface on UV-vis-IR photodetection performance of PbS/ZnO nanocomposite photocatalysts

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Li, Yuanzhi; Yang, Yi; Bai, Jilin; Zhao, Xiujian

    2015-12-01

    Two PbS/ZnO nanocomposites with the same Pb/Zn molar ratio of 1:12 and different PbS/ZnO interface were prepared by depositing PbS nanocrystals on nano ZnO with the reaction between Pb(NO3)2 and Na2S through changing the sequence of adding Pb(NO3)2 and Na2S to the nano ZnO suspension: (A) first adding Pb(NO3)2 followed by adding Na2S (denoted PbS/ZnO-A); (B) first adding Na2S followed by adding Pb(NO3)2 (denoted PbS/ZnO-B). The PbS/ZnO nanocomposites are characterized by XRD, BET, Raman, TEM, XPS, and UV-vis-IR. The characterizations indicate that PbS/ZnO-A has an interface of PbS nanocrystal closely contacted to ZnO nanocrystal while PbS/ZnO-B has an interface of a disordered layer between PbS nanocrystal and ZnO nanocrystal. It is found for the first time that the PbS/ZnO interface plays an important role in their photodetection performance. PbS/ZnO-A exhibits much higher photoresponse current and lower rise and recovery time than both PbS/ZnO-B and a mixture of nano PbS and ZnO with the same Pb/Zn molar ratio as PbS/ZnO-A for visible and near-infrared photodetection. PL and the impedance measurement in dark and irradiation reveal that the superior photodetection performance of PbS/ZnO-A over PbS/ZnO-B is attributed to its lower e-h recombination and migration resistance under the irradiation of visible and infrared light due to its very good PbS/ZnO interface of PbS nanocrystals closely attached ZnO nanocrystals, through which photogenerated electrons inject efficiently from the conduction band of PbS to that of ZnO. In contrast, the defect sites in the disordered layer between PbS nanocrystal and ZnO nanocrystal for PbS/ZnO-B act as e-h recombination centers, significantly decreasing the e-h separation efficiency.

  20. Infrared absorption spectroscopy and chemical kinetics of free radicals

    SciTech Connect

    Curl, R.F.; Glass, G.P.

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  1. Absorption/emission spectroscopy and applications using shock tubes

    NASA Astrophysics Data System (ADS)

    Sulzmann, K. G. P.

    1988-09-01

    A historical overview is presented about the important contributions made by Penner, his co-workers, and his students to the application of shock-tube techniques for quantitative emission and absorption spectroscopy and its applications to chemical kinetics studies in high-temperature gases. The discussions address critical aspects related to valid determinations of quantitative spectroscopic data and chemical rate parameters and stress the requirements for uniformly heated gas samples, temperature determinations, gas-mixture preparations, selection of useful spectral intervals, verification of LTE conditions, time resolutions for concentration histories, uniqueness of kinetic measurements, as well as accuracies and reproducibilities of measurement results.The potential of absorption spectroscopy by molecule and/or radical resonance radiation and by laser transmission techniques is highlighted for kinetic studies in mixtures with very small reactant concentrations.Besides the work by the honoree and his school, the references include books, monographs and key articles related to the subjects discussed.

  2. Label free detection of phospholipids by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Tahsin; Foster, Erick; Vigil, Genevieve; Khan, Aamir A.; Bohn, Paul; Howard, Scott S.

    2014-08-01

    We present our study on compact, label-free dissolved lipid sensing by combining capillary electrophoresis separation in a PDMS microfluidic chip online with mid-infrared (MIR) absorption spectroscopy for biomarker detection. On-chip capillary electrophoresis is used to separate the biomarkers without introducing any extrinsic contrast agent, which reduces both cost and complexity. The label free biomarker detection could be done by interrogating separated biomarkers in the channel by MIR absorption spectroscopy. Phospholipids biomarkers of degenerative neurological, kidney, and bone diseases are detectable using this label free technique. These phospholipids exhibit strong absorption resonances in the MIR and are present in biofluids including urine, blood plasma, and cerebrospinal fluid. MIR spectroscopy of a 12-carbon chain phosphatidic acid (PA) (1,2-dilauroyl-snglycero- 3-phosphate (sodium salt)) dissolved in N-methylformamide, exhibits a strong amide peak near wavenumber 1660 cm-1 (wavelength 6 μm), arising from the phosphate headgroup vibrations within a low-loss window of the solvent. PA has a similar structure to many important phospholipids molecules like phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS), making it an ideal molecule for initial proof-of-concept studies. This newly proposed detection technique can lead us to minimal sample preparation and is capable of identifying several biomarkers from the same sample simultaneously.

  3. Temperature dependent soft x-ray absorption spectroscopy of liquids.

    PubMed

    Meibohm, Jan; Schreck, Simon; Wernet, Philippe

    2014-10-01

    A novel sample holder is introduced which allows for temperature dependent soft x-ray absorption spectroscopy of liquids in transmission mode. The setup is based on sample cells with x-ray transmissive silicon nitride windows. A cooling circuit allows for temperature regulation of the sample liquid between -10 °C and +50 °C. The setup enables to record soft x-ray absorption spectra of liquids in transmission mode with a temperature resolution of 0.5 K and better. Reliability and reproducibility of the spectra are demonstrated by investigating the characteristic temperature-induced changes in the oxygen K-edge x-ray absorption spectrum of liquid water. These are compared to the corresponding changes in the oxygen K-edge spectra from x-ray Raman scattering.

  4. UV-vis and FTIR-ATR characterization of 9-fluorenon-2-carboxyester/(2-hydroxypropyl)-beta-cyclodextrin inclusion complex.

    PubMed

    Stancanelli, R; Ficarra, R; Cannavà, C; Guardo, M; Calabrò, M L; Ficarra, P; Ottanà, R; Maccari, R; Crupi, V; Majolino, D; Venuti, V

    2008-08-05

    In this work, the usefulness of (2-hydroxypropyl)-beta-cyclodextrin (HP-beta-CyD) as a tool to form an inclusion complex with 9-fluorenonic derivative (AG11) has been investigated, in pure water, by UV absorption. Phase-solubility diagrams allowed the determination of the association constant between AG11 and HP-beta-CyD. At the same time, solid binary systems between AG11 and HP-beta-CyD have been prepared in 1:1 stoichiometry by co-precipitation method. In order to confirm the complexation, FTIR spectroscopy in ATR geometry measurements have been performed and the results have been compared with the free compounds and the corresponding physical mixture in the same molar ratio. The nature of the interactions between AG11 and HP-beta-CyD has been elucidated also by applying mathematical procedures such as deconvolution and curve fitting. Improvement of the aqueous solubility is expected to improve the bioavailability of the drug in oral administration.

  5. Atmospheric and environmental sensing by photonic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, T.; Zhao, W.; Wysocki, G.; Cui, X.; Lengignon, C.; Maamary, R.; Fertein, E.; Coeur, C.; Cassez, A.; Wang, Y.; Zhang, W.; Gao, X.; Liu, W.; Dong, F.; Zha, G.; Zheng, Xu; Wang, T.

    2013-01-01

    Chemically reactive short-lived species play a crucial role in tropospheric processes affecting regional air quality and global climate change. Contrary to long-lived species (such as greenhouse gases), fast, accurate and precise monitoring changes in concentration of atmospheric short-lived species represents a real challenge due to their short life time (~1 s for OH radical) and very low concentration in the atmosphere (down to 106 molecules/cm3, corresponding to 0.1 pptv at standard temperature and pressure). We report on our recent progress in instrumentation developments for spectroscopic sensing of trace reactive species. Modern photonic sources such as quantum cascade laser (QCL), distributed feedback (DFB) diode laser, light emitting diode (LED), difference-frequency generation (DFG) parametric source are implemented in conjunction with highsensitivity spectroscopic measurement techniques for : (1) nitrous acid (HONO) monitoring by QCL-based long optical pathlength absorption spectroscopy and LED-based IBBCEAS (incoherent broadband cavity-enhanced absorption spectroscopy); (2) DFB laser-based hydroxyl free radical (OH) detection using WM-OA-ICOS (wavelength modulation off-axis integrated cavity output spectroscopy) and FRS (Faraday rotation spectroscopy), respectively; (3) nitrate radical (NO3) and nitrogen dioxide (NO2) simultaneous measurements with IBBCEAS approach. Applications in field observation and in smog chamber study will be presented.

  6. Use of absorption spectroscopy for refined petroleum product discrimination

    NASA Astrophysics Data System (ADS)

    Short, Michael

    1991-07-01

    On-line discrimination between arbitrary petroleum products is necessary for optimal control of petroleum refinery and pipeline operation and process control involving petroleum distillates. There are a number of techniques by which petroleum products can be distinguished from one another. Among these, optical measurements offer fast, non-intrusive, real-time characterization. The application examined here involves optically monitoring the interface between dissimilar batches of fluids in a gasoline pipeline. After examination of near- infrared and mid-infrared absorption spectroscopy and Raman spectroscopy, Fourier transform mid-infrared (FTIR) spectroscopy was chosen as the best candidate for implementation. On- line FTIR data is presented, verifying the applicability of the technique for batch interface detection.

  7. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of steel in H 2SO 4 solution: Weight loss, electrochemical, UV-vis, FTIR, XPS, and AFM approaches

    NASA Astrophysics Data System (ADS)

    Li, Xianghong; Deng, Shuduan; Fu, Hui; Mu, Guannan; Zhao, Ning

    2008-06-01

    The synergism between rare earth cerium(IV) ion and vanillin (4-hydroxy-3-methoxy-benzaldehyde) on the corrosion of cold rolled steel (CRS) in 1.0 M H 2SO 4 solution at five temperatures ranging from 20 to 60 °C was first studied by weight loss and potentiodynamic polarization methods. The inhibited solutions were analyzed by ultraviolet and visible spectrophotometer (UV-vis). The adsorbed film of CRS surface containing optimum doses of the blends Ce 4+-vanillin was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The results revealed that vanillin had a moderate inhibitive effect, and the inhibition efficiency (IE) increased with the vanillin concentration. The adsorption of vanillin obeyed Temkin adsorption isotherm. Polarization curves showed that vanillin was a mixed-type inhibitor in sulfuric acid, while prominently inhibited the cathodic reaction. For the cerium(IV) ion, it had a negligible effect, and the maximum IE was only about 20%. However, incorporation of Ce 4+ with vanillin improved significantly the inhibition performance. The IE for Ce 4+ in combination with vanillin was higher than the summation of IE for single Ce 4+ and single vanillin, which was synergism in nature. A high inhibition efficiency, 98% was obtained by a mixture of 25-200 mg l -1 vanillin and 300-475 mg l -1 Ce 4+. UV-vis showed that the new complex of Ce 4+-vanillin was formed in 1.0 M H 2SO 4 for Ce 4+ combination with vanillin. Polarization studies showed that the complex of Ce 4+-vanillin acted as a mixed-type inhibitor, which drastically inhibits both anodic and cathodic reactions. FTIR and XPS revealed that a protective film formed in the presence of both vanillin and Ce 4+ was composed of cerium oxide and the complex of Ce 4+-vanillin. The synergism between Ce 4+ and vanillin could also be evidenced by AFM images. Depending on the results, the synergism mechanism was discussed from the

  8. UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O2

    PubMed Central

    Kaastrup, Kaja; Aguirre-Soto, Alan; Wang, Chen; Bowman, Christopher N.; Stansbury, Jeffery; Sikes, Hadley D.

    2016-01-01

    In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the role of O2 in the initiation and polymerization processes remains inconclusive. Here, we employ a UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and monomer reactive group concentrations to investigate the eosin-activated photopolymerization of PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, proposing metrics for quantifying the extent of signal loss from reflection and scattering, and showing their relation to microgelation and network formation. Second, having established a method for extracting kinetic information by eliminating the effects of changing refractive index and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated photopolymerization of PEGDA in the presence of O2. Analysis of the inhibition time, rate of polymerization, and rate of eosin consumption under ambient and purged conditions indicates that regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain process. This suggests that the uniquely high O2 resilience is due to alternative processes such as energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O2 in eosin-mediated initiation aids the design of O2 resistant free radical polymerization systems relevant to photonics, optoelectronics, biomaterials, and biosensing. PMID:26755925

  9. UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O2.

    PubMed

    Kaastrup, Kaja; Aguirre-Soto, Alan; Wang, Chen; Bowman, Christopher N; Stansbury, Jeffery; Sikes, Hadley D

    In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the role of O2 in the initiation and polymerization processes remains inconclusive. Here, we employ a UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and monomer reactive group concentrations to investigate the eosin-activated photopolymerization of PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, proposing metrics for quantifying the extent of signal loss from reflection and scattering, and showing their relation to microgelation and network formation. Second, having established a method for extracting kinetic information by eliminating the effects of changing refractive index and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated photopolymerization of PEGDA in the presence of O2. Analysis of the inhibition time, rate of polymerization, and rate of eosin consumption under ambient and purged conditions indicates that regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain process. This suggests that the uniquely high O2 resilience is due to alternative processes such as energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O2 in eosin-mediated initiation aids the design of O2 resistant free radical polymerization systems relevant to photonics, optoelectronics, biomaterials, and biosensing.

  10. Research of the interaction between kangai injection and human serum albumin by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Changbin; Lin, Xiaogang; Zhu, Hao; Li, Wenchao; Wu, Jie

    2015-10-01

    The interaction between drugs and serum albumin is the theoretical basis of pharmacology research. Kangai injection with invigorating Qi, enhancing the immune function, is widely used for a variety of malignant tumor treatment. Fluorescence spectroscopy was adopted due to its high sensitivity and other advantages. The interaction between kangai injection and human serum albumin (HSA) in physiological buffer (pH 7.4) was investigated by fluorescence spectroscopy and UV-Vis absorption spectroscopy. The results of fluorescence spectrum at three temperature (296K, 303K and 310K) showed the degree of binding at 310K is the highest. Also, the maximum emission peak has a slight blue shift, which indicates that the interaction between kangai injection and HSA has an effect on the conformation of HSA. That is, the microenvironment of tryptophan increase hydrophobic due to the increase of the concentration of kangai injection. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that kangai injection has a strong ability to quench the intrinsic fluorescence of HSA. And according to the Stern-Volume equation, the quenching mechanism is static quenching, which is further proved by the UV-Vis absorption spectroscopy.

  11. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    SciTech Connect

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  12. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    PubMed Central

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-01-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy. PMID:28262765

  13. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-03-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy.

  14. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    PubMed Central

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-01-01

    Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique. PMID:24573311

  15. Experimental (X-ray, IR and UV-vis.) and DFT studies on cocrystallization of two tautomers of a novel Schiff base compound

    NASA Astrophysics Data System (ADS)

    Temel, Ersin; Alaşalvar, Can; Eserci, Hande; Ağar, Erbil

    2017-01-01

    In this study, the structure of 4-(((2-methyl-3-nitrophenyl)imino)methyl)benzene-1,2,3-triol was investigated with experimental (X-ray single crystal technique, UV-vis. and FT-IR spectroscopic techniques) and theoretical (DFT) methods. X-ray studies show that there are two independent molecules in asymmetric unit and coexist both keto-amin and enol-imine tautomeric forms. Theoretical studies were carried out in B3LYP with CAM-631G(d,p). The data obtained from calculation were compared with experimental data.

  16. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Requejo, Olga Mena; Quigg, Chris

    2005-04-15

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21}-10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the line shape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  17. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  18. Principles and calibration of collinear photofragmentation and atomic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sorvajärvi, Tapio; Toivonen, Juha

    2014-06-01

    The kinetics of signal formation in collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) are discussed, and theoretical equations describing the relation between the concentration of the target molecule and the detected atomic absorption in case of pure and impure samples are derived. The validity of the equation for pure samples is studied experimentally by comparing measured target molecule concentrations to concentrations determined using two other independent techniques. Our study shows that CPFAAS is capable of measuring target molecule concentrations from parts per billion (ppb) to hundreds of parts per million (ppm) in microsecond timescale. Moreover, the possibility to extend the dynamic range to cover eight orders of magnitude with a proper selection of fragmentation light source is discussed. The maximum deviation between the CPFAAS technique and a reference measurement technique is found to be less than 5 %. In this study, potassium chloride vapor and atomic potassium are used as a target molecule and a probed atom, respectively.

  19. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  20. Imide photodissociation investigated by X-ray absorption spectroscopy.

    PubMed

    Johnson, Phillip S; Cook, Peter L; Liu, Xiaosong; Yang, Wanli; Bai, Yiqun; Abbott, Nicholas L; Himpsel, F J

    2012-06-21

    X-ray absorption spectroscopy is used to investigate the photodissociation of the imides PMDI (pyromellitic diimide) and SSMCC (sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate). PMDI contains only one type of imide, and its photodissociation can be explained by a simple conversion from imide to a mix of imine and nitrile after desorption of the oxygens from the imide. SSMCC contains two different imides. One reacts like PMDI, the other in a more complex multistep process. Eventually, N(2) is formed in the bulk of the sample at high radiation density. The sequence of reactions is inferred from the π* peaks in total electron yield and fluorescence yield absorption spectra at the N 1s and O 1s edges. First-order rate equations are used to model the evolution of the peak areas versus radiation dose.

  1. Quantitative analysis of immobilized metalloenzymes by atomic absorption spectroscopy.

    PubMed

    Opwis, Klaus; Knittel, Dierk; Schollmeyer, Eckhard

    2004-12-01

    A new, sensitive assay for the quantitative determination of immobilized metal containing enzymes has been developed using atomic absorption spectroscopy (AAS). In contrast with conventionally used indirect methods the described quantitative AAS assay for metalloenzymes allows more exact analyses, because the carrier material with the enzyme is investigated directly. As an example, the validity and reliability of the method was examined by fixing the iron-containing enzyme catalase on cotton fabrics using different immobilization techniques. Sample preparation was carried out by dissolving the loaded fabrics in sulfuric acid before oxidising the residues with hydrogen peroxide. The iron concentrations were determined by flame atomic absorption spectrometry after calibration of the spectrometer with solutions of the free enzyme at different concentrations.

  2. Acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids with strong two-photon absorption and high singlet oxygen quantum yield.

    PubMed

    Ke, Hanzhong; Li, Wenbin; Zhang, Tao; Zhu, Xunjin; Tam, Hoi-Lam; Hou, Anxin; Kwong, Daniel W J; Wong, Wai-Kwok

    2012-04-21

    Several acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids, PZn-PcYb, PH(2)-PcYb and PPd-PcYb, have been prepared and characterized by (1)H and (31)P NMR, mass spectrometry, and UV-vis spectroscopy. Their photophysical and photochemical properties, especially the relative singlet oxygen ((1)O(2)) quantum yields and the two-photon absorption cross-section (σ(2)), were investigated. These three newly synthesized compounds exhibited very large σ(2) values and substantial (1)O(2) quantum yields upon photo-excitation, making them potential candidates as one- and two-photon photodynamic therapeutic agents.

  3. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy.

    PubMed

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-05

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  4. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman), UV-vis spectra, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis, thermodynamic properties of benzophenone 2,4-dicarboxylic acid by ab initio HF and density functional method.

    PubMed

    Chaitanya, K

    2012-02-01

    The FT-IR (4000-450 cm(-1)) and FT-Raman spectra (3500-100 cm(-1)) of benzophenone 2,4-dicarboxylic acid (2,4-BDA) have been recorded in the condensed state. Density functional theory calculation with B3LYP/6-31G(d,p) basis set have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman activities and bonding features of the title compounds. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 2,4-BDA is calculated using HF/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charges is also calculated. Because of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-vis spectra and electronic absorption properties were explained and illustrated from the frontier molecular orbitals.

  5. Isomerization and increase in the antioxidant properties of lycopene from Momordica cochinchinensis (gac) by moderate heat treatment with UV-Vis spectra as a marker.

    PubMed

    Phan-Thi, Hanh; Waché, Yves

    2014-08-01

    Momordica cochinchinensis (gac) is a plant rich in lycopene. This pigment tends to solubilize in oil and get damaged during extraction. The impact of heating on cis-isomerization of oil-free lycopene in hexane was studied at 50 and 80°C during 240min with UV-Vis spectrometry, DAD-HPLC and TEAC test. The initial all-trans-form isomerized to the 13-cis isomer more rapidly at 80°C. After this treatment, 16% of the lycopene compounds were in the 9-cis-form. This isomer triggered an increase in the antioxidant properties which was detectable from concentrations above 9% and resulted in a change from 2.4 to 3.7μmol Trolox equivalent. It is thus possible to increase the bioactivity of lycopene samples by controlling heating. The evolution of ratios calculated from the global UV-Vis spectrum was representative of cis-isomerization and spectrometry can thus be a simple way to evaluate the state of isomerization of lycopene solutions.

  6. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    PubMed

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  7. Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV-Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde

    NASA Astrophysics Data System (ADS)

    Kumru, Mustafa; Altun, Ahmet; Kocademir, Mustafa; Küçük, Vesile; Bardakçı, Tayyibe; Şaşmaz, İbrahim

    2016-12-01

    Comparative experimental and theoretical studies have been performed on the structure and spectral (FT-IR, FT-Raman, UV-Vis and NMR) features of quinoline-5-carboxaldehyde. Quantum chemical calculations have been carried out at Hartree-Fock and density functional B3LYP levels with the triple-zeta 6-311++G** basis set. Two stable conformers of quinoline-5-carboxaldehyde arising from the orientation of the carboxaldehyde moiety have been located at the room temperature. The energetic separation of these conformers is as small as 2.5 kcal/mol with a low transition barrier (around 9 kcal/mol). Therefore, these conformers are expected to coexist at the room temperature. Several molecular characteristics of quinoline-5-carboxaldehyde obtained through B3LYP and time-dependent B3LYP calculations, such as conformational stability, key geometry parameters, vibrational frequencies, IR and Raman intensities, UV-Vis vertical excitation energies and the corresponding oscillator strengths have been analyzed. The 1H and 13C NMR chemical shifts of quinoline-5-carboxaldehyde were also investigated.

  8. Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers.

    PubMed

    Jerković, Igor; Kranjac, Marina; Marijanović, Zvonimir; Zekić, Marina; Radonić, Ani; Tuberoso, Carlo Ignazio Giovanni

    2016-03-21

    The samples of Satureja subspicata Vis. honey were confirmed to be unifloral by melissopalynological analysis with the characteristic pollen share from 36% to 71%. Bioprospecting of the samples was performed by HPLC-DAD, GC-FID/MS, and UV/VIS. Prephenate derivatives were shown to be dominant by the HPLC-DAD analysis, particularly phenylalanine (167.8 mg/kg) and methyl syringate (MSYR, 114.1 mg/kg), followed by tyrosine and benzoic acid. Higher amounts of MSYR (3-4 times) can be pointed out for distinguishing S. subspicata Vis. honey from other Satureja spp. honey types. GC-FID/MS analysis of ultrasonic solvent extracts of the samples revealed MSYR (46.68%, solvent pentane/Et2O 1:2 (v/v); 52.98%, solvent CH2Cl2) and minor abundance of other volatile prephenate derivatives, as well as higher aliphatic compounds characteristic of the comb environment. Two combined extracts (according to the solvents) of all samples were evaluated for their antioxidant properties by FRAP and DPPH assay; the combined extracts demonstrated higher activity (at lower concentrations) in comparison with the average honey sample. UV/VIS analysis of the samples was applied for determination of CIE Lab colour coordinates, total phenolics (425.38 mg GAE/kg), and antioxidant properties (4.26 mmol Fe(2+)/kg (FRAP assay) and 0.8 mmol TEAC/kg (DDPH assay)).

  9. Calibration of UV/Vis spectrophotometers: A review and comparison of different methods to estimate TSS and total and dissolved COD concentrations in sewers, WWTPs and rivers.

    PubMed

    Lepot, Mathieu; Torres, Andres; Hofer, Thomas; Caradot, Nicolas; Gruber, Günter; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2016-09-15

    UV/Vis spectrophotometers have been used for one decade to monitor water quality in various locations: sewers, rivers, wastewater treatment plants (WWTPs), tap water networks, etc. Resulting equivalent concentrations of interest can be estimated by three ways: i) by manufacturer global calibration; ii) by local calibration based on the provided global calibration and grab sampling; iii) by advanced calibration looking for relations between UV/Vis spectra and corresponding concentrations from grab sampling. However, no study has compared the applied methods so far. This collaborative work presents a comparison between five different methods. A Linear Regression (LR), Support Vector Machine (SVM), EVOlutionary algorithm method (EVO) and Partial Least Squares (PLS) have been applied on various data sets (sewers, rivers, WWTPs under dry, wet and all weather conditions) and for three water quality parameters: TSS, COD total and dissolved. Two criteria (r(2) and Root Mean Square Error RMSE) have been calculated - on calibration and verification data subsets - to evaluate accuracy and robustness of the applied methods. Values of criteria have then been statistically analysed for all and separated data sets. Non-consistent outcomes come through this study. According to the Kruskal-Wallis test and RMSEs, PLS and SVM seem to be the best methods. According to uncertainties in laboratory analysis and ranking of methods, LR and EVO appear more robust and sustainable for concentration estimations. Conclusions are mostly independent of water matrices, weather conditions or concentrations investigated.

  10. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  11. Trace determination of chromium(VI) in environmental water samples using innovative thermally reduced graphene (TRG) modified SiO₂ adsorbent for solid phase extraction and UV-vis spectrophotometry.

    PubMed

    Sereshti, Hassan; Farahani, Mina Vasheghani; Baghdadi, Majid

    2016-01-01

    An innovative thermally reduced graphene (TRG) modified silica-supported 3-aminopropyltriethoxysilane (SiO2-APTES) composite was synthesized and characterized using Fourier transform-infrared spectroscopy (FT-IR) and scanning electron microscopy SEM techniques. The adsorbent was then used in the solid phase extraction (SPE) of Cr (VI) as the Cr (VI)-diphenylcarbazide (DPC) complex with the subsequent measurement by UV-vis spectrophotometry. The adsorbent surface was activated by adding sodium dodecyl sulfate (SDS) to the sample solution. The effect of the main experimental parameters such as type and volume of the extraction solvent, pH, dosage of DPC, SDS, the adsorbent, time of the extraction, and salt concentration on the extraction efficiency were investigated and optimized. A linear dynamic range of 1.3-40 ng mL(-1) with a satisfactory determination coefficient (R(2)) of 0.9930 was obtained. A detection limit of 0.4 ng mL(-1) Cr (VI) was attained when a sample volume of 25 mL was used. Intraday and inter-day precisions were obtained equal to 2.3% and 7.9%, respectively. The enrichment factor (EF) was calculated to be equal to 167. The technique was applied successfully to the determination of Cr (VI) at trace levels in tap, river, sewage and ground water samples and the relative recoveries of the added chromium were in the range of 92.6-109.9%.

  12. Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios.

    PubMed

    Giordanino, Filippo; Vennestrøm, Peter N R; Lundegaard, Lars F; Stappen, Frederick N; Mossin, Susanne; Beato, Pablo; Bordiga, Silvia; Lamberti, Carlo

    2013-09-21

    Cu-SSZ-13 has been characterized by different spectroscopic techniques and compared with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios and prepared by the same ion exchange procedure. On vacuum activated samples, low temperature FTIR spectroscopy allowed us to appreciate a high concentration of reduced copper centres, i.e. isolated Cu(+) ions located in different environments, able to form Cu(+)(N2), Cu(+)(CO)n (n = 1, 2, 3), and Cu(+)(NO)n (n = 1, 2) upon interaction with N2, CO and NO probe molecules, respectively. Low temperature FTIR, DRUV-Vis and EPR analysis on O2 activated samples revealed the presence of different Cu(2+) species. New data and discussion are devoted to (i) [Cu-OH](+) species likely balanced by one framework Al atom; (ii) mono(μ-oxo)dicopper [Cu2(μ-O)](2+) dimers observed in Cu-ZSM-5 and Cu-β, but not in Cu-SSZ-13. UV-Vis-NIR spectra of O2 activated samples reveal an intense and finely structured d-d quadruplet, unique to Cu-SSZ-13, which is persistent under SCR conditions. This differs from the 22,700 cm(-1) band of the mono(μ-oxo)dicopper species of the O2 activated Cu-ZSM-5, which disappears under SCR conditions. The EPR signal intensity sets Cu-β apart from the others.

  13. New NO donor ligands and complexes containing furfuryl or crown ether moiety: Syntheses, crystal structures and tautomerism in ortho-hydroxy substituted compounds as studied by UV-vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Şahin, Duygu; Koçoğlu, Serhat; Şener, Öznur; Şenol, Cemal; Dal, Hakan; Hökelek, Tuncer; Hayvalı, Zeliha

    2015-12-01

    NO donor ligands were prepared by the condensation of methoxy substituted salicylaldehyde with 5-methylfurfurylamine (1 and 2) and 4‧-aminobenzo-15-crown 5 (3-5). New crown ether ligands of Schiff base type (3-5) containing recognition sites for alkali metal and transition guest cations. Ni(II) complexes (1a-5a) have been synthesized with bidentate NO donor Schiff base ligands (1-5) with Ni(CH3COO)2.·4H2O. Monotopic crystalline 1:1 (Na+:ligand) sodium complexes (3b-5b) of the crown ether ligands were also prepared. Schiff bases (1-5) and complexes (1a-5a, 3b-5b) were characterized by elemental analyses, FT-IR, 1H-, 13C-NMR and mass spectroscopies. The crystal structures of 1, 1a and 2 were verified by X-ray diffraction analysis. The tautomeric equilibria (phenol-imine, O-H⋯N and keto-amine, O⋯H-N forms) have been systematically studied by using UV-vis spectrophotometry for the o-hydroxy substituted compounds (1-5). The UV-visible spectra of these ligands (1-5) were recorded and commented in polar, non-polar, acidic and basic media.

  14. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  15. Azimuthal Doppler shift of absorption spectrum in optical vortex laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Ozawa, Naoya; Terasaka, Kenichiro; Tanaka, Masayoshi; Nagaoka, Kenichi; Morisaki, Tomohiro

    2016-10-01

    Laser spectroscopy is a powerful diagnostic tool for measuring the mean flow velocity of plasma particles. We have been developing a new laser spectroscopy method utilizing an optical vortex beam, which has helical phase fronts corresponding to the phase change in the azimuthal direction. Because of this phase change, a Doppler effect is experienced even by an atom crossing the beam vertically. The additional azimuthal Doppler shift is proportional to the topological charge of optical vortex and is inversely proportional to the distance from the beam axis in which the beam intensity is vanished by destructive interference or the phase singularity. In order to detect the azimuthal Doppler shift, we have performed a laser absorption spectroscopy experiment with the linear ECR plasma device HYPER-I. Since the azimuthal Doppler shift depends on a position in the beam cross section, the absorption spectra at various positions were reconstructed from the transmitted beam intensity measured by a beam profiler. We have observed a clear spatial dependence of the Doppler shift, which qualitatively agreed with theory. Detailed experimental results, as well as remaining issues and future prospect, will be discussed at the meeting. This study was partially supported by JAPS KAKENHI Grand Numbers 15K05365 and 25287152.

  16. Photoacoustic spectroscopy for process analysis.

    PubMed

    Schmid, Thomas

    2006-03-01

    Photoacoustic spectroscopy (PAS) is based on the absorption of electromagnetic radiation by analyte molecules. The absorbed energy is measured by detecting pressure fluctuations in the form of sound waves or shock pulses. In contrast to conventional absorption spectroscopy (such as UV/Vis spectroscopy), PAS allows the determination of absorption coefficients over several orders of magnitude, even in opaque and strongly scattering samples. Small absorption coefficients, such as those encountered during trace gas monitoring, can be detected with cells with relatively short pathlengths. Furthermore, PA techniques allow absorption spectra of solid samples (including powders, chips or large objects) to be determined, and they permit depth profiling of layered systems. These features mean that PAS can be used for on-line monitoring in technical processes without the need for sample preparation and to perform depth-resolved characterization of industrial products. This article gives an overview on PA excitation and detection schemes employed in analytical chemistry, and reviews applications of PAS in process analytical technology and characterization of industrial products.

  17. Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion.

    PubMed

    Hao, Fang; Jing, Mingyang; Zhao, Xingchen; Liu, Rutao

    2015-02-01

    In this research, the binding mechanism of Cu(2+) to bovine liver catalase (BLC) was studied by fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC) and molecular docking methods. The cellar experiment was firstly carried out to investigate the inhibition effect of catalase. During the fluorescence quenching study, after correcting the inner filter effect (IFE), the fluorescence of BLC was found to be quenched by Cu(2+). The quenching mechanism was determined by fluorescence lifetime measurement, and was confirmed to be the dynamic mode. The secondary structure content of BLC was changed by the addition of Cu(2+), as revealed by UV-vis absorption and CD spectra, which further induces the decrease in BLC activity. Molecular simulation study indicates that Cu(2+) is located between two β-sheets and two random coils of BLC near to the heme group, and interacts with His 74 and Ser 113 residues near a hydrophilic area. The decrease of α-helix and the binding of His 74 are considered to be the major reason for the inhibition of BLC activity caused by Cu(2+). The ITC results indicate that the binding stoichiometry of Cu(2+) to catalase is 11.4. Moreover, the binding of Cu(2+) to BLC destroyed H-bonds, which was confirmed by the CD result.

  18. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  19. Precision atomic beam density characterization by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  20. Optical re-injection in cavity-enhanced absorption spectroscopy

    PubMed Central

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  1. Optical re-injection in cavity-enhanced absorption spectroscopy

    SciTech Connect

    Leen, J. Brian O’Keefe, Anthony

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  2. Optical re-injection in cavity-enhanced absorption spectroscopy.

    PubMed

    Leen, J Brian; O'Keefe, Anthony

    2014-09-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10(-10) cm(-1)/√Hz; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  3. Optical absorption and scattering spectroscopies of single nano-objects.

    PubMed

    Crut, Aurélien; Maioli, Paolo; Del Fatti, Natalia; Vallée, Fabrice

    2014-06-07

    Developments of optical detection and spectroscopy methods for single nano-objects are key advances for applications and fundamental understanding of the novel properties exhibited by nanosize systems. These methods are reviewed, focusing on far-field optical approaches based on light absorption and elastic scattering. The principles of the main linear and nonlinear methods are described and experimental results are illustrated in the case of metal nanoparticles, stressing the key role played by the object environment, such as the presence of a substrate, bound surface molecules or other nano-objects. Special attention is devoted to quantitative methods and correlation of the measured optical spectra of a nano-object with its morphology, characterized either optically or by electron microscopy, as this permits precise comparison with theoretical models. Application of these methods to optical detection and spectroscopy for single semiconductor nanowires and carbon nanotubes is also presented. Extension to ultrafast nonlinear extinction or scattering spectroscopies of single nano-objects is finally discussed in the context of investigation of their nonlinear optical response and their electronic, acoustic and thermal properties.

  4. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    NASA Technical Reports Server (NTRS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  5. UV-vis spectral study of the isomeric equilibrium for the anionic polymethine dyes - oxonols in different solvents

    NASA Astrophysics Data System (ADS)

    Tatikolov, Alexander S.

    2016-11-01

    Absorption spectra of meso-substituted anionic polymethine dyes - oxonols were studied in solvents of different polarity. Two bands observed in the absorption spectra were shown to belong to two isomers of the dyes: trans-isomer (with a shorter-wavelength absorption band) and cis-isomer (with a longer-wavelength shoulder or band), being in equilibrium. A decrease in the solvent polarity shifts the trans-cis equilibrium toward trans-isomer for the fluoro-substituted oxonol and cis-isomer for the methyl-substituted oxonol, which can be explained by different structure of oxonol ion pairs formed in low-polarity medium. Spectral measurements at different temperatures permitted estimation of the energetic difference between the isomers.

  6. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miller, Dennis D.; Rutzke, Michael A.

    Atomic spectroscopy has played a major role in the development of our current database for mineral nutrients and toxicants in foods. When atomic absorption spectrometers became widely available in the 1960s, the development of atomic absorption spectroscopy (AAS) methods for accurately measuring trace amounts of mineral elements in biological samples paved the way for unprecedented advances in fields as diverse as food analysis, nutrition, biochemistry, and toxicology (1). The application of plasmas as excitation sources for atomic emission spectroscopy (AES) led to the commercial availability of instruments for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) beginning in the late 1970s. This instrument has further enhanced our ability to measure the mineral composition of foods and other materials rapidly, accurately, and precisely. More recently, plasmas have been joined with mass spectrometers (MS) to form inductively coupled plasma-mass spectrometer ICP-MS instruments that are capable of measuring mineral elements with extremely low detection limits. These three instrumental methods have largely replaced traditional wet chemistry methods for mineral analysis of foods, although traditional methods for calcium, chloride, iron, and phosphorus remain in use today (see Chap. 12).

  7. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  8. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  9. Terahertz absorption spectroscopy of protein-containing reverse micellar solution

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Toyota, Y.; Nishi, T.; Nashima, S.

    2012-01-01

    Terahertz time-domain spectroscopy has been carried out for AOT/isooctane reverse micellar solution with myoglobin at the water-to-surfactant molar ratios ( w0) of 0.2 and 4.4. The amplitude of the absorption spectrum increases with increasing the protein concentration at w0 = 0.2, whereas it decreases at w0 = 4.4. The molar extinction coefficients of the protein-filled reverse micelle, and the constituents, i.e., myoglobin, water, and AOT, have been derived by use of the structural parameters of the micellar solution. The experimental results are interpreted in terms of hydration onto the protein and surfactant in the reverse micelle.

  10. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  11. Investigating DNA Radiation Damage Using X-Ray Absorption Spectroscopy

    PubMed Central

    Czapla-Masztafiak, Joanna; Szlachetko, Jakub; Milne, Christopher J.; Lipiec, Ewelina; Sá, Jacinto; Penfold, Thomas J.; Huthwelker, Thomas; Borca, Camelia; Abela, Rafael; Kwiatek, Wojciech M.

    2016-01-01

    The biological influence of radiation on living matter has been studied for years; however, several questions about the detailed mechanism of radiation damage formation remain largely unanswered. Among all biomolecules exposed to radiation, DNA plays an important role because any damage to its molecular structure can affect the whole cell and may lead to chromosomal rearrangements resulting in genomic instability or cell death. To identify and characterize damage induced in the DNA sugar-phosphate backbone, in this work we performed x-ray absorption spectroscopy at the P K-edge on DNA irradiated with either UVA light or protons. By combining the experimental results with theoretical calculations, we were able to establish the types and relative ratio of lesions produced by both UVA and protons around the phosphorus atoms in DNA. PMID:27028640

  12. La Saturated Absorption Spectroscopy for Applications in Quantum Information

    NASA Astrophysics Data System (ADS)

    Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  13. Antimony quantification in Leishmania by electrothermal atomic absorption spectroscopy.

    PubMed

    Roberts, W L; Rainey, P M

    1993-05-15

    Tri- and pentavalent antimony were quantified in Leishmania mexicana pifanoi amastigotes and promastigotes by atomic absorption spectroscopy with electrothermal atomization. Leishmania grown in axenic culture were treated with either potassium antimony tartrate [Sb(III)] or sodium stibogluconate [Sb(V)]. The parasites were collected, digested with nitric acid, and subjected to atomic absorption spectroscopy. The method was linear from 0 to 7 ng of antimony. The interassay coefficients of variation were 9.6 and 5.7% (N = 5) for 0.52 and 3.7-ng samples of leishmanial antimony, respectively. The limit of detection was 95 pg of antimony. The assay was used to characterize Sb(III) and Sb(V) influx and efflux kinetics. Influx rates were determined at antimony concentrations that produced a 50% inhibition of growth (IC50). The influx rates of Sb(V) into amastigotes and promastigotes were 4.8 and 12 pg/million cells/h, respectively, at 200 micrograms antimony/ml. The influx rate of Sb(III) into amastigotes was 41 pg/million cells/h at 20 micrograms antimony/ml. Influx of Sb(III) into promastigotes at 1 microgram antimony/ml was rapid and reached a plateau of 175 pg/million cells in 2 h. Efflux of Sb(III) and Sb(V) from amastigotes and promastigotes exhibited biphasic kinetics. The initial (alpha) half-life of Sb(V) efflux was less than 4 min and that of Sb(III) was 1-2 h. The apparent terminal (beta) half-lives ranged from 7 to 14 h.

  14. Absorption and emission spectroscopy in natural and synthetic corundum

    NASA Astrophysics Data System (ADS)

    Spinolo, G.; Palanza, V.; Ledonne, A.; Paleari, A.

    2009-04-01

    sapphires absorption spectra. In conclusion, both for metamorphic, synthetic and magmatic sapphires we reached a quite complete interpretation of the spectroscopic data in terms of "non interacting impurity ions". Orange, purple and green sapphires absorption spectra may also be discussed in terms of such interpretative approach. References Fontana I, LeDonne A, Palanza V, Binetti S and Spinolo G (2008) Optical spectroscopy study of type 1 natural and synthetic sapphires. J. Phys:Condens.Matter 20:125228-125232

  15. Non-destructive plant health sensing using absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Bledsoe, Jim; Manukian, Ara; Pearce, Michael; Weiss, Lee

    1988-01-01

    The sensor group of the 1988 EGM 4001 class, working on NASA's Controlled Ecological Life Support Systems (CELSS) project, investigated many different plant health indicators and the technologies used to test them. The project selected by the group was to measure chlorophyll levels using absorption spectroscopy. The spectrometer measures the amount of chlorophyll in a leaf by measuring the intensity of light of a specific wavelength that is passed through a leaf. The three wavelengths of light being used corresponded to the near-IR absorption peaks of chlorophyll a, chlorophyll b, and chlorophyll-free structures. Experimentation showed that the sensor is indeed measuring levels of chlorophyll a and b and their changes before the human eye can see any changes. The detector clamp causes little damage to the leaf and will give fairly accurate readings on similar locations on a leaf, freeing the clamp from having to remain on the same spot of a leaf for all measurements. External light affects the readings only slightly so that measurements may be taken in light or dark environments. Future designs and experimentation will concentrate on reducing the size of the sensor and adapting it to a wider range of plants.

  16. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  17. Ultrasound-assisted emulsification microextraction with simultaneous derivatization coupled to fibre optics-based cuvetteless UV-vis micro-spectrophotometry for formaldehyde determination in cosmetic samples.

    PubMed

    Lavilla, Isela; Cabaleiro, Noelia; Pena, Francisco; de la Calle, Inmaculada; Bendicho, Carlos

    2010-07-26

    In this work, ultrasound-assisted emulsification microextraction in combination with fibre optics-based cuvetteless UV-vis micro-spectrophotometry has been proposed as a novel method for the determination of formaldehyde in water-based cosmetics such as shampoo, conditioner and shower gel. The use of a powerful cup-horn sonoreactor allows simultaneous extraction and derivatization of the samples without any pre-treatment. The type and volume of organic extractant solvent, need for a disperser solvent, sonication conditions (sonication time and amplitude), ionic strength and centrifuging time have been carefully studied. Matrix effects were also evaluated. The European official method for quantification of formaldehyde in cosmetic products was used for comparison purposes. An important improvement in sensitivity and sample throughput as well as miniaturization was achieved. A limit of detection of 0.02 microg g(-1) of formaldehyde and a repeatability expressed as relative standard deviation of 5.9% were obtained.

  18. Evaluation of the acidity constants of the 4-hidroxy-5-6salicylideneamino9-2-7-naphthalenedisulfonic acid (Azomethine-H) using UV?vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Alarcón-Angeles, G.; Corona-Avendaño, S.; Rojas-Hernández, A.; Romero-Romo, M. A.; Ramírez-Silva, M. T.

    2005-01-01

    The time stability of the azomethine-H species was determined not to be better than 10 min in the absence of oxygen and light, however under phosphate buffered conditions the azomethine-H species remained stable for longer periods, as indicated by the spectrophotometric behaviour. Nevertheless, the analysis time still exceeded the stability allowance. Therefore, the determination of the acidity constants of the Azomethine-H species was studied by means of UV-vis spectrophotometry in buffered media by means of the point-by-point analysis and data processing with SQUAD to refine the resulting constants, which were: p Ka1=3.39, p Ka2 7.36 and p Ka3 8.73. The latter were associated to the corresponding acid-base equilibria of the amine and hydroxy groups constituting the molecule.

  19. Monitoring Pb in Aqueous Samples by Using Low Density Solvent on Air-Assisted Dispersive Liquid-Liquid Microextraction Coupled with UV-Vis Spectrophotometry.

    PubMed

    Nejad, Mina Ghasemi; Faraji, Hakim; Moghimi, Ali

    2017-01-28

    In this study, AA-DLLME combined with UV-Vis spectrophotometry was developed for pre-concentration, microextraction and determination of lead in aqueous samples. Optimization of the independent variables was carried out according to chemometric methods in three steps. According to the screening and optimization study, 86 μL of 1-undecanol (extracting solvent), 12 times syringe pumps, pH 2.0, 0.00% of salt and 0.1% DDTP (chelating agent) were chosen as the optimum independent variables for microextraction and determination of lead. Under the optimized conditions, R = 0.9994, and linearity range was 0.01-100 µg mL(-1). LOD and LOQ were 3.4 and 11.6 ng mL(-1), respectively. The method was applied for analysis of real water samples, such as tap, mineral, river and waste water.

  20. Ion pair-based liquid-phase microextraction combined with cuvetteless UV-vis micro-spectrophotometry as a miniaturized assay for monitoring ammonia in waters.

    PubMed

    Senra-Ferreiro, Sonia; Pena-Pereira, Francisco; Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos

    2011-09-15

    A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L(-1) ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n=7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples.

  1. Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV-vis spectrophotometry.

    PubMed

    Pourreza, Nahid; Rastegarzadeh, Saadat; Larki, Arash

    2015-03-01

    This article presents a new and sensitive method for the determination of trace amounts of fungicide carbendazim by dispersive liquid-liquid microextraction (DLLME) combined with UV-vis spectrophotometry. The method is based on the reduction of Fe(III) to Fe(II) by carbendazim, its reaction with potassium ferricynide to form a blue product and extraction into CCL4 by DLLME technique using methyltrioctylammonium chloride (Aliquat 336) as a disperser agent. Under the established optimum conditions, the calibration graph was linear in the range of 5-600 ng mL(-1) of carbendazim with a limit of detection of 2.1 ng mL(-1). The relative standard deviations for eight replicate determinations of 50 and 300 ng mL(-1) of carbendazim were 3.9% and 1.0%, respectively. The proposed method was successfully applied to determination of carbendazim in soil and water samples.

  2. Indole-containing new types of dyes and their UV-vis and NMR spectra and electronic structures: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Kuzu, Burak; Menges, Nurettin

    2016-06-01

    Indole containing dyes were synthesized via a simple method with high yield. These molecules have different colors and UV-vis spectra of them were recorded. Impact of solvents on absorbances was investigated and it was observed that basic solvent such as DMF and pyridine have blue shift. TD-DFT calculations were done and results were compared with experimental data. NMR data of molecules were analyzed and tautomeric forms of colorants and their ratio were determined. It was find out that two tautomers might be formed in solution, called indole and indolenine form. HOMO-LUMO and energy gaps were calculated and plotted. Furthermore, molecular electrostatic potentials were simulated to find out electrophilic and nucleophilic regions.

  3. One-pot synthesis, structural characterization, UV-Vis and electrochemical analyses of new Schiff base complexes of Fe(III), Ni(II) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Back, Davi Fernando; de Oliveira, Gelson Manzoni; Fontana, Liniquer Andre; Ramão, Brenda Fiorin; Roman, Daiane; Iglesias, Bernardo Almeida

    2015-11-01

    The complexes [Ni(Pyr2tetam-2H)]·2H2O (1) (Pyr2tetam = (pyridoxyl)2-N1,N4-triethylenetetramine), [Fe(Pyr2tetam-2H)](ClO4)·H2O (2) and [Cu(Pyrtetam-H)](ClO4) (3) (Pyrtetam = pyridoxyl-N1-triethylenetetramine) were obtained through one pot reactions of triethylenetetramine, pyridoxal chloridrate, triethylamine and the metal salts Ni(ClO4)2·6H2O, Fe(ClO4)2·6H2O and Cu(ClO4)2·6H2O. In complexes 1 and 2 the metal centers present a distorted octahedral coordination, while complex 3 shows a square pyramidal configuration. The structures were characterized through X-ray diffractometry, IR and UV-Vis spectra. Cyclic voltammograms of the title compounds are also presented and discussed.

  4. Evaluation of the acidity constants of the 4-hidroxy-5-[salicylideneamino]-2-7-naphthalenedisulfonic acid (Azomethine-H) using UV-vis spectrophotometry.

    PubMed

    Alarcón-Angeles, G; Corona-Avendaño, S; Rojas-Hernández, A; Romero-Romo, M A; Ramírez-Silva, M T

    2005-01-01

    The time stability of the azomethine-H species was determined not to be better than 10 min in the absence of oxygen and light, however under phosphate buffered conditions the azomethine-H species remained stable for longer periods, as indicated by the spectrophotometric behaviour. Nevertheless, the analysis time still exceeded the stability allowance. Therefore, the determination of the acidity constants of the Azomethine-H species was studied by means of UV-vis spectrophotometry in buffered media by means of the point-by-point analysis and data processing with SQUAD to refine the resulting constants, which were: pK(a1) = 3.39, pK(a2) 7.36 and pK(a3) 8.73. The latter were associated to the corresponding acid-base equilibria of the amine and hydroxy groups constituting the molecule.

  5. Detection of roasted and ground coffee adulteration by HPLC and by amperometric and by post-column derivatization UV-Vis detection.

    PubMed

    Domingues, Diego S; Pauli, Elis D; de Abreu, Julia E M; Massura, Francys W; Cristiano, Valderi; Santos, Maria J; Nixdorf, Suzana L

    2014-03-01

    Coffee is one of the most consumed beverages in the world. Due to its commercial importance, the detection of impurities and foreign matters has been a constant concern in fraud verification, especially because it is difficult to percept adulterations with the naked eye in samples of roasted and ground coffee. In Brazil, the most common additions are roasted materials, such as husks, sticks, corn, wheat middling, soybean, and more recently - acai palm seeds. The performance and correlation of two chromatographic methods, HPLC-HPAEC-PAD and post-column derivatization HPLC-UV-Vis, were compared for carbohydrate analysis in coffee samples. To verify the correlation between the two methods, the principal component analysis for the same mix of triticale and acai seeds in different proportions with coffee was employed. The performance for detecting adulterations in roasted and ground coffee of the two methods was compared.

  6. Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg(2+) in aqueous solution.

    PubMed

    Ruan, Yudi; Wu, Lie; Jiang, Xiue

    2016-05-23

    Water-soluble nitrogen-doped carbon nanoparticles (N-CNPs) prepared by the one-step hydrothermal treatment of uric acid were found to show ratiometric changes in their UV-vis spectra due to Hg(2+)-mediated self-assembly. For the first time, such a property was developed into a UV-vis optical sensor for detecting Hg(2+) in aqueous solutions with high sensitively and selectively (detection limit = 1.4 nM). More importantly, this novel sensor exhibits a higher linear sensitivity over a wider concentration range compared with the fluorescence sensor based on the same N-CNPs. This work opens an exciting new avenue to explore the use of carbon nanoparticles in constructing UV-vis optical sensors for the detection of metal ions and the use of carbon nanoparticles as a new building block to self-assemble into superlattices.

  7. Comparison of absorption, fluorescence, and polarization spectroscopy of atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ashman, Seth; Stifler, Cayla; Romero, Joaquin

    2015-05-01

    An ongoing spectroscopic investigation of atomic rubidium utilizes a two-photon, single-laser excitation process. Transitions accessible with our tunable laser include 5P1 / 2F' <-- 5S1 / 2 F and 5P3 / 2F' <-- 5S1 / 2 F . The laser is split into a pump and probe beam to allow for Doppler-free measurements of transitions between hyperfine levels. The pump and probe beams are overlapped in a counter-propagating geometry and the laser frequency scans over a transition. Absorption, fluorescence and polarization spectroscopy techniques are applied to this basic experimental setup. The temperature of the vapor cell and the power of the pump and probe beams have been varied to explore line broadening effects and signal-to-noise of each technique. This humble setup will hopefully grow into a more robust experimental arrangement in which double resonance, two-laser excitations are used to explore hyperfine state changing collisions between rubidium atoms and noble gas atoms. Rb-noble gas collisions can transfer population between hyperfine levels, such as 5P3 / 2 (F' = 3) <-- Collision 5P3 / 2 (F ' = 2) , and the probe beam couples 7S1 / 2 (F'' = 2) <-- 5P3 / 2 (F' = 3) . Polarization spectroscopy signal depends on the rate of population transfer due to the collision as well as maintaining the orientation created by the pump laser. Fluorescence spectroscopy relies only on transfer of population due to the collision. Comparison of these techniques yields information regarding the change of the magnetic sublevels, mF, during hyperfine state changing collisions.

  8. A UV-vis study of the effects of alcohols on formation and stability of Mn(por)(O)(OAc) complexes.

    PubMed

    Mohajer, Daryoush; Jahanbani, Maryam

    2012-06-01

    Interactions of three different (acetato) (tetraarylporphyrinato) manganese (III) Mn(III)(por) with tetra-n-butylammonium hydrogen monopersulfate (n-Bu(4)NHSO(5)), in the presence of excess tetra-n-butylammonium acetate (n-Bu(4)NOAc) and in the absence or presence of various alcohols (alcohols=CH(3)OH, C(2)H(5)OH, i-C(3)H(7)OH, t-C(4)H(9)OH) in CH(2)Cl(2), were monitored by their UV-vis spectral changes, under identical conditions, at room temperature. (Acetato) (tetrakispentafluorophenylporphyrinato) manganese (III) Mn(III)(tpfpp)(OAc) and (acetato) (tetramesitylporphyrinato) manganese (III) Mn(III)(tmp)(OAc) produced their corresponding high valent Mn(tpfpp)(O)(OAc) and Mn(tmp)(O)(OAc) both in the absence or presence of alcohols. Whereas, (acetato) (tetraphenylporphyrinato) manganese (III) Mn(III)(tpp)(OAc) only generated Mn(tpp)(O)(OAc) in the presence of less bulky alcohols. In the absence of alcohols or in the presence of t-C(4)H(9)OH, the UV-vis spectra displayed a very weak sign of formation of Mn(tpp)(O)(OAc) complex. It was observed that alcohols generally increased the rate of formation of Mn-oxo species in accordance with their acidity or hydrogen bonding strength, and enhanced the stability of Mn-oxo complexes, as their size increases. Attempts are made to explain these effects. A mechanistic scheme is also suggested for the decomposition of HSO(5)(-) to O(2) and HSO(4)(-), through the formation and dimerization of Mn-oxo species.

  9. A UV-vis study of the effects of alcohols on formation and stability of Mn(por)(O)(OAc) complexes

    NASA Astrophysics Data System (ADS)

    Mohajer, Daryoush; Jahanbani, Maryam

    2012-06-01

    Interactions of three different (acetato) (tetraarylporphyrinato) manganese (III) MnIII(por) with tetra-n-butylammonium hydrogen monopersulfate (n-Bu4NHSO5), in the presence of excess tetra-n-butylammonium acetate (n-Bu4NOAc) and in the absence or presence of various alcohols (alcohols = CH3OH, C2H5OH, i-C3H7OH, t-C4H9OH) in CH2Cl2, were monitored by their UV-vis spectral changes, under identical conditions, at room temperature. (Acetato) (tetrakispentafluorophenylporphyrinato) manganese (III) MnIII(tpfpp)(OAc) and (acetato) (tetramesitylporphyrinato) manganese (III) MnIII(tmp)(OAc) produced their corresponding high valent Mn(tpfpp)(O)(OAc) and Mn(tmp)(O)(OAc) both in the absence or presence of alcohols. Whereas, (acetato) (tetraphenylporphyrinato) manganese (III) MnIII(tpp)(OAc) only generated Mn(tpp)(O)(OAc) in the presence of less bulky alcohols. In the absence of alcohols or in the presence of t-C4H9OH, the UV-vis spectra displayed a very weak sign of formation of Mn(tpp)(O)(OAc) complex. It was observed that alcohols generally increased the rate of formation of Mn-oxo species in accordance with their acidity or hydrogen bonding strength, and enhanced the stability of Mn-oxo complexes, as their size increases. Attempts are made to explain these effects. A mechanistic scheme is also suggested for the decomposition of HSO5- to O2 and HSO4-, through the formation and dimerization of Mn-oxo species.

  10. Effect of fungal mycelia on the HPLC-UV and UV-vis spectrophotometric assessment of mycelium-bound epoxide hydrolase using glycidyl phenyl ether.

    PubMed

    Dolcet, Marta M; Torres, Mercè; Canela, Ramon

    2016-06-25

    The use of mycelia as biocatalysts has technical and economic advantages. However, there are several difficulties in obtaining accurate results in mycelium-catalysed reactions. Firstly, sample extraction, indispensable because of the presence of mycelia, can bring into the extract components with a similar structure to that of the analyte of interest; secondly, mycelia can influence the recovery of the analyte. We prepared calibration standards of 3-phenoxy-1,2-propanediol (PPD) in the pure solvent and in the presence of mycelia (spiked before or after extraction) from five fungi (Aspergillus niger, Aspergillus tubingensis, Penicillium aurantiogriseum, Penicillium sp. and Aspergillus terreus). The quantification of PPD was carried out by HPLC-UV and UV-vis spectrophotometry. The manuscript shows that the last method is as accurate as the HPLC method. However, the colorimetric method led to a higher data throughput, which allowed the study of more samples in a shorter time. Matrix effects were evaluated visually from the plotted calibration data and statistically by simultaneously comparing the intercept and slope of calibration curves performed with solvent, post-extraction spiked standards and pre-extraction spiked standards. Significant differences were found between the post- and pre-extraction spiked matrix-matched functions. Pre-extraction spiked matrix-matched functions based on A. tubingensis mycelia, selected as the reference, were validated and used to compensate for low recoveries. These validated functions were successfully applied to the quantification of PPD achieved during the hydrolysis of glycidyl phenyl ether by mycelium-bound epoxide hydrolases and equivalent hydrolysis yields were determined by HPLC-UV and UV-vis spectrophotometry. This study may serve as starting point to implement matrix effects evaluation when mycelium-bound epoxide hydrolases are studied.

  11. Experimental (FT-IR, FT-Raman, UV-Vis, 1H and 13C NMR) and computational (density functional theory) studies on 3-bromophenylboronic acid

    NASA Astrophysics Data System (ADS)

    Karabacak, M.; Kose, E.; Atac, A.; Sas, E. B.; Asiri, A. M.; Kurt, M.

    2014-11-01

    Structurally, boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent (i.e., C-Br bond) and two hydroxyl groups to fill the remaining valences on the boron atom. We studied 3-bromophenylboronic acid (3BrPBA); a derivative of boronic acid. This study includes the experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis) techniques and theoretical (DFT-density functional theory) calculations. The experimental data are recorded, FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase. 1H and 13C NMR spectra are recorded in DMSO solution. UV-Vis spectrum is recorded in the range of 200-400 nm for each solution (in ethanol and water). The theoretical calculations are computed DFT/B3LYP/6-311++G(d,p) basis set. The optimum geometry is also obtained from inside for possible four conformers using according to position of hydrogen atoms after the scan coordinate of these structures. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and parallel quantum solutions (PQS) program. 1H and 13C NMR chemical shifts are racked on by using the gauge-invariant atomic orbital (GIAO) method. The time-dependent density functional theory (TD-DFT) is used to find HOMO and LUMO energies, excitation energies, oscillator strengths. The density of state of the studied molecule is investigated as total and partial density of state (TDOS and PDOS) and overlap population density of state (OPDOS or COOP) diagrams have been presented. Besides, frontier molecular orbitals (FMOs), molecular electrostatic potential surface (MEPs) and thermodynamic properties are performed. At the end of this work, the results are ensured beneficial for the literature contribution.

  12. Generation and UV-VIS-NIR spectral responses of organo-mineral aerosol for modelling soil derived dust

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Illés, E.; Tombácz, E.; Szabó, G.; Bozóki, Z.

    2017-03-01

    Various optical properties of laboratory constructed clay minerals coated by humic acid were determined in this study. For the preparation of organo-clay complexes, an adsorption method was conducted in Ca2+ dominated aquaeous solutions, which provides the opportunity to generate solely internally mixed aerosol particles with complete surface covering. The wavelength dependent optical absorption and scattering coefficients of the syntetised organo-clay complexes and the single clay components were measured in-situ in aerosol phase, using multi-wavelength photoacoustic and scattering instruments. Other climate relevant optical properties such as mass absorption and scattering coefficients, absorption enhancement factor, the imaginary part of complex refractive index, single scattering albedo and coating thickness were also deduced from the measured data. The estimated thickness of humic acid coating was about 10-20 nm. Even such relatively thin shell substantially enhanced the measured absorption of the clay particles with an enhancement factor of about 3-7 in the visible-near ultraviolet range, while caused smaller changes in the mass scattering values. As a cumulative effect, the coating decreased the single scattering albedo of the clay particles; from 0.99 ± 0.04 to 0.93 ± 0.04 in case of illite and from 0.99 ± 0.04 to 0.90 ± 0.03 in case of kaolin at 525 nm. The HA coating slightly modified the shape, the particles became less excentric. We presented a new method capable of generating solely internally mixed particles. Applying this method we experimentally demonstrated the strong effect of a light absorbing coating on the optical properties of dust particle.

  13. Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Qin-Bin; Xu, Xue-Mei; Li, Chen-Jing; Ding, Yi-Peng; Cao, Can; Yin, Lin-Zi; Ding, Jia-Feng

    2016-11-01

    The expressions of the second harmonic (2f) signal are derived on the basis of absorption spectral and lock-in theories. A parametric study indicates that the phase shift between the intensity and wavelength modulation makes a great contribution to the 2f signal. A self-calibration wavelength modulation spectroscopy (WMS) method based on tunable diode laser absorption spectroscopy (TDLAS) is applied, combining the advantages of ambient pressure, temperature suppression, and phase-shift influences elimination. Species concentration is retrieved simultaneously from selected 2f signal pairs of measured and reference WMS-2f spectra. The absorption line of acetylene (C2H2) at 1530.36 nm near-infrared is selected to detect C2H2 concentrations in the range of 0-400 ppmv. System sensitivity, detection precision and limit are markedly improved, demonstrating that the self-calibration method has better detecting performance than the conventional WMS. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047, 61502538, and 61501525).

  14. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  15. Excitonic emission and absorption resonances in V0.25W0.75Se2 single crystals grown by direct vapour transport technique

    NASA Astrophysics Data System (ADS)

    Solanki, G. K.; Pataniya, Pratik; Sumesh, C. K.; Patel, K. D.; Pathak, V. M.

    2016-05-01

    A systematic study on emission and absorption spectra of vanadium mixed tungsten diselenide single crystals grown by direct vapour transport (DVT) technique is reported. The grown crystals were characterized by energy dispersive analysis of X-ray (EDAX), which gives the confirmation about the stoichiometry. The structural characterizations were accomplished by X-ray diffraction (XRD), surface morphology and transmission electron microscopy (TEM). These characterizations were indicating the growth of V0.25W0.75Se2 single crystal from vapour phase. The optical response of this material has been observed by combination of UV-vis-NIR spectroscopy and photo luminescence (PL) spectroscopy. A detailed study of excitonic emission and absorption resonances was carried out on grown crystals. The energy band gap was calculated for indirect allowed transition with absorbed and emitted phonon. Additionally, absorption tail for grown crystal is found to obey the Urbach's rule.

  16. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking.

    PubMed

    Jahanban-Esfahlan, Ali; Panahi-Azar, Vahid

    2016-07-01

    This study aims to investigate the interaction between glutathione and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopies under simulated physiological conditions (pH 7.4) and molecular docking methods. The results of fluorescence spectroscopy indicated that the fluorescence intensity of BSA was decreased considerably upon the addition of glutathione through a static quenching mechanism. The fluorescence quenching obtained was related to the formation of BSA-glutathione complex. The values of KSV, Ka and Kb for the glutathione and BSA interaction were in the order of 10(5). The thermodynamic parameters including enthalpy change (ΔH), entropy change (ΔS) and also Gibb's free energy (ΔG) were determined using Van't Hoff equation. These values showed that hydrogen bonding and van der Waals forces were the main interactions in the binding of glutathione to BSA and the stabilization of the complex. Also, the interaction of glutathione and BSA was spontaneous. The effects of glutathione on the BSA conformation were determined using UV-vis spectroscopy. Moreover, glutathione was docked in BSA using ArgusLab as a molecular docking program. It was recognized that glutathione binds within the sub-domain IIA pocket in domain II of BSA.

  17. Determination of Aluminum Concentration in Seawater by Colorimetry and Atomic Absorption Spectroscopy.

    DTIC Science & Technology

    1972-11-30

    this was also high. 5 . ,Irj ~ - • lri*; llo. TALLE 2 ATOMIC ABSORPTION SPECTROSCOPY DETEPIJINATION OF ALUMINU1 CONCENTRATIO11 OF SEAWATER OCEAN...Concentration in Seawater by Colorimetr-y and Atomic Absorption Spectroscopy Charles A. Greene, Jr. and Everett N. Jones Ocean Science Department T14

  18. Reflectance Spectra of Synthetic Ortho- and Clinoenstatite in the UV, VIS, and IR for Comparison with Fe-poor Asteroids

    NASA Astrophysics Data System (ADS)

    Markus, Kathrin; Arnold, Gabriele; Hiesinger, Harald; Rohrbach, Arno

    2016-04-01

    Major rock forming minerals like pyroxenes are very common in the solar system and show characteristic absorption bands due to Fe2+ in the VIS and NIR [e.g., 1, 2]. The Fe-free endmember enstatite is also a common mineral on planetary surfaces like asteroids and probably Mercury [3] and a major constituent of meteorites like aubrites [4] and enstatite chondrites [5]. Reflectance spectra of these meteorites as well as the enstatite-rich or generally Fe-poor asteroids like the asteroidal targets of the Esa Rosetta mission (2867) Steins [6] and (21) Lutetia [7] are often featureless in the VIS and NIR lacking the absorption features associated with iron incorporated into the crystal structure of silicates. Fe-bearing orthopyroxenes show diagnostic absorption bands at ˜1 μm and ˜2 μm. While systematic changes in positions and depths of these bands with changes in Fe- and Ca-content of orthopyroxenes have been extensively studied [e.g., 2, 8], almost Fe-free enstatite is so far only spectroscopically investigated by [2]. For a better understanding of these Fe-poor bodies the availability of laboratory spectra of Fe-free silicates as analog materials are crucial but terrestrial samples of enstatite usually contain several mol% of FeO with pure enstatite being extremely rare. For easy availability of larger amounts of pure enstatite we developed a technique for synthesis of enstatite. These enstatite samples can be used as analog materials for laboratory studies for e.g. producing mixtures with other mineral samples. Enstatite has 3 stable polymorphs with clinoenstatite, orthoenstatite, and protoenstatite being stable at low (<700° C), intermediate (>600° C), and high (>1000° C) temperatures [9]. Orthoenstatite and protoenstatite are orthorhombic, while clinoenstatite is monoclinic. Orthoenstatite is abundant in terrestrial rocks and in meteorites. Clinoenstatite is known from meteorites [5, 9]. Both polymorphs of enstatite therefore exist on the parent bodies of

  19. The structure and origin of dissolved organic matter studied by UV-vis spectroscopy and fluorescence spectroscopy in lake in arid and semi-arid region.

    PubMed

    Guo, Xu-jing; Xi, Bei-dou; Yu, Hui-bin; Ma, Wen-chao; He, Xiao-song

    2011-01-01

    To develop a proper indicator which could predict water quality and trace pollution sources is critically important for the management of sustainable aquatic ecosystem. In our study, seven water samples collected from Wuliangsuhai Lake in Inner Mongolia were used. UV-visible spectra and synchronous fluorescence spectra were applied to investigate the humification degree and aromatic structure of dissolved organic matter (DOM) extracted from water samples. The results showed that both samples from W1 site and W3 site display lower humification degree and less aromatic structure, where industrial wastewater and domestic sewage, and reclaimed water of farmland irrigation, were accepted respectively. After computing the values of SUVA(254), A(280), A(250/365), A(253/203) and A(226-400), we reached the conclusion that they have a consistent trend (W4> W6> W5> W2> W7> W1> W3). Fluorescence index (f(450/500)) was always utilised to interpret the origin of organic matter in a complex aquatic environment system. Values of f(450/500) are closer to 1.60, indicating that humic substances derived from terrestrial sources and biological sources. Our study demonstrated that reclaimed water of farmland irrigation, industrial wastewater and domestic sewage will definitely influence the humification degree and amount of the aromatic structure of DOM.

  20. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally